1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75#define pr_fmt(fmt) "UDP: " fmt
76
77#include <linux/bpf-cgroup.h>
78#include <linux/uaccess.h>
79#include <asm/ioctls.h>
80#include <linux/memblock.h>
81#include <linux/highmem.h>
82#include <linux/types.h>
83#include <linux/fcntl.h>
84#include <linux/module.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/igmp.h>
88#include <linux/inetdevice.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/inet.h>
94#include <linux/netdevice.h>
95#include <linux/slab.h>
96#include <net/tcp_states.h>
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <net/net_namespace.h>
101#include <net/icmp.h>
102#include <net/inet_hashtables.h>
103#include <net/ip_tunnels.h>
104#include <net/route.h>
105#include <net/checksum.h>
106#include <net/gso.h>
107#include <net/xfrm.h>
108#include <trace/events/udp.h>
109#include <linux/static_key.h>
110#include <linux/btf_ids.h>
111#include <trace/events/skb.h>
112#include <net/busy_poll.h>
113#include "udp_impl.h"
114#include <net/sock_reuseport.h>
115#include <net/addrconf.h>
116#include <net/udp_tunnel.h>
117#include <net/gro.h>
118#if IS_ENABLED(CONFIG_IPV6)
119#include <net/ipv6_stubs.h>
120#endif
121
122struct udp_table udp_table __read_mostly;
123EXPORT_SYMBOL(udp_table);
124
125long sysctl_udp_mem[3] __read_mostly;
126EXPORT_SYMBOL(sysctl_udp_mem);
127
128atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129EXPORT_SYMBOL(udp_memory_allocated);
130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133#define MAX_UDP_PORTS 65536
134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
136static struct udp_table *udp_get_table_prot(struct sock *sk)
137{
138 return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139}
140
141static int udp_lib_lport_inuse(struct net *net, __u16 num,
142 const struct udp_hslot *hslot,
143 unsigned long *bitmap,
144 struct sock *sk, unsigned int log)
145{
146 struct sock *sk2;
147 kuid_t uid = sock_i_uid(sk);
148
149 sk_for_each(sk2, &hslot->head) {
150 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
151 sk2 != sk &&
152 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153 (!sk2->sk_reuse || !sk->sk_reuse) &&
154 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156 inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) {
157 if (sk2->sk_reuseport && sk->sk_reuseport &&
158 !rcu_access_pointer(sk->sk_reuseport_cb) &&
159 uid_eq(left: uid, right: sock_i_uid(sk: sk2))) {
160 if (!bitmap)
161 return 0;
162 } else {
163 if (!bitmap)
164 return 1;
165 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
166 bitmap);
167 }
168 }
169 }
170 return 0;
171}
172
173/*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178 struct udp_hslot *hslot2,
179 struct sock *sk)
180{
181 struct sock *sk2;
182 kuid_t uid = sock_i_uid(sk);
183 int res = 0;
184
185 spin_lock(lock: &hslot2->lock);
186 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
188 sk2 != sk &&
189 (udp_sk(sk2)->udp_port_hash == num) &&
190 (!sk2->sk_reuse || !sk->sk_reuse) &&
191 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193 inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) {
194 if (sk2->sk_reuseport && sk->sk_reuseport &&
195 !rcu_access_pointer(sk->sk_reuseport_cb) &&
196 uid_eq(left: uid, right: sock_i_uid(sk: sk2))) {
197 res = 0;
198 } else {
199 res = 1;
200 }
201 break;
202 }
203 }
204 spin_unlock(lock: &hslot2->lock);
205 return res;
206}
207
208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209{
210 struct net *net = sock_net(sk);
211 kuid_t uid = sock_i_uid(sk);
212 struct sock *sk2;
213
214 sk_for_each(sk2, &hslot->head) {
215 if (net_eq(net1: sock_net(sk: sk2), net2: net) &&
216 sk2 != sk &&
217 sk2->sk_family == sk->sk_family &&
218 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221 sk2->sk_reuseport && uid_eq(left: uid, right: sock_i_uid(sk: sk2)) &&
222 inet_rcv_saddr_equal(sk, sk2, match_wildcard: false)) {
223 return reuseport_add_sock(sk, sk2,
224 bind_inany: inet_rcv_saddr_any(sk));
225 }
226 }
227
228 return reuseport_alloc(sk, bind_inany: inet_rcv_saddr_any(sk));
229}
230
231/**
232 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 * @sk: socket struct in question
235 * @snum: port number to look up
236 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 * with NULL address
238 */
239int udp_lib_get_port(struct sock *sk, unsigned short snum,
240 unsigned int hash2_nulladdr)
241{
242 struct udp_table *udptable = udp_get_table_prot(sk);
243 struct udp_hslot *hslot, *hslot2;
244 struct net *net = sock_net(sk);
245 int error = -EADDRINUSE;
246
247 if (!snum) {
248 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249 unsigned short first, last;
250 int low, high, remaining;
251 unsigned int rand;
252
253 inet_sk_get_local_port_range(sk, low: &low, high: &high);
254 remaining = (high - low) + 1;
255
256 rand = get_random_u32();
257 first = reciprocal_scale(val: rand, ep_ro: remaining) + low;
258 /*
259 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260 */
261 rand = (rand | 1) * (udptable->mask + 1);
262 last = first + udptable->mask + 1;
263 do {
264 hslot = udp_hashslot(table: udptable, net, num: first);
265 bitmap_zero(dst: bitmap, PORTS_PER_CHAIN);
266 spin_lock_bh(lock: &hslot->lock);
267 udp_lib_lport_inuse(net, num: snum, hslot, bitmap, sk,
268 log: udptable->log);
269
270 snum = first;
271 /*
272 * Iterate on all possible values of snum for this hash.
273 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274 * give us randomization and full range coverage.
275 */
276 do {
277 if (low <= snum && snum <= high &&
278 !test_bit(snum >> udptable->log, bitmap) &&
279 !inet_is_local_reserved_port(net, port: snum))
280 goto found;
281 snum += rand;
282 } while (snum != first);
283 spin_unlock_bh(lock: &hslot->lock);
284 cond_resched();
285 } while (++first != last);
286 goto fail;
287 } else {
288 hslot = udp_hashslot(table: udptable, net, num: snum);
289 spin_lock_bh(lock: &hslot->lock);
290 if (hslot->count > 10) {
291 int exist;
292 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294 slot2 &= udptable->mask;
295 hash2_nulladdr &= udptable->mask;
296
297 hslot2 = udp_hashslot2(table: udptable, hash: slot2);
298 if (hslot->count < hslot2->count)
299 goto scan_primary_hash;
300
301 exist = udp_lib_lport_inuse2(net, num: snum, hslot2, sk);
302 if (!exist && (hash2_nulladdr != slot2)) {
303 hslot2 = udp_hashslot2(table: udptable, hash: hash2_nulladdr);
304 exist = udp_lib_lport_inuse2(net, num: snum, hslot2,
305 sk);
306 }
307 if (exist)
308 goto fail_unlock;
309 else
310 goto found;
311 }
312scan_primary_hash:
313 if (udp_lib_lport_inuse(net, num: snum, hslot, NULL, sk, log: 0))
314 goto fail_unlock;
315 }
316found:
317 inet_sk(sk)->inet_num = snum;
318 udp_sk(sk)->udp_port_hash = snum;
319 udp_sk(sk)->udp_portaddr_hash ^= snum;
320 if (sk_unhashed(sk)) {
321 if (sk->sk_reuseport &&
322 udp_reuseport_add_sock(sk, hslot)) {
323 inet_sk(sk)->inet_num = 0;
324 udp_sk(sk)->udp_port_hash = 0;
325 udp_sk(sk)->udp_portaddr_hash ^= snum;
326 goto fail_unlock;
327 }
328
329 sk_add_node_rcu(sk, list: &hslot->head);
330 hslot->count++;
331 sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: 1);
332
333 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
334 spin_lock(lock: &hslot2->lock);
335 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336 sk->sk_family == AF_INET6)
337 hlist_add_tail_rcu(n: &udp_sk(sk)->udp_portaddr_node,
338 h: &hslot2->head);
339 else
340 hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node,
341 h: &hslot2->head);
342 hslot2->count++;
343 spin_unlock(lock: &hslot2->lock);
344 }
345 sock_set_flag(sk, flag: SOCK_RCU_FREE);
346 error = 0;
347fail_unlock:
348 spin_unlock_bh(lock: &hslot->lock);
349fail:
350 return error;
351}
352EXPORT_SYMBOL(udp_lib_get_port);
353
354int udp_v4_get_port(struct sock *sk, unsigned short snum)
355{
356 unsigned int hash2_nulladdr =
357 ipv4_portaddr_hash(net: sock_net(sk), htonl(INADDR_ANY), port: snum);
358 unsigned int hash2_partial =
359 ipv4_portaddr_hash(net: sock_net(sk), inet_sk(sk)->inet_rcv_saddr, port: 0);
360
361 /* precompute partial secondary hash */
362 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363 return udp_lib_get_port(sk, snum, hash2_nulladdr);
364}
365
366static int compute_score(struct sock *sk, struct net *net,
367 __be32 saddr, __be16 sport,
368 __be32 daddr, unsigned short hnum,
369 int dif, int sdif)
370{
371 int score;
372 struct inet_sock *inet;
373 bool dev_match;
374
375 if (!net_eq(net1: sock_net(sk), net2: net) ||
376 udp_sk(sk)->udp_port_hash != hnum ||
377 ipv6_only_sock(sk))
378 return -1;
379
380 if (sk->sk_rcv_saddr != daddr)
381 return -1;
382
383 score = (sk->sk_family == PF_INET) ? 2 : 1;
384
385 inet = inet_sk(sk);
386 if (inet->inet_daddr) {
387 if (inet->inet_daddr != saddr)
388 return -1;
389 score += 4;
390 }
391
392 if (inet->inet_dport) {
393 if (inet->inet_dport != sport)
394 return -1;
395 score += 4;
396 }
397
398 dev_match = udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if,
399 dif, sdif);
400 if (!dev_match)
401 return -1;
402 if (sk->sk_bound_dev_if)
403 score += 4;
404
405 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406 score++;
407 return score;
408}
409
410INDIRECT_CALLABLE_SCOPE
411u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412 const __be32 faddr, const __be16 fport)
413{
414 static u32 udp_ehash_secret __read_mostly;
415
416 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417
418 return __inet_ehashfn(laddr, lport, faddr, fport,
419 initval: udp_ehash_secret + net_hash_mix(net));
420}
421
422/* called with rcu_read_lock() */
423static struct sock *udp4_lib_lookup2(struct net *net,
424 __be32 saddr, __be16 sport,
425 __be32 daddr, unsigned int hnum,
426 int dif, int sdif,
427 struct udp_hslot *hslot2,
428 struct sk_buff *skb)
429{
430 struct sock *sk, *result;
431 int score, badness;
432
433 result = NULL;
434 badness = 0;
435 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436 score = compute_score(sk, net, saddr, sport,
437 daddr, hnum, dif, sdif);
438 if (score > badness) {
439 badness = score;
440
441 if (sk->sk_state == TCP_ESTABLISHED) {
442 result = sk;
443 continue;
444 }
445
446 result = inet_lookup_reuseport(net, sk, skb, doff: sizeof(struct udphdr),
447 saddr, sport, daddr, hnum, ehashfn: udp_ehashfn);
448 if (!result) {
449 result = sk;
450 continue;
451 }
452
453 /* Fall back to scoring if group has connections */
454 if (!reuseport_has_conns(sk))
455 return result;
456
457 /* Reuseport logic returned an error, keep original score. */
458 if (IS_ERR(ptr: result))
459 continue;
460
461 badness = compute_score(sk: result, net, saddr, sport,
462 daddr, hnum, dif, sdif);
463
464 }
465 }
466 return result;
467}
468
469/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470 * harder than this. -DaveM
471 */
472struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473 __be16 sport, __be32 daddr, __be16 dport, int dif,
474 int sdif, struct udp_table *udptable, struct sk_buff *skb)
475{
476 unsigned short hnum = ntohs(dport);
477 unsigned int hash2, slot2;
478 struct udp_hslot *hslot2;
479 struct sock *result, *sk;
480
481 hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum);
482 slot2 = hash2 & udptable->mask;
483 hslot2 = &udptable->hash2[slot2];
484
485 /* Lookup connected or non-wildcard socket */
486 result = udp4_lib_lookup2(net, saddr, sport,
487 daddr, hnum, dif, sdif,
488 hslot2, skb);
489 if (!IS_ERR_OR_NULL(ptr: result) && result->sk_state == TCP_ESTABLISHED)
490 goto done;
491
492 /* Lookup redirect from BPF */
493 if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494 udptable == net->ipv4.udp_table) {
495 sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, doff: sizeof(struct udphdr),
496 saddr, sport, daddr, hnum, dif,
497 ehashfn: udp_ehashfn);
498 if (sk) {
499 result = sk;
500 goto done;
501 }
502 }
503
504 /* Got non-wildcard socket or error on first lookup */
505 if (result)
506 goto done;
507
508 /* Lookup wildcard sockets */
509 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum);
510 slot2 = hash2 & udptable->mask;
511 hslot2 = &udptable->hash2[slot2];
512
513 result = udp4_lib_lookup2(net, saddr, sport,
514 htonl(INADDR_ANY), hnum, dif, sdif,
515 hslot2, skb);
516done:
517 if (IS_ERR(ptr: result))
518 return NULL;
519 return result;
520}
521EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522
523static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524 __be16 sport, __be16 dport,
525 struct udp_table *udptable)
526{
527 const struct iphdr *iph = ip_hdr(skb);
528
529 return __udp4_lib_lookup(dev_net(dev: skb->dev), iph->saddr, sport,
530 iph->daddr, dport, inet_iif(skb),
531 inet_sdif(skb), udptable, skb);
532}
533
534struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535 __be16 sport, __be16 dport)
536{
537 const struct iphdr *iph = ip_hdr(skb);
538 struct net *net = dev_net(dev: skb->dev);
539 int iif, sdif;
540
541 inet_get_iif_sdif(skb, iif: &iif, sdif: &sdif);
542
543 return __udp4_lib_lookup(net, iph->saddr, sport,
544 iph->daddr, dport, iif,
545 sdif, net->ipv4.udp_table, NULL);
546}
547
548/* Must be called under rcu_read_lock().
549 * Does increment socket refcount.
550 */
551#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553 __be32 daddr, __be16 dport, int dif)
554{
555 struct sock *sk;
556
557 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558 dif, 0, net->ipv4.udp_table, NULL);
559 if (sk && !refcount_inc_not_zero(r: &sk->sk_refcnt))
560 sk = NULL;
561 return sk;
562}
563EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564#endif
565
566static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567 __be16 loc_port, __be32 loc_addr,
568 __be16 rmt_port, __be32 rmt_addr,
569 int dif, int sdif, unsigned short hnum)
570{
571 const struct inet_sock *inet = inet_sk(sk);
572
573 if (!net_eq(net1: sock_net(sk), net2: net) ||
574 udp_sk(sk)->udp_port_hash != hnum ||
575 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576 (inet->inet_dport != rmt_port && inet->inet_dport) ||
577 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578 ipv6_only_sock(sk) ||
579 !udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if, dif, sdif))
580 return false;
581 if (!ip_mc_sf_allow(sk, local: loc_addr, rmt: rmt_addr, dif, sdif))
582 return false;
583 return true;
584}
585
586DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587void udp_encap_enable(void)
588{
589 static_branch_inc(&udp_encap_needed_key);
590}
591EXPORT_SYMBOL(udp_encap_enable);
592
593void udp_encap_disable(void)
594{
595 static_branch_dec(&udp_encap_needed_key);
596}
597EXPORT_SYMBOL(udp_encap_disable);
598
599/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600 * through error handlers in encapsulations looking for a match.
601 */
602static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
603{
604 int i;
605
606 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607 int (*handler)(struct sk_buff *skb, u32 info);
608 const struct ip_tunnel_encap_ops *encap;
609
610 encap = rcu_dereference(iptun_encaps[i]);
611 if (!encap)
612 continue;
613 handler = encap->err_handler;
614 if (handler && !handler(skb, info))
615 return 0;
616 }
617
618 return -ENOENT;
619}
620
621/* Try to match ICMP errors to UDP tunnels by looking up a socket without
622 * reversing source and destination port: this will match tunnels that force the
623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624 * lwtunnels might actually break this assumption by being configured with
625 * different destination ports on endpoints, in this case we won't be able to
626 * trace ICMP messages back to them.
627 *
628 * If this doesn't match any socket, probe tunnels with arbitrary destination
629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630 * we've sent packets to won't necessarily match the local destination port.
631 *
632 * Then ask the tunnel implementation to match the error against a valid
633 * association.
634 *
635 * Return an error if we can't find a match, the socket if we need further
636 * processing, zero otherwise.
637 */
638static struct sock *__udp4_lib_err_encap(struct net *net,
639 const struct iphdr *iph,
640 struct udphdr *uh,
641 struct udp_table *udptable,
642 struct sock *sk,
643 struct sk_buff *skb, u32 info)
644{
645 int (*lookup)(struct sock *sk, struct sk_buff *skb);
646 int network_offset, transport_offset;
647 struct udp_sock *up;
648
649 network_offset = skb_network_offset(skb);
650 transport_offset = skb_transport_offset(skb);
651
652 /* Network header needs to point to the outer IPv4 header inside ICMP */
653 skb_reset_network_header(skb);
654
655 /* Transport header needs to point to the UDP header */
656 skb_set_transport_header(skb, offset: iph->ihl << 2);
657
658 if (sk) {
659 up = udp_sk(sk);
660
661 lookup = READ_ONCE(up->encap_err_lookup);
662 if (lookup && lookup(sk, skb))
663 sk = NULL;
664
665 goto out;
666 }
667
668 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
669 iph->saddr, uh->dest, skb->dev->ifindex, 0,
670 udptable, NULL);
671 if (sk) {
672 up = udp_sk(sk);
673
674 lookup = READ_ONCE(up->encap_err_lookup);
675 if (!lookup || lookup(sk, skb))
676 sk = NULL;
677 }
678
679out:
680 if (!sk)
681 sk = ERR_PTR(error: __udp4_lib_err_encap_no_sk(skb, info));
682
683 skb_set_transport_header(skb, offset: transport_offset);
684 skb_set_network_header(skb, offset: network_offset);
685
686 return sk;
687}
688
689/*
690 * This routine is called by the ICMP module when it gets some
691 * sort of error condition. If err < 0 then the socket should
692 * be closed and the error returned to the user. If err > 0
693 * it's just the icmp type << 8 | icmp code.
694 * Header points to the ip header of the error packet. We move
695 * on past this. Then (as it used to claim before adjustment)
696 * header points to the first 8 bytes of the udp header. We need
697 * to find the appropriate port.
698 */
699
700int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
701{
702 struct inet_sock *inet;
703 const struct iphdr *iph = (const struct iphdr *)skb->data;
704 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
705 const int type = icmp_hdr(skb)->type;
706 const int code = icmp_hdr(skb)->code;
707 bool tunnel = false;
708 struct sock *sk;
709 int harderr;
710 int err;
711 struct net *net = dev_net(dev: skb->dev);
712
713 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
714 iph->saddr, uh->source, skb->dev->ifindex,
715 inet_sdif(skb), udptable, NULL);
716
717 if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
718 /* No socket for error: try tunnels before discarding */
719 if (static_branch_unlikely(&udp_encap_needed_key)) {
720 sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
721 info);
722 if (!sk)
723 return 0;
724 } else
725 sk = ERR_PTR(error: -ENOENT);
726
727 if (IS_ERR(ptr: sk)) {
728 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
729 return PTR_ERR(ptr: sk);
730 }
731
732 tunnel = true;
733 }
734
735 err = 0;
736 harderr = 0;
737 inet = inet_sk(sk);
738
739 switch (type) {
740 default:
741 case ICMP_TIME_EXCEEDED:
742 err = EHOSTUNREACH;
743 break;
744 case ICMP_SOURCE_QUENCH:
745 goto out;
746 case ICMP_PARAMETERPROB:
747 err = EPROTO;
748 harderr = 1;
749 break;
750 case ICMP_DEST_UNREACH:
751 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
752 ipv4_sk_update_pmtu(skb, sk, mtu: info);
753 if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
754 err = EMSGSIZE;
755 harderr = 1;
756 break;
757 }
758 goto out;
759 }
760 err = EHOSTUNREACH;
761 if (code <= NR_ICMP_UNREACH) {
762 harderr = icmp_err_convert[code].fatal;
763 err = icmp_err_convert[code].errno;
764 }
765 break;
766 case ICMP_REDIRECT:
767 ipv4_sk_redirect(skb, sk);
768 goto out;
769 }
770
771 /*
772 * RFC1122: OK. Passes ICMP errors back to application, as per
773 * 4.1.3.3.
774 */
775 if (tunnel) {
776 /* ...not for tunnels though: we don't have a sending socket */
777 if (udp_sk(sk)->encap_err_rcv)
778 udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
779 (u8 *)(uh+1));
780 goto out;
781 }
782 if (!inet_test_bit(RECVERR, sk)) {
783 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
784 goto out;
785 } else
786 ip_icmp_error(sk, skb, err, port: uh->dest, info, payload: (u8 *)(uh+1));
787
788 sk->sk_err = err;
789 sk_error_report(sk);
790out:
791 return 0;
792}
793
794int udp_err(struct sk_buff *skb, u32 info)
795{
796 return __udp4_lib_err(skb, info, udptable: dev_net(dev: skb->dev)->ipv4.udp_table);
797}
798
799/*
800 * Throw away all pending data and cancel the corking. Socket is locked.
801 */
802void udp_flush_pending_frames(struct sock *sk)
803{
804 struct udp_sock *up = udp_sk(sk);
805
806 if (up->pending) {
807 up->len = 0;
808 up->pending = 0;
809 ip_flush_pending_frames(sk);
810 }
811}
812EXPORT_SYMBOL(udp_flush_pending_frames);
813
814/**
815 * udp4_hwcsum - handle outgoing HW checksumming
816 * @skb: sk_buff containing the filled-in UDP header
817 * (checksum field must be zeroed out)
818 * @src: source IP address
819 * @dst: destination IP address
820 */
821void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
822{
823 struct udphdr *uh = udp_hdr(skb);
824 int offset = skb_transport_offset(skb);
825 int len = skb->len - offset;
826 int hlen = len;
827 __wsum csum = 0;
828
829 if (!skb_has_frag_list(skb)) {
830 /*
831 * Only one fragment on the socket.
832 */
833 skb->csum_start = skb_transport_header(skb) - skb->head;
834 skb->csum_offset = offsetof(struct udphdr, check);
835 uh->check = ~csum_tcpudp_magic(saddr: src, daddr: dst, len,
836 IPPROTO_UDP, sum: 0);
837 } else {
838 struct sk_buff *frags;
839
840 /*
841 * HW-checksum won't work as there are two or more
842 * fragments on the socket so that all csums of sk_buffs
843 * should be together
844 */
845 skb_walk_frags(skb, frags) {
846 csum = csum_add(csum, addend: frags->csum);
847 hlen -= frags->len;
848 }
849
850 csum = skb_checksum(skb, offset, len: hlen, csum);
851 skb->ip_summed = CHECKSUM_NONE;
852
853 uh->check = csum_tcpudp_magic(saddr: src, daddr: dst, len, IPPROTO_UDP, sum: csum);
854 if (uh->check == 0)
855 uh->check = CSUM_MANGLED_0;
856 }
857}
858EXPORT_SYMBOL_GPL(udp4_hwcsum);
859
860/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
861 * for the simple case like when setting the checksum for a UDP tunnel.
862 */
863void udp_set_csum(bool nocheck, struct sk_buff *skb,
864 __be32 saddr, __be32 daddr, int len)
865{
866 struct udphdr *uh = udp_hdr(skb);
867
868 if (nocheck) {
869 uh->check = 0;
870 } else if (skb_is_gso(skb)) {
871 uh->check = ~udp_v4_check(len, saddr, daddr, base: 0);
872 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
873 uh->check = 0;
874 uh->check = udp_v4_check(len, saddr, daddr, base: lco_csum(skb));
875 if (uh->check == 0)
876 uh->check = CSUM_MANGLED_0;
877 } else {
878 skb->ip_summed = CHECKSUM_PARTIAL;
879 skb->csum_start = skb_transport_header(skb) - skb->head;
880 skb->csum_offset = offsetof(struct udphdr, check);
881 uh->check = ~udp_v4_check(len, saddr, daddr, base: 0);
882 }
883}
884EXPORT_SYMBOL(udp_set_csum);
885
886static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
887 struct inet_cork *cork)
888{
889 struct sock *sk = skb->sk;
890 struct inet_sock *inet = inet_sk(sk);
891 struct udphdr *uh;
892 int err;
893 int is_udplite = IS_UDPLITE(sk);
894 int offset = skb_transport_offset(skb);
895 int len = skb->len - offset;
896 int datalen = len - sizeof(*uh);
897 __wsum csum = 0;
898
899 /*
900 * Create a UDP header
901 */
902 uh = udp_hdr(skb);
903 uh->source = inet->inet_sport;
904 uh->dest = fl4->fl4_dport;
905 uh->len = htons(len);
906 uh->check = 0;
907
908 if (cork->gso_size) {
909 const int hlen = skb_network_header_len(skb) +
910 sizeof(struct udphdr);
911
912 if (hlen + cork->gso_size > cork->fragsize) {
913 kfree_skb(skb);
914 return -EINVAL;
915 }
916 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
917 kfree_skb(skb);
918 return -EINVAL;
919 }
920 if (sk->sk_no_check_tx) {
921 kfree_skb(skb);
922 return -EINVAL;
923 }
924 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
925 dst_xfrm(dst: skb_dst(skb))) {
926 kfree_skb(skb);
927 return -EIO;
928 }
929
930 if (datalen > cork->gso_size) {
931 skb_shinfo(skb)->gso_size = cork->gso_size;
932 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
933 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
934 cork->gso_size);
935 }
936 goto csum_partial;
937 }
938
939 if (is_udplite) /* UDP-Lite */
940 csum = udplite_csum(skb);
941
942 else if (sk->sk_no_check_tx) { /* UDP csum off */
943
944 skb->ip_summed = CHECKSUM_NONE;
945 goto send;
946
947 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
948csum_partial:
949
950 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
951 goto send;
952
953 } else
954 csum = udp_csum(skb);
955
956 /* add protocol-dependent pseudo-header */
957 uh->check = csum_tcpudp_magic(saddr: fl4->saddr, daddr: fl4->daddr, len,
958 proto: sk->sk_protocol, sum: csum);
959 if (uh->check == 0)
960 uh->check = CSUM_MANGLED_0;
961
962send:
963 err = ip_send_skb(net: sock_net(sk), skb);
964 if (err) {
965 if (err == -ENOBUFS &&
966 !inet_test_bit(RECVERR, sk)) {
967 UDP_INC_STATS(sock_net(sk),
968 UDP_MIB_SNDBUFERRORS, is_udplite);
969 err = 0;
970 }
971 } else
972 UDP_INC_STATS(sock_net(sk),
973 UDP_MIB_OUTDATAGRAMS, is_udplite);
974 return err;
975}
976
977/*
978 * Push out all pending data as one UDP datagram. Socket is locked.
979 */
980int udp_push_pending_frames(struct sock *sk)
981{
982 struct udp_sock *up = udp_sk(sk);
983 struct inet_sock *inet = inet_sk(sk);
984 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
985 struct sk_buff *skb;
986 int err = 0;
987
988 skb = ip_finish_skb(sk, fl4);
989 if (!skb)
990 goto out;
991
992 err = udp_send_skb(skb, fl4, cork: &inet->cork.base);
993
994out:
995 up->len = 0;
996 up->pending = 0;
997 return err;
998}
999EXPORT_SYMBOL(udp_push_pending_frames);
1000
1001static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1002{
1003 switch (cmsg->cmsg_type) {
1004 case UDP_SEGMENT:
1005 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1006 return -EINVAL;
1007 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1008 return 0;
1009 default:
1010 return -EINVAL;
1011 }
1012}
1013
1014int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1015{
1016 struct cmsghdr *cmsg;
1017 bool need_ip = false;
1018 int err;
1019
1020 for_each_cmsghdr(cmsg, msg) {
1021 if (!CMSG_OK(msg, cmsg))
1022 return -EINVAL;
1023
1024 if (cmsg->cmsg_level != SOL_UDP) {
1025 need_ip = true;
1026 continue;
1027 }
1028
1029 err = __udp_cmsg_send(cmsg, gso_size);
1030 if (err)
1031 return err;
1032 }
1033
1034 return need_ip;
1035}
1036EXPORT_SYMBOL_GPL(udp_cmsg_send);
1037
1038int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1039{
1040 struct inet_sock *inet = inet_sk(sk);
1041 struct udp_sock *up = udp_sk(sk);
1042 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1043 struct flowi4 fl4_stack;
1044 struct flowi4 *fl4;
1045 int ulen = len;
1046 struct ipcm_cookie ipc;
1047 struct rtable *rt = NULL;
1048 int free = 0;
1049 int connected = 0;
1050 __be32 daddr, faddr, saddr;
1051 u8 tos, scope;
1052 __be16 dport;
1053 int err, is_udplite = IS_UDPLITE(sk);
1054 int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1055 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1056 struct sk_buff *skb;
1057 struct ip_options_data opt_copy;
1058 int uc_index;
1059
1060 if (len > 0xFFFF)
1061 return -EMSGSIZE;
1062
1063 /*
1064 * Check the flags.
1065 */
1066
1067 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1068 return -EOPNOTSUPP;
1069
1070 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1071
1072 fl4 = &inet->cork.fl.u.ip4;
1073 if (up->pending) {
1074 /*
1075 * There are pending frames.
1076 * The socket lock must be held while it's corked.
1077 */
1078 lock_sock(sk);
1079 if (likely(up->pending)) {
1080 if (unlikely(up->pending != AF_INET)) {
1081 release_sock(sk);
1082 return -EINVAL;
1083 }
1084 goto do_append_data;
1085 }
1086 release_sock(sk);
1087 }
1088 ulen += sizeof(struct udphdr);
1089
1090 /*
1091 * Get and verify the address.
1092 */
1093 if (usin) {
1094 if (msg->msg_namelen < sizeof(*usin))
1095 return -EINVAL;
1096 if (usin->sin_family != AF_INET) {
1097 if (usin->sin_family != AF_UNSPEC)
1098 return -EAFNOSUPPORT;
1099 }
1100
1101 daddr = usin->sin_addr.s_addr;
1102 dport = usin->sin_port;
1103 if (dport == 0)
1104 return -EINVAL;
1105 } else {
1106 if (sk->sk_state != TCP_ESTABLISHED)
1107 return -EDESTADDRREQ;
1108 daddr = inet->inet_daddr;
1109 dport = inet->inet_dport;
1110 /* Open fast path for connected socket.
1111 Route will not be used, if at least one option is set.
1112 */
1113 connected = 1;
1114 }
1115
1116 ipcm_init_sk(ipcm: &ipc, inet);
1117 ipc.gso_size = READ_ONCE(up->gso_size);
1118
1119 if (msg->msg_controllen) {
1120 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1121 if (err > 0)
1122 err = ip_cmsg_send(sk, msg, ipc: &ipc,
1123 allow_ipv6: sk->sk_family == AF_INET6);
1124 if (unlikely(err < 0)) {
1125 kfree(objp: ipc.opt);
1126 return err;
1127 }
1128 if (ipc.opt)
1129 free = 1;
1130 connected = 0;
1131 }
1132 if (!ipc.opt) {
1133 struct ip_options_rcu *inet_opt;
1134
1135 rcu_read_lock();
1136 inet_opt = rcu_dereference(inet->inet_opt);
1137 if (inet_opt) {
1138 memcpy(&opt_copy, inet_opt,
1139 sizeof(*inet_opt) + inet_opt->opt.optlen);
1140 ipc.opt = &opt_copy.opt;
1141 }
1142 rcu_read_unlock();
1143 }
1144
1145 if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1146 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1147 (struct sockaddr *)usin,
1148 &msg->msg_namelen,
1149 &ipc.addr);
1150 if (err)
1151 goto out_free;
1152 if (usin) {
1153 if (usin->sin_port == 0) {
1154 /* BPF program set invalid port. Reject it. */
1155 err = -EINVAL;
1156 goto out_free;
1157 }
1158 daddr = usin->sin_addr.s_addr;
1159 dport = usin->sin_port;
1160 }
1161 }
1162
1163 saddr = ipc.addr;
1164 ipc.addr = faddr = daddr;
1165
1166 if (ipc.opt && ipc.opt->opt.srr) {
1167 if (!daddr) {
1168 err = -EINVAL;
1169 goto out_free;
1170 }
1171 faddr = ipc.opt->opt.faddr;
1172 connected = 0;
1173 }
1174 tos = get_rttos(ipc: &ipc, inet);
1175 scope = ip_sendmsg_scope(inet, ipc: &ipc, msg);
1176 if (scope == RT_SCOPE_LINK)
1177 connected = 0;
1178
1179 uc_index = READ_ONCE(inet->uc_index);
1180 if (ipv4_is_multicast(addr: daddr)) {
1181 if (!ipc.oif || netif_index_is_l3_master(net: sock_net(sk), ifindex: ipc.oif))
1182 ipc.oif = READ_ONCE(inet->mc_index);
1183 if (!saddr)
1184 saddr = READ_ONCE(inet->mc_addr);
1185 connected = 0;
1186 } else if (!ipc.oif) {
1187 ipc.oif = uc_index;
1188 } else if (ipv4_is_lbcast(addr: daddr) && uc_index) {
1189 /* oif is set, packet is to local broadcast and
1190 * uc_index is set. oif is most likely set
1191 * by sk_bound_dev_if. If uc_index != oif check if the
1192 * oif is an L3 master and uc_index is an L3 slave.
1193 * If so, we want to allow the send using the uc_index.
1194 */
1195 if (ipc.oif != uc_index &&
1196 ipc.oif == l3mdev_master_ifindex_by_index(net: sock_net(sk),
1197 ifindex: uc_index)) {
1198 ipc.oif = uc_index;
1199 }
1200 }
1201
1202 if (connected)
1203 rt = (struct rtable *)sk_dst_check(sk, cookie: 0);
1204
1205 if (!rt) {
1206 struct net *net = sock_net(sk);
1207 __u8 flow_flags = inet_sk_flowi_flags(sk);
1208
1209 fl4 = &fl4_stack;
1210
1211 flowi4_init_output(fl4, oif: ipc.oif, mark: ipc.sockc.mark, tos, scope,
1212 proto: sk->sk_protocol, flags: flow_flags, daddr: faddr, saddr,
1213 dport, sport: inet->inet_sport, uid: sk->sk_uid);
1214
1215 security_sk_classify_flow(sk, flic: flowi4_to_flowi_common(fl4));
1216 rt = ip_route_output_flow(net, flp: fl4, sk);
1217 if (IS_ERR(ptr: rt)) {
1218 err = PTR_ERR(ptr: rt);
1219 rt = NULL;
1220 if (err == -ENETUNREACH)
1221 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1222 goto out;
1223 }
1224
1225 err = -EACCES;
1226 if ((rt->rt_flags & RTCF_BROADCAST) &&
1227 !sock_flag(sk, flag: SOCK_BROADCAST))
1228 goto out;
1229 if (connected)
1230 sk_dst_set(sk, dst: dst_clone(dst: &rt->dst));
1231 }
1232
1233 if (msg->msg_flags&MSG_CONFIRM)
1234 goto do_confirm;
1235back_from_confirm:
1236
1237 saddr = fl4->saddr;
1238 if (!ipc.addr)
1239 daddr = ipc.addr = fl4->daddr;
1240
1241 /* Lockless fast path for the non-corking case. */
1242 if (!corkreq) {
1243 struct inet_cork cork;
1244
1245 skb = ip_make_skb(sk, fl4, getfrag, from: msg, length: ulen,
1246 transhdrlen: sizeof(struct udphdr), ipc: &ipc, rtp: &rt,
1247 cork: &cork, flags: msg->msg_flags);
1248 err = PTR_ERR(ptr: skb);
1249 if (!IS_ERR_OR_NULL(ptr: skb))
1250 err = udp_send_skb(skb, fl4, cork: &cork);
1251 goto out;
1252 }
1253
1254 lock_sock(sk);
1255 if (unlikely(up->pending)) {
1256 /* The socket is already corked while preparing it. */
1257 /* ... which is an evident application bug. --ANK */
1258 release_sock(sk);
1259
1260 net_dbg_ratelimited("socket already corked\n");
1261 err = -EINVAL;
1262 goto out;
1263 }
1264 /*
1265 * Now cork the socket to pend data.
1266 */
1267 fl4 = &inet->cork.fl.u.ip4;
1268 fl4->daddr = daddr;
1269 fl4->saddr = saddr;
1270 fl4->fl4_dport = dport;
1271 fl4->fl4_sport = inet->inet_sport;
1272 up->pending = AF_INET;
1273
1274do_append_data:
1275 up->len += ulen;
1276 err = ip_append_data(sk, fl4, getfrag, from: msg, len: ulen,
1277 protolen: sizeof(struct udphdr), ipc: &ipc, rt: &rt,
1278 flags: corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1279 if (err)
1280 udp_flush_pending_frames(sk);
1281 else if (!corkreq)
1282 err = udp_push_pending_frames(sk);
1283 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1284 up->pending = 0;
1285 release_sock(sk);
1286
1287out:
1288 ip_rt_put(rt);
1289out_free:
1290 if (free)
1291 kfree(objp: ipc.opt);
1292 if (!err)
1293 return len;
1294 /*
1295 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1296 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1297 * we don't have a good statistic (IpOutDiscards but it can be too many
1298 * things). We could add another new stat but at least for now that
1299 * seems like overkill.
1300 */
1301 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1302 UDP_INC_STATS(sock_net(sk),
1303 UDP_MIB_SNDBUFERRORS, is_udplite);
1304 }
1305 return err;
1306
1307do_confirm:
1308 if (msg->msg_flags & MSG_PROBE)
1309 dst_confirm_neigh(dst: &rt->dst, daddr: &fl4->daddr);
1310 if (!(msg->msg_flags&MSG_PROBE) || len)
1311 goto back_from_confirm;
1312 err = 0;
1313 goto out;
1314}
1315EXPORT_SYMBOL(udp_sendmsg);
1316
1317void udp_splice_eof(struct socket *sock)
1318{
1319 struct sock *sk = sock->sk;
1320 struct udp_sock *up = udp_sk(sk);
1321
1322 if (!up->pending || udp_test_bit(CORK, sk))
1323 return;
1324
1325 lock_sock(sk);
1326 if (up->pending && !udp_test_bit(CORK, sk))
1327 udp_push_pending_frames(sk);
1328 release_sock(sk);
1329}
1330EXPORT_SYMBOL_GPL(udp_splice_eof);
1331
1332#define UDP_SKB_IS_STATELESS 0x80000000
1333
1334/* all head states (dst, sk, nf conntrack) except skb extensions are
1335 * cleared by udp_rcv().
1336 *
1337 * We need to preserve secpath, if present, to eventually process
1338 * IP_CMSG_PASSSEC at recvmsg() time.
1339 *
1340 * Other extensions can be cleared.
1341 */
1342static bool udp_try_make_stateless(struct sk_buff *skb)
1343{
1344 if (!skb_has_extensions(skb))
1345 return true;
1346
1347 if (!secpath_exists(skb)) {
1348 skb_ext_reset(skb);
1349 return true;
1350 }
1351
1352 return false;
1353}
1354
1355static void udp_set_dev_scratch(struct sk_buff *skb)
1356{
1357 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1358
1359 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1360 scratch->_tsize_state = skb->truesize;
1361#if BITS_PER_LONG == 64
1362 scratch->len = skb->len;
1363 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1364 scratch->is_linear = !skb_is_nonlinear(skb);
1365#endif
1366 if (udp_try_make_stateless(skb))
1367 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1368}
1369
1370static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1371{
1372 /* We come here after udp_lib_checksum_complete() returned 0.
1373 * This means that __skb_checksum_complete() might have
1374 * set skb->csum_valid to 1.
1375 * On 64bit platforms, we can set csum_unnecessary
1376 * to true, but only if the skb is not shared.
1377 */
1378#if BITS_PER_LONG == 64
1379 if (!skb_shared(skb))
1380 udp_skb_scratch(skb)->csum_unnecessary = true;
1381#endif
1382}
1383
1384static int udp_skb_truesize(struct sk_buff *skb)
1385{
1386 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1387}
1388
1389static bool udp_skb_has_head_state(struct sk_buff *skb)
1390{
1391 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1392}
1393
1394/* fully reclaim rmem/fwd memory allocated for skb */
1395static void udp_rmem_release(struct sock *sk, int size, int partial,
1396 bool rx_queue_lock_held)
1397{
1398 struct udp_sock *up = udp_sk(sk);
1399 struct sk_buff_head *sk_queue;
1400 int amt;
1401
1402 if (likely(partial)) {
1403 up->forward_deficit += size;
1404 size = up->forward_deficit;
1405 if (size < READ_ONCE(up->forward_threshold) &&
1406 !skb_queue_empty(list: &up->reader_queue))
1407 return;
1408 } else {
1409 size += up->forward_deficit;
1410 }
1411 up->forward_deficit = 0;
1412
1413 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1414 * if the called don't held it already
1415 */
1416 sk_queue = &sk->sk_receive_queue;
1417 if (!rx_queue_lock_held)
1418 spin_lock(lock: &sk_queue->lock);
1419
1420
1421 sk_forward_alloc_add(sk, val: size);
1422 amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1423 sk_forward_alloc_add(sk, val: -amt);
1424
1425 if (amt)
1426 __sk_mem_reduce_allocated(sk, amount: amt >> PAGE_SHIFT);
1427
1428 atomic_sub(i: size, v: &sk->sk_rmem_alloc);
1429
1430 /* this can save us from acquiring the rx queue lock on next receive */
1431 skb_queue_splice_tail_init(list: sk_queue, head: &up->reader_queue);
1432
1433 if (!rx_queue_lock_held)
1434 spin_unlock(lock: &sk_queue->lock);
1435}
1436
1437/* Note: called with reader_queue.lock held.
1438 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1439 * This avoids a cache line miss while receive_queue lock is held.
1440 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1441 */
1442void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1443{
1444 prefetch(&skb->data);
1445 udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: false);
1446}
1447EXPORT_SYMBOL(udp_skb_destructor);
1448
1449/* as above, but the caller held the rx queue lock, too */
1450static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1451{
1452 prefetch(&skb->data);
1453 udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: true);
1454}
1455
1456/* Idea of busylocks is to let producers grab an extra spinlock
1457 * to relieve pressure on the receive_queue spinlock shared by consumer.
1458 * Under flood, this means that only one producer can be in line
1459 * trying to acquire the receive_queue spinlock.
1460 * These busylock can be allocated on a per cpu manner, instead of a
1461 * per socket one (that would consume a cache line per socket)
1462 */
1463static int udp_busylocks_log __read_mostly;
1464static spinlock_t *udp_busylocks __read_mostly;
1465
1466static spinlock_t *busylock_acquire(void *ptr)
1467{
1468 spinlock_t *busy;
1469
1470 busy = udp_busylocks + hash_ptr(ptr, bits: udp_busylocks_log);
1471 spin_lock(lock: busy);
1472 return busy;
1473}
1474
1475static void busylock_release(spinlock_t *busy)
1476{
1477 if (busy)
1478 spin_unlock(lock: busy);
1479}
1480
1481static int udp_rmem_schedule(struct sock *sk, int size)
1482{
1483 int delta;
1484
1485 delta = size - sk->sk_forward_alloc;
1486 if (delta > 0 && !__sk_mem_schedule(sk, size: delta, SK_MEM_RECV))
1487 return -ENOBUFS;
1488
1489 return 0;
1490}
1491
1492int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1493{
1494 struct sk_buff_head *list = &sk->sk_receive_queue;
1495 int rmem, err = -ENOMEM;
1496 spinlock_t *busy = NULL;
1497 int size;
1498
1499 /* try to avoid the costly atomic add/sub pair when the receive
1500 * queue is full; always allow at least a packet
1501 */
1502 rmem = atomic_read(v: &sk->sk_rmem_alloc);
1503 if (rmem > sk->sk_rcvbuf)
1504 goto drop;
1505
1506 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1507 * having linear skbs :
1508 * - Reduce memory overhead and thus increase receive queue capacity
1509 * - Less cache line misses at copyout() time
1510 * - Less work at consume_skb() (less alien page frag freeing)
1511 */
1512 if (rmem > (sk->sk_rcvbuf >> 1)) {
1513 skb_condense(skb);
1514
1515 busy = busylock_acquire(ptr: sk);
1516 }
1517 size = skb->truesize;
1518 udp_set_dev_scratch(skb);
1519
1520 /* we drop only if the receive buf is full and the receive
1521 * queue contains some other skb
1522 */
1523 rmem = atomic_add_return(i: size, v: &sk->sk_rmem_alloc);
1524 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1525 goto uncharge_drop;
1526
1527 spin_lock(lock: &list->lock);
1528 err = udp_rmem_schedule(sk, size);
1529 if (err) {
1530 spin_unlock(lock: &list->lock);
1531 goto uncharge_drop;
1532 }
1533
1534 sk_forward_alloc_add(sk, val: -size);
1535
1536 /* no need to setup a destructor, we will explicitly release the
1537 * forward allocated memory on dequeue
1538 */
1539 sock_skb_set_dropcount(sk, skb);
1540
1541 __skb_queue_tail(list, newsk: skb);
1542 spin_unlock(lock: &list->lock);
1543
1544 if (!sock_flag(sk, flag: SOCK_DEAD))
1545 INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1546
1547 busylock_release(busy);
1548 return 0;
1549
1550uncharge_drop:
1551 atomic_sub(i: skb->truesize, v: &sk->sk_rmem_alloc);
1552
1553drop:
1554 atomic_inc(v: &sk->sk_drops);
1555 busylock_release(busy);
1556 return err;
1557}
1558EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1559
1560void udp_destruct_common(struct sock *sk)
1561{
1562 /* reclaim completely the forward allocated memory */
1563 struct udp_sock *up = udp_sk(sk);
1564 unsigned int total = 0;
1565 struct sk_buff *skb;
1566
1567 skb_queue_splice_tail_init(list: &sk->sk_receive_queue, head: &up->reader_queue);
1568 while ((skb = __skb_dequeue(list: &up->reader_queue)) != NULL) {
1569 total += skb->truesize;
1570 kfree_skb(skb);
1571 }
1572 udp_rmem_release(sk, size: total, partial: 0, rx_queue_lock_held: true);
1573}
1574EXPORT_SYMBOL_GPL(udp_destruct_common);
1575
1576static void udp_destruct_sock(struct sock *sk)
1577{
1578 udp_destruct_common(sk);
1579 inet_sock_destruct(sk);
1580}
1581
1582int udp_init_sock(struct sock *sk)
1583{
1584 udp_lib_init_sock(sk);
1585 sk->sk_destruct = udp_destruct_sock;
1586 set_bit(SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags);
1587 return 0;
1588}
1589
1590void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1591{
1592 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1593 bool slow = lock_sock_fast(sk);
1594
1595 sk_peek_offset_bwd(sk, val: len);
1596 unlock_sock_fast(sk, slow);
1597 }
1598
1599 if (!skb_unref(skb))
1600 return;
1601
1602 /* In the more common cases we cleared the head states previously,
1603 * see __udp_queue_rcv_skb().
1604 */
1605 if (unlikely(udp_skb_has_head_state(skb)))
1606 skb_release_head_state(skb);
1607 __consume_stateless_skb(skb);
1608}
1609EXPORT_SYMBOL_GPL(skb_consume_udp);
1610
1611static struct sk_buff *__first_packet_length(struct sock *sk,
1612 struct sk_buff_head *rcvq,
1613 int *total)
1614{
1615 struct sk_buff *skb;
1616
1617 while ((skb = skb_peek(list_: rcvq)) != NULL) {
1618 if (udp_lib_checksum_complete(skb)) {
1619 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1620 IS_UDPLITE(sk));
1621 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1622 IS_UDPLITE(sk));
1623 atomic_inc(v: &sk->sk_drops);
1624 __skb_unlink(skb, list: rcvq);
1625 *total += skb->truesize;
1626 kfree_skb(skb);
1627 } else {
1628 udp_skb_csum_unnecessary_set(skb);
1629 break;
1630 }
1631 }
1632 return skb;
1633}
1634
1635/**
1636 * first_packet_length - return length of first packet in receive queue
1637 * @sk: socket
1638 *
1639 * Drops all bad checksum frames, until a valid one is found.
1640 * Returns the length of found skb, or -1 if none is found.
1641 */
1642static int first_packet_length(struct sock *sk)
1643{
1644 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1645 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1646 struct sk_buff *skb;
1647 int total = 0;
1648 int res;
1649
1650 spin_lock_bh(lock: &rcvq->lock);
1651 skb = __first_packet_length(sk, rcvq, total: &total);
1652 if (!skb && !skb_queue_empty_lockless(list: sk_queue)) {
1653 spin_lock(lock: &sk_queue->lock);
1654 skb_queue_splice_tail_init(list: sk_queue, head: rcvq);
1655 spin_unlock(lock: &sk_queue->lock);
1656
1657 skb = __first_packet_length(sk, rcvq, total: &total);
1658 }
1659 res = skb ? skb->len : -1;
1660 if (total)
1661 udp_rmem_release(sk, size: total, partial: 1, rx_queue_lock_held: false);
1662 spin_unlock_bh(lock: &rcvq->lock);
1663 return res;
1664}
1665
1666/*
1667 * IOCTL requests applicable to the UDP protocol
1668 */
1669
1670int udp_ioctl(struct sock *sk, int cmd, int *karg)
1671{
1672 switch (cmd) {
1673 case SIOCOUTQ:
1674 {
1675 *karg = sk_wmem_alloc_get(sk);
1676 return 0;
1677 }
1678
1679 case SIOCINQ:
1680 {
1681 *karg = max_t(int, 0, first_packet_length(sk));
1682 return 0;
1683 }
1684
1685 default:
1686 return -ENOIOCTLCMD;
1687 }
1688
1689 return 0;
1690}
1691EXPORT_SYMBOL(udp_ioctl);
1692
1693struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1694 int *off, int *err)
1695{
1696 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1697 struct sk_buff_head *queue;
1698 struct sk_buff *last;
1699 long timeo;
1700 int error;
1701
1702 queue = &udp_sk(sk)->reader_queue;
1703 timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
1704 do {
1705 struct sk_buff *skb;
1706
1707 error = sock_error(sk);
1708 if (error)
1709 break;
1710
1711 error = -EAGAIN;
1712 do {
1713 spin_lock_bh(lock: &queue->lock);
1714 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1715 err, last: &last);
1716 if (skb) {
1717 if (!(flags & MSG_PEEK))
1718 udp_skb_destructor(sk, skb);
1719 spin_unlock_bh(lock: &queue->lock);
1720 return skb;
1721 }
1722
1723 if (skb_queue_empty_lockless(list: sk_queue)) {
1724 spin_unlock_bh(lock: &queue->lock);
1725 goto busy_check;
1726 }
1727
1728 /* refill the reader queue and walk it again
1729 * keep both queues locked to avoid re-acquiring
1730 * the sk_receive_queue lock if fwd memory scheduling
1731 * is needed.
1732 */
1733 spin_lock(lock: &sk_queue->lock);
1734 skb_queue_splice_tail_init(list: sk_queue, head: queue);
1735
1736 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1737 err, last: &last);
1738 if (skb && !(flags & MSG_PEEK))
1739 udp_skb_dtor_locked(sk, skb);
1740 spin_unlock(lock: &sk_queue->lock);
1741 spin_unlock_bh(lock: &queue->lock);
1742 if (skb)
1743 return skb;
1744
1745busy_check:
1746 if (!sk_can_busy_loop(sk))
1747 break;
1748
1749 sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT);
1750 } while (!skb_queue_empty_lockless(list: sk_queue));
1751
1752 /* sk_queue is empty, reader_queue may contain peeked packets */
1753 } while (timeo &&
1754 !__skb_wait_for_more_packets(sk, queue: &sk->sk_receive_queue,
1755 err: &error, timeo_p: &timeo,
1756 skb: (struct sk_buff *)sk_queue));
1757
1758 *err = error;
1759 return NULL;
1760}
1761EXPORT_SYMBOL(__skb_recv_udp);
1762
1763int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1764{
1765 struct sk_buff *skb;
1766 int err;
1767
1768try_again:
1769 skb = skb_recv_udp(sk, MSG_DONTWAIT, err: &err);
1770 if (!skb)
1771 return err;
1772
1773 if (udp_lib_checksum_complete(skb)) {
1774 int is_udplite = IS_UDPLITE(sk);
1775 struct net *net = sock_net(sk);
1776
1777 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1778 __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1779 atomic_inc(v: &sk->sk_drops);
1780 kfree_skb(skb);
1781 goto try_again;
1782 }
1783
1784 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1785 return recv_actor(sk, skb);
1786}
1787EXPORT_SYMBOL(udp_read_skb);
1788
1789/*
1790 * This should be easy, if there is something there we
1791 * return it, otherwise we block.
1792 */
1793
1794int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1795 int *addr_len)
1796{
1797 struct inet_sock *inet = inet_sk(sk);
1798 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1799 struct sk_buff *skb;
1800 unsigned int ulen, copied;
1801 int off, err, peeking = flags & MSG_PEEK;
1802 int is_udplite = IS_UDPLITE(sk);
1803 bool checksum_valid = false;
1804
1805 if (flags & MSG_ERRQUEUE)
1806 return ip_recv_error(sk, msg, len, addr_len);
1807
1808try_again:
1809 off = sk_peek_offset(sk, flags);
1810 skb = __skb_recv_udp(sk, flags, &off, &err);
1811 if (!skb)
1812 return err;
1813
1814 ulen = udp_skb_len(skb);
1815 copied = len;
1816 if (copied > ulen - off)
1817 copied = ulen - off;
1818 else if (copied < ulen)
1819 msg->msg_flags |= MSG_TRUNC;
1820
1821 /*
1822 * If checksum is needed at all, try to do it while copying the
1823 * data. If the data is truncated, or if we only want a partial
1824 * coverage checksum (UDP-Lite), do it before the copy.
1825 */
1826
1827 if (copied < ulen || peeking ||
1828 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1829 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1830 !__udp_lib_checksum_complete(skb);
1831 if (!checksum_valid)
1832 goto csum_copy_err;
1833 }
1834
1835 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1836 if (udp_skb_is_linear(skb))
1837 err = copy_linear_skb(skb, len: copied, off, to: &msg->msg_iter);
1838 else
1839 err = skb_copy_datagram_msg(from: skb, offset: off, msg, size: copied);
1840 } else {
1841 err = skb_copy_and_csum_datagram_msg(skb, hlen: off, msg);
1842
1843 if (err == -EINVAL)
1844 goto csum_copy_err;
1845 }
1846
1847 if (unlikely(err)) {
1848 if (!peeking) {
1849 atomic_inc(v: &sk->sk_drops);
1850 UDP_INC_STATS(sock_net(sk),
1851 UDP_MIB_INERRORS, is_udplite);
1852 }
1853 kfree_skb(skb);
1854 return err;
1855 }
1856
1857 if (!peeking)
1858 UDP_INC_STATS(sock_net(sk),
1859 UDP_MIB_INDATAGRAMS, is_udplite);
1860
1861 sock_recv_cmsgs(msg, sk, skb);
1862
1863 /* Copy the address. */
1864 if (sin) {
1865 sin->sin_family = AF_INET;
1866 sin->sin_port = udp_hdr(skb)->source;
1867 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1868 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1869 *addr_len = sizeof(*sin);
1870
1871 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1872 (struct sockaddr *)sin,
1873 addr_len);
1874 }
1875
1876 if (udp_test_bit(GRO_ENABLED, sk))
1877 udp_cmsg_recv(msg, sk, skb);
1878
1879 if (inet_cmsg_flags(inet))
1880 ip_cmsg_recv_offset(msg, sk, skb, tlen: sizeof(struct udphdr), offset: off);
1881
1882 err = copied;
1883 if (flags & MSG_TRUNC)
1884 err = ulen;
1885
1886 skb_consume_udp(sk, skb, peeking ? -err : err);
1887 return err;
1888
1889csum_copy_err:
1890 if (!__sk_queue_drop_skb(sk, sk_queue: &udp_sk(sk)->reader_queue, skb, flags,
1891 destructor: udp_skb_destructor)) {
1892 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1893 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1894 }
1895 kfree_skb(skb);
1896
1897 /* starting over for a new packet, but check if we need to yield */
1898 cond_resched();
1899 msg->msg_flags &= ~MSG_TRUNC;
1900 goto try_again;
1901}
1902
1903int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1904{
1905 /* This check is replicated from __ip4_datagram_connect() and
1906 * intended to prevent BPF program called below from accessing bytes
1907 * that are out of the bound specified by user in addr_len.
1908 */
1909 if (addr_len < sizeof(struct sockaddr_in))
1910 return -EINVAL;
1911
1912 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1913}
1914EXPORT_SYMBOL(udp_pre_connect);
1915
1916int __udp_disconnect(struct sock *sk, int flags)
1917{
1918 struct inet_sock *inet = inet_sk(sk);
1919 /*
1920 * 1003.1g - break association.
1921 */
1922
1923 sk->sk_state = TCP_CLOSE;
1924 inet->inet_daddr = 0;
1925 inet->inet_dport = 0;
1926 sock_rps_reset_rxhash(sk);
1927 sk->sk_bound_dev_if = 0;
1928 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1929 inet_reset_saddr(sk);
1930 if (sk->sk_prot->rehash &&
1931 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1932 sk->sk_prot->rehash(sk);
1933 }
1934
1935 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1936 sk->sk_prot->unhash(sk);
1937 inet->inet_sport = 0;
1938 }
1939 sk_dst_reset(sk);
1940 return 0;
1941}
1942EXPORT_SYMBOL(__udp_disconnect);
1943
1944int udp_disconnect(struct sock *sk, int flags)
1945{
1946 lock_sock(sk);
1947 __udp_disconnect(sk, flags);
1948 release_sock(sk);
1949 return 0;
1950}
1951EXPORT_SYMBOL(udp_disconnect);
1952
1953void udp_lib_unhash(struct sock *sk)
1954{
1955 if (sk_hashed(sk)) {
1956 struct udp_table *udptable = udp_get_table_prot(sk);
1957 struct udp_hslot *hslot, *hslot2;
1958
1959 hslot = udp_hashslot(table: udptable, net: sock_net(sk),
1960 udp_sk(sk)->udp_port_hash);
1961 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
1962
1963 spin_lock_bh(lock: &hslot->lock);
1964 if (rcu_access_pointer(sk->sk_reuseport_cb))
1965 reuseport_detach_sock(sk);
1966 if (sk_del_node_init_rcu(sk)) {
1967 hslot->count--;
1968 inet_sk(sk)->inet_num = 0;
1969 sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: -1);
1970
1971 spin_lock(lock: &hslot2->lock);
1972 hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node);
1973 hslot2->count--;
1974 spin_unlock(lock: &hslot2->lock);
1975 }
1976 spin_unlock_bh(lock: &hslot->lock);
1977 }
1978}
1979EXPORT_SYMBOL(udp_lib_unhash);
1980
1981/*
1982 * inet_rcv_saddr was changed, we must rehash secondary hash
1983 */
1984void udp_lib_rehash(struct sock *sk, u16 newhash)
1985{
1986 if (sk_hashed(sk)) {
1987 struct udp_table *udptable = udp_get_table_prot(sk);
1988 struct udp_hslot *hslot, *hslot2, *nhslot2;
1989
1990 hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash);
1991 nhslot2 = udp_hashslot2(table: udptable, hash: newhash);
1992 udp_sk(sk)->udp_portaddr_hash = newhash;
1993
1994 if (hslot2 != nhslot2 ||
1995 rcu_access_pointer(sk->sk_reuseport_cb)) {
1996 hslot = udp_hashslot(table: udptable, net: sock_net(sk),
1997 udp_sk(sk)->udp_port_hash);
1998 /* we must lock primary chain too */
1999 spin_lock_bh(lock: &hslot->lock);
2000 if (rcu_access_pointer(sk->sk_reuseport_cb))
2001 reuseport_detach_sock(sk);
2002
2003 if (hslot2 != nhslot2) {
2004 spin_lock(lock: &hslot2->lock);
2005 hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node);
2006 hslot2->count--;
2007 spin_unlock(lock: &hslot2->lock);
2008
2009 spin_lock(lock: &nhslot2->lock);
2010 hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node,
2011 h: &nhslot2->head);
2012 nhslot2->count++;
2013 spin_unlock(lock: &nhslot2->lock);
2014 }
2015
2016 spin_unlock_bh(lock: &hslot->lock);
2017 }
2018 }
2019}
2020EXPORT_SYMBOL(udp_lib_rehash);
2021
2022void udp_v4_rehash(struct sock *sk)
2023{
2024 u16 new_hash = ipv4_portaddr_hash(net: sock_net(sk),
2025 inet_sk(sk)->inet_rcv_saddr,
2026 inet_sk(sk)->inet_num);
2027 udp_lib_rehash(sk, new_hash);
2028}
2029
2030static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2031{
2032 int rc;
2033
2034 if (inet_sk(sk)->inet_daddr) {
2035 sock_rps_save_rxhash(sk, skb);
2036 sk_mark_napi_id(sk, skb);
2037 sk_incoming_cpu_update(sk);
2038 } else {
2039 sk_mark_napi_id_once(sk, skb);
2040 }
2041
2042 rc = __udp_enqueue_schedule_skb(sk, skb);
2043 if (rc < 0) {
2044 int is_udplite = IS_UDPLITE(sk);
2045 int drop_reason;
2046
2047 /* Note that an ENOMEM error is charged twice */
2048 if (rc == -ENOMEM) {
2049 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2050 is_udplite);
2051 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2052 } else {
2053 UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2054 is_udplite);
2055 drop_reason = SKB_DROP_REASON_PROTO_MEM;
2056 }
2057 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2058 kfree_skb_reason(skb, reason: drop_reason);
2059 trace_udp_fail_queue_rcv_skb(rc, sk);
2060 return -1;
2061 }
2062
2063 return 0;
2064}
2065
2066/* returns:
2067 * -1: error
2068 * 0: success
2069 * >0: "udp encap" protocol resubmission
2070 *
2071 * Note that in the success and error cases, the skb is assumed to
2072 * have either been requeued or freed.
2073 */
2074static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2075{
2076 int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2077 struct udp_sock *up = udp_sk(sk);
2078 int is_udplite = IS_UDPLITE(sk);
2079
2080 /*
2081 * Charge it to the socket, dropping if the queue is full.
2082 */
2083 if (!xfrm4_policy_check(sk, dir: XFRM_POLICY_IN, skb)) {
2084 drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2085 goto drop;
2086 }
2087 nf_reset_ct(skb);
2088
2089 if (static_branch_unlikely(&udp_encap_needed_key) &&
2090 READ_ONCE(up->encap_type)) {
2091 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2092
2093 /*
2094 * This is an encapsulation socket so pass the skb to
2095 * the socket's udp_encap_rcv() hook. Otherwise, just
2096 * fall through and pass this up the UDP socket.
2097 * up->encap_rcv() returns the following value:
2098 * =0 if skb was successfully passed to the encap
2099 * handler or was discarded by it.
2100 * >0 if skb should be passed on to UDP.
2101 * <0 if skb should be resubmitted as proto -N
2102 */
2103
2104 /* if we're overly short, let UDP handle it */
2105 encap_rcv = READ_ONCE(up->encap_rcv);
2106 if (encap_rcv) {
2107 int ret;
2108
2109 /* Verify checksum before giving to encap */
2110 if (udp_lib_checksum_complete(skb))
2111 goto csum_error;
2112
2113 ret = encap_rcv(sk, skb);
2114 if (ret <= 0) {
2115 __UDP_INC_STATS(sock_net(sk),
2116 UDP_MIB_INDATAGRAMS,
2117 is_udplite);
2118 return -ret;
2119 }
2120 }
2121
2122 /* FALLTHROUGH -- it's a UDP Packet */
2123 }
2124
2125 /*
2126 * UDP-Lite specific tests, ignored on UDP sockets
2127 */
2128 if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2129 u16 pcrlen = READ_ONCE(up->pcrlen);
2130
2131 /*
2132 * MIB statistics other than incrementing the error count are
2133 * disabled for the following two types of errors: these depend
2134 * on the application settings, not on the functioning of the
2135 * protocol stack as such.
2136 *
2137 * RFC 3828 here recommends (sec 3.3): "There should also be a
2138 * way ... to ... at least let the receiving application block
2139 * delivery of packets with coverage values less than a value
2140 * provided by the application."
2141 */
2142 if (pcrlen == 0) { /* full coverage was set */
2143 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2144 UDP_SKB_CB(skb)->cscov, skb->len);
2145 goto drop;
2146 }
2147 /* The next case involves violating the min. coverage requested
2148 * by the receiver. This is subtle: if receiver wants x and x is
2149 * greater than the buffersize/MTU then receiver will complain
2150 * that it wants x while sender emits packets of smaller size y.
2151 * Therefore the above ...()->partial_cov statement is essential.
2152 */
2153 if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2154 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2155 UDP_SKB_CB(skb)->cscov, pcrlen);
2156 goto drop;
2157 }
2158 }
2159
2160 prefetch(&sk->sk_rmem_alloc);
2161 if (rcu_access_pointer(sk->sk_filter) &&
2162 udp_lib_checksum_complete(skb))
2163 goto csum_error;
2164
2165 if (sk_filter_trim_cap(sk, skb, cap: sizeof(struct udphdr))) {
2166 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2167 goto drop;
2168 }
2169
2170 udp_csum_pull_header(skb);
2171
2172 ipv4_pktinfo_prepare(sk, skb);
2173 return __udp_queue_rcv_skb(sk, skb);
2174
2175csum_error:
2176 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2177 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2178drop:
2179 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2180 atomic_inc(v: &sk->sk_drops);
2181 kfree_skb_reason(skb, reason: drop_reason);
2182 return -1;
2183}
2184
2185static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2186{
2187 struct sk_buff *next, *segs;
2188 int ret;
2189
2190 if (likely(!udp_unexpected_gso(sk, skb)))
2191 return udp_queue_rcv_one_skb(sk, skb);
2192
2193 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2194 __skb_push(skb, len: -skb_mac_offset(skb));
2195 segs = udp_rcv_segment(sk, skb, ipv4: true);
2196 skb_list_walk_safe(segs, skb, next) {
2197 __skb_pull(skb, len: skb_transport_offset(skb));
2198
2199 udp_post_segment_fix_csum(skb);
2200 ret = udp_queue_rcv_one_skb(sk, skb);
2201 if (ret > 0)
2202 ip_protocol_deliver_rcu(net: dev_net(dev: skb->dev), skb, proto: ret);
2203 }
2204 return 0;
2205}
2206
2207/* For TCP sockets, sk_rx_dst is protected by socket lock
2208 * For UDP, we use xchg() to guard against concurrent changes.
2209 */
2210bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2211{
2212 struct dst_entry *old;
2213
2214 if (dst_hold_safe(dst)) {
2215 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2216 dst_release(dst: old);
2217 return old != dst;
2218 }
2219 return false;
2220}
2221EXPORT_SYMBOL(udp_sk_rx_dst_set);
2222
2223/*
2224 * Multicasts and broadcasts go to each listener.
2225 *
2226 * Note: called only from the BH handler context.
2227 */
2228static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2229 struct udphdr *uh,
2230 __be32 saddr, __be32 daddr,
2231 struct udp_table *udptable,
2232 int proto)
2233{
2234 struct sock *sk, *first = NULL;
2235 unsigned short hnum = ntohs(uh->dest);
2236 struct udp_hslot *hslot = udp_hashslot(table: udptable, net, num: hnum);
2237 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2238 unsigned int offset = offsetof(typeof(*sk), sk_node);
2239 int dif = skb->dev->ifindex;
2240 int sdif = inet_sdif(skb);
2241 struct hlist_node *node;
2242 struct sk_buff *nskb;
2243
2244 if (use_hash2) {
2245 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum) &
2246 udptable->mask;
2247 hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum) & udptable->mask;
2248start_lookup:
2249 hslot = &udptable->hash2[hash2];
2250 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2251 }
2252
2253 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2254 if (!__udp_is_mcast_sock(net, sk, loc_port: uh->dest, loc_addr: daddr,
2255 rmt_port: uh->source, rmt_addr: saddr, dif, sdif, hnum))
2256 continue;
2257
2258 if (!first) {
2259 first = sk;
2260 continue;
2261 }
2262 nskb = skb_clone(skb, GFP_ATOMIC);
2263
2264 if (unlikely(!nskb)) {
2265 atomic_inc(v: &sk->sk_drops);
2266 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2267 IS_UDPLITE(sk));
2268 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2269 IS_UDPLITE(sk));
2270 continue;
2271 }
2272 if (udp_queue_rcv_skb(sk, skb: nskb) > 0)
2273 consume_skb(skb: nskb);
2274 }
2275
2276 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2277 if (use_hash2 && hash2 != hash2_any) {
2278 hash2 = hash2_any;
2279 goto start_lookup;
2280 }
2281
2282 if (first) {
2283 if (udp_queue_rcv_skb(sk: first, skb) > 0)
2284 consume_skb(skb);
2285 } else {
2286 kfree_skb(skb);
2287 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2288 proto == IPPROTO_UDPLITE);
2289 }
2290 return 0;
2291}
2292
2293/* Initialize UDP checksum. If exited with zero value (success),
2294 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2295 * Otherwise, csum completion requires checksumming packet body,
2296 * including udp header and folding it to skb->csum.
2297 */
2298static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2299 int proto)
2300{
2301 int err;
2302
2303 UDP_SKB_CB(skb)->partial_cov = 0;
2304 UDP_SKB_CB(skb)->cscov = skb->len;
2305
2306 if (proto == IPPROTO_UDPLITE) {
2307 err = udplite_checksum_init(skb, uh);
2308 if (err)
2309 return err;
2310
2311 if (UDP_SKB_CB(skb)->partial_cov) {
2312 skb->csum = inet_compute_pseudo(skb, proto);
2313 return 0;
2314 }
2315 }
2316
2317 /* Note, we are only interested in != 0 or == 0, thus the
2318 * force to int.
2319 */
2320 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2321 inet_compute_pseudo);
2322 if (err)
2323 return err;
2324
2325 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2326 /* If SW calculated the value, we know it's bad */
2327 if (skb->csum_complete_sw)
2328 return 1;
2329
2330 /* HW says the value is bad. Let's validate that.
2331 * skb->csum is no longer the full packet checksum,
2332 * so don't treat it as such.
2333 */
2334 skb_checksum_complete_unset(skb);
2335 }
2336
2337 return 0;
2338}
2339
2340/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2341 * return code conversion for ip layer consumption
2342 */
2343static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2344 struct udphdr *uh)
2345{
2346 int ret;
2347
2348 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2349 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2350
2351 ret = udp_queue_rcv_skb(sk, skb);
2352
2353 /* a return value > 0 means to resubmit the input, but
2354 * it wants the return to be -protocol, or 0
2355 */
2356 if (ret > 0)
2357 return -ret;
2358 return 0;
2359}
2360
2361/*
2362 * All we need to do is get the socket, and then do a checksum.
2363 */
2364
2365int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2366 int proto)
2367{
2368 struct sock *sk;
2369 struct udphdr *uh;
2370 unsigned short ulen;
2371 struct rtable *rt = skb_rtable(skb);
2372 __be32 saddr, daddr;
2373 struct net *net = dev_net(dev: skb->dev);
2374 bool refcounted;
2375 int drop_reason;
2376
2377 drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2378
2379 /*
2380 * Validate the packet.
2381 */
2382 if (!pskb_may_pull(skb, len: sizeof(struct udphdr)))
2383 goto drop; /* No space for header. */
2384
2385 uh = udp_hdr(skb);
2386 ulen = ntohs(uh->len);
2387 saddr = ip_hdr(skb)->saddr;
2388 daddr = ip_hdr(skb)->daddr;
2389
2390 if (ulen > skb->len)
2391 goto short_packet;
2392
2393 if (proto == IPPROTO_UDP) {
2394 /* UDP validates ulen. */
2395 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, len: ulen))
2396 goto short_packet;
2397 uh = udp_hdr(skb);
2398 }
2399
2400 if (udp4_csum_init(skb, uh, proto))
2401 goto csum_error;
2402
2403 sk = inet_steal_sock(net, skb, doff: sizeof(struct udphdr), saddr, sport: uh->source, daddr, dport: uh->dest,
2404 refcounted: &refcounted, ehashfn: udp_ehashfn);
2405 if (IS_ERR(ptr: sk))
2406 goto no_sk;
2407
2408 if (sk) {
2409 struct dst_entry *dst = skb_dst(skb);
2410 int ret;
2411
2412 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2413 udp_sk_rx_dst_set(sk, dst);
2414
2415 ret = udp_unicast_rcv_skb(sk, skb, uh);
2416 if (refcounted)
2417 sock_put(sk);
2418 return ret;
2419 }
2420
2421 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2422 return __udp4_lib_mcast_deliver(net, skb, uh,
2423 saddr, daddr, udptable, proto);
2424
2425 sk = __udp4_lib_lookup_skb(skb, sport: uh->source, dport: uh->dest, udptable);
2426 if (sk)
2427 return udp_unicast_rcv_skb(sk, skb, uh);
2428no_sk:
2429 if (!xfrm4_policy_check(NULL, dir: XFRM_POLICY_IN, skb))
2430 goto drop;
2431 nf_reset_ct(skb);
2432
2433 /* No socket. Drop packet silently, if checksum is wrong */
2434 if (udp_lib_checksum_complete(skb))
2435 goto csum_error;
2436
2437 drop_reason = SKB_DROP_REASON_NO_SOCKET;
2438 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2439 icmp_send(skb_in: skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, info: 0);
2440
2441 /*
2442 * Hmm. We got an UDP packet to a port to which we
2443 * don't wanna listen. Ignore it.
2444 */
2445 kfree_skb_reason(skb, reason: drop_reason);
2446 return 0;
2447
2448short_packet:
2449 drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2450 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2451 proto == IPPROTO_UDPLITE ? "Lite" : "",
2452 &saddr, ntohs(uh->source),
2453 ulen, skb->len,
2454 &daddr, ntohs(uh->dest));
2455 goto drop;
2456
2457csum_error:
2458 /*
2459 * RFC1122: OK. Discards the bad packet silently (as far as
2460 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2461 */
2462 drop_reason = SKB_DROP_REASON_UDP_CSUM;
2463 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2464 proto == IPPROTO_UDPLITE ? "Lite" : "",
2465 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2466 ulen);
2467 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2468drop:
2469 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2470 kfree_skb_reason(skb, reason: drop_reason);
2471 return 0;
2472}
2473
2474/* We can only early demux multicast if there is a single matching socket.
2475 * If more than one socket found returns NULL
2476 */
2477static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2478 __be16 loc_port, __be32 loc_addr,
2479 __be16 rmt_port, __be32 rmt_addr,
2480 int dif, int sdif)
2481{
2482 struct udp_table *udptable = net->ipv4.udp_table;
2483 unsigned short hnum = ntohs(loc_port);
2484 struct sock *sk, *result;
2485 struct udp_hslot *hslot;
2486 unsigned int slot;
2487
2488 slot = udp_hashfn(net, num: hnum, mask: udptable->mask);
2489 hslot = &udptable->hash[slot];
2490
2491 /* Do not bother scanning a too big list */
2492 if (hslot->count > 10)
2493 return NULL;
2494
2495 result = NULL;
2496 sk_for_each_rcu(sk, &hslot->head) {
2497 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2498 rmt_port, rmt_addr, dif, sdif, hnum)) {
2499 if (result)
2500 return NULL;
2501 result = sk;
2502 }
2503 }
2504
2505 return result;
2506}
2507
2508/* For unicast we should only early demux connected sockets or we can
2509 * break forwarding setups. The chains here can be long so only check
2510 * if the first socket is an exact match and if not move on.
2511 */
2512static struct sock *__udp4_lib_demux_lookup(struct net *net,
2513 __be16 loc_port, __be32 loc_addr,
2514 __be16 rmt_port, __be32 rmt_addr,
2515 int dif, int sdif)
2516{
2517 struct udp_table *udptable = net->ipv4.udp_table;
2518 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2519 unsigned short hnum = ntohs(loc_port);
2520 unsigned int hash2, slot2;
2521 struct udp_hslot *hslot2;
2522 __portpair ports;
2523 struct sock *sk;
2524
2525 hash2 = ipv4_portaddr_hash(net, saddr: loc_addr, port: hnum);
2526 slot2 = hash2 & udptable->mask;
2527 hslot2 = &udptable->hash2[slot2];
2528 ports = INET_COMBINED_PORTS(rmt_port, hnum);
2529
2530 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2531 if (inet_match(net, sk, cookie: acookie, ports, dif, sdif))
2532 return sk;
2533 /* Only check first socket in chain */
2534 break;
2535 }
2536 return NULL;
2537}
2538
2539int udp_v4_early_demux(struct sk_buff *skb)
2540{
2541 struct net *net = dev_net(dev: skb->dev);
2542 struct in_device *in_dev = NULL;
2543 const struct iphdr *iph;
2544 const struct udphdr *uh;
2545 struct sock *sk = NULL;
2546 struct dst_entry *dst;
2547 int dif = skb->dev->ifindex;
2548 int sdif = inet_sdif(skb);
2549 int ours;
2550
2551 /* validate the packet */
2552 if (!pskb_may_pull(skb, len: skb_transport_offset(skb) + sizeof(struct udphdr)))
2553 return 0;
2554
2555 iph = ip_hdr(skb);
2556 uh = udp_hdr(skb);
2557
2558 if (skb->pkt_type == PACKET_MULTICAST) {
2559 in_dev = __in_dev_get_rcu(dev: skb->dev);
2560
2561 if (!in_dev)
2562 return 0;
2563
2564 ours = ip_check_mc_rcu(dev: in_dev, mc_addr: iph->daddr, src_addr: iph->saddr,
2565 proto: iph->protocol);
2566 if (!ours)
2567 return 0;
2568
2569 sk = __udp4_lib_mcast_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr,
2570 rmt_port: uh->source, rmt_addr: iph->saddr,
2571 dif, sdif);
2572 } else if (skb->pkt_type == PACKET_HOST) {
2573 sk = __udp4_lib_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr,
2574 rmt_port: uh->source, rmt_addr: iph->saddr, dif, sdif);
2575 }
2576
2577 if (!sk || !refcount_inc_not_zero(r: &sk->sk_refcnt))
2578 return 0;
2579
2580 skb->sk = sk;
2581 skb->destructor = sock_efree;
2582 dst = rcu_dereference(sk->sk_rx_dst);
2583
2584 if (dst)
2585 dst = dst_check(dst, cookie: 0);
2586 if (dst) {
2587 u32 itag = 0;
2588
2589 /* set noref for now.
2590 * any place which wants to hold dst has to call
2591 * dst_hold_safe()
2592 */
2593 skb_dst_set_noref(skb, dst);
2594
2595 /* for unconnected multicast sockets we need to validate
2596 * the source on each packet
2597 */
2598 if (!inet_sk(sk)->inet_daddr && in_dev)
2599 return ip_mc_validate_source(skb, daddr: iph->daddr,
2600 saddr: iph->saddr,
2601 tos: iph->tos & IPTOS_RT_MASK,
2602 dev: skb->dev, in_dev, itag: &itag);
2603 }
2604 return 0;
2605}
2606
2607int udp_rcv(struct sk_buff *skb)
2608{
2609 return __udp4_lib_rcv(skb, udptable: dev_net(dev: skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2610}
2611
2612void udp_destroy_sock(struct sock *sk)
2613{
2614 struct udp_sock *up = udp_sk(sk);
2615 bool slow = lock_sock_fast(sk);
2616
2617 /* protects from races with udp_abort() */
2618 sock_set_flag(sk, flag: SOCK_DEAD);
2619 udp_flush_pending_frames(sk);
2620 unlock_sock_fast(sk, slow);
2621 if (static_branch_unlikely(&udp_encap_needed_key)) {
2622 if (up->encap_type) {
2623 void (*encap_destroy)(struct sock *sk);
2624 encap_destroy = READ_ONCE(up->encap_destroy);
2625 if (encap_destroy)
2626 encap_destroy(sk);
2627 }
2628 if (udp_test_bit(ENCAP_ENABLED, sk))
2629 static_branch_dec(&udp_encap_needed_key);
2630 }
2631}
2632
2633static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2634 struct sock *sk)
2635{
2636#ifdef CONFIG_XFRM
2637 if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2638 if (family == AF_INET)
2639 WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2640 else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2641 WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2642 }
2643#endif
2644}
2645
2646/*
2647 * Socket option code for UDP
2648 */
2649int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2650 sockptr_t optval, unsigned int optlen,
2651 int (*push_pending_frames)(struct sock *))
2652{
2653 struct udp_sock *up = udp_sk(sk);
2654 int val, valbool;
2655 int err = 0;
2656 int is_udplite = IS_UDPLITE(sk);
2657
2658 if (level == SOL_SOCKET) {
2659 err = sk_setsockopt(sk, level, optname, optval, optlen);
2660
2661 if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2662 sockopt_lock_sock(sk);
2663 /* paired with READ_ONCE in udp_rmem_release() */
2664 WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2665 sockopt_release_sock(sk);
2666 }
2667 return err;
2668 }
2669
2670 if (optlen < sizeof(int))
2671 return -EINVAL;
2672
2673 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
2674 return -EFAULT;
2675
2676 valbool = val ? 1 : 0;
2677
2678 switch (optname) {
2679 case UDP_CORK:
2680 if (val != 0) {
2681 udp_set_bit(CORK, sk);
2682 } else {
2683 udp_clear_bit(CORK, sk);
2684 lock_sock(sk);
2685 push_pending_frames(sk);
2686 release_sock(sk);
2687 }
2688 break;
2689
2690 case UDP_ENCAP:
2691 switch (val) {
2692 case 0:
2693#ifdef CONFIG_XFRM
2694 case UDP_ENCAP_ESPINUDP:
2695 set_xfrm_gro_udp_encap_rcv(encap_type: val, family: sk->sk_family, sk);
2696 fallthrough;
2697 case UDP_ENCAP_ESPINUDP_NON_IKE:
2698#if IS_ENABLED(CONFIG_IPV6)
2699 if (sk->sk_family == AF_INET6)
2700 WRITE_ONCE(up->encap_rcv,
2701 ipv6_stub->xfrm6_udp_encap_rcv);
2702 else
2703#endif
2704 WRITE_ONCE(up->encap_rcv,
2705 xfrm4_udp_encap_rcv);
2706#endif
2707 fallthrough;
2708 case UDP_ENCAP_L2TPINUDP:
2709 WRITE_ONCE(up->encap_type, val);
2710 udp_tunnel_encap_enable(sk);
2711 break;
2712 default:
2713 err = -ENOPROTOOPT;
2714 break;
2715 }
2716 break;
2717
2718 case UDP_NO_CHECK6_TX:
2719 udp_set_no_check6_tx(sk, val: valbool);
2720 break;
2721
2722 case UDP_NO_CHECK6_RX:
2723 udp_set_no_check6_rx(sk, val: valbool);
2724 break;
2725
2726 case UDP_SEGMENT:
2727 if (val < 0 || val > USHRT_MAX)
2728 return -EINVAL;
2729 WRITE_ONCE(up->gso_size, val);
2730 break;
2731
2732 case UDP_GRO:
2733
2734 /* when enabling GRO, accept the related GSO packet type */
2735 if (valbool)
2736 udp_tunnel_encap_enable(sk);
2737 udp_assign_bit(GRO_ENABLED, sk, valbool);
2738 udp_assign_bit(ACCEPT_L4, sk, valbool);
2739 set_xfrm_gro_udp_encap_rcv(encap_type: up->encap_type, family: sk->sk_family, sk);
2740 break;
2741
2742 /*
2743 * UDP-Lite's partial checksum coverage (RFC 3828).
2744 */
2745 /* The sender sets actual checksum coverage length via this option.
2746 * The case coverage > packet length is handled by send module. */
2747 case UDPLITE_SEND_CSCOV:
2748 if (!is_udplite) /* Disable the option on UDP sockets */
2749 return -ENOPROTOOPT;
2750 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2751 val = 8;
2752 else if (val > USHRT_MAX)
2753 val = USHRT_MAX;
2754 WRITE_ONCE(up->pcslen, val);
2755 udp_set_bit(UDPLITE_SEND_CC, sk);
2756 break;
2757
2758 /* The receiver specifies a minimum checksum coverage value. To make
2759 * sense, this should be set to at least 8 (as done below). If zero is
2760 * used, this again means full checksum coverage. */
2761 case UDPLITE_RECV_CSCOV:
2762 if (!is_udplite) /* Disable the option on UDP sockets */
2763 return -ENOPROTOOPT;
2764 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2765 val = 8;
2766 else if (val > USHRT_MAX)
2767 val = USHRT_MAX;
2768 WRITE_ONCE(up->pcrlen, val);
2769 udp_set_bit(UDPLITE_RECV_CC, sk);
2770 break;
2771
2772 default:
2773 err = -ENOPROTOOPT;
2774 break;
2775 }
2776
2777 return err;
2778}
2779EXPORT_SYMBOL(udp_lib_setsockopt);
2780
2781int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2782 unsigned int optlen)
2783{
2784 if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET)
2785 return udp_lib_setsockopt(sk, level, optname,
2786 optval, optlen,
2787 udp_push_pending_frames);
2788 return ip_setsockopt(sk, level, optname, optval, optlen);
2789}
2790
2791int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2792 char __user *optval, int __user *optlen)
2793{
2794 struct udp_sock *up = udp_sk(sk);
2795 int val, len;
2796
2797 if (get_user(len, optlen))
2798 return -EFAULT;
2799
2800 len = min_t(unsigned int, len, sizeof(int));
2801
2802 if (len < 0)
2803 return -EINVAL;
2804
2805 switch (optname) {
2806 case UDP_CORK:
2807 val = udp_test_bit(CORK, sk);
2808 break;
2809
2810 case UDP_ENCAP:
2811 val = READ_ONCE(up->encap_type);
2812 break;
2813
2814 case UDP_NO_CHECK6_TX:
2815 val = udp_get_no_check6_tx(sk);
2816 break;
2817
2818 case UDP_NO_CHECK6_RX:
2819 val = udp_get_no_check6_rx(sk);
2820 break;
2821
2822 case UDP_SEGMENT:
2823 val = READ_ONCE(up->gso_size);
2824 break;
2825
2826 case UDP_GRO:
2827 val = udp_test_bit(GRO_ENABLED, sk);
2828 break;
2829
2830 /* The following two cannot be changed on UDP sockets, the return is
2831 * always 0 (which corresponds to the full checksum coverage of UDP). */
2832 case UDPLITE_SEND_CSCOV:
2833 val = READ_ONCE(up->pcslen);
2834 break;
2835
2836 case UDPLITE_RECV_CSCOV:
2837 val = READ_ONCE(up->pcrlen);
2838 break;
2839
2840 default:
2841 return -ENOPROTOOPT;
2842 }
2843
2844 if (put_user(len, optlen))
2845 return -EFAULT;
2846 if (copy_to_user(to: optval, from: &val, n: len))
2847 return -EFAULT;
2848 return 0;
2849}
2850EXPORT_SYMBOL(udp_lib_getsockopt);
2851
2852int udp_getsockopt(struct sock *sk, int level, int optname,
2853 char __user *optval, int __user *optlen)
2854{
2855 if (level == SOL_UDP || level == SOL_UDPLITE)
2856 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2857 return ip_getsockopt(sk, level, optname, optval, optlen);
2858}
2859
2860/**
2861 * udp_poll - wait for a UDP event.
2862 * @file: - file struct
2863 * @sock: - socket
2864 * @wait: - poll table
2865 *
2866 * This is same as datagram poll, except for the special case of
2867 * blocking sockets. If application is using a blocking fd
2868 * and a packet with checksum error is in the queue;
2869 * then it could get return from select indicating data available
2870 * but then block when reading it. Add special case code
2871 * to work around these arguably broken applications.
2872 */
2873__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2874{
2875 __poll_t mask = datagram_poll(file, sock, wait);
2876 struct sock *sk = sock->sk;
2877
2878 if (!skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue))
2879 mask |= EPOLLIN | EPOLLRDNORM;
2880
2881 /* Check for false positives due to checksum errors */
2882 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2883 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2884 mask &= ~(EPOLLIN | EPOLLRDNORM);
2885
2886 /* psock ingress_msg queue should not contain any bad checksum frames */
2887 if (sk_is_readable(sk))
2888 mask |= EPOLLIN | EPOLLRDNORM;
2889 return mask;
2890
2891}
2892EXPORT_SYMBOL(udp_poll);
2893
2894int udp_abort(struct sock *sk, int err)
2895{
2896 if (!has_current_bpf_ctx())
2897 lock_sock(sk);
2898
2899 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2900 * with close()
2901 */
2902 if (sock_flag(sk, flag: SOCK_DEAD))
2903 goto out;
2904
2905 sk->sk_err = err;
2906 sk_error_report(sk);
2907 __udp_disconnect(sk, 0);
2908
2909out:
2910 if (!has_current_bpf_ctx())
2911 release_sock(sk);
2912
2913 return 0;
2914}
2915EXPORT_SYMBOL_GPL(udp_abort);
2916
2917struct proto udp_prot = {
2918 .name = "UDP",
2919 .owner = THIS_MODULE,
2920 .close = udp_lib_close,
2921 .pre_connect = udp_pre_connect,
2922 .connect = ip4_datagram_connect,
2923 .disconnect = udp_disconnect,
2924 .ioctl = udp_ioctl,
2925 .init = udp_init_sock,
2926 .destroy = udp_destroy_sock,
2927 .setsockopt = udp_setsockopt,
2928 .getsockopt = udp_getsockopt,
2929 .sendmsg = udp_sendmsg,
2930 .recvmsg = udp_recvmsg,
2931 .splice_eof = udp_splice_eof,
2932 .release_cb = ip4_datagram_release_cb,
2933 .hash = udp_lib_hash,
2934 .unhash = udp_lib_unhash,
2935 .rehash = udp_v4_rehash,
2936 .get_port = udp_v4_get_port,
2937 .put_port = udp_lib_unhash,
2938#ifdef CONFIG_BPF_SYSCALL
2939 .psock_update_sk_prot = udp_bpf_update_proto,
2940#endif
2941 .memory_allocated = &udp_memory_allocated,
2942 .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc,
2943
2944 .sysctl_mem = sysctl_udp_mem,
2945 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2946 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2947 .obj_size = sizeof(struct udp_sock),
2948 .h.udp_table = NULL,
2949 .diag_destroy = udp_abort,
2950};
2951EXPORT_SYMBOL(udp_prot);
2952
2953/* ------------------------------------------------------------------------ */
2954#ifdef CONFIG_PROC_FS
2955
2956static unsigned short seq_file_family(const struct seq_file *seq);
2957static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2958{
2959 unsigned short family = seq_file_family(seq);
2960
2961 /* AF_UNSPEC is used as a match all */
2962 return ((family == AF_UNSPEC || family == sk->sk_family) &&
2963 net_eq(net1: sock_net(sk), net2: seq_file_net(seq)));
2964}
2965
2966#ifdef CONFIG_BPF_SYSCALL
2967static const struct seq_operations bpf_iter_udp_seq_ops;
2968#endif
2969static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2970 struct net *net)
2971{
2972 const struct udp_seq_afinfo *afinfo;
2973
2974#ifdef CONFIG_BPF_SYSCALL
2975 if (seq->op == &bpf_iter_udp_seq_ops)
2976 return net->ipv4.udp_table;
2977#endif
2978
2979 afinfo = pde_data(inode: file_inode(f: seq->file));
2980 return afinfo->udp_table ? : net->ipv4.udp_table;
2981}
2982
2983static struct sock *udp_get_first(struct seq_file *seq, int start)
2984{
2985 struct udp_iter_state *state = seq->private;
2986 struct net *net = seq_file_net(seq);
2987 struct udp_table *udptable;
2988 struct sock *sk;
2989
2990 udptable = udp_get_table_seq(seq, net);
2991
2992 for (state->bucket = start; state->bucket <= udptable->mask;
2993 ++state->bucket) {
2994 struct udp_hslot *hslot = &udptable->hash[state->bucket];
2995
2996 if (hlist_empty(h: &hslot->head))
2997 continue;
2998
2999 spin_lock_bh(lock: &hslot->lock);
3000 sk_for_each(sk, &hslot->head) {
3001 if (seq_sk_match(seq, sk))
3002 goto found;
3003 }
3004 spin_unlock_bh(lock: &hslot->lock);
3005 }
3006 sk = NULL;
3007found:
3008 return sk;
3009}
3010
3011static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3012{
3013 struct udp_iter_state *state = seq->private;
3014 struct net *net = seq_file_net(seq);
3015 struct udp_table *udptable;
3016
3017 do {
3018 sk = sk_next(sk);
3019 } while (sk && !seq_sk_match(seq, sk));
3020
3021 if (!sk) {
3022 udptable = udp_get_table_seq(seq, net);
3023
3024 if (state->bucket <= udptable->mask)
3025 spin_unlock_bh(lock: &udptable->hash[state->bucket].lock);
3026
3027 return udp_get_first(seq, start: state->bucket + 1);
3028 }
3029 return sk;
3030}
3031
3032static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3033{
3034 struct sock *sk = udp_get_first(seq, start: 0);
3035
3036 if (sk)
3037 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3038 --pos;
3039 return pos ? NULL : sk;
3040}
3041
3042void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3043{
3044 struct udp_iter_state *state = seq->private;
3045 state->bucket = MAX_UDP_PORTS;
3046
3047 return *pos ? udp_get_idx(seq, pos: *pos-1) : SEQ_START_TOKEN;
3048}
3049EXPORT_SYMBOL(udp_seq_start);
3050
3051void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3052{
3053 struct sock *sk;
3054
3055 if (v == SEQ_START_TOKEN)
3056 sk = udp_get_idx(seq, pos: 0);
3057 else
3058 sk = udp_get_next(seq, sk: v);
3059
3060 ++*pos;
3061 return sk;
3062}
3063EXPORT_SYMBOL(udp_seq_next);
3064
3065void udp_seq_stop(struct seq_file *seq, void *v)
3066{
3067 struct udp_iter_state *state = seq->private;
3068 struct udp_table *udptable;
3069
3070 udptable = udp_get_table_seq(seq, net: seq_file_net(seq));
3071
3072 if (state->bucket <= udptable->mask)
3073 spin_unlock_bh(lock: &udptable->hash[state->bucket].lock);
3074}
3075EXPORT_SYMBOL(udp_seq_stop);
3076
3077/* ------------------------------------------------------------------------ */
3078static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3079 int bucket)
3080{
3081 struct inet_sock *inet = inet_sk(sp);
3082 __be32 dest = inet->inet_daddr;
3083 __be32 src = inet->inet_rcv_saddr;
3084 __u16 destp = ntohs(inet->inet_dport);
3085 __u16 srcp = ntohs(inet->inet_sport);
3086
3087 seq_printf(m: f, fmt: "%5d: %08X:%04X %08X:%04X"
3088 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3089 bucket, src, srcp, dest, destp, sp->sk_state,
3090 sk_wmem_alloc_get(sk: sp),
3091 udp_rqueue_get(sk: sp),
3092 0, 0L, 0,
3093 from_kuid_munged(to: seq_user_ns(seq: f), uid: sock_i_uid(sk: sp)),
3094 0, sock_i_ino(sk: sp),
3095 refcount_read(r: &sp->sk_refcnt), sp,
3096 atomic_read(v: &sp->sk_drops));
3097}
3098
3099int udp4_seq_show(struct seq_file *seq, void *v)
3100{
3101 seq_setwidth(m: seq, size: 127);
3102 if (v == SEQ_START_TOKEN)
3103 seq_puts(m: seq, s: " sl local_address rem_address st tx_queue "
3104 "rx_queue tr tm->when retrnsmt uid timeout "
3105 "inode ref pointer drops");
3106 else {
3107 struct udp_iter_state *state = seq->private;
3108
3109 udp4_format_sock(sp: v, f: seq, bucket: state->bucket);
3110 }
3111 seq_pad(m: seq, c: '\n');
3112 return 0;
3113}
3114
3115#ifdef CONFIG_BPF_SYSCALL
3116struct bpf_iter__udp {
3117 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3118 __bpf_md_ptr(struct udp_sock *, udp_sk);
3119 uid_t uid __aligned(8);
3120 int bucket __aligned(8);
3121};
3122
3123struct bpf_udp_iter_state {
3124 struct udp_iter_state state;
3125 unsigned int cur_sk;
3126 unsigned int end_sk;
3127 unsigned int max_sk;
3128 int offset;
3129 struct sock **batch;
3130 bool st_bucket_done;
3131};
3132
3133static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3134 unsigned int new_batch_sz);
3135static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3136{
3137 struct bpf_udp_iter_state *iter = seq->private;
3138 struct udp_iter_state *state = &iter->state;
3139 struct net *net = seq_file_net(seq);
3140 struct udp_table *udptable;
3141 unsigned int batch_sks = 0;
3142 bool resized = false;
3143 struct sock *sk;
3144
3145 /* The current batch is done, so advance the bucket. */
3146 if (iter->st_bucket_done) {
3147 state->bucket++;
3148 iter->offset = 0;
3149 }
3150
3151 udptable = udp_get_table_seq(seq, net);
3152
3153again:
3154 /* New batch for the next bucket.
3155 * Iterate over the hash table to find a bucket with sockets matching
3156 * the iterator attributes, and return the first matching socket from
3157 * the bucket. The remaining matched sockets from the bucket are batched
3158 * before releasing the bucket lock. This allows BPF programs that are
3159 * called in seq_show to acquire the bucket lock if needed.
3160 */
3161 iter->cur_sk = 0;
3162 iter->end_sk = 0;
3163 iter->st_bucket_done = false;
3164 batch_sks = 0;
3165
3166 for (; state->bucket <= udptable->mask; state->bucket++) {
3167 struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3168
3169 if (hlist_empty(h: &hslot2->head)) {
3170 iter->offset = 0;
3171 continue;
3172 }
3173
3174 spin_lock_bh(lock: &hslot2->lock);
3175 udp_portaddr_for_each_entry(sk, &hslot2->head) {
3176 if (seq_sk_match(seq, sk)) {
3177 /* Resume from the last iterated socket at the
3178 * offset in the bucket before iterator was stopped.
3179 */
3180 if (iter->offset) {
3181 --iter->offset;
3182 continue;
3183 }
3184 if (iter->end_sk < iter->max_sk) {
3185 sock_hold(sk);
3186 iter->batch[iter->end_sk++] = sk;
3187 }
3188 batch_sks++;
3189 }
3190 }
3191 spin_unlock_bh(lock: &hslot2->lock);
3192
3193 if (iter->end_sk)
3194 break;
3195
3196 /* Reset the current bucket's offset before moving to the next bucket. */
3197 iter->offset = 0;
3198 }
3199
3200 /* All done: no batch made. */
3201 if (!iter->end_sk)
3202 return NULL;
3203
3204 if (iter->end_sk == batch_sks) {
3205 /* Batching is done for the current bucket; return the first
3206 * socket to be iterated from the batch.
3207 */
3208 iter->st_bucket_done = true;
3209 goto done;
3210 }
3211 if (!resized && !bpf_iter_udp_realloc_batch(iter, new_batch_sz: batch_sks * 3 / 2)) {
3212 resized = true;
3213 /* After allocating a larger batch, retry one more time to grab
3214 * the whole bucket.
3215 */
3216 state->bucket--;
3217 goto again;
3218 }
3219done:
3220 return iter->batch[0];
3221}
3222
3223static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3224{
3225 struct bpf_udp_iter_state *iter = seq->private;
3226 struct sock *sk;
3227
3228 /* Whenever seq_next() is called, the iter->cur_sk is
3229 * done with seq_show(), so unref the iter->cur_sk.
3230 */
3231 if (iter->cur_sk < iter->end_sk) {
3232 sock_put(sk: iter->batch[iter->cur_sk++]);
3233 ++iter->offset;
3234 }
3235
3236 /* After updating iter->cur_sk, check if there are more sockets
3237 * available in the current bucket batch.
3238 */
3239 if (iter->cur_sk < iter->end_sk)
3240 sk = iter->batch[iter->cur_sk];
3241 else
3242 /* Prepare a new batch. */
3243 sk = bpf_iter_udp_batch(seq);
3244
3245 ++*pos;
3246 return sk;
3247}
3248
3249static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3250{
3251 /* bpf iter does not support lseek, so it always
3252 * continue from where it was stop()-ped.
3253 */
3254 if (*pos)
3255 return bpf_iter_udp_batch(seq);
3256
3257 return SEQ_START_TOKEN;
3258}
3259
3260static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3261 struct udp_sock *udp_sk, uid_t uid, int bucket)
3262{
3263 struct bpf_iter__udp ctx;
3264
3265 meta->seq_num--; /* skip SEQ_START_TOKEN */
3266 ctx.meta = meta;
3267 ctx.udp_sk = udp_sk;
3268 ctx.uid = uid;
3269 ctx.bucket = bucket;
3270 return bpf_iter_run_prog(prog, ctx: &ctx);
3271}
3272
3273static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3274{
3275 struct udp_iter_state *state = seq->private;
3276 struct bpf_iter_meta meta;
3277 struct bpf_prog *prog;
3278 struct sock *sk = v;
3279 uid_t uid;
3280 int ret;
3281
3282 if (v == SEQ_START_TOKEN)
3283 return 0;
3284
3285 lock_sock(sk);
3286
3287 if (unlikely(sk_unhashed(sk))) {
3288 ret = SEQ_SKIP;
3289 goto unlock;
3290 }
3291
3292 uid = from_kuid_munged(to: seq_user_ns(seq), uid: sock_i_uid(sk));
3293 meta.seq = seq;
3294 prog = bpf_iter_get_info(meta: &meta, in_stop: false);
3295 ret = udp_prog_seq_show(prog, meta: &meta, udp_sk: v, uid, bucket: state->bucket);
3296
3297unlock:
3298 release_sock(sk);
3299 return ret;
3300}
3301
3302static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3303{
3304 while (iter->cur_sk < iter->end_sk)
3305 sock_put(sk: iter->batch[iter->cur_sk++]);
3306}
3307
3308static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3309{
3310 struct bpf_udp_iter_state *iter = seq->private;
3311 struct bpf_iter_meta meta;
3312 struct bpf_prog *prog;
3313
3314 if (!v) {
3315 meta.seq = seq;
3316 prog = bpf_iter_get_info(meta: &meta, in_stop: true);
3317 if (prog)
3318 (void)udp_prog_seq_show(prog, meta: &meta, udp_sk: v, uid: 0, bucket: 0);
3319 }
3320
3321 if (iter->cur_sk < iter->end_sk) {
3322 bpf_iter_udp_put_batch(iter);
3323 iter->st_bucket_done = false;
3324 }
3325}
3326
3327static const struct seq_operations bpf_iter_udp_seq_ops = {
3328 .start = bpf_iter_udp_seq_start,
3329 .next = bpf_iter_udp_seq_next,
3330 .stop = bpf_iter_udp_seq_stop,
3331 .show = bpf_iter_udp_seq_show,
3332};
3333#endif
3334
3335static unsigned short seq_file_family(const struct seq_file *seq)
3336{
3337 const struct udp_seq_afinfo *afinfo;
3338
3339#ifdef CONFIG_BPF_SYSCALL
3340 /* BPF iterator: bpf programs to filter sockets. */
3341 if (seq->op == &bpf_iter_udp_seq_ops)
3342 return AF_UNSPEC;
3343#endif
3344
3345 /* Proc fs iterator */
3346 afinfo = pde_data(inode: file_inode(f: seq->file));
3347 return afinfo->family;
3348}
3349
3350const struct seq_operations udp_seq_ops = {
3351 .start = udp_seq_start,
3352 .next = udp_seq_next,
3353 .stop = udp_seq_stop,
3354 .show = udp4_seq_show,
3355};
3356EXPORT_SYMBOL(udp_seq_ops);
3357
3358static struct udp_seq_afinfo udp4_seq_afinfo = {
3359 .family = AF_INET,
3360 .udp_table = NULL,
3361};
3362
3363static int __net_init udp4_proc_init_net(struct net *net)
3364{
3365 if (!proc_create_net_data(name: "udp", mode: 0444, parent: net->proc_net, ops: &udp_seq_ops,
3366 state_size: sizeof(struct udp_iter_state), data: &udp4_seq_afinfo))
3367 return -ENOMEM;
3368 return 0;
3369}
3370
3371static void __net_exit udp4_proc_exit_net(struct net *net)
3372{
3373 remove_proc_entry("udp", net->proc_net);
3374}
3375
3376static struct pernet_operations udp4_net_ops = {
3377 .init = udp4_proc_init_net,
3378 .exit = udp4_proc_exit_net,
3379};
3380
3381int __init udp4_proc_init(void)
3382{
3383 return register_pernet_subsys(&udp4_net_ops);
3384}
3385
3386void udp4_proc_exit(void)
3387{
3388 unregister_pernet_subsys(&udp4_net_ops);
3389}
3390#endif /* CONFIG_PROC_FS */
3391
3392static __initdata unsigned long uhash_entries;
3393static int __init set_uhash_entries(char *str)
3394{
3395 ssize_t ret;
3396
3397 if (!str)
3398 return 0;
3399
3400 ret = kstrtoul(s: str, base: 0, res: &uhash_entries);
3401 if (ret)
3402 return 0;
3403
3404 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3405 uhash_entries = UDP_HTABLE_SIZE_MIN;
3406 return 1;
3407}
3408__setup("uhash_entries=", set_uhash_entries);
3409
3410void __init udp_table_init(struct udp_table *table, const char *name)
3411{
3412 unsigned int i;
3413
3414 table->hash = alloc_large_system_hash(tablename: name,
3415 bucketsize: 2 * sizeof(struct udp_hslot),
3416 numentries: uhash_entries,
3417 scale: 21, /* one slot per 2 MB */
3418 flags: 0,
3419 hash_shift: &table->log,
3420 hash_mask: &table->mask,
3421 UDP_HTABLE_SIZE_MIN,
3422 UDP_HTABLE_SIZE_MAX);
3423
3424 table->hash2 = table->hash + (table->mask + 1);
3425 for (i = 0; i <= table->mask; i++) {
3426 INIT_HLIST_HEAD(&table->hash[i].head);
3427 table->hash[i].count = 0;
3428 spin_lock_init(&table->hash[i].lock);
3429 }
3430 for (i = 0; i <= table->mask; i++) {
3431 INIT_HLIST_HEAD(&table->hash2[i].head);
3432 table->hash2[i].count = 0;
3433 spin_lock_init(&table->hash2[i].lock);
3434 }
3435}
3436
3437u32 udp_flow_hashrnd(void)
3438{
3439 static u32 hashrnd __read_mostly;
3440
3441 net_get_random_once(&hashrnd, sizeof(hashrnd));
3442
3443 return hashrnd;
3444}
3445EXPORT_SYMBOL(udp_flow_hashrnd);
3446
3447static void __net_init udp_sysctl_init(struct net *net)
3448{
3449 net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3450 net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3451
3452#ifdef CONFIG_NET_L3_MASTER_DEV
3453 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3454#endif
3455}
3456
3457static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3458{
3459 struct udp_table *udptable;
3460 int i;
3461
3462 udptable = kmalloc(size: sizeof(*udptable), GFP_KERNEL);
3463 if (!udptable)
3464 goto out;
3465
3466 udptable->hash = vmalloc_huge(size: hash_entries * 2 * sizeof(struct udp_hslot),
3467 GFP_KERNEL_ACCOUNT);
3468 if (!udptable->hash)
3469 goto free_table;
3470
3471 udptable->hash2 = udptable->hash + hash_entries;
3472 udptable->mask = hash_entries - 1;
3473 udptable->log = ilog2(hash_entries);
3474
3475 for (i = 0; i < hash_entries; i++) {
3476 INIT_HLIST_HEAD(&udptable->hash[i].head);
3477 udptable->hash[i].count = 0;
3478 spin_lock_init(&udptable->hash[i].lock);
3479
3480 INIT_HLIST_HEAD(&udptable->hash2[i].head);
3481 udptable->hash2[i].count = 0;
3482 spin_lock_init(&udptable->hash2[i].lock);
3483 }
3484
3485 return udptable;
3486
3487free_table:
3488 kfree(objp: udptable);
3489out:
3490 return NULL;
3491}
3492
3493static void __net_exit udp_pernet_table_free(struct net *net)
3494{
3495 struct udp_table *udptable = net->ipv4.udp_table;
3496
3497 if (udptable == &udp_table)
3498 return;
3499
3500 kvfree(addr: udptable->hash);
3501 kfree(objp: udptable);
3502}
3503
3504static void __net_init udp_set_table(struct net *net)
3505{
3506 struct udp_table *udptable;
3507 unsigned int hash_entries;
3508 struct net *old_net;
3509
3510 if (net_eq(net1: net, net2: &init_net))
3511 goto fallback;
3512
3513 old_net = current->nsproxy->net_ns;
3514 hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3515 if (!hash_entries)
3516 goto fallback;
3517
3518 /* Set min to keep the bitmap on stack in udp_lib_get_port() */
3519 if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3520 hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3521 else
3522 hash_entries = roundup_pow_of_two(hash_entries);
3523
3524 udptable = udp_pernet_table_alloc(hash_entries);
3525 if (udptable) {
3526 net->ipv4.udp_table = udptable;
3527 } else {
3528 pr_warn("Failed to allocate UDP hash table (entries: %u) "
3529 "for a netns, fallback to the global one\n",
3530 hash_entries);
3531fallback:
3532 net->ipv4.udp_table = &udp_table;
3533 }
3534}
3535
3536static int __net_init udp_pernet_init(struct net *net)
3537{
3538 udp_sysctl_init(net);
3539 udp_set_table(net);
3540
3541 return 0;
3542}
3543
3544static void __net_exit udp_pernet_exit(struct net *net)
3545{
3546 udp_pernet_table_free(net);
3547}
3548
3549static struct pernet_operations __net_initdata udp_sysctl_ops = {
3550 .init = udp_pernet_init,
3551 .exit = udp_pernet_exit,
3552};
3553
3554#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3555DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3556 struct udp_sock *udp_sk, uid_t uid, int bucket)
3557
3558static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3559 unsigned int new_batch_sz)
3560{
3561 struct sock **new_batch;
3562
3563 new_batch = kvmalloc_array(n: new_batch_sz, size: sizeof(*new_batch),
3564 GFP_USER | __GFP_NOWARN);
3565 if (!new_batch)
3566 return -ENOMEM;
3567
3568 bpf_iter_udp_put_batch(iter);
3569 kvfree(addr: iter->batch);
3570 iter->batch = new_batch;
3571 iter->max_sk = new_batch_sz;
3572
3573 return 0;
3574}
3575
3576#define INIT_BATCH_SZ 16
3577
3578static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3579{
3580 struct bpf_udp_iter_state *iter = priv_data;
3581 int ret;
3582
3583 ret = bpf_iter_init_seq_net(priv_data, aux);
3584 if (ret)
3585 return ret;
3586
3587 ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3588 if (ret)
3589 bpf_iter_fini_seq_net(priv_data);
3590
3591 return ret;
3592}
3593
3594static void bpf_iter_fini_udp(void *priv_data)
3595{
3596 struct bpf_udp_iter_state *iter = priv_data;
3597
3598 bpf_iter_fini_seq_net(priv_data);
3599 kvfree(addr: iter->batch);
3600}
3601
3602static const struct bpf_iter_seq_info udp_seq_info = {
3603 .seq_ops = &bpf_iter_udp_seq_ops,
3604 .init_seq_private = bpf_iter_init_udp,
3605 .fini_seq_private = bpf_iter_fini_udp,
3606 .seq_priv_size = sizeof(struct bpf_udp_iter_state),
3607};
3608
3609static struct bpf_iter_reg udp_reg_info = {
3610 .target = "udp",
3611 .ctx_arg_info_size = 1,
3612 .ctx_arg_info = {
3613 { offsetof(struct bpf_iter__udp, udp_sk),
3614 .reg_type: PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3615 },
3616 .seq_info = &udp_seq_info,
3617};
3618
3619static void __init bpf_iter_register(void)
3620{
3621 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3622 if (bpf_iter_reg_target(reg_info: &udp_reg_info))
3623 pr_warn("Warning: could not register bpf iterator udp\n");
3624}
3625#endif
3626
3627void __init udp_init(void)
3628{
3629 unsigned long limit;
3630 unsigned int i;
3631
3632 udp_table_init(table: &udp_table, name: "UDP");
3633 limit = nr_free_buffer_pages() / 8;
3634 limit = max(limit, 128UL);
3635 sysctl_udp_mem[0] = limit / 4 * 3;
3636 sysctl_udp_mem[1] = limit;
3637 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3638
3639 /* 16 spinlocks per cpu */
3640 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3641 udp_busylocks = kmalloc(size: sizeof(spinlock_t) << udp_busylocks_log,
3642 GFP_KERNEL);
3643 if (!udp_busylocks)
3644 panic(fmt: "UDP: failed to alloc udp_busylocks\n");
3645 for (i = 0; i < (1U << udp_busylocks_log); i++)
3646 spin_lock_init(udp_busylocks + i);
3647
3648 if (register_pernet_subsys(&udp_sysctl_ops))
3649 panic(fmt: "UDP: failed to init sysctl parameters.\n");
3650
3651#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3652 bpf_iter_register();
3653#endif
3654}
3655

source code of linux/net/ipv4/udp.c