1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7#include <linux/module.h>
8#include <linux/init.h>
9#include <linux/slab.h>
10#include <linux/err.h>
11#include <linux/key.h>
12#include <linux/nvme-tcp.h>
13#include <linux/nvme-keyring.h>
14#include <net/sock.h>
15#include <net/tcp.h>
16#include <net/tls.h>
17#include <net/tls_prot.h>
18#include <net/handshake.h>
19#include <linux/blk-mq.h>
20#include <crypto/hash.h>
21#include <net/busy_poll.h>
22#include <trace/events/sock.h>
23
24#include "nvme.h"
25#include "fabrics.h"
26
27struct nvme_tcp_queue;
28
29/* Define the socket priority to use for connections were it is desirable
30 * that the NIC consider performing optimized packet processing or filtering.
31 * A non-zero value being sufficient to indicate general consideration of any
32 * possible optimization. Making it a module param allows for alternative
33 * values that may be unique for some NIC implementations.
34 */
35static int so_priority;
36module_param(so_priority, int, 0644);
37MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
38
39#ifdef CONFIG_NVME_TCP_TLS
40/*
41 * TLS handshake timeout
42 */
43static int tls_handshake_timeout = 10;
44module_param(tls_handshake_timeout, int, 0644);
45MODULE_PARM_DESC(tls_handshake_timeout,
46 "nvme TLS handshake timeout in seconds (default 10)");
47#endif
48
49#ifdef CONFIG_DEBUG_LOCK_ALLOC
50/* lockdep can detect a circular dependency of the form
51 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
52 * because dependencies are tracked for both nvme-tcp and user contexts. Using
53 * a separate class prevents lockdep from conflating nvme-tcp socket use with
54 * user-space socket API use.
55 */
56static struct lock_class_key nvme_tcp_sk_key[2];
57static struct lock_class_key nvme_tcp_slock_key[2];
58
59static void nvme_tcp_reclassify_socket(struct socket *sock)
60{
61 struct sock *sk = sock->sk;
62
63 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
64 return;
65
66 switch (sk->sk_family) {
67 case AF_INET:
68 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
69 &nvme_tcp_slock_key[0],
70 "sk_lock-AF_INET-NVME",
71 &nvme_tcp_sk_key[0]);
72 break;
73 case AF_INET6:
74 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
75 &nvme_tcp_slock_key[1],
76 "sk_lock-AF_INET6-NVME",
77 &nvme_tcp_sk_key[1]);
78 break;
79 default:
80 WARN_ON_ONCE(1);
81 }
82}
83#else
84static void nvme_tcp_reclassify_socket(struct socket *sock) { }
85#endif
86
87enum nvme_tcp_send_state {
88 NVME_TCP_SEND_CMD_PDU = 0,
89 NVME_TCP_SEND_H2C_PDU,
90 NVME_TCP_SEND_DATA,
91 NVME_TCP_SEND_DDGST,
92};
93
94struct nvme_tcp_request {
95 struct nvme_request req;
96 void *pdu;
97 struct nvme_tcp_queue *queue;
98 u32 data_len;
99 u32 pdu_len;
100 u32 pdu_sent;
101 u32 h2cdata_left;
102 u32 h2cdata_offset;
103 u16 ttag;
104 __le16 status;
105 struct list_head entry;
106 struct llist_node lentry;
107 __le32 ddgst;
108
109 struct bio *curr_bio;
110 struct iov_iter iter;
111
112 /* send state */
113 size_t offset;
114 size_t data_sent;
115 enum nvme_tcp_send_state state;
116};
117
118enum nvme_tcp_queue_flags {
119 NVME_TCP_Q_ALLOCATED = 0,
120 NVME_TCP_Q_LIVE = 1,
121 NVME_TCP_Q_POLLING = 2,
122};
123
124enum nvme_tcp_recv_state {
125 NVME_TCP_RECV_PDU = 0,
126 NVME_TCP_RECV_DATA,
127 NVME_TCP_RECV_DDGST,
128};
129
130struct nvme_tcp_ctrl;
131struct nvme_tcp_queue {
132 struct socket *sock;
133 struct work_struct io_work;
134 int io_cpu;
135
136 struct mutex queue_lock;
137 struct mutex send_mutex;
138 struct llist_head req_list;
139 struct list_head send_list;
140
141 /* recv state */
142 void *pdu;
143 int pdu_remaining;
144 int pdu_offset;
145 size_t data_remaining;
146 size_t ddgst_remaining;
147 unsigned int nr_cqe;
148
149 /* send state */
150 struct nvme_tcp_request *request;
151
152 u32 maxh2cdata;
153 size_t cmnd_capsule_len;
154 struct nvme_tcp_ctrl *ctrl;
155 unsigned long flags;
156 bool rd_enabled;
157
158 bool hdr_digest;
159 bool data_digest;
160 struct ahash_request *rcv_hash;
161 struct ahash_request *snd_hash;
162 __le32 exp_ddgst;
163 __le32 recv_ddgst;
164#ifdef CONFIG_NVME_TCP_TLS
165 struct completion tls_complete;
166 int tls_err;
167#endif
168 struct page_frag_cache pf_cache;
169
170 void (*state_change)(struct sock *);
171 void (*data_ready)(struct sock *);
172 void (*write_space)(struct sock *);
173};
174
175struct nvme_tcp_ctrl {
176 /* read only in the hot path */
177 struct nvme_tcp_queue *queues;
178 struct blk_mq_tag_set tag_set;
179
180 /* other member variables */
181 struct list_head list;
182 struct blk_mq_tag_set admin_tag_set;
183 struct sockaddr_storage addr;
184 struct sockaddr_storage src_addr;
185 struct nvme_ctrl ctrl;
186
187 struct work_struct err_work;
188 struct delayed_work connect_work;
189 struct nvme_tcp_request async_req;
190 u32 io_queues[HCTX_MAX_TYPES];
191};
192
193static LIST_HEAD(nvme_tcp_ctrl_list);
194static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
195static struct workqueue_struct *nvme_tcp_wq;
196static const struct blk_mq_ops nvme_tcp_mq_ops;
197static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
198static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
199
200static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
201{
202 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
203}
204
205static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
206{
207 return queue - queue->ctrl->queues;
208}
209
210static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
211{
212 u32 queue_idx = nvme_tcp_queue_id(queue);
213
214 if (queue_idx == 0)
215 return queue->ctrl->admin_tag_set.tags[queue_idx];
216 return queue->ctrl->tag_set.tags[queue_idx - 1];
217}
218
219static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
220{
221 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
222}
223
224static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
225{
226 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
227}
228
229static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
230{
231 return req->pdu;
232}
233
234static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
235{
236 /* use the pdu space in the back for the data pdu */
237 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
238 sizeof(struct nvme_tcp_data_pdu);
239}
240
241static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
242{
243 if (nvme_is_fabrics(cmd: req->req.cmd))
244 return NVME_TCP_ADMIN_CCSZ;
245 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
246}
247
248static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
249{
250 return req == &req->queue->ctrl->async_req;
251}
252
253static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
254{
255 struct request *rq;
256
257 if (unlikely(nvme_tcp_async_req(req)))
258 return false; /* async events don't have a request */
259
260 rq = blk_mq_rq_from_pdu(pdu: req);
261
262 return rq_data_dir(rq) == WRITE && req->data_len &&
263 req->data_len <= nvme_tcp_inline_data_size(req);
264}
265
266static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
267{
268 return req->iter.bvec->bv_page;
269}
270
271static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
272{
273 return req->iter.bvec->bv_offset + req->iter.iov_offset;
274}
275
276static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
277{
278 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
279 req->pdu_len - req->pdu_sent);
280}
281
282static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
283{
284 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
285 req->pdu_len - req->pdu_sent : 0;
286}
287
288static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
289 int len)
290{
291 return nvme_tcp_pdu_data_left(req) <= len;
292}
293
294static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
295 unsigned int dir)
296{
297 struct request *rq = blk_mq_rq_from_pdu(pdu: req);
298 struct bio_vec *vec;
299 unsigned int size;
300 int nr_bvec;
301 size_t offset;
302
303 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
304 vec = &rq->special_vec;
305 nr_bvec = 1;
306 size = blk_rq_payload_bytes(rq);
307 offset = 0;
308 } else {
309 struct bio *bio = req->curr_bio;
310 struct bvec_iter bi;
311 struct bio_vec bv;
312
313 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
314 nr_bvec = 0;
315 bio_for_each_bvec(bv, bio, bi) {
316 nr_bvec++;
317 }
318 size = bio->bi_iter.bi_size;
319 offset = bio->bi_iter.bi_bvec_done;
320 }
321
322 iov_iter_bvec(i: &req->iter, direction: dir, bvec: vec, nr_segs: nr_bvec, count: size);
323 req->iter.iov_offset = offset;
324}
325
326static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
327 int len)
328{
329 req->data_sent += len;
330 req->pdu_sent += len;
331 iov_iter_advance(i: &req->iter, bytes: len);
332 if (!iov_iter_count(i: &req->iter) &&
333 req->data_sent < req->data_len) {
334 req->curr_bio = req->curr_bio->bi_next;
335 nvme_tcp_init_iter(req, ITER_SOURCE);
336 }
337}
338
339static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
340{
341 int ret;
342
343 /* drain the send queue as much as we can... */
344 do {
345 ret = nvme_tcp_try_send(queue);
346 } while (ret > 0);
347}
348
349static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
350{
351 return !list_empty(head: &queue->send_list) ||
352 !llist_empty(head: &queue->req_list);
353}
354
355static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
356 bool sync, bool last)
357{
358 struct nvme_tcp_queue *queue = req->queue;
359 bool empty;
360
361 empty = llist_add(new: &req->lentry, head: &queue->req_list) &&
362 list_empty(head: &queue->send_list) && !queue->request;
363
364 /*
365 * if we're the first on the send_list and we can try to send
366 * directly, otherwise queue io_work. Also, only do that if we
367 * are on the same cpu, so we don't introduce contention.
368 */
369 if (queue->io_cpu == raw_smp_processor_id() &&
370 sync && empty && mutex_trylock(lock: &queue->send_mutex)) {
371 nvme_tcp_send_all(queue);
372 mutex_unlock(lock: &queue->send_mutex);
373 }
374
375 if (last && nvme_tcp_queue_more(queue))
376 queue_work_on(cpu: queue->io_cpu, wq: nvme_tcp_wq, work: &queue->io_work);
377}
378
379static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
380{
381 struct nvme_tcp_request *req;
382 struct llist_node *node;
383
384 for (node = llist_del_all(head: &queue->req_list); node; node = node->next) {
385 req = llist_entry(node, struct nvme_tcp_request, lentry);
386 list_add(new: &req->entry, head: &queue->send_list);
387 }
388}
389
390static inline struct nvme_tcp_request *
391nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
392{
393 struct nvme_tcp_request *req;
394
395 req = list_first_entry_or_null(&queue->send_list,
396 struct nvme_tcp_request, entry);
397 if (!req) {
398 nvme_tcp_process_req_list(queue);
399 req = list_first_entry_or_null(&queue->send_list,
400 struct nvme_tcp_request, entry);
401 if (unlikely(!req))
402 return NULL;
403 }
404
405 list_del(entry: &req->entry);
406 return req;
407}
408
409static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
410 __le32 *dgst)
411{
412 ahash_request_set_crypt(req: hash, NULL, result: (u8 *)dgst, nbytes: 0);
413 crypto_ahash_final(req: hash);
414}
415
416static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
417 struct page *page, off_t off, size_t len)
418{
419 struct scatterlist sg;
420
421 sg_init_table(&sg, 1);
422 sg_set_page(sg: &sg, page, len, offset: off);
423 ahash_request_set_crypt(req: hash, src: &sg, NULL, nbytes: len);
424 crypto_ahash_update(req: hash);
425}
426
427static inline void nvme_tcp_hdgst(struct ahash_request *hash,
428 void *pdu, size_t len)
429{
430 struct scatterlist sg;
431
432 sg_init_one(&sg, pdu, len);
433 ahash_request_set_crypt(req: hash, src: &sg, result: pdu + len, nbytes: len);
434 crypto_ahash_digest(req: hash);
435}
436
437static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
438 void *pdu, size_t pdu_len)
439{
440 struct nvme_tcp_hdr *hdr = pdu;
441 __le32 recv_digest;
442 __le32 exp_digest;
443
444 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
445 dev_err(queue->ctrl->ctrl.device,
446 "queue %d: header digest flag is cleared\n",
447 nvme_tcp_queue_id(queue));
448 return -EPROTO;
449 }
450
451 recv_digest = *(__le32 *)(pdu + hdr->hlen);
452 nvme_tcp_hdgst(hash: queue->rcv_hash, pdu, len: pdu_len);
453 exp_digest = *(__le32 *)(pdu + hdr->hlen);
454 if (recv_digest != exp_digest) {
455 dev_err(queue->ctrl->ctrl.device,
456 "header digest error: recv %#x expected %#x\n",
457 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
458 return -EIO;
459 }
460
461 return 0;
462}
463
464static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
465{
466 struct nvme_tcp_hdr *hdr = pdu;
467 u8 digest_len = nvme_tcp_hdgst_len(queue);
468 u32 len;
469
470 len = le32_to_cpu(hdr->plen) - hdr->hlen -
471 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
472
473 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
474 dev_err(queue->ctrl->ctrl.device,
475 "queue %d: data digest flag is cleared\n",
476 nvme_tcp_queue_id(queue));
477 return -EPROTO;
478 }
479 crypto_ahash_init(req: queue->rcv_hash);
480
481 return 0;
482}
483
484static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
485 struct request *rq, unsigned int hctx_idx)
486{
487 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
488
489 page_frag_free(addr: req->pdu);
490}
491
492static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
493 struct request *rq, unsigned int hctx_idx,
494 unsigned int numa_node)
495{
496 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: set->driver_data);
497 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
498 struct nvme_tcp_cmd_pdu *pdu;
499 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
500 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
501 u8 hdgst = nvme_tcp_hdgst_len(queue);
502
503 req->pdu = page_frag_alloc(nc: &queue->pf_cache,
504 fragsz: sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
505 GFP_KERNEL | __GFP_ZERO);
506 if (!req->pdu)
507 return -ENOMEM;
508
509 pdu = req->pdu;
510 req->queue = queue;
511 nvme_req(req: rq)->ctrl = &ctrl->ctrl;
512 nvme_req(req: rq)->cmd = &pdu->cmd;
513
514 return 0;
515}
516
517static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
518 unsigned int hctx_idx)
519{
520 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: data);
521 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
522
523 hctx->driver_data = queue;
524 return 0;
525}
526
527static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
528 unsigned int hctx_idx)
529{
530 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: data);
531 struct nvme_tcp_queue *queue = &ctrl->queues[0];
532
533 hctx->driver_data = queue;
534 return 0;
535}
536
537static enum nvme_tcp_recv_state
538nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
539{
540 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
541 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
542 NVME_TCP_RECV_DATA;
543}
544
545static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
546{
547 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
548 nvme_tcp_hdgst_len(queue);
549 queue->pdu_offset = 0;
550 queue->data_remaining = -1;
551 queue->ddgst_remaining = 0;
552}
553
554static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
555{
556 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING))
557 return;
558
559 dev_warn(ctrl->device, "starting error recovery\n");
560 queue_work(wq: nvme_reset_wq, work: &to_tcp_ctrl(ctrl)->err_work);
561}
562
563static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
564 struct nvme_completion *cqe)
565{
566 struct nvme_tcp_request *req;
567 struct request *rq;
568
569 rq = nvme_find_rq(tags: nvme_tcp_tagset(queue), command_id: cqe->command_id);
570 if (!rq) {
571 dev_err(queue->ctrl->ctrl.device,
572 "got bad cqe.command_id %#x on queue %d\n",
573 cqe->command_id, nvme_tcp_queue_id(queue));
574 nvme_tcp_error_recovery(ctrl: &queue->ctrl->ctrl);
575 return -EINVAL;
576 }
577
578 req = blk_mq_rq_to_pdu(rq);
579 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
580 req->status = cqe->status;
581
582 if (!nvme_try_complete_req(req: rq, status: req->status, result: cqe->result))
583 nvme_complete_rq(req: rq);
584 queue->nr_cqe++;
585
586 return 0;
587}
588
589static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
590 struct nvme_tcp_data_pdu *pdu)
591{
592 struct request *rq;
593
594 rq = nvme_find_rq(tags: nvme_tcp_tagset(queue), command_id: pdu->command_id);
595 if (!rq) {
596 dev_err(queue->ctrl->ctrl.device,
597 "got bad c2hdata.command_id %#x on queue %d\n",
598 pdu->command_id, nvme_tcp_queue_id(queue));
599 return -ENOENT;
600 }
601
602 if (!blk_rq_payload_bytes(rq)) {
603 dev_err(queue->ctrl->ctrl.device,
604 "queue %d tag %#x unexpected data\n",
605 nvme_tcp_queue_id(queue), rq->tag);
606 return -EIO;
607 }
608
609 queue->data_remaining = le32_to_cpu(pdu->data_length);
610
611 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
612 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
613 dev_err(queue->ctrl->ctrl.device,
614 "queue %d tag %#x SUCCESS set but not last PDU\n",
615 nvme_tcp_queue_id(queue), rq->tag);
616 nvme_tcp_error_recovery(ctrl: &queue->ctrl->ctrl);
617 return -EPROTO;
618 }
619
620 return 0;
621}
622
623static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
624 struct nvme_tcp_rsp_pdu *pdu)
625{
626 struct nvme_completion *cqe = &pdu->cqe;
627 int ret = 0;
628
629 /*
630 * AEN requests are special as they don't time out and can
631 * survive any kind of queue freeze and often don't respond to
632 * aborts. We don't even bother to allocate a struct request
633 * for them but rather special case them here.
634 */
635 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
636 cqe->command_id)))
637 nvme_complete_async_event(ctrl: &queue->ctrl->ctrl, status: cqe->status,
638 res: &cqe->result);
639 else
640 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
641
642 return ret;
643}
644
645static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
646{
647 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
648 struct nvme_tcp_queue *queue = req->queue;
649 struct request *rq = blk_mq_rq_from_pdu(pdu: req);
650 u32 h2cdata_sent = req->pdu_len;
651 u8 hdgst = nvme_tcp_hdgst_len(queue);
652 u8 ddgst = nvme_tcp_ddgst_len(queue);
653
654 req->state = NVME_TCP_SEND_H2C_PDU;
655 req->offset = 0;
656 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
657 req->pdu_sent = 0;
658 req->h2cdata_left -= req->pdu_len;
659 req->h2cdata_offset += h2cdata_sent;
660
661 memset(data, 0, sizeof(*data));
662 data->hdr.type = nvme_tcp_h2c_data;
663 if (!req->h2cdata_left)
664 data->hdr.flags = NVME_TCP_F_DATA_LAST;
665 if (queue->hdr_digest)
666 data->hdr.flags |= NVME_TCP_F_HDGST;
667 if (queue->data_digest)
668 data->hdr.flags |= NVME_TCP_F_DDGST;
669 data->hdr.hlen = sizeof(*data);
670 data->hdr.pdo = data->hdr.hlen + hdgst;
671 data->hdr.plen =
672 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
673 data->ttag = req->ttag;
674 data->command_id = nvme_cid(rq);
675 data->data_offset = cpu_to_le32(req->h2cdata_offset);
676 data->data_length = cpu_to_le32(req->pdu_len);
677}
678
679static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
680 struct nvme_tcp_r2t_pdu *pdu)
681{
682 struct nvme_tcp_request *req;
683 struct request *rq;
684 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
685 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
686
687 rq = nvme_find_rq(tags: nvme_tcp_tagset(queue), command_id: pdu->command_id);
688 if (!rq) {
689 dev_err(queue->ctrl->ctrl.device,
690 "got bad r2t.command_id %#x on queue %d\n",
691 pdu->command_id, nvme_tcp_queue_id(queue));
692 return -ENOENT;
693 }
694 req = blk_mq_rq_to_pdu(rq);
695
696 if (unlikely(!r2t_length)) {
697 dev_err(queue->ctrl->ctrl.device,
698 "req %d r2t len is %u, probably a bug...\n",
699 rq->tag, r2t_length);
700 return -EPROTO;
701 }
702
703 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
704 dev_err(queue->ctrl->ctrl.device,
705 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
706 rq->tag, r2t_length, req->data_len, req->data_sent);
707 return -EPROTO;
708 }
709
710 if (unlikely(r2t_offset < req->data_sent)) {
711 dev_err(queue->ctrl->ctrl.device,
712 "req %d unexpected r2t offset %u (expected %zu)\n",
713 rq->tag, r2t_offset, req->data_sent);
714 return -EPROTO;
715 }
716
717 req->pdu_len = 0;
718 req->h2cdata_left = r2t_length;
719 req->h2cdata_offset = r2t_offset;
720 req->ttag = pdu->ttag;
721
722 nvme_tcp_setup_h2c_data_pdu(req);
723 nvme_tcp_queue_request(req, sync: false, last: true);
724
725 return 0;
726}
727
728static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
729 unsigned int *offset, size_t *len)
730{
731 struct nvme_tcp_hdr *hdr;
732 char *pdu = queue->pdu;
733 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
734 int ret;
735
736 ret = skb_copy_bits(skb, offset: *offset,
737 to: &pdu[queue->pdu_offset], len: rcv_len);
738 if (unlikely(ret))
739 return ret;
740
741 queue->pdu_remaining -= rcv_len;
742 queue->pdu_offset += rcv_len;
743 *offset += rcv_len;
744 *len -= rcv_len;
745 if (queue->pdu_remaining)
746 return 0;
747
748 hdr = queue->pdu;
749 if (queue->hdr_digest) {
750 ret = nvme_tcp_verify_hdgst(queue, pdu: queue->pdu, pdu_len: hdr->hlen);
751 if (unlikely(ret))
752 return ret;
753 }
754
755
756 if (queue->data_digest) {
757 ret = nvme_tcp_check_ddgst(queue, pdu: queue->pdu);
758 if (unlikely(ret))
759 return ret;
760 }
761
762 switch (hdr->type) {
763 case nvme_tcp_c2h_data:
764 return nvme_tcp_handle_c2h_data(queue, pdu: (void *)queue->pdu);
765 case nvme_tcp_rsp:
766 nvme_tcp_init_recv_ctx(queue);
767 return nvme_tcp_handle_comp(queue, pdu: (void *)queue->pdu);
768 case nvme_tcp_r2t:
769 nvme_tcp_init_recv_ctx(queue);
770 return nvme_tcp_handle_r2t(queue, pdu: (void *)queue->pdu);
771 default:
772 dev_err(queue->ctrl->ctrl.device,
773 "unsupported pdu type (%d)\n", hdr->type);
774 return -EINVAL;
775 }
776}
777
778static inline void nvme_tcp_end_request(struct request *rq, u16 status)
779{
780 union nvme_result res = {};
781
782 if (!nvme_try_complete_req(req: rq, cpu_to_le16(status << 1), result: res))
783 nvme_complete_rq(req: rq);
784}
785
786static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
787 unsigned int *offset, size_t *len)
788{
789 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
790 struct request *rq =
791 nvme_cid_to_rq(tags: nvme_tcp_tagset(queue), command_id: pdu->command_id);
792 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
793
794 while (true) {
795 int recv_len, ret;
796
797 recv_len = min_t(size_t, *len, queue->data_remaining);
798 if (!recv_len)
799 break;
800
801 if (!iov_iter_count(i: &req->iter)) {
802 req->curr_bio = req->curr_bio->bi_next;
803
804 /*
805 * If we don`t have any bios it means that controller
806 * sent more data than we requested, hence error
807 */
808 if (!req->curr_bio) {
809 dev_err(queue->ctrl->ctrl.device,
810 "queue %d no space in request %#x",
811 nvme_tcp_queue_id(queue), rq->tag);
812 nvme_tcp_init_recv_ctx(queue);
813 return -EIO;
814 }
815 nvme_tcp_init_iter(req, ITER_DEST);
816 }
817
818 /* we can read only from what is left in this bio */
819 recv_len = min_t(size_t, recv_len,
820 iov_iter_count(&req->iter));
821
822 if (queue->data_digest)
823 ret = skb_copy_and_hash_datagram_iter(skb, offset: *offset,
824 to: &req->iter, len: recv_len, hash: queue->rcv_hash);
825 else
826 ret = skb_copy_datagram_iter(from: skb, offset: *offset,
827 to: &req->iter, size: recv_len);
828 if (ret) {
829 dev_err(queue->ctrl->ctrl.device,
830 "queue %d failed to copy request %#x data",
831 nvme_tcp_queue_id(queue), rq->tag);
832 return ret;
833 }
834
835 *len -= recv_len;
836 *offset += recv_len;
837 queue->data_remaining -= recv_len;
838 }
839
840 if (!queue->data_remaining) {
841 if (queue->data_digest) {
842 nvme_tcp_ddgst_final(hash: queue->rcv_hash, dgst: &queue->exp_ddgst);
843 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
844 } else {
845 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
846 nvme_tcp_end_request(rq,
847 le16_to_cpu(req->status));
848 queue->nr_cqe++;
849 }
850 nvme_tcp_init_recv_ctx(queue);
851 }
852 }
853
854 return 0;
855}
856
857static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
858 struct sk_buff *skb, unsigned int *offset, size_t *len)
859{
860 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
861 char *ddgst = (char *)&queue->recv_ddgst;
862 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
863 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
864 int ret;
865
866 ret = skb_copy_bits(skb, offset: *offset, to: &ddgst[off], len: recv_len);
867 if (unlikely(ret))
868 return ret;
869
870 queue->ddgst_remaining -= recv_len;
871 *offset += recv_len;
872 *len -= recv_len;
873 if (queue->ddgst_remaining)
874 return 0;
875
876 if (queue->recv_ddgst != queue->exp_ddgst) {
877 struct request *rq = nvme_cid_to_rq(tags: nvme_tcp_tagset(queue),
878 command_id: pdu->command_id);
879 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
880
881 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
882
883 dev_err(queue->ctrl->ctrl.device,
884 "data digest error: recv %#x expected %#x\n",
885 le32_to_cpu(queue->recv_ddgst),
886 le32_to_cpu(queue->exp_ddgst));
887 }
888
889 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
890 struct request *rq = nvme_cid_to_rq(tags: nvme_tcp_tagset(queue),
891 command_id: pdu->command_id);
892 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
893
894 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
895 queue->nr_cqe++;
896 }
897
898 nvme_tcp_init_recv_ctx(queue);
899 return 0;
900}
901
902static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
903 unsigned int offset, size_t len)
904{
905 struct nvme_tcp_queue *queue = desc->arg.data;
906 size_t consumed = len;
907 int result;
908
909 if (unlikely(!queue->rd_enabled))
910 return -EFAULT;
911
912 while (len) {
913 switch (nvme_tcp_recv_state(queue)) {
914 case NVME_TCP_RECV_PDU:
915 result = nvme_tcp_recv_pdu(queue, skb, offset: &offset, len: &len);
916 break;
917 case NVME_TCP_RECV_DATA:
918 result = nvme_tcp_recv_data(queue, skb, offset: &offset, len: &len);
919 break;
920 case NVME_TCP_RECV_DDGST:
921 result = nvme_tcp_recv_ddgst(queue, skb, offset: &offset, len: &len);
922 break;
923 default:
924 result = -EFAULT;
925 }
926 if (result) {
927 dev_err(queue->ctrl->ctrl.device,
928 "receive failed: %d\n", result);
929 queue->rd_enabled = false;
930 nvme_tcp_error_recovery(ctrl: &queue->ctrl->ctrl);
931 return result;
932 }
933 }
934
935 return consumed;
936}
937
938static void nvme_tcp_data_ready(struct sock *sk)
939{
940 struct nvme_tcp_queue *queue;
941
942 trace_sk_data_ready(sk);
943
944 read_lock_bh(&sk->sk_callback_lock);
945 queue = sk->sk_user_data;
946 if (likely(queue && queue->rd_enabled) &&
947 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
948 queue_work_on(cpu: queue->io_cpu, wq: nvme_tcp_wq, work: &queue->io_work);
949 read_unlock_bh(&sk->sk_callback_lock);
950}
951
952static void nvme_tcp_write_space(struct sock *sk)
953{
954 struct nvme_tcp_queue *queue;
955
956 read_lock_bh(&sk->sk_callback_lock);
957 queue = sk->sk_user_data;
958 if (likely(queue && sk_stream_is_writeable(sk))) {
959 clear_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
960 queue_work_on(cpu: queue->io_cpu, wq: nvme_tcp_wq, work: &queue->io_work);
961 }
962 read_unlock_bh(&sk->sk_callback_lock);
963}
964
965static void nvme_tcp_state_change(struct sock *sk)
966{
967 struct nvme_tcp_queue *queue;
968
969 read_lock_bh(&sk->sk_callback_lock);
970 queue = sk->sk_user_data;
971 if (!queue)
972 goto done;
973
974 switch (sk->sk_state) {
975 case TCP_CLOSE:
976 case TCP_CLOSE_WAIT:
977 case TCP_LAST_ACK:
978 case TCP_FIN_WAIT1:
979 case TCP_FIN_WAIT2:
980 nvme_tcp_error_recovery(ctrl: &queue->ctrl->ctrl);
981 break;
982 default:
983 dev_info(queue->ctrl->ctrl.device,
984 "queue %d socket state %d\n",
985 nvme_tcp_queue_id(queue), sk->sk_state);
986 }
987
988 queue->state_change(sk);
989done:
990 read_unlock_bh(&sk->sk_callback_lock);
991}
992
993static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
994{
995 queue->request = NULL;
996}
997
998static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
999{
1000 if (nvme_tcp_async_req(req)) {
1001 union nvme_result res = {};
1002
1003 nvme_complete_async_event(ctrl: &req->queue->ctrl->ctrl,
1004 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), res: &res);
1005 } else {
1006 nvme_tcp_end_request(rq: blk_mq_rq_from_pdu(pdu: req),
1007 status: NVME_SC_HOST_PATH_ERROR);
1008 }
1009}
1010
1011static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1012{
1013 struct nvme_tcp_queue *queue = req->queue;
1014 int req_data_len = req->data_len;
1015 u32 h2cdata_left = req->h2cdata_left;
1016
1017 while (true) {
1018 struct bio_vec bvec;
1019 struct msghdr msg = {
1020 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1021 };
1022 struct page *page = nvme_tcp_req_cur_page(req);
1023 size_t offset = nvme_tcp_req_cur_offset(req);
1024 size_t len = nvme_tcp_req_cur_length(req);
1025 bool last = nvme_tcp_pdu_last_send(req, len);
1026 int req_data_sent = req->data_sent;
1027 int ret;
1028
1029 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1030 msg.msg_flags |= MSG_EOR;
1031 else
1032 msg.msg_flags |= MSG_MORE;
1033
1034 if (!sendpage_ok(page))
1035 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1036
1037 bvec_set_page(bv: &bvec, page, len, offset);
1038 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: len);
1039 ret = sock_sendmsg(sock: queue->sock, msg: &msg);
1040 if (ret <= 0)
1041 return ret;
1042
1043 if (queue->data_digest)
1044 nvme_tcp_ddgst_update(hash: queue->snd_hash, page,
1045 off: offset, len: ret);
1046
1047 /*
1048 * update the request iterator except for the last payload send
1049 * in the request where we don't want to modify it as we may
1050 * compete with the RX path completing the request.
1051 */
1052 if (req_data_sent + ret < req_data_len)
1053 nvme_tcp_advance_req(req, len: ret);
1054
1055 /* fully successful last send in current PDU */
1056 if (last && ret == len) {
1057 if (queue->data_digest) {
1058 nvme_tcp_ddgst_final(hash: queue->snd_hash,
1059 dgst: &req->ddgst);
1060 req->state = NVME_TCP_SEND_DDGST;
1061 req->offset = 0;
1062 } else {
1063 if (h2cdata_left)
1064 nvme_tcp_setup_h2c_data_pdu(req);
1065 else
1066 nvme_tcp_done_send_req(queue);
1067 }
1068 return 1;
1069 }
1070 }
1071 return -EAGAIN;
1072}
1073
1074static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1075{
1076 struct nvme_tcp_queue *queue = req->queue;
1077 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1078 struct bio_vec bvec;
1079 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1080 bool inline_data = nvme_tcp_has_inline_data(req);
1081 u8 hdgst = nvme_tcp_hdgst_len(queue);
1082 int len = sizeof(*pdu) + hdgst - req->offset;
1083 int ret;
1084
1085 if (inline_data || nvme_tcp_queue_more(queue))
1086 msg.msg_flags |= MSG_MORE;
1087 else
1088 msg.msg_flags |= MSG_EOR;
1089
1090 if (queue->hdr_digest && !req->offset)
1091 nvme_tcp_hdgst(hash: queue->snd_hash, pdu, len: sizeof(*pdu));
1092
1093 bvec_set_virt(bv: &bvec, vaddr: (void *)pdu + req->offset, len);
1094 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: len);
1095 ret = sock_sendmsg(sock: queue->sock, msg: &msg);
1096 if (unlikely(ret <= 0))
1097 return ret;
1098
1099 len -= ret;
1100 if (!len) {
1101 if (inline_data) {
1102 req->state = NVME_TCP_SEND_DATA;
1103 if (queue->data_digest)
1104 crypto_ahash_init(req: queue->snd_hash);
1105 } else {
1106 nvme_tcp_done_send_req(queue);
1107 }
1108 return 1;
1109 }
1110 req->offset += ret;
1111
1112 return -EAGAIN;
1113}
1114
1115static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1116{
1117 struct nvme_tcp_queue *queue = req->queue;
1118 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1119 struct bio_vec bvec;
1120 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1121 u8 hdgst = nvme_tcp_hdgst_len(queue);
1122 int len = sizeof(*pdu) - req->offset + hdgst;
1123 int ret;
1124
1125 if (queue->hdr_digest && !req->offset)
1126 nvme_tcp_hdgst(hash: queue->snd_hash, pdu, len: sizeof(*pdu));
1127
1128 if (!req->h2cdata_left)
1129 msg.msg_flags |= MSG_SPLICE_PAGES;
1130
1131 bvec_set_virt(bv: &bvec, vaddr: (void *)pdu + req->offset, len);
1132 iov_iter_bvec(i: &msg.msg_iter, ITER_SOURCE, bvec: &bvec, nr_segs: 1, count: len);
1133 ret = sock_sendmsg(sock: queue->sock, msg: &msg);
1134 if (unlikely(ret <= 0))
1135 return ret;
1136
1137 len -= ret;
1138 if (!len) {
1139 req->state = NVME_TCP_SEND_DATA;
1140 if (queue->data_digest)
1141 crypto_ahash_init(req: queue->snd_hash);
1142 return 1;
1143 }
1144 req->offset += ret;
1145
1146 return -EAGAIN;
1147}
1148
1149static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1150{
1151 struct nvme_tcp_queue *queue = req->queue;
1152 size_t offset = req->offset;
1153 u32 h2cdata_left = req->h2cdata_left;
1154 int ret;
1155 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1156 struct kvec iov = {
1157 .iov_base = (u8 *)&req->ddgst + req->offset,
1158 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1159 };
1160
1161 if (nvme_tcp_queue_more(queue))
1162 msg.msg_flags |= MSG_MORE;
1163 else
1164 msg.msg_flags |= MSG_EOR;
1165
1166 ret = kernel_sendmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1, len: iov.iov_len);
1167 if (unlikely(ret <= 0))
1168 return ret;
1169
1170 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1171 if (h2cdata_left)
1172 nvme_tcp_setup_h2c_data_pdu(req);
1173 else
1174 nvme_tcp_done_send_req(queue);
1175 return 1;
1176 }
1177
1178 req->offset += ret;
1179 return -EAGAIN;
1180}
1181
1182static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1183{
1184 struct nvme_tcp_request *req;
1185 unsigned int noreclaim_flag;
1186 int ret = 1;
1187
1188 if (!queue->request) {
1189 queue->request = nvme_tcp_fetch_request(queue);
1190 if (!queue->request)
1191 return 0;
1192 }
1193 req = queue->request;
1194
1195 noreclaim_flag = memalloc_noreclaim_save();
1196 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1197 ret = nvme_tcp_try_send_cmd_pdu(req);
1198 if (ret <= 0)
1199 goto done;
1200 if (!nvme_tcp_has_inline_data(req))
1201 goto out;
1202 }
1203
1204 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1205 ret = nvme_tcp_try_send_data_pdu(req);
1206 if (ret <= 0)
1207 goto done;
1208 }
1209
1210 if (req->state == NVME_TCP_SEND_DATA) {
1211 ret = nvme_tcp_try_send_data(req);
1212 if (ret <= 0)
1213 goto done;
1214 }
1215
1216 if (req->state == NVME_TCP_SEND_DDGST)
1217 ret = nvme_tcp_try_send_ddgst(req);
1218done:
1219 if (ret == -EAGAIN) {
1220 ret = 0;
1221 } else if (ret < 0) {
1222 dev_err(queue->ctrl->ctrl.device,
1223 "failed to send request %d\n", ret);
1224 nvme_tcp_fail_request(req: queue->request);
1225 nvme_tcp_done_send_req(queue);
1226 }
1227out:
1228 memalloc_noreclaim_restore(flags: noreclaim_flag);
1229 return ret;
1230}
1231
1232static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1233{
1234 struct socket *sock = queue->sock;
1235 struct sock *sk = sock->sk;
1236 read_descriptor_t rd_desc;
1237 int consumed;
1238
1239 rd_desc.arg.data = queue;
1240 rd_desc.count = 1;
1241 lock_sock(sk);
1242 queue->nr_cqe = 0;
1243 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1244 release_sock(sk);
1245 return consumed;
1246}
1247
1248static void nvme_tcp_io_work(struct work_struct *w)
1249{
1250 struct nvme_tcp_queue *queue =
1251 container_of(w, struct nvme_tcp_queue, io_work);
1252 unsigned long deadline = jiffies + msecs_to_jiffies(m: 1);
1253
1254 do {
1255 bool pending = false;
1256 int result;
1257
1258 if (mutex_trylock(lock: &queue->send_mutex)) {
1259 result = nvme_tcp_try_send(queue);
1260 mutex_unlock(lock: &queue->send_mutex);
1261 if (result > 0)
1262 pending = true;
1263 else if (unlikely(result < 0))
1264 break;
1265 }
1266
1267 result = nvme_tcp_try_recv(queue);
1268 if (result > 0)
1269 pending = true;
1270 else if (unlikely(result < 0))
1271 return;
1272
1273 if (!pending || !queue->rd_enabled)
1274 return;
1275
1276 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1277
1278 queue_work_on(cpu: queue->io_cpu, wq: nvme_tcp_wq, work: &queue->io_work);
1279}
1280
1281static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1282{
1283 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req: queue->rcv_hash);
1284
1285 ahash_request_free(req: queue->rcv_hash);
1286 ahash_request_free(req: queue->snd_hash);
1287 crypto_free_ahash(tfm);
1288}
1289
1290static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1291{
1292 struct crypto_ahash *tfm;
1293
1294 tfm = crypto_alloc_ahash(alg_name: "crc32c", type: 0, CRYPTO_ALG_ASYNC);
1295 if (IS_ERR(ptr: tfm))
1296 return PTR_ERR(ptr: tfm);
1297
1298 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1299 if (!queue->snd_hash)
1300 goto free_tfm;
1301 ahash_request_set_callback(req: queue->snd_hash, flags: 0, NULL, NULL);
1302
1303 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1304 if (!queue->rcv_hash)
1305 goto free_snd_hash;
1306 ahash_request_set_callback(req: queue->rcv_hash, flags: 0, NULL, NULL);
1307
1308 return 0;
1309free_snd_hash:
1310 ahash_request_free(req: queue->snd_hash);
1311free_tfm:
1312 crypto_free_ahash(tfm);
1313 return -ENOMEM;
1314}
1315
1316static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1317{
1318 struct nvme_tcp_request *async = &ctrl->async_req;
1319
1320 page_frag_free(addr: async->pdu);
1321}
1322
1323static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1324{
1325 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1326 struct nvme_tcp_request *async = &ctrl->async_req;
1327 u8 hdgst = nvme_tcp_hdgst_len(queue);
1328
1329 async->pdu = page_frag_alloc(nc: &queue->pf_cache,
1330 fragsz: sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1331 GFP_KERNEL | __GFP_ZERO);
1332 if (!async->pdu)
1333 return -ENOMEM;
1334
1335 async->queue = &ctrl->queues[0];
1336 return 0;
1337}
1338
1339static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1340{
1341 struct page *page;
1342 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: nctrl);
1343 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1344 unsigned int noreclaim_flag;
1345
1346 if (!test_and_clear_bit(nr: NVME_TCP_Q_ALLOCATED, addr: &queue->flags))
1347 return;
1348
1349 if (queue->hdr_digest || queue->data_digest)
1350 nvme_tcp_free_crypto(queue);
1351
1352 if (queue->pf_cache.va) {
1353 page = virt_to_head_page(x: queue->pf_cache.va);
1354 __page_frag_cache_drain(page, count: queue->pf_cache.pagecnt_bias);
1355 queue->pf_cache.va = NULL;
1356 }
1357
1358 noreclaim_flag = memalloc_noreclaim_save();
1359 /* ->sock will be released by fput() */
1360 fput(queue->sock->file);
1361 queue->sock = NULL;
1362 memalloc_noreclaim_restore(flags: noreclaim_flag);
1363
1364 kfree(objp: queue->pdu);
1365 mutex_destroy(lock: &queue->send_mutex);
1366 mutex_destroy(lock: &queue->queue_lock);
1367}
1368
1369static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1370{
1371 struct nvme_tcp_icreq_pdu *icreq;
1372 struct nvme_tcp_icresp_pdu *icresp;
1373 char cbuf[CMSG_LEN(sizeof(char))] = {};
1374 u8 ctype;
1375 struct msghdr msg = {};
1376 struct kvec iov;
1377 bool ctrl_hdgst, ctrl_ddgst;
1378 u32 maxh2cdata;
1379 int ret;
1380
1381 icreq = kzalloc(size: sizeof(*icreq), GFP_KERNEL);
1382 if (!icreq)
1383 return -ENOMEM;
1384
1385 icresp = kzalloc(size: sizeof(*icresp), GFP_KERNEL);
1386 if (!icresp) {
1387 ret = -ENOMEM;
1388 goto free_icreq;
1389 }
1390
1391 icreq->hdr.type = nvme_tcp_icreq;
1392 icreq->hdr.hlen = sizeof(*icreq);
1393 icreq->hdr.pdo = 0;
1394 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1395 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1396 icreq->maxr2t = 0; /* single inflight r2t supported */
1397 icreq->hpda = 0; /* no alignment constraint */
1398 if (queue->hdr_digest)
1399 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1400 if (queue->data_digest)
1401 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1402
1403 iov.iov_base = icreq;
1404 iov.iov_len = sizeof(*icreq);
1405 ret = kernel_sendmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1, len: iov.iov_len);
1406 if (ret < 0) {
1407 pr_warn("queue %d: failed to send icreq, error %d\n",
1408 nvme_tcp_queue_id(queue), ret);
1409 goto free_icresp;
1410 }
1411
1412 memset(&msg, 0, sizeof(msg));
1413 iov.iov_base = icresp;
1414 iov.iov_len = sizeof(*icresp);
1415 if (queue->ctrl->ctrl.opts->tls) {
1416 msg.msg_control = cbuf;
1417 msg.msg_controllen = sizeof(cbuf);
1418 }
1419 ret = kernel_recvmsg(sock: queue->sock, msg: &msg, vec: &iov, num: 1,
1420 len: iov.iov_len, flags: msg.msg_flags);
1421 if (ret < 0) {
1422 pr_warn("queue %d: failed to receive icresp, error %d\n",
1423 nvme_tcp_queue_id(queue), ret);
1424 goto free_icresp;
1425 }
1426 if (queue->ctrl->ctrl.opts->tls) {
1427 ctype = tls_get_record_type(sk: queue->sock->sk,
1428 msg: (struct cmsghdr *)cbuf);
1429 if (ctype != TLS_RECORD_TYPE_DATA) {
1430 pr_err("queue %d: unhandled TLS record %d\n",
1431 nvme_tcp_queue_id(queue), ctype);
1432 return -ENOTCONN;
1433 }
1434 }
1435 ret = -EINVAL;
1436 if (icresp->hdr.type != nvme_tcp_icresp) {
1437 pr_err("queue %d: bad type returned %d\n",
1438 nvme_tcp_queue_id(queue), icresp->hdr.type);
1439 goto free_icresp;
1440 }
1441
1442 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1443 pr_err("queue %d: bad pdu length returned %d\n",
1444 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1445 goto free_icresp;
1446 }
1447
1448 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1449 pr_err("queue %d: bad pfv returned %d\n",
1450 nvme_tcp_queue_id(queue), icresp->pfv);
1451 goto free_icresp;
1452 }
1453
1454 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1455 if ((queue->data_digest && !ctrl_ddgst) ||
1456 (!queue->data_digest && ctrl_ddgst)) {
1457 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1458 nvme_tcp_queue_id(queue),
1459 queue->data_digest ? "enabled" : "disabled",
1460 ctrl_ddgst ? "enabled" : "disabled");
1461 goto free_icresp;
1462 }
1463
1464 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1465 if ((queue->hdr_digest && !ctrl_hdgst) ||
1466 (!queue->hdr_digest && ctrl_hdgst)) {
1467 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1468 nvme_tcp_queue_id(queue),
1469 queue->hdr_digest ? "enabled" : "disabled",
1470 ctrl_hdgst ? "enabled" : "disabled");
1471 goto free_icresp;
1472 }
1473
1474 if (icresp->cpda != 0) {
1475 pr_err("queue %d: unsupported cpda returned %d\n",
1476 nvme_tcp_queue_id(queue), icresp->cpda);
1477 goto free_icresp;
1478 }
1479
1480 maxh2cdata = le32_to_cpu(icresp->maxdata);
1481 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1482 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1483 nvme_tcp_queue_id(queue), maxh2cdata);
1484 goto free_icresp;
1485 }
1486 queue->maxh2cdata = maxh2cdata;
1487
1488 ret = 0;
1489free_icresp:
1490 kfree(objp: icresp);
1491free_icreq:
1492 kfree(objp: icreq);
1493 return ret;
1494}
1495
1496static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1497{
1498 return nvme_tcp_queue_id(queue) == 0;
1499}
1500
1501static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1502{
1503 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1504 int qid = nvme_tcp_queue_id(queue);
1505
1506 return !nvme_tcp_admin_queue(queue) &&
1507 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1508}
1509
1510static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1511{
1512 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1513 int qid = nvme_tcp_queue_id(queue);
1514
1515 return !nvme_tcp_admin_queue(queue) &&
1516 !nvme_tcp_default_queue(queue) &&
1517 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1518 ctrl->io_queues[HCTX_TYPE_READ];
1519}
1520
1521static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1522{
1523 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1524 int qid = nvme_tcp_queue_id(queue);
1525
1526 return !nvme_tcp_admin_queue(queue) &&
1527 !nvme_tcp_default_queue(queue) &&
1528 !nvme_tcp_read_queue(queue) &&
1529 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1530 ctrl->io_queues[HCTX_TYPE_READ] +
1531 ctrl->io_queues[HCTX_TYPE_POLL];
1532}
1533
1534static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1535{
1536 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1537 int qid = nvme_tcp_queue_id(queue);
1538 int n = 0;
1539
1540 if (nvme_tcp_default_queue(queue))
1541 n = qid - 1;
1542 else if (nvme_tcp_read_queue(queue))
1543 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1544 else if (nvme_tcp_poll_queue(queue))
1545 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1546 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1547 queue->io_cpu = cpumask_next_wrap(n: n - 1, cpu_online_mask, start: -1, wrap: false);
1548}
1549
1550#ifdef CONFIG_NVME_TCP_TLS
1551static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1552{
1553 struct nvme_tcp_queue *queue = data;
1554 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1555 int qid = nvme_tcp_queue_id(queue);
1556 struct key *tls_key;
1557
1558 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1559 qid, pskid, status);
1560
1561 if (status) {
1562 queue->tls_err = -status;
1563 goto out_complete;
1564 }
1565
1566 tls_key = key_lookup(id: pskid);
1567 if (IS_ERR(ptr: tls_key)) {
1568 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1569 qid, pskid);
1570 queue->tls_err = -ENOKEY;
1571 } else {
1572 ctrl->ctrl.tls_key = tls_key;
1573 queue->tls_err = 0;
1574 }
1575
1576out_complete:
1577 complete(&queue->tls_complete);
1578}
1579
1580static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1581 struct nvme_tcp_queue *queue,
1582 key_serial_t pskid)
1583{
1584 int qid = nvme_tcp_queue_id(queue);
1585 int ret;
1586 struct tls_handshake_args args;
1587 unsigned long tmo = tls_handshake_timeout * HZ;
1588 key_serial_t keyring = nvme_keyring_id();
1589
1590 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1591 qid, pskid);
1592 memset(&args, 0, sizeof(args));
1593 args.ta_sock = queue->sock;
1594 args.ta_done = nvme_tcp_tls_done;
1595 args.ta_data = queue;
1596 args.ta_my_peerids[0] = pskid;
1597 args.ta_num_peerids = 1;
1598 if (nctrl->opts->keyring)
1599 keyring = key_serial(key: nctrl->opts->keyring);
1600 args.ta_keyring = keyring;
1601 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1602 queue->tls_err = -EOPNOTSUPP;
1603 init_completion(x: &queue->tls_complete);
1604 ret = tls_client_hello_psk(args: &args, GFP_KERNEL);
1605 if (ret) {
1606 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1607 qid, ret);
1608 return ret;
1609 }
1610 ret = wait_for_completion_interruptible_timeout(x: &queue->tls_complete, timeout: tmo);
1611 if (ret <= 0) {
1612 if (ret == 0)
1613 ret = -ETIMEDOUT;
1614
1615 dev_err(nctrl->device,
1616 "queue %d: TLS handshake failed, error %d\n",
1617 qid, ret);
1618 tls_handshake_cancel(sk: queue->sock->sk);
1619 } else {
1620 dev_dbg(nctrl->device,
1621 "queue %d: TLS handshake complete, error %d\n",
1622 qid, queue->tls_err);
1623 ret = queue->tls_err;
1624 }
1625 return ret;
1626}
1627#else
1628static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1629 struct nvme_tcp_queue *queue,
1630 key_serial_t pskid)
1631{
1632 return -EPROTONOSUPPORT;
1633}
1634#endif
1635
1636static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1637 key_serial_t pskid)
1638{
1639 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: nctrl);
1640 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1641 int ret, rcv_pdu_size;
1642 struct file *sock_file;
1643
1644 mutex_init(&queue->queue_lock);
1645 queue->ctrl = ctrl;
1646 init_llist_head(list: &queue->req_list);
1647 INIT_LIST_HEAD(list: &queue->send_list);
1648 mutex_init(&queue->send_mutex);
1649 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1650
1651 if (qid > 0)
1652 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1653 else
1654 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1655 NVME_TCP_ADMIN_CCSZ;
1656
1657 ret = sock_create(family: ctrl->addr.ss_family, type: SOCK_STREAM,
1658 IPPROTO_TCP, res: &queue->sock);
1659 if (ret) {
1660 dev_err(nctrl->device,
1661 "failed to create socket: %d\n", ret);
1662 goto err_destroy_mutex;
1663 }
1664
1665 sock_file = sock_alloc_file(sock: queue->sock, O_CLOEXEC, NULL);
1666 if (IS_ERR(ptr: sock_file)) {
1667 ret = PTR_ERR(ptr: sock_file);
1668 goto err_destroy_mutex;
1669 }
1670 nvme_tcp_reclassify_socket(sock: queue->sock);
1671
1672 /* Single syn retry */
1673 tcp_sock_set_syncnt(sk: queue->sock->sk, val: 1);
1674
1675 /* Set TCP no delay */
1676 tcp_sock_set_nodelay(sk: queue->sock->sk);
1677
1678 /*
1679 * Cleanup whatever is sitting in the TCP transmit queue on socket
1680 * close. This is done to prevent stale data from being sent should
1681 * the network connection be restored before TCP times out.
1682 */
1683 sock_no_linger(sk: queue->sock->sk);
1684
1685 if (so_priority > 0)
1686 sock_set_priority(sk: queue->sock->sk, priority: so_priority);
1687
1688 /* Set socket type of service */
1689 if (nctrl->opts->tos >= 0)
1690 ip_sock_set_tos(sk: queue->sock->sk, val: nctrl->opts->tos);
1691
1692 /* Set 10 seconds timeout for icresp recvmsg */
1693 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1694
1695 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1696 queue->sock->sk->sk_use_task_frag = false;
1697 nvme_tcp_set_queue_io_cpu(queue);
1698 queue->request = NULL;
1699 queue->data_remaining = 0;
1700 queue->ddgst_remaining = 0;
1701 queue->pdu_remaining = 0;
1702 queue->pdu_offset = 0;
1703 sk_set_memalloc(sk: queue->sock->sk);
1704
1705 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1706 ret = kernel_bind(sock: queue->sock, addr: (struct sockaddr *)&ctrl->src_addr,
1707 addrlen: sizeof(ctrl->src_addr));
1708 if (ret) {
1709 dev_err(nctrl->device,
1710 "failed to bind queue %d socket %d\n",
1711 qid, ret);
1712 goto err_sock;
1713 }
1714 }
1715
1716 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1717 char *iface = nctrl->opts->host_iface;
1718 sockptr_t optval = KERNEL_SOCKPTR(p: iface);
1719
1720 ret = sock_setsockopt(sock: queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1721 optval, strlen(iface));
1722 if (ret) {
1723 dev_err(nctrl->device,
1724 "failed to bind to interface %s queue %d err %d\n",
1725 iface, qid, ret);
1726 goto err_sock;
1727 }
1728 }
1729
1730 queue->hdr_digest = nctrl->opts->hdr_digest;
1731 queue->data_digest = nctrl->opts->data_digest;
1732 if (queue->hdr_digest || queue->data_digest) {
1733 ret = nvme_tcp_alloc_crypto(queue);
1734 if (ret) {
1735 dev_err(nctrl->device,
1736 "failed to allocate queue %d crypto\n", qid);
1737 goto err_sock;
1738 }
1739 }
1740
1741 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1742 nvme_tcp_hdgst_len(queue);
1743 queue->pdu = kmalloc(size: rcv_pdu_size, GFP_KERNEL);
1744 if (!queue->pdu) {
1745 ret = -ENOMEM;
1746 goto err_crypto;
1747 }
1748
1749 dev_dbg(nctrl->device, "connecting queue %d\n",
1750 nvme_tcp_queue_id(queue));
1751
1752 ret = kernel_connect(sock: queue->sock, addr: (struct sockaddr *)&ctrl->addr,
1753 addrlen: sizeof(ctrl->addr), flags: 0);
1754 if (ret) {
1755 dev_err(nctrl->device,
1756 "failed to connect socket: %d\n", ret);
1757 goto err_rcv_pdu;
1758 }
1759
1760 /* If PSKs are configured try to start TLS */
1761 if (pskid) {
1762 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1763 if (ret)
1764 goto err_init_connect;
1765 }
1766
1767 ret = nvme_tcp_init_connection(queue);
1768 if (ret)
1769 goto err_init_connect;
1770
1771 set_bit(nr: NVME_TCP_Q_ALLOCATED, addr: &queue->flags);
1772
1773 return 0;
1774
1775err_init_connect:
1776 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
1777err_rcv_pdu:
1778 kfree(objp: queue->pdu);
1779err_crypto:
1780 if (queue->hdr_digest || queue->data_digest)
1781 nvme_tcp_free_crypto(queue);
1782err_sock:
1783 /* ->sock will be released by fput() */
1784 fput(queue->sock->file);
1785 queue->sock = NULL;
1786err_destroy_mutex:
1787 mutex_destroy(lock: &queue->send_mutex);
1788 mutex_destroy(lock: &queue->queue_lock);
1789 return ret;
1790}
1791
1792static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1793{
1794 struct socket *sock = queue->sock;
1795
1796 write_lock_bh(&sock->sk->sk_callback_lock);
1797 sock->sk->sk_user_data = NULL;
1798 sock->sk->sk_data_ready = queue->data_ready;
1799 sock->sk->sk_state_change = queue->state_change;
1800 sock->sk->sk_write_space = queue->write_space;
1801 write_unlock_bh(&sock->sk->sk_callback_lock);
1802}
1803
1804static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1805{
1806 kernel_sock_shutdown(sock: queue->sock, how: SHUT_RDWR);
1807 nvme_tcp_restore_sock_ops(queue);
1808 cancel_work_sync(work: &queue->io_work);
1809}
1810
1811static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1812{
1813 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: nctrl);
1814 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1815
1816 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1817 return;
1818
1819 mutex_lock(&queue->queue_lock);
1820 if (test_and_clear_bit(nr: NVME_TCP_Q_LIVE, addr: &queue->flags))
1821 __nvme_tcp_stop_queue(queue);
1822 mutex_unlock(lock: &queue->queue_lock);
1823}
1824
1825static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1826{
1827 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1828 queue->sock->sk->sk_user_data = queue;
1829 queue->state_change = queue->sock->sk->sk_state_change;
1830 queue->data_ready = queue->sock->sk->sk_data_ready;
1831 queue->write_space = queue->sock->sk->sk_write_space;
1832 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1833 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1834 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1835#ifdef CONFIG_NET_RX_BUSY_POLL
1836 queue->sock->sk->sk_ll_usec = 1;
1837#endif
1838 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1839}
1840
1841static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1842{
1843 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: nctrl);
1844 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
1845 int ret;
1846
1847 queue->rd_enabled = true;
1848 nvme_tcp_init_recv_ctx(queue);
1849 nvme_tcp_setup_sock_ops(queue);
1850
1851 if (idx)
1852 ret = nvmf_connect_io_queue(ctrl: nctrl, qid: idx);
1853 else
1854 ret = nvmf_connect_admin_queue(ctrl: nctrl);
1855
1856 if (!ret) {
1857 set_bit(nr: NVME_TCP_Q_LIVE, addr: &queue->flags);
1858 } else {
1859 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1860 __nvme_tcp_stop_queue(queue);
1861 dev_err(nctrl->device,
1862 "failed to connect queue: %d ret=%d\n", idx, ret);
1863 }
1864 return ret;
1865}
1866
1867static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1868{
1869 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1870 cancel_work_sync(work: &ctrl->async_event_work);
1871 nvme_tcp_free_async_req(ctrl: to_tcp_ctrl(ctrl));
1872 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1873 }
1874
1875 nvme_tcp_free_queue(nctrl: ctrl, qid: 0);
1876}
1877
1878static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1879{
1880 int i;
1881
1882 for (i = 1; i < ctrl->queue_count; i++)
1883 nvme_tcp_free_queue(nctrl: ctrl, qid: i);
1884}
1885
1886static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1887{
1888 int i;
1889
1890 for (i = 1; i < ctrl->queue_count; i++)
1891 nvme_tcp_stop_queue(nctrl: ctrl, qid: i);
1892}
1893
1894static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
1895 int first, int last)
1896{
1897 int i, ret;
1898
1899 for (i = first; i < last; i++) {
1900 ret = nvme_tcp_start_queue(nctrl: ctrl, idx: i);
1901 if (ret)
1902 goto out_stop_queues;
1903 }
1904
1905 return 0;
1906
1907out_stop_queues:
1908 for (i--; i >= first; i--)
1909 nvme_tcp_stop_queue(nctrl: ctrl, qid: i);
1910 return ret;
1911}
1912
1913static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1914{
1915 int ret;
1916 key_serial_t pskid = 0;
1917
1918 if (ctrl->opts->tls) {
1919 if (ctrl->opts->tls_key)
1920 pskid = key_serial(key: ctrl->opts->tls_key);
1921 else
1922 pskid = nvme_tls_psk_default(keyring: ctrl->opts->keyring,
1923 hostnqn: ctrl->opts->host->nqn,
1924 subnqn: ctrl->opts->subsysnqn);
1925 if (!pskid) {
1926 dev_err(ctrl->device, "no valid PSK found\n");
1927 ret = -ENOKEY;
1928 goto out_free_queue;
1929 }
1930 }
1931
1932 ret = nvme_tcp_alloc_queue(nctrl: ctrl, qid: 0, pskid);
1933 if (ret)
1934 goto out_free_queue;
1935
1936 ret = nvme_tcp_alloc_async_req(ctrl: to_tcp_ctrl(ctrl));
1937 if (ret)
1938 goto out_free_queue;
1939
1940 return 0;
1941
1942out_free_queue:
1943 nvme_tcp_free_queue(nctrl: ctrl, qid: 0);
1944 return ret;
1945}
1946
1947static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1948{
1949 int i, ret;
1950
1951 if (ctrl->opts->tls && !ctrl->tls_key) {
1952 dev_err(ctrl->device, "no PSK negotiated\n");
1953 return -ENOKEY;
1954 }
1955 for (i = 1; i < ctrl->queue_count; i++) {
1956 ret = nvme_tcp_alloc_queue(nctrl: ctrl, qid: i,
1957 pskid: key_serial(key: ctrl->tls_key));
1958 if (ret)
1959 goto out_free_queues;
1960 }
1961
1962 return 0;
1963
1964out_free_queues:
1965 for (i--; i >= 1; i--)
1966 nvme_tcp_free_queue(nctrl: ctrl, qid: i);
1967
1968 return ret;
1969}
1970
1971static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1972{
1973 unsigned int nr_io_queues;
1974 int ret;
1975
1976 nr_io_queues = nvmf_nr_io_queues(opts: ctrl->opts);
1977 ret = nvme_set_queue_count(ctrl, count: &nr_io_queues);
1978 if (ret)
1979 return ret;
1980
1981 if (nr_io_queues == 0) {
1982 dev_err(ctrl->device,
1983 "unable to set any I/O queues\n");
1984 return -ENOMEM;
1985 }
1986
1987 ctrl->queue_count = nr_io_queues + 1;
1988 dev_info(ctrl->device,
1989 "creating %d I/O queues.\n", nr_io_queues);
1990
1991 nvmf_set_io_queues(opts: ctrl->opts, nr_io_queues,
1992 io_queues: to_tcp_ctrl(ctrl)->io_queues);
1993 return __nvme_tcp_alloc_io_queues(ctrl);
1994}
1995
1996static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1997{
1998 nvme_tcp_stop_io_queues(ctrl);
1999 if (remove)
2000 nvme_remove_io_tag_set(ctrl);
2001 nvme_tcp_free_io_queues(ctrl);
2002}
2003
2004static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2005{
2006 int ret, nr_queues;
2007
2008 ret = nvme_tcp_alloc_io_queues(ctrl);
2009 if (ret)
2010 return ret;
2011
2012 if (new) {
2013 ret = nvme_alloc_io_tag_set(ctrl, set: &to_tcp_ctrl(ctrl)->tag_set,
2014 ops: &nvme_tcp_mq_ops,
2015 nr_maps: ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2016 cmd_size: sizeof(struct nvme_tcp_request));
2017 if (ret)
2018 goto out_free_io_queues;
2019 }
2020
2021 /*
2022 * Only start IO queues for which we have allocated the tagset
2023 * and limitted it to the available queues. On reconnects, the
2024 * queue number might have changed.
2025 */
2026 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2027 ret = nvme_tcp_start_io_queues(ctrl, first: 1, last: nr_queues);
2028 if (ret)
2029 goto out_cleanup_connect_q;
2030
2031 if (!new) {
2032 nvme_start_freeze(ctrl);
2033 nvme_unquiesce_io_queues(ctrl);
2034 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2035 /*
2036 * If we timed out waiting for freeze we are likely to
2037 * be stuck. Fail the controller initialization just
2038 * to be safe.
2039 */
2040 ret = -ENODEV;
2041 nvme_unfreeze(ctrl);
2042 goto out_wait_freeze_timed_out;
2043 }
2044 blk_mq_update_nr_hw_queues(set: ctrl->tagset,
2045 nr_hw_queues: ctrl->queue_count - 1);
2046 nvme_unfreeze(ctrl);
2047 }
2048
2049 /*
2050 * If the number of queues has increased (reconnect case)
2051 * start all new queues now.
2052 */
2053 ret = nvme_tcp_start_io_queues(ctrl, first: nr_queues,
2054 last: ctrl->tagset->nr_hw_queues + 1);
2055 if (ret)
2056 goto out_wait_freeze_timed_out;
2057
2058 return 0;
2059
2060out_wait_freeze_timed_out:
2061 nvme_quiesce_io_queues(ctrl);
2062 nvme_sync_io_queues(ctrl);
2063 nvme_tcp_stop_io_queues(ctrl);
2064out_cleanup_connect_q:
2065 nvme_cancel_tagset(ctrl);
2066 if (new)
2067 nvme_remove_io_tag_set(ctrl);
2068out_free_io_queues:
2069 nvme_tcp_free_io_queues(ctrl);
2070 return ret;
2071}
2072
2073static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
2074{
2075 nvme_tcp_stop_queue(nctrl: ctrl, qid: 0);
2076 if (remove)
2077 nvme_remove_admin_tag_set(ctrl);
2078 nvme_tcp_free_admin_queue(ctrl);
2079}
2080
2081static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2082{
2083 int error;
2084
2085 error = nvme_tcp_alloc_admin_queue(ctrl);
2086 if (error)
2087 return error;
2088
2089 if (new) {
2090 error = nvme_alloc_admin_tag_set(ctrl,
2091 set: &to_tcp_ctrl(ctrl)->admin_tag_set,
2092 ops: &nvme_tcp_admin_mq_ops,
2093 cmd_size: sizeof(struct nvme_tcp_request));
2094 if (error)
2095 goto out_free_queue;
2096 }
2097
2098 error = nvme_tcp_start_queue(nctrl: ctrl, idx: 0);
2099 if (error)
2100 goto out_cleanup_tagset;
2101
2102 error = nvme_enable_ctrl(ctrl);
2103 if (error)
2104 goto out_stop_queue;
2105
2106 nvme_unquiesce_admin_queue(ctrl);
2107
2108 error = nvme_init_ctrl_finish(ctrl, was_suspended: false);
2109 if (error)
2110 goto out_quiesce_queue;
2111
2112 return 0;
2113
2114out_quiesce_queue:
2115 nvme_quiesce_admin_queue(ctrl);
2116 blk_sync_queue(q: ctrl->admin_q);
2117out_stop_queue:
2118 nvme_tcp_stop_queue(nctrl: ctrl, qid: 0);
2119 nvme_cancel_admin_tagset(ctrl);
2120out_cleanup_tagset:
2121 if (new)
2122 nvme_remove_admin_tag_set(ctrl);
2123out_free_queue:
2124 nvme_tcp_free_admin_queue(ctrl);
2125 return error;
2126}
2127
2128static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2129 bool remove)
2130{
2131 nvme_quiesce_admin_queue(ctrl);
2132 blk_sync_queue(q: ctrl->admin_q);
2133 nvme_tcp_stop_queue(nctrl: ctrl, qid: 0);
2134 nvme_cancel_admin_tagset(ctrl);
2135 if (remove)
2136 nvme_unquiesce_admin_queue(ctrl);
2137 nvme_tcp_destroy_admin_queue(ctrl, remove);
2138}
2139
2140static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2141 bool remove)
2142{
2143 if (ctrl->queue_count <= 1)
2144 return;
2145 nvme_quiesce_admin_queue(ctrl);
2146 nvme_quiesce_io_queues(ctrl);
2147 nvme_sync_io_queues(ctrl);
2148 nvme_tcp_stop_io_queues(ctrl);
2149 nvme_cancel_tagset(ctrl);
2150 if (remove)
2151 nvme_unquiesce_io_queues(ctrl);
2152 nvme_tcp_destroy_io_queues(ctrl, remove);
2153}
2154
2155static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
2156{
2157 /* If we are resetting/deleting then do nothing */
2158 if (ctrl->state != NVME_CTRL_CONNECTING) {
2159 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
2160 ctrl->state == NVME_CTRL_LIVE);
2161 return;
2162 }
2163
2164 if (nvmf_should_reconnect(ctrl)) {
2165 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2166 ctrl->opts->reconnect_delay);
2167 queue_delayed_work(wq: nvme_wq, dwork: &to_tcp_ctrl(ctrl)->connect_work,
2168 delay: ctrl->opts->reconnect_delay * HZ);
2169 } else {
2170 dev_info(ctrl->device, "Removing controller...\n");
2171 nvme_delete_ctrl(ctrl);
2172 }
2173}
2174
2175static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2176{
2177 struct nvmf_ctrl_options *opts = ctrl->opts;
2178 int ret;
2179
2180 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2181 if (ret)
2182 return ret;
2183
2184 if (ctrl->icdoff) {
2185 ret = -EOPNOTSUPP;
2186 dev_err(ctrl->device, "icdoff is not supported!\n");
2187 goto destroy_admin;
2188 }
2189
2190 if (!nvme_ctrl_sgl_supported(ctrl)) {
2191 ret = -EOPNOTSUPP;
2192 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2193 goto destroy_admin;
2194 }
2195
2196 if (opts->queue_size > ctrl->sqsize + 1)
2197 dev_warn(ctrl->device,
2198 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2199 opts->queue_size, ctrl->sqsize + 1);
2200
2201 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2202 dev_warn(ctrl->device,
2203 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2204 ctrl->sqsize + 1, ctrl->maxcmd);
2205 ctrl->sqsize = ctrl->maxcmd - 1;
2206 }
2207
2208 if (ctrl->queue_count > 1) {
2209 ret = nvme_tcp_configure_io_queues(ctrl, new);
2210 if (ret)
2211 goto destroy_admin;
2212 }
2213
2214 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_LIVE)) {
2215 /*
2216 * state change failure is ok if we started ctrl delete,
2217 * unless we're during creation of a new controller to
2218 * avoid races with teardown flow.
2219 */
2220 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2221 ctrl->state != NVME_CTRL_DELETING_NOIO);
2222 WARN_ON_ONCE(new);
2223 ret = -EINVAL;
2224 goto destroy_io;
2225 }
2226
2227 nvme_start_ctrl(ctrl);
2228 return 0;
2229
2230destroy_io:
2231 if (ctrl->queue_count > 1) {
2232 nvme_quiesce_io_queues(ctrl);
2233 nvme_sync_io_queues(ctrl);
2234 nvme_tcp_stop_io_queues(ctrl);
2235 nvme_cancel_tagset(ctrl);
2236 nvme_tcp_destroy_io_queues(ctrl, remove: new);
2237 }
2238destroy_admin:
2239 nvme_quiesce_admin_queue(ctrl);
2240 blk_sync_queue(q: ctrl->admin_q);
2241 nvme_tcp_stop_queue(nctrl: ctrl, qid: 0);
2242 nvme_cancel_admin_tagset(ctrl);
2243 nvme_tcp_destroy_admin_queue(ctrl, remove: new);
2244 return ret;
2245}
2246
2247static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2248{
2249 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2250 struct nvme_tcp_ctrl, connect_work);
2251 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2252
2253 ++ctrl->nr_reconnects;
2254
2255 if (nvme_tcp_setup_ctrl(ctrl, new: false))
2256 goto requeue;
2257
2258 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2259 ctrl->nr_reconnects);
2260
2261 ctrl->nr_reconnects = 0;
2262
2263 return;
2264
2265requeue:
2266 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2267 ctrl->nr_reconnects);
2268 nvme_tcp_reconnect_or_remove(ctrl);
2269}
2270
2271static void nvme_tcp_error_recovery_work(struct work_struct *work)
2272{
2273 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2274 struct nvme_tcp_ctrl, err_work);
2275 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2276
2277 nvme_stop_keep_alive(ctrl);
2278 flush_work(work: &ctrl->async_event_work);
2279 nvme_tcp_teardown_io_queues(ctrl, remove: false);
2280 /* unquiesce to fail fast pending requests */
2281 nvme_unquiesce_io_queues(ctrl);
2282 nvme_tcp_teardown_admin_queue(ctrl, remove: false);
2283 nvme_unquiesce_admin_queue(ctrl);
2284 nvme_auth_stop(ctrl);
2285
2286 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_CONNECTING)) {
2287 /* state change failure is ok if we started ctrl delete */
2288 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2289 ctrl->state != NVME_CTRL_DELETING_NOIO);
2290 return;
2291 }
2292
2293 nvme_tcp_reconnect_or_remove(ctrl);
2294}
2295
2296static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2297{
2298 nvme_tcp_teardown_io_queues(ctrl, remove: shutdown);
2299 nvme_quiesce_admin_queue(ctrl);
2300 nvme_disable_ctrl(ctrl, shutdown);
2301 nvme_tcp_teardown_admin_queue(ctrl, remove: shutdown);
2302}
2303
2304static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2305{
2306 nvme_tcp_teardown_ctrl(ctrl, shutdown: true);
2307}
2308
2309static void nvme_reset_ctrl_work(struct work_struct *work)
2310{
2311 struct nvme_ctrl *ctrl =
2312 container_of(work, struct nvme_ctrl, reset_work);
2313
2314 nvme_stop_ctrl(ctrl);
2315 nvme_tcp_teardown_ctrl(ctrl, shutdown: false);
2316
2317 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_CONNECTING)) {
2318 /* state change failure is ok if we started ctrl delete */
2319 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2320 ctrl->state != NVME_CTRL_DELETING_NOIO);
2321 return;
2322 }
2323
2324 if (nvme_tcp_setup_ctrl(ctrl, new: false))
2325 goto out_fail;
2326
2327 return;
2328
2329out_fail:
2330 ++ctrl->nr_reconnects;
2331 nvme_tcp_reconnect_or_remove(ctrl);
2332}
2333
2334static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2335{
2336 flush_work(work: &to_tcp_ctrl(ctrl)->err_work);
2337 cancel_delayed_work_sync(dwork: &to_tcp_ctrl(ctrl)->connect_work);
2338}
2339
2340static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2341{
2342 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: nctrl);
2343
2344 if (list_empty(head: &ctrl->list))
2345 goto free_ctrl;
2346
2347 mutex_lock(&nvme_tcp_ctrl_mutex);
2348 list_del(entry: &ctrl->list);
2349 mutex_unlock(lock: &nvme_tcp_ctrl_mutex);
2350
2351 nvmf_free_options(opts: nctrl->opts);
2352free_ctrl:
2353 kfree(objp: ctrl->queues);
2354 kfree(objp: ctrl);
2355}
2356
2357static void nvme_tcp_set_sg_null(struct nvme_command *c)
2358{
2359 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2360
2361 sg->addr = 0;
2362 sg->length = 0;
2363 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2364 NVME_SGL_FMT_TRANSPORT_A;
2365}
2366
2367static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2368 struct nvme_command *c, u32 data_len)
2369{
2370 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2371
2372 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2373 sg->length = cpu_to_le32(data_len);
2374 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2375}
2376
2377static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2378 u32 data_len)
2379{
2380 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2381
2382 sg->addr = 0;
2383 sg->length = cpu_to_le32(data_len);
2384 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2385 NVME_SGL_FMT_TRANSPORT_A;
2386}
2387
2388static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2389{
2390 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: arg);
2391 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2392 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2393 struct nvme_command *cmd = &pdu->cmd;
2394 u8 hdgst = nvme_tcp_hdgst_len(queue);
2395
2396 memset(pdu, 0, sizeof(*pdu));
2397 pdu->hdr.type = nvme_tcp_cmd;
2398 if (queue->hdr_digest)
2399 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2400 pdu->hdr.hlen = sizeof(*pdu);
2401 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2402
2403 cmd->common.opcode = nvme_admin_async_event;
2404 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2405 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2406 nvme_tcp_set_sg_null(c: cmd);
2407
2408 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2409 ctrl->async_req.offset = 0;
2410 ctrl->async_req.curr_bio = NULL;
2411 ctrl->async_req.data_len = 0;
2412
2413 nvme_tcp_queue_request(req: &ctrl->async_req, sync: true, last: true);
2414}
2415
2416static void nvme_tcp_complete_timed_out(struct request *rq)
2417{
2418 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2419 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2420
2421 nvme_tcp_stop_queue(nctrl: ctrl, qid: nvme_tcp_queue_id(queue: req->queue));
2422 nvmf_complete_timed_out_request(rq);
2423}
2424
2425static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2426{
2427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2428 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2429 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2430 u8 opc = pdu->cmd.common.opcode, fctype = pdu->cmd.fabrics.fctype;
2431 int qid = nvme_tcp_queue_id(queue: req->queue);
2432
2433 dev_warn(ctrl->device,
2434 "queue %d: timeout cid %#x type %d opcode %#x (%s)\n",
2435 nvme_tcp_queue_id(req->queue), nvme_cid(rq), pdu->hdr.type,
2436 opc, nvme_opcode_str(qid, opc, fctype));
2437
2438 if (ctrl->state != NVME_CTRL_LIVE) {
2439 /*
2440 * If we are resetting, connecting or deleting we should
2441 * complete immediately because we may block controller
2442 * teardown or setup sequence
2443 * - ctrl disable/shutdown fabrics requests
2444 * - connect requests
2445 * - initialization admin requests
2446 * - I/O requests that entered after unquiescing and
2447 * the controller stopped responding
2448 *
2449 * All other requests should be cancelled by the error
2450 * recovery work, so it's fine that we fail it here.
2451 */
2452 nvme_tcp_complete_timed_out(rq);
2453 return BLK_EH_DONE;
2454 }
2455
2456 /*
2457 * LIVE state should trigger the normal error recovery which will
2458 * handle completing this request.
2459 */
2460 nvme_tcp_error_recovery(ctrl);
2461 return BLK_EH_RESET_TIMER;
2462}
2463
2464static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2465 struct request *rq)
2466{
2467 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2468 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2469 struct nvme_command *c = &pdu->cmd;
2470
2471 c->common.flags |= NVME_CMD_SGL_METABUF;
2472
2473 if (!blk_rq_nr_phys_segments(rq))
2474 nvme_tcp_set_sg_null(c);
2475 else if (rq_data_dir(rq) == WRITE &&
2476 req->data_len <= nvme_tcp_inline_data_size(req))
2477 nvme_tcp_set_sg_inline(queue, c, data_len: req->data_len);
2478 else
2479 nvme_tcp_set_sg_host_data(c, data_len: req->data_len);
2480
2481 return 0;
2482}
2483
2484static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2485 struct request *rq)
2486{
2487 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2488 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2489 struct nvme_tcp_queue *queue = req->queue;
2490 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2491 blk_status_t ret;
2492
2493 ret = nvme_setup_cmd(ns, req: rq);
2494 if (ret)
2495 return ret;
2496
2497 req->state = NVME_TCP_SEND_CMD_PDU;
2498 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2499 req->offset = 0;
2500 req->data_sent = 0;
2501 req->pdu_len = 0;
2502 req->pdu_sent = 0;
2503 req->h2cdata_left = 0;
2504 req->data_len = blk_rq_nr_phys_segments(rq) ?
2505 blk_rq_payload_bytes(rq) : 0;
2506 req->curr_bio = rq->bio;
2507 if (req->curr_bio && req->data_len)
2508 nvme_tcp_init_iter(req, rq_data_dir(rq));
2509
2510 if (rq_data_dir(rq) == WRITE &&
2511 req->data_len <= nvme_tcp_inline_data_size(req))
2512 req->pdu_len = req->data_len;
2513
2514 pdu->hdr.type = nvme_tcp_cmd;
2515 pdu->hdr.flags = 0;
2516 if (queue->hdr_digest)
2517 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2518 if (queue->data_digest && req->pdu_len) {
2519 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2520 ddgst = nvme_tcp_ddgst_len(queue);
2521 }
2522 pdu->hdr.hlen = sizeof(*pdu);
2523 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2524 pdu->hdr.plen =
2525 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2526
2527 ret = nvme_tcp_map_data(queue, rq);
2528 if (unlikely(ret)) {
2529 nvme_cleanup_cmd(req: rq);
2530 dev_err(queue->ctrl->ctrl.device,
2531 "Failed to map data (%d)\n", ret);
2532 return ret;
2533 }
2534
2535 return 0;
2536}
2537
2538static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2539{
2540 struct nvme_tcp_queue *queue = hctx->driver_data;
2541
2542 if (!llist_empty(head: &queue->req_list))
2543 queue_work_on(cpu: queue->io_cpu, wq: nvme_tcp_wq, work: &queue->io_work);
2544}
2545
2546static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2547 const struct blk_mq_queue_data *bd)
2548{
2549 struct nvme_ns *ns = hctx->queue->queuedata;
2550 struct nvme_tcp_queue *queue = hctx->driver_data;
2551 struct request *rq = bd->rq;
2552 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2553 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2554 blk_status_t ret;
2555
2556 if (!nvme_check_ready(ctrl: &queue->ctrl->ctrl, rq, queue_live: queue_ready))
2557 return nvme_fail_nonready_command(ctrl: &queue->ctrl->ctrl, req: rq);
2558
2559 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2560 if (unlikely(ret))
2561 return ret;
2562
2563 nvme_start_request(rq);
2564
2565 nvme_tcp_queue_request(req, sync: true, last: bd->last);
2566
2567 return BLK_STS_OK;
2568}
2569
2570static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2571{
2572 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(ctrl: set->driver_data);
2573
2574 nvmf_map_queues(set, ctrl: &ctrl->ctrl, io_queues: ctrl->io_queues);
2575}
2576
2577static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2578{
2579 struct nvme_tcp_queue *queue = hctx->driver_data;
2580 struct sock *sk = queue->sock->sk;
2581
2582 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2583 return 0;
2584
2585 set_bit(nr: NVME_TCP_Q_POLLING, addr: &queue->flags);
2586 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(list: &sk->sk_receive_queue))
2587 sk_busy_loop(sk, nonblock: true);
2588 nvme_tcp_try_recv(queue);
2589 clear_bit(nr: NVME_TCP_Q_POLLING, addr: &queue->flags);
2590 return queue->nr_cqe;
2591}
2592
2593static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2594{
2595 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2596 struct sockaddr_storage src_addr;
2597 int ret, len;
2598
2599 len = nvmf_get_address(ctrl, buf, size);
2600
2601 mutex_lock(&queue->queue_lock);
2602
2603 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2604 goto done;
2605 ret = kernel_getsockname(sock: queue->sock, addr: (struct sockaddr *)&src_addr);
2606 if (ret > 0) {
2607 if (len > 0)
2608 len--; /* strip trailing newline */
2609 len += scnprintf(buf: buf + len, size: size - len, fmt: "%ssrc_addr=%pISc\n",
2610 (len) ? "," : "", &src_addr);
2611 }
2612done:
2613 mutex_unlock(lock: &queue->queue_lock);
2614
2615 return len;
2616}
2617
2618static const struct blk_mq_ops nvme_tcp_mq_ops = {
2619 .queue_rq = nvme_tcp_queue_rq,
2620 .commit_rqs = nvme_tcp_commit_rqs,
2621 .complete = nvme_complete_rq,
2622 .init_request = nvme_tcp_init_request,
2623 .exit_request = nvme_tcp_exit_request,
2624 .init_hctx = nvme_tcp_init_hctx,
2625 .timeout = nvme_tcp_timeout,
2626 .map_queues = nvme_tcp_map_queues,
2627 .poll = nvme_tcp_poll,
2628};
2629
2630static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2631 .queue_rq = nvme_tcp_queue_rq,
2632 .complete = nvme_complete_rq,
2633 .init_request = nvme_tcp_init_request,
2634 .exit_request = nvme_tcp_exit_request,
2635 .init_hctx = nvme_tcp_init_admin_hctx,
2636 .timeout = nvme_tcp_timeout,
2637};
2638
2639static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2640 .name = "tcp",
2641 .module = THIS_MODULE,
2642 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2643 .reg_read32 = nvmf_reg_read32,
2644 .reg_read64 = nvmf_reg_read64,
2645 .reg_write32 = nvmf_reg_write32,
2646 .free_ctrl = nvme_tcp_free_ctrl,
2647 .submit_async_event = nvme_tcp_submit_async_event,
2648 .delete_ctrl = nvme_tcp_delete_ctrl,
2649 .get_address = nvme_tcp_get_address,
2650 .stop_ctrl = nvme_tcp_stop_ctrl,
2651};
2652
2653static bool
2654nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2655{
2656 struct nvme_tcp_ctrl *ctrl;
2657 bool found = false;
2658
2659 mutex_lock(&nvme_tcp_ctrl_mutex);
2660 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2661 found = nvmf_ip_options_match(ctrl: &ctrl->ctrl, opts);
2662 if (found)
2663 break;
2664 }
2665 mutex_unlock(lock: &nvme_tcp_ctrl_mutex);
2666
2667 return found;
2668}
2669
2670static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2671 struct nvmf_ctrl_options *opts)
2672{
2673 struct nvme_tcp_ctrl *ctrl;
2674 int ret;
2675
2676 ctrl = kzalloc(size: sizeof(*ctrl), GFP_KERNEL);
2677 if (!ctrl)
2678 return ERR_PTR(error: -ENOMEM);
2679
2680 INIT_LIST_HEAD(list: &ctrl->list);
2681 ctrl->ctrl.opts = opts;
2682 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2683 opts->nr_poll_queues + 1;
2684 ctrl->ctrl.sqsize = opts->queue_size - 1;
2685 ctrl->ctrl.kato = opts->kato;
2686
2687 INIT_DELAYED_WORK(&ctrl->connect_work,
2688 nvme_tcp_reconnect_ctrl_work);
2689 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2690 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2691
2692 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2693 opts->trsvcid =
2694 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2695 if (!opts->trsvcid) {
2696 ret = -ENOMEM;
2697 goto out_free_ctrl;
2698 }
2699 opts->mask |= NVMF_OPT_TRSVCID;
2700 }
2701
2702 ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC,
2703 src: opts->traddr, port: opts->trsvcid, addr: &ctrl->addr);
2704 if (ret) {
2705 pr_err("malformed address passed: %s:%s\n",
2706 opts->traddr, opts->trsvcid);
2707 goto out_free_ctrl;
2708 }
2709
2710 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2711 ret = inet_pton_with_scope(net: &init_net, AF_UNSPEC,
2712 src: opts->host_traddr, NULL, addr: &ctrl->src_addr);
2713 if (ret) {
2714 pr_err("malformed src address passed: %s\n",
2715 opts->host_traddr);
2716 goto out_free_ctrl;
2717 }
2718 }
2719
2720 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2721 if (!__dev_get_by_name(net: &init_net, name: opts->host_iface)) {
2722 pr_err("invalid interface passed: %s\n",
2723 opts->host_iface);
2724 ret = -ENODEV;
2725 goto out_free_ctrl;
2726 }
2727 }
2728
2729 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2730 ret = -EALREADY;
2731 goto out_free_ctrl;
2732 }
2733
2734 ctrl->queues = kcalloc(n: ctrl->ctrl.queue_count, size: sizeof(*ctrl->queues),
2735 GFP_KERNEL);
2736 if (!ctrl->queues) {
2737 ret = -ENOMEM;
2738 goto out_free_ctrl;
2739 }
2740
2741 ret = nvme_init_ctrl(ctrl: &ctrl->ctrl, dev, ops: &nvme_tcp_ctrl_ops, quirks: 0);
2742 if (ret)
2743 goto out_kfree_queues;
2744
2745 if (!nvme_change_ctrl_state(ctrl: &ctrl->ctrl, new_state: NVME_CTRL_CONNECTING)) {
2746 WARN_ON_ONCE(1);
2747 ret = -EINTR;
2748 goto out_uninit_ctrl;
2749 }
2750
2751 ret = nvme_tcp_setup_ctrl(ctrl: &ctrl->ctrl, new: true);
2752 if (ret)
2753 goto out_uninit_ctrl;
2754
2755 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2756 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr);
2757
2758 mutex_lock(&nvme_tcp_ctrl_mutex);
2759 list_add_tail(new: &ctrl->list, head: &nvme_tcp_ctrl_list);
2760 mutex_unlock(lock: &nvme_tcp_ctrl_mutex);
2761
2762 return &ctrl->ctrl;
2763
2764out_uninit_ctrl:
2765 nvme_uninit_ctrl(ctrl: &ctrl->ctrl);
2766 nvme_put_ctrl(ctrl: &ctrl->ctrl);
2767 if (ret > 0)
2768 ret = -EIO;
2769 return ERR_PTR(error: ret);
2770out_kfree_queues:
2771 kfree(objp: ctrl->queues);
2772out_free_ctrl:
2773 kfree(objp: ctrl);
2774 return ERR_PTR(error: ret);
2775}
2776
2777static struct nvmf_transport_ops nvme_tcp_transport = {
2778 .name = "tcp",
2779 .module = THIS_MODULE,
2780 .required_opts = NVMF_OPT_TRADDR,
2781 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2782 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2783 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2784 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2785 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
2786 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY,
2787 .create_ctrl = nvme_tcp_create_ctrl,
2788};
2789
2790static int __init nvme_tcp_init_module(void)
2791{
2792 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
2793 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
2794 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
2795 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
2796 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
2797 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
2798 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
2799 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
2800
2801 nvme_tcp_wq = alloc_workqueue(fmt: "nvme_tcp_wq",
2802 flags: WQ_MEM_RECLAIM | WQ_HIGHPRI, max_active: 0);
2803 if (!nvme_tcp_wq)
2804 return -ENOMEM;
2805
2806 nvmf_register_transport(ops: &nvme_tcp_transport);
2807 return 0;
2808}
2809
2810static void __exit nvme_tcp_cleanup_module(void)
2811{
2812 struct nvme_tcp_ctrl *ctrl;
2813
2814 nvmf_unregister_transport(ops: &nvme_tcp_transport);
2815
2816 mutex_lock(&nvme_tcp_ctrl_mutex);
2817 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2818 nvme_delete_ctrl(ctrl: &ctrl->ctrl);
2819 mutex_unlock(lock: &nvme_tcp_ctrl_mutex);
2820 flush_workqueue(nvme_delete_wq);
2821
2822 destroy_workqueue(wq: nvme_tcp_wq);
2823}
2824
2825module_init(nvme_tcp_init_module);
2826module_exit(nvme_tcp_cleanup_module);
2827
2828MODULE_LICENSE("GPL v2");
2829

source code of linux/drivers/nvme/host/tcp.c