1// SPDX-License-Identifier: GPL-2.0
2/* Marvell RVU Admin Function driver
3 *
4 * Copyright (C) 2018 Marvell.
5 *
6 */
7
8#include <linux/module.h>
9#include <linux/interrupt.h>
10#include <linux/delay.h>
11#include <linux/irq.h>
12#include <linux/pci.h>
13#include <linux/sysfs.h>
14
15#include "cgx.h"
16#include "rvu.h"
17#include "rvu_reg.h"
18#include "ptp.h"
19#include "mcs.h"
20
21#include "rvu_trace.h"
22#include "rvu_npc_hash.h"
23
24#define DRV_NAME "rvu_af"
25#define DRV_STRING "Marvell OcteonTX2 RVU Admin Function Driver"
26
27static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
28 struct rvu_block *block, int lf);
29static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
30 struct rvu_block *block, int lf);
31static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc);
32
33static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
34 int type, int num,
35 void (mbox_handler)(struct work_struct *),
36 void (mbox_up_handler)(struct work_struct *));
37enum {
38 TYPE_AFVF,
39 TYPE_AFPF,
40};
41
42/* Supported devices */
43static const struct pci_device_id rvu_id_table[] = {
44 { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_RVU_AF) },
45 { 0, } /* end of table */
46};
47
48MODULE_AUTHOR("Sunil Goutham <sgoutham@marvell.com>");
49MODULE_DESCRIPTION(DRV_STRING);
50MODULE_LICENSE("GPL v2");
51MODULE_DEVICE_TABLE(pci, rvu_id_table);
52
53static char *mkex_profile; /* MKEX profile name */
54module_param(mkex_profile, charp, 0000);
55MODULE_PARM_DESC(mkex_profile, "MKEX profile name string");
56
57static char *kpu_profile; /* KPU profile name */
58module_param(kpu_profile, charp, 0000);
59MODULE_PARM_DESC(kpu_profile, "KPU profile name string");
60
61static void rvu_setup_hw_capabilities(struct rvu *rvu)
62{
63 struct rvu_hwinfo *hw = rvu->hw;
64
65 hw->cap.nix_tx_aggr_lvl = NIX_TXSCH_LVL_TL1;
66 hw->cap.nix_fixed_txschq_mapping = false;
67 hw->cap.nix_shaping = true;
68 hw->cap.nix_tx_link_bp = true;
69 hw->cap.nix_rx_multicast = true;
70 hw->cap.nix_shaper_toggle_wait = false;
71 hw->cap.npc_hash_extract = false;
72 hw->cap.npc_exact_match_enabled = false;
73 hw->rvu = rvu;
74
75 if (is_rvu_pre_96xx_C0(rvu)) {
76 hw->cap.nix_fixed_txschq_mapping = true;
77 hw->cap.nix_txsch_per_cgx_lmac = 4;
78 hw->cap.nix_txsch_per_lbk_lmac = 132;
79 hw->cap.nix_txsch_per_sdp_lmac = 76;
80 hw->cap.nix_shaping = false;
81 hw->cap.nix_tx_link_bp = false;
82 if (is_rvu_96xx_A0(rvu) || is_rvu_95xx_A0(rvu))
83 hw->cap.nix_rx_multicast = false;
84 }
85 if (!is_rvu_pre_96xx_C0(rvu))
86 hw->cap.nix_shaper_toggle_wait = true;
87
88 if (!is_rvu_otx2(rvu))
89 hw->cap.per_pf_mbox_regs = true;
90
91 if (is_rvu_npc_hash_extract_en(rvu))
92 hw->cap.npc_hash_extract = true;
93}
94
95/* Poll a RVU block's register 'offset', for a 'zero'
96 * or 'nonzero' at bits specified by 'mask'
97 */
98int rvu_poll_reg(struct rvu *rvu, u64 block, u64 offset, u64 mask, bool zero)
99{
100 unsigned long timeout = jiffies + usecs_to_jiffies(u: 20000);
101 bool twice = false;
102 void __iomem *reg;
103 u64 reg_val;
104
105 reg = rvu->afreg_base + ((block << 28) | offset);
106again:
107 reg_val = readq(addr: reg);
108 if (zero && !(reg_val & mask))
109 return 0;
110 if (!zero && (reg_val & mask))
111 return 0;
112 if (time_before(jiffies, timeout)) {
113 usleep_range(min: 1, max: 5);
114 goto again;
115 }
116 /* In scenarios where CPU is scheduled out before checking
117 * 'time_before' (above) and gets scheduled in such that
118 * jiffies are beyond timeout value, then check again if HW is
119 * done with the operation in the meantime.
120 */
121 if (!twice) {
122 twice = true;
123 goto again;
124 }
125 return -EBUSY;
126}
127
128int rvu_alloc_rsrc(struct rsrc_bmap *rsrc)
129{
130 int id;
131
132 if (!rsrc->bmap)
133 return -EINVAL;
134
135 id = find_first_zero_bit(addr: rsrc->bmap, size: rsrc->max);
136 if (id >= rsrc->max)
137 return -ENOSPC;
138
139 __set_bit(id, rsrc->bmap);
140
141 return id;
142}
143
144int rvu_alloc_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc)
145{
146 int start;
147
148 if (!rsrc->bmap)
149 return -EINVAL;
150
151 start = bitmap_find_next_zero_area(map: rsrc->bmap, size: rsrc->max, start: 0, nr: nrsrc, align_mask: 0);
152 if (start >= rsrc->max)
153 return -ENOSPC;
154
155 bitmap_set(map: rsrc->bmap, start, nbits: nrsrc);
156 return start;
157}
158
159void rvu_free_rsrc_contig(struct rsrc_bmap *rsrc, int nrsrc, int start)
160{
161 if (!rsrc->bmap)
162 return;
163 if (start >= rsrc->max)
164 return;
165
166 bitmap_clear(map: rsrc->bmap, start, nbits: nrsrc);
167}
168
169bool rvu_rsrc_check_contig(struct rsrc_bmap *rsrc, int nrsrc)
170{
171 int start;
172
173 if (!rsrc->bmap)
174 return false;
175
176 start = bitmap_find_next_zero_area(map: rsrc->bmap, size: rsrc->max, start: 0, nr: nrsrc, align_mask: 0);
177 if (start >= rsrc->max)
178 return false;
179
180 return true;
181}
182
183void rvu_free_rsrc(struct rsrc_bmap *rsrc, int id)
184{
185 if (!rsrc->bmap)
186 return;
187
188 __clear_bit(id, rsrc->bmap);
189}
190
191int rvu_rsrc_free_count(struct rsrc_bmap *rsrc)
192{
193 int used;
194
195 if (!rsrc->bmap)
196 return 0;
197
198 used = bitmap_weight(src: rsrc->bmap, nbits: rsrc->max);
199 return (rsrc->max - used);
200}
201
202bool is_rsrc_free(struct rsrc_bmap *rsrc, int id)
203{
204 if (!rsrc->bmap)
205 return false;
206
207 return !test_bit(id, rsrc->bmap);
208}
209
210int rvu_alloc_bitmap(struct rsrc_bmap *rsrc)
211{
212 rsrc->bmap = kcalloc(BITS_TO_LONGS(rsrc->max),
213 size: sizeof(long), GFP_KERNEL);
214 if (!rsrc->bmap)
215 return -ENOMEM;
216 return 0;
217}
218
219void rvu_free_bitmap(struct rsrc_bmap *rsrc)
220{
221 kfree(objp: rsrc->bmap);
222}
223
224/* Get block LF's HW index from a PF_FUNC's block slot number */
225int rvu_get_lf(struct rvu *rvu, struct rvu_block *block, u16 pcifunc, u16 slot)
226{
227 u16 match = 0;
228 int lf;
229
230 mutex_lock(&rvu->rsrc_lock);
231 for (lf = 0; lf < block->lf.max; lf++) {
232 if (block->fn_map[lf] == pcifunc) {
233 if (slot == match) {
234 mutex_unlock(lock: &rvu->rsrc_lock);
235 return lf;
236 }
237 match++;
238 }
239 }
240 mutex_unlock(lock: &rvu->rsrc_lock);
241 return -ENODEV;
242}
243
244/* Convert BLOCK_TYPE_E to a BLOCK_ADDR_E.
245 * Some silicon variants of OcteonTX2 supports
246 * multiple blocks of same type.
247 *
248 * @pcifunc has to be zero when no LF is yet attached.
249 *
250 * For a pcifunc if LFs are attached from multiple blocks of same type, then
251 * return blkaddr of first encountered block.
252 */
253int rvu_get_blkaddr(struct rvu *rvu, int blktype, u16 pcifunc)
254{
255 int devnum, blkaddr = -ENODEV;
256 u64 cfg, reg;
257 bool is_pf;
258
259 switch (blktype) {
260 case BLKTYPE_NPC:
261 blkaddr = BLKADDR_NPC;
262 goto exit;
263 case BLKTYPE_NPA:
264 blkaddr = BLKADDR_NPA;
265 goto exit;
266 case BLKTYPE_NIX:
267 /* For now assume NIX0 */
268 if (!pcifunc) {
269 blkaddr = BLKADDR_NIX0;
270 goto exit;
271 }
272 break;
273 case BLKTYPE_SSO:
274 blkaddr = BLKADDR_SSO;
275 goto exit;
276 case BLKTYPE_SSOW:
277 blkaddr = BLKADDR_SSOW;
278 goto exit;
279 case BLKTYPE_TIM:
280 blkaddr = BLKADDR_TIM;
281 goto exit;
282 case BLKTYPE_CPT:
283 /* For now assume CPT0 */
284 if (!pcifunc) {
285 blkaddr = BLKADDR_CPT0;
286 goto exit;
287 }
288 break;
289 }
290
291 /* Check if this is a RVU PF or VF */
292 if (pcifunc & RVU_PFVF_FUNC_MASK) {
293 is_pf = false;
294 devnum = rvu_get_hwvf(rvu, pcifunc);
295 } else {
296 is_pf = true;
297 devnum = rvu_get_pf(pcifunc);
298 }
299
300 /* Check if the 'pcifunc' has a NIX LF from 'BLKADDR_NIX0' or
301 * 'BLKADDR_NIX1'.
302 */
303 if (blktype == BLKTYPE_NIX) {
304 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(0) :
305 RVU_PRIV_HWVFX_NIXX_CFG(0);
306 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, offset: reg | (devnum << 16));
307 if (cfg) {
308 blkaddr = BLKADDR_NIX0;
309 goto exit;
310 }
311
312 reg = is_pf ? RVU_PRIV_PFX_NIXX_CFG(1) :
313 RVU_PRIV_HWVFX_NIXX_CFG(1);
314 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, offset: reg | (devnum << 16));
315 if (cfg)
316 blkaddr = BLKADDR_NIX1;
317 }
318
319 if (blktype == BLKTYPE_CPT) {
320 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(0) :
321 RVU_PRIV_HWVFX_CPTX_CFG(0);
322 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, offset: reg | (devnum << 16));
323 if (cfg) {
324 blkaddr = BLKADDR_CPT0;
325 goto exit;
326 }
327
328 reg = is_pf ? RVU_PRIV_PFX_CPTX_CFG(1) :
329 RVU_PRIV_HWVFX_CPTX_CFG(1);
330 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, offset: reg | (devnum << 16));
331 if (cfg)
332 blkaddr = BLKADDR_CPT1;
333 }
334
335exit:
336 if (is_block_implemented(hw: rvu->hw, blkaddr))
337 return blkaddr;
338 return -ENODEV;
339}
340
341static void rvu_update_rsrc_map(struct rvu *rvu, struct rvu_pfvf *pfvf,
342 struct rvu_block *block, u16 pcifunc,
343 u16 lf, bool attach)
344{
345 int devnum, num_lfs = 0;
346 bool is_pf;
347 u64 reg;
348
349 if (lf >= block->lf.max) {
350 dev_err(&rvu->pdev->dev,
351 "%s: FATAL: LF %d is >= %s's max lfs i.e %d\n",
352 __func__, lf, block->name, block->lf.max);
353 return;
354 }
355
356 /* Check if this is for a RVU PF or VF */
357 if (pcifunc & RVU_PFVF_FUNC_MASK) {
358 is_pf = false;
359 devnum = rvu_get_hwvf(rvu, pcifunc);
360 } else {
361 is_pf = true;
362 devnum = rvu_get_pf(pcifunc);
363 }
364
365 block->fn_map[lf] = attach ? pcifunc : 0;
366
367 switch (block->addr) {
368 case BLKADDR_NPA:
369 pfvf->npalf = attach ? true : false;
370 num_lfs = pfvf->npalf;
371 break;
372 case BLKADDR_NIX0:
373 case BLKADDR_NIX1:
374 pfvf->nixlf = attach ? true : false;
375 num_lfs = pfvf->nixlf;
376 break;
377 case BLKADDR_SSO:
378 attach ? pfvf->sso++ : pfvf->sso--;
379 num_lfs = pfvf->sso;
380 break;
381 case BLKADDR_SSOW:
382 attach ? pfvf->ssow++ : pfvf->ssow--;
383 num_lfs = pfvf->ssow;
384 break;
385 case BLKADDR_TIM:
386 attach ? pfvf->timlfs++ : pfvf->timlfs--;
387 num_lfs = pfvf->timlfs;
388 break;
389 case BLKADDR_CPT0:
390 attach ? pfvf->cptlfs++ : pfvf->cptlfs--;
391 num_lfs = pfvf->cptlfs;
392 break;
393 case BLKADDR_CPT1:
394 attach ? pfvf->cpt1_lfs++ : pfvf->cpt1_lfs--;
395 num_lfs = pfvf->cpt1_lfs;
396 break;
397 }
398
399 reg = is_pf ? block->pf_lfcnt_reg : block->vf_lfcnt_reg;
400 rvu_write64(rvu, block: BLKADDR_RVUM, offset: reg | (devnum << 16), val: num_lfs);
401}
402
403inline int rvu_get_pf(u16 pcifunc)
404{
405 return (pcifunc >> RVU_PFVF_PF_SHIFT) & RVU_PFVF_PF_MASK;
406}
407
408void rvu_get_pf_numvfs(struct rvu *rvu, int pf, int *numvfs, int *hwvf)
409{
410 u64 cfg;
411
412 /* Get numVFs attached to this PF and first HWVF */
413 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
414 if (numvfs)
415 *numvfs = (cfg >> 12) & 0xFF;
416 if (hwvf)
417 *hwvf = cfg & 0xFFF;
418}
419
420int rvu_get_hwvf(struct rvu *rvu, int pcifunc)
421{
422 int pf, func;
423 u64 cfg;
424
425 pf = rvu_get_pf(pcifunc);
426 func = pcifunc & RVU_PFVF_FUNC_MASK;
427
428 /* Get first HWVF attached to this PF */
429 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
430
431 return ((cfg & 0xFFF) + func - 1);
432}
433
434struct rvu_pfvf *rvu_get_pfvf(struct rvu *rvu, int pcifunc)
435{
436 /* Check if it is a PF or VF */
437 if (pcifunc & RVU_PFVF_FUNC_MASK)
438 return &rvu->hwvf[rvu_get_hwvf(rvu, pcifunc)];
439 else
440 return &rvu->pf[rvu_get_pf(pcifunc)];
441}
442
443static bool is_pf_func_valid(struct rvu *rvu, u16 pcifunc)
444{
445 int pf, vf, nvfs;
446 u64 cfg;
447
448 pf = rvu_get_pf(pcifunc);
449 if (pf >= rvu->hw->total_pfs)
450 return false;
451
452 if (!(pcifunc & RVU_PFVF_FUNC_MASK))
453 return true;
454
455 /* Check if VF is within number of VFs attached to this PF */
456 vf = (pcifunc & RVU_PFVF_FUNC_MASK) - 1;
457 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
458 nvfs = (cfg >> 12) & 0xFF;
459 if (vf >= nvfs)
460 return false;
461
462 return true;
463}
464
465bool is_block_implemented(struct rvu_hwinfo *hw, int blkaddr)
466{
467 struct rvu_block *block;
468
469 if (blkaddr < BLKADDR_RVUM || blkaddr >= BLK_COUNT)
470 return false;
471
472 block = &hw->block[blkaddr];
473 return block->implemented;
474}
475
476static void rvu_check_block_implemented(struct rvu *rvu)
477{
478 struct rvu_hwinfo *hw = rvu->hw;
479 struct rvu_block *block;
480 int blkid;
481 u64 cfg;
482
483 /* For each block check if 'implemented' bit is set */
484 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
485 block = &hw->block[blkid];
486 cfg = rvupf_read64(rvu, RVU_PF_BLOCK_ADDRX_DISC(blkid));
487 if (cfg & BIT_ULL(11))
488 block->implemented = true;
489 }
490}
491
492static void rvu_setup_rvum_blk_revid(struct rvu *rvu)
493{
494 rvu_write64(rvu, block: BLKADDR_RVUM,
495 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM),
496 RVU_BLK_RVUM_REVID);
497}
498
499static void rvu_clear_rvum_blk_revid(struct rvu *rvu)
500{
501 rvu_write64(rvu, block: BLKADDR_RVUM,
502 RVU_PRIV_BLOCK_TYPEX_REV(BLKTYPE_RVUM), val: 0x00);
503}
504
505int rvu_lf_reset(struct rvu *rvu, struct rvu_block *block, int lf)
506{
507 int err;
508
509 if (!block->implemented)
510 return 0;
511
512 rvu_write64(rvu, block: block->addr, offset: block->lfreset_reg, val: lf | BIT_ULL(12));
513 err = rvu_poll_reg(rvu, block: block->addr, offset: block->lfreset_reg, BIT_ULL(12),
514 zero: true);
515 return err;
516}
517
518static void rvu_block_reset(struct rvu *rvu, int blkaddr, u64 rst_reg)
519{
520 struct rvu_block *block = &rvu->hw->block[blkaddr];
521 int err;
522
523 if (!block->implemented)
524 return;
525
526 rvu_write64(rvu, block: blkaddr, offset: rst_reg, BIT_ULL(0));
527 err = rvu_poll_reg(rvu, block: blkaddr, offset: rst_reg, BIT_ULL(63), zero: true);
528 if (err) {
529 dev_err(rvu->dev, "HW block:%d reset timeout retrying again\n", blkaddr);
530 while (rvu_poll_reg(rvu, block: blkaddr, offset: rst_reg, BIT_ULL(63), zero: true) == -EBUSY)
531 ;
532 }
533}
534
535static void rvu_reset_all_blocks(struct rvu *rvu)
536{
537 /* Do a HW reset of all RVU blocks */
538 rvu_block_reset(rvu, blkaddr: BLKADDR_NPA, NPA_AF_BLK_RST);
539 rvu_block_reset(rvu, blkaddr: BLKADDR_NIX0, NIX_AF_BLK_RST);
540 rvu_block_reset(rvu, blkaddr: BLKADDR_NIX1, NIX_AF_BLK_RST);
541 rvu_block_reset(rvu, blkaddr: BLKADDR_NPC, NPC_AF_BLK_RST);
542 rvu_block_reset(rvu, blkaddr: BLKADDR_SSO, SSO_AF_BLK_RST);
543 rvu_block_reset(rvu, blkaddr: BLKADDR_TIM, TIM_AF_BLK_RST);
544 rvu_block_reset(rvu, blkaddr: BLKADDR_CPT0, CPT_AF_BLK_RST);
545 rvu_block_reset(rvu, blkaddr: BLKADDR_CPT1, CPT_AF_BLK_RST);
546 rvu_block_reset(rvu, blkaddr: BLKADDR_NDC_NIX0_RX, NDC_AF_BLK_RST);
547 rvu_block_reset(rvu, blkaddr: BLKADDR_NDC_NIX0_TX, NDC_AF_BLK_RST);
548 rvu_block_reset(rvu, blkaddr: BLKADDR_NDC_NIX1_RX, NDC_AF_BLK_RST);
549 rvu_block_reset(rvu, blkaddr: BLKADDR_NDC_NIX1_TX, NDC_AF_BLK_RST);
550 rvu_block_reset(rvu, blkaddr: BLKADDR_NDC_NPA0, NDC_AF_BLK_RST);
551}
552
553static void rvu_scan_block(struct rvu *rvu, struct rvu_block *block)
554{
555 struct rvu_pfvf *pfvf;
556 u64 cfg;
557 int lf;
558
559 for (lf = 0; lf < block->lf.max; lf++) {
560 cfg = rvu_read64(rvu, block: block->addr,
561 offset: block->lfcfg_reg | (lf << block->lfshift));
562 if (!(cfg & BIT_ULL(63)))
563 continue;
564
565 /* Set this resource as being used */
566 __set_bit(lf, block->lf.bmap);
567
568 /* Get, to whom this LF is attached */
569 pfvf = rvu_get_pfvf(rvu, pcifunc: (cfg >> 8) & 0xFFFF);
570 rvu_update_rsrc_map(rvu, pfvf, block,
571 pcifunc: (cfg >> 8) & 0xFFFF, lf, attach: true);
572
573 /* Set start MSIX vector for this LF within this PF/VF */
574 rvu_set_msix_offset(rvu, pfvf, block, lf);
575 }
576}
577
578static void rvu_check_min_msix_vec(struct rvu *rvu, int nvecs, int pf, int vf)
579{
580 int min_vecs;
581
582 if (!vf)
583 goto check_pf;
584
585 if (!nvecs) {
586 dev_warn(rvu->dev,
587 "PF%d:VF%d is configured with zero msix vectors, %d\n",
588 pf, vf - 1, nvecs);
589 }
590 return;
591
592check_pf:
593 if (pf == 0)
594 min_vecs = RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT;
595 else
596 min_vecs = RVU_PF_INT_VEC_CNT;
597
598 if (!(nvecs < min_vecs))
599 return;
600 dev_warn(rvu->dev,
601 "PF%d is configured with too few vectors, %d, min is %d\n",
602 pf, nvecs, min_vecs);
603}
604
605static int rvu_setup_msix_resources(struct rvu *rvu)
606{
607 struct rvu_hwinfo *hw = rvu->hw;
608 int pf, vf, numvfs, hwvf, err;
609 int nvecs, offset, max_msix;
610 struct rvu_pfvf *pfvf;
611 u64 cfg, phy_addr;
612 dma_addr_t iova;
613
614 for (pf = 0; pf < hw->total_pfs; pf++) {
615 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
616 /* If PF is not enabled, nothing to do */
617 if (!((cfg >> 20) & 0x01))
618 continue;
619
620 rvu_get_pf_numvfs(rvu, pf, numvfs: &numvfs, hwvf: &hwvf);
621
622 pfvf = &rvu->pf[pf];
623 /* Get num of MSIX vectors attached to this PF */
624 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_MSIX_CFG(pf));
625 pfvf->msix.max = ((cfg >> 32) & 0xFFF) + 1;
626 rvu_check_min_msix_vec(rvu, nvecs: pfvf->msix.max, pf, vf: 0);
627
628 /* Alloc msix bitmap for this PF */
629 err = rvu_alloc_bitmap(rsrc: &pfvf->msix);
630 if (err)
631 return err;
632
633 /* Allocate memory for MSIX vector to RVU block LF mapping */
634 pfvf->msix_lfmap = devm_kcalloc(dev: rvu->dev, n: pfvf->msix.max,
635 size: sizeof(u16), GFP_KERNEL);
636 if (!pfvf->msix_lfmap)
637 return -ENOMEM;
638
639 /* For PF0 (AF) firmware will set msix vector offsets for
640 * AF, block AF and PF0_INT vectors, so jump to VFs.
641 */
642 if (!pf)
643 goto setup_vfmsix;
644
645 /* Set MSIX offset for PF's 'RVU_PF_INT_VEC' vectors.
646 * These are allocated on driver init and never freed,
647 * so no need to set 'msix_lfmap' for these.
648 */
649 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(pf));
650 nvecs = (cfg >> 12) & 0xFF;
651 cfg &= ~0x7FFULL;
652 offset = rvu_alloc_rsrc_contig(rsrc: &pfvf->msix, nrsrc: nvecs);
653 rvu_write64(rvu, block: BLKADDR_RVUM,
654 RVU_PRIV_PFX_INT_CFG(pf), val: cfg | offset);
655setup_vfmsix:
656 /* Alloc msix bitmap for VFs */
657 for (vf = 0; vf < numvfs; vf++) {
658 pfvf = &rvu->hwvf[hwvf + vf];
659 /* Get num of MSIX vectors attached to this VF */
660 cfg = rvu_read64(rvu, block: BLKADDR_RVUM,
661 RVU_PRIV_PFX_MSIX_CFG(pf));
662 pfvf->msix.max = (cfg & 0xFFF) + 1;
663 rvu_check_min_msix_vec(rvu, nvecs: pfvf->msix.max, pf, vf: vf + 1);
664
665 /* Alloc msix bitmap for this VF */
666 err = rvu_alloc_bitmap(rsrc: &pfvf->msix);
667 if (err)
668 return err;
669
670 pfvf->msix_lfmap =
671 devm_kcalloc(dev: rvu->dev, n: pfvf->msix.max,
672 size: sizeof(u16), GFP_KERNEL);
673 if (!pfvf->msix_lfmap)
674 return -ENOMEM;
675
676 /* Set MSIX offset for HWVF's 'RVU_VF_INT_VEC' vectors.
677 * These are allocated on driver init and never freed,
678 * so no need to set 'msix_lfmap' for these.
679 */
680 cfg = rvu_read64(rvu, block: BLKADDR_RVUM,
681 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf));
682 nvecs = (cfg >> 12) & 0xFF;
683 cfg &= ~0x7FFULL;
684 offset = rvu_alloc_rsrc_contig(rsrc: &pfvf->msix, nrsrc: nvecs);
685 rvu_write64(rvu, block: BLKADDR_RVUM,
686 RVU_PRIV_HWVFX_INT_CFG(hwvf + vf),
687 val: cfg | offset);
688 }
689 }
690
691 /* HW interprets RVU_AF_MSIXTR_BASE address as an IOVA, hence
692 * create an IOMMU mapping for the physical address configured by
693 * firmware and reconfig RVU_AF_MSIXTR_BASE with IOVA.
694 */
695 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_CONST);
696 max_msix = cfg & 0xFFFFF;
697 if (rvu->fwdata && rvu->fwdata->msixtr_base)
698 phy_addr = rvu->fwdata->msixtr_base;
699 else
700 phy_addr = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_AF_MSIXTR_BASE);
701
702 iova = dma_map_resource(dev: rvu->dev, phys_addr: phy_addr,
703 size: max_msix * PCI_MSIX_ENTRY_SIZE,
704 dir: DMA_BIDIRECTIONAL, attrs: 0);
705
706 if (dma_mapping_error(dev: rvu->dev, dma_addr: iova))
707 return -ENOMEM;
708
709 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_MSIXTR_BASE, val: (u64)iova);
710 rvu->msix_base_iova = iova;
711 rvu->msixtr_base_phy = phy_addr;
712
713 return 0;
714}
715
716static void rvu_reset_msix(struct rvu *rvu)
717{
718 /* Restore msixtr base register */
719 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_MSIXTR_BASE,
720 val: rvu->msixtr_base_phy);
721}
722
723static void rvu_free_hw_resources(struct rvu *rvu)
724{
725 struct rvu_hwinfo *hw = rvu->hw;
726 struct rvu_block *block;
727 struct rvu_pfvf *pfvf;
728 int id, max_msix;
729 u64 cfg;
730
731 rvu_npa_freemem(rvu);
732 rvu_npc_freemem(rvu);
733 rvu_nix_freemem(rvu);
734
735 /* Free block LF bitmaps */
736 for (id = 0; id < BLK_COUNT; id++) {
737 block = &hw->block[id];
738 kfree(objp: block->lf.bmap);
739 }
740
741 /* Free MSIX bitmaps */
742 for (id = 0; id < hw->total_pfs; id++) {
743 pfvf = &rvu->pf[id];
744 kfree(objp: pfvf->msix.bmap);
745 }
746
747 for (id = 0; id < hw->total_vfs; id++) {
748 pfvf = &rvu->hwvf[id];
749 kfree(objp: pfvf->msix.bmap);
750 }
751
752 /* Unmap MSIX vector base IOVA mapping */
753 if (!rvu->msix_base_iova)
754 return;
755 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_CONST);
756 max_msix = cfg & 0xFFFFF;
757 dma_unmap_resource(dev: rvu->dev, addr: rvu->msix_base_iova,
758 size: max_msix * PCI_MSIX_ENTRY_SIZE,
759 dir: DMA_BIDIRECTIONAL, attrs: 0);
760
761 rvu_reset_msix(rvu);
762 mutex_destroy(lock: &rvu->rsrc_lock);
763}
764
765static void rvu_setup_pfvf_macaddress(struct rvu *rvu)
766{
767 struct rvu_hwinfo *hw = rvu->hw;
768 int pf, vf, numvfs, hwvf;
769 struct rvu_pfvf *pfvf;
770 u64 *mac;
771
772 for (pf = 0; pf < hw->total_pfs; pf++) {
773 /* For PF0(AF), Assign MAC address to only VFs (LBKVFs) */
774 if (!pf)
775 goto lbkvf;
776
777 if (!is_pf_cgxmapped(rvu, pf))
778 continue;
779 /* Assign MAC address to PF */
780 pfvf = &rvu->pf[pf];
781 if (rvu->fwdata && pf < PF_MACNUM_MAX) {
782 mac = &rvu->fwdata->pf_macs[pf];
783 if (*mac)
784 u64_to_ether_addr(u: *mac, addr: pfvf->mac_addr);
785 else
786 eth_random_addr(addr: pfvf->mac_addr);
787 } else {
788 eth_random_addr(addr: pfvf->mac_addr);
789 }
790 ether_addr_copy(dst: pfvf->default_mac, src: pfvf->mac_addr);
791
792lbkvf:
793 /* Assign MAC address to VFs*/
794 rvu_get_pf_numvfs(rvu, pf, numvfs: &numvfs, hwvf: &hwvf);
795 for (vf = 0; vf < numvfs; vf++, hwvf++) {
796 pfvf = &rvu->hwvf[hwvf];
797 if (rvu->fwdata && hwvf < VF_MACNUM_MAX) {
798 mac = &rvu->fwdata->vf_macs[hwvf];
799 if (*mac)
800 u64_to_ether_addr(u: *mac, addr: pfvf->mac_addr);
801 else
802 eth_random_addr(addr: pfvf->mac_addr);
803 } else {
804 eth_random_addr(addr: pfvf->mac_addr);
805 }
806 ether_addr_copy(dst: pfvf->default_mac, src: pfvf->mac_addr);
807 }
808 }
809}
810
811static int rvu_fwdata_init(struct rvu *rvu)
812{
813 u64 fwdbase;
814 int err;
815
816 /* Get firmware data base address */
817 err = cgx_get_fwdata_base(base: &fwdbase);
818 if (err)
819 goto fail;
820
821 BUILD_BUG_ON(offsetof(struct rvu_fwdata, cgx_fw_data) > FWDATA_CGX_LMAC_OFFSET);
822 rvu->fwdata = ioremap_wc(offset: fwdbase, size: sizeof(struct rvu_fwdata));
823 if (!rvu->fwdata)
824 goto fail;
825 if (!is_rvu_fwdata_valid(rvu)) {
826 dev_err(rvu->dev,
827 "Mismatch in 'fwdata' struct btw kernel and firmware\n");
828 iounmap(addr: rvu->fwdata);
829 rvu->fwdata = NULL;
830 return -EINVAL;
831 }
832 return 0;
833fail:
834 dev_info(rvu->dev, "Unable to fetch 'fwdata' from firmware\n");
835 return -EIO;
836}
837
838static void rvu_fwdata_exit(struct rvu *rvu)
839{
840 if (rvu->fwdata)
841 iounmap(addr: rvu->fwdata);
842}
843
844static int rvu_setup_nix_hw_resource(struct rvu *rvu, int blkaddr)
845{
846 struct rvu_hwinfo *hw = rvu->hw;
847 struct rvu_block *block;
848 int blkid;
849 u64 cfg;
850
851 /* Init NIX LF's bitmap */
852 block = &hw->block[blkaddr];
853 if (!block->implemented)
854 return 0;
855 blkid = (blkaddr == BLKADDR_NIX0) ? 0 : 1;
856 cfg = rvu_read64(rvu, block: blkaddr, NIX_AF_CONST2);
857 block->lf.max = cfg & 0xFFF;
858 block->addr = blkaddr;
859 block->type = BLKTYPE_NIX;
860 block->lfshift = 8;
861 block->lookup_reg = NIX_AF_RVU_LF_CFG_DEBUG;
862 block->pf_lfcnt_reg = RVU_PRIV_PFX_NIXX_CFG(blkid);
863 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NIXX_CFG(blkid);
864 block->lfcfg_reg = NIX_PRIV_LFX_CFG;
865 block->msixcfg_reg = NIX_PRIV_LFX_INT_CFG;
866 block->lfreset_reg = NIX_AF_LF_RST;
867 block->rvu = rvu;
868 sprintf(buf: block->name, fmt: "NIX%d", blkid);
869 rvu->nix_blkaddr[blkid] = blkaddr;
870 return rvu_alloc_bitmap(rsrc: &block->lf);
871}
872
873static int rvu_setup_cpt_hw_resource(struct rvu *rvu, int blkaddr)
874{
875 struct rvu_hwinfo *hw = rvu->hw;
876 struct rvu_block *block;
877 int blkid;
878 u64 cfg;
879
880 /* Init CPT LF's bitmap */
881 block = &hw->block[blkaddr];
882 if (!block->implemented)
883 return 0;
884 blkid = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
885 cfg = rvu_read64(rvu, block: blkaddr, CPT_AF_CONSTANTS0);
886 block->lf.max = cfg & 0xFF;
887 block->addr = blkaddr;
888 block->type = BLKTYPE_CPT;
889 block->multislot = true;
890 block->lfshift = 3;
891 block->lookup_reg = CPT_AF_RVU_LF_CFG_DEBUG;
892 block->pf_lfcnt_reg = RVU_PRIV_PFX_CPTX_CFG(blkid);
893 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_CPTX_CFG(blkid);
894 block->lfcfg_reg = CPT_PRIV_LFX_CFG;
895 block->msixcfg_reg = CPT_PRIV_LFX_INT_CFG;
896 block->lfreset_reg = CPT_AF_LF_RST;
897 block->rvu = rvu;
898 sprintf(buf: block->name, fmt: "CPT%d", blkid);
899 return rvu_alloc_bitmap(rsrc: &block->lf);
900}
901
902static void rvu_get_lbk_bufsize(struct rvu *rvu)
903{
904 struct pci_dev *pdev = NULL;
905 void __iomem *base;
906 u64 lbk_const;
907
908 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM,
909 PCI_DEVID_OCTEONTX2_LBK, from: pdev);
910 if (!pdev)
911 return;
912
913 base = pci_ioremap_bar(pdev, bar: 0);
914 if (!base)
915 goto err_put;
916
917 lbk_const = readq(addr: base + LBK_CONST);
918
919 /* cache fifo size */
920 rvu->hw->lbk_bufsize = FIELD_GET(LBK_CONST_BUF_SIZE, lbk_const);
921
922 iounmap(addr: base);
923err_put:
924 pci_dev_put(dev: pdev);
925}
926
927static int rvu_setup_hw_resources(struct rvu *rvu)
928{
929 struct rvu_hwinfo *hw = rvu->hw;
930 struct rvu_block *block;
931 int blkid, err;
932 u64 cfg;
933
934 /* Get HW supported max RVU PF & VF count */
935 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_CONST);
936 hw->total_pfs = (cfg >> 32) & 0xFF;
937 hw->total_vfs = (cfg >> 20) & 0xFFF;
938 hw->max_vfs_per_pf = (cfg >> 40) & 0xFF;
939
940 if (!is_rvu_otx2(rvu))
941 rvu_apr_block_cn10k_init(rvu);
942
943 /* Init NPA LF's bitmap */
944 block = &hw->block[BLKADDR_NPA];
945 if (!block->implemented)
946 goto nix;
947 cfg = rvu_read64(rvu, block: BLKADDR_NPA, NPA_AF_CONST);
948 block->lf.max = (cfg >> 16) & 0xFFF;
949 block->addr = BLKADDR_NPA;
950 block->type = BLKTYPE_NPA;
951 block->lfshift = 8;
952 block->lookup_reg = NPA_AF_RVU_LF_CFG_DEBUG;
953 block->pf_lfcnt_reg = RVU_PRIV_PFX_NPA_CFG;
954 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_NPA_CFG;
955 block->lfcfg_reg = NPA_PRIV_LFX_CFG;
956 block->msixcfg_reg = NPA_PRIV_LFX_INT_CFG;
957 block->lfreset_reg = NPA_AF_LF_RST;
958 block->rvu = rvu;
959 sprintf(buf: block->name, fmt: "NPA");
960 err = rvu_alloc_bitmap(rsrc: &block->lf);
961 if (err) {
962 dev_err(rvu->dev,
963 "%s: Failed to allocate NPA LF bitmap\n", __func__);
964 return err;
965 }
966
967nix:
968 err = rvu_setup_nix_hw_resource(rvu, blkaddr: BLKADDR_NIX0);
969 if (err) {
970 dev_err(rvu->dev,
971 "%s: Failed to allocate NIX0 LFs bitmap\n", __func__);
972 return err;
973 }
974
975 err = rvu_setup_nix_hw_resource(rvu, blkaddr: BLKADDR_NIX1);
976 if (err) {
977 dev_err(rvu->dev,
978 "%s: Failed to allocate NIX1 LFs bitmap\n", __func__);
979 return err;
980 }
981
982 /* Init SSO group's bitmap */
983 block = &hw->block[BLKADDR_SSO];
984 if (!block->implemented)
985 goto ssow;
986 cfg = rvu_read64(rvu, block: BLKADDR_SSO, SSO_AF_CONST);
987 block->lf.max = cfg & 0xFFFF;
988 block->addr = BLKADDR_SSO;
989 block->type = BLKTYPE_SSO;
990 block->multislot = true;
991 block->lfshift = 3;
992 block->lookup_reg = SSO_AF_RVU_LF_CFG_DEBUG;
993 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSO_CFG;
994 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSO_CFG;
995 block->lfcfg_reg = SSO_PRIV_LFX_HWGRP_CFG;
996 block->msixcfg_reg = SSO_PRIV_LFX_HWGRP_INT_CFG;
997 block->lfreset_reg = SSO_AF_LF_HWGRP_RST;
998 block->rvu = rvu;
999 sprintf(buf: block->name, fmt: "SSO GROUP");
1000 err = rvu_alloc_bitmap(rsrc: &block->lf);
1001 if (err) {
1002 dev_err(rvu->dev,
1003 "%s: Failed to allocate SSO LF bitmap\n", __func__);
1004 return err;
1005 }
1006
1007ssow:
1008 /* Init SSO workslot's bitmap */
1009 block = &hw->block[BLKADDR_SSOW];
1010 if (!block->implemented)
1011 goto tim;
1012 block->lf.max = (cfg >> 56) & 0xFF;
1013 block->addr = BLKADDR_SSOW;
1014 block->type = BLKTYPE_SSOW;
1015 block->multislot = true;
1016 block->lfshift = 3;
1017 block->lookup_reg = SSOW_AF_RVU_LF_HWS_CFG_DEBUG;
1018 block->pf_lfcnt_reg = RVU_PRIV_PFX_SSOW_CFG;
1019 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_SSOW_CFG;
1020 block->lfcfg_reg = SSOW_PRIV_LFX_HWS_CFG;
1021 block->msixcfg_reg = SSOW_PRIV_LFX_HWS_INT_CFG;
1022 block->lfreset_reg = SSOW_AF_LF_HWS_RST;
1023 block->rvu = rvu;
1024 sprintf(buf: block->name, fmt: "SSOWS");
1025 err = rvu_alloc_bitmap(rsrc: &block->lf);
1026 if (err) {
1027 dev_err(rvu->dev,
1028 "%s: Failed to allocate SSOW LF bitmap\n", __func__);
1029 return err;
1030 }
1031
1032tim:
1033 /* Init TIM LF's bitmap */
1034 block = &hw->block[BLKADDR_TIM];
1035 if (!block->implemented)
1036 goto cpt;
1037 cfg = rvu_read64(rvu, block: BLKADDR_TIM, TIM_AF_CONST);
1038 block->lf.max = cfg & 0xFFFF;
1039 block->addr = BLKADDR_TIM;
1040 block->type = BLKTYPE_TIM;
1041 block->multislot = true;
1042 block->lfshift = 3;
1043 block->lookup_reg = TIM_AF_RVU_LF_CFG_DEBUG;
1044 block->pf_lfcnt_reg = RVU_PRIV_PFX_TIM_CFG;
1045 block->vf_lfcnt_reg = RVU_PRIV_HWVFX_TIM_CFG;
1046 block->lfcfg_reg = TIM_PRIV_LFX_CFG;
1047 block->msixcfg_reg = TIM_PRIV_LFX_INT_CFG;
1048 block->lfreset_reg = TIM_AF_LF_RST;
1049 block->rvu = rvu;
1050 sprintf(buf: block->name, fmt: "TIM");
1051 err = rvu_alloc_bitmap(rsrc: &block->lf);
1052 if (err) {
1053 dev_err(rvu->dev,
1054 "%s: Failed to allocate TIM LF bitmap\n", __func__);
1055 return err;
1056 }
1057
1058cpt:
1059 err = rvu_setup_cpt_hw_resource(rvu, blkaddr: BLKADDR_CPT0);
1060 if (err) {
1061 dev_err(rvu->dev,
1062 "%s: Failed to allocate CPT0 LF bitmap\n", __func__);
1063 return err;
1064 }
1065 err = rvu_setup_cpt_hw_resource(rvu, blkaddr: BLKADDR_CPT1);
1066 if (err) {
1067 dev_err(rvu->dev,
1068 "%s: Failed to allocate CPT1 LF bitmap\n", __func__);
1069 return err;
1070 }
1071
1072 /* Allocate memory for PFVF data */
1073 rvu->pf = devm_kcalloc(dev: rvu->dev, n: hw->total_pfs,
1074 size: sizeof(struct rvu_pfvf), GFP_KERNEL);
1075 if (!rvu->pf) {
1076 dev_err(rvu->dev,
1077 "%s: Failed to allocate memory for PF's rvu_pfvf struct\n", __func__);
1078 return -ENOMEM;
1079 }
1080
1081 rvu->hwvf = devm_kcalloc(dev: rvu->dev, n: hw->total_vfs,
1082 size: sizeof(struct rvu_pfvf), GFP_KERNEL);
1083 if (!rvu->hwvf) {
1084 dev_err(rvu->dev,
1085 "%s: Failed to allocate memory for VF's rvu_pfvf struct\n", __func__);
1086 return -ENOMEM;
1087 }
1088
1089 mutex_init(&rvu->rsrc_lock);
1090
1091 rvu_fwdata_init(rvu);
1092
1093 err = rvu_setup_msix_resources(rvu);
1094 if (err) {
1095 dev_err(rvu->dev,
1096 "%s: Failed to setup MSIX resources\n", __func__);
1097 return err;
1098 }
1099
1100 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1101 block = &hw->block[blkid];
1102 if (!block->lf.bmap)
1103 continue;
1104
1105 /* Allocate memory for block LF/slot to pcifunc mapping info */
1106 block->fn_map = devm_kcalloc(dev: rvu->dev, n: block->lf.max,
1107 size: sizeof(u16), GFP_KERNEL);
1108 if (!block->fn_map) {
1109 err = -ENOMEM;
1110 goto msix_err;
1111 }
1112
1113 /* Scan all blocks to check if low level firmware has
1114 * already provisioned any of the resources to a PF/VF.
1115 */
1116 rvu_scan_block(rvu, block);
1117 }
1118
1119 err = rvu_set_channels_base(rvu);
1120 if (err)
1121 goto msix_err;
1122
1123 err = rvu_npc_init(rvu);
1124 if (err) {
1125 dev_err(rvu->dev, "%s: Failed to initialize npc\n", __func__);
1126 goto npc_err;
1127 }
1128
1129 err = rvu_cgx_init(rvu);
1130 if (err) {
1131 dev_err(rvu->dev, "%s: Failed to initialize cgx\n", __func__);
1132 goto cgx_err;
1133 }
1134
1135 err = rvu_npc_exact_init(rvu);
1136 if (err) {
1137 dev_err(rvu->dev, "failed to initialize exact match table\n");
1138 return err;
1139 }
1140
1141 /* Assign MACs for CGX mapped functions */
1142 rvu_setup_pfvf_macaddress(rvu);
1143
1144 err = rvu_npa_init(rvu);
1145 if (err) {
1146 dev_err(rvu->dev, "%s: Failed to initialize npa\n", __func__);
1147 goto npa_err;
1148 }
1149
1150 rvu_get_lbk_bufsize(rvu);
1151
1152 err = rvu_nix_init(rvu);
1153 if (err) {
1154 dev_err(rvu->dev, "%s: Failed to initialize nix\n", __func__);
1155 goto nix_err;
1156 }
1157
1158 err = rvu_sdp_init(rvu);
1159 if (err) {
1160 dev_err(rvu->dev, "%s: Failed to initialize sdp\n", __func__);
1161 goto nix_err;
1162 }
1163
1164 rvu_program_channels(rvu);
1165
1166 err = rvu_mcs_init(rvu);
1167 if (err) {
1168 dev_err(rvu->dev, "%s: Failed to initialize mcs\n", __func__);
1169 goto nix_err;
1170 }
1171
1172 err = rvu_cpt_init(rvu);
1173 if (err) {
1174 dev_err(rvu->dev, "%s: Failed to initialize cpt\n", __func__);
1175 goto mcs_err;
1176 }
1177
1178 return 0;
1179
1180mcs_err:
1181 rvu_mcs_exit(rvu);
1182nix_err:
1183 rvu_nix_freemem(rvu);
1184npa_err:
1185 rvu_npa_freemem(rvu);
1186cgx_err:
1187 rvu_cgx_exit(rvu);
1188npc_err:
1189 rvu_npc_freemem(rvu);
1190 rvu_fwdata_exit(rvu);
1191msix_err:
1192 rvu_reset_msix(rvu);
1193 return err;
1194}
1195
1196/* NPA and NIX admin queue APIs */
1197void rvu_aq_free(struct rvu *rvu, struct admin_queue *aq)
1198{
1199 if (!aq)
1200 return;
1201
1202 qmem_free(dev: rvu->dev, qmem: aq->inst);
1203 qmem_free(dev: rvu->dev, qmem: aq->res);
1204 devm_kfree(dev: rvu->dev, p: aq);
1205}
1206
1207int rvu_aq_alloc(struct rvu *rvu, struct admin_queue **ad_queue,
1208 int qsize, int inst_size, int res_size)
1209{
1210 struct admin_queue *aq;
1211 int err;
1212
1213 *ad_queue = devm_kzalloc(dev: rvu->dev, size: sizeof(*aq), GFP_KERNEL);
1214 if (!*ad_queue)
1215 return -ENOMEM;
1216 aq = *ad_queue;
1217
1218 /* Alloc memory for instructions i.e AQ */
1219 err = qmem_alloc(dev: rvu->dev, q: &aq->inst, qsize, entry_sz: inst_size);
1220 if (err) {
1221 devm_kfree(dev: rvu->dev, p: aq);
1222 return err;
1223 }
1224
1225 /* Alloc memory for results */
1226 err = qmem_alloc(dev: rvu->dev, q: &aq->res, qsize, entry_sz: res_size);
1227 if (err) {
1228 rvu_aq_free(rvu, aq);
1229 return err;
1230 }
1231
1232 spin_lock_init(&aq->lock);
1233 return 0;
1234}
1235
1236int rvu_mbox_handler_ready(struct rvu *rvu, struct msg_req *req,
1237 struct ready_msg_rsp *rsp)
1238{
1239 if (rvu->fwdata) {
1240 rsp->rclk_freq = rvu->fwdata->rclk;
1241 rsp->sclk_freq = rvu->fwdata->sclk;
1242 }
1243 return 0;
1244}
1245
1246/* Get current count of a RVU block's LF/slots
1247 * provisioned to a given RVU func.
1248 */
1249u16 rvu_get_rsrc_mapcount(struct rvu_pfvf *pfvf, int blkaddr)
1250{
1251 switch (blkaddr) {
1252 case BLKADDR_NPA:
1253 return pfvf->npalf ? 1 : 0;
1254 case BLKADDR_NIX0:
1255 case BLKADDR_NIX1:
1256 return pfvf->nixlf ? 1 : 0;
1257 case BLKADDR_SSO:
1258 return pfvf->sso;
1259 case BLKADDR_SSOW:
1260 return pfvf->ssow;
1261 case BLKADDR_TIM:
1262 return pfvf->timlfs;
1263 case BLKADDR_CPT0:
1264 return pfvf->cptlfs;
1265 case BLKADDR_CPT1:
1266 return pfvf->cpt1_lfs;
1267 }
1268 return 0;
1269}
1270
1271/* Return true if LFs of block type are attached to pcifunc */
1272static bool is_blktype_attached(struct rvu_pfvf *pfvf, int blktype)
1273{
1274 switch (blktype) {
1275 case BLKTYPE_NPA:
1276 return pfvf->npalf ? 1 : 0;
1277 case BLKTYPE_NIX:
1278 return pfvf->nixlf ? 1 : 0;
1279 case BLKTYPE_SSO:
1280 return !!pfvf->sso;
1281 case BLKTYPE_SSOW:
1282 return !!pfvf->ssow;
1283 case BLKTYPE_TIM:
1284 return !!pfvf->timlfs;
1285 case BLKTYPE_CPT:
1286 return pfvf->cptlfs || pfvf->cpt1_lfs;
1287 }
1288
1289 return false;
1290}
1291
1292bool is_pffunc_map_valid(struct rvu *rvu, u16 pcifunc, int blktype)
1293{
1294 struct rvu_pfvf *pfvf;
1295
1296 if (!is_pf_func_valid(rvu, pcifunc))
1297 return false;
1298
1299 pfvf = rvu_get_pfvf(rvu, pcifunc);
1300
1301 /* Check if this PFFUNC has a LF of type blktype attached */
1302 if (!is_blktype_attached(pfvf, blktype))
1303 return false;
1304
1305 return true;
1306}
1307
1308static int rvu_lookup_rsrc(struct rvu *rvu, struct rvu_block *block,
1309 int pcifunc, int slot)
1310{
1311 u64 val;
1312
1313 val = ((u64)pcifunc << 24) | (slot << 16) | (1ULL << 13);
1314 rvu_write64(rvu, block: block->addr, offset: block->lookup_reg, val);
1315 /* Wait for the lookup to finish */
1316 /* TODO: put some timeout here */
1317 while (rvu_read64(rvu, block: block->addr, offset: block->lookup_reg) & (1ULL << 13))
1318 ;
1319
1320 val = rvu_read64(rvu, block: block->addr, offset: block->lookup_reg);
1321
1322 /* Check LF valid bit */
1323 if (!(val & (1ULL << 12)))
1324 return -1;
1325
1326 return (val & 0xFFF);
1327}
1328
1329int rvu_get_blkaddr_from_slot(struct rvu *rvu, int blktype, u16 pcifunc,
1330 u16 global_slot, u16 *slot_in_block)
1331{
1332 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1333 int numlfs, total_lfs = 0, nr_blocks = 0;
1334 int i, num_blkaddr[BLK_COUNT] = { 0 };
1335 struct rvu_block *block;
1336 int blkaddr;
1337 u16 start_slot;
1338
1339 if (!is_blktype_attached(pfvf, blktype))
1340 return -ENODEV;
1341
1342 /* Get all the block addresses from which LFs are attached to
1343 * the given pcifunc in num_blkaddr[].
1344 */
1345 for (blkaddr = BLKADDR_RVUM; blkaddr < BLK_COUNT; blkaddr++) {
1346 block = &rvu->hw->block[blkaddr];
1347 if (block->type != blktype)
1348 continue;
1349 if (!is_block_implemented(hw: rvu->hw, blkaddr))
1350 continue;
1351
1352 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr);
1353 if (numlfs) {
1354 total_lfs += numlfs;
1355 num_blkaddr[nr_blocks] = blkaddr;
1356 nr_blocks++;
1357 }
1358 }
1359
1360 if (global_slot >= total_lfs)
1361 return -ENODEV;
1362
1363 /* Based on the given global slot number retrieve the
1364 * correct block address out of all attached block
1365 * addresses and slot number in that block.
1366 */
1367 total_lfs = 0;
1368 blkaddr = -ENODEV;
1369 for (i = 0; i < nr_blocks; i++) {
1370 numlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: num_blkaddr[i]);
1371 total_lfs += numlfs;
1372 if (global_slot < total_lfs) {
1373 blkaddr = num_blkaddr[i];
1374 start_slot = total_lfs - numlfs;
1375 *slot_in_block = global_slot - start_slot;
1376 break;
1377 }
1378 }
1379
1380 return blkaddr;
1381}
1382
1383static void rvu_detach_block(struct rvu *rvu, int pcifunc, int blktype)
1384{
1385 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1386 struct rvu_hwinfo *hw = rvu->hw;
1387 struct rvu_block *block;
1388 int slot, lf, num_lfs;
1389 int blkaddr;
1390
1391 blkaddr = rvu_get_blkaddr(rvu, blktype, pcifunc);
1392 if (blkaddr < 0)
1393 return;
1394
1395 if (blktype == BLKTYPE_NIX)
1396 rvu_nix_reset_mac(pfvf, pcifunc);
1397
1398 block = &hw->block[blkaddr];
1399
1400 num_lfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: block->addr);
1401 if (!num_lfs)
1402 return;
1403
1404 for (slot = 0; slot < num_lfs; slot++) {
1405 lf = rvu_lookup_rsrc(rvu, block, pcifunc, slot);
1406 if (lf < 0) /* This should never happen */
1407 continue;
1408
1409 /* Disable the LF */
1410 rvu_write64(rvu, block: blkaddr, offset: block->lfcfg_reg |
1411 (lf << block->lfshift), val: 0x00ULL);
1412
1413 /* Update SW maintained mapping info as well */
1414 rvu_update_rsrc_map(rvu, pfvf, block,
1415 pcifunc, lf, attach: false);
1416
1417 /* Free the resource */
1418 rvu_free_rsrc(rsrc: &block->lf, id: lf);
1419
1420 /* Clear MSIX vector offset for this LF */
1421 rvu_clear_msix_offset(rvu, pfvf, block, lf);
1422 }
1423}
1424
1425static int rvu_detach_rsrcs(struct rvu *rvu, struct rsrc_detach *detach,
1426 u16 pcifunc)
1427{
1428 struct rvu_hwinfo *hw = rvu->hw;
1429 bool detach_all = true;
1430 struct rvu_block *block;
1431 int blkid;
1432
1433 mutex_lock(&rvu->rsrc_lock);
1434
1435 /* Check for partial resource detach */
1436 if (detach && detach->partial)
1437 detach_all = false;
1438
1439 /* Check for RVU block's LFs attached to this func,
1440 * if so, detach them.
1441 */
1442 for (blkid = 0; blkid < BLK_COUNT; blkid++) {
1443 block = &hw->block[blkid];
1444 if (!block->lf.bmap)
1445 continue;
1446 if (!detach_all && detach) {
1447 if (blkid == BLKADDR_NPA && !detach->npalf)
1448 continue;
1449 else if ((blkid == BLKADDR_NIX0) && !detach->nixlf)
1450 continue;
1451 else if ((blkid == BLKADDR_NIX1) && !detach->nixlf)
1452 continue;
1453 else if ((blkid == BLKADDR_SSO) && !detach->sso)
1454 continue;
1455 else if ((blkid == BLKADDR_SSOW) && !detach->ssow)
1456 continue;
1457 else if ((blkid == BLKADDR_TIM) && !detach->timlfs)
1458 continue;
1459 else if ((blkid == BLKADDR_CPT0) && !detach->cptlfs)
1460 continue;
1461 else if ((blkid == BLKADDR_CPT1) && !detach->cptlfs)
1462 continue;
1463 }
1464 rvu_detach_block(rvu, pcifunc, blktype: block->type);
1465 }
1466
1467 mutex_unlock(lock: &rvu->rsrc_lock);
1468 return 0;
1469}
1470
1471int rvu_mbox_handler_detach_resources(struct rvu *rvu,
1472 struct rsrc_detach *detach,
1473 struct msg_rsp *rsp)
1474{
1475 return rvu_detach_rsrcs(rvu, detach, pcifunc: detach->hdr.pcifunc);
1476}
1477
1478int rvu_get_nix_blkaddr(struct rvu *rvu, u16 pcifunc)
1479{
1480 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1481 int blkaddr = BLKADDR_NIX0, vf;
1482 struct rvu_pfvf *pf;
1483
1484 pf = rvu_get_pfvf(rvu, pcifunc: pcifunc & ~RVU_PFVF_FUNC_MASK);
1485
1486 /* All CGX mapped PFs are set with assigned NIX block during init */
1487 if (is_pf_cgxmapped(rvu, pf: rvu_get_pf(pcifunc))) {
1488 blkaddr = pf->nix_blkaddr;
1489 } else if (is_lbk_vf(rvu, pcifunc)) {
1490 vf = pcifunc - 1;
1491 /* Assign NIX based on VF number. All even numbered VFs get
1492 * NIX0 and odd numbered gets NIX1
1493 */
1494 blkaddr = (vf & 1) ? BLKADDR_NIX1 : BLKADDR_NIX0;
1495 /* NIX1 is not present on all silicons */
1496 if (!is_block_implemented(hw: rvu->hw, blkaddr: BLKADDR_NIX1))
1497 blkaddr = BLKADDR_NIX0;
1498 }
1499
1500 /* if SDP1 then the blkaddr is NIX1 */
1501 if (is_sdp_pfvf(pcifunc) && pf->sdp_info->node_id == 1)
1502 blkaddr = BLKADDR_NIX1;
1503
1504 switch (blkaddr) {
1505 case BLKADDR_NIX1:
1506 pfvf->nix_blkaddr = BLKADDR_NIX1;
1507 pfvf->nix_rx_intf = NIX_INTFX_RX(1);
1508 pfvf->nix_tx_intf = NIX_INTFX_TX(1);
1509 break;
1510 case BLKADDR_NIX0:
1511 default:
1512 pfvf->nix_blkaddr = BLKADDR_NIX0;
1513 pfvf->nix_rx_intf = NIX_INTFX_RX(0);
1514 pfvf->nix_tx_intf = NIX_INTFX_TX(0);
1515 break;
1516 }
1517
1518 return pfvf->nix_blkaddr;
1519}
1520
1521static int rvu_get_attach_blkaddr(struct rvu *rvu, int blktype,
1522 u16 pcifunc, struct rsrc_attach *attach)
1523{
1524 int blkaddr;
1525
1526 switch (blktype) {
1527 case BLKTYPE_NIX:
1528 blkaddr = rvu_get_nix_blkaddr(rvu, pcifunc);
1529 break;
1530 case BLKTYPE_CPT:
1531 if (attach->hdr.ver < RVU_MULTI_BLK_VER)
1532 return rvu_get_blkaddr(rvu, blktype, pcifunc: 0);
1533 blkaddr = attach->cpt_blkaddr ? attach->cpt_blkaddr :
1534 BLKADDR_CPT0;
1535 if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
1536 return -ENODEV;
1537 break;
1538 default:
1539 return rvu_get_blkaddr(rvu, blktype, pcifunc: 0);
1540 }
1541
1542 if (is_block_implemented(hw: rvu->hw, blkaddr))
1543 return blkaddr;
1544
1545 return -ENODEV;
1546}
1547
1548static void rvu_attach_block(struct rvu *rvu, int pcifunc, int blktype,
1549 int num_lfs, struct rsrc_attach *attach)
1550{
1551 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1552 struct rvu_hwinfo *hw = rvu->hw;
1553 struct rvu_block *block;
1554 int slot, lf;
1555 int blkaddr;
1556 u64 cfg;
1557
1558 if (!num_lfs)
1559 return;
1560
1561 blkaddr = rvu_get_attach_blkaddr(rvu, blktype, pcifunc, attach);
1562 if (blkaddr < 0)
1563 return;
1564
1565 block = &hw->block[blkaddr];
1566 if (!block->lf.bmap)
1567 return;
1568
1569 for (slot = 0; slot < num_lfs; slot++) {
1570 /* Allocate the resource */
1571 lf = rvu_alloc_rsrc(rsrc: &block->lf);
1572 if (lf < 0)
1573 return;
1574
1575 cfg = (1ULL << 63) | (pcifunc << 8) | slot;
1576 rvu_write64(rvu, block: blkaddr, offset: block->lfcfg_reg |
1577 (lf << block->lfshift), val: cfg);
1578 rvu_update_rsrc_map(rvu, pfvf, block,
1579 pcifunc, lf, attach: true);
1580
1581 /* Set start MSIX vector for this LF within this PF/VF */
1582 rvu_set_msix_offset(rvu, pfvf, block, lf);
1583 }
1584}
1585
1586static int rvu_check_rsrc_availability(struct rvu *rvu,
1587 struct rsrc_attach *req, u16 pcifunc)
1588{
1589 struct rvu_pfvf *pfvf = rvu_get_pfvf(rvu, pcifunc);
1590 int free_lfs, mappedlfs, blkaddr;
1591 struct rvu_hwinfo *hw = rvu->hw;
1592 struct rvu_block *block;
1593
1594 /* Only one NPA LF can be attached */
1595 if (req->npalf && !is_blktype_attached(pfvf, blktype: BLKTYPE_NPA)) {
1596 block = &hw->block[BLKADDR_NPA];
1597 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1598 if (!free_lfs)
1599 goto fail;
1600 } else if (req->npalf) {
1601 dev_err(&rvu->pdev->dev,
1602 "Func 0x%x: Invalid req, already has NPA\n",
1603 pcifunc);
1604 return -EINVAL;
1605 }
1606
1607 /* Only one NIX LF can be attached */
1608 if (req->nixlf && !is_blktype_attached(pfvf, blktype: BLKTYPE_NIX)) {
1609 blkaddr = rvu_get_attach_blkaddr(rvu, blktype: BLKTYPE_NIX,
1610 pcifunc, attach: req);
1611 if (blkaddr < 0)
1612 return blkaddr;
1613 block = &hw->block[blkaddr];
1614 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1615 if (!free_lfs)
1616 goto fail;
1617 } else if (req->nixlf) {
1618 dev_err(&rvu->pdev->dev,
1619 "Func 0x%x: Invalid req, already has NIX\n",
1620 pcifunc);
1621 return -EINVAL;
1622 }
1623
1624 if (req->sso) {
1625 block = &hw->block[BLKADDR_SSO];
1626 /* Is request within limits ? */
1627 if (req->sso > block->lf.max) {
1628 dev_err(&rvu->pdev->dev,
1629 "Func 0x%x: Invalid SSO req, %d > max %d\n",
1630 pcifunc, req->sso, block->lf.max);
1631 return -EINVAL;
1632 }
1633 mappedlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: block->addr);
1634 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1635 /* Check if additional resources are available */
1636 if (req->sso > mappedlfs &&
1637 ((req->sso - mappedlfs) > free_lfs))
1638 goto fail;
1639 }
1640
1641 if (req->ssow) {
1642 block = &hw->block[BLKADDR_SSOW];
1643 if (req->ssow > block->lf.max) {
1644 dev_err(&rvu->pdev->dev,
1645 "Func 0x%x: Invalid SSOW req, %d > max %d\n",
1646 pcifunc, req->sso, block->lf.max);
1647 return -EINVAL;
1648 }
1649 mappedlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: block->addr);
1650 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1651 if (req->ssow > mappedlfs &&
1652 ((req->ssow - mappedlfs) > free_lfs))
1653 goto fail;
1654 }
1655
1656 if (req->timlfs) {
1657 block = &hw->block[BLKADDR_TIM];
1658 if (req->timlfs > block->lf.max) {
1659 dev_err(&rvu->pdev->dev,
1660 "Func 0x%x: Invalid TIMLF req, %d > max %d\n",
1661 pcifunc, req->timlfs, block->lf.max);
1662 return -EINVAL;
1663 }
1664 mappedlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: block->addr);
1665 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1666 if (req->timlfs > mappedlfs &&
1667 ((req->timlfs - mappedlfs) > free_lfs))
1668 goto fail;
1669 }
1670
1671 if (req->cptlfs) {
1672 blkaddr = rvu_get_attach_blkaddr(rvu, blktype: BLKTYPE_CPT,
1673 pcifunc, attach: req);
1674 if (blkaddr < 0)
1675 return blkaddr;
1676 block = &hw->block[blkaddr];
1677 if (req->cptlfs > block->lf.max) {
1678 dev_err(&rvu->pdev->dev,
1679 "Func 0x%x: Invalid CPTLF req, %d > max %d\n",
1680 pcifunc, req->cptlfs, block->lf.max);
1681 return -EINVAL;
1682 }
1683 mappedlfs = rvu_get_rsrc_mapcount(pfvf, blkaddr: block->addr);
1684 free_lfs = rvu_rsrc_free_count(rsrc: &block->lf);
1685 if (req->cptlfs > mappedlfs &&
1686 ((req->cptlfs - mappedlfs) > free_lfs))
1687 goto fail;
1688 }
1689
1690 return 0;
1691
1692fail:
1693 dev_info(rvu->dev, "Request for %s failed\n", block->name);
1694 return -ENOSPC;
1695}
1696
1697static bool rvu_attach_from_same_block(struct rvu *rvu, int blktype,
1698 struct rsrc_attach *attach)
1699{
1700 int blkaddr, num_lfs;
1701
1702 blkaddr = rvu_get_attach_blkaddr(rvu, blktype,
1703 pcifunc: attach->hdr.pcifunc, attach);
1704 if (blkaddr < 0)
1705 return false;
1706
1707 num_lfs = rvu_get_rsrc_mapcount(pfvf: rvu_get_pfvf(rvu, pcifunc: attach->hdr.pcifunc),
1708 blkaddr);
1709 /* Requester already has LFs from given block ? */
1710 return !!num_lfs;
1711}
1712
1713int rvu_mbox_handler_attach_resources(struct rvu *rvu,
1714 struct rsrc_attach *attach,
1715 struct msg_rsp *rsp)
1716{
1717 u16 pcifunc = attach->hdr.pcifunc;
1718 int err;
1719
1720 /* If first request, detach all existing attached resources */
1721 if (!attach->modify)
1722 rvu_detach_rsrcs(rvu, NULL, pcifunc);
1723
1724 mutex_lock(&rvu->rsrc_lock);
1725
1726 /* Check if the request can be accommodated */
1727 err = rvu_check_rsrc_availability(rvu, req: attach, pcifunc);
1728 if (err)
1729 goto exit;
1730
1731 /* Now attach the requested resources */
1732 if (attach->npalf)
1733 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_NPA, num_lfs: 1, attach);
1734
1735 if (attach->nixlf)
1736 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_NIX, num_lfs: 1, attach);
1737
1738 if (attach->sso) {
1739 /* RVU func doesn't know which exact LF or slot is attached
1740 * to it, it always sees as slot 0,1,2. So for a 'modify'
1741 * request, simply detach all existing attached LFs/slots
1742 * and attach a fresh.
1743 */
1744 if (attach->modify)
1745 rvu_detach_block(rvu, pcifunc, blktype: BLKTYPE_SSO);
1746 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_SSO,
1747 num_lfs: attach->sso, attach);
1748 }
1749
1750 if (attach->ssow) {
1751 if (attach->modify)
1752 rvu_detach_block(rvu, pcifunc, blktype: BLKTYPE_SSOW);
1753 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_SSOW,
1754 num_lfs: attach->ssow, attach);
1755 }
1756
1757 if (attach->timlfs) {
1758 if (attach->modify)
1759 rvu_detach_block(rvu, pcifunc, blktype: BLKTYPE_TIM);
1760 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_TIM,
1761 num_lfs: attach->timlfs, attach);
1762 }
1763
1764 if (attach->cptlfs) {
1765 if (attach->modify &&
1766 rvu_attach_from_same_block(rvu, blktype: BLKTYPE_CPT, attach))
1767 rvu_detach_block(rvu, pcifunc, blktype: BLKTYPE_CPT);
1768 rvu_attach_block(rvu, pcifunc, blktype: BLKTYPE_CPT,
1769 num_lfs: attach->cptlfs, attach);
1770 }
1771
1772exit:
1773 mutex_unlock(lock: &rvu->rsrc_lock);
1774 return err;
1775}
1776
1777static u16 rvu_get_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1778 int blkaddr, int lf)
1779{
1780 u16 vec;
1781
1782 if (lf < 0)
1783 return MSIX_VECTOR_INVALID;
1784
1785 for (vec = 0; vec < pfvf->msix.max; vec++) {
1786 if (pfvf->msix_lfmap[vec] == MSIX_BLKLF(blkaddr, lf))
1787 return vec;
1788 }
1789 return MSIX_VECTOR_INVALID;
1790}
1791
1792static void rvu_set_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1793 struct rvu_block *block, int lf)
1794{
1795 u16 nvecs, vec, offset;
1796 u64 cfg;
1797
1798 cfg = rvu_read64(rvu, block: block->addr, offset: block->msixcfg_reg |
1799 (lf << block->lfshift));
1800 nvecs = (cfg >> 12) & 0xFF;
1801
1802 /* Check and alloc MSIX vectors, must be contiguous */
1803 if (!rvu_rsrc_check_contig(rsrc: &pfvf->msix, nrsrc: nvecs))
1804 return;
1805
1806 offset = rvu_alloc_rsrc_contig(rsrc: &pfvf->msix, nrsrc: nvecs);
1807
1808 /* Config MSIX offset in LF */
1809 rvu_write64(rvu, block: block->addr, offset: block->msixcfg_reg |
1810 (lf << block->lfshift), val: (cfg & ~0x7FFULL) | offset);
1811
1812 /* Update the bitmap as well */
1813 for (vec = 0; vec < nvecs; vec++)
1814 pfvf->msix_lfmap[offset + vec] = MSIX_BLKLF(block->addr, lf);
1815}
1816
1817static void rvu_clear_msix_offset(struct rvu *rvu, struct rvu_pfvf *pfvf,
1818 struct rvu_block *block, int lf)
1819{
1820 u16 nvecs, vec, offset;
1821 u64 cfg;
1822
1823 cfg = rvu_read64(rvu, block: block->addr, offset: block->msixcfg_reg |
1824 (lf << block->lfshift));
1825 nvecs = (cfg >> 12) & 0xFF;
1826
1827 /* Clear MSIX offset in LF */
1828 rvu_write64(rvu, block: block->addr, offset: block->msixcfg_reg |
1829 (lf << block->lfshift), val: cfg & ~0x7FFULL);
1830
1831 offset = rvu_get_msix_offset(rvu, pfvf, blkaddr: block->addr, lf);
1832
1833 /* Update the mapping */
1834 for (vec = 0; vec < nvecs; vec++)
1835 pfvf->msix_lfmap[offset + vec] = 0;
1836
1837 /* Free the same in MSIX bitmap */
1838 rvu_free_rsrc_contig(rsrc: &pfvf->msix, nrsrc: nvecs, start: offset);
1839}
1840
1841int rvu_mbox_handler_msix_offset(struct rvu *rvu, struct msg_req *req,
1842 struct msix_offset_rsp *rsp)
1843{
1844 struct rvu_hwinfo *hw = rvu->hw;
1845 u16 pcifunc = req->hdr.pcifunc;
1846 struct rvu_pfvf *pfvf;
1847 int lf, slot, blkaddr;
1848
1849 pfvf = rvu_get_pfvf(rvu, pcifunc);
1850 if (!pfvf->msix.bmap)
1851 return 0;
1852
1853 /* Set MSIX offsets for each block's LFs attached to this PF/VF */
1854 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_NPA], pcifunc, slot: 0);
1855 rsp->npa_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_NPA, lf);
1856
1857 /* Get BLKADDR from which LFs are attached to pcifunc */
1858 blkaddr = rvu_get_blkaddr(rvu, blktype: BLKTYPE_NIX, pcifunc);
1859 if (blkaddr < 0) {
1860 rsp->nix_msixoff = MSIX_VECTOR_INVALID;
1861 } else {
1862 lf = rvu_get_lf(rvu, block: &hw->block[blkaddr], pcifunc, slot: 0);
1863 rsp->nix_msixoff = rvu_get_msix_offset(rvu, pfvf, blkaddr, lf);
1864 }
1865
1866 rsp->sso = pfvf->sso;
1867 for (slot = 0; slot < rsp->sso; slot++) {
1868 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_SSO], pcifunc, slot);
1869 rsp->sso_msixoff[slot] =
1870 rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_SSO, lf);
1871 }
1872
1873 rsp->ssow = pfvf->ssow;
1874 for (slot = 0; slot < rsp->ssow; slot++) {
1875 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_SSOW], pcifunc, slot);
1876 rsp->ssow_msixoff[slot] =
1877 rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_SSOW, lf);
1878 }
1879
1880 rsp->timlfs = pfvf->timlfs;
1881 for (slot = 0; slot < rsp->timlfs; slot++) {
1882 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_TIM], pcifunc, slot);
1883 rsp->timlf_msixoff[slot] =
1884 rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_TIM, lf);
1885 }
1886
1887 rsp->cptlfs = pfvf->cptlfs;
1888 for (slot = 0; slot < rsp->cptlfs; slot++) {
1889 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_CPT0], pcifunc, slot);
1890 rsp->cptlf_msixoff[slot] =
1891 rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_CPT0, lf);
1892 }
1893
1894 rsp->cpt1_lfs = pfvf->cpt1_lfs;
1895 for (slot = 0; slot < rsp->cpt1_lfs; slot++) {
1896 lf = rvu_get_lf(rvu, block: &hw->block[BLKADDR_CPT1], pcifunc, slot);
1897 rsp->cpt1_lf_msixoff[slot] =
1898 rvu_get_msix_offset(rvu, pfvf, blkaddr: BLKADDR_CPT1, lf);
1899 }
1900
1901 return 0;
1902}
1903
1904int rvu_mbox_handler_free_rsrc_cnt(struct rvu *rvu, struct msg_req *req,
1905 struct free_rsrcs_rsp *rsp)
1906{
1907 struct rvu_hwinfo *hw = rvu->hw;
1908 struct rvu_block *block;
1909 struct nix_txsch *txsch;
1910 struct nix_hw *nix_hw;
1911
1912 mutex_lock(&rvu->rsrc_lock);
1913
1914 block = &hw->block[BLKADDR_NPA];
1915 rsp->npa = rvu_rsrc_free_count(rsrc: &block->lf);
1916
1917 block = &hw->block[BLKADDR_NIX0];
1918 rsp->nix = rvu_rsrc_free_count(rsrc: &block->lf);
1919
1920 block = &hw->block[BLKADDR_NIX1];
1921 rsp->nix1 = rvu_rsrc_free_count(rsrc: &block->lf);
1922
1923 block = &hw->block[BLKADDR_SSO];
1924 rsp->sso = rvu_rsrc_free_count(rsrc: &block->lf);
1925
1926 block = &hw->block[BLKADDR_SSOW];
1927 rsp->ssow = rvu_rsrc_free_count(rsrc: &block->lf);
1928
1929 block = &hw->block[BLKADDR_TIM];
1930 rsp->tim = rvu_rsrc_free_count(rsrc: &block->lf);
1931
1932 block = &hw->block[BLKADDR_CPT0];
1933 rsp->cpt = rvu_rsrc_free_count(rsrc: &block->lf);
1934
1935 block = &hw->block[BLKADDR_CPT1];
1936 rsp->cpt1 = rvu_rsrc_free_count(rsrc: &block->lf);
1937
1938 if (rvu->hw->cap.nix_fixed_txschq_mapping) {
1939 rsp->schq[NIX_TXSCH_LVL_SMQ] = 1;
1940 rsp->schq[NIX_TXSCH_LVL_TL4] = 1;
1941 rsp->schq[NIX_TXSCH_LVL_TL3] = 1;
1942 rsp->schq[NIX_TXSCH_LVL_TL2] = 1;
1943 /* NIX1 */
1944 if (!is_block_implemented(hw: rvu->hw, blkaddr: BLKADDR_NIX1))
1945 goto out;
1946 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] = 1;
1947 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] = 1;
1948 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] = 1;
1949 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] = 1;
1950 } else {
1951 nix_hw = get_nix_hw(hw, blkaddr: BLKADDR_NIX0);
1952 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1953 rsp->schq[NIX_TXSCH_LVL_SMQ] =
1954 rvu_rsrc_free_count(rsrc: &txsch->schq);
1955
1956 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1957 rsp->schq[NIX_TXSCH_LVL_TL4] =
1958 rvu_rsrc_free_count(rsrc: &txsch->schq);
1959
1960 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1961 rsp->schq[NIX_TXSCH_LVL_TL3] =
1962 rvu_rsrc_free_count(rsrc: &txsch->schq);
1963
1964 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1965 rsp->schq[NIX_TXSCH_LVL_TL2] =
1966 rvu_rsrc_free_count(rsrc: &txsch->schq);
1967
1968 if (!is_block_implemented(hw: rvu->hw, blkaddr: BLKADDR_NIX1))
1969 goto out;
1970
1971 nix_hw = get_nix_hw(hw, blkaddr: BLKADDR_NIX1);
1972 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_SMQ];
1973 rsp->schq_nix1[NIX_TXSCH_LVL_SMQ] =
1974 rvu_rsrc_free_count(rsrc: &txsch->schq);
1975
1976 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL4];
1977 rsp->schq_nix1[NIX_TXSCH_LVL_TL4] =
1978 rvu_rsrc_free_count(rsrc: &txsch->schq);
1979
1980 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL3];
1981 rsp->schq_nix1[NIX_TXSCH_LVL_TL3] =
1982 rvu_rsrc_free_count(rsrc: &txsch->schq);
1983
1984 txsch = &nix_hw->txsch[NIX_TXSCH_LVL_TL2];
1985 rsp->schq_nix1[NIX_TXSCH_LVL_TL2] =
1986 rvu_rsrc_free_count(rsrc: &txsch->schq);
1987 }
1988
1989 rsp->schq_nix1[NIX_TXSCH_LVL_TL1] = 1;
1990out:
1991 rsp->schq[NIX_TXSCH_LVL_TL1] = 1;
1992 mutex_unlock(lock: &rvu->rsrc_lock);
1993
1994 return 0;
1995}
1996
1997int rvu_mbox_handler_vf_flr(struct rvu *rvu, struct msg_req *req,
1998 struct msg_rsp *rsp)
1999{
2000 u16 pcifunc = req->hdr.pcifunc;
2001 u16 vf, numvfs;
2002 u64 cfg;
2003
2004 vf = pcifunc & RVU_PFVF_FUNC_MASK;
2005 cfg = rvu_read64(rvu, block: BLKADDR_RVUM,
2006 RVU_PRIV_PFX_CFG(rvu_get_pf(pcifunc)));
2007 numvfs = (cfg >> 12) & 0xFF;
2008
2009 if (vf && vf <= numvfs)
2010 __rvu_flr_handler(rvu, pcifunc);
2011 else
2012 return RVU_INVALID_VF_ID;
2013
2014 return 0;
2015}
2016
2017int rvu_mbox_handler_get_hw_cap(struct rvu *rvu, struct msg_req *req,
2018 struct get_hw_cap_rsp *rsp)
2019{
2020 struct rvu_hwinfo *hw = rvu->hw;
2021
2022 rsp->nix_fixed_txschq_mapping = hw->cap.nix_fixed_txschq_mapping;
2023 rsp->nix_shaping = hw->cap.nix_shaping;
2024 rsp->npc_hash_extract = hw->cap.npc_hash_extract;
2025
2026 return 0;
2027}
2028
2029int rvu_mbox_handler_set_vf_perm(struct rvu *rvu, struct set_vf_perm *req,
2030 struct msg_rsp *rsp)
2031{
2032 struct rvu_hwinfo *hw = rvu->hw;
2033 u16 pcifunc = req->hdr.pcifunc;
2034 struct rvu_pfvf *pfvf;
2035 int blkaddr, nixlf;
2036 u16 target;
2037
2038 /* Only PF can add VF permissions */
2039 if ((pcifunc & RVU_PFVF_FUNC_MASK) || is_lbk_vf(rvu, pcifunc))
2040 return -EOPNOTSUPP;
2041
2042 target = (pcifunc & ~RVU_PFVF_FUNC_MASK) | (req->vf + 1);
2043 pfvf = rvu_get_pfvf(rvu, pcifunc: target);
2044
2045 if (req->flags & RESET_VF_PERM) {
2046 pfvf->flags &= RVU_CLEAR_VF_PERM;
2047 } else if (test_bit(PF_SET_VF_TRUSTED, &pfvf->flags) ^
2048 (req->flags & VF_TRUSTED)) {
2049 change_bit(nr: PF_SET_VF_TRUSTED, addr: &pfvf->flags);
2050 /* disable multicast and promisc entries */
2051 if (!test_bit(PF_SET_VF_TRUSTED, &pfvf->flags)) {
2052 blkaddr = rvu_get_blkaddr(rvu, blktype: BLKTYPE_NIX, pcifunc: target);
2053 if (blkaddr < 0)
2054 return 0;
2055 nixlf = rvu_get_lf(rvu, block: &hw->block[blkaddr],
2056 pcifunc: target, slot: 0);
2057 if (nixlf < 0)
2058 return 0;
2059 npc_enadis_default_mce_entry(rvu, pcifunc: target, nixlf,
2060 NIXLF_ALLMULTI_ENTRY,
2061 enable: false);
2062 npc_enadis_default_mce_entry(rvu, pcifunc: target, nixlf,
2063 NIXLF_PROMISC_ENTRY,
2064 enable: false);
2065 }
2066 }
2067
2068 return 0;
2069}
2070
2071static int rvu_process_mbox_msg(struct otx2_mbox *mbox, int devid,
2072 struct mbox_msghdr *req)
2073{
2074 struct rvu *rvu = pci_get_drvdata(pdev: mbox->pdev);
2075
2076 /* Check if valid, if not reply with a invalid msg */
2077 if (req->sig != OTX2_MBOX_REQ_SIG)
2078 goto bad_message;
2079
2080 switch (req->id) {
2081#define M(_name, _id, _fn_name, _req_type, _rsp_type) \
2082 case _id: { \
2083 struct _rsp_type *rsp; \
2084 int err; \
2085 \
2086 rsp = (struct _rsp_type *)otx2_mbox_alloc_msg( \
2087 mbox, devid, \
2088 sizeof(struct _rsp_type)); \
2089 /* some handlers should complete even if reply */ \
2090 /* could not be allocated */ \
2091 if (!rsp && \
2092 _id != MBOX_MSG_DETACH_RESOURCES && \
2093 _id != MBOX_MSG_NIX_TXSCH_FREE && \
2094 _id != MBOX_MSG_VF_FLR) \
2095 return -ENOMEM; \
2096 if (rsp) { \
2097 rsp->hdr.id = _id; \
2098 rsp->hdr.sig = OTX2_MBOX_RSP_SIG; \
2099 rsp->hdr.pcifunc = req->pcifunc; \
2100 rsp->hdr.rc = 0; \
2101 } \
2102 \
2103 err = rvu_mbox_handler_ ## _fn_name(rvu, \
2104 (struct _req_type *)req, \
2105 rsp); \
2106 if (rsp && err) \
2107 rsp->hdr.rc = err; \
2108 \
2109 trace_otx2_msg_process(mbox->pdev, _id, err); \
2110 return rsp ? err : -ENOMEM; \
2111 }
2112MBOX_MESSAGES
2113#undef M
2114
2115bad_message:
2116 default:
2117 otx2_reply_invalid_msg(mbox, devid, pcifunc: req->pcifunc, id: req->id);
2118 return -ENODEV;
2119 }
2120}
2121
2122static void __rvu_mbox_handler(struct rvu_work *mwork, int type, bool poll)
2123{
2124 struct rvu *rvu = mwork->rvu;
2125 int offset, err, id, devid;
2126 struct otx2_mbox_dev *mdev;
2127 struct mbox_hdr *req_hdr;
2128 struct mbox_msghdr *msg;
2129 struct mbox_wq_info *mw;
2130 struct otx2_mbox *mbox;
2131
2132 switch (type) {
2133 case TYPE_AFPF:
2134 mw = &rvu->afpf_wq_info;
2135 break;
2136 case TYPE_AFVF:
2137 mw = &rvu->afvf_wq_info;
2138 break;
2139 default:
2140 return;
2141 }
2142
2143 devid = mwork - mw->mbox_wrk;
2144 mbox = &mw->mbox;
2145 mdev = &mbox->dev[devid];
2146
2147 /* Process received mbox messages */
2148 req_hdr = mdev->mbase + mbox->rx_start;
2149 if (mw->mbox_wrk[devid].num_msgs == 0)
2150 return;
2151
2152 offset = mbox->rx_start + ALIGN(sizeof(*req_hdr), MBOX_MSG_ALIGN);
2153
2154 for (id = 0; id < mw->mbox_wrk[devid].num_msgs; id++) {
2155 msg = mdev->mbase + offset;
2156
2157 /* Set which PF/VF sent this message based on mbox IRQ */
2158 switch (type) {
2159 case TYPE_AFPF:
2160 msg->pcifunc &=
2161 ~(RVU_PFVF_PF_MASK << RVU_PFVF_PF_SHIFT);
2162 msg->pcifunc |= (devid << RVU_PFVF_PF_SHIFT);
2163 break;
2164 case TYPE_AFVF:
2165 msg->pcifunc &=
2166 ~(RVU_PFVF_FUNC_MASK << RVU_PFVF_FUNC_SHIFT);
2167 msg->pcifunc |= (devid << RVU_PFVF_FUNC_SHIFT) + 1;
2168 break;
2169 }
2170
2171 err = rvu_process_mbox_msg(mbox, devid, req: msg);
2172 if (!err) {
2173 offset = mbox->rx_start + msg->next_msgoff;
2174 continue;
2175 }
2176
2177 if (msg->pcifunc & RVU_PFVF_FUNC_MASK)
2178 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d:VF%d\n",
2179 err, otx2_mbox_id2name(msg->id),
2180 msg->id, rvu_get_pf(msg->pcifunc),
2181 (msg->pcifunc & RVU_PFVF_FUNC_MASK) - 1);
2182 else
2183 dev_warn(rvu->dev, "Error %d when processing message %s (0x%x) from PF%d\n",
2184 err, otx2_mbox_id2name(msg->id),
2185 msg->id, devid);
2186 }
2187 mw->mbox_wrk[devid].num_msgs = 0;
2188
2189 if (poll)
2190 otx2_mbox_wait_for_zero(mbox, devid);
2191
2192 /* Send mbox responses to VF/PF */
2193 otx2_mbox_msg_send(mbox, devid);
2194}
2195
2196static inline void rvu_afpf_mbox_handler(struct work_struct *work)
2197{
2198 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2199 struct rvu *rvu = mwork->rvu;
2200
2201 mutex_lock(&rvu->mbox_lock);
2202 __rvu_mbox_handler(mwork, type: TYPE_AFPF, poll: true);
2203 mutex_unlock(lock: &rvu->mbox_lock);
2204}
2205
2206static inline void rvu_afvf_mbox_handler(struct work_struct *work)
2207{
2208 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2209
2210 __rvu_mbox_handler(mwork, type: TYPE_AFVF, poll: false);
2211}
2212
2213static void __rvu_mbox_up_handler(struct rvu_work *mwork, int type)
2214{
2215 struct rvu *rvu = mwork->rvu;
2216 struct otx2_mbox_dev *mdev;
2217 struct mbox_hdr *rsp_hdr;
2218 struct mbox_msghdr *msg;
2219 struct mbox_wq_info *mw;
2220 struct otx2_mbox *mbox;
2221 int offset, id, devid;
2222
2223 switch (type) {
2224 case TYPE_AFPF:
2225 mw = &rvu->afpf_wq_info;
2226 break;
2227 case TYPE_AFVF:
2228 mw = &rvu->afvf_wq_info;
2229 break;
2230 default:
2231 return;
2232 }
2233
2234 devid = mwork - mw->mbox_wrk_up;
2235 mbox = &mw->mbox_up;
2236 mdev = &mbox->dev[devid];
2237
2238 rsp_hdr = mdev->mbase + mbox->rx_start;
2239 if (mw->mbox_wrk_up[devid].up_num_msgs == 0) {
2240 dev_warn(rvu->dev, "mbox up handler: num_msgs = 0\n");
2241 return;
2242 }
2243
2244 offset = mbox->rx_start + ALIGN(sizeof(*rsp_hdr), MBOX_MSG_ALIGN);
2245
2246 for (id = 0; id < mw->mbox_wrk_up[devid].up_num_msgs; id++) {
2247 msg = mdev->mbase + offset;
2248
2249 if (msg->id >= MBOX_MSG_MAX) {
2250 dev_err(rvu->dev,
2251 "Mbox msg with unknown ID 0x%x\n", msg->id);
2252 goto end;
2253 }
2254
2255 if (msg->sig != OTX2_MBOX_RSP_SIG) {
2256 dev_err(rvu->dev,
2257 "Mbox msg with wrong signature %x, ID 0x%x\n",
2258 msg->sig, msg->id);
2259 goto end;
2260 }
2261
2262 switch (msg->id) {
2263 case MBOX_MSG_CGX_LINK_EVENT:
2264 break;
2265 default:
2266 if (msg->rc)
2267 dev_err(rvu->dev,
2268 "Mbox msg response has err %d, ID 0x%x\n",
2269 msg->rc, msg->id);
2270 break;
2271 }
2272end:
2273 offset = mbox->rx_start + msg->next_msgoff;
2274 mdev->msgs_acked++;
2275 }
2276 mw->mbox_wrk_up[devid].up_num_msgs = 0;
2277
2278 otx2_mbox_reset(mbox, devid);
2279}
2280
2281static inline void rvu_afpf_mbox_up_handler(struct work_struct *work)
2282{
2283 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2284
2285 __rvu_mbox_up_handler(mwork, type: TYPE_AFPF);
2286}
2287
2288static inline void rvu_afvf_mbox_up_handler(struct work_struct *work)
2289{
2290 struct rvu_work *mwork = container_of(work, struct rvu_work, work);
2291
2292 __rvu_mbox_up_handler(mwork, type: TYPE_AFVF);
2293}
2294
2295static int rvu_get_mbox_regions(struct rvu *rvu, void **mbox_addr,
2296 int num, int type, unsigned long *pf_bmap)
2297{
2298 struct rvu_hwinfo *hw = rvu->hw;
2299 int region;
2300 u64 bar4;
2301
2302 /* For cn10k platform VF mailbox regions of a PF follows after the
2303 * PF <-> AF mailbox region. Whereas for Octeontx2 it is read from
2304 * RVU_PF_VF_BAR4_ADDR register.
2305 */
2306 if (type == TYPE_AFVF) {
2307 for (region = 0; region < num; region++) {
2308 if (!test_bit(region, pf_bmap))
2309 continue;
2310
2311 if (hw->cap.per_pf_mbox_regs) {
2312 bar4 = rvu_read64(rvu, block: BLKADDR_RVUM,
2313 RVU_AF_PFX_BAR4_ADDR(0)) +
2314 MBOX_SIZE;
2315 bar4 += region * MBOX_SIZE;
2316 } else {
2317 bar4 = rvupf_read64(rvu, RVU_PF_VF_BAR4_ADDR);
2318 bar4 += region * MBOX_SIZE;
2319 }
2320 mbox_addr[region] = (void *)ioremap_wc(offset: bar4, MBOX_SIZE);
2321 if (!mbox_addr[region])
2322 goto error;
2323 }
2324 return 0;
2325 }
2326
2327 /* For cn10k platform AF <-> PF mailbox region of a PF is read from per
2328 * PF registers. Whereas for Octeontx2 it is read from
2329 * RVU_AF_PF_BAR4_ADDR register.
2330 */
2331 for (region = 0; region < num; region++) {
2332 if (!test_bit(region, pf_bmap))
2333 continue;
2334
2335 if (hw->cap.per_pf_mbox_regs) {
2336 bar4 = rvu_read64(rvu, block: BLKADDR_RVUM,
2337 RVU_AF_PFX_BAR4_ADDR(region));
2338 } else {
2339 bar4 = rvu_read64(rvu, block: BLKADDR_RVUM,
2340 RVU_AF_PF_BAR4_ADDR);
2341 bar4 += region * MBOX_SIZE;
2342 }
2343 mbox_addr[region] = (void *)ioremap_wc(offset: bar4, MBOX_SIZE);
2344 if (!mbox_addr[region])
2345 goto error;
2346 }
2347 return 0;
2348
2349error:
2350 while (region--)
2351 iounmap(addr: (void __iomem *)mbox_addr[region]);
2352 return -ENOMEM;
2353}
2354
2355static int rvu_mbox_init(struct rvu *rvu, struct mbox_wq_info *mw,
2356 int type, int num,
2357 void (mbox_handler)(struct work_struct *),
2358 void (mbox_up_handler)(struct work_struct *))
2359{
2360 int err = -EINVAL, i, dir, dir_up;
2361 void __iomem *reg_base;
2362 struct rvu_work *mwork;
2363 unsigned long *pf_bmap;
2364 void **mbox_regions;
2365 const char *name;
2366 u64 cfg;
2367
2368 pf_bmap = bitmap_zalloc(nbits: num, GFP_KERNEL);
2369 if (!pf_bmap)
2370 return -ENOMEM;
2371
2372 /* RVU VFs */
2373 if (type == TYPE_AFVF)
2374 bitmap_set(map: pf_bmap, start: 0, nbits: num);
2375
2376 if (type == TYPE_AFPF) {
2377 /* Mark enabled PFs in bitmap */
2378 for (i = 0; i < num; i++) {
2379 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(i));
2380 if (cfg & BIT_ULL(20))
2381 set_bit(nr: i, addr: pf_bmap);
2382 }
2383 }
2384
2385 mutex_init(&rvu->mbox_lock);
2386
2387 mbox_regions = kcalloc(n: num, size: sizeof(void *), GFP_KERNEL);
2388 if (!mbox_regions) {
2389 err = -ENOMEM;
2390 goto free_bitmap;
2391 }
2392
2393 switch (type) {
2394 case TYPE_AFPF:
2395 name = "rvu_afpf_mailbox";
2396 dir = MBOX_DIR_AFPF;
2397 dir_up = MBOX_DIR_AFPF_UP;
2398 reg_base = rvu->afreg_base;
2399 err = rvu_get_mbox_regions(rvu, mbox_addr: mbox_regions, num, type: TYPE_AFPF, pf_bmap);
2400 if (err)
2401 goto free_regions;
2402 break;
2403 case TYPE_AFVF:
2404 name = "rvu_afvf_mailbox";
2405 dir = MBOX_DIR_PFVF;
2406 dir_up = MBOX_DIR_PFVF_UP;
2407 reg_base = rvu->pfreg_base;
2408 err = rvu_get_mbox_regions(rvu, mbox_addr: mbox_regions, num, type: TYPE_AFVF, pf_bmap);
2409 if (err)
2410 goto free_regions;
2411 break;
2412 default:
2413 goto free_regions;
2414 }
2415
2416 mw->mbox_wq = alloc_workqueue(fmt: name,
2417 flags: WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM,
2418 max_active: num);
2419 if (!mw->mbox_wq) {
2420 err = -ENOMEM;
2421 goto unmap_regions;
2422 }
2423
2424 mw->mbox_wrk = devm_kcalloc(dev: rvu->dev, n: num,
2425 size: sizeof(struct rvu_work), GFP_KERNEL);
2426 if (!mw->mbox_wrk) {
2427 err = -ENOMEM;
2428 goto exit;
2429 }
2430
2431 mw->mbox_wrk_up = devm_kcalloc(dev: rvu->dev, n: num,
2432 size: sizeof(struct rvu_work), GFP_KERNEL);
2433 if (!mw->mbox_wrk_up) {
2434 err = -ENOMEM;
2435 goto exit;
2436 }
2437
2438 err = otx2_mbox_regions_init(mbox: &mw->mbox, hwbase: mbox_regions, pdev: rvu->pdev,
2439 reg_base, direction: dir, ndevs: num, bmap: pf_bmap);
2440 if (err)
2441 goto exit;
2442
2443 err = otx2_mbox_regions_init(mbox: &mw->mbox_up, hwbase: mbox_regions, pdev: rvu->pdev,
2444 reg_base, direction: dir_up, ndevs: num, bmap: pf_bmap);
2445 if (err)
2446 goto exit;
2447
2448 for (i = 0; i < num; i++) {
2449 if (!test_bit(i, pf_bmap))
2450 continue;
2451
2452 mwork = &mw->mbox_wrk[i];
2453 mwork->rvu = rvu;
2454 INIT_WORK(&mwork->work, mbox_handler);
2455
2456 mwork = &mw->mbox_wrk_up[i];
2457 mwork->rvu = rvu;
2458 INIT_WORK(&mwork->work, mbox_up_handler);
2459 }
2460 goto free_regions;
2461
2462exit:
2463 destroy_workqueue(wq: mw->mbox_wq);
2464unmap_regions:
2465 while (num--)
2466 iounmap(addr: (void __iomem *)mbox_regions[num]);
2467free_regions:
2468 kfree(objp: mbox_regions);
2469free_bitmap:
2470 bitmap_free(bitmap: pf_bmap);
2471 return err;
2472}
2473
2474static void rvu_mbox_destroy(struct mbox_wq_info *mw)
2475{
2476 struct otx2_mbox *mbox = &mw->mbox;
2477 struct otx2_mbox_dev *mdev;
2478 int devid;
2479
2480 if (mw->mbox_wq) {
2481 destroy_workqueue(wq: mw->mbox_wq);
2482 mw->mbox_wq = NULL;
2483 }
2484
2485 for (devid = 0; devid < mbox->ndevs; devid++) {
2486 mdev = &mbox->dev[devid];
2487 if (mdev->hwbase)
2488 iounmap(addr: (void __iomem *)mdev->hwbase);
2489 }
2490
2491 otx2_mbox_destroy(mbox: &mw->mbox);
2492 otx2_mbox_destroy(mbox: &mw->mbox_up);
2493}
2494
2495static void rvu_queue_work(struct mbox_wq_info *mw, int first,
2496 int mdevs, u64 intr)
2497{
2498 struct otx2_mbox_dev *mdev;
2499 struct otx2_mbox *mbox;
2500 struct mbox_hdr *hdr;
2501 int i;
2502
2503 for (i = first; i < mdevs; i++) {
2504 /* start from 0 */
2505 if (!(intr & BIT_ULL(i - first)))
2506 continue;
2507
2508 mbox = &mw->mbox;
2509 mdev = &mbox->dev[i];
2510 hdr = mdev->mbase + mbox->rx_start;
2511
2512 /*The hdr->num_msgs is set to zero immediately in the interrupt
2513 * handler to ensure that it holds a correct value next time
2514 * when the interrupt handler is called.
2515 * pf->mbox.num_msgs holds the data for use in pfaf_mbox_handler
2516 * pf>mbox.up_num_msgs holds the data for use in
2517 * pfaf_mbox_up_handler.
2518 */
2519
2520 if (hdr->num_msgs) {
2521 mw->mbox_wrk[i].num_msgs = hdr->num_msgs;
2522 hdr->num_msgs = 0;
2523 queue_work(wq: mw->mbox_wq, work: &mw->mbox_wrk[i].work);
2524 }
2525 mbox = &mw->mbox_up;
2526 mdev = &mbox->dev[i];
2527 hdr = mdev->mbase + mbox->rx_start;
2528 if (hdr->num_msgs) {
2529 mw->mbox_wrk_up[i].up_num_msgs = hdr->num_msgs;
2530 hdr->num_msgs = 0;
2531 queue_work(wq: mw->mbox_wq, work: &mw->mbox_wrk_up[i].work);
2532 }
2533 }
2534}
2535
2536static irqreturn_t rvu_mbox_pf_intr_handler(int irq, void *rvu_irq)
2537{
2538 struct rvu *rvu = (struct rvu *)rvu_irq;
2539 u64 intr;
2540
2541 intr = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT);
2542 /* Clear interrupts */
2543 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT, val: intr);
2544 if (intr)
2545 trace_otx2_msg_interrupt(pdev: rvu->pdev, msg: "PF(s) to AF", intr);
2546
2547 /* Sync with mbox memory region */
2548 rmb();
2549
2550 rvu_queue_work(mw: &rvu->afpf_wq_info, first: 0, mdevs: rvu->hw->total_pfs, intr);
2551
2552 return IRQ_HANDLED;
2553}
2554
2555static irqreturn_t rvu_mbox_intr_handler(int irq, void *rvu_irq)
2556{
2557 struct rvu *rvu = (struct rvu *)rvu_irq;
2558 int vfs = rvu->vfs;
2559 u64 intr;
2560
2561 /* Sync with mbox memory region */
2562 rmb();
2563
2564 /* Handle VF interrupts */
2565 if (vfs > 64) {
2566 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(1));
2567 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), val: intr);
2568
2569 rvu_queue_work(mw: &rvu->afvf_wq_info, first: 64, mdevs: vfs, intr);
2570 vfs -= 64;
2571 }
2572
2573 intr = rvupf_read64(rvu, RVU_PF_VFPF_MBOX_INTX(0));
2574 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), val: intr);
2575 if (intr)
2576 trace_otx2_msg_interrupt(pdev: rvu->pdev, msg: "VF(s) to AF", intr);
2577
2578 rvu_queue_work(mw: &rvu->afvf_wq_info, first: 0, mdevs: vfs, intr);
2579
2580 return IRQ_HANDLED;
2581}
2582
2583static void rvu_enable_mbox_intr(struct rvu *rvu)
2584{
2585 struct rvu_hwinfo *hw = rvu->hw;
2586
2587 /* Clear spurious irqs, if any */
2588 rvu_write64(rvu, block: BLKADDR_RVUM,
2589 RVU_AF_PFAF_MBOX_INT, INTR_MASK(hw->total_pfs));
2590
2591 /* Enable mailbox interrupt for all PFs except PF0 i.e AF itself */
2592 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1S,
2593 INTR_MASK(hw->total_pfs) & ~1ULL);
2594}
2595
2596static void rvu_blklf_teardown(struct rvu *rvu, u16 pcifunc, u8 blkaddr)
2597{
2598 struct rvu_block *block;
2599 int slot, lf, num_lfs;
2600 int err;
2601
2602 block = &rvu->hw->block[blkaddr];
2603 num_lfs = rvu_get_rsrc_mapcount(pfvf: rvu_get_pfvf(rvu, pcifunc),
2604 blkaddr: block->addr);
2605 if (!num_lfs)
2606 return;
2607 for (slot = 0; slot < num_lfs; slot++) {
2608 lf = rvu_get_lf(rvu, block, pcifunc, slot);
2609 if (lf < 0)
2610 continue;
2611
2612 /* Cleanup LF and reset it */
2613 if (block->addr == BLKADDR_NIX0 || block->addr == BLKADDR_NIX1)
2614 rvu_nix_lf_teardown(rvu, pcifunc, blkaddr: block->addr, npalf: lf);
2615 else if (block->addr == BLKADDR_NPA)
2616 rvu_npa_lf_teardown(rvu, pcifunc, npalf: lf);
2617 else if ((block->addr == BLKADDR_CPT0) ||
2618 (block->addr == BLKADDR_CPT1))
2619 rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr: block->addr, lf,
2620 slot);
2621
2622 err = rvu_lf_reset(rvu, block, lf);
2623 if (err) {
2624 dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
2625 block->addr, lf);
2626 }
2627 }
2628}
2629
2630static void __rvu_flr_handler(struct rvu *rvu, u16 pcifunc)
2631{
2632 if (rvu_npc_exact_has_match_table(rvu))
2633 rvu_npc_exact_reset(rvu, pcifunc);
2634
2635 mutex_lock(&rvu->flr_lock);
2636 /* Reset order should reflect inter-block dependencies:
2637 * 1. Reset any packet/work sources (NIX, CPT, TIM)
2638 * 2. Flush and reset SSO/SSOW
2639 * 3. Cleanup pools (NPA)
2640 */
2641
2642 /* Free allocated BPIDs */
2643 rvu_nix_flr_free_bpids(rvu, pcifunc);
2644
2645 /* Free multicast/mirror node associated with the 'pcifunc' */
2646 rvu_nix_mcast_flr_free_entries(rvu, pcifunc);
2647
2648 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_NIX0);
2649 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_NIX1);
2650 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_CPT0);
2651 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_CPT1);
2652 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_TIM);
2653 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_SSOW);
2654 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_SSO);
2655 rvu_blklf_teardown(rvu, pcifunc, blkaddr: BLKADDR_NPA);
2656 rvu_reset_lmt_map_tbl(rvu, pcifunc);
2657 rvu_detach_rsrcs(rvu, NULL, pcifunc);
2658 /* In scenarios where PF/VF drivers detach NIXLF without freeing MCAM
2659 * entries, check and free the MCAM entries explicitly to avoid leak.
2660 * Since LF is detached use LF number as -1.
2661 */
2662 rvu_npc_free_mcam_entries(rvu, pcifunc, nixlf: -1);
2663 rvu_mac_reset(rvu, pcifunc);
2664
2665 if (rvu->mcs_blk_cnt)
2666 rvu_mcs_flr_handler(rvu, pcifunc);
2667
2668 mutex_unlock(lock: &rvu->flr_lock);
2669}
2670
2671static void rvu_afvf_flr_handler(struct rvu *rvu, int vf)
2672{
2673 int reg = 0;
2674
2675 /* pcifunc = 0(PF0) | (vf + 1) */
2676 __rvu_flr_handler(rvu, pcifunc: vf + 1);
2677
2678 if (vf >= 64) {
2679 reg = 1;
2680 vf = vf - 64;
2681 }
2682
2683 /* Signal FLR finish and enable IRQ */
2684 rvupf_write64(rvu, RVU_PF_VFTRPENDX(reg), BIT_ULL(vf));
2685 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(reg), BIT_ULL(vf));
2686}
2687
2688static void rvu_flr_handler(struct work_struct *work)
2689{
2690 struct rvu_work *flrwork = container_of(work, struct rvu_work, work);
2691 struct rvu *rvu = flrwork->rvu;
2692 u16 pcifunc, numvfs, vf;
2693 u64 cfg;
2694 int pf;
2695
2696 pf = flrwork - rvu->flr_wrk;
2697 if (pf >= rvu->hw->total_pfs) {
2698 rvu_afvf_flr_handler(rvu, vf: pf - rvu->hw->total_pfs);
2699 return;
2700 }
2701
2702 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
2703 numvfs = (cfg >> 12) & 0xFF;
2704 pcifunc = pf << RVU_PFVF_PF_SHIFT;
2705
2706 for (vf = 0; vf < numvfs; vf++)
2707 __rvu_flr_handler(rvu, pcifunc: (pcifunc | (vf + 1)));
2708
2709 __rvu_flr_handler(rvu, pcifunc);
2710
2711 /* Signal FLR finish */
2712 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFTRPEND, BIT_ULL(pf));
2713
2714 /* Enable interrupt */
2715 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S, BIT_ULL(pf));
2716}
2717
2718static void rvu_afvf_queue_flr_work(struct rvu *rvu, int start_vf, int numvfs)
2719{
2720 int dev, vf, reg = 0;
2721 u64 intr;
2722
2723 if (start_vf >= 64)
2724 reg = 1;
2725
2726 intr = rvupf_read64(rvu, RVU_PF_VFFLR_INTX(reg));
2727 if (!intr)
2728 return;
2729
2730 for (vf = 0; vf < numvfs; vf++) {
2731 if (!(intr & BIT_ULL(vf)))
2732 continue;
2733 /* Clear and disable the interrupt */
2734 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(reg), BIT_ULL(vf));
2735 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(reg), BIT_ULL(vf));
2736
2737 dev = vf + start_vf + rvu->hw->total_pfs;
2738 queue_work(wq: rvu->flr_wq, work: &rvu->flr_wrk[dev].work);
2739 }
2740}
2741
2742static irqreturn_t rvu_flr_intr_handler(int irq, void *rvu_irq)
2743{
2744 struct rvu *rvu = (struct rvu *)rvu_irq;
2745 u64 intr;
2746 u8 pf;
2747
2748 intr = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT);
2749 if (!intr)
2750 goto afvf_flr;
2751
2752 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2753 if (intr & (1ULL << pf)) {
2754 /* clear interrupt */
2755 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT,
2756 BIT_ULL(pf));
2757 /* Disable the interrupt */
2758 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2759 BIT_ULL(pf));
2760 /* PF is already dead do only AF related operations */
2761 queue_work(wq: rvu->flr_wq, work: &rvu->flr_wrk[pf].work);
2762 }
2763 }
2764
2765afvf_flr:
2766 rvu_afvf_queue_flr_work(rvu, start_vf: 0, numvfs: 64);
2767 if (rvu->vfs > 64)
2768 rvu_afvf_queue_flr_work(rvu, start_vf: 64, numvfs: rvu->vfs - 64);
2769
2770 return IRQ_HANDLED;
2771}
2772
2773static void rvu_me_handle_vfset(struct rvu *rvu, int idx, u64 intr)
2774{
2775 int vf;
2776
2777 /* Nothing to be done here other than clearing the
2778 * TRPEND bit.
2779 */
2780 for (vf = 0; vf < 64; vf++) {
2781 if (intr & (1ULL << vf)) {
2782 /* clear the trpend due to ME(master enable) */
2783 rvupf_write64(rvu, RVU_PF_VFTRPENDX(idx), BIT_ULL(vf));
2784 /* clear interrupt */
2785 rvupf_write64(rvu, RVU_PF_VFME_INTX(idx), BIT_ULL(vf));
2786 }
2787 }
2788}
2789
2790/* Handles ME interrupts from VFs of AF */
2791static irqreturn_t rvu_me_vf_intr_handler(int irq, void *rvu_irq)
2792{
2793 struct rvu *rvu = (struct rvu *)rvu_irq;
2794 int vfset;
2795 u64 intr;
2796
2797 intr = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_AF_PFME_INT);
2798
2799 for (vfset = 0; vfset <= 1; vfset++) {
2800 intr = rvupf_read64(rvu, RVU_PF_VFME_INTX(vfset));
2801 if (intr)
2802 rvu_me_handle_vfset(rvu, idx: vfset, intr);
2803 }
2804
2805 return IRQ_HANDLED;
2806}
2807
2808/* Handles ME interrupts from PFs */
2809static irqreturn_t rvu_me_pf_intr_handler(int irq, void *rvu_irq)
2810{
2811 struct rvu *rvu = (struct rvu *)rvu_irq;
2812 u64 intr;
2813 u8 pf;
2814
2815 intr = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_AF_PFME_INT);
2816
2817 /* Nothing to be done here other than clearing the
2818 * TRPEND bit.
2819 */
2820 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
2821 if (intr & (1ULL << pf)) {
2822 /* clear the trpend due to ME(master enable) */
2823 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFTRPEND,
2824 BIT_ULL(pf));
2825 /* clear interrupt */
2826 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFME_INT,
2827 BIT_ULL(pf));
2828 }
2829 }
2830
2831 return IRQ_HANDLED;
2832}
2833
2834static void rvu_unregister_interrupts(struct rvu *rvu)
2835{
2836 int irq;
2837
2838 rvu_cpt_unregister_interrupts(rvu);
2839
2840 /* Disable the Mbox interrupt */
2841 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFAF_MBOX_INT_ENA_W1C,
2842 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2843
2844 /* Disable the PF FLR interrupt */
2845 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1C,
2846 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2847
2848 /* Disable the PF ME interrupt */
2849 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1C,
2850 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2851
2852 for (irq = 0; irq < rvu->num_vec; irq++) {
2853 if (rvu->irq_allocated[irq]) {
2854 free_irq(pci_irq_vector(dev: rvu->pdev, nr: irq), rvu);
2855 rvu->irq_allocated[irq] = false;
2856 }
2857 }
2858
2859 pci_free_irq_vectors(dev: rvu->pdev);
2860 rvu->num_vec = 0;
2861}
2862
2863static int rvu_afvf_msix_vectors_num_ok(struct rvu *rvu)
2864{
2865 struct rvu_pfvf *pfvf = &rvu->pf[0];
2866 int offset;
2867
2868 pfvf = &rvu->pf[0];
2869 offset = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2870
2871 /* Make sure there are enough MSIX vectors configured so that
2872 * VF interrupts can be handled. Offset equal to zero means
2873 * that PF vectors are not configured and overlapping AF vectors.
2874 */
2875 return (pfvf->msix.max >= RVU_AF_INT_VEC_CNT + RVU_PF_INT_VEC_CNT) &&
2876 offset;
2877}
2878
2879static int rvu_register_interrupts(struct rvu *rvu)
2880{
2881 int ret, offset, pf_vec_start;
2882
2883 rvu->num_vec = pci_msix_vec_count(dev: rvu->pdev);
2884
2885 rvu->irq_name = devm_kmalloc_array(dev: rvu->dev, n: rvu->num_vec,
2886 NAME_SIZE, GFP_KERNEL);
2887 if (!rvu->irq_name)
2888 return -ENOMEM;
2889
2890 rvu->irq_allocated = devm_kcalloc(dev: rvu->dev, n: rvu->num_vec,
2891 size: sizeof(bool), GFP_KERNEL);
2892 if (!rvu->irq_allocated)
2893 return -ENOMEM;
2894
2895 /* Enable MSI-X */
2896 ret = pci_alloc_irq_vectors(dev: rvu->pdev, min_vecs: rvu->num_vec,
2897 max_vecs: rvu->num_vec, PCI_IRQ_MSIX);
2898 if (ret < 0) {
2899 dev_err(rvu->dev,
2900 "RVUAF: Request for %d msix vectors failed, ret %d\n",
2901 rvu->num_vec, ret);
2902 return ret;
2903 }
2904
2905 /* Register mailbox interrupt handler */
2906 sprintf(buf: &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], fmt: "RVUAF Mbox");
2907 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: RVU_AF_INT_VEC_MBOX),
2908 handler: rvu_mbox_pf_intr_handler, flags: 0,
2909 name: &rvu->irq_name[RVU_AF_INT_VEC_MBOX * NAME_SIZE], dev: rvu);
2910 if (ret) {
2911 dev_err(rvu->dev,
2912 "RVUAF: IRQ registration failed for mbox irq\n");
2913 goto fail;
2914 }
2915
2916 rvu->irq_allocated[RVU_AF_INT_VEC_MBOX] = true;
2917
2918 /* Enable mailbox interrupts from all PFs */
2919 rvu_enable_mbox_intr(rvu);
2920
2921 /* Register FLR interrupt handler */
2922 sprintf(buf: &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2923 fmt: "RVUAF FLR");
2924 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: RVU_AF_INT_VEC_PFFLR),
2925 handler: rvu_flr_intr_handler, flags: 0,
2926 name: &rvu->irq_name[RVU_AF_INT_VEC_PFFLR * NAME_SIZE],
2927 dev: rvu);
2928 if (ret) {
2929 dev_err(rvu->dev,
2930 "RVUAF: IRQ registration failed for FLR\n");
2931 goto fail;
2932 }
2933 rvu->irq_allocated[RVU_AF_INT_VEC_PFFLR] = true;
2934
2935 /* Enable FLR interrupt for all PFs*/
2936 rvu_write64(rvu, block: BLKADDR_RVUM,
2937 RVU_AF_PFFLR_INT, INTR_MASK(rvu->hw->total_pfs));
2938
2939 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFFLR_INT_ENA_W1S,
2940 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2941
2942 /* Register ME interrupt handler */
2943 sprintf(buf: &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2944 fmt: "RVUAF ME");
2945 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: RVU_AF_INT_VEC_PFME),
2946 handler: rvu_me_pf_intr_handler, flags: 0,
2947 name: &rvu->irq_name[RVU_AF_INT_VEC_PFME * NAME_SIZE],
2948 dev: rvu);
2949 if (ret) {
2950 dev_err(rvu->dev,
2951 "RVUAF: IRQ registration failed for ME\n");
2952 }
2953 rvu->irq_allocated[RVU_AF_INT_VEC_PFME] = true;
2954
2955 /* Clear TRPEND bit for all PF */
2956 rvu_write64(rvu, block: BLKADDR_RVUM,
2957 RVU_AF_PFTRPEND, INTR_MASK(rvu->hw->total_pfs));
2958 /* Enable ME interrupt for all PFs*/
2959 rvu_write64(rvu, block: BLKADDR_RVUM,
2960 RVU_AF_PFME_INT, INTR_MASK(rvu->hw->total_pfs));
2961
2962 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_AF_PFME_INT_ENA_W1S,
2963 INTR_MASK(rvu->hw->total_pfs) & ~1ULL);
2964
2965 if (!rvu_afvf_msix_vectors_num_ok(rvu))
2966 return 0;
2967
2968 /* Get PF MSIX vectors offset. */
2969 pf_vec_start = rvu_read64(rvu, block: BLKADDR_RVUM,
2970 RVU_PRIV_PFX_INT_CFG(0)) & 0x3ff;
2971
2972 /* Register MBOX0 interrupt. */
2973 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX0;
2974 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF Mbox0");
2975 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
2976 handler: rvu_mbox_intr_handler, flags: 0,
2977 name: &rvu->irq_name[offset * NAME_SIZE],
2978 dev: rvu);
2979 if (ret)
2980 dev_err(rvu->dev,
2981 "RVUAF: IRQ registration failed for Mbox0\n");
2982
2983 rvu->irq_allocated[offset] = true;
2984
2985 /* Register MBOX1 interrupt. MBOX1 IRQ number follows MBOX0 so
2986 * simply increment current offset by 1.
2987 */
2988 offset = pf_vec_start + RVU_PF_INT_VEC_VFPF_MBOX1;
2989 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF Mbox1");
2990 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
2991 handler: rvu_mbox_intr_handler, flags: 0,
2992 name: &rvu->irq_name[offset * NAME_SIZE],
2993 dev: rvu);
2994 if (ret)
2995 dev_err(rvu->dev,
2996 "RVUAF: IRQ registration failed for Mbox1\n");
2997
2998 rvu->irq_allocated[offset] = true;
2999
3000 /* Register FLR interrupt handler for AF's VFs */
3001 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR0;
3002 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF FLR0");
3003 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
3004 handler: rvu_flr_intr_handler, flags: 0,
3005 name: &rvu->irq_name[offset * NAME_SIZE], dev: rvu);
3006 if (ret) {
3007 dev_err(rvu->dev,
3008 "RVUAF: IRQ registration failed for RVUAFVF FLR0\n");
3009 goto fail;
3010 }
3011 rvu->irq_allocated[offset] = true;
3012
3013 offset = pf_vec_start + RVU_PF_INT_VEC_VFFLR1;
3014 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF FLR1");
3015 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
3016 handler: rvu_flr_intr_handler, flags: 0,
3017 name: &rvu->irq_name[offset * NAME_SIZE], dev: rvu);
3018 if (ret) {
3019 dev_err(rvu->dev,
3020 "RVUAF: IRQ registration failed for RVUAFVF FLR1\n");
3021 goto fail;
3022 }
3023 rvu->irq_allocated[offset] = true;
3024
3025 /* Register ME interrupt handler for AF's VFs */
3026 offset = pf_vec_start + RVU_PF_INT_VEC_VFME0;
3027 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF ME0");
3028 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
3029 handler: rvu_me_vf_intr_handler, flags: 0,
3030 name: &rvu->irq_name[offset * NAME_SIZE], dev: rvu);
3031 if (ret) {
3032 dev_err(rvu->dev,
3033 "RVUAF: IRQ registration failed for RVUAFVF ME0\n");
3034 goto fail;
3035 }
3036 rvu->irq_allocated[offset] = true;
3037
3038 offset = pf_vec_start + RVU_PF_INT_VEC_VFME1;
3039 sprintf(buf: &rvu->irq_name[offset * NAME_SIZE], fmt: "RVUAFVF ME1");
3040 ret = request_irq(irq: pci_irq_vector(dev: rvu->pdev, nr: offset),
3041 handler: rvu_me_vf_intr_handler, flags: 0,
3042 name: &rvu->irq_name[offset * NAME_SIZE], dev: rvu);
3043 if (ret) {
3044 dev_err(rvu->dev,
3045 "RVUAF: IRQ registration failed for RVUAFVF ME1\n");
3046 goto fail;
3047 }
3048 rvu->irq_allocated[offset] = true;
3049
3050 ret = rvu_cpt_register_interrupts(rvu);
3051 if (ret)
3052 goto fail;
3053
3054 return 0;
3055
3056fail:
3057 rvu_unregister_interrupts(rvu);
3058 return ret;
3059}
3060
3061static void rvu_flr_wq_destroy(struct rvu *rvu)
3062{
3063 if (rvu->flr_wq) {
3064 destroy_workqueue(wq: rvu->flr_wq);
3065 rvu->flr_wq = NULL;
3066 }
3067}
3068
3069static int rvu_flr_init(struct rvu *rvu)
3070{
3071 int dev, num_devs;
3072 u64 cfg;
3073 int pf;
3074
3075 /* Enable FLR for all PFs*/
3076 for (pf = 0; pf < rvu->hw->total_pfs; pf++) {
3077 cfg = rvu_read64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf));
3078 rvu_write64(rvu, block: BLKADDR_RVUM, RVU_PRIV_PFX_CFG(pf),
3079 val: cfg | BIT_ULL(22));
3080 }
3081
3082 rvu->flr_wq = alloc_ordered_workqueue("rvu_afpf_flr",
3083 WQ_HIGHPRI | WQ_MEM_RECLAIM);
3084 if (!rvu->flr_wq)
3085 return -ENOMEM;
3086
3087 num_devs = rvu->hw->total_pfs + pci_sriov_get_totalvfs(dev: rvu->pdev);
3088 rvu->flr_wrk = devm_kcalloc(dev: rvu->dev, n: num_devs,
3089 size: sizeof(struct rvu_work), GFP_KERNEL);
3090 if (!rvu->flr_wrk) {
3091 destroy_workqueue(wq: rvu->flr_wq);
3092 return -ENOMEM;
3093 }
3094
3095 for (dev = 0; dev < num_devs; dev++) {
3096 rvu->flr_wrk[dev].rvu = rvu;
3097 INIT_WORK(&rvu->flr_wrk[dev].work, rvu_flr_handler);
3098 }
3099
3100 mutex_init(&rvu->flr_lock);
3101
3102 return 0;
3103}
3104
3105static void rvu_disable_afvf_intr(struct rvu *rvu)
3106{
3107 int vfs = rvu->vfs;
3108
3109 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(0), INTR_MASK(vfs));
3110 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(0), INTR_MASK(vfs));
3111 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(0), INTR_MASK(vfs));
3112 if (vfs <= 64)
3113 return;
3114
3115 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1CX(1),
3116 INTR_MASK(vfs - 64));
3117 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3118 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1CX(1), INTR_MASK(vfs - 64));
3119}
3120
3121static void rvu_enable_afvf_intr(struct rvu *rvu)
3122{
3123 int vfs = rvu->vfs;
3124
3125 /* Clear any pending interrupts and enable AF VF interrupts for
3126 * the first 64 VFs.
3127 */
3128 /* Mbox */
3129 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(0), INTR_MASK(vfs));
3130 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(0), INTR_MASK(vfs));
3131
3132 /* FLR */
3133 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(0), INTR_MASK(vfs));
3134 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(0), INTR_MASK(vfs));
3135 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(0), INTR_MASK(vfs));
3136
3137 /* Same for remaining VFs, if any. */
3138 if (vfs <= 64)
3139 return;
3140
3141 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INTX(1), INTR_MASK(vfs - 64));
3142 rvupf_write64(rvu, RVU_PF_VFPF_MBOX_INT_ENA_W1SX(1),
3143 INTR_MASK(vfs - 64));
3144
3145 rvupf_write64(rvu, RVU_PF_VFFLR_INTX(1), INTR_MASK(vfs - 64));
3146 rvupf_write64(rvu, RVU_PF_VFFLR_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3147 rvupf_write64(rvu, RVU_PF_VFME_INT_ENA_W1SX(1), INTR_MASK(vfs - 64));
3148}
3149
3150int rvu_get_num_lbk_chans(void)
3151{
3152 struct pci_dev *pdev;
3153 void __iomem *base;
3154 int ret = -EIO;
3155
3156 pdev = pci_get_device(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_LBK,
3157 NULL);
3158 if (!pdev)
3159 goto err;
3160
3161 base = pci_ioremap_bar(pdev, bar: 0);
3162 if (!base)
3163 goto err_put;
3164
3165 /* Read number of available LBK channels from LBK(0)_CONST register. */
3166 ret = (readq(addr: base + 0x10) >> 32) & 0xffff;
3167 iounmap(addr: base);
3168err_put:
3169 pci_dev_put(dev: pdev);
3170err:
3171 return ret;
3172}
3173
3174static int rvu_enable_sriov(struct rvu *rvu)
3175{
3176 struct pci_dev *pdev = rvu->pdev;
3177 int err, chans, vfs;
3178 int pos = 0;
3179
3180 if (!rvu_afvf_msix_vectors_num_ok(rvu)) {
3181 dev_warn(&pdev->dev,
3182 "Skipping SRIOV enablement since not enough IRQs are available\n");
3183 return 0;
3184 }
3185
3186 /* Get RVU VFs device id */
3187 pos = pci_find_ext_capability(dev: pdev, PCI_EXT_CAP_ID_SRIOV);
3188 if (!pos)
3189 return 0;
3190 pci_read_config_word(dev: pdev, where: pos + PCI_SRIOV_VF_DID, val: &rvu->vf_devid);
3191
3192 chans = rvu_get_num_lbk_chans();
3193 if (chans < 0)
3194 return chans;
3195
3196 vfs = pci_sriov_get_totalvfs(dev: pdev);
3197
3198 /* Limit VFs in case we have more VFs than LBK channels available. */
3199 if (vfs > chans)
3200 vfs = chans;
3201
3202 if (!vfs)
3203 return 0;
3204
3205 /* LBK channel number 63 is used for switching packets between
3206 * CGX mapped VFs. Hence limit LBK pairs till 62 only.
3207 */
3208 if (vfs > 62)
3209 vfs = 62;
3210
3211 /* Save VFs number for reference in VF interrupts handlers.
3212 * Since interrupts might start arriving during SRIOV enablement
3213 * ordinary API cannot be used to get number of enabled VFs.
3214 */
3215 rvu->vfs = vfs;
3216
3217 err = rvu_mbox_init(rvu, mw: &rvu->afvf_wq_info, type: TYPE_AFVF, num: vfs,
3218 mbox_handler: rvu_afvf_mbox_handler, mbox_up_handler: rvu_afvf_mbox_up_handler);
3219 if (err)
3220 return err;
3221
3222 rvu_enable_afvf_intr(rvu);
3223 /* Make sure IRQs are enabled before SRIOV. */
3224 mb();
3225
3226 err = pci_enable_sriov(dev: pdev, nr_virtfn: vfs);
3227 if (err) {
3228 rvu_disable_afvf_intr(rvu);
3229 rvu_mbox_destroy(mw: &rvu->afvf_wq_info);
3230 return err;
3231 }
3232
3233 return 0;
3234}
3235
3236static void rvu_disable_sriov(struct rvu *rvu)
3237{
3238 rvu_disable_afvf_intr(rvu);
3239 rvu_mbox_destroy(mw: &rvu->afvf_wq_info);
3240 pci_disable_sriov(dev: rvu->pdev);
3241}
3242
3243static void rvu_update_module_params(struct rvu *rvu)
3244{
3245 const char *default_pfl_name = "default";
3246
3247 strscpy(rvu->mkex_pfl_name,
3248 mkex_profile ? mkex_profile : default_pfl_name, MKEX_NAME_LEN);
3249 strscpy(rvu->kpu_pfl_name,
3250 kpu_profile ? kpu_profile : default_pfl_name, KPU_NAME_LEN);
3251}
3252
3253static int rvu_probe(struct pci_dev *pdev, const struct pci_device_id *id)
3254{
3255 struct device *dev = &pdev->dev;
3256 struct rvu *rvu;
3257 int err;
3258
3259 rvu = devm_kzalloc(dev, size: sizeof(*rvu), GFP_KERNEL);
3260 if (!rvu)
3261 return -ENOMEM;
3262
3263 rvu->hw = devm_kzalloc(dev, size: sizeof(struct rvu_hwinfo), GFP_KERNEL);
3264 if (!rvu->hw) {
3265 devm_kfree(dev, p: rvu);
3266 return -ENOMEM;
3267 }
3268
3269 pci_set_drvdata(pdev, data: rvu);
3270 rvu->pdev = pdev;
3271 rvu->dev = &pdev->dev;
3272
3273 err = pci_enable_device(dev: pdev);
3274 if (err) {
3275 dev_err(dev, "Failed to enable PCI device\n");
3276 goto err_freemem;
3277 }
3278
3279 err = pci_request_regions(pdev, DRV_NAME);
3280 if (err) {
3281 dev_err(dev, "PCI request regions failed 0x%x\n", err);
3282 goto err_disable_device;
3283 }
3284
3285 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
3286 if (err) {
3287 dev_err(dev, "DMA mask config failed, abort\n");
3288 goto err_release_regions;
3289 }
3290
3291 pci_set_master(dev: pdev);
3292
3293 rvu->ptp = ptp_get();
3294 if (IS_ERR(ptr: rvu->ptp)) {
3295 err = PTR_ERR(ptr: rvu->ptp);
3296 if (err)
3297 goto err_release_regions;
3298 rvu->ptp = NULL;
3299 }
3300
3301 /* Map Admin function CSRs */
3302 rvu->afreg_base = pcim_iomap(pdev, PCI_AF_REG_BAR_NUM, maxlen: 0);
3303 rvu->pfreg_base = pcim_iomap(pdev, PCI_PF_REG_BAR_NUM, maxlen: 0);
3304 if (!rvu->afreg_base || !rvu->pfreg_base) {
3305 dev_err(dev, "Unable to map admin function CSRs, aborting\n");
3306 err = -ENOMEM;
3307 goto err_put_ptp;
3308 }
3309
3310 /* Store module params in rvu structure */
3311 rvu_update_module_params(rvu);
3312
3313 /* Check which blocks the HW supports */
3314 rvu_check_block_implemented(rvu);
3315
3316 rvu_reset_all_blocks(rvu);
3317
3318 rvu_setup_hw_capabilities(rvu);
3319
3320 err = rvu_setup_hw_resources(rvu);
3321 if (err)
3322 goto err_put_ptp;
3323
3324 /* Init mailbox btw AF and PFs */
3325 err = rvu_mbox_init(rvu, mw: &rvu->afpf_wq_info, type: TYPE_AFPF,
3326 num: rvu->hw->total_pfs, mbox_handler: rvu_afpf_mbox_handler,
3327 mbox_up_handler: rvu_afpf_mbox_up_handler);
3328 if (err) {
3329 dev_err(dev, "%s: Failed to initialize mbox\n", __func__);
3330 goto err_hwsetup;
3331 }
3332
3333 err = rvu_flr_init(rvu);
3334 if (err) {
3335 dev_err(dev, "%s: Failed to initialize flr\n", __func__);
3336 goto err_mbox;
3337 }
3338
3339 err = rvu_register_interrupts(rvu);
3340 if (err) {
3341 dev_err(dev, "%s: Failed to register interrupts\n", __func__);
3342 goto err_flr;
3343 }
3344
3345 err = rvu_register_dl(rvu);
3346 if (err) {
3347 dev_err(dev, "%s: Failed to register devlink\n", __func__);
3348 goto err_irq;
3349 }
3350
3351 rvu_setup_rvum_blk_revid(rvu);
3352
3353 /* Enable AF's VFs (if any) */
3354 err = rvu_enable_sriov(rvu);
3355 if (err) {
3356 dev_err(dev, "%s: Failed to enable sriov\n", __func__);
3357 goto err_dl;
3358 }
3359
3360 /* Initialize debugfs */
3361 rvu_dbg_init(rvu);
3362
3363 mutex_init(&rvu->rswitch.switch_lock);
3364
3365 if (rvu->fwdata)
3366 ptp_start(rvu, sclk: rvu->fwdata->sclk, ext_clk_freq: rvu->fwdata->ptp_ext_clk_rate,
3367 extts: rvu->fwdata->ptp_ext_tstamp);
3368
3369 return 0;
3370err_dl:
3371 rvu_unregister_dl(rvu);
3372err_irq:
3373 rvu_unregister_interrupts(rvu);
3374err_flr:
3375 rvu_flr_wq_destroy(rvu);
3376err_mbox:
3377 rvu_mbox_destroy(mw: &rvu->afpf_wq_info);
3378err_hwsetup:
3379 rvu_cgx_exit(rvu);
3380 rvu_fwdata_exit(rvu);
3381 rvu_mcs_exit(rvu);
3382 rvu_reset_all_blocks(rvu);
3383 rvu_free_hw_resources(rvu);
3384 rvu_clear_rvum_blk_revid(rvu);
3385err_put_ptp:
3386 ptp_put(ptp: rvu->ptp);
3387err_release_regions:
3388 pci_release_regions(pdev);
3389err_disable_device:
3390 pci_disable_device(dev: pdev);
3391err_freemem:
3392 pci_set_drvdata(pdev, NULL);
3393 devm_kfree(dev: &pdev->dev, p: rvu->hw);
3394 devm_kfree(dev, p: rvu);
3395 return err;
3396}
3397
3398static void rvu_remove(struct pci_dev *pdev)
3399{
3400 struct rvu *rvu = pci_get_drvdata(pdev);
3401
3402 rvu_dbg_exit(rvu);
3403 rvu_unregister_dl(rvu);
3404 rvu_unregister_interrupts(rvu);
3405 rvu_flr_wq_destroy(rvu);
3406 rvu_cgx_exit(rvu);
3407 rvu_fwdata_exit(rvu);
3408 rvu_mcs_exit(rvu);
3409 rvu_mbox_destroy(mw: &rvu->afpf_wq_info);
3410 rvu_disable_sriov(rvu);
3411 rvu_reset_all_blocks(rvu);
3412 rvu_free_hw_resources(rvu);
3413 rvu_clear_rvum_blk_revid(rvu);
3414 ptp_put(ptp: rvu->ptp);
3415 pci_release_regions(pdev);
3416 pci_disable_device(dev: pdev);
3417 pci_set_drvdata(pdev, NULL);
3418
3419 devm_kfree(dev: &pdev->dev, p: rvu->hw);
3420 devm_kfree(dev: &pdev->dev, p: rvu);
3421}
3422
3423static struct pci_driver rvu_driver = {
3424 .name = DRV_NAME,
3425 .id_table = rvu_id_table,
3426 .probe = rvu_probe,
3427 .remove = rvu_remove,
3428};
3429
3430static int __init rvu_init_module(void)
3431{
3432 int err;
3433
3434 pr_info("%s: %s\n", DRV_NAME, DRV_STRING);
3435
3436 err = pci_register_driver(&cgx_driver);
3437 if (err < 0)
3438 return err;
3439
3440 err = pci_register_driver(&ptp_driver);
3441 if (err < 0)
3442 goto ptp_err;
3443
3444 err = pci_register_driver(&mcs_driver);
3445 if (err < 0)
3446 goto mcs_err;
3447
3448 err = pci_register_driver(&rvu_driver);
3449 if (err < 0)
3450 goto rvu_err;
3451
3452 return 0;
3453rvu_err:
3454 pci_unregister_driver(dev: &mcs_driver);
3455mcs_err:
3456 pci_unregister_driver(dev: &ptp_driver);
3457ptp_err:
3458 pci_unregister_driver(dev: &cgx_driver);
3459
3460 return err;
3461}
3462
3463static void __exit rvu_cleanup_module(void)
3464{
3465 pci_unregister_driver(dev: &rvu_driver);
3466 pci_unregister_driver(dev: &mcs_driver);
3467 pci_unregister_driver(dev: &ptp_driver);
3468 pci_unregister_driver(dev: &cgx_driver);
3469}
3470
3471module_init(rvu_init_module);
3472module_exit(rvu_cleanup_module);
3473

source code of linux/drivers/net/ethernet/marvell/octeontx2/af/rvu.c