1 | /* internal.h: mm/ internal definitions |
2 | * |
3 | * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. |
4 | * Written by David Howells (dhowells@redhat.com) |
5 | * |
6 | * This program is free software; you can redistribute it and/or |
7 | * modify it under the terms of the GNU General Public License |
8 | * as published by the Free Software Foundation; either version |
9 | * 2 of the License, or (at your option) any later version. |
10 | */ |
11 | #ifndef __MM_INTERNAL_H |
12 | #define __MM_INTERNAL_H |
13 | |
14 | #include <linux/fs.h> |
15 | #include <linux/mm.h> |
16 | #include <linux/pagemap.h> |
17 | #include <linux/tracepoint-defs.h> |
18 | |
19 | /* |
20 | * The set of flags that only affect watermark checking and reclaim |
21 | * behaviour. This is used by the MM to obey the caller constraints |
22 | * about IO, FS and watermark checking while ignoring placement |
23 | * hints such as HIGHMEM usage. |
24 | */ |
25 | #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ |
26 | __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ |
27 | __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ |
28 | __GFP_ATOMIC) |
29 | |
30 | /* The GFP flags allowed during early boot */ |
31 | #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) |
32 | |
33 | /* Control allocation cpuset and node placement constraints */ |
34 | #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) |
35 | |
36 | /* Do not use these with a slab allocator */ |
37 | #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) |
38 | |
39 | void page_writeback_init(void); |
40 | |
41 | vm_fault_t do_swap_page(struct vm_fault *vmf); |
42 | |
43 | void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, |
44 | unsigned long floor, unsigned long ceiling); |
45 | |
46 | static inline bool can_madv_dontneed_vma(struct vm_area_struct *vma) |
47 | { |
48 | return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); |
49 | } |
50 | |
51 | void unmap_page_range(struct mmu_gather *tlb, |
52 | struct vm_area_struct *vma, |
53 | unsigned long addr, unsigned long end, |
54 | struct zap_details *details); |
55 | |
56 | extern unsigned int __do_page_cache_readahead(struct address_space *mapping, |
57 | struct file *filp, pgoff_t offset, unsigned long nr_to_read, |
58 | unsigned long lookahead_size); |
59 | |
60 | /* |
61 | * Submit IO for the read-ahead request in file_ra_state. |
62 | */ |
63 | static inline unsigned long ra_submit(struct file_ra_state *ra, |
64 | struct address_space *mapping, struct file *filp) |
65 | { |
66 | return __do_page_cache_readahead(mapping, filp, |
67 | ra->start, ra->size, ra->async_size); |
68 | } |
69 | |
70 | /* |
71 | * Turn a non-refcounted page (->_refcount == 0) into refcounted with |
72 | * a count of one. |
73 | */ |
74 | static inline void set_page_refcounted(struct page *page) |
75 | { |
76 | VM_BUG_ON_PAGE(PageTail(page), page); |
77 | VM_BUG_ON_PAGE(page_ref_count(page), page); |
78 | set_page_count(page, 1); |
79 | } |
80 | |
81 | extern unsigned long highest_memmap_pfn; |
82 | |
83 | /* |
84 | * Maximum number of reclaim retries without progress before the OOM |
85 | * killer is consider the only way forward. |
86 | */ |
87 | #define MAX_RECLAIM_RETRIES 16 |
88 | |
89 | /* |
90 | * in mm/vmscan.c: |
91 | */ |
92 | extern int isolate_lru_page(struct page *page); |
93 | extern void putback_lru_page(struct page *page); |
94 | |
95 | /* |
96 | * in mm/rmap.c: |
97 | */ |
98 | extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); |
99 | |
100 | /* |
101 | * in mm/page_alloc.c |
102 | */ |
103 | |
104 | /* |
105 | * Structure for holding the mostly immutable allocation parameters passed |
106 | * between functions involved in allocations, including the alloc_pages* |
107 | * family of functions. |
108 | * |
109 | * nodemask, migratetype and high_zoneidx are initialized only once in |
110 | * __alloc_pages_nodemask() and then never change. |
111 | * |
112 | * zonelist, preferred_zone and classzone_idx are set first in |
113 | * __alloc_pages_nodemask() for the fast path, and might be later changed |
114 | * in __alloc_pages_slowpath(). All other functions pass the whole strucure |
115 | * by a const pointer. |
116 | */ |
117 | struct alloc_context { |
118 | struct zonelist *zonelist; |
119 | nodemask_t *nodemask; |
120 | struct zoneref *preferred_zoneref; |
121 | int migratetype; |
122 | enum zone_type high_zoneidx; |
123 | bool spread_dirty_pages; |
124 | }; |
125 | |
126 | #define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref) |
127 | |
128 | /* |
129 | * Locate the struct page for both the matching buddy in our |
130 | * pair (buddy1) and the combined O(n+1) page they form (page). |
131 | * |
132 | * 1) Any buddy B1 will have an order O twin B2 which satisfies |
133 | * the following equation: |
134 | * B2 = B1 ^ (1 << O) |
135 | * For example, if the starting buddy (buddy2) is #8 its order |
136 | * 1 buddy is #10: |
137 | * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 |
138 | * |
139 | * 2) Any buddy B will have an order O+1 parent P which |
140 | * satisfies the following equation: |
141 | * P = B & ~(1 << O) |
142 | * |
143 | * Assumption: *_mem_map is contiguous at least up to MAX_ORDER |
144 | */ |
145 | static inline unsigned long |
146 | __find_buddy_pfn(unsigned long page_pfn, unsigned int order) |
147 | { |
148 | return page_pfn ^ (1 << order); |
149 | } |
150 | |
151 | extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, |
152 | unsigned long end_pfn, struct zone *zone); |
153 | |
154 | static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, |
155 | unsigned long end_pfn, struct zone *zone) |
156 | { |
157 | if (zone->contiguous) |
158 | return pfn_to_page(start_pfn); |
159 | |
160 | return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); |
161 | } |
162 | |
163 | extern int __isolate_free_page(struct page *page, unsigned int order); |
164 | extern void memblock_free_pages(struct page *page, unsigned long pfn, |
165 | unsigned int order); |
166 | extern void __free_pages_core(struct page *page, unsigned int order); |
167 | extern void prep_compound_page(struct page *page, unsigned int order); |
168 | extern void post_alloc_hook(struct page *page, unsigned int order, |
169 | gfp_t gfp_flags); |
170 | extern int user_min_free_kbytes; |
171 | |
172 | #if defined CONFIG_COMPACTION || defined CONFIG_CMA |
173 | |
174 | /* |
175 | * in mm/compaction.c |
176 | */ |
177 | /* |
178 | * compact_control is used to track pages being migrated and the free pages |
179 | * they are being migrated to during memory compaction. The free_pfn starts |
180 | * at the end of a zone and migrate_pfn begins at the start. Movable pages |
181 | * are moved to the end of a zone during a compaction run and the run |
182 | * completes when free_pfn <= migrate_pfn |
183 | */ |
184 | struct compact_control { |
185 | struct list_head freepages; /* List of free pages to migrate to */ |
186 | struct list_head migratepages; /* List of pages being migrated */ |
187 | unsigned int nr_freepages; /* Number of isolated free pages */ |
188 | unsigned int nr_migratepages; /* Number of pages to migrate */ |
189 | unsigned long free_pfn; /* isolate_freepages search base */ |
190 | unsigned long migrate_pfn; /* isolate_migratepages search base */ |
191 | unsigned long fast_start_pfn; /* a pfn to start linear scan from */ |
192 | struct zone *zone; |
193 | unsigned long total_migrate_scanned; |
194 | unsigned long total_free_scanned; |
195 | unsigned short fast_search_fail;/* failures to use free list searches */ |
196 | short search_order; /* order to start a fast search at */ |
197 | const gfp_t gfp_mask; /* gfp mask of a direct compactor */ |
198 | int order; /* order a direct compactor needs */ |
199 | int migratetype; /* migratetype of direct compactor */ |
200 | const unsigned int alloc_flags; /* alloc flags of a direct compactor */ |
201 | const int classzone_idx; /* zone index of a direct compactor */ |
202 | enum migrate_mode mode; /* Async or sync migration mode */ |
203 | bool ignore_skip_hint; /* Scan blocks even if marked skip */ |
204 | bool no_set_skip_hint; /* Don't mark blocks for skipping */ |
205 | bool ignore_block_suitable; /* Scan blocks considered unsuitable */ |
206 | bool direct_compaction; /* False from kcompactd or /proc/... */ |
207 | bool whole_zone; /* Whole zone should/has been scanned */ |
208 | bool contended; /* Signal lock or sched contention */ |
209 | bool rescan; /* Rescanning the same pageblock */ |
210 | }; |
211 | |
212 | /* |
213 | * Used in direct compaction when a page should be taken from the freelists |
214 | * immediately when one is created during the free path. |
215 | */ |
216 | struct capture_control { |
217 | struct compact_control *cc; |
218 | struct page *page; |
219 | }; |
220 | |
221 | unsigned long |
222 | isolate_freepages_range(struct compact_control *cc, |
223 | unsigned long start_pfn, unsigned long end_pfn); |
224 | unsigned long |
225 | isolate_migratepages_range(struct compact_control *cc, |
226 | unsigned long low_pfn, unsigned long end_pfn); |
227 | int find_suitable_fallback(struct free_area *area, unsigned int order, |
228 | int migratetype, bool only_stealable, bool *can_steal); |
229 | |
230 | #endif |
231 | |
232 | /* |
233 | * This function returns the order of a free page in the buddy system. In |
234 | * general, page_zone(page)->lock must be held by the caller to prevent the |
235 | * page from being allocated in parallel and returning garbage as the order. |
236 | * If a caller does not hold page_zone(page)->lock, it must guarantee that the |
237 | * page cannot be allocated or merged in parallel. Alternatively, it must |
238 | * handle invalid values gracefully, and use page_order_unsafe() below. |
239 | */ |
240 | static inline unsigned int page_order(struct page *page) |
241 | { |
242 | /* PageBuddy() must be checked by the caller */ |
243 | return page_private(page); |
244 | } |
245 | |
246 | /* |
247 | * Like page_order(), but for callers who cannot afford to hold the zone lock. |
248 | * PageBuddy() should be checked first by the caller to minimize race window, |
249 | * and invalid values must be handled gracefully. |
250 | * |
251 | * READ_ONCE is used so that if the caller assigns the result into a local |
252 | * variable and e.g. tests it for valid range before using, the compiler cannot |
253 | * decide to remove the variable and inline the page_private(page) multiple |
254 | * times, potentially observing different values in the tests and the actual |
255 | * use of the result. |
256 | */ |
257 | #define page_order_unsafe(page) READ_ONCE(page_private(page)) |
258 | |
259 | static inline bool is_cow_mapping(vm_flags_t flags) |
260 | { |
261 | return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; |
262 | } |
263 | |
264 | /* |
265 | * These three helpers classifies VMAs for virtual memory accounting. |
266 | */ |
267 | |
268 | /* |
269 | * Executable code area - executable, not writable, not stack |
270 | */ |
271 | static inline bool is_exec_mapping(vm_flags_t flags) |
272 | { |
273 | return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; |
274 | } |
275 | |
276 | /* |
277 | * Stack area - atomatically grows in one direction |
278 | * |
279 | * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: |
280 | * do_mmap() forbids all other combinations. |
281 | */ |
282 | static inline bool is_stack_mapping(vm_flags_t flags) |
283 | { |
284 | return (flags & VM_STACK) == VM_STACK; |
285 | } |
286 | |
287 | /* |
288 | * Data area - private, writable, not stack |
289 | */ |
290 | static inline bool is_data_mapping(vm_flags_t flags) |
291 | { |
292 | return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; |
293 | } |
294 | |
295 | /* mm/util.c */ |
296 | void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, |
297 | struct vm_area_struct *prev, struct rb_node *rb_parent); |
298 | |
299 | #ifdef CONFIG_MMU |
300 | extern long populate_vma_page_range(struct vm_area_struct *vma, |
301 | unsigned long start, unsigned long end, int *nonblocking); |
302 | extern void munlock_vma_pages_range(struct vm_area_struct *vma, |
303 | unsigned long start, unsigned long end); |
304 | static inline void munlock_vma_pages_all(struct vm_area_struct *vma) |
305 | { |
306 | munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); |
307 | } |
308 | |
309 | /* |
310 | * must be called with vma's mmap_sem held for read or write, and page locked. |
311 | */ |
312 | extern void mlock_vma_page(struct page *page); |
313 | extern unsigned int munlock_vma_page(struct page *page); |
314 | |
315 | /* |
316 | * Clear the page's PageMlocked(). This can be useful in a situation where |
317 | * we want to unconditionally remove a page from the pagecache -- e.g., |
318 | * on truncation or freeing. |
319 | * |
320 | * It is legal to call this function for any page, mlocked or not. |
321 | * If called for a page that is still mapped by mlocked vmas, all we do |
322 | * is revert to lazy LRU behaviour -- semantics are not broken. |
323 | */ |
324 | extern void clear_page_mlock(struct page *page); |
325 | |
326 | /* |
327 | * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() |
328 | * (because that does not go through the full procedure of migration ptes): |
329 | * to migrate the Mlocked page flag; update statistics. |
330 | */ |
331 | static inline void mlock_migrate_page(struct page *newpage, struct page *page) |
332 | { |
333 | if (TestClearPageMlocked(page)) { |
334 | int nr_pages = hpage_nr_pages(page); |
335 | |
336 | /* Holding pmd lock, no change in irq context: __mod is safe */ |
337 | __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); |
338 | SetPageMlocked(newpage); |
339 | __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); |
340 | } |
341 | } |
342 | |
343 | extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); |
344 | |
345 | /* |
346 | * At what user virtual address is page expected in @vma? |
347 | */ |
348 | static inline unsigned long |
349 | __vma_address(struct page *page, struct vm_area_struct *vma) |
350 | { |
351 | pgoff_t pgoff = page_to_pgoff(page); |
352 | return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); |
353 | } |
354 | |
355 | static inline unsigned long |
356 | vma_address(struct page *page, struct vm_area_struct *vma) |
357 | { |
358 | unsigned long start, end; |
359 | |
360 | start = __vma_address(page, vma); |
361 | end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1); |
362 | |
363 | /* page should be within @vma mapping range */ |
364 | VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma); |
365 | |
366 | return max(start, vma->vm_start); |
367 | } |
368 | |
369 | #else /* !CONFIG_MMU */ |
370 | static inline void clear_page_mlock(struct page *page) { } |
371 | static inline void mlock_vma_page(struct page *page) { } |
372 | static inline void mlock_migrate_page(struct page *new, struct page *old) { } |
373 | |
374 | #endif /* !CONFIG_MMU */ |
375 | |
376 | /* |
377 | * Return the mem_map entry representing the 'offset' subpage within |
378 | * the maximally aligned gigantic page 'base'. Handle any discontiguity |
379 | * in the mem_map at MAX_ORDER_NR_PAGES boundaries. |
380 | */ |
381 | static inline struct page *mem_map_offset(struct page *base, int offset) |
382 | { |
383 | if (unlikely(offset >= MAX_ORDER_NR_PAGES)) |
384 | return nth_page(base, offset); |
385 | return base + offset; |
386 | } |
387 | |
388 | /* |
389 | * Iterator over all subpages within the maximally aligned gigantic |
390 | * page 'base'. Handle any discontiguity in the mem_map. |
391 | */ |
392 | static inline struct page *mem_map_next(struct page *iter, |
393 | struct page *base, int offset) |
394 | { |
395 | if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { |
396 | unsigned long pfn = page_to_pfn(base) + offset; |
397 | if (!pfn_valid(pfn)) |
398 | return NULL; |
399 | return pfn_to_page(pfn); |
400 | } |
401 | return iter + 1; |
402 | } |
403 | |
404 | /* Memory initialisation debug and verification */ |
405 | enum mminit_level { |
406 | MMINIT_WARNING, |
407 | MMINIT_VERIFY, |
408 | MMINIT_TRACE |
409 | }; |
410 | |
411 | #ifdef CONFIG_DEBUG_MEMORY_INIT |
412 | |
413 | extern int mminit_loglevel; |
414 | |
415 | #define mminit_dprintk(level, prefix, fmt, arg...) \ |
416 | do { \ |
417 | if (level < mminit_loglevel) { \ |
418 | if (level <= MMINIT_WARNING) \ |
419 | pr_warn("mminit::" prefix " " fmt, ##arg); \ |
420 | else \ |
421 | printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ |
422 | } \ |
423 | } while (0) |
424 | |
425 | extern void mminit_verify_pageflags_layout(void); |
426 | extern void mminit_verify_zonelist(void); |
427 | #else |
428 | |
429 | static inline void mminit_dprintk(enum mminit_level level, |
430 | const char *prefix, const char *fmt, ...) |
431 | { |
432 | } |
433 | |
434 | static inline void mminit_verify_pageflags_layout(void) |
435 | { |
436 | } |
437 | |
438 | static inline void mminit_verify_zonelist(void) |
439 | { |
440 | } |
441 | #endif /* CONFIG_DEBUG_MEMORY_INIT */ |
442 | |
443 | /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ |
444 | #if defined(CONFIG_SPARSEMEM) |
445 | extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, |
446 | unsigned long *end_pfn); |
447 | #else |
448 | static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, |
449 | unsigned long *end_pfn) |
450 | { |
451 | } |
452 | #endif /* CONFIG_SPARSEMEM */ |
453 | |
454 | #define NODE_RECLAIM_NOSCAN -2 |
455 | #define NODE_RECLAIM_FULL -1 |
456 | #define NODE_RECLAIM_SOME 0 |
457 | #define NODE_RECLAIM_SUCCESS 1 |
458 | |
459 | #ifdef CONFIG_NUMA |
460 | extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); |
461 | #else |
462 | static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, |
463 | unsigned int order) |
464 | { |
465 | return NODE_RECLAIM_NOSCAN; |
466 | } |
467 | #endif |
468 | |
469 | extern int hwpoison_filter(struct page *p); |
470 | |
471 | extern u32 hwpoison_filter_dev_major; |
472 | extern u32 hwpoison_filter_dev_minor; |
473 | extern u64 hwpoison_filter_flags_mask; |
474 | extern u64 hwpoison_filter_flags_value; |
475 | extern u64 hwpoison_filter_memcg; |
476 | extern u32 hwpoison_filter_enable; |
477 | |
478 | extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, |
479 | unsigned long, unsigned long, |
480 | unsigned long, unsigned long); |
481 | |
482 | extern void set_pageblock_order(void); |
483 | unsigned long reclaim_clean_pages_from_list(struct zone *zone, |
484 | struct list_head *page_list); |
485 | /* The ALLOC_WMARK bits are used as an index to zone->watermark */ |
486 | #define ALLOC_WMARK_MIN WMARK_MIN |
487 | #define ALLOC_WMARK_LOW WMARK_LOW |
488 | #define ALLOC_WMARK_HIGH WMARK_HIGH |
489 | #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ |
490 | |
491 | /* Mask to get the watermark bits */ |
492 | #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) |
493 | |
494 | /* |
495 | * Only MMU archs have async oom victim reclaim - aka oom_reaper so we |
496 | * cannot assume a reduced access to memory reserves is sufficient for |
497 | * !MMU |
498 | */ |
499 | #ifdef CONFIG_MMU |
500 | #define ALLOC_OOM 0x08 |
501 | #else |
502 | #define ALLOC_OOM ALLOC_NO_WATERMARKS |
503 | #endif |
504 | |
505 | #define ALLOC_HARDER 0x10 /* try to alloc harder */ |
506 | #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ |
507 | #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ |
508 | #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ |
509 | #ifdef CONFIG_ZONE_DMA32 |
510 | #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ |
511 | #else |
512 | #define ALLOC_NOFRAGMENT 0x0 |
513 | #endif |
514 | #define ALLOC_KSWAPD 0x200 /* allow waking of kswapd */ |
515 | |
516 | enum ttu_flags; |
517 | struct tlbflush_unmap_batch; |
518 | |
519 | |
520 | /* |
521 | * only for MM internal work items which do not depend on |
522 | * any allocations or locks which might depend on allocations |
523 | */ |
524 | extern struct workqueue_struct *mm_percpu_wq; |
525 | |
526 | #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH |
527 | void try_to_unmap_flush(void); |
528 | void try_to_unmap_flush_dirty(void); |
529 | void flush_tlb_batched_pending(struct mm_struct *mm); |
530 | #else |
531 | static inline void try_to_unmap_flush(void) |
532 | { |
533 | } |
534 | static inline void try_to_unmap_flush_dirty(void) |
535 | { |
536 | } |
537 | static inline void flush_tlb_batched_pending(struct mm_struct *mm) |
538 | { |
539 | } |
540 | #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ |
541 | |
542 | extern const struct trace_print_flags pageflag_names[]; |
543 | extern const struct trace_print_flags vmaflag_names[]; |
544 | extern const struct trace_print_flags gfpflag_names[]; |
545 | |
546 | static inline bool is_migrate_highatomic(enum migratetype migratetype) |
547 | { |
548 | return migratetype == MIGRATE_HIGHATOMIC; |
549 | } |
550 | |
551 | static inline bool is_migrate_highatomic_page(struct page *page) |
552 | { |
553 | return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; |
554 | } |
555 | |
556 | void setup_zone_pageset(struct zone *zone); |
557 | extern struct page *alloc_new_node_page(struct page *page, unsigned long node); |
558 | #endif /* __MM_INTERNAL_H */ |
559 | |