1/*
2 * kernel/sched/debug.c
3 *
4 * Print the CFS rbtree and other debugging details
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12#include "sched.h"
13
14static DEFINE_SPINLOCK(sched_debug_lock);
15
16/*
17 * This allows printing both to /proc/sched_debug and
18 * to the console
19 */
20#define SEQ_printf(m, x...) \
21 do { \
22 if (m) \
23 seq_printf(m, x); \
24 else \
25 pr_cont(x); \
26 } while (0)
27
28/*
29 * Ease the printing of nsec fields:
30 */
31static long long nsec_high(unsigned long long nsec)
32{
33 if ((long long)nsec < 0) {
34 nsec = -nsec;
35 do_div(nsec, 1000000);
36 return -nsec;
37 }
38 do_div(nsec, 1000000);
39
40 return nsec;
41}
42
43static unsigned long nsec_low(unsigned long long nsec)
44{
45 if ((long long)nsec < 0)
46 nsec = -nsec;
47
48 return do_div(nsec, 1000000);
49}
50
51#define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53#define SCHED_FEAT(name, enabled) \
54 #name ,
55
56static const char * const sched_feat_names[] = {
57#include "features.h"
58};
59
60#undef SCHED_FEAT
61
62static int sched_feat_show(struct seq_file *m, void *v)
63{
64 int i;
65
66 for (i = 0; i < __SCHED_FEAT_NR; i++) {
67 if (!(sysctl_sched_features & (1UL << i)))
68 seq_puts(m, "NO_");
69 seq_printf(m, "%s ", sched_feat_names[i]);
70 }
71 seq_puts(m, "\n");
72
73 return 0;
74}
75
76#ifdef CONFIG_JUMP_LABEL
77
78#define jump_label_key__true STATIC_KEY_INIT_TRUE
79#define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81#define SCHED_FEAT(name, enabled) \
82 jump_label_key__##enabled ,
83
84struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85#include "features.h"
86};
87
88#undef SCHED_FEAT
89
90static void sched_feat_disable(int i)
91{
92 static_key_disable_cpuslocked(&sched_feat_keys[i]);
93}
94
95static void sched_feat_enable(int i)
96{
97 static_key_enable_cpuslocked(&sched_feat_keys[i]);
98}
99#else
100static void sched_feat_disable(int i) { };
101static void sched_feat_enable(int i) { };
102#endif /* CONFIG_JUMP_LABEL */
103
104static int sched_feat_set(char *cmp)
105{
106 int i;
107 int neg = 0;
108
109 if (strncmp(cmp, "NO_", 3) == 0) {
110 neg = 1;
111 cmp += 3;
112 }
113
114 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115 if (i < 0)
116 return i;
117
118 if (neg) {
119 sysctl_sched_features &= ~(1UL << i);
120 sched_feat_disable(i);
121 } else {
122 sysctl_sched_features |= (1UL << i);
123 sched_feat_enable(i);
124 }
125
126 return 0;
127}
128
129static ssize_t
130sched_feat_write(struct file *filp, const char __user *ubuf,
131 size_t cnt, loff_t *ppos)
132{
133 char buf[64];
134 char *cmp;
135 int ret;
136 struct inode *inode;
137
138 if (cnt > 63)
139 cnt = 63;
140
141 if (copy_from_user(&buf, ubuf, cnt))
142 return -EFAULT;
143
144 buf[cnt] = 0;
145 cmp = strstrip(buf);
146
147 /* Ensure the static_key remains in a consistent state */
148 inode = file_inode(filp);
149 cpus_read_lock();
150 inode_lock(inode);
151 ret = sched_feat_set(cmp);
152 inode_unlock(inode);
153 cpus_read_unlock();
154 if (ret < 0)
155 return ret;
156
157 *ppos += cnt;
158
159 return cnt;
160}
161
162static int sched_feat_open(struct inode *inode, struct file *filp)
163{
164 return single_open(filp, sched_feat_show, NULL);
165}
166
167static const struct file_operations sched_feat_fops = {
168 .open = sched_feat_open,
169 .write = sched_feat_write,
170 .read = seq_read,
171 .llseek = seq_lseek,
172 .release = single_release,
173};
174
175__read_mostly bool sched_debug_enabled;
176
177static __init int sched_init_debug(void)
178{
179 debugfs_create_file("sched_features", 0644, NULL, NULL,
180 &sched_feat_fops);
181
182 debugfs_create_bool("sched_debug", 0644, NULL,
183 &sched_debug_enabled);
184
185 return 0;
186}
187late_initcall(sched_init_debug);
188
189#ifdef CONFIG_SMP
190
191#ifdef CONFIG_SYSCTL
192
193static struct ctl_table sd_ctl_dir[] = {
194 {
195 .procname = "sched_domain",
196 .mode = 0555,
197 },
198 {}
199};
200
201static struct ctl_table sd_ctl_root[] = {
202 {
203 .procname = "kernel",
204 .mode = 0555,
205 .child = sd_ctl_dir,
206 },
207 {}
208};
209
210static struct ctl_table *sd_alloc_ctl_entry(int n)
211{
212 struct ctl_table *entry =
213 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
214
215 return entry;
216}
217
218static void sd_free_ctl_entry(struct ctl_table **tablep)
219{
220 struct ctl_table *entry;
221
222 /*
223 * In the intermediate directories, both the child directory and
224 * procname are dynamically allocated and could fail but the mode
225 * will always be set. In the lowest directory the names are
226 * static strings and all have proc handlers.
227 */
228 for (entry = *tablep; entry->mode; entry++) {
229 if (entry->child)
230 sd_free_ctl_entry(&entry->child);
231 if (entry->proc_handler == NULL)
232 kfree(entry->procname);
233 }
234
235 kfree(*tablep);
236 *tablep = NULL;
237}
238
239static int min_load_idx = 0;
240static int max_load_idx = CPU_LOAD_IDX_MAX-1;
241
242static void
243set_table_entry(struct ctl_table *entry,
244 const char *procname, void *data, int maxlen,
245 umode_t mode, proc_handler *proc_handler,
246 bool load_idx)
247{
248 entry->procname = procname;
249 entry->data = data;
250 entry->maxlen = maxlen;
251 entry->mode = mode;
252 entry->proc_handler = proc_handler;
253
254 if (load_idx) {
255 entry->extra1 = &min_load_idx;
256 entry->extra2 = &max_load_idx;
257 }
258}
259
260static struct ctl_table *
261sd_alloc_ctl_domain_table(struct sched_domain *sd)
262{
263 struct ctl_table *table = sd_alloc_ctl_entry(14);
264
265 if (table == NULL)
266 return NULL;
267
268 set_table_entry(&table[0] , "min_interval", &sd->min_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
269 set_table_entry(&table[1] , "max_interval", &sd->max_interval, sizeof(long), 0644, proc_doulongvec_minmax, false);
270 set_table_entry(&table[2] , "busy_idx", &sd->busy_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
271 set_table_entry(&table[3] , "idle_idx", &sd->idle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
272 set_table_entry(&table[4] , "newidle_idx", &sd->newidle_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
273 set_table_entry(&table[5] , "wake_idx", &sd->wake_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
274 set_table_entry(&table[6] , "forkexec_idx", &sd->forkexec_idx, sizeof(int) , 0644, proc_dointvec_minmax, true );
275 set_table_entry(&table[7] , "busy_factor", &sd->busy_factor, sizeof(int) , 0644, proc_dointvec_minmax, false);
276 set_table_entry(&table[8] , "imbalance_pct", &sd->imbalance_pct, sizeof(int) , 0644, proc_dointvec_minmax, false);
277 set_table_entry(&table[9] , "cache_nice_tries", &sd->cache_nice_tries, sizeof(int) , 0644, proc_dointvec_minmax, false);
278 set_table_entry(&table[10], "flags", &sd->flags, sizeof(int) , 0644, proc_dointvec_minmax, false);
279 set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
280 set_table_entry(&table[12], "name", sd->name, CORENAME_MAX_SIZE, 0444, proc_dostring, false);
281 /* &table[13] is terminator */
282
283 return table;
284}
285
286static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
287{
288 struct ctl_table *entry, *table;
289 struct sched_domain *sd;
290 int domain_num = 0, i;
291 char buf[32];
292
293 for_each_domain(cpu, sd)
294 domain_num++;
295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
296 if (table == NULL)
297 return NULL;
298
299 i = 0;
300 for_each_domain(cpu, sd) {
301 snprintf(buf, 32, "domain%d", i);
302 entry->procname = kstrdup(buf, GFP_KERNEL);
303 entry->mode = 0555;
304 entry->child = sd_alloc_ctl_domain_table(sd);
305 entry++;
306 i++;
307 }
308 return table;
309}
310
311static cpumask_var_t sd_sysctl_cpus;
312static struct ctl_table_header *sd_sysctl_header;
313
314void register_sched_domain_sysctl(void)
315{
316 static struct ctl_table *cpu_entries;
317 static struct ctl_table **cpu_idx;
318 static bool init_done = false;
319 char buf[32];
320 int i;
321
322 if (!cpu_entries) {
323 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
324 if (!cpu_entries)
325 return;
326
327 WARN_ON(sd_ctl_dir[0].child);
328 sd_ctl_dir[0].child = cpu_entries;
329 }
330
331 if (!cpu_idx) {
332 struct ctl_table *e = cpu_entries;
333
334 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
335 if (!cpu_idx)
336 return;
337
338 /* deal with sparse possible map */
339 for_each_possible_cpu(i) {
340 cpu_idx[i] = e;
341 e++;
342 }
343 }
344
345 if (!cpumask_available(sd_sysctl_cpus)) {
346 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
347 return;
348 }
349
350 if (!init_done) {
351 init_done = true;
352 /* init to possible to not have holes in @cpu_entries */
353 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
354 }
355
356 for_each_cpu(i, sd_sysctl_cpus) {
357 struct ctl_table *e = cpu_idx[i];
358
359 if (e->child)
360 sd_free_ctl_entry(&e->child);
361
362 if (!e->procname) {
363 snprintf(buf, 32, "cpu%d", i);
364 e->procname = kstrdup(buf, GFP_KERNEL);
365 }
366 e->mode = 0555;
367 e->child = sd_alloc_ctl_cpu_table(i);
368
369 __cpumask_clear_cpu(i, sd_sysctl_cpus);
370 }
371
372 WARN_ON(sd_sysctl_header);
373 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
374}
375
376void dirty_sched_domain_sysctl(int cpu)
377{
378 if (cpumask_available(sd_sysctl_cpus))
379 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
380}
381
382/* may be called multiple times per register */
383void unregister_sched_domain_sysctl(void)
384{
385 unregister_sysctl_table(sd_sysctl_header);
386 sd_sysctl_header = NULL;
387}
388#endif /* CONFIG_SYSCTL */
389#endif /* CONFIG_SMP */
390
391#ifdef CONFIG_FAIR_GROUP_SCHED
392static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
393{
394 struct sched_entity *se = tg->se[cpu];
395
396#define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F)
397#define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F))
398#define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
399#define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
400
401 if (!se)
402 return;
403
404 PN(se->exec_start);
405 PN(se->vruntime);
406 PN(se->sum_exec_runtime);
407
408 if (schedstat_enabled()) {
409 PN_SCHEDSTAT(se->statistics.wait_start);
410 PN_SCHEDSTAT(se->statistics.sleep_start);
411 PN_SCHEDSTAT(se->statistics.block_start);
412 PN_SCHEDSTAT(se->statistics.sleep_max);
413 PN_SCHEDSTAT(se->statistics.block_max);
414 PN_SCHEDSTAT(se->statistics.exec_max);
415 PN_SCHEDSTAT(se->statistics.slice_max);
416 PN_SCHEDSTAT(se->statistics.wait_max);
417 PN_SCHEDSTAT(se->statistics.wait_sum);
418 P_SCHEDSTAT(se->statistics.wait_count);
419 }
420
421 P(se->load.weight);
422 P(se->runnable_weight);
423#ifdef CONFIG_SMP
424 P(se->avg.load_avg);
425 P(se->avg.util_avg);
426 P(se->avg.runnable_load_avg);
427#endif
428
429#undef PN_SCHEDSTAT
430#undef PN
431#undef P_SCHEDSTAT
432#undef P
433}
434#endif
435
436#ifdef CONFIG_CGROUP_SCHED
437static char group_path[PATH_MAX];
438
439static char *task_group_path(struct task_group *tg)
440{
441 if (autogroup_path(tg, group_path, PATH_MAX))
442 return group_path;
443
444 cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
445
446 return group_path;
447}
448#endif
449
450static void
451print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
452{
453 if (rq->curr == p)
454 SEQ_printf(m, ">R");
455 else
456 SEQ_printf(m, " %c", task_state_to_char(p));
457
458 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
459 p->comm, task_pid_nr(p),
460 SPLIT_NS(p->se.vruntime),
461 (long long)(p->nvcsw + p->nivcsw),
462 p->prio);
463
464 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
465 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
466 SPLIT_NS(p->se.sum_exec_runtime),
467 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
468
469#ifdef CONFIG_NUMA_BALANCING
470 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
471#endif
472#ifdef CONFIG_CGROUP_SCHED
473 SEQ_printf(m, " %s", task_group_path(task_group(p)));
474#endif
475
476 SEQ_printf(m, "\n");
477}
478
479static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
480{
481 struct task_struct *g, *p;
482
483 SEQ_printf(m, "\n");
484 SEQ_printf(m, "runnable tasks:\n");
485 SEQ_printf(m, " S task PID tree-key switches prio"
486 " wait-time sum-exec sum-sleep\n");
487 SEQ_printf(m, "-------------------------------------------------------"
488 "----------------------------------------------------\n");
489
490 rcu_read_lock();
491 for_each_process_thread(g, p) {
492 if (task_cpu(p) != rq_cpu)
493 continue;
494
495 print_task(m, rq, p);
496 }
497 rcu_read_unlock();
498}
499
500void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
501{
502 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
503 spread, rq0_min_vruntime, spread0;
504 struct rq *rq = cpu_rq(cpu);
505 struct sched_entity *last;
506 unsigned long flags;
507
508#ifdef CONFIG_FAIR_GROUP_SCHED
509 SEQ_printf(m, "\n");
510 SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
511#else
512 SEQ_printf(m, "\n");
513 SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
514#endif
515 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
516 SPLIT_NS(cfs_rq->exec_clock));
517
518 raw_spin_lock_irqsave(&rq->lock, flags);
519 if (rb_first_cached(&cfs_rq->tasks_timeline))
520 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
521 last = __pick_last_entity(cfs_rq);
522 if (last)
523 max_vruntime = last->vruntime;
524 min_vruntime = cfs_rq->min_vruntime;
525 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
526 raw_spin_unlock_irqrestore(&rq->lock, flags);
527 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
528 SPLIT_NS(MIN_vruntime));
529 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
530 SPLIT_NS(min_vruntime));
531 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
532 SPLIT_NS(max_vruntime));
533 spread = max_vruntime - MIN_vruntime;
534 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
535 SPLIT_NS(spread));
536 spread0 = min_vruntime - rq0_min_vruntime;
537 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
538 SPLIT_NS(spread0));
539 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
540 cfs_rq->nr_spread_over);
541 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
542 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
543#ifdef CONFIG_SMP
544 SEQ_printf(m, " .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
545 SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
546 cfs_rq->avg.load_avg);
547 SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
548 cfs_rq->avg.runnable_load_avg);
549 SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
550 cfs_rq->avg.util_avg);
551 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued",
552 cfs_rq->avg.util_est.enqueued);
553 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg",
554 cfs_rq->removed.load_avg);
555 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg",
556 cfs_rq->removed.util_avg);
557 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_sum",
558 cfs_rq->removed.runnable_sum);
559#ifdef CONFIG_FAIR_GROUP_SCHED
560 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
561 cfs_rq->tg_load_avg_contrib);
562 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
563 atomic_long_read(&cfs_rq->tg->load_avg));
564#endif
565#endif
566#ifdef CONFIG_CFS_BANDWIDTH
567 SEQ_printf(m, " .%-30s: %d\n", "throttled",
568 cfs_rq->throttled);
569 SEQ_printf(m, " .%-30s: %d\n", "throttle_count",
570 cfs_rq->throttle_count);
571#endif
572
573#ifdef CONFIG_FAIR_GROUP_SCHED
574 print_cfs_group_stats(m, cpu, cfs_rq->tg);
575#endif
576}
577
578void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
579{
580#ifdef CONFIG_RT_GROUP_SCHED
581 SEQ_printf(m, "\n");
582 SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
583#else
584 SEQ_printf(m, "\n");
585 SEQ_printf(m, "rt_rq[%d]:\n", cpu);
586#endif
587
588#define P(x) \
589 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
590#define PU(x) \
591 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
592#define PN(x) \
593 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
594
595 PU(rt_nr_running);
596#ifdef CONFIG_SMP
597 PU(rt_nr_migratory);
598#endif
599 P(rt_throttled);
600 PN(rt_time);
601 PN(rt_runtime);
602
603#undef PN
604#undef PU
605#undef P
606}
607
608void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
609{
610 struct dl_bw *dl_bw;
611
612 SEQ_printf(m, "\n");
613 SEQ_printf(m, "dl_rq[%d]:\n", cpu);
614
615#define PU(x) \
616 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
617
618 PU(dl_nr_running);
619#ifdef CONFIG_SMP
620 PU(dl_nr_migratory);
621 dl_bw = &cpu_rq(cpu)->rd->dl_bw;
622#else
623 dl_bw = &dl_rq->dl_bw;
624#endif
625 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
626 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
627
628#undef PU
629}
630
631static void print_cpu(struct seq_file *m, int cpu)
632{
633 struct rq *rq = cpu_rq(cpu);
634 unsigned long flags;
635
636#ifdef CONFIG_X86
637 {
638 unsigned int freq = cpu_khz ? : 1;
639
640 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
641 cpu, freq / 1000, (freq % 1000));
642 }
643#else
644 SEQ_printf(m, "cpu#%d\n", cpu);
645#endif
646
647#define P(x) \
648do { \
649 if (sizeof(rq->x) == 4) \
650 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \
651 else \
652 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\
653} while (0)
654
655#define PN(x) \
656 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
657
658 P(nr_running);
659 SEQ_printf(m, " .%-30s: %lu\n", "load",
660 rq->load.weight);
661 P(nr_switches);
662 P(nr_load_updates);
663 P(nr_uninterruptible);
664 PN(next_balance);
665 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
666 PN(clock);
667 PN(clock_task);
668 P(cpu_load[0]);
669 P(cpu_load[1]);
670 P(cpu_load[2]);
671 P(cpu_load[3]);
672 P(cpu_load[4]);
673#undef P
674#undef PN
675
676#ifdef CONFIG_SMP
677#define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n);
678 P64(avg_idle);
679 P64(max_idle_balance_cost);
680#undef P64
681#endif
682
683#define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n));
684 if (schedstat_enabled()) {
685 P(yld_count);
686 P(sched_count);
687 P(sched_goidle);
688 P(ttwu_count);
689 P(ttwu_local);
690 }
691#undef P
692
693 spin_lock_irqsave(&sched_debug_lock, flags);
694 print_cfs_stats(m, cpu);
695 print_rt_stats(m, cpu);
696 print_dl_stats(m, cpu);
697
698 print_rq(m, rq, cpu);
699 spin_unlock_irqrestore(&sched_debug_lock, flags);
700 SEQ_printf(m, "\n");
701}
702
703static const char *sched_tunable_scaling_names[] = {
704 "none",
705 "logaritmic",
706 "linear"
707};
708
709static void sched_debug_header(struct seq_file *m)
710{
711 u64 ktime, sched_clk, cpu_clk;
712 unsigned long flags;
713
714 local_irq_save(flags);
715 ktime = ktime_to_ns(ktime_get());
716 sched_clk = sched_clock();
717 cpu_clk = local_clock();
718 local_irq_restore(flags);
719
720 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
721 init_utsname()->release,
722 (int)strcspn(init_utsname()->version, " "),
723 init_utsname()->version);
724
725#define P(x) \
726 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
727#define PN(x) \
728 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
729 PN(ktime);
730 PN(sched_clk);
731 PN(cpu_clk);
732 P(jiffies);
733#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
734 P(sched_clock_stable());
735#endif
736#undef PN
737#undef P
738
739 SEQ_printf(m, "\n");
740 SEQ_printf(m, "sysctl_sched\n");
741
742#define P(x) \
743 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
744#define PN(x) \
745 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
746 PN(sysctl_sched_latency);
747 PN(sysctl_sched_min_granularity);
748 PN(sysctl_sched_wakeup_granularity);
749 P(sysctl_sched_child_runs_first);
750 P(sysctl_sched_features);
751#undef PN
752#undef P
753
754 SEQ_printf(m, " .%-40s: %d (%s)\n",
755 "sysctl_sched_tunable_scaling",
756 sysctl_sched_tunable_scaling,
757 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
758 SEQ_printf(m, "\n");
759}
760
761static int sched_debug_show(struct seq_file *m, void *v)
762{
763 int cpu = (unsigned long)(v - 2);
764
765 if (cpu != -1)
766 print_cpu(m, cpu);
767 else
768 sched_debug_header(m);
769
770 return 0;
771}
772
773void sysrq_sched_debug_show(void)
774{
775 int cpu;
776
777 sched_debug_header(NULL);
778 for_each_online_cpu(cpu)
779 print_cpu(NULL, cpu);
780
781}
782
783/*
784 * This itererator needs some explanation.
785 * It returns 1 for the header position.
786 * This means 2 is CPU 0.
787 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
788 * to use cpumask_* to iterate over the CPUs.
789 */
790static void *sched_debug_start(struct seq_file *file, loff_t *offset)
791{
792 unsigned long n = *offset;
793
794 if (n == 0)
795 return (void *) 1;
796
797 n--;
798
799 if (n > 0)
800 n = cpumask_next(n - 1, cpu_online_mask);
801 else
802 n = cpumask_first(cpu_online_mask);
803
804 *offset = n + 1;
805
806 if (n < nr_cpu_ids)
807 return (void *)(unsigned long)(n + 2);
808
809 return NULL;
810}
811
812static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
813{
814 (*offset)++;
815 return sched_debug_start(file, offset);
816}
817
818static void sched_debug_stop(struct seq_file *file, void *data)
819{
820}
821
822static const struct seq_operations sched_debug_sops = {
823 .start = sched_debug_start,
824 .next = sched_debug_next,
825 .stop = sched_debug_stop,
826 .show = sched_debug_show,
827};
828
829static int __init init_sched_debug_procfs(void)
830{
831 if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
832 return -ENOMEM;
833 return 0;
834}
835
836__initcall(init_sched_debug_procfs);
837
838#define __P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
839#define P(F) SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
840#define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
841#define PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
842
843
844#ifdef CONFIG_NUMA_BALANCING
845void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
846 unsigned long tpf, unsigned long gsf, unsigned long gpf)
847{
848 SEQ_printf(m, "numa_faults node=%d ", node);
849 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
850 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
851}
852#endif
853
854
855static void sched_show_numa(struct task_struct *p, struct seq_file *m)
856{
857#ifdef CONFIG_NUMA_BALANCING
858 struct mempolicy *pol;
859
860 if (p->mm)
861 P(mm->numa_scan_seq);
862
863 task_lock(p);
864 pol = p->mempolicy;
865 if (pol && !(pol->flags & MPOL_F_MORON))
866 pol = NULL;
867 mpol_get(pol);
868 task_unlock(p);
869
870 P(numa_pages_migrated);
871 P(numa_preferred_nid);
872 P(total_numa_faults);
873 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
874 task_node(p), task_numa_group_id(p));
875 show_numa_stats(p, m);
876 mpol_put(pol);
877#endif
878}
879
880void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
881 struct seq_file *m)
882{
883 unsigned long nr_switches;
884
885 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
886 get_nr_threads(p));
887 SEQ_printf(m,
888 "---------------------------------------------------------"
889 "----------\n");
890#define __P(F) \
891 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
892#define P(F) \
893 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
894#define P_SCHEDSTAT(F) \
895 SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
896#define __PN(F) \
897 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
898#define PN(F) \
899 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
900#define PN_SCHEDSTAT(F) \
901 SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
902
903 PN(se.exec_start);
904 PN(se.vruntime);
905 PN(se.sum_exec_runtime);
906
907 nr_switches = p->nvcsw + p->nivcsw;
908
909 P(se.nr_migrations);
910
911 if (schedstat_enabled()) {
912 u64 avg_atom, avg_per_cpu;
913
914 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
915 PN_SCHEDSTAT(se.statistics.wait_start);
916 PN_SCHEDSTAT(se.statistics.sleep_start);
917 PN_SCHEDSTAT(se.statistics.block_start);
918 PN_SCHEDSTAT(se.statistics.sleep_max);
919 PN_SCHEDSTAT(se.statistics.block_max);
920 PN_SCHEDSTAT(se.statistics.exec_max);
921 PN_SCHEDSTAT(se.statistics.slice_max);
922 PN_SCHEDSTAT(se.statistics.wait_max);
923 PN_SCHEDSTAT(se.statistics.wait_sum);
924 P_SCHEDSTAT(se.statistics.wait_count);
925 PN_SCHEDSTAT(se.statistics.iowait_sum);
926 P_SCHEDSTAT(se.statistics.iowait_count);
927 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
928 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
929 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
930 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
931 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
932 P_SCHEDSTAT(se.statistics.nr_wakeups);
933 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
934 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
935 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
936 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
937 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
938 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
939 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
940 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
941
942 avg_atom = p->se.sum_exec_runtime;
943 if (nr_switches)
944 avg_atom = div64_ul(avg_atom, nr_switches);
945 else
946 avg_atom = -1LL;
947
948 avg_per_cpu = p->se.sum_exec_runtime;
949 if (p->se.nr_migrations) {
950 avg_per_cpu = div64_u64(avg_per_cpu,
951 p->se.nr_migrations);
952 } else {
953 avg_per_cpu = -1LL;
954 }
955
956 __PN(avg_atom);
957 __PN(avg_per_cpu);
958 }
959
960 __P(nr_switches);
961 SEQ_printf(m, "%-45s:%21Ld\n",
962 "nr_voluntary_switches", (long long)p->nvcsw);
963 SEQ_printf(m, "%-45s:%21Ld\n",
964 "nr_involuntary_switches", (long long)p->nivcsw);
965
966 P(se.load.weight);
967 P(se.runnable_weight);
968#ifdef CONFIG_SMP
969 P(se.avg.load_sum);
970 P(se.avg.runnable_load_sum);
971 P(se.avg.util_sum);
972 P(se.avg.load_avg);
973 P(se.avg.runnable_load_avg);
974 P(se.avg.util_avg);
975 P(se.avg.last_update_time);
976 P(se.avg.util_est.ewma);
977 P(se.avg.util_est.enqueued);
978#endif
979 P(policy);
980 P(prio);
981 if (task_has_dl_policy(p)) {
982 P(dl.runtime);
983 P(dl.deadline);
984 }
985#undef PN_SCHEDSTAT
986#undef PN
987#undef __PN
988#undef P_SCHEDSTAT
989#undef P
990#undef __P
991
992 {
993 unsigned int this_cpu = raw_smp_processor_id();
994 u64 t0, t1;
995
996 t0 = cpu_clock(this_cpu);
997 t1 = cpu_clock(this_cpu);
998 SEQ_printf(m, "%-45s:%21Ld\n",
999 "clock-delta", (long long)(t1-t0));
1000 }
1001
1002 sched_show_numa(p, m);
1003}
1004
1005void proc_sched_set_task(struct task_struct *p)
1006{
1007#ifdef CONFIG_SCHEDSTATS
1008 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1009#endif
1010}
1011