1 | // SPDX-License-Identifier: GPL-2.0-or-later |
---|---|
2 | /* |
3 | * INET An implementation of the TCP/IP protocol suite for the LINUX |
4 | * operating system. INET is implemented using the BSD Socket |
5 | * interface as the means of communication with the user level. |
6 | * |
7 | * The User Datagram Protocol (UDP). |
8 | * |
9 | * Authors: Ross Biro |
10 | * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> |
11 | * Arnt Gulbrandsen, <agulbra@nvg.unit.no> |
12 | * Alan Cox, <alan@lxorguk.ukuu.org.uk> |
13 | * Hirokazu Takahashi, <taka@valinux.co.jp> |
14 | * |
15 | * Fixes: |
16 | * Alan Cox : verify_area() calls |
17 | * Alan Cox : stopped close while in use off icmp |
18 | * messages. Not a fix but a botch that |
19 | * for udp at least is 'valid'. |
20 | * Alan Cox : Fixed icmp handling properly |
21 | * Alan Cox : Correct error for oversized datagrams |
22 | * Alan Cox : Tidied select() semantics. |
23 | * Alan Cox : udp_err() fixed properly, also now |
24 | * select and read wake correctly on errors |
25 | * Alan Cox : udp_send verify_area moved to avoid mem leak |
26 | * Alan Cox : UDP can count its memory |
27 | * Alan Cox : send to an unknown connection causes |
28 | * an ECONNREFUSED off the icmp, but |
29 | * does NOT close. |
30 | * Alan Cox : Switched to new sk_buff handlers. No more backlog! |
31 | * Alan Cox : Using generic datagram code. Even smaller and the PEEK |
32 | * bug no longer crashes it. |
33 | * Fred Van Kempen : Net2e support for sk->broadcast. |
34 | * Alan Cox : Uses skb_free_datagram |
35 | * Alan Cox : Added get/set sockopt support. |
36 | * Alan Cox : Broadcasting without option set returns EACCES. |
37 | * Alan Cox : No wakeup calls. Instead we now use the callbacks. |
38 | * Alan Cox : Use ip_tos and ip_ttl |
39 | * Alan Cox : SNMP Mibs |
40 | * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support. |
41 | * Matt Dillon : UDP length checks. |
42 | * Alan Cox : Smarter af_inet used properly. |
43 | * Alan Cox : Use new kernel side addressing. |
44 | * Alan Cox : Incorrect return on truncated datagram receive. |
45 | * Arnt Gulbrandsen : New udp_send and stuff |
46 | * Alan Cox : Cache last socket |
47 | * Alan Cox : Route cache |
48 | * Jon Peatfield : Minor efficiency fix to sendto(). |
49 | * Mike Shaver : RFC1122 checks. |
50 | * Alan Cox : Nonblocking error fix. |
51 | * Willy Konynenberg : Transparent proxying support. |
52 | * Mike McLagan : Routing by source |
53 | * David S. Miller : New socket lookup architecture. |
54 | * Last socket cache retained as it |
55 | * does have a high hit rate. |
56 | * Olaf Kirch : Don't linearise iovec on sendmsg. |
57 | * Andi Kleen : Some cleanups, cache destination entry |
58 | * for connect. |
59 | * Vitaly E. Lavrov : Transparent proxy revived after year coma. |
60 | * Melvin Smith : Check msg_name not msg_namelen in sendto(), |
61 | * return ENOTCONN for unconnected sockets (POSIX) |
62 | * Janos Farkas : don't deliver multi/broadcasts to a different |
63 | * bound-to-device socket |
64 | * Hirokazu Takahashi : HW checksumming for outgoing UDP |
65 | * datagrams. |
66 | * Hirokazu Takahashi : sendfile() on UDP works now. |
67 | * Arnaldo C. Melo : convert /proc/net/udp to seq_file |
68 | * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which |
69 | * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind |
70 | * a single port at the same time. |
71 | * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support |
72 | * James Chapman : Add L2TP encapsulation type. |
73 | */ |
74 | |
75 | #define pr_fmt(fmt) "UDP: " fmt |
76 | |
77 | #include <linux/bpf-cgroup.h> |
78 | #include <linux/uaccess.h> |
79 | #include <asm/ioctls.h> |
80 | #include <linux/memblock.h> |
81 | #include <linux/highmem.h> |
82 | #include <linux/types.h> |
83 | #include <linux/fcntl.h> |
84 | #include <linux/module.h> |
85 | #include <linux/socket.h> |
86 | #include <linux/sockios.h> |
87 | #include <linux/igmp.h> |
88 | #include <linux/inetdevice.h> |
89 | #include <linux/in.h> |
90 | #include <linux/errno.h> |
91 | #include <linux/timer.h> |
92 | #include <linux/mm.h> |
93 | #include <linux/inet.h> |
94 | #include <linux/netdevice.h> |
95 | #include <linux/slab.h> |
96 | #include <net/tcp_states.h> |
97 | #include <linux/skbuff.h> |
98 | #include <linux/proc_fs.h> |
99 | #include <linux/seq_file.h> |
100 | #include <net/net_namespace.h> |
101 | #include <net/icmp.h> |
102 | #include <net/inet_hashtables.h> |
103 | #include <net/ip_tunnels.h> |
104 | #include <net/route.h> |
105 | #include <net/checksum.h> |
106 | #include <net/gso.h> |
107 | #include <net/xfrm.h> |
108 | #include <trace/events/udp.h> |
109 | #include <linux/static_key.h> |
110 | #include <linux/btf_ids.h> |
111 | #include <trace/events/skb.h> |
112 | #include <net/busy_poll.h> |
113 | #include "udp_impl.h" |
114 | #include <net/sock_reuseport.h> |
115 | #include <net/addrconf.h> |
116 | #include <net/udp_tunnel.h> |
117 | #include <net/gro.h> |
118 | #if IS_ENABLED(CONFIG_IPV6) |
119 | #include <net/ipv6_stubs.h> |
120 | #endif |
121 | |
122 | struct udp_table udp_table __read_mostly; |
123 | EXPORT_SYMBOL(udp_table); |
124 | |
125 | long sysctl_udp_mem[3] __read_mostly; |
126 | EXPORT_SYMBOL(sysctl_udp_mem); |
127 | |
128 | atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp; |
129 | EXPORT_SYMBOL(udp_memory_allocated); |
130 | DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc); |
131 | EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc); |
132 | |
133 | #define MAX_UDP_PORTS 65536 |
134 | #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET) |
135 | |
136 | static struct udp_table *udp_get_table_prot(struct sock *sk) |
137 | { |
138 | return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table; |
139 | } |
140 | |
141 | static int udp_lib_lport_inuse(struct net *net, __u16 num, |
142 | const struct udp_hslot *hslot, |
143 | unsigned long *bitmap, |
144 | struct sock *sk, unsigned int log) |
145 | { |
146 | struct sock *sk2; |
147 | kuid_t uid = sock_i_uid(sk); |
148 | |
149 | sk_for_each(sk2, &hslot->head) { |
150 | if (net_eq(net1: sock_net(sk: sk2), net2: net) && |
151 | sk2 != sk && |
152 | (bitmap || udp_sk(sk2)->udp_port_hash == num) && |
153 | (!sk2->sk_reuse || !sk->sk_reuse) && |
154 | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || |
155 | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && |
156 | inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) { |
157 | if (sk2->sk_reuseport && sk->sk_reuseport && |
158 | !rcu_access_pointer(sk->sk_reuseport_cb) && |
159 | uid_eq(left: uid, right: sock_i_uid(sk: sk2))) { |
160 | if (!bitmap) |
161 | return 0; |
162 | } else { |
163 | if (!bitmap) |
164 | return 1; |
165 | __set_bit(udp_sk(sk2)->udp_port_hash >> log, |
166 | bitmap); |
167 | } |
168 | } |
169 | } |
170 | return 0; |
171 | } |
172 | |
173 | /* |
174 | * Note: we still hold spinlock of primary hash chain, so no other writer |
175 | * can insert/delete a socket with local_port == num |
176 | */ |
177 | static int udp_lib_lport_inuse2(struct net *net, __u16 num, |
178 | struct udp_hslot *hslot2, |
179 | struct sock *sk) |
180 | { |
181 | struct sock *sk2; |
182 | kuid_t uid = sock_i_uid(sk); |
183 | int res = 0; |
184 | |
185 | spin_lock(lock: &hslot2->lock); |
186 | udp_portaddr_for_each_entry(sk2, &hslot2->head) { |
187 | if (net_eq(net1: sock_net(sk: sk2), net2: net) && |
188 | sk2 != sk && |
189 | (udp_sk(sk2)->udp_port_hash == num) && |
190 | (!sk2->sk_reuse || !sk->sk_reuse) && |
191 | (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if || |
192 | sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && |
193 | inet_rcv_saddr_equal(sk, sk2, match_wildcard: true)) { |
194 | if (sk2->sk_reuseport && sk->sk_reuseport && |
195 | !rcu_access_pointer(sk->sk_reuseport_cb) && |
196 | uid_eq(left: uid, right: sock_i_uid(sk: sk2))) { |
197 | res = 0; |
198 | } else { |
199 | res = 1; |
200 | } |
201 | break; |
202 | } |
203 | } |
204 | spin_unlock(lock: &hslot2->lock); |
205 | return res; |
206 | } |
207 | |
208 | static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot) |
209 | { |
210 | struct net *net = sock_net(sk); |
211 | kuid_t uid = sock_i_uid(sk); |
212 | struct sock *sk2; |
213 | |
214 | sk_for_each(sk2, &hslot->head) { |
215 | if (net_eq(net1: sock_net(sk: sk2), net2: net) && |
216 | sk2 != sk && |
217 | sk2->sk_family == sk->sk_family && |
218 | ipv6_only_sock(sk2) == ipv6_only_sock(sk) && |
219 | (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) && |
220 | (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) && |
221 | sk2->sk_reuseport && uid_eq(left: uid, right: sock_i_uid(sk: sk2)) && |
222 | inet_rcv_saddr_equal(sk, sk2, match_wildcard: false)) { |
223 | return reuseport_add_sock(sk, sk2, |
224 | bind_inany: inet_rcv_saddr_any(sk)); |
225 | } |
226 | } |
227 | |
228 | return reuseport_alloc(sk, bind_inany: inet_rcv_saddr_any(sk)); |
229 | } |
230 | |
231 | /** |
232 | * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6 |
233 | * |
234 | * @sk: socket struct in question |
235 | * @snum: port number to look up |
236 | * @hash2_nulladdr: AF-dependent hash value in secondary hash chains, |
237 | * with NULL address |
238 | */ |
239 | int udp_lib_get_port(struct sock *sk, unsigned short snum, |
240 | unsigned int hash2_nulladdr) |
241 | { |
242 | struct udp_table *udptable = udp_get_table_prot(sk); |
243 | struct udp_hslot *hslot, *hslot2; |
244 | struct net *net = sock_net(sk); |
245 | int error = -EADDRINUSE; |
246 | |
247 | if (!snum) { |
248 | DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN); |
249 | unsigned short first, last; |
250 | int low, high, remaining; |
251 | unsigned int rand; |
252 | |
253 | inet_sk_get_local_port_range(sk, low: &low, high: &high); |
254 | remaining = (high - low) + 1; |
255 | |
256 | rand = get_random_u32(); |
257 | first = reciprocal_scale(val: rand, ep_ro: remaining) + low; |
258 | /* |
259 | * force rand to be an odd multiple of UDP_HTABLE_SIZE |
260 | */ |
261 | rand = (rand | 1) * (udptable->mask + 1); |
262 | last = first + udptable->mask + 1; |
263 | do { |
264 | hslot = udp_hashslot(table: udptable, net, num: first); |
265 | bitmap_zero(dst: bitmap, PORTS_PER_CHAIN); |
266 | spin_lock_bh(lock: &hslot->lock); |
267 | udp_lib_lport_inuse(net, num: snum, hslot, bitmap, sk, |
268 | log: udptable->log); |
269 | |
270 | snum = first; |
271 | /* |
272 | * Iterate on all possible values of snum for this hash. |
273 | * Using steps of an odd multiple of UDP_HTABLE_SIZE |
274 | * give us randomization and full range coverage. |
275 | */ |
276 | do { |
277 | if (low <= snum && snum <= high && |
278 | !test_bit(snum >> udptable->log, bitmap) && |
279 | !inet_is_local_reserved_port(net, port: snum)) |
280 | goto found; |
281 | snum += rand; |
282 | } while (snum != first); |
283 | spin_unlock_bh(lock: &hslot->lock); |
284 | cond_resched(); |
285 | } while (++first != last); |
286 | goto fail; |
287 | } else { |
288 | hslot = udp_hashslot(table: udptable, net, num: snum); |
289 | spin_lock_bh(lock: &hslot->lock); |
290 | if (hslot->count > 10) { |
291 | int exist; |
292 | unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum; |
293 | |
294 | slot2 &= udptable->mask; |
295 | hash2_nulladdr &= udptable->mask; |
296 | |
297 | hslot2 = udp_hashslot2(table: udptable, hash: slot2); |
298 | if (hslot->count < hslot2->count) |
299 | goto scan_primary_hash; |
300 | |
301 | exist = udp_lib_lport_inuse2(net, num: snum, hslot2, sk); |
302 | if (!exist && (hash2_nulladdr != slot2)) { |
303 | hslot2 = udp_hashslot2(table: udptable, hash: hash2_nulladdr); |
304 | exist = udp_lib_lport_inuse2(net, num: snum, hslot2, |
305 | sk); |
306 | } |
307 | if (exist) |
308 | goto fail_unlock; |
309 | else |
310 | goto found; |
311 | } |
312 | scan_primary_hash: |
313 | if (udp_lib_lport_inuse(net, num: snum, hslot, NULL, sk, log: 0)) |
314 | goto fail_unlock; |
315 | } |
316 | found: |
317 | inet_sk(sk)->inet_num = snum; |
318 | udp_sk(sk)->udp_port_hash = snum; |
319 | udp_sk(sk)->udp_portaddr_hash ^= snum; |
320 | if (sk_unhashed(sk)) { |
321 | if (sk->sk_reuseport && |
322 | udp_reuseport_add_sock(sk, hslot)) { |
323 | inet_sk(sk)->inet_num = 0; |
324 | udp_sk(sk)->udp_port_hash = 0; |
325 | udp_sk(sk)->udp_portaddr_hash ^= snum; |
326 | goto fail_unlock; |
327 | } |
328 | |
329 | sk_add_node_rcu(sk, list: &hslot->head); |
330 | hslot->count++; |
331 | sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: 1); |
332 | |
333 | hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash); |
334 | spin_lock(lock: &hslot2->lock); |
335 | if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport && |
336 | sk->sk_family == AF_INET6) |
337 | hlist_add_tail_rcu(n: &udp_sk(sk)->udp_portaddr_node, |
338 | h: &hslot2->head); |
339 | else |
340 | hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node, |
341 | h: &hslot2->head); |
342 | hslot2->count++; |
343 | spin_unlock(lock: &hslot2->lock); |
344 | } |
345 | sock_set_flag(sk, flag: SOCK_RCU_FREE); |
346 | error = 0; |
347 | fail_unlock: |
348 | spin_unlock_bh(lock: &hslot->lock); |
349 | fail: |
350 | return error; |
351 | } |
352 | EXPORT_SYMBOL(udp_lib_get_port); |
353 | |
354 | int udp_v4_get_port(struct sock *sk, unsigned short snum) |
355 | { |
356 | unsigned int hash2_nulladdr = |
357 | ipv4_portaddr_hash(net: sock_net(sk), htonl(INADDR_ANY), port: snum); |
358 | unsigned int hash2_partial = |
359 | ipv4_portaddr_hash(net: sock_net(sk), inet_sk(sk)->inet_rcv_saddr, port: 0); |
360 | |
361 | /* precompute partial secondary hash */ |
362 | udp_sk(sk)->udp_portaddr_hash = hash2_partial; |
363 | return udp_lib_get_port(sk, snum, hash2_nulladdr); |
364 | } |
365 | |
366 | static int compute_score(struct sock *sk, struct net *net, |
367 | __be32 saddr, __be16 sport, |
368 | __be32 daddr, unsigned short hnum, |
369 | int dif, int sdif) |
370 | { |
371 | int score; |
372 | struct inet_sock *inet; |
373 | bool dev_match; |
374 | |
375 | if (!net_eq(net1: sock_net(sk), net2: net) || |
376 | udp_sk(sk)->udp_port_hash != hnum || |
377 | ipv6_only_sock(sk)) |
378 | return -1; |
379 | |
380 | if (sk->sk_rcv_saddr != daddr) |
381 | return -1; |
382 | |
383 | score = (sk->sk_family == PF_INET) ? 2 : 1; |
384 | |
385 | inet = inet_sk(sk); |
386 | if (inet->inet_daddr) { |
387 | if (inet->inet_daddr != saddr) |
388 | return -1; |
389 | score += 4; |
390 | } |
391 | |
392 | if (inet->inet_dport) { |
393 | if (inet->inet_dport != sport) |
394 | return -1; |
395 | score += 4; |
396 | } |
397 | |
398 | dev_match = udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if, |
399 | dif, sdif); |
400 | if (!dev_match) |
401 | return -1; |
402 | if (sk->sk_bound_dev_if) |
403 | score += 4; |
404 | |
405 | if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id()) |
406 | score++; |
407 | return score; |
408 | } |
409 | |
410 | INDIRECT_CALLABLE_SCOPE |
411 | u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport, |
412 | const __be32 faddr, const __be16 fport) |
413 | { |
414 | net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret)); |
415 | |
416 | return __inet_ehashfn(laddr, lport, faddr, fport, |
417 | udp_ehash_secret + net_hash_mix(net)); |
418 | } |
419 | |
420 | /* called with rcu_read_lock() */ |
421 | static struct sock *udp4_lib_lookup2(struct net *net, |
422 | __be32 saddr, __be16 sport, |
423 | __be32 daddr, unsigned int hnum, |
424 | int dif, int sdif, |
425 | struct udp_hslot *hslot2, |
426 | struct sk_buff *skb) |
427 | { |
428 | struct sock *sk, *result; |
429 | int score, badness; |
430 | |
431 | result = NULL; |
432 | badness = 0; |
433 | udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { |
434 | score = compute_score(sk, net, saddr, sport, |
435 | daddr, hnum, dif, sdif); |
436 | if (score > badness) { |
437 | badness = score; |
438 | |
439 | if (sk->sk_state == TCP_ESTABLISHED) { |
440 | result = sk; |
441 | continue; |
442 | } |
443 | |
444 | result = inet_lookup_reuseport(net, sk, skb, doff: sizeof(struct udphdr), |
445 | saddr, sport, daddr, hnum, ehashfn: udp_ehashfn); |
446 | if (!result) { |
447 | result = sk; |
448 | continue; |
449 | } |
450 | |
451 | /* Fall back to scoring if group has connections */ |
452 | if (!reuseport_has_conns(sk)) |
453 | return result; |
454 | |
455 | /* Reuseport logic returned an error, keep original score. */ |
456 | if (IS_ERR(ptr: result)) |
457 | continue; |
458 | |
459 | badness = compute_score(sk: result, net, saddr, sport, |
460 | daddr, hnum, dif, sdif); |
461 | |
462 | } |
463 | } |
464 | return result; |
465 | } |
466 | |
467 | /* UDP is nearly always wildcards out the wazoo, it makes no sense to try |
468 | * harder than this. -DaveM |
469 | */ |
470 | struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr, |
471 | __be16 sport, __be32 daddr, __be16 dport, int dif, |
472 | int sdif, struct udp_table *udptable, struct sk_buff *skb) |
473 | { |
474 | unsigned short hnum = ntohs(dport); |
475 | unsigned int hash2, slot2; |
476 | struct udp_hslot *hslot2; |
477 | struct sock *result, *sk; |
478 | |
479 | hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum); |
480 | slot2 = hash2 & udptable->mask; |
481 | hslot2 = &udptable->hash2[slot2]; |
482 | |
483 | /* Lookup connected or non-wildcard socket */ |
484 | result = udp4_lib_lookup2(net, saddr, sport, |
485 | daddr, hnum, dif, sdif, |
486 | hslot2, skb); |
487 | if (!IS_ERR_OR_NULL(ptr: result) && result->sk_state == TCP_ESTABLISHED) |
488 | goto done; |
489 | |
490 | /* Lookup redirect from BPF */ |
491 | if (static_branch_unlikely(&bpf_sk_lookup_enabled) && |
492 | udptable == net->ipv4.udp_table) { |
493 | sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, doff: sizeof(struct udphdr), |
494 | saddr, sport, daddr, hnum, dif, |
495 | ehashfn: udp_ehashfn); |
496 | if (sk) { |
497 | result = sk; |
498 | goto done; |
499 | } |
500 | } |
501 | |
502 | /* Got non-wildcard socket or error on first lookup */ |
503 | if (result) |
504 | goto done; |
505 | |
506 | /* Lookup wildcard sockets */ |
507 | hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum); |
508 | slot2 = hash2 & udptable->mask; |
509 | hslot2 = &udptable->hash2[slot2]; |
510 | |
511 | result = udp4_lib_lookup2(net, saddr, sport, |
512 | htonl(INADDR_ANY), hnum, dif, sdif, |
513 | hslot2, skb); |
514 | done: |
515 | if (IS_ERR(ptr: result)) |
516 | return NULL; |
517 | return result; |
518 | } |
519 | EXPORT_SYMBOL_GPL(__udp4_lib_lookup); |
520 | |
521 | static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb, |
522 | __be16 sport, __be16 dport, |
523 | struct udp_table *udptable) |
524 | { |
525 | const struct iphdr *iph = ip_hdr(skb); |
526 | |
527 | return __udp4_lib_lookup(dev_net(dev: skb->dev), iph->saddr, sport, |
528 | iph->daddr, dport, inet_iif(skb), |
529 | inet_sdif(skb), udptable, skb); |
530 | } |
531 | |
532 | struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb, |
533 | __be16 sport, __be16 dport) |
534 | { |
535 | const struct iphdr *iph = ip_hdr(skb); |
536 | struct net *net = dev_net(dev: skb->dev); |
537 | int iif, sdif; |
538 | |
539 | inet_get_iif_sdif(skb, iif: &iif, sdif: &sdif); |
540 | |
541 | return __udp4_lib_lookup(net, iph->saddr, sport, |
542 | iph->daddr, dport, iif, |
543 | sdif, net->ipv4.udp_table, NULL); |
544 | } |
545 | |
546 | /* Must be called under rcu_read_lock(). |
547 | * Does increment socket refcount. |
548 | */ |
549 | #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4) |
550 | struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport, |
551 | __be32 daddr, __be16 dport, int dif) |
552 | { |
553 | struct sock *sk; |
554 | |
555 | sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport, |
556 | dif, 0, net->ipv4.udp_table, NULL); |
557 | if (sk && !refcount_inc_not_zero(r: &sk->sk_refcnt)) |
558 | sk = NULL; |
559 | return sk; |
560 | } |
561 | EXPORT_SYMBOL_GPL(udp4_lib_lookup); |
562 | #endif |
563 | |
564 | static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk, |
565 | __be16 loc_port, __be32 loc_addr, |
566 | __be16 rmt_port, __be32 rmt_addr, |
567 | int dif, int sdif, unsigned short hnum) |
568 | { |
569 | const struct inet_sock *inet = inet_sk(sk); |
570 | |
571 | if (!net_eq(net1: sock_net(sk), net2: net) || |
572 | udp_sk(sk)->udp_port_hash != hnum || |
573 | (inet->inet_daddr && inet->inet_daddr != rmt_addr) || |
574 | (inet->inet_dport != rmt_port && inet->inet_dport) || |
575 | (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) || |
576 | ipv6_only_sock(sk) || |
577 | !udp_sk_bound_dev_eq(net, bound_dev_if: sk->sk_bound_dev_if, dif, sdif)) |
578 | return false; |
579 | if (!ip_mc_sf_allow(sk, local: loc_addr, rmt: rmt_addr, dif, sdif)) |
580 | return false; |
581 | return true; |
582 | } |
583 | |
584 | DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key); |
585 | EXPORT_SYMBOL(udp_encap_needed_key); |
586 | |
587 | #if IS_ENABLED(CONFIG_IPV6) |
588 | DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key); |
589 | EXPORT_SYMBOL(udpv6_encap_needed_key); |
590 | #endif |
591 | |
592 | void udp_encap_enable(void) |
593 | { |
594 | static_branch_inc(&udp_encap_needed_key); |
595 | } |
596 | EXPORT_SYMBOL(udp_encap_enable); |
597 | |
598 | void udp_encap_disable(void) |
599 | { |
600 | static_branch_dec(&udp_encap_needed_key); |
601 | } |
602 | EXPORT_SYMBOL(udp_encap_disable); |
603 | |
604 | /* Handler for tunnels with arbitrary destination ports: no socket lookup, go |
605 | * through error handlers in encapsulations looking for a match. |
606 | */ |
607 | static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info) |
608 | { |
609 | int i; |
610 | |
611 | for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) { |
612 | int (*handler)(struct sk_buff *skb, u32 info); |
613 | const struct ip_tunnel_encap_ops *encap; |
614 | |
615 | encap = rcu_dereference(iptun_encaps[i]); |
616 | if (!encap) |
617 | continue; |
618 | handler = encap->err_handler; |
619 | if (handler && !handler(skb, info)) |
620 | return 0; |
621 | } |
622 | |
623 | return -ENOENT; |
624 | } |
625 | |
626 | /* Try to match ICMP errors to UDP tunnels by looking up a socket without |
627 | * reversing source and destination port: this will match tunnels that force the |
628 | * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that |
629 | * lwtunnels might actually break this assumption by being configured with |
630 | * different destination ports on endpoints, in this case we won't be able to |
631 | * trace ICMP messages back to them. |
632 | * |
633 | * If this doesn't match any socket, probe tunnels with arbitrary destination |
634 | * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port |
635 | * we've sent packets to won't necessarily match the local destination port. |
636 | * |
637 | * Then ask the tunnel implementation to match the error against a valid |
638 | * association. |
639 | * |
640 | * Return an error if we can't find a match, the socket if we need further |
641 | * processing, zero otherwise. |
642 | */ |
643 | static struct sock *__udp4_lib_err_encap(struct net *net, |
644 | const struct iphdr *iph, |
645 | struct udphdr *uh, |
646 | struct udp_table *udptable, |
647 | struct sock *sk, |
648 | struct sk_buff *skb, u32 info) |
649 | { |
650 | int (*lookup)(struct sock *sk, struct sk_buff *skb); |
651 | int network_offset, transport_offset; |
652 | struct udp_sock *up; |
653 | |
654 | network_offset = skb_network_offset(skb); |
655 | transport_offset = skb_transport_offset(skb); |
656 | |
657 | /* Network header needs to point to the outer IPv4 header inside ICMP */ |
658 | skb_reset_network_header(skb); |
659 | |
660 | /* Transport header needs to point to the UDP header */ |
661 | skb_set_transport_header(skb, offset: iph->ihl << 2); |
662 | |
663 | if (sk) { |
664 | up = udp_sk(sk); |
665 | |
666 | lookup = READ_ONCE(up->encap_err_lookup); |
667 | if (lookup && lookup(sk, skb)) |
668 | sk = NULL; |
669 | |
670 | goto out; |
671 | } |
672 | |
673 | sk = __udp4_lib_lookup(net, iph->daddr, uh->source, |
674 | iph->saddr, uh->dest, skb->dev->ifindex, 0, |
675 | udptable, NULL); |
676 | if (sk) { |
677 | up = udp_sk(sk); |
678 | |
679 | lookup = READ_ONCE(up->encap_err_lookup); |
680 | if (!lookup || lookup(sk, skb)) |
681 | sk = NULL; |
682 | } |
683 | |
684 | out: |
685 | if (!sk) |
686 | sk = ERR_PTR(error: __udp4_lib_err_encap_no_sk(skb, info)); |
687 | |
688 | skb_set_transport_header(skb, offset: transport_offset); |
689 | skb_set_network_header(skb, offset: network_offset); |
690 | |
691 | return sk; |
692 | } |
693 | |
694 | /* |
695 | * This routine is called by the ICMP module when it gets some |
696 | * sort of error condition. If err < 0 then the socket should |
697 | * be closed and the error returned to the user. If err > 0 |
698 | * it's just the icmp type << 8 | icmp code. |
699 | * Header points to the ip header of the error packet. We move |
700 | * on past this. Then (as it used to claim before adjustment) |
701 | * header points to the first 8 bytes of the udp header. We need |
702 | * to find the appropriate port. |
703 | */ |
704 | |
705 | int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable) |
706 | { |
707 | struct inet_sock *inet; |
708 | const struct iphdr *iph = (const struct iphdr *)skb->data; |
709 | struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2)); |
710 | const int type = icmp_hdr(skb)->type; |
711 | const int code = icmp_hdr(skb)->code; |
712 | bool tunnel = false; |
713 | struct sock *sk; |
714 | int harderr; |
715 | int err; |
716 | struct net *net = dev_net(dev: skb->dev); |
717 | |
718 | sk = __udp4_lib_lookup(net, iph->daddr, uh->dest, |
719 | iph->saddr, uh->source, skb->dev->ifindex, |
720 | inet_sdif(skb), udptable, NULL); |
721 | |
722 | if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) { |
723 | /* No socket for error: try tunnels before discarding */ |
724 | if (static_branch_unlikely(&udp_encap_needed_key)) { |
725 | sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb, |
726 | info); |
727 | if (!sk) |
728 | return 0; |
729 | } else |
730 | sk = ERR_PTR(error: -ENOENT); |
731 | |
732 | if (IS_ERR(ptr: sk)) { |
733 | __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); |
734 | return PTR_ERR(ptr: sk); |
735 | } |
736 | |
737 | tunnel = true; |
738 | } |
739 | |
740 | err = 0; |
741 | harderr = 0; |
742 | inet = inet_sk(sk); |
743 | |
744 | switch (type) { |
745 | default: |
746 | case ICMP_TIME_EXCEEDED: |
747 | err = EHOSTUNREACH; |
748 | break; |
749 | case ICMP_SOURCE_QUENCH: |
750 | goto out; |
751 | case ICMP_PARAMETERPROB: |
752 | err = EPROTO; |
753 | harderr = 1; |
754 | break; |
755 | case ICMP_DEST_UNREACH: |
756 | if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */ |
757 | ipv4_sk_update_pmtu(skb, sk, mtu: info); |
758 | if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) { |
759 | err = EMSGSIZE; |
760 | harderr = 1; |
761 | break; |
762 | } |
763 | goto out; |
764 | } |
765 | err = EHOSTUNREACH; |
766 | if (code <= NR_ICMP_UNREACH) { |
767 | harderr = icmp_err_convert[code].fatal; |
768 | err = icmp_err_convert[code].errno; |
769 | } |
770 | break; |
771 | case ICMP_REDIRECT: |
772 | ipv4_sk_redirect(skb, sk); |
773 | goto out; |
774 | } |
775 | |
776 | /* |
777 | * RFC1122: OK. Passes ICMP errors back to application, as per |
778 | * 4.1.3.3. |
779 | */ |
780 | if (tunnel) { |
781 | /* ...not for tunnels though: we don't have a sending socket */ |
782 | if (udp_sk(sk)->encap_err_rcv) |
783 | udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info, |
784 | (u8 *)(uh+1)); |
785 | goto out; |
786 | } |
787 | if (!inet_test_bit(RECVERR, sk)) { |
788 | if (!harderr || sk->sk_state != TCP_ESTABLISHED) |
789 | goto out; |
790 | } else |
791 | ip_icmp_error(sk, skb, err, port: uh->dest, info, payload: (u8 *)(uh+1)); |
792 | |
793 | sk->sk_err = err; |
794 | sk_error_report(sk); |
795 | out: |
796 | return 0; |
797 | } |
798 | |
799 | int udp_err(struct sk_buff *skb, u32 info) |
800 | { |
801 | return __udp4_lib_err(skb, info, udptable: dev_net(dev: skb->dev)->ipv4.udp_table); |
802 | } |
803 | |
804 | /* |
805 | * Throw away all pending data and cancel the corking. Socket is locked. |
806 | */ |
807 | void udp_flush_pending_frames(struct sock *sk) |
808 | { |
809 | struct udp_sock *up = udp_sk(sk); |
810 | |
811 | if (up->pending) { |
812 | up->len = 0; |
813 | WRITE_ONCE(up->pending, 0); |
814 | ip_flush_pending_frames(sk); |
815 | } |
816 | } |
817 | EXPORT_SYMBOL(udp_flush_pending_frames); |
818 | |
819 | /** |
820 | * udp4_hwcsum - handle outgoing HW checksumming |
821 | * @skb: sk_buff containing the filled-in UDP header |
822 | * (checksum field must be zeroed out) |
823 | * @src: source IP address |
824 | * @dst: destination IP address |
825 | */ |
826 | void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst) |
827 | { |
828 | struct udphdr *uh = udp_hdr(skb); |
829 | int offset = skb_transport_offset(skb); |
830 | int len = skb->len - offset; |
831 | int hlen = len; |
832 | __wsum csum = 0; |
833 | |
834 | if (!skb_has_frag_list(skb)) { |
835 | /* |
836 | * Only one fragment on the socket. |
837 | */ |
838 | skb->csum_start = skb_transport_header(skb) - skb->head; |
839 | skb->csum_offset = offsetof(struct udphdr, check); |
840 | uh->check = ~csum_tcpudp_magic(saddr: src, daddr: dst, len, |
841 | IPPROTO_UDP, sum: 0); |
842 | } else { |
843 | struct sk_buff *frags; |
844 | |
845 | /* |
846 | * HW-checksum won't work as there are two or more |
847 | * fragments on the socket so that all csums of sk_buffs |
848 | * should be together |
849 | */ |
850 | skb_walk_frags(skb, frags) { |
851 | csum = csum_add(csum, addend: frags->csum); |
852 | hlen -= frags->len; |
853 | } |
854 | |
855 | csum = skb_checksum(skb, offset, len: hlen, csum); |
856 | skb->ip_summed = CHECKSUM_NONE; |
857 | |
858 | uh->check = csum_tcpudp_magic(saddr: src, daddr: dst, len, IPPROTO_UDP, sum: csum); |
859 | if (uh->check == 0) |
860 | uh->check = CSUM_MANGLED_0; |
861 | } |
862 | } |
863 | EXPORT_SYMBOL_GPL(udp4_hwcsum); |
864 | |
865 | /* Function to set UDP checksum for an IPv4 UDP packet. This is intended |
866 | * for the simple case like when setting the checksum for a UDP tunnel. |
867 | */ |
868 | void udp_set_csum(bool nocheck, struct sk_buff *skb, |
869 | __be32 saddr, __be32 daddr, int len) |
870 | { |
871 | struct udphdr *uh = udp_hdr(skb); |
872 | |
873 | if (nocheck) { |
874 | uh->check = 0; |
875 | } else if (skb_is_gso(skb)) { |
876 | uh->check = ~udp_v4_check(len, saddr, daddr, base: 0); |
877 | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { |
878 | uh->check = 0; |
879 | uh->check = udp_v4_check(len, saddr, daddr, base: lco_csum(skb)); |
880 | if (uh->check == 0) |
881 | uh->check = CSUM_MANGLED_0; |
882 | } else { |
883 | skb->ip_summed = CHECKSUM_PARTIAL; |
884 | skb->csum_start = skb_transport_header(skb) - skb->head; |
885 | skb->csum_offset = offsetof(struct udphdr, check); |
886 | uh->check = ~udp_v4_check(len, saddr, daddr, base: 0); |
887 | } |
888 | } |
889 | EXPORT_SYMBOL(udp_set_csum); |
890 | |
891 | static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4, |
892 | struct inet_cork *cork) |
893 | { |
894 | struct sock *sk = skb->sk; |
895 | struct inet_sock *inet = inet_sk(sk); |
896 | struct udphdr *uh; |
897 | int err; |
898 | int is_udplite = IS_UDPLITE(sk); |
899 | int offset = skb_transport_offset(skb); |
900 | int len = skb->len - offset; |
901 | int datalen = len - sizeof(*uh); |
902 | __wsum csum = 0; |
903 | |
904 | /* |
905 | * Create a UDP header |
906 | */ |
907 | uh = udp_hdr(skb); |
908 | uh->source = inet->inet_sport; |
909 | uh->dest = fl4->fl4_dport; |
910 | uh->len = htons(len); |
911 | uh->check = 0; |
912 | |
913 | if (cork->gso_size) { |
914 | const int hlen = skb_network_header_len(skb) + |
915 | sizeof(struct udphdr); |
916 | |
917 | if (hlen + cork->gso_size > cork->fragsize) { |
918 | kfree_skb(skb); |
919 | return -EINVAL; |
920 | } |
921 | if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) { |
922 | kfree_skb(skb); |
923 | return -EINVAL; |
924 | } |
925 | if (sk->sk_no_check_tx) { |
926 | kfree_skb(skb); |
927 | return -EINVAL; |
928 | } |
929 | if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite || |
930 | dst_xfrm(dst: skb_dst(skb))) { |
931 | kfree_skb(skb); |
932 | return -EIO; |
933 | } |
934 | |
935 | if (datalen > cork->gso_size) { |
936 | skb_shinfo(skb)->gso_size = cork->gso_size; |
937 | skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4; |
938 | skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen, |
939 | cork->gso_size); |
940 | } |
941 | goto csum_partial; |
942 | } |
943 | |
944 | if (is_udplite) /* UDP-Lite */ |
945 | csum = udplite_csum(skb); |
946 | |
947 | else if (sk->sk_no_check_tx) { /* UDP csum off */ |
948 | |
949 | skb->ip_summed = CHECKSUM_NONE; |
950 | goto send; |
951 | |
952 | } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */ |
953 | csum_partial: |
954 | |
955 | udp4_hwcsum(skb, fl4->saddr, fl4->daddr); |
956 | goto send; |
957 | |
958 | } else |
959 | csum = udp_csum(skb); |
960 | |
961 | /* add protocol-dependent pseudo-header */ |
962 | uh->check = csum_tcpudp_magic(saddr: fl4->saddr, daddr: fl4->daddr, len, |
963 | proto: sk->sk_protocol, sum: csum); |
964 | if (uh->check == 0) |
965 | uh->check = CSUM_MANGLED_0; |
966 | |
967 | send: |
968 | err = ip_send_skb(net: sock_net(sk), skb); |
969 | if (err) { |
970 | if (err == -ENOBUFS && |
971 | !inet_test_bit(RECVERR, sk)) { |
972 | UDP_INC_STATS(sock_net(sk), |
973 | UDP_MIB_SNDBUFERRORS, is_udplite); |
974 | err = 0; |
975 | } |
976 | } else |
977 | UDP_INC_STATS(sock_net(sk), |
978 | UDP_MIB_OUTDATAGRAMS, is_udplite); |
979 | return err; |
980 | } |
981 | |
982 | /* |
983 | * Push out all pending data as one UDP datagram. Socket is locked. |
984 | */ |
985 | int udp_push_pending_frames(struct sock *sk) |
986 | { |
987 | struct udp_sock *up = udp_sk(sk); |
988 | struct inet_sock *inet = inet_sk(sk); |
989 | struct flowi4 *fl4 = &inet->cork.fl.u.ip4; |
990 | struct sk_buff *skb; |
991 | int err = 0; |
992 | |
993 | skb = ip_finish_skb(sk, fl4); |
994 | if (!skb) |
995 | goto out; |
996 | |
997 | err = udp_send_skb(skb, fl4, cork: &inet->cork.base); |
998 | |
999 | out: |
1000 | up->len = 0; |
1001 | WRITE_ONCE(up->pending, 0); |
1002 | return err; |
1003 | } |
1004 | EXPORT_SYMBOL(udp_push_pending_frames); |
1005 | |
1006 | static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size) |
1007 | { |
1008 | switch (cmsg->cmsg_type) { |
1009 | case UDP_SEGMENT: |
1010 | if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16))) |
1011 | return -EINVAL; |
1012 | *gso_size = *(__u16 *)CMSG_DATA(cmsg); |
1013 | return 0; |
1014 | default: |
1015 | return -EINVAL; |
1016 | } |
1017 | } |
1018 | |
1019 | int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size) |
1020 | { |
1021 | struct cmsghdr *cmsg; |
1022 | bool need_ip = false; |
1023 | int err; |
1024 | |
1025 | for_each_cmsghdr(cmsg, msg) { |
1026 | if (!CMSG_OK(msg, cmsg)) |
1027 | return -EINVAL; |
1028 | |
1029 | if (cmsg->cmsg_level != SOL_UDP) { |
1030 | need_ip = true; |
1031 | continue; |
1032 | } |
1033 | |
1034 | err = __udp_cmsg_send(cmsg, gso_size); |
1035 | if (err) |
1036 | return err; |
1037 | } |
1038 | |
1039 | return need_ip; |
1040 | } |
1041 | EXPORT_SYMBOL_GPL(udp_cmsg_send); |
1042 | |
1043 | int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len) |
1044 | { |
1045 | struct inet_sock *inet = inet_sk(sk); |
1046 | struct udp_sock *up = udp_sk(sk); |
1047 | DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name); |
1048 | struct flowi4 fl4_stack; |
1049 | struct flowi4 *fl4; |
1050 | int ulen = len; |
1051 | struct ipcm_cookie ipc; |
1052 | struct rtable *rt = NULL; |
1053 | int free = 0; |
1054 | int connected = 0; |
1055 | __be32 daddr, faddr, saddr; |
1056 | u8 tos, scope; |
1057 | __be16 dport; |
1058 | int err, is_udplite = IS_UDPLITE(sk); |
1059 | int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE; |
1060 | int (*getfrag)(void *, char *, int, int, int, struct sk_buff *); |
1061 | struct sk_buff *skb; |
1062 | struct ip_options_data opt_copy; |
1063 | int uc_index; |
1064 | |
1065 | if (len > 0xFFFF) |
1066 | return -EMSGSIZE; |
1067 | |
1068 | /* |
1069 | * Check the flags. |
1070 | */ |
1071 | |
1072 | if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */ |
1073 | return -EOPNOTSUPP; |
1074 | |
1075 | getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag; |
1076 | |
1077 | fl4 = &inet->cork.fl.u.ip4; |
1078 | if (READ_ONCE(up->pending)) { |
1079 | /* |
1080 | * There are pending frames. |
1081 | * The socket lock must be held while it's corked. |
1082 | */ |
1083 | lock_sock(sk); |
1084 | if (likely(up->pending)) { |
1085 | if (unlikely(up->pending != AF_INET)) { |
1086 | release_sock(sk); |
1087 | return -EINVAL; |
1088 | } |
1089 | goto do_append_data; |
1090 | } |
1091 | release_sock(sk); |
1092 | } |
1093 | ulen += sizeof(struct udphdr); |
1094 | |
1095 | /* |
1096 | * Get and verify the address. |
1097 | */ |
1098 | if (usin) { |
1099 | if (msg->msg_namelen < sizeof(*usin)) |
1100 | return -EINVAL; |
1101 | if (usin->sin_family != AF_INET) { |
1102 | if (usin->sin_family != AF_UNSPEC) |
1103 | return -EAFNOSUPPORT; |
1104 | } |
1105 | |
1106 | daddr = usin->sin_addr.s_addr; |
1107 | dport = usin->sin_port; |
1108 | if (dport == 0) |
1109 | return -EINVAL; |
1110 | } else { |
1111 | if (sk->sk_state != TCP_ESTABLISHED) |
1112 | return -EDESTADDRREQ; |
1113 | daddr = inet->inet_daddr; |
1114 | dport = inet->inet_dport; |
1115 | /* Open fast path for connected socket. |
1116 | Route will not be used, if at least one option is set. |
1117 | */ |
1118 | connected = 1; |
1119 | } |
1120 | |
1121 | ipcm_init_sk(ipcm: &ipc, inet); |
1122 | ipc.gso_size = READ_ONCE(up->gso_size); |
1123 | |
1124 | if (msg->msg_controllen) { |
1125 | err = udp_cmsg_send(sk, msg, &ipc.gso_size); |
1126 | if (err > 0) |
1127 | err = ip_cmsg_send(sk, msg, ipc: &ipc, |
1128 | allow_ipv6: sk->sk_family == AF_INET6); |
1129 | if (unlikely(err < 0)) { |
1130 | kfree(objp: ipc.opt); |
1131 | return err; |
1132 | } |
1133 | if (ipc.opt) |
1134 | free = 1; |
1135 | connected = 0; |
1136 | } |
1137 | if (!ipc.opt) { |
1138 | struct ip_options_rcu *inet_opt; |
1139 | |
1140 | rcu_read_lock(); |
1141 | inet_opt = rcu_dereference(inet->inet_opt); |
1142 | if (inet_opt) { |
1143 | memcpy(&opt_copy, inet_opt, |
1144 | sizeof(*inet_opt) + inet_opt->opt.optlen); |
1145 | ipc.opt = &opt_copy.opt; |
1146 | } |
1147 | rcu_read_unlock(); |
1148 | } |
1149 | |
1150 | if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) { |
1151 | err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk, |
1152 | (struct sockaddr *)usin, |
1153 | &msg->msg_namelen, |
1154 | &ipc.addr); |
1155 | if (err) |
1156 | goto out_free; |
1157 | if (usin) { |
1158 | if (usin->sin_port == 0) { |
1159 | /* BPF program set invalid port. Reject it. */ |
1160 | err = -EINVAL; |
1161 | goto out_free; |
1162 | } |
1163 | daddr = usin->sin_addr.s_addr; |
1164 | dport = usin->sin_port; |
1165 | } |
1166 | } |
1167 | |
1168 | saddr = ipc.addr; |
1169 | ipc.addr = faddr = daddr; |
1170 | |
1171 | if (ipc.opt && ipc.opt->opt.srr) { |
1172 | if (!daddr) { |
1173 | err = -EINVAL; |
1174 | goto out_free; |
1175 | } |
1176 | faddr = ipc.opt->opt.faddr; |
1177 | connected = 0; |
1178 | } |
1179 | tos = get_rttos(ipc: &ipc, inet); |
1180 | scope = ip_sendmsg_scope(inet, ipc: &ipc, msg); |
1181 | if (scope == RT_SCOPE_LINK) |
1182 | connected = 0; |
1183 | |
1184 | uc_index = READ_ONCE(inet->uc_index); |
1185 | if (ipv4_is_multicast(addr: daddr)) { |
1186 | if (!ipc.oif || netif_index_is_l3_master(net: sock_net(sk), ifindex: ipc.oif)) |
1187 | ipc.oif = READ_ONCE(inet->mc_index); |
1188 | if (!saddr) |
1189 | saddr = READ_ONCE(inet->mc_addr); |
1190 | connected = 0; |
1191 | } else if (!ipc.oif) { |
1192 | ipc.oif = uc_index; |
1193 | } else if (ipv4_is_lbcast(addr: daddr) && uc_index) { |
1194 | /* oif is set, packet is to local broadcast and |
1195 | * uc_index is set. oif is most likely set |
1196 | * by sk_bound_dev_if. If uc_index != oif check if the |
1197 | * oif is an L3 master and uc_index is an L3 slave. |
1198 | * If so, we want to allow the send using the uc_index. |
1199 | */ |
1200 | if (ipc.oif != uc_index && |
1201 | ipc.oif == l3mdev_master_ifindex_by_index(net: sock_net(sk), |
1202 | ifindex: uc_index)) { |
1203 | ipc.oif = uc_index; |
1204 | } |
1205 | } |
1206 | |
1207 | if (connected) |
1208 | rt = (struct rtable *)sk_dst_check(sk, cookie: 0); |
1209 | |
1210 | if (!rt) { |
1211 | struct net *net = sock_net(sk); |
1212 | __u8 flow_flags = inet_sk_flowi_flags(sk); |
1213 | |
1214 | fl4 = &fl4_stack; |
1215 | |
1216 | flowi4_init_output(fl4, oif: ipc.oif, mark: ipc.sockc.mark, tos, scope, |
1217 | proto: sk->sk_protocol, flags: flow_flags, daddr: faddr, saddr, |
1218 | dport, sport: inet->inet_sport, uid: sk->sk_uid); |
1219 | |
1220 | security_sk_classify_flow(sk, flic: flowi4_to_flowi_common(fl4)); |
1221 | rt = ip_route_output_flow(net, flp: fl4, sk); |
1222 | if (IS_ERR(ptr: rt)) { |
1223 | err = PTR_ERR(ptr: rt); |
1224 | rt = NULL; |
1225 | if (err == -ENETUNREACH) |
1226 | IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES); |
1227 | goto out; |
1228 | } |
1229 | |
1230 | err = -EACCES; |
1231 | if ((rt->rt_flags & RTCF_BROADCAST) && |
1232 | !sock_flag(sk, flag: SOCK_BROADCAST)) |
1233 | goto out; |
1234 | if (connected) |
1235 | sk_dst_set(sk, dst: dst_clone(dst: &rt->dst)); |
1236 | } |
1237 | |
1238 | if (msg->msg_flags&MSG_CONFIRM) |
1239 | goto do_confirm; |
1240 | back_from_confirm: |
1241 | |
1242 | saddr = fl4->saddr; |
1243 | if (!ipc.addr) |
1244 | daddr = ipc.addr = fl4->daddr; |
1245 | |
1246 | /* Lockless fast path for the non-corking case. */ |
1247 | if (!corkreq) { |
1248 | struct inet_cork cork; |
1249 | |
1250 | skb = ip_make_skb(sk, fl4, getfrag, from: msg, length: ulen, |
1251 | transhdrlen: sizeof(struct udphdr), ipc: &ipc, rtp: &rt, |
1252 | cork: &cork, flags: msg->msg_flags); |
1253 | err = PTR_ERR(ptr: skb); |
1254 | if (!IS_ERR_OR_NULL(ptr: skb)) |
1255 | err = udp_send_skb(skb, fl4, cork: &cork); |
1256 | goto out; |
1257 | } |
1258 | |
1259 | lock_sock(sk); |
1260 | if (unlikely(up->pending)) { |
1261 | /* The socket is already corked while preparing it. */ |
1262 | /* ... which is an evident application bug. --ANK */ |
1263 | release_sock(sk); |
1264 | |
1265 | net_dbg_ratelimited("socket already corked\n"); |
1266 | err = -EINVAL; |
1267 | goto out; |
1268 | } |
1269 | /* |
1270 | * Now cork the socket to pend data. |
1271 | */ |
1272 | fl4 = &inet->cork.fl.u.ip4; |
1273 | fl4->daddr = daddr; |
1274 | fl4->saddr = saddr; |
1275 | fl4->fl4_dport = dport; |
1276 | fl4->fl4_sport = inet->inet_sport; |
1277 | WRITE_ONCE(up->pending, AF_INET); |
1278 | |
1279 | do_append_data: |
1280 | up->len += ulen; |
1281 | err = ip_append_data(sk, fl4, getfrag, from: msg, len: ulen, |
1282 | protolen: sizeof(struct udphdr), ipc: &ipc, rt: &rt, |
1283 | flags: corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags); |
1284 | if (err) |
1285 | udp_flush_pending_frames(sk); |
1286 | else if (!corkreq) |
1287 | err = udp_push_pending_frames(sk); |
1288 | else if (unlikely(skb_queue_empty(&sk->sk_write_queue))) |
1289 | WRITE_ONCE(up->pending, 0); |
1290 | release_sock(sk); |
1291 | |
1292 | out: |
1293 | ip_rt_put(rt); |
1294 | out_free: |
1295 | if (free) |
1296 | kfree(objp: ipc.opt); |
1297 | if (!err) |
1298 | return len; |
1299 | /* |
1300 | * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting |
1301 | * ENOBUFS might not be good (it's not tunable per se), but otherwise |
1302 | * we don't have a good statistic (IpOutDiscards but it can be too many |
1303 | * things). We could add another new stat but at least for now that |
1304 | * seems like overkill. |
1305 | */ |
1306 | if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) { |
1307 | UDP_INC_STATS(sock_net(sk), |
1308 | UDP_MIB_SNDBUFERRORS, is_udplite); |
1309 | } |
1310 | return err; |
1311 | |
1312 | do_confirm: |
1313 | if (msg->msg_flags & MSG_PROBE) |
1314 | dst_confirm_neigh(dst: &rt->dst, daddr: &fl4->daddr); |
1315 | if (!(msg->msg_flags&MSG_PROBE) || len) |
1316 | goto back_from_confirm; |
1317 | err = 0; |
1318 | goto out; |
1319 | } |
1320 | EXPORT_SYMBOL(udp_sendmsg); |
1321 | |
1322 | void udp_splice_eof(struct socket *sock) |
1323 | { |
1324 | struct sock *sk = sock->sk; |
1325 | struct udp_sock *up = udp_sk(sk); |
1326 | |
1327 | if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk)) |
1328 | return; |
1329 | |
1330 | lock_sock(sk); |
1331 | if (up->pending && !udp_test_bit(CORK, sk)) |
1332 | udp_push_pending_frames(sk); |
1333 | release_sock(sk); |
1334 | } |
1335 | EXPORT_SYMBOL_GPL(udp_splice_eof); |
1336 | |
1337 | #define UDP_SKB_IS_STATELESS 0x80000000 |
1338 | |
1339 | /* all head states (dst, sk, nf conntrack) except skb extensions are |
1340 | * cleared by udp_rcv(). |
1341 | * |
1342 | * We need to preserve secpath, if present, to eventually process |
1343 | * IP_CMSG_PASSSEC at recvmsg() time. |
1344 | * |
1345 | * Other extensions can be cleared. |
1346 | */ |
1347 | static bool udp_try_make_stateless(struct sk_buff *skb) |
1348 | { |
1349 | if (!skb_has_extensions(skb)) |
1350 | return true; |
1351 | |
1352 | if (!secpath_exists(skb)) { |
1353 | skb_ext_reset(skb); |
1354 | return true; |
1355 | } |
1356 | |
1357 | return false; |
1358 | } |
1359 | |
1360 | static void udp_set_dev_scratch(struct sk_buff *skb) |
1361 | { |
1362 | struct udp_dev_scratch *scratch = udp_skb_scratch(skb); |
1363 | |
1364 | BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long)); |
1365 | scratch->_tsize_state = skb->truesize; |
1366 | #if BITS_PER_LONG == 64 |
1367 | scratch->len = skb->len; |
1368 | scratch->csum_unnecessary = !!skb_csum_unnecessary(skb); |
1369 | scratch->is_linear = !skb_is_nonlinear(skb); |
1370 | #endif |
1371 | if (udp_try_make_stateless(skb)) |
1372 | scratch->_tsize_state |= UDP_SKB_IS_STATELESS; |
1373 | } |
1374 | |
1375 | static void udp_skb_csum_unnecessary_set(struct sk_buff *skb) |
1376 | { |
1377 | /* We come here after udp_lib_checksum_complete() returned 0. |
1378 | * This means that __skb_checksum_complete() might have |
1379 | * set skb->csum_valid to 1. |
1380 | * On 64bit platforms, we can set csum_unnecessary |
1381 | * to true, but only if the skb is not shared. |
1382 | */ |
1383 | #if BITS_PER_LONG == 64 |
1384 | if (!skb_shared(skb)) |
1385 | udp_skb_scratch(skb)->csum_unnecessary = true; |
1386 | #endif |
1387 | } |
1388 | |
1389 | static int udp_skb_truesize(struct sk_buff *skb) |
1390 | { |
1391 | return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS; |
1392 | } |
1393 | |
1394 | static bool udp_skb_has_head_state(struct sk_buff *skb) |
1395 | { |
1396 | return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS); |
1397 | } |
1398 | |
1399 | /* fully reclaim rmem/fwd memory allocated for skb */ |
1400 | static void udp_rmem_release(struct sock *sk, int size, int partial, |
1401 | bool rx_queue_lock_held) |
1402 | { |
1403 | struct udp_sock *up = udp_sk(sk); |
1404 | struct sk_buff_head *sk_queue; |
1405 | int amt; |
1406 | |
1407 | if (likely(partial)) { |
1408 | up->forward_deficit += size; |
1409 | size = up->forward_deficit; |
1410 | if (size < READ_ONCE(up->forward_threshold) && |
1411 | !skb_queue_empty(list: &up->reader_queue)) |
1412 | return; |
1413 | } else { |
1414 | size += up->forward_deficit; |
1415 | } |
1416 | up->forward_deficit = 0; |
1417 | |
1418 | /* acquire the sk_receive_queue for fwd allocated memory scheduling, |
1419 | * if the called don't held it already |
1420 | */ |
1421 | sk_queue = &sk->sk_receive_queue; |
1422 | if (!rx_queue_lock_held) |
1423 | spin_lock(lock: &sk_queue->lock); |
1424 | |
1425 | |
1426 | sk_forward_alloc_add(sk, val: size); |
1427 | amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1); |
1428 | sk_forward_alloc_add(sk, val: -amt); |
1429 | |
1430 | if (amt) |
1431 | __sk_mem_reduce_allocated(sk, amount: amt >> PAGE_SHIFT); |
1432 | |
1433 | atomic_sub(i: size, v: &sk->sk_rmem_alloc); |
1434 | |
1435 | /* this can save us from acquiring the rx queue lock on next receive */ |
1436 | skb_queue_splice_tail_init(list: sk_queue, head: &up->reader_queue); |
1437 | |
1438 | if (!rx_queue_lock_held) |
1439 | spin_unlock(lock: &sk_queue->lock); |
1440 | } |
1441 | |
1442 | /* Note: called with reader_queue.lock held. |
1443 | * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch |
1444 | * This avoids a cache line miss while receive_queue lock is held. |
1445 | * Look at __udp_enqueue_schedule_skb() to find where this copy is done. |
1446 | */ |
1447 | void udp_skb_destructor(struct sock *sk, struct sk_buff *skb) |
1448 | { |
1449 | prefetch(&skb->data); |
1450 | udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: false); |
1451 | } |
1452 | EXPORT_SYMBOL(udp_skb_destructor); |
1453 | |
1454 | /* as above, but the caller held the rx queue lock, too */ |
1455 | static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb) |
1456 | { |
1457 | prefetch(&skb->data); |
1458 | udp_rmem_release(sk, size: udp_skb_truesize(skb), partial: 1, rx_queue_lock_held: true); |
1459 | } |
1460 | |
1461 | /* Idea of busylocks is to let producers grab an extra spinlock |
1462 | * to relieve pressure on the receive_queue spinlock shared by consumer. |
1463 | * Under flood, this means that only one producer can be in line |
1464 | * trying to acquire the receive_queue spinlock. |
1465 | * These busylock can be allocated on a per cpu manner, instead of a |
1466 | * per socket one (that would consume a cache line per socket) |
1467 | */ |
1468 | static int udp_busylocks_log __read_mostly; |
1469 | static spinlock_t *udp_busylocks __read_mostly; |
1470 | |
1471 | static spinlock_t *busylock_acquire(void *ptr) |
1472 | { |
1473 | spinlock_t *busy; |
1474 | |
1475 | busy = udp_busylocks + hash_ptr(ptr, bits: udp_busylocks_log); |
1476 | spin_lock(lock: busy); |
1477 | return busy; |
1478 | } |
1479 | |
1480 | static void busylock_release(spinlock_t *busy) |
1481 | { |
1482 | if (busy) |
1483 | spin_unlock(lock: busy); |
1484 | } |
1485 | |
1486 | static int udp_rmem_schedule(struct sock *sk, int size) |
1487 | { |
1488 | int delta; |
1489 | |
1490 | delta = size - sk->sk_forward_alloc; |
1491 | if (delta > 0 && !__sk_mem_schedule(sk, size: delta, SK_MEM_RECV)) |
1492 | return -ENOBUFS; |
1493 | |
1494 | return 0; |
1495 | } |
1496 | |
1497 | int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb) |
1498 | { |
1499 | struct sk_buff_head *list = &sk->sk_receive_queue; |
1500 | int rmem, err = -ENOMEM; |
1501 | spinlock_t *busy = NULL; |
1502 | int size; |
1503 | |
1504 | /* try to avoid the costly atomic add/sub pair when the receive |
1505 | * queue is full; always allow at least a packet |
1506 | */ |
1507 | rmem = atomic_read(v: &sk->sk_rmem_alloc); |
1508 | if (rmem > sk->sk_rcvbuf) |
1509 | goto drop; |
1510 | |
1511 | /* Under mem pressure, it might be helpful to help udp_recvmsg() |
1512 | * having linear skbs : |
1513 | * - Reduce memory overhead and thus increase receive queue capacity |
1514 | * - Less cache line misses at copyout() time |
1515 | * - Less work at consume_skb() (less alien page frag freeing) |
1516 | */ |
1517 | if (rmem > (sk->sk_rcvbuf >> 1)) { |
1518 | skb_condense(skb); |
1519 | |
1520 | busy = busylock_acquire(ptr: sk); |
1521 | } |
1522 | size = skb->truesize; |
1523 | udp_set_dev_scratch(skb); |
1524 | |
1525 | /* we drop only if the receive buf is full and the receive |
1526 | * queue contains some other skb |
1527 | */ |
1528 | rmem = atomic_add_return(i: size, v: &sk->sk_rmem_alloc); |
1529 | if (rmem > (size + (unsigned int)sk->sk_rcvbuf)) |
1530 | goto uncharge_drop; |
1531 | |
1532 | spin_lock(lock: &list->lock); |
1533 | err = udp_rmem_schedule(sk, size); |
1534 | if (err) { |
1535 | spin_unlock(lock: &list->lock); |
1536 | goto uncharge_drop; |
1537 | } |
1538 | |
1539 | sk_forward_alloc_add(sk, val: -size); |
1540 | |
1541 | /* no need to setup a destructor, we will explicitly release the |
1542 | * forward allocated memory on dequeue |
1543 | */ |
1544 | sock_skb_set_dropcount(sk, skb); |
1545 | |
1546 | __skb_queue_tail(list, newsk: skb); |
1547 | spin_unlock(lock: &list->lock); |
1548 | |
1549 | if (!sock_flag(sk, flag: SOCK_DEAD)) |
1550 | INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk); |
1551 | |
1552 | busylock_release(busy); |
1553 | return 0; |
1554 | |
1555 | uncharge_drop: |
1556 | atomic_sub(i: skb->truesize, v: &sk->sk_rmem_alloc); |
1557 | |
1558 | drop: |
1559 | atomic_inc(v: &sk->sk_drops); |
1560 | busylock_release(busy); |
1561 | return err; |
1562 | } |
1563 | EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb); |
1564 | |
1565 | void udp_destruct_common(struct sock *sk) |
1566 | { |
1567 | /* reclaim completely the forward allocated memory */ |
1568 | struct udp_sock *up = udp_sk(sk); |
1569 | unsigned int total = 0; |
1570 | struct sk_buff *skb; |
1571 | |
1572 | skb_queue_splice_tail_init(list: &sk->sk_receive_queue, head: &up->reader_queue); |
1573 | while ((skb = __skb_dequeue(list: &up->reader_queue)) != NULL) { |
1574 | total += skb->truesize; |
1575 | kfree_skb(skb); |
1576 | } |
1577 | udp_rmem_release(sk, size: total, partial: 0, rx_queue_lock_held: true); |
1578 | } |
1579 | EXPORT_SYMBOL_GPL(udp_destruct_common); |
1580 | |
1581 | static void udp_destruct_sock(struct sock *sk) |
1582 | { |
1583 | udp_destruct_common(sk); |
1584 | inet_sock_destruct(sk); |
1585 | } |
1586 | |
1587 | int udp_init_sock(struct sock *sk) |
1588 | { |
1589 | udp_lib_init_sock(sk); |
1590 | sk->sk_destruct = udp_destruct_sock; |
1591 | set_bit(SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags); |
1592 | return 0; |
1593 | } |
1594 | |
1595 | void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len) |
1596 | { |
1597 | if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset))) |
1598 | sk_peek_offset_bwd(sk, val: len); |
1599 | |
1600 | if (!skb_unref(skb)) |
1601 | return; |
1602 | |
1603 | /* In the more common cases we cleared the head states previously, |
1604 | * see __udp_queue_rcv_skb(). |
1605 | */ |
1606 | if (unlikely(udp_skb_has_head_state(skb))) |
1607 | skb_release_head_state(skb); |
1608 | __consume_stateless_skb(skb); |
1609 | } |
1610 | EXPORT_SYMBOL_GPL(skb_consume_udp); |
1611 | |
1612 | static struct sk_buff *__first_packet_length(struct sock *sk, |
1613 | struct sk_buff_head *rcvq, |
1614 | int *total) |
1615 | { |
1616 | struct sk_buff *skb; |
1617 | |
1618 | while ((skb = skb_peek(list_: rcvq)) != NULL) { |
1619 | if (udp_lib_checksum_complete(skb)) { |
1620 | __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, |
1621 | IS_UDPLITE(sk)); |
1622 | __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, |
1623 | IS_UDPLITE(sk)); |
1624 | atomic_inc(v: &sk->sk_drops); |
1625 | __skb_unlink(skb, list: rcvq); |
1626 | *total += skb->truesize; |
1627 | kfree_skb(skb); |
1628 | } else { |
1629 | udp_skb_csum_unnecessary_set(skb); |
1630 | break; |
1631 | } |
1632 | } |
1633 | return skb; |
1634 | } |
1635 | |
1636 | /** |
1637 | * first_packet_length - return length of first packet in receive queue |
1638 | * @sk: socket |
1639 | * |
1640 | * Drops all bad checksum frames, until a valid one is found. |
1641 | * Returns the length of found skb, or -1 if none is found. |
1642 | */ |
1643 | static int first_packet_length(struct sock *sk) |
1644 | { |
1645 | struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue; |
1646 | struct sk_buff_head *sk_queue = &sk->sk_receive_queue; |
1647 | struct sk_buff *skb; |
1648 | int total = 0; |
1649 | int res; |
1650 | |
1651 | spin_lock_bh(lock: &rcvq->lock); |
1652 | skb = __first_packet_length(sk, rcvq, total: &total); |
1653 | if (!skb && !skb_queue_empty_lockless(list: sk_queue)) { |
1654 | spin_lock(lock: &sk_queue->lock); |
1655 | skb_queue_splice_tail_init(list: sk_queue, head: rcvq); |
1656 | spin_unlock(lock: &sk_queue->lock); |
1657 | |
1658 | skb = __first_packet_length(sk, rcvq, total: &total); |
1659 | } |
1660 | res = skb ? skb->len : -1; |
1661 | if (total) |
1662 | udp_rmem_release(sk, size: total, partial: 1, rx_queue_lock_held: false); |
1663 | spin_unlock_bh(lock: &rcvq->lock); |
1664 | return res; |
1665 | } |
1666 | |
1667 | /* |
1668 | * IOCTL requests applicable to the UDP protocol |
1669 | */ |
1670 | |
1671 | int udp_ioctl(struct sock *sk, int cmd, int *karg) |
1672 | { |
1673 | switch (cmd) { |
1674 | case SIOCOUTQ: |
1675 | { |
1676 | *karg = sk_wmem_alloc_get(sk); |
1677 | return 0; |
1678 | } |
1679 | |
1680 | case SIOCINQ: |
1681 | { |
1682 | *karg = max_t(int, 0, first_packet_length(sk)); |
1683 | return 0; |
1684 | } |
1685 | |
1686 | default: |
1687 | return -ENOIOCTLCMD; |
1688 | } |
1689 | |
1690 | return 0; |
1691 | } |
1692 | EXPORT_SYMBOL(udp_ioctl); |
1693 | |
1694 | struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags, |
1695 | int *off, int *err) |
1696 | { |
1697 | struct sk_buff_head *sk_queue = &sk->sk_receive_queue; |
1698 | struct sk_buff_head *queue; |
1699 | struct sk_buff *last; |
1700 | long timeo; |
1701 | int error; |
1702 | |
1703 | queue = &udp_sk(sk)->reader_queue; |
1704 | timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT); |
1705 | do { |
1706 | struct sk_buff *skb; |
1707 | |
1708 | error = sock_error(sk); |
1709 | if (error) |
1710 | break; |
1711 | |
1712 | error = -EAGAIN; |
1713 | do { |
1714 | spin_lock_bh(lock: &queue->lock); |
1715 | skb = __skb_try_recv_from_queue(sk, queue, flags, off, |
1716 | err, last: &last); |
1717 | if (skb) { |
1718 | if (!(flags & MSG_PEEK)) |
1719 | udp_skb_destructor(sk, skb); |
1720 | spin_unlock_bh(lock: &queue->lock); |
1721 | return skb; |
1722 | } |
1723 | |
1724 | if (skb_queue_empty_lockless(list: sk_queue)) { |
1725 | spin_unlock_bh(lock: &queue->lock); |
1726 | goto busy_check; |
1727 | } |
1728 | |
1729 | /* refill the reader queue and walk it again |
1730 | * keep both queues locked to avoid re-acquiring |
1731 | * the sk_receive_queue lock if fwd memory scheduling |
1732 | * is needed. |
1733 | */ |
1734 | spin_lock(lock: &sk_queue->lock); |
1735 | skb_queue_splice_tail_init(list: sk_queue, head: queue); |
1736 | |
1737 | skb = __skb_try_recv_from_queue(sk, queue, flags, off, |
1738 | err, last: &last); |
1739 | if (skb && !(flags & MSG_PEEK)) |
1740 | udp_skb_dtor_locked(sk, skb); |
1741 | spin_unlock(lock: &sk_queue->lock); |
1742 | spin_unlock_bh(lock: &queue->lock); |
1743 | if (skb) |
1744 | return skb; |
1745 | |
1746 | busy_check: |
1747 | if (!sk_can_busy_loop(sk)) |
1748 | break; |
1749 | |
1750 | sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT); |
1751 | } while (!skb_queue_empty_lockless(list: sk_queue)); |
1752 | |
1753 | /* sk_queue is empty, reader_queue may contain peeked packets */ |
1754 | } while (timeo && |
1755 | !__skb_wait_for_more_packets(sk, queue: &sk->sk_receive_queue, |
1756 | err: &error, timeo_p: &timeo, |
1757 | skb: (struct sk_buff *)sk_queue)); |
1758 | |
1759 | *err = error; |
1760 | return NULL; |
1761 | } |
1762 | EXPORT_SYMBOL(__skb_recv_udp); |
1763 | |
1764 | int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor) |
1765 | { |
1766 | struct sk_buff *skb; |
1767 | int err; |
1768 | |
1769 | try_again: |
1770 | skb = skb_recv_udp(sk, MSG_DONTWAIT, err: &err); |
1771 | if (!skb) |
1772 | return err; |
1773 | |
1774 | if (udp_lib_checksum_complete(skb)) { |
1775 | int is_udplite = IS_UDPLITE(sk); |
1776 | struct net *net = sock_net(sk); |
1777 | |
1778 | __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite); |
1779 | __UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite); |
1780 | atomic_inc(v: &sk->sk_drops); |
1781 | kfree_skb(skb); |
1782 | goto try_again; |
1783 | } |
1784 | |
1785 | WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk)); |
1786 | return recv_actor(sk, skb); |
1787 | } |
1788 | EXPORT_SYMBOL(udp_read_skb); |
1789 | |
1790 | /* |
1791 | * This should be easy, if there is something there we |
1792 | * return it, otherwise we block. |
1793 | */ |
1794 | |
1795 | int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags, |
1796 | int *addr_len) |
1797 | { |
1798 | struct inet_sock *inet = inet_sk(sk); |
1799 | DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name); |
1800 | struct sk_buff *skb; |
1801 | unsigned int ulen, copied; |
1802 | int off, err, peeking = flags & MSG_PEEK; |
1803 | int is_udplite = IS_UDPLITE(sk); |
1804 | bool checksum_valid = false; |
1805 | |
1806 | if (flags & MSG_ERRQUEUE) |
1807 | return ip_recv_error(sk, msg, len, addr_len); |
1808 | |
1809 | try_again: |
1810 | off = sk_peek_offset(sk, flags); |
1811 | skb = __skb_recv_udp(sk, flags, &off, &err); |
1812 | if (!skb) |
1813 | return err; |
1814 | |
1815 | ulen = udp_skb_len(skb); |
1816 | copied = len; |
1817 | if (copied > ulen - off) |
1818 | copied = ulen - off; |
1819 | else if (copied < ulen) |
1820 | msg->msg_flags |= MSG_TRUNC; |
1821 | |
1822 | /* |
1823 | * If checksum is needed at all, try to do it while copying the |
1824 | * data. If the data is truncated, or if we only want a partial |
1825 | * coverage checksum (UDP-Lite), do it before the copy. |
1826 | */ |
1827 | |
1828 | if (copied < ulen || peeking || |
1829 | (is_udplite && UDP_SKB_CB(skb)->partial_cov)) { |
1830 | checksum_valid = udp_skb_csum_unnecessary(skb) || |
1831 | !__udp_lib_checksum_complete(skb); |
1832 | if (!checksum_valid) |
1833 | goto csum_copy_err; |
1834 | } |
1835 | |
1836 | if (checksum_valid || udp_skb_csum_unnecessary(skb)) { |
1837 | if (udp_skb_is_linear(skb)) |
1838 | err = copy_linear_skb(skb, len: copied, off, to: &msg->msg_iter); |
1839 | else |
1840 | err = skb_copy_datagram_msg(from: skb, offset: off, msg, size: copied); |
1841 | } else { |
1842 | err = skb_copy_and_csum_datagram_msg(skb, hlen: off, msg); |
1843 | |
1844 | if (err == -EINVAL) |
1845 | goto csum_copy_err; |
1846 | } |
1847 | |
1848 | if (unlikely(err)) { |
1849 | if (!peeking) { |
1850 | atomic_inc(v: &sk->sk_drops); |
1851 | UDP_INC_STATS(sock_net(sk), |
1852 | UDP_MIB_INERRORS, is_udplite); |
1853 | } |
1854 | kfree_skb(skb); |
1855 | return err; |
1856 | } |
1857 | |
1858 | if (!peeking) |
1859 | UDP_INC_STATS(sock_net(sk), |
1860 | UDP_MIB_INDATAGRAMS, is_udplite); |
1861 | |
1862 | sock_recv_cmsgs(msg, sk, skb); |
1863 | |
1864 | /* Copy the address. */ |
1865 | if (sin) { |
1866 | sin->sin_family = AF_INET; |
1867 | sin->sin_port = udp_hdr(skb)->source; |
1868 | sin->sin_addr.s_addr = ip_hdr(skb)->saddr; |
1869 | memset(sin->sin_zero, 0, sizeof(sin->sin_zero)); |
1870 | *addr_len = sizeof(*sin); |
1871 | |
1872 | BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk, |
1873 | (struct sockaddr *)sin, |
1874 | addr_len); |
1875 | } |
1876 | |
1877 | if (udp_test_bit(GRO_ENABLED, sk)) |
1878 | udp_cmsg_recv(msg, sk, skb); |
1879 | |
1880 | if (inet_cmsg_flags(inet)) |
1881 | ip_cmsg_recv_offset(msg, sk, skb, tlen: sizeof(struct udphdr), offset: off); |
1882 | |
1883 | err = copied; |
1884 | if (flags & MSG_TRUNC) |
1885 | err = ulen; |
1886 | |
1887 | skb_consume_udp(sk, skb, peeking ? -err : err); |
1888 | return err; |
1889 | |
1890 | csum_copy_err: |
1891 | if (!__sk_queue_drop_skb(sk, sk_queue: &udp_sk(sk)->reader_queue, skb, flags, |
1892 | destructor: udp_skb_destructor)) { |
1893 | UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); |
1894 | UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); |
1895 | } |
1896 | kfree_skb(skb); |
1897 | |
1898 | /* starting over for a new packet, but check if we need to yield */ |
1899 | cond_resched(); |
1900 | msg->msg_flags &= ~MSG_TRUNC; |
1901 | goto try_again; |
1902 | } |
1903 | |
1904 | int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) |
1905 | { |
1906 | /* This check is replicated from __ip4_datagram_connect() and |
1907 | * intended to prevent BPF program called below from accessing bytes |
1908 | * that are out of the bound specified by user in addr_len. |
1909 | */ |
1910 | if (addr_len < sizeof(struct sockaddr_in)) |
1911 | return -EINVAL; |
1912 | |
1913 | return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len); |
1914 | } |
1915 | EXPORT_SYMBOL(udp_pre_connect); |
1916 | |
1917 | int __udp_disconnect(struct sock *sk, int flags) |
1918 | { |
1919 | struct inet_sock *inet = inet_sk(sk); |
1920 | /* |
1921 | * 1003.1g - break association. |
1922 | */ |
1923 | |
1924 | sk->sk_state = TCP_CLOSE; |
1925 | inet->inet_daddr = 0; |
1926 | inet->inet_dport = 0; |
1927 | sock_rps_reset_rxhash(sk); |
1928 | sk->sk_bound_dev_if = 0; |
1929 | if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) { |
1930 | inet_reset_saddr(sk); |
1931 | if (sk->sk_prot->rehash && |
1932 | (sk->sk_userlocks & SOCK_BINDPORT_LOCK)) |
1933 | sk->sk_prot->rehash(sk); |
1934 | } |
1935 | |
1936 | if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) { |
1937 | sk->sk_prot->unhash(sk); |
1938 | inet->inet_sport = 0; |
1939 | } |
1940 | sk_dst_reset(sk); |
1941 | return 0; |
1942 | } |
1943 | EXPORT_SYMBOL(__udp_disconnect); |
1944 | |
1945 | int udp_disconnect(struct sock *sk, int flags) |
1946 | { |
1947 | lock_sock(sk); |
1948 | __udp_disconnect(sk, flags); |
1949 | release_sock(sk); |
1950 | return 0; |
1951 | } |
1952 | EXPORT_SYMBOL(udp_disconnect); |
1953 | |
1954 | void udp_lib_unhash(struct sock *sk) |
1955 | { |
1956 | if (sk_hashed(sk)) { |
1957 | struct udp_table *udptable = udp_get_table_prot(sk); |
1958 | struct udp_hslot *hslot, *hslot2; |
1959 | |
1960 | hslot = udp_hashslot(table: udptable, net: sock_net(sk), |
1961 | udp_sk(sk)->udp_port_hash); |
1962 | hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash); |
1963 | |
1964 | spin_lock_bh(lock: &hslot->lock); |
1965 | if (rcu_access_pointer(sk->sk_reuseport_cb)) |
1966 | reuseport_detach_sock(sk); |
1967 | if (sk_del_node_init_rcu(sk)) { |
1968 | hslot->count--; |
1969 | inet_sk(sk)->inet_num = 0; |
1970 | sock_prot_inuse_add(net: sock_net(sk), prot: sk->sk_prot, val: -1); |
1971 | |
1972 | spin_lock(lock: &hslot2->lock); |
1973 | hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node); |
1974 | hslot2->count--; |
1975 | spin_unlock(lock: &hslot2->lock); |
1976 | } |
1977 | spin_unlock_bh(lock: &hslot->lock); |
1978 | } |
1979 | } |
1980 | EXPORT_SYMBOL(udp_lib_unhash); |
1981 | |
1982 | /* |
1983 | * inet_rcv_saddr was changed, we must rehash secondary hash |
1984 | */ |
1985 | void udp_lib_rehash(struct sock *sk, u16 newhash) |
1986 | { |
1987 | if (sk_hashed(sk)) { |
1988 | struct udp_table *udptable = udp_get_table_prot(sk); |
1989 | struct udp_hslot *hslot, *hslot2, *nhslot2; |
1990 | |
1991 | hslot2 = udp_hashslot2(table: udptable, udp_sk(sk)->udp_portaddr_hash); |
1992 | nhslot2 = udp_hashslot2(table: udptable, hash: newhash); |
1993 | udp_sk(sk)->udp_portaddr_hash = newhash; |
1994 | |
1995 | if (hslot2 != nhslot2 || |
1996 | rcu_access_pointer(sk->sk_reuseport_cb)) { |
1997 | hslot = udp_hashslot(table: udptable, net: sock_net(sk), |
1998 | udp_sk(sk)->udp_port_hash); |
1999 | /* we must lock primary chain too */ |
2000 | spin_lock_bh(lock: &hslot->lock); |
2001 | if (rcu_access_pointer(sk->sk_reuseport_cb)) |
2002 | reuseport_detach_sock(sk); |
2003 | |
2004 | if (hslot2 != nhslot2) { |
2005 | spin_lock(lock: &hslot2->lock); |
2006 | hlist_del_init_rcu(n: &udp_sk(sk)->udp_portaddr_node); |
2007 | hslot2->count--; |
2008 | spin_unlock(lock: &hslot2->lock); |
2009 | |
2010 | spin_lock(lock: &nhslot2->lock); |
2011 | hlist_add_head_rcu(n: &udp_sk(sk)->udp_portaddr_node, |
2012 | h: &nhslot2->head); |
2013 | nhslot2->count++; |
2014 | spin_unlock(lock: &nhslot2->lock); |
2015 | } |
2016 | |
2017 | spin_unlock_bh(lock: &hslot->lock); |
2018 | } |
2019 | } |
2020 | } |
2021 | EXPORT_SYMBOL(udp_lib_rehash); |
2022 | |
2023 | void udp_v4_rehash(struct sock *sk) |
2024 | { |
2025 | u16 new_hash = ipv4_portaddr_hash(net: sock_net(sk), |
2026 | inet_sk(sk)->inet_rcv_saddr, |
2027 | inet_sk(sk)->inet_num); |
2028 | udp_lib_rehash(sk, new_hash); |
2029 | } |
2030 | |
2031 | static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
2032 | { |
2033 | int rc; |
2034 | |
2035 | if (inet_sk(sk)->inet_daddr) { |
2036 | sock_rps_save_rxhash(sk, skb); |
2037 | sk_mark_napi_id(sk, skb); |
2038 | sk_incoming_cpu_update(sk); |
2039 | } else { |
2040 | sk_mark_napi_id_once(sk, skb); |
2041 | } |
2042 | |
2043 | rc = __udp_enqueue_schedule_skb(sk, skb); |
2044 | if (rc < 0) { |
2045 | int is_udplite = IS_UDPLITE(sk); |
2046 | int drop_reason; |
2047 | |
2048 | /* Note that an ENOMEM error is charged twice */ |
2049 | if (rc == -ENOMEM) { |
2050 | UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS, |
2051 | is_udplite); |
2052 | drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF; |
2053 | } else { |
2054 | UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS, |
2055 | is_udplite); |
2056 | drop_reason = SKB_DROP_REASON_PROTO_MEM; |
2057 | } |
2058 | UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); |
2059 | kfree_skb_reason(skb, reason: drop_reason); |
2060 | trace_udp_fail_queue_rcv_skb(rc, sk); |
2061 | return -1; |
2062 | } |
2063 | |
2064 | return 0; |
2065 | } |
2066 | |
2067 | /* returns: |
2068 | * -1: error |
2069 | * 0: success |
2070 | * >0: "udp encap" protocol resubmission |
2071 | * |
2072 | * Note that in the success and error cases, the skb is assumed to |
2073 | * have either been requeued or freed. |
2074 | */ |
2075 | static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb) |
2076 | { |
2077 | int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; |
2078 | struct udp_sock *up = udp_sk(sk); |
2079 | int is_udplite = IS_UDPLITE(sk); |
2080 | |
2081 | /* |
2082 | * Charge it to the socket, dropping if the queue is full. |
2083 | */ |
2084 | if (!xfrm4_policy_check(sk, dir: XFRM_POLICY_IN, skb)) { |
2085 | drop_reason = SKB_DROP_REASON_XFRM_POLICY; |
2086 | goto drop; |
2087 | } |
2088 | nf_reset_ct(skb); |
2089 | |
2090 | if (static_branch_unlikely(&udp_encap_needed_key) && |
2091 | READ_ONCE(up->encap_type)) { |
2092 | int (*encap_rcv)(struct sock *sk, struct sk_buff *skb); |
2093 | |
2094 | /* |
2095 | * This is an encapsulation socket so pass the skb to |
2096 | * the socket's udp_encap_rcv() hook. Otherwise, just |
2097 | * fall through and pass this up the UDP socket. |
2098 | * up->encap_rcv() returns the following value: |
2099 | * =0 if skb was successfully passed to the encap |
2100 | * handler or was discarded by it. |
2101 | * >0 if skb should be passed on to UDP. |
2102 | * <0 if skb should be resubmitted as proto -N |
2103 | */ |
2104 | |
2105 | /* if we're overly short, let UDP handle it */ |
2106 | encap_rcv = READ_ONCE(up->encap_rcv); |
2107 | if (encap_rcv) { |
2108 | int ret; |
2109 | |
2110 | /* Verify checksum before giving to encap */ |
2111 | if (udp_lib_checksum_complete(skb)) |
2112 | goto csum_error; |
2113 | |
2114 | ret = encap_rcv(sk, skb); |
2115 | if (ret <= 0) { |
2116 | __UDP_INC_STATS(sock_net(sk), |
2117 | UDP_MIB_INDATAGRAMS, |
2118 | is_udplite); |
2119 | return -ret; |
2120 | } |
2121 | } |
2122 | |
2123 | /* FALLTHROUGH -- it's a UDP Packet */ |
2124 | } |
2125 | |
2126 | /* |
2127 | * UDP-Lite specific tests, ignored on UDP sockets |
2128 | */ |
2129 | if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) { |
2130 | u16 pcrlen = READ_ONCE(up->pcrlen); |
2131 | |
2132 | /* |
2133 | * MIB statistics other than incrementing the error count are |
2134 | * disabled for the following two types of errors: these depend |
2135 | * on the application settings, not on the functioning of the |
2136 | * protocol stack as such. |
2137 | * |
2138 | * RFC 3828 here recommends (sec 3.3): "There should also be a |
2139 | * way ... to ... at least let the receiving application block |
2140 | * delivery of packets with coverage values less than a value |
2141 | * provided by the application." |
2142 | */ |
2143 | if (pcrlen == 0) { /* full coverage was set */ |
2144 | net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n", |
2145 | UDP_SKB_CB(skb)->cscov, skb->len); |
2146 | goto drop; |
2147 | } |
2148 | /* The next case involves violating the min. coverage requested |
2149 | * by the receiver. This is subtle: if receiver wants x and x is |
2150 | * greater than the buffersize/MTU then receiver will complain |
2151 | * that it wants x while sender emits packets of smaller size y. |
2152 | * Therefore the above ...()->partial_cov statement is essential. |
2153 | */ |
2154 | if (UDP_SKB_CB(skb)->cscov < pcrlen) { |
2155 | net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n", |
2156 | UDP_SKB_CB(skb)->cscov, pcrlen); |
2157 | goto drop; |
2158 | } |
2159 | } |
2160 | |
2161 | prefetch(&sk->sk_rmem_alloc); |
2162 | if (rcu_access_pointer(sk->sk_filter) && |
2163 | udp_lib_checksum_complete(skb)) |
2164 | goto csum_error; |
2165 | |
2166 | if (sk_filter_trim_cap(sk, skb, cap: sizeof(struct udphdr))) { |
2167 | drop_reason = SKB_DROP_REASON_SOCKET_FILTER; |
2168 | goto drop; |
2169 | } |
2170 | |
2171 | udp_csum_pull_header(skb); |
2172 | |
2173 | ipv4_pktinfo_prepare(sk, skb, drop_dst: true); |
2174 | return __udp_queue_rcv_skb(sk, skb); |
2175 | |
2176 | csum_error: |
2177 | drop_reason = SKB_DROP_REASON_UDP_CSUM; |
2178 | __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite); |
2179 | drop: |
2180 | __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite); |
2181 | atomic_inc(v: &sk->sk_drops); |
2182 | kfree_skb_reason(skb, reason: drop_reason); |
2183 | return -1; |
2184 | } |
2185 | |
2186 | static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb) |
2187 | { |
2188 | struct sk_buff *next, *segs; |
2189 | int ret; |
2190 | |
2191 | if (likely(!udp_unexpected_gso(sk, skb))) |
2192 | return udp_queue_rcv_one_skb(sk, skb); |
2193 | |
2194 | BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET); |
2195 | __skb_push(skb, len: -skb_mac_offset(skb)); |
2196 | segs = udp_rcv_segment(sk, skb, ipv4: true); |
2197 | skb_list_walk_safe(segs, skb, next) { |
2198 | __skb_pull(skb, len: skb_transport_offset(skb)); |
2199 | |
2200 | udp_post_segment_fix_csum(skb); |
2201 | ret = udp_queue_rcv_one_skb(sk, skb); |
2202 | if (ret > 0) |
2203 | ip_protocol_deliver_rcu(net: dev_net(dev: skb->dev), skb, proto: ret); |
2204 | } |
2205 | return 0; |
2206 | } |
2207 | |
2208 | /* For TCP sockets, sk_rx_dst is protected by socket lock |
2209 | * For UDP, we use xchg() to guard against concurrent changes. |
2210 | */ |
2211 | bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst) |
2212 | { |
2213 | struct dst_entry *old; |
2214 | |
2215 | if (dst_hold_safe(dst)) { |
2216 | old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst); |
2217 | dst_release(dst: old); |
2218 | return old != dst; |
2219 | } |
2220 | return false; |
2221 | } |
2222 | EXPORT_SYMBOL(udp_sk_rx_dst_set); |
2223 | |
2224 | /* |
2225 | * Multicasts and broadcasts go to each listener. |
2226 | * |
2227 | * Note: called only from the BH handler context. |
2228 | */ |
2229 | static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb, |
2230 | struct udphdr *uh, |
2231 | __be32 saddr, __be32 daddr, |
2232 | struct udp_table *udptable, |
2233 | int proto) |
2234 | { |
2235 | struct sock *sk, *first = NULL; |
2236 | unsigned short hnum = ntohs(uh->dest); |
2237 | struct udp_hslot *hslot = udp_hashslot(table: udptable, net, num: hnum); |
2238 | unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10); |
2239 | unsigned int offset = offsetof(typeof(*sk), sk_node); |
2240 | int dif = skb->dev->ifindex; |
2241 | int sdif = inet_sdif(skb); |
2242 | struct hlist_node *node; |
2243 | struct sk_buff *nskb; |
2244 | |
2245 | if (use_hash2) { |
2246 | hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), port: hnum) & |
2247 | udptable->mask; |
2248 | hash2 = ipv4_portaddr_hash(net, saddr: daddr, port: hnum) & udptable->mask; |
2249 | start_lookup: |
2250 | hslot = &udptable->hash2[hash2]; |
2251 | offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node); |
2252 | } |
2253 | |
2254 | sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) { |
2255 | if (!__udp_is_mcast_sock(net, sk, loc_port: uh->dest, loc_addr: daddr, |
2256 | rmt_port: uh->source, rmt_addr: saddr, dif, sdif, hnum)) |
2257 | continue; |
2258 | |
2259 | if (!first) { |
2260 | first = sk; |
2261 | continue; |
2262 | } |
2263 | nskb = skb_clone(skb, GFP_ATOMIC); |
2264 | |
2265 | if (unlikely(!nskb)) { |
2266 | atomic_inc(v: &sk->sk_drops); |
2267 | __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS, |
2268 | IS_UDPLITE(sk)); |
2269 | __UDP_INC_STATS(net, UDP_MIB_INERRORS, |
2270 | IS_UDPLITE(sk)); |
2271 | continue; |
2272 | } |
2273 | if (udp_queue_rcv_skb(sk, skb: nskb) > 0) |
2274 | consume_skb(skb: nskb); |
2275 | } |
2276 | |
2277 | /* Also lookup *:port if we are using hash2 and haven't done so yet. */ |
2278 | if (use_hash2 && hash2 != hash2_any) { |
2279 | hash2 = hash2_any; |
2280 | goto start_lookup; |
2281 | } |
2282 | |
2283 | if (first) { |
2284 | if (udp_queue_rcv_skb(sk: first, skb) > 0) |
2285 | consume_skb(skb); |
2286 | } else { |
2287 | kfree_skb(skb); |
2288 | __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI, |
2289 | proto == IPPROTO_UDPLITE); |
2290 | } |
2291 | return 0; |
2292 | } |
2293 | |
2294 | /* Initialize UDP checksum. If exited with zero value (success), |
2295 | * CHECKSUM_UNNECESSARY means, that no more checks are required. |
2296 | * Otherwise, csum completion requires checksumming packet body, |
2297 | * including udp header and folding it to skb->csum. |
2298 | */ |
2299 | static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh, |
2300 | int proto) |
2301 | { |
2302 | int err; |
2303 | |
2304 | UDP_SKB_CB(skb)->partial_cov = 0; |
2305 | UDP_SKB_CB(skb)->cscov = skb->len; |
2306 | |
2307 | if (proto == IPPROTO_UDPLITE) { |
2308 | err = udplite_checksum_init(skb, uh); |
2309 | if (err) |
2310 | return err; |
2311 | |
2312 | if (UDP_SKB_CB(skb)->partial_cov) { |
2313 | skb->csum = inet_compute_pseudo(skb, proto); |
2314 | return 0; |
2315 | } |
2316 | } |
2317 | |
2318 | /* Note, we are only interested in != 0 or == 0, thus the |
2319 | * force to int. |
2320 | */ |
2321 | err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check, |
2322 | inet_compute_pseudo); |
2323 | if (err) |
2324 | return err; |
2325 | |
2326 | if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) { |
2327 | /* If SW calculated the value, we know it's bad */ |
2328 | if (skb->csum_complete_sw) |
2329 | return 1; |
2330 | |
2331 | /* HW says the value is bad. Let's validate that. |
2332 | * skb->csum is no longer the full packet checksum, |
2333 | * so don't treat it as such. |
2334 | */ |
2335 | skb_checksum_complete_unset(skb); |
2336 | } |
2337 | |
2338 | return 0; |
2339 | } |
2340 | |
2341 | /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and |
2342 | * return code conversion for ip layer consumption |
2343 | */ |
2344 | static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb, |
2345 | struct udphdr *uh) |
2346 | { |
2347 | int ret; |
2348 | |
2349 | if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk)) |
2350 | skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo); |
2351 | |
2352 | ret = udp_queue_rcv_skb(sk, skb); |
2353 | |
2354 | /* a return value > 0 means to resubmit the input, but |
2355 | * it wants the return to be -protocol, or 0 |
2356 | */ |
2357 | if (ret > 0) |
2358 | return -ret; |
2359 | return 0; |
2360 | } |
2361 | |
2362 | /* |
2363 | * All we need to do is get the socket, and then do a checksum. |
2364 | */ |
2365 | |
2366 | int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable, |
2367 | int proto) |
2368 | { |
2369 | struct sock *sk; |
2370 | struct udphdr *uh; |
2371 | unsigned short ulen; |
2372 | struct rtable *rt = skb_rtable(skb); |
2373 | __be32 saddr, daddr; |
2374 | struct net *net = dev_net(dev: skb->dev); |
2375 | bool refcounted; |
2376 | int drop_reason; |
2377 | |
2378 | drop_reason = SKB_DROP_REASON_NOT_SPECIFIED; |
2379 | |
2380 | /* |
2381 | * Validate the packet. |
2382 | */ |
2383 | if (!pskb_may_pull(skb, len: sizeof(struct udphdr))) |
2384 | goto drop; /* No space for header. */ |
2385 | |
2386 | uh = udp_hdr(skb); |
2387 | ulen = ntohs(uh->len); |
2388 | saddr = ip_hdr(skb)->saddr; |
2389 | daddr = ip_hdr(skb)->daddr; |
2390 | |
2391 | if (ulen > skb->len) |
2392 | goto short_packet; |
2393 | |
2394 | if (proto == IPPROTO_UDP) { |
2395 | /* UDP validates ulen. */ |
2396 | if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, len: ulen)) |
2397 | goto short_packet; |
2398 | uh = udp_hdr(skb); |
2399 | } |
2400 | |
2401 | if (udp4_csum_init(skb, uh, proto)) |
2402 | goto csum_error; |
2403 | |
2404 | sk = inet_steal_sock(net, skb, doff: sizeof(struct udphdr), saddr, sport: uh->source, daddr, dport: uh->dest, |
2405 | refcounted: &refcounted, ehashfn: udp_ehashfn); |
2406 | if (IS_ERR(ptr: sk)) |
2407 | goto no_sk; |
2408 | |
2409 | if (sk) { |
2410 | struct dst_entry *dst = skb_dst(skb); |
2411 | int ret; |
2412 | |
2413 | if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst)) |
2414 | udp_sk_rx_dst_set(sk, dst); |
2415 | |
2416 | ret = udp_unicast_rcv_skb(sk, skb, uh); |
2417 | if (refcounted) |
2418 | sock_put(sk); |
2419 | return ret; |
2420 | } |
2421 | |
2422 | if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST)) |
2423 | return __udp4_lib_mcast_deliver(net, skb, uh, |
2424 | saddr, daddr, udptable, proto); |
2425 | |
2426 | sk = __udp4_lib_lookup_skb(skb, sport: uh->source, dport: uh->dest, udptable); |
2427 | if (sk) |
2428 | return udp_unicast_rcv_skb(sk, skb, uh); |
2429 | no_sk: |
2430 | if (!xfrm4_policy_check(NULL, dir: XFRM_POLICY_IN, skb)) |
2431 | goto drop; |
2432 | nf_reset_ct(skb); |
2433 | |
2434 | /* No socket. Drop packet silently, if checksum is wrong */ |
2435 | if (udp_lib_checksum_complete(skb)) |
2436 | goto csum_error; |
2437 | |
2438 | drop_reason = SKB_DROP_REASON_NO_SOCKET; |
2439 | __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE); |
2440 | icmp_send(skb_in: skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, info: 0); |
2441 | |
2442 | /* |
2443 | * Hmm. We got an UDP packet to a port to which we |
2444 | * don't wanna listen. Ignore it. |
2445 | */ |
2446 | kfree_skb_reason(skb, reason: drop_reason); |
2447 | return 0; |
2448 | |
2449 | short_packet: |
2450 | drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL; |
2451 | net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n", |
2452 | proto == IPPROTO_UDPLITE ? "Lite": "", |
2453 | &saddr, ntohs(uh->source), |
2454 | ulen, skb->len, |
2455 | &daddr, ntohs(uh->dest)); |
2456 | goto drop; |
2457 | |
2458 | csum_error: |
2459 | /* |
2460 | * RFC1122: OK. Discards the bad packet silently (as far as |
2461 | * the network is concerned, anyway) as per 4.1.3.4 (MUST). |
2462 | */ |
2463 | drop_reason = SKB_DROP_REASON_UDP_CSUM; |
2464 | net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n", |
2465 | proto == IPPROTO_UDPLITE ? "Lite": "", |
2466 | &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest), |
2467 | ulen); |
2468 | __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE); |
2469 | drop: |
2470 | __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE); |
2471 | kfree_skb_reason(skb, reason: drop_reason); |
2472 | return 0; |
2473 | } |
2474 | |
2475 | /* We can only early demux multicast if there is a single matching socket. |
2476 | * If more than one socket found returns NULL |
2477 | */ |
2478 | static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net, |
2479 | __be16 loc_port, __be32 loc_addr, |
2480 | __be16 rmt_port, __be32 rmt_addr, |
2481 | int dif, int sdif) |
2482 | { |
2483 | struct udp_table *udptable = net->ipv4.udp_table; |
2484 | unsigned short hnum = ntohs(loc_port); |
2485 | struct sock *sk, *result; |
2486 | struct udp_hslot *hslot; |
2487 | unsigned int slot; |
2488 | |
2489 | slot = udp_hashfn(net, num: hnum, mask: udptable->mask); |
2490 | hslot = &udptable->hash[slot]; |
2491 | |
2492 | /* Do not bother scanning a too big list */ |
2493 | if (hslot->count > 10) |
2494 | return NULL; |
2495 | |
2496 | result = NULL; |
2497 | sk_for_each_rcu(sk, &hslot->head) { |
2498 | if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr, |
2499 | rmt_port, rmt_addr, dif, sdif, hnum)) { |
2500 | if (result) |
2501 | return NULL; |
2502 | result = sk; |
2503 | } |
2504 | } |
2505 | |
2506 | return result; |
2507 | } |
2508 | |
2509 | /* For unicast we should only early demux connected sockets or we can |
2510 | * break forwarding setups. The chains here can be long so only check |
2511 | * if the first socket is an exact match and if not move on. |
2512 | */ |
2513 | static struct sock *__udp4_lib_demux_lookup(struct net *net, |
2514 | __be16 loc_port, __be32 loc_addr, |
2515 | __be16 rmt_port, __be32 rmt_addr, |
2516 | int dif, int sdif) |
2517 | { |
2518 | struct udp_table *udptable = net->ipv4.udp_table; |
2519 | INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr); |
2520 | unsigned short hnum = ntohs(loc_port); |
2521 | unsigned int hash2, slot2; |
2522 | struct udp_hslot *hslot2; |
2523 | __portpair ports; |
2524 | struct sock *sk; |
2525 | |
2526 | hash2 = ipv4_portaddr_hash(net, saddr: loc_addr, port: hnum); |
2527 | slot2 = hash2 & udptable->mask; |
2528 | hslot2 = &udptable->hash2[slot2]; |
2529 | ports = INET_COMBINED_PORTS(rmt_port, hnum); |
2530 | |
2531 | udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) { |
2532 | if (inet_match(net, sk, cookie: acookie, ports, dif, sdif)) |
2533 | return sk; |
2534 | /* Only check first socket in chain */ |
2535 | break; |
2536 | } |
2537 | return NULL; |
2538 | } |
2539 | |
2540 | int udp_v4_early_demux(struct sk_buff *skb) |
2541 | { |
2542 | struct net *net = dev_net(dev: skb->dev); |
2543 | struct in_device *in_dev = NULL; |
2544 | const struct iphdr *iph; |
2545 | const struct udphdr *uh; |
2546 | struct sock *sk = NULL; |
2547 | struct dst_entry *dst; |
2548 | int dif = skb->dev->ifindex; |
2549 | int sdif = inet_sdif(skb); |
2550 | int ours; |
2551 | |
2552 | /* validate the packet */ |
2553 | if (!pskb_may_pull(skb, len: skb_transport_offset(skb) + sizeof(struct udphdr))) |
2554 | return 0; |
2555 | |
2556 | iph = ip_hdr(skb); |
2557 | uh = udp_hdr(skb); |
2558 | |
2559 | if (skb->pkt_type == PACKET_MULTICAST) { |
2560 | in_dev = __in_dev_get_rcu(dev: skb->dev); |
2561 | |
2562 | if (!in_dev) |
2563 | return 0; |
2564 | |
2565 | ours = ip_check_mc_rcu(dev: in_dev, mc_addr: iph->daddr, src_addr: iph->saddr, |
2566 | proto: iph->protocol); |
2567 | if (!ours) |
2568 | return 0; |
2569 | |
2570 | sk = __udp4_lib_mcast_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr, |
2571 | rmt_port: uh->source, rmt_addr: iph->saddr, |
2572 | dif, sdif); |
2573 | } else if (skb->pkt_type == PACKET_HOST) { |
2574 | sk = __udp4_lib_demux_lookup(net, loc_port: uh->dest, loc_addr: iph->daddr, |
2575 | rmt_port: uh->source, rmt_addr: iph->saddr, dif, sdif); |
2576 | } |
2577 | |
2578 | if (!sk) |
2579 | return 0; |
2580 | |
2581 | skb->sk = sk; |
2582 | DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk)); |
2583 | skb->destructor = sock_pfree; |
2584 | dst = rcu_dereference(sk->sk_rx_dst); |
2585 | |
2586 | if (dst) |
2587 | dst = dst_check(dst, cookie: 0); |
2588 | if (dst) { |
2589 | u32 itag = 0; |
2590 | |
2591 | /* set noref for now. |
2592 | * any place which wants to hold dst has to call |
2593 | * dst_hold_safe() |
2594 | */ |
2595 | skb_dst_set_noref(skb, dst); |
2596 | |
2597 | /* for unconnected multicast sockets we need to validate |
2598 | * the source on each packet |
2599 | */ |
2600 | if (!inet_sk(sk)->inet_daddr && in_dev) |
2601 | return ip_mc_validate_source(skb, daddr: iph->daddr, |
2602 | saddr: iph->saddr, |
2603 | tos: iph->tos & IPTOS_RT_MASK, |
2604 | dev: skb->dev, in_dev, itag: &itag); |
2605 | } |
2606 | return 0; |
2607 | } |
2608 | |
2609 | int udp_rcv(struct sk_buff *skb) |
2610 | { |
2611 | return __udp4_lib_rcv(skb, udptable: dev_net(dev: skb->dev)->ipv4.udp_table, IPPROTO_UDP); |
2612 | } |
2613 | |
2614 | void udp_destroy_sock(struct sock *sk) |
2615 | { |
2616 | struct udp_sock *up = udp_sk(sk); |
2617 | bool slow = lock_sock_fast(sk); |
2618 | |
2619 | /* protects from races with udp_abort() */ |
2620 | sock_set_flag(sk, flag: SOCK_DEAD); |
2621 | udp_flush_pending_frames(sk); |
2622 | unlock_sock_fast(sk, slow); |
2623 | if (static_branch_unlikely(&udp_encap_needed_key)) { |
2624 | if (up->encap_type) { |
2625 | void (*encap_destroy)(struct sock *sk); |
2626 | encap_destroy = READ_ONCE(up->encap_destroy); |
2627 | if (encap_destroy) |
2628 | encap_destroy(sk); |
2629 | } |
2630 | if (udp_test_bit(ENCAP_ENABLED, sk)) |
2631 | static_branch_dec(&udp_encap_needed_key); |
2632 | } |
2633 | } |
2634 | |
2635 | static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family, |
2636 | struct sock *sk) |
2637 | { |
2638 | #ifdef CONFIG_XFRM |
2639 | if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) { |
2640 | if (family == AF_INET) |
2641 | WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv); |
2642 | else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6) |
2643 | WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv); |
2644 | } |
2645 | #endif |
2646 | } |
2647 | |
2648 | /* |
2649 | * Socket option code for UDP |
2650 | */ |
2651 | int udp_lib_setsockopt(struct sock *sk, int level, int optname, |
2652 | sockptr_t optval, unsigned int optlen, |
2653 | int (*push_pending_frames)(struct sock *)) |
2654 | { |
2655 | struct udp_sock *up = udp_sk(sk); |
2656 | int val, valbool; |
2657 | int err = 0; |
2658 | int is_udplite = IS_UDPLITE(sk); |
2659 | |
2660 | if (level == SOL_SOCKET) { |
2661 | err = sk_setsockopt(sk, level, optname, optval, optlen); |
2662 | |
2663 | if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) { |
2664 | sockopt_lock_sock(sk); |
2665 | /* paired with READ_ONCE in udp_rmem_release() */ |
2666 | WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2); |
2667 | sockopt_release_sock(sk); |
2668 | } |
2669 | return err; |
2670 | } |
2671 | |
2672 | if (optlen < sizeof(int)) |
2673 | return -EINVAL; |
2674 | |
2675 | if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val))) |
2676 | return -EFAULT; |
2677 | |
2678 | valbool = val ? 1 : 0; |
2679 | |
2680 | switch (optname) { |
2681 | case UDP_CORK: |
2682 | if (val != 0) { |
2683 | udp_set_bit(CORK, sk); |
2684 | } else { |
2685 | udp_clear_bit(CORK, sk); |
2686 | lock_sock(sk); |
2687 | push_pending_frames(sk); |
2688 | release_sock(sk); |
2689 | } |
2690 | break; |
2691 | |
2692 | case UDP_ENCAP: |
2693 | switch (val) { |
2694 | case 0: |
2695 | #ifdef CONFIG_XFRM |
2696 | case UDP_ENCAP_ESPINUDP: |
2697 | set_xfrm_gro_udp_encap_rcv(encap_type: val, family: sk->sk_family, sk); |
2698 | fallthrough; |
2699 | case UDP_ENCAP_ESPINUDP_NON_IKE: |
2700 | #if IS_ENABLED(CONFIG_IPV6) |
2701 | if (sk->sk_family == AF_INET6) |
2702 | WRITE_ONCE(up->encap_rcv, |
2703 | ipv6_stub->xfrm6_udp_encap_rcv); |
2704 | else |
2705 | #endif |
2706 | WRITE_ONCE(up->encap_rcv, |
2707 | xfrm4_udp_encap_rcv); |
2708 | #endif |
2709 | fallthrough; |
2710 | case UDP_ENCAP_L2TPINUDP: |
2711 | WRITE_ONCE(up->encap_type, val); |
2712 | udp_tunnel_encap_enable(sk); |
2713 | break; |
2714 | default: |
2715 | err = -ENOPROTOOPT; |
2716 | break; |
2717 | } |
2718 | break; |
2719 | |
2720 | case UDP_NO_CHECK6_TX: |
2721 | udp_set_no_check6_tx(sk, val: valbool); |
2722 | break; |
2723 | |
2724 | case UDP_NO_CHECK6_RX: |
2725 | udp_set_no_check6_rx(sk, val: valbool); |
2726 | break; |
2727 | |
2728 | case UDP_SEGMENT: |
2729 | if (val < 0 || val > USHRT_MAX) |
2730 | return -EINVAL; |
2731 | WRITE_ONCE(up->gso_size, val); |
2732 | break; |
2733 | |
2734 | case UDP_GRO: |
2735 | |
2736 | /* when enabling GRO, accept the related GSO packet type */ |
2737 | if (valbool) |
2738 | udp_tunnel_encap_enable(sk); |
2739 | udp_assign_bit(GRO_ENABLED, sk, valbool); |
2740 | udp_assign_bit(ACCEPT_L4, sk, valbool); |
2741 | set_xfrm_gro_udp_encap_rcv(encap_type: up->encap_type, family: sk->sk_family, sk); |
2742 | break; |
2743 | |
2744 | /* |
2745 | * UDP-Lite's partial checksum coverage (RFC 3828). |
2746 | */ |
2747 | /* The sender sets actual checksum coverage length via this option. |
2748 | * The case coverage > packet length is handled by send module. */ |
2749 | case UDPLITE_SEND_CSCOV: |
2750 | if (!is_udplite) /* Disable the option on UDP sockets */ |
2751 | return -ENOPROTOOPT; |
2752 | if (val != 0 && val < 8) /* Illegal coverage: use default (8) */ |
2753 | val = 8; |
2754 | else if (val > USHRT_MAX) |
2755 | val = USHRT_MAX; |
2756 | WRITE_ONCE(up->pcslen, val); |
2757 | udp_set_bit(UDPLITE_SEND_CC, sk); |
2758 | break; |
2759 | |
2760 | /* The receiver specifies a minimum checksum coverage value. To make |
2761 | * sense, this should be set to at least 8 (as done below). If zero is |
2762 | * used, this again means full checksum coverage. */ |
2763 | case UDPLITE_RECV_CSCOV: |
2764 | if (!is_udplite) /* Disable the option on UDP sockets */ |
2765 | return -ENOPROTOOPT; |
2766 | if (val != 0 && val < 8) /* Avoid silly minimal values. */ |
2767 | val = 8; |
2768 | else if (val > USHRT_MAX) |
2769 | val = USHRT_MAX; |
2770 | WRITE_ONCE(up->pcrlen, val); |
2771 | udp_set_bit(UDPLITE_RECV_CC, sk); |
2772 | break; |
2773 | |
2774 | default: |
2775 | err = -ENOPROTOOPT; |
2776 | break; |
2777 | } |
2778 | |
2779 | return err; |
2780 | } |
2781 | EXPORT_SYMBOL(udp_lib_setsockopt); |
2782 | |
2783 | int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval, |
2784 | unsigned int optlen) |
2785 | { |
2786 | if (level == SOL_UDP || level == SOL_UDPLITE || level == SOL_SOCKET) |
2787 | return udp_lib_setsockopt(sk, level, optname, |
2788 | optval, optlen, |
2789 | udp_push_pending_frames); |
2790 | return ip_setsockopt(sk, level, optname, optval, optlen); |
2791 | } |
2792 | |
2793 | int udp_lib_getsockopt(struct sock *sk, int level, int optname, |
2794 | char __user *optval, int __user *optlen) |
2795 | { |
2796 | struct udp_sock *up = udp_sk(sk); |
2797 | int val, len; |
2798 | |
2799 | if (get_user(len, optlen)) |
2800 | return -EFAULT; |
2801 | |
2802 | if (len < 0) |
2803 | return -EINVAL; |
2804 | |
2805 | len = min_t(unsigned int, len, sizeof(int)); |
2806 | |
2807 | switch (optname) { |
2808 | case UDP_CORK: |
2809 | val = udp_test_bit(CORK, sk); |
2810 | break; |
2811 | |
2812 | case UDP_ENCAP: |
2813 | val = READ_ONCE(up->encap_type); |
2814 | break; |
2815 | |
2816 | case UDP_NO_CHECK6_TX: |
2817 | val = udp_get_no_check6_tx(sk); |
2818 | break; |
2819 | |
2820 | case UDP_NO_CHECK6_RX: |
2821 | val = udp_get_no_check6_rx(sk); |
2822 | break; |
2823 | |
2824 | case UDP_SEGMENT: |
2825 | val = READ_ONCE(up->gso_size); |
2826 | break; |
2827 | |
2828 | case UDP_GRO: |
2829 | val = udp_test_bit(GRO_ENABLED, sk); |
2830 | break; |
2831 | |
2832 | /* The following two cannot be changed on UDP sockets, the return is |
2833 | * always 0 (which corresponds to the full checksum coverage of UDP). */ |
2834 | case UDPLITE_SEND_CSCOV: |
2835 | val = READ_ONCE(up->pcslen); |
2836 | break; |
2837 | |
2838 | case UDPLITE_RECV_CSCOV: |
2839 | val = READ_ONCE(up->pcrlen); |
2840 | break; |
2841 | |
2842 | default: |
2843 | return -ENOPROTOOPT; |
2844 | } |
2845 | |
2846 | if (put_user(len, optlen)) |
2847 | return -EFAULT; |
2848 | if (copy_to_user(to: optval, from: &val, n: len)) |
2849 | return -EFAULT; |
2850 | return 0; |
2851 | } |
2852 | EXPORT_SYMBOL(udp_lib_getsockopt); |
2853 | |
2854 | int udp_getsockopt(struct sock *sk, int level, int optname, |
2855 | char __user *optval, int __user *optlen) |
2856 | { |
2857 | if (level == SOL_UDP || level == SOL_UDPLITE) |
2858 | return udp_lib_getsockopt(sk, level, optname, optval, optlen); |
2859 | return ip_getsockopt(sk, level, optname, optval, optlen); |
2860 | } |
2861 | |
2862 | /** |
2863 | * udp_poll - wait for a UDP event. |
2864 | * @file: - file struct |
2865 | * @sock: - socket |
2866 | * @wait: - poll table |
2867 | * |
2868 | * This is same as datagram poll, except for the special case of |
2869 | * blocking sockets. If application is using a blocking fd |
2870 | * and a packet with checksum error is in the queue; |
2871 | * then it could get return from select indicating data available |
2872 | * but then block when reading it. Add special case code |
2873 | * to work around these arguably broken applications. |
2874 | */ |
2875 | __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait) |
2876 | { |
2877 | __poll_t mask = datagram_poll(file, sock, wait); |
2878 | struct sock *sk = sock->sk; |
2879 | |
2880 | if (!skb_queue_empty_lockless(list: &udp_sk(sk)->reader_queue)) |
2881 | mask |= EPOLLIN | EPOLLRDNORM; |
2882 | |
2883 | /* Check for false positives due to checksum errors */ |
2884 | if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) && |
2885 | !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1) |
2886 | mask &= ~(EPOLLIN | EPOLLRDNORM); |
2887 | |
2888 | /* psock ingress_msg queue should not contain any bad checksum frames */ |
2889 | if (sk_is_readable(sk)) |
2890 | mask |= EPOLLIN | EPOLLRDNORM; |
2891 | return mask; |
2892 | |
2893 | } |
2894 | EXPORT_SYMBOL(udp_poll); |
2895 | |
2896 | int udp_abort(struct sock *sk, int err) |
2897 | { |
2898 | if (!has_current_bpf_ctx()) |
2899 | lock_sock(sk); |
2900 | |
2901 | /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing |
2902 | * with close() |
2903 | */ |
2904 | if (sock_flag(sk, flag: SOCK_DEAD)) |
2905 | goto out; |
2906 | |
2907 | sk->sk_err = err; |
2908 | sk_error_report(sk); |
2909 | __udp_disconnect(sk, 0); |
2910 | |
2911 | out: |
2912 | if (!has_current_bpf_ctx()) |
2913 | release_sock(sk); |
2914 | |
2915 | return 0; |
2916 | } |
2917 | EXPORT_SYMBOL_GPL(udp_abort); |
2918 | |
2919 | struct proto udp_prot = { |
2920 | .name = "UDP", |
2921 | .owner = THIS_MODULE, |
2922 | .close = udp_lib_close, |
2923 | .pre_connect = udp_pre_connect, |
2924 | .connect = ip4_datagram_connect, |
2925 | .disconnect = udp_disconnect, |
2926 | .ioctl = udp_ioctl, |
2927 | .init = udp_init_sock, |
2928 | .destroy = udp_destroy_sock, |
2929 | .setsockopt = udp_setsockopt, |
2930 | .getsockopt = udp_getsockopt, |
2931 | .sendmsg = udp_sendmsg, |
2932 | .recvmsg = udp_recvmsg, |
2933 | .splice_eof = udp_splice_eof, |
2934 | .release_cb = ip4_datagram_release_cb, |
2935 | .hash = udp_lib_hash, |
2936 | .unhash = udp_lib_unhash, |
2937 | .rehash = udp_v4_rehash, |
2938 | .get_port = udp_v4_get_port, |
2939 | .put_port = udp_lib_unhash, |
2940 | #ifdef CONFIG_BPF_SYSCALL |
2941 | .psock_update_sk_prot = udp_bpf_update_proto, |
2942 | #endif |
2943 | .memory_allocated = &udp_memory_allocated, |
2944 | .per_cpu_fw_alloc = &udp_memory_per_cpu_fw_alloc, |
2945 | |
2946 | .sysctl_mem = sysctl_udp_mem, |
2947 | .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min), |
2948 | .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min), |
2949 | .obj_size = sizeof(struct udp_sock), |
2950 | .h.udp_table = NULL, |
2951 | .diag_destroy = udp_abort, |
2952 | }; |
2953 | EXPORT_SYMBOL(udp_prot); |
2954 | |
2955 | /* ------------------------------------------------------------------------ */ |
2956 | #ifdef CONFIG_PROC_FS |
2957 | |
2958 | static unsigned short seq_file_family(const struct seq_file *seq); |
2959 | static bool seq_sk_match(struct seq_file *seq, const struct sock *sk) |
2960 | { |
2961 | unsigned short family = seq_file_family(seq); |
2962 | |
2963 | /* AF_UNSPEC is used as a match all */ |
2964 | return ((family == AF_UNSPEC || family == sk->sk_family) && |
2965 | net_eq(net1: sock_net(sk), net2: seq_file_net(seq))); |
2966 | } |
2967 | |
2968 | #ifdef CONFIG_BPF_SYSCALL |
2969 | static const struct seq_operations bpf_iter_udp_seq_ops; |
2970 | #endif |
2971 | static struct udp_table *udp_get_table_seq(struct seq_file *seq, |
2972 | struct net *net) |
2973 | { |
2974 | const struct udp_seq_afinfo *afinfo; |
2975 | |
2976 | #ifdef CONFIG_BPF_SYSCALL |
2977 | if (seq->op == &bpf_iter_udp_seq_ops) |
2978 | return net->ipv4.udp_table; |
2979 | #endif |
2980 | |
2981 | afinfo = pde_data(inode: file_inode(f: seq->file)); |
2982 | return afinfo->udp_table ? : net->ipv4.udp_table; |
2983 | } |
2984 | |
2985 | static struct sock *udp_get_first(struct seq_file *seq, int start) |
2986 | { |
2987 | struct udp_iter_state *state = seq->private; |
2988 | struct net *net = seq_file_net(seq); |
2989 | struct udp_table *udptable; |
2990 | struct sock *sk; |
2991 | |
2992 | udptable = udp_get_table_seq(seq, net); |
2993 | |
2994 | for (state->bucket = start; state->bucket <= udptable->mask; |
2995 | ++state->bucket) { |
2996 | struct udp_hslot *hslot = &udptable->hash[state->bucket]; |
2997 | |
2998 | if (hlist_empty(h: &hslot->head)) |
2999 | continue; |
3000 | |
3001 | spin_lock_bh(lock: &hslot->lock); |
3002 | sk_for_each(sk, &hslot->head) { |
3003 | if (seq_sk_match(seq, sk)) |
3004 | goto found; |
3005 | } |
3006 | spin_unlock_bh(lock: &hslot->lock); |
3007 | } |
3008 | sk = NULL; |
3009 | found: |
3010 | return sk; |
3011 | } |
3012 | |
3013 | static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk) |
3014 | { |
3015 | struct udp_iter_state *state = seq->private; |
3016 | struct net *net = seq_file_net(seq); |
3017 | struct udp_table *udptable; |
3018 | |
3019 | do { |
3020 | sk = sk_next(sk); |
3021 | } while (sk && !seq_sk_match(seq, sk)); |
3022 | |
3023 | if (!sk) { |
3024 | udptable = udp_get_table_seq(seq, net); |
3025 | |
3026 | if (state->bucket <= udptable->mask) |
3027 | spin_unlock_bh(lock: &udptable->hash[state->bucket].lock); |
3028 | |
3029 | return udp_get_first(seq, start: state->bucket + 1); |
3030 | } |
3031 | return sk; |
3032 | } |
3033 | |
3034 | static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos) |
3035 | { |
3036 | struct sock *sk = udp_get_first(seq, start: 0); |
3037 | |
3038 | if (sk) |
3039 | while (pos && (sk = udp_get_next(seq, sk)) != NULL) |
3040 | --pos; |
3041 | return pos ? NULL : sk; |
3042 | } |
3043 | |
3044 | void *udp_seq_start(struct seq_file *seq, loff_t *pos) |
3045 | { |
3046 | struct udp_iter_state *state = seq->private; |
3047 | state->bucket = MAX_UDP_PORTS; |
3048 | |
3049 | return *pos ? udp_get_idx(seq, pos: *pos-1) : SEQ_START_TOKEN; |
3050 | } |
3051 | EXPORT_SYMBOL(udp_seq_start); |
3052 | |
3053 | void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
3054 | { |
3055 | struct sock *sk; |
3056 | |
3057 | if (v == SEQ_START_TOKEN) |
3058 | sk = udp_get_idx(seq, pos: 0); |
3059 | else |
3060 | sk = udp_get_next(seq, sk: v); |
3061 | |
3062 | ++*pos; |
3063 | return sk; |
3064 | } |
3065 | EXPORT_SYMBOL(udp_seq_next); |
3066 | |
3067 | void udp_seq_stop(struct seq_file *seq, void *v) |
3068 | { |
3069 | struct udp_iter_state *state = seq->private; |
3070 | struct udp_table *udptable; |
3071 | |
3072 | udptable = udp_get_table_seq(seq, net: seq_file_net(seq)); |
3073 | |
3074 | if (state->bucket <= udptable->mask) |
3075 | spin_unlock_bh(lock: &udptable->hash[state->bucket].lock); |
3076 | } |
3077 | EXPORT_SYMBOL(udp_seq_stop); |
3078 | |
3079 | /* ------------------------------------------------------------------------ */ |
3080 | static void udp4_format_sock(struct sock *sp, struct seq_file *f, |
3081 | int bucket) |
3082 | { |
3083 | struct inet_sock *inet = inet_sk(sp); |
3084 | __be32 dest = inet->inet_daddr; |
3085 | __be32 src = inet->inet_rcv_saddr; |
3086 | __u16 destp = ntohs(inet->inet_dport); |
3087 | __u16 srcp = ntohs(inet->inet_sport); |
3088 | |
3089 | seq_printf(m: f, fmt: "%5d: %08X:%04X %08X:%04X" |
3090 | " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u", |
3091 | bucket, src, srcp, dest, destp, sp->sk_state, |
3092 | sk_wmem_alloc_get(sk: sp), |
3093 | udp_rqueue_get(sk: sp), |
3094 | 0, 0L, 0, |
3095 | from_kuid_munged(to: seq_user_ns(seq: f), uid: sock_i_uid(sk: sp)), |
3096 | 0, sock_i_ino(sk: sp), |
3097 | refcount_read(r: &sp->sk_refcnt), sp, |
3098 | atomic_read(v: &sp->sk_drops)); |
3099 | } |
3100 | |
3101 | int udp4_seq_show(struct seq_file *seq, void *v) |
3102 | { |
3103 | seq_setwidth(m: seq, size: 127); |
3104 | if (v == SEQ_START_TOKEN) |
3105 | seq_puts(m: seq, s: " sl local_address rem_address st tx_queue " |
3106 | "rx_queue tr tm->when retrnsmt uid timeout " |
3107 | "inode ref pointer drops"); |
3108 | else { |
3109 | struct udp_iter_state *state = seq->private; |
3110 | |
3111 | udp4_format_sock(sp: v, f: seq, bucket: state->bucket); |
3112 | } |
3113 | seq_pad(m: seq, c: '\n'); |
3114 | return 0; |
3115 | } |
3116 | |
3117 | #ifdef CONFIG_BPF_SYSCALL |
3118 | struct bpf_iter__udp { |
3119 | __bpf_md_ptr(struct bpf_iter_meta *, meta); |
3120 | __bpf_md_ptr(struct udp_sock *, udp_sk); |
3121 | uid_t uid __aligned(8); |
3122 | int bucket __aligned(8); |
3123 | }; |
3124 | |
3125 | struct bpf_udp_iter_state { |
3126 | struct udp_iter_state state; |
3127 | unsigned int cur_sk; |
3128 | unsigned int end_sk; |
3129 | unsigned int max_sk; |
3130 | int offset; |
3131 | struct sock **batch; |
3132 | bool st_bucket_done; |
3133 | }; |
3134 | |
3135 | static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, |
3136 | unsigned int new_batch_sz); |
3137 | static struct sock *bpf_iter_udp_batch(struct seq_file *seq) |
3138 | { |
3139 | struct bpf_udp_iter_state *iter = seq->private; |
3140 | struct udp_iter_state *state = &iter->state; |
3141 | struct net *net = seq_file_net(seq); |
3142 | int resume_bucket, resume_offset; |
3143 | struct udp_table *udptable; |
3144 | unsigned int batch_sks = 0; |
3145 | bool resized = false; |
3146 | struct sock *sk; |
3147 | |
3148 | resume_bucket = state->bucket; |
3149 | resume_offset = iter->offset; |
3150 | |
3151 | /* The current batch is done, so advance the bucket. */ |
3152 | if (iter->st_bucket_done) |
3153 | state->bucket++; |
3154 | |
3155 | udptable = udp_get_table_seq(seq, net); |
3156 | |
3157 | again: |
3158 | /* New batch for the next bucket. |
3159 | * Iterate over the hash table to find a bucket with sockets matching |
3160 | * the iterator attributes, and return the first matching socket from |
3161 | * the bucket. The remaining matched sockets from the bucket are batched |
3162 | * before releasing the bucket lock. This allows BPF programs that are |
3163 | * called in seq_show to acquire the bucket lock if needed. |
3164 | */ |
3165 | iter->cur_sk = 0; |
3166 | iter->end_sk = 0; |
3167 | iter->st_bucket_done = false; |
3168 | batch_sks = 0; |
3169 | |
3170 | for (; state->bucket <= udptable->mask; state->bucket++) { |
3171 | struct udp_hslot *hslot2 = &udptable->hash2[state->bucket]; |
3172 | |
3173 | if (hlist_empty(h: &hslot2->head)) |
3174 | continue; |
3175 | |
3176 | iter->offset = 0; |
3177 | spin_lock_bh(lock: &hslot2->lock); |
3178 | udp_portaddr_for_each_entry(sk, &hslot2->head) { |
3179 | if (seq_sk_match(seq, sk)) { |
3180 | /* Resume from the last iterated socket at the |
3181 | * offset in the bucket before iterator was stopped. |
3182 | */ |
3183 | if (state->bucket == resume_bucket && |
3184 | iter->offset < resume_offset) { |
3185 | ++iter->offset; |
3186 | continue; |
3187 | } |
3188 | if (iter->end_sk < iter->max_sk) { |
3189 | sock_hold(sk); |
3190 | iter->batch[iter->end_sk++] = sk; |
3191 | } |
3192 | batch_sks++; |
3193 | } |
3194 | } |
3195 | spin_unlock_bh(lock: &hslot2->lock); |
3196 | |
3197 | if (iter->end_sk) |
3198 | break; |
3199 | } |
3200 | |
3201 | /* All done: no batch made. */ |
3202 | if (!iter->end_sk) |
3203 | return NULL; |
3204 | |
3205 | if (iter->end_sk == batch_sks) { |
3206 | /* Batching is done for the current bucket; return the first |
3207 | * socket to be iterated from the batch. |
3208 | */ |
3209 | iter->st_bucket_done = true; |
3210 | goto done; |
3211 | } |
3212 | if (!resized && !bpf_iter_udp_realloc_batch(iter, new_batch_sz: batch_sks * 3 / 2)) { |
3213 | resized = true; |
3214 | /* After allocating a larger batch, retry one more time to grab |
3215 | * the whole bucket. |
3216 | */ |
3217 | goto again; |
3218 | } |
3219 | done: |
3220 | return iter->batch[0]; |
3221 | } |
3222 | |
3223 | static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
3224 | { |
3225 | struct bpf_udp_iter_state *iter = seq->private; |
3226 | struct sock *sk; |
3227 | |
3228 | /* Whenever seq_next() is called, the iter->cur_sk is |
3229 | * done with seq_show(), so unref the iter->cur_sk. |
3230 | */ |
3231 | if (iter->cur_sk < iter->end_sk) { |
3232 | sock_put(sk: iter->batch[iter->cur_sk++]); |
3233 | ++iter->offset; |
3234 | } |
3235 | |
3236 | /* After updating iter->cur_sk, check if there are more sockets |
3237 | * available in the current bucket batch. |
3238 | */ |
3239 | if (iter->cur_sk < iter->end_sk) |
3240 | sk = iter->batch[iter->cur_sk]; |
3241 | else |
3242 | /* Prepare a new batch. */ |
3243 | sk = bpf_iter_udp_batch(seq); |
3244 | |
3245 | ++*pos; |
3246 | return sk; |
3247 | } |
3248 | |
3249 | static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos) |
3250 | { |
3251 | /* bpf iter does not support lseek, so it always |
3252 | * continue from where it was stop()-ped. |
3253 | */ |
3254 | if (*pos) |
3255 | return bpf_iter_udp_batch(seq); |
3256 | |
3257 | return SEQ_START_TOKEN; |
3258 | } |
3259 | |
3260 | static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, |
3261 | struct udp_sock *udp_sk, uid_t uid, int bucket) |
3262 | { |
3263 | struct bpf_iter__udp ctx; |
3264 | |
3265 | meta->seq_num--; /* skip SEQ_START_TOKEN */ |
3266 | ctx.meta = meta; |
3267 | ctx.udp_sk = udp_sk; |
3268 | ctx.uid = uid; |
3269 | ctx.bucket = bucket; |
3270 | return bpf_iter_run_prog(prog, ctx: &ctx); |
3271 | } |
3272 | |
3273 | static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v) |
3274 | { |
3275 | struct udp_iter_state *state = seq->private; |
3276 | struct bpf_iter_meta meta; |
3277 | struct bpf_prog *prog; |
3278 | struct sock *sk = v; |
3279 | uid_t uid; |
3280 | int ret; |
3281 | |
3282 | if (v == SEQ_START_TOKEN) |
3283 | return 0; |
3284 | |
3285 | lock_sock(sk); |
3286 | |
3287 | if (unlikely(sk_unhashed(sk))) { |
3288 | ret = SEQ_SKIP; |
3289 | goto unlock; |
3290 | } |
3291 | |
3292 | uid = from_kuid_munged(to: seq_user_ns(seq), uid: sock_i_uid(sk)); |
3293 | meta.seq = seq; |
3294 | prog = bpf_iter_get_info(meta: &meta, in_stop: false); |
3295 | ret = udp_prog_seq_show(prog, meta: &meta, udp_sk: v, uid, bucket: state->bucket); |
3296 | |
3297 | unlock: |
3298 | release_sock(sk); |
3299 | return ret; |
3300 | } |
3301 | |
3302 | static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter) |
3303 | { |
3304 | while (iter->cur_sk < iter->end_sk) |
3305 | sock_put(sk: iter->batch[iter->cur_sk++]); |
3306 | } |
3307 | |
3308 | static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v) |
3309 | { |
3310 | struct bpf_udp_iter_state *iter = seq->private; |
3311 | struct bpf_iter_meta meta; |
3312 | struct bpf_prog *prog; |
3313 | |
3314 | if (!v) { |
3315 | meta.seq = seq; |
3316 | prog = bpf_iter_get_info(meta: &meta, in_stop: true); |
3317 | if (prog) |
3318 | (void)udp_prog_seq_show(prog, meta: &meta, udp_sk: v, uid: 0, bucket: 0); |
3319 | } |
3320 | |
3321 | if (iter->cur_sk < iter->end_sk) { |
3322 | bpf_iter_udp_put_batch(iter); |
3323 | iter->st_bucket_done = false; |
3324 | } |
3325 | } |
3326 | |
3327 | static const struct seq_operations bpf_iter_udp_seq_ops = { |
3328 | .start = bpf_iter_udp_seq_start, |
3329 | .next = bpf_iter_udp_seq_next, |
3330 | .stop = bpf_iter_udp_seq_stop, |
3331 | .show = bpf_iter_udp_seq_show, |
3332 | }; |
3333 | #endif |
3334 | |
3335 | static unsigned short seq_file_family(const struct seq_file *seq) |
3336 | { |
3337 | const struct udp_seq_afinfo *afinfo; |
3338 | |
3339 | #ifdef CONFIG_BPF_SYSCALL |
3340 | /* BPF iterator: bpf programs to filter sockets. */ |
3341 | if (seq->op == &bpf_iter_udp_seq_ops) |
3342 | return AF_UNSPEC; |
3343 | #endif |
3344 | |
3345 | /* Proc fs iterator */ |
3346 | afinfo = pde_data(inode: file_inode(f: seq->file)); |
3347 | return afinfo->family; |
3348 | } |
3349 | |
3350 | const struct seq_operations udp_seq_ops = { |
3351 | .start = udp_seq_start, |
3352 | .next = udp_seq_next, |
3353 | .stop = udp_seq_stop, |
3354 | .show = udp4_seq_show, |
3355 | }; |
3356 | EXPORT_SYMBOL(udp_seq_ops); |
3357 | |
3358 | static struct udp_seq_afinfo udp4_seq_afinfo = { |
3359 | .family = AF_INET, |
3360 | .udp_table = NULL, |
3361 | }; |
3362 | |
3363 | static int __net_init udp4_proc_init_net(struct net *net) |
3364 | { |
3365 | if (!proc_create_net_data(name: "udp", mode: 0444, parent: net->proc_net, ops: &udp_seq_ops, |
3366 | state_size: sizeof(struct udp_iter_state), data: &udp4_seq_afinfo)) |
3367 | return -ENOMEM; |
3368 | return 0; |
3369 | } |
3370 | |
3371 | static void __net_exit udp4_proc_exit_net(struct net *net) |
3372 | { |
3373 | remove_proc_entry("udp", net->proc_net); |
3374 | } |
3375 | |
3376 | static struct pernet_operations udp4_net_ops = { |
3377 | .init = udp4_proc_init_net, |
3378 | .exit = udp4_proc_exit_net, |
3379 | }; |
3380 | |
3381 | int __init udp4_proc_init(void) |
3382 | { |
3383 | return register_pernet_subsys(&udp4_net_ops); |
3384 | } |
3385 | |
3386 | void udp4_proc_exit(void) |
3387 | { |
3388 | unregister_pernet_subsys(&udp4_net_ops); |
3389 | } |
3390 | #endif /* CONFIG_PROC_FS */ |
3391 | |
3392 | static __initdata unsigned long uhash_entries; |
3393 | static int __init set_uhash_entries(char *str) |
3394 | { |
3395 | ssize_t ret; |
3396 | |
3397 | if (!str) |
3398 | return 0; |
3399 | |
3400 | ret = kstrtoul(s: str, base: 0, res: &uhash_entries); |
3401 | if (ret) |
3402 | return 0; |
3403 | |
3404 | if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN) |
3405 | uhash_entries = UDP_HTABLE_SIZE_MIN; |
3406 | return 1; |
3407 | } |
3408 | __setup("uhash_entries=", set_uhash_entries); |
3409 | |
3410 | void __init udp_table_init(struct udp_table *table, const char *name) |
3411 | { |
3412 | unsigned int i; |
3413 | |
3414 | table->hash = alloc_large_system_hash(tablename: name, |
3415 | bucketsize: 2 * sizeof(struct udp_hslot), |
3416 | numentries: uhash_entries, |
3417 | scale: 21, /* one slot per 2 MB */ |
3418 | flags: 0, |
3419 | hash_shift: &table->log, |
3420 | hash_mask: &table->mask, |
3421 | UDP_HTABLE_SIZE_MIN, |
3422 | UDP_HTABLE_SIZE_MAX); |
3423 | |
3424 | table->hash2 = table->hash + (table->mask + 1); |
3425 | for (i = 0; i <= table->mask; i++) { |
3426 | INIT_HLIST_HEAD(&table->hash[i].head); |
3427 | table->hash[i].count = 0; |
3428 | spin_lock_init(&table->hash[i].lock); |
3429 | } |
3430 | for (i = 0; i <= table->mask; i++) { |
3431 | INIT_HLIST_HEAD(&table->hash2[i].head); |
3432 | table->hash2[i].count = 0; |
3433 | spin_lock_init(&table->hash2[i].lock); |
3434 | } |
3435 | } |
3436 | |
3437 | u32 udp_flow_hashrnd(void) |
3438 | { |
3439 | static u32 hashrnd __read_mostly; |
3440 | |
3441 | net_get_random_once(&hashrnd, sizeof(hashrnd)); |
3442 | |
3443 | return hashrnd; |
3444 | } |
3445 | EXPORT_SYMBOL(udp_flow_hashrnd); |
3446 | |
3447 | static void __net_init udp_sysctl_init(struct net *net) |
3448 | { |
3449 | net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE; |
3450 | net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE; |
3451 | |
3452 | #ifdef CONFIG_NET_L3_MASTER_DEV |
3453 | net->ipv4.sysctl_udp_l3mdev_accept = 0; |
3454 | #endif |
3455 | } |
3456 | |
3457 | static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries) |
3458 | { |
3459 | struct udp_table *udptable; |
3460 | int i; |
3461 | |
3462 | udptable = kmalloc(size: sizeof(*udptable), GFP_KERNEL); |
3463 | if (!udptable) |
3464 | goto out; |
3465 | |
3466 | udptable->hash = vmalloc_huge(size: hash_entries * 2 * sizeof(struct udp_hslot), |
3467 | GFP_KERNEL_ACCOUNT); |
3468 | if (!udptable->hash) |
3469 | goto free_table; |
3470 | |
3471 | udptable->hash2 = udptable->hash + hash_entries; |
3472 | udptable->mask = hash_entries - 1; |
3473 | udptable->log = ilog2(hash_entries); |
3474 | |
3475 | for (i = 0; i < hash_entries; i++) { |
3476 | INIT_HLIST_HEAD(&udptable->hash[i].head); |
3477 | udptable->hash[i].count = 0; |
3478 | spin_lock_init(&udptable->hash[i].lock); |
3479 | |
3480 | INIT_HLIST_HEAD(&udptable->hash2[i].head); |
3481 | udptable->hash2[i].count = 0; |
3482 | spin_lock_init(&udptable->hash2[i].lock); |
3483 | } |
3484 | |
3485 | return udptable; |
3486 | |
3487 | free_table: |
3488 | kfree(objp: udptable); |
3489 | out: |
3490 | return NULL; |
3491 | } |
3492 | |
3493 | static void __net_exit udp_pernet_table_free(struct net *net) |
3494 | { |
3495 | struct udp_table *udptable = net->ipv4.udp_table; |
3496 | |
3497 | if (udptable == &udp_table) |
3498 | return; |
3499 | |
3500 | kvfree(addr: udptable->hash); |
3501 | kfree(objp: udptable); |
3502 | } |
3503 | |
3504 | static void __net_init udp_set_table(struct net *net) |
3505 | { |
3506 | struct udp_table *udptable; |
3507 | unsigned int hash_entries; |
3508 | struct net *old_net; |
3509 | |
3510 | if (net_eq(net1: net, net2: &init_net)) |
3511 | goto fallback; |
3512 | |
3513 | old_net = current->nsproxy->net_ns; |
3514 | hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries); |
3515 | if (!hash_entries) |
3516 | goto fallback; |
3517 | |
3518 | /* Set min to keep the bitmap on stack in udp_lib_get_port() */ |
3519 | if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET) |
3520 | hash_entries = UDP_HTABLE_SIZE_MIN_PERNET; |
3521 | else |
3522 | hash_entries = roundup_pow_of_two(hash_entries); |
3523 | |
3524 | udptable = udp_pernet_table_alloc(hash_entries); |
3525 | if (udptable) { |
3526 | net->ipv4.udp_table = udptable; |
3527 | } else { |
3528 | pr_warn("Failed to allocate UDP hash table (entries: %u) " |
3529 | "for a netns, fallback to the global one\n", |
3530 | hash_entries); |
3531 | fallback: |
3532 | net->ipv4.udp_table = &udp_table; |
3533 | } |
3534 | } |
3535 | |
3536 | static int __net_init udp_pernet_init(struct net *net) |
3537 | { |
3538 | udp_sysctl_init(net); |
3539 | udp_set_table(net); |
3540 | |
3541 | return 0; |
3542 | } |
3543 | |
3544 | static void __net_exit udp_pernet_exit(struct net *net) |
3545 | { |
3546 | udp_pernet_table_free(net); |
3547 | } |
3548 | |
3549 | static struct pernet_operations __net_initdata udp_sysctl_ops = { |
3550 | .init = udp_pernet_init, |
3551 | .exit = udp_pernet_exit, |
3552 | }; |
3553 | |
3554 | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) |
3555 | DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta, |
3556 | struct udp_sock *udp_sk, uid_t uid, int bucket) |
3557 | |
3558 | static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter, |
3559 | unsigned int new_batch_sz) |
3560 | { |
3561 | struct sock **new_batch; |
3562 | |
3563 | new_batch = kvmalloc_array(n: new_batch_sz, size: sizeof(*new_batch), |
3564 | GFP_USER | __GFP_NOWARN); |
3565 | if (!new_batch) |
3566 | return -ENOMEM; |
3567 | |
3568 | bpf_iter_udp_put_batch(iter); |
3569 | kvfree(addr: iter->batch); |
3570 | iter->batch = new_batch; |
3571 | iter->max_sk = new_batch_sz; |
3572 | |
3573 | return 0; |
3574 | } |
3575 | |
3576 | #define INIT_BATCH_SZ 16 |
3577 | |
3578 | static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux) |
3579 | { |
3580 | struct bpf_udp_iter_state *iter = priv_data; |
3581 | int ret; |
3582 | |
3583 | ret = bpf_iter_init_seq_net(priv_data, aux); |
3584 | if (ret) |
3585 | return ret; |
3586 | |
3587 | ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ); |
3588 | if (ret) |
3589 | bpf_iter_fini_seq_net(priv_data); |
3590 | |
3591 | return ret; |
3592 | } |
3593 | |
3594 | static void bpf_iter_fini_udp(void *priv_data) |
3595 | { |
3596 | struct bpf_udp_iter_state *iter = priv_data; |
3597 | |
3598 | bpf_iter_fini_seq_net(priv_data); |
3599 | kvfree(addr: iter->batch); |
3600 | } |
3601 | |
3602 | static const struct bpf_iter_seq_info udp_seq_info = { |
3603 | .seq_ops = &bpf_iter_udp_seq_ops, |
3604 | .init_seq_private = bpf_iter_init_udp, |
3605 | .fini_seq_private = bpf_iter_fini_udp, |
3606 | .seq_priv_size = sizeof(struct bpf_udp_iter_state), |
3607 | }; |
3608 | |
3609 | static struct bpf_iter_reg udp_reg_info = { |
3610 | .target = "udp", |
3611 | .ctx_arg_info_size = 1, |
3612 | .ctx_arg_info = { |
3613 | { offsetof(struct bpf_iter__udp, udp_sk), |
3614 | .reg_type: PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED }, |
3615 | }, |
3616 | .seq_info = &udp_seq_info, |
3617 | }; |
3618 | |
3619 | static void __init bpf_iter_register(void) |
3620 | { |
3621 | udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP]; |
3622 | if (bpf_iter_reg_target(reg_info: &udp_reg_info)) |
3623 | pr_warn("Warning: could not register bpf iterator udp\n"); |
3624 | } |
3625 | #endif |
3626 | |
3627 | void __init udp_init(void) |
3628 | { |
3629 | unsigned long limit; |
3630 | unsigned int i; |
3631 | |
3632 | udp_table_init(table: &udp_table, name: "UDP"); |
3633 | limit = nr_free_buffer_pages() / 8; |
3634 | limit = max(limit, 128UL); |
3635 | sysctl_udp_mem[0] = limit / 4 * 3; |
3636 | sysctl_udp_mem[1] = limit; |
3637 | sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2; |
3638 | |
3639 | /* 16 spinlocks per cpu */ |
3640 | udp_busylocks_log = ilog2(nr_cpu_ids) + 4; |
3641 | udp_busylocks = kmalloc(size: sizeof(spinlock_t) << udp_busylocks_log, |
3642 | GFP_KERNEL); |
3643 | if (!udp_busylocks) |
3644 | panic(fmt: "UDP: failed to alloc udp_busylocks\n"); |
3645 | for (i = 0; i < (1U << udp_busylocks_log); i++) |
3646 | spin_lock_init(udp_busylocks + i); |
3647 | |
3648 | if (register_pernet_subsys(&udp_sysctl_ops)) |
3649 | panic(fmt: "UDP: failed to init sysctl parameters.\n"); |
3650 | |
3651 | #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) |
3652 | bpf_iter_register(); |
3653 | #endif |
3654 | } |
3655 |
Definitions
- udp_table
- sysctl_udp_mem
- udp_memory_allocated
- udp_memory_per_cpu_fw_alloc
- udp_get_table_prot
- udp_lib_lport_inuse
- udp_lib_lport_inuse2
- udp_reuseport_add_sock
- udp_lib_get_port
- udp_v4_get_port
- compute_score
- udp_ehashfn
- udp4_lib_lookup2
- __udp4_lib_lookup
- __udp4_lib_lookup_skb
- udp4_lib_lookup_skb
- udp4_lib_lookup
- __udp_is_mcast_sock
- udp_encap_needed_key
- udpv6_encap_needed_key
- udp_encap_enable
- udp_encap_disable
- __udp4_lib_err_encap_no_sk
- __udp4_lib_err_encap
- __udp4_lib_err
- udp_err
- udp_flush_pending_frames
- udp4_hwcsum
- udp_set_csum
- udp_send_skb
- udp_push_pending_frames
- __udp_cmsg_send
- udp_cmsg_send
- udp_sendmsg
- udp_splice_eof
- udp_try_make_stateless
- udp_set_dev_scratch
- udp_skb_csum_unnecessary_set
- udp_skb_truesize
- udp_skb_has_head_state
- udp_rmem_release
- udp_skb_destructor
- udp_skb_dtor_locked
- udp_busylocks_log
- udp_busylocks
- busylock_acquire
- busylock_release
- udp_rmem_schedule
- __udp_enqueue_schedule_skb
- udp_destruct_common
- udp_destruct_sock
- udp_init_sock
- skb_consume_udp
- __first_packet_length
- first_packet_length
- udp_ioctl
- __skb_recv_udp
- udp_read_skb
- udp_recvmsg
- udp_pre_connect
- __udp_disconnect
- udp_disconnect
- udp_lib_unhash
- udp_lib_rehash
- udp_v4_rehash
- __udp_queue_rcv_skb
- udp_queue_rcv_one_skb
- udp_queue_rcv_skb
- udp_sk_rx_dst_set
- __udp4_lib_mcast_deliver
- udp4_csum_init
- udp_unicast_rcv_skb
- __udp4_lib_rcv
- __udp4_lib_mcast_demux_lookup
- __udp4_lib_demux_lookup
- udp_v4_early_demux
- udp_rcv
- udp_destroy_sock
- set_xfrm_gro_udp_encap_rcv
- udp_lib_setsockopt
- udp_setsockopt
- udp_lib_getsockopt
- udp_getsockopt
- udp_poll
- udp_abort
- udp_prot
- seq_sk_match
- bpf_iter_udp_seq_ops
- udp_get_table_seq
- udp_get_first
- udp_get_next
- udp_get_idx
- udp_seq_start
- udp_seq_next
- udp_seq_stop
- udp4_format_sock
- udp4_seq_show
- bpf_iter__udp
- bpf_udp_iter_state
- bpf_iter_udp_batch
- bpf_iter_udp_seq_next
- bpf_iter_udp_seq_start
- udp_prog_seq_show
- bpf_iter_udp_seq_show
- bpf_iter_udp_put_batch
- bpf_iter_udp_seq_stop
- bpf_iter_udp_seq_ops
- seq_file_family
- udp_seq_ops
- udp4_seq_afinfo
- udp4_proc_init_net
- udp4_proc_exit_net
- udp4_net_ops
- udp4_proc_init
- udp4_proc_exit
- uhash_entries
- set_uhash_entries
- udp_table_init
- udp_flow_hashrnd
- udp_sysctl_init
- udp_pernet_table_alloc
- udp_pernet_table_free
- udp_set_table
- udp_pernet_init
- udp_pernet_exit
- udp_sysctl_ops
- bpf_iter_udp_realloc_batch
- bpf_iter_init_udp
- bpf_iter_fini_udp
- udp_seq_info
- udp_reg_info
- bpf_iter_register
Improve your Profiling and Debugging skills
Find out more