1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/bpf-cgroup.h>
56#include <linux/ethtool.h>
57#include <linux/mm.h>
58#include <linux/socket.h>
59#include <linux/file.h>
60#include <linux/splice.h>
61#include <linux/net.h>
62#include <linux/interrupt.h>
63#include <linux/thread_info.h>
64#include <linux/rcupdate.h>
65#include <linux/netdevice.h>
66#include <linux/proc_fs.h>
67#include <linux/seq_file.h>
68#include <linux/mutex.h>
69#include <linux/if_bridge.h>
70#include <linux/if_vlan.h>
71#include <linux/ptp_classify.h>
72#include <linux/init.h>
73#include <linux/poll.h>
74#include <linux/cache.h>
75#include <linux/module.h>
76#include <linux/highmem.h>
77#include <linux/mount.h>
78#include <linux/pseudo_fs.h>
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/compat.h>
82#include <linux/kmod.h>
83#include <linux/audit.h>
84#include <linux/wireless.h>
85#include <linux/nsproxy.h>
86#include <linux/magic.h>
87#include <linux/slab.h>
88#include <linux/xattr.h>
89#include <linux/nospec.h>
90#include <linux/indirect_call_wrapper.h>
91#include <linux/io_uring.h>
92
93#include <linux/uaccess.h>
94#include <asm/unistd.h>
95
96#include <net/compat.h>
97#include <net/wext.h>
98#include <net/cls_cgroup.h>
99
100#include <net/sock.h>
101#include <linux/netfilter.h>
102
103#include <linux/if_tun.h>
104#include <linux/ipv6_route.h>
105#include <linux/route.h>
106#include <linux/termios.h>
107#include <linux/sockios.h>
108#include <net/busy_poll.h>
109#include <linux/errqueue.h>
110#include <linux/ptp_clock_kernel.h>
111#include <trace/events/sock.h>
112
113#ifdef CONFIG_NET_RX_BUSY_POLL
114unsigned int sysctl_net_busy_read __read_mostly;
115unsigned int sysctl_net_busy_poll __read_mostly;
116#endif
117
118static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
119static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
120static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122static int sock_close(struct inode *inode, struct file *file);
123static __poll_t sock_poll(struct file *file,
124 struct poll_table_struct *wait);
125static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126#ifdef CONFIG_COMPAT
127static long compat_sock_ioctl(struct file *file,
128 unsigned int cmd, unsigned long arg);
129#endif
130static int sock_fasync(int fd, struct file *filp, int on);
131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134static void sock_splice_eof(struct file *file);
135
136#ifdef CONFIG_PROC_FS
137static void sock_show_fdinfo(struct seq_file *m, struct file *f)
138{
139 struct socket *sock = f->private_data;
140 const struct proto_ops *ops = READ_ONCE(sock->ops);
141
142 if (ops->show_fdinfo)
143 ops->show_fdinfo(m, sock);
144}
145#else
146#define sock_show_fdinfo NULL
147#endif
148
149/*
150 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
151 * in the operation structures but are done directly via the socketcall() multiplexor.
152 */
153
154static const struct file_operations socket_file_ops = {
155 .owner = THIS_MODULE,
156 .llseek = no_llseek,
157 .read_iter = sock_read_iter,
158 .write_iter = sock_write_iter,
159 .poll = sock_poll,
160 .unlocked_ioctl = sock_ioctl,
161#ifdef CONFIG_COMPAT
162 .compat_ioctl = compat_sock_ioctl,
163#endif
164 .uring_cmd = io_uring_cmd_sock,
165 .mmap = sock_mmap,
166 .release = sock_close,
167 .fasync = sock_fasync,
168 .splice_write = splice_to_socket,
169 .splice_read = sock_splice_read,
170 .splice_eof = sock_splice_eof,
171 .show_fdinfo = sock_show_fdinfo,
172};
173
174static const char * const pf_family_names[] = {
175 [PF_UNSPEC] = "PF_UNSPEC",
176 [PF_UNIX] = "PF_UNIX/PF_LOCAL",
177 [PF_INET] = "PF_INET",
178 [PF_AX25] = "PF_AX25",
179 [PF_IPX] = "PF_IPX",
180 [PF_APPLETALK] = "PF_APPLETALK",
181 [PF_NETROM] = "PF_NETROM",
182 [PF_BRIDGE] = "PF_BRIDGE",
183 [PF_ATMPVC] = "PF_ATMPVC",
184 [PF_X25] = "PF_X25",
185 [PF_INET6] = "PF_INET6",
186 [PF_ROSE] = "PF_ROSE",
187 [PF_DECnet] = "PF_DECnet",
188 [PF_NETBEUI] = "PF_NETBEUI",
189 [PF_SECURITY] = "PF_SECURITY",
190 [PF_KEY] = "PF_KEY",
191 [PF_NETLINK] = "PF_NETLINK/PF_ROUTE",
192 [PF_PACKET] = "PF_PACKET",
193 [PF_ASH] = "PF_ASH",
194 [PF_ECONET] = "PF_ECONET",
195 [PF_ATMSVC] = "PF_ATMSVC",
196 [PF_RDS] = "PF_RDS",
197 [PF_SNA] = "PF_SNA",
198 [PF_IRDA] = "PF_IRDA",
199 [PF_PPPOX] = "PF_PPPOX",
200 [PF_WANPIPE] = "PF_WANPIPE",
201 [PF_LLC] = "PF_LLC",
202 [PF_IB] = "PF_IB",
203 [PF_MPLS] = "PF_MPLS",
204 [PF_CAN] = "PF_CAN",
205 [PF_TIPC] = "PF_TIPC",
206 [PF_BLUETOOTH] = "PF_BLUETOOTH",
207 [PF_IUCV] = "PF_IUCV",
208 [PF_RXRPC] = "PF_RXRPC",
209 [PF_ISDN] = "PF_ISDN",
210 [PF_PHONET] = "PF_PHONET",
211 [PF_IEEE802154] = "PF_IEEE802154",
212 [PF_CAIF] = "PF_CAIF",
213 [PF_ALG] = "PF_ALG",
214 [PF_NFC] = "PF_NFC",
215 [PF_VSOCK] = "PF_VSOCK",
216 [PF_KCM] = "PF_KCM",
217 [PF_QIPCRTR] = "PF_QIPCRTR",
218 [PF_SMC] = "PF_SMC",
219 [PF_XDP] = "PF_XDP",
220 [PF_MCTP] = "PF_MCTP",
221};
222
223/*
224 * The protocol list. Each protocol is registered in here.
225 */
226
227static DEFINE_SPINLOCK(net_family_lock);
228static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
229
230/*
231 * Support routines.
232 * Move socket addresses back and forth across the kernel/user
233 * divide and look after the messy bits.
234 */
235
236/**
237 * move_addr_to_kernel - copy a socket address into kernel space
238 * @uaddr: Address in user space
239 * @kaddr: Address in kernel space
240 * @ulen: Length in user space
241 *
242 * The address is copied into kernel space. If the provided address is
243 * too long an error code of -EINVAL is returned. If the copy gives
244 * invalid addresses -EFAULT is returned. On a success 0 is returned.
245 */
246
247int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
248{
249 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
250 return -EINVAL;
251 if (ulen == 0)
252 return 0;
253 if (copy_from_user(to: kaddr, from: uaddr, n: ulen))
254 return -EFAULT;
255 return audit_sockaddr(len: ulen, addr: kaddr);
256}
257
258/**
259 * move_addr_to_user - copy an address to user space
260 * @kaddr: kernel space address
261 * @klen: length of address in kernel
262 * @uaddr: user space address
263 * @ulen: pointer to user length field
264 *
265 * The value pointed to by ulen on entry is the buffer length available.
266 * This is overwritten with the buffer space used. -EINVAL is returned
267 * if an overlong buffer is specified or a negative buffer size. -EFAULT
268 * is returned if either the buffer or the length field are not
269 * accessible.
270 * After copying the data up to the limit the user specifies, the true
271 * length of the data is written over the length limit the user
272 * specified. Zero is returned for a success.
273 */
274
275static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
276 void __user *uaddr, int __user *ulen)
277{
278 int err;
279 int len;
280
281 BUG_ON(klen > sizeof(struct sockaddr_storage));
282 err = get_user(len, ulen);
283 if (err)
284 return err;
285 if (len > klen)
286 len = klen;
287 if (len < 0)
288 return -EINVAL;
289 if (len) {
290 if (audit_sockaddr(len: klen, addr: kaddr))
291 return -ENOMEM;
292 if (copy_to_user(to: uaddr, from: kaddr, n: len))
293 return -EFAULT;
294 }
295 /*
296 * "fromlen shall refer to the value before truncation.."
297 * 1003.1g
298 */
299 return __put_user(klen, ulen);
300}
301
302static struct kmem_cache *sock_inode_cachep __ro_after_init;
303
304static struct inode *sock_alloc_inode(struct super_block *sb)
305{
306 struct socket_alloc *ei;
307
308 ei = alloc_inode_sb(sb, cache: sock_inode_cachep, GFP_KERNEL);
309 if (!ei)
310 return NULL;
311 init_waitqueue_head(&ei->socket.wq.wait);
312 ei->socket.wq.fasync_list = NULL;
313 ei->socket.wq.flags = 0;
314
315 ei->socket.state = SS_UNCONNECTED;
316 ei->socket.flags = 0;
317 ei->socket.ops = NULL;
318 ei->socket.sk = NULL;
319 ei->socket.file = NULL;
320
321 return &ei->vfs_inode;
322}
323
324static void sock_free_inode(struct inode *inode)
325{
326 struct socket_alloc *ei;
327
328 ei = container_of(inode, struct socket_alloc, vfs_inode);
329 kmem_cache_free(s: sock_inode_cachep, objp: ei);
330}
331
332static void init_once(void *foo)
333{
334 struct socket_alloc *ei = (struct socket_alloc *)foo;
335
336 inode_init_once(&ei->vfs_inode);
337}
338
339static void init_inodecache(void)
340{
341 sock_inode_cachep = kmem_cache_create(name: "sock_inode_cache",
342 size: sizeof(struct socket_alloc),
343 align: 0,
344 flags: (SLAB_HWCACHE_ALIGN |
345 SLAB_RECLAIM_ACCOUNT |
346 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
347 ctor: init_once);
348 BUG_ON(sock_inode_cachep == NULL);
349}
350
351static const struct super_operations sockfs_ops = {
352 .alloc_inode = sock_alloc_inode,
353 .free_inode = sock_free_inode,
354 .statfs = simple_statfs,
355};
356
357/*
358 * sockfs_dname() is called from d_path().
359 */
360static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
361{
362 return dynamic_dname(buffer, buflen, "socket:[%lu]",
363 d_inode(dentry)->i_ino);
364}
365
366static const struct dentry_operations sockfs_dentry_operations = {
367 .d_dname = sockfs_dname,
368};
369
370static int sockfs_xattr_get(const struct xattr_handler *handler,
371 struct dentry *dentry, struct inode *inode,
372 const char *suffix, void *value, size_t size)
373{
374 if (value) {
375 if (dentry->d_name.len + 1 > size)
376 return -ERANGE;
377 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
378 }
379 return dentry->d_name.len + 1;
380}
381
382#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
383#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
384#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
385
386static const struct xattr_handler sockfs_xattr_handler = {
387 .name = XATTR_NAME_SOCKPROTONAME,
388 .get = sockfs_xattr_get,
389};
390
391static int sockfs_security_xattr_set(const struct xattr_handler *handler,
392 struct mnt_idmap *idmap,
393 struct dentry *dentry, struct inode *inode,
394 const char *suffix, const void *value,
395 size_t size, int flags)
396{
397 /* Handled by LSM. */
398 return -EAGAIN;
399}
400
401static const struct xattr_handler sockfs_security_xattr_handler = {
402 .prefix = XATTR_SECURITY_PREFIX,
403 .set = sockfs_security_xattr_set,
404};
405
406static const struct xattr_handler * const sockfs_xattr_handlers[] = {
407 &sockfs_xattr_handler,
408 &sockfs_security_xattr_handler,
409 NULL
410};
411
412static int sockfs_init_fs_context(struct fs_context *fc)
413{
414 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
415 if (!ctx)
416 return -ENOMEM;
417 ctx->ops = &sockfs_ops;
418 ctx->dops = &sockfs_dentry_operations;
419 ctx->xattr = sockfs_xattr_handlers;
420 return 0;
421}
422
423static struct vfsmount *sock_mnt __read_mostly;
424
425static struct file_system_type sock_fs_type = {
426 .name = "sockfs",
427 .init_fs_context = sockfs_init_fs_context,
428 .kill_sb = kill_anon_super,
429};
430
431/*
432 * Obtains the first available file descriptor and sets it up for use.
433 *
434 * These functions create file structures and maps them to fd space
435 * of the current process. On success it returns file descriptor
436 * and file struct implicitly stored in sock->file.
437 * Note that another thread may close file descriptor before we return
438 * from this function. We use the fact that now we do not refer
439 * to socket after mapping. If one day we will need it, this
440 * function will increment ref. count on file by 1.
441 *
442 * In any case returned fd MAY BE not valid!
443 * This race condition is unavoidable
444 * with shared fd spaces, we cannot solve it inside kernel,
445 * but we take care of internal coherence yet.
446 */
447
448/**
449 * sock_alloc_file - Bind a &socket to a &file
450 * @sock: socket
451 * @flags: file status flags
452 * @dname: protocol name
453 *
454 * Returns the &file bound with @sock, implicitly storing it
455 * in sock->file. If dname is %NULL, sets to "".
456 *
457 * On failure @sock is released, and an ERR pointer is returned.
458 *
459 * This function uses GFP_KERNEL internally.
460 */
461
462struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
463{
464 struct file *file;
465
466 if (!dname)
467 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
468
469 file = alloc_file_pseudo(SOCK_INODE(socket: sock), sock_mnt, dname,
470 O_RDWR | (flags & O_NONBLOCK),
471 &socket_file_ops);
472 if (IS_ERR(ptr: file)) {
473 sock_release(sock);
474 return file;
475 }
476
477 file->f_mode |= FMODE_NOWAIT;
478 sock->file = file;
479 file->private_data = sock;
480 stream_open(inode: SOCK_INODE(socket: sock), filp: file);
481 return file;
482}
483EXPORT_SYMBOL(sock_alloc_file);
484
485static int sock_map_fd(struct socket *sock, int flags)
486{
487 struct file *newfile;
488 int fd = get_unused_fd_flags(flags);
489 if (unlikely(fd < 0)) {
490 sock_release(sock);
491 return fd;
492 }
493
494 newfile = sock_alloc_file(sock, flags, NULL);
495 if (!IS_ERR(ptr: newfile)) {
496 fd_install(fd, file: newfile);
497 return fd;
498 }
499
500 put_unused_fd(fd);
501 return PTR_ERR(ptr: newfile);
502}
503
504/**
505 * sock_from_file - Return the &socket bounded to @file.
506 * @file: file
507 *
508 * On failure returns %NULL.
509 */
510
511struct socket *sock_from_file(struct file *file)
512{
513 if (file->f_op == &socket_file_ops)
514 return file->private_data; /* set in sock_alloc_file */
515
516 return NULL;
517}
518EXPORT_SYMBOL(sock_from_file);
519
520/**
521 * sockfd_lookup - Go from a file number to its socket slot
522 * @fd: file handle
523 * @err: pointer to an error code return
524 *
525 * The file handle passed in is locked and the socket it is bound
526 * to is returned. If an error occurs the err pointer is overwritten
527 * with a negative errno code and NULL is returned. The function checks
528 * for both invalid handles and passing a handle which is not a socket.
529 *
530 * On a success the socket object pointer is returned.
531 */
532
533struct socket *sockfd_lookup(int fd, int *err)
534{
535 struct file *file;
536 struct socket *sock;
537
538 file = fget(fd);
539 if (!file) {
540 *err = -EBADF;
541 return NULL;
542 }
543
544 sock = sock_from_file(file);
545 if (!sock) {
546 *err = -ENOTSOCK;
547 fput(file);
548 }
549 return sock;
550}
551EXPORT_SYMBOL(sockfd_lookup);
552
553static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
554{
555 struct fd f = fdget(fd);
556 struct socket *sock;
557
558 *err = -EBADF;
559 if (f.file) {
560 sock = sock_from_file(f.file);
561 if (likely(sock)) {
562 *fput_needed = f.flags & FDPUT_FPUT;
563 return sock;
564 }
565 *err = -ENOTSOCK;
566 fdput(fd: f);
567 }
568 return NULL;
569}
570
571static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
572 size_t size)
573{
574 ssize_t len;
575 ssize_t used = 0;
576
577 len = security_inode_listsecurity(inode: d_inode(dentry), buffer, buffer_size: size);
578 if (len < 0)
579 return len;
580 used += len;
581 if (buffer) {
582 if (size < used)
583 return -ERANGE;
584 buffer += len;
585 }
586
587 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
588 used += len;
589 if (buffer) {
590 if (size < used)
591 return -ERANGE;
592 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
593 buffer += len;
594 }
595
596 return used;
597}
598
599static int sockfs_setattr(struct mnt_idmap *idmap,
600 struct dentry *dentry, struct iattr *iattr)
601{
602 int err = simple_setattr(&nop_mnt_idmap, dentry, iattr);
603
604 if (!err && (iattr->ia_valid & ATTR_UID)) {
605 struct socket *sock = SOCKET_I(inode: d_inode(dentry));
606
607 if (sock->sk)
608 sock->sk->sk_uid = iattr->ia_uid;
609 else
610 err = -ENOENT;
611 }
612
613 return err;
614}
615
616static const struct inode_operations sockfs_inode_ops = {
617 .listxattr = sockfs_listxattr,
618 .setattr = sockfs_setattr,
619};
620
621/**
622 * sock_alloc - allocate a socket
623 *
624 * Allocate a new inode and socket object. The two are bound together
625 * and initialised. The socket is then returned. If we are out of inodes
626 * NULL is returned. This functions uses GFP_KERNEL internally.
627 */
628
629struct socket *sock_alloc(void)
630{
631 struct inode *inode;
632 struct socket *sock;
633
634 inode = new_inode_pseudo(sb: sock_mnt->mnt_sb);
635 if (!inode)
636 return NULL;
637
638 sock = SOCKET_I(inode);
639
640 inode->i_ino = get_next_ino();
641 inode->i_mode = S_IFSOCK | S_IRWXUGO;
642 inode->i_uid = current_fsuid();
643 inode->i_gid = current_fsgid();
644 inode->i_op = &sockfs_inode_ops;
645
646 return sock;
647}
648EXPORT_SYMBOL(sock_alloc);
649
650static void __sock_release(struct socket *sock, struct inode *inode)
651{
652 const struct proto_ops *ops = READ_ONCE(sock->ops);
653
654 if (ops) {
655 struct module *owner = ops->owner;
656
657 if (inode)
658 inode_lock(inode);
659 ops->release(sock);
660 sock->sk = NULL;
661 if (inode)
662 inode_unlock(inode);
663 sock->ops = NULL;
664 module_put(module: owner);
665 }
666
667 if (sock->wq.fasync_list)
668 pr_err("%s: fasync list not empty!\n", __func__);
669
670 if (!sock->file) {
671 iput(SOCK_INODE(socket: sock));
672 return;
673 }
674 sock->file = NULL;
675}
676
677/**
678 * sock_release - close a socket
679 * @sock: socket to close
680 *
681 * The socket is released from the protocol stack if it has a release
682 * callback, and the inode is then released if the socket is bound to
683 * an inode not a file.
684 */
685void sock_release(struct socket *sock)
686{
687 __sock_release(sock, NULL);
688}
689EXPORT_SYMBOL(sock_release);
690
691void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
692{
693 u8 flags = *tx_flags;
694
695 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) {
696 flags |= SKBTX_HW_TSTAMP;
697
698 /* PTP hardware clocks can provide a free running cycle counter
699 * as a time base for virtual clocks. Tell driver to use the
700 * free running cycle counter for timestamp if socket is bound
701 * to virtual clock.
702 */
703 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
704 flags |= SKBTX_HW_TSTAMP_USE_CYCLES;
705 }
706
707 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
708 flags |= SKBTX_SW_TSTAMP;
709
710 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
711 flags |= SKBTX_SCHED_TSTAMP;
712
713 *tx_flags = flags;
714}
715EXPORT_SYMBOL(__sock_tx_timestamp);
716
717INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
718 size_t));
719INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
720 size_t));
721
722static noinline void call_trace_sock_send_length(struct sock *sk, int ret,
723 int flags)
724{
725 trace_sock_send_length(sk, ret, flags: 0);
726}
727
728static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
729{
730 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->sendmsg, inet6_sendmsg,
731 inet_sendmsg, sock, msg,
732 msg_data_left(msg));
733 BUG_ON(ret == -EIOCBQUEUED);
734
735 if (trace_sock_send_length_enabled())
736 call_trace_sock_send_length(sk: sock->sk, ret, flags: 0);
737 return ret;
738}
739
740static int __sock_sendmsg(struct socket *sock, struct msghdr *msg)
741{
742 int err = security_socket_sendmsg(sock, msg,
743 size: msg_data_left(msg));
744
745 return err ?: sock_sendmsg_nosec(sock, msg);
746}
747
748/**
749 * sock_sendmsg - send a message through @sock
750 * @sock: socket
751 * @msg: message to send
752 *
753 * Sends @msg through @sock, passing through LSM.
754 * Returns the number of bytes sent, or an error code.
755 */
756int sock_sendmsg(struct socket *sock, struct msghdr *msg)
757{
758 struct sockaddr_storage *save_addr = (struct sockaddr_storage *)msg->msg_name;
759 struct sockaddr_storage address;
760 int ret;
761
762 if (msg->msg_name) {
763 memcpy(&address, msg->msg_name, msg->msg_namelen);
764 msg->msg_name = &address;
765 }
766
767 ret = __sock_sendmsg(sock, msg);
768 msg->msg_name = save_addr;
769
770 return ret;
771}
772EXPORT_SYMBOL(sock_sendmsg);
773
774/**
775 * kernel_sendmsg - send a message through @sock (kernel-space)
776 * @sock: socket
777 * @msg: message header
778 * @vec: kernel vec
779 * @num: vec array length
780 * @size: total message data size
781 *
782 * Builds the message data with @vec and sends it through @sock.
783 * Returns the number of bytes sent, or an error code.
784 */
785
786int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
787 struct kvec *vec, size_t num, size_t size)
788{
789 iov_iter_kvec(i: &msg->msg_iter, ITER_SOURCE, kvec: vec, nr_segs: num, count: size);
790 return sock_sendmsg(sock, msg);
791}
792EXPORT_SYMBOL(kernel_sendmsg);
793
794/**
795 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
796 * @sk: sock
797 * @msg: message header
798 * @vec: output s/g array
799 * @num: output s/g array length
800 * @size: total message data size
801 *
802 * Builds the message data with @vec and sends it through @sock.
803 * Returns the number of bytes sent, or an error code.
804 * Caller must hold @sk.
805 */
806
807int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
808 struct kvec *vec, size_t num, size_t size)
809{
810 struct socket *sock = sk->sk_socket;
811 const struct proto_ops *ops = READ_ONCE(sock->ops);
812
813 if (!ops->sendmsg_locked)
814 return sock_no_sendmsg_locked(sk, msg, len: size);
815
816 iov_iter_kvec(i: &msg->msg_iter, ITER_SOURCE, kvec: vec, nr_segs: num, count: size);
817
818 return ops->sendmsg_locked(sk, msg, msg_data_left(msg));
819}
820EXPORT_SYMBOL(kernel_sendmsg_locked);
821
822static bool skb_is_err_queue(const struct sk_buff *skb)
823{
824 /* pkt_type of skbs enqueued on the error queue are set to
825 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
826 * in recvmsg, since skbs received on a local socket will never
827 * have a pkt_type of PACKET_OUTGOING.
828 */
829 return skb->pkt_type == PACKET_OUTGOING;
830}
831
832/* On transmit, software and hardware timestamps are returned independently.
833 * As the two skb clones share the hardware timestamp, which may be updated
834 * before the software timestamp is received, a hardware TX timestamp may be
835 * returned only if there is no software TX timestamp. Ignore false software
836 * timestamps, which may be made in the __sock_recv_timestamp() call when the
837 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
838 * hardware timestamp.
839 */
840static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
841{
842 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
843}
844
845static ktime_t get_timestamp(struct sock *sk, struct sk_buff *skb, int *if_index)
846{
847 bool cycles = READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_BIND_PHC;
848 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
849 struct net_device *orig_dev;
850 ktime_t hwtstamp;
851
852 rcu_read_lock();
853 orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb));
854 if (orig_dev) {
855 *if_index = orig_dev->ifindex;
856 hwtstamp = netdev_get_tstamp(dev: orig_dev, hwtstamps: shhwtstamps, cycles);
857 } else {
858 hwtstamp = shhwtstamps->hwtstamp;
859 }
860 rcu_read_unlock();
861
862 return hwtstamp;
863}
864
865static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb,
866 int if_index)
867{
868 struct scm_ts_pktinfo ts_pktinfo;
869 struct net_device *orig_dev;
870
871 if (!skb_mac_header_was_set(skb))
872 return;
873
874 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
875
876 if (!if_index) {
877 rcu_read_lock();
878 orig_dev = dev_get_by_napi_id(napi_id: skb_napi_id(skb));
879 if (orig_dev)
880 if_index = orig_dev->ifindex;
881 rcu_read_unlock();
882 }
883 ts_pktinfo.if_index = if_index;
884
885 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
886 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
887 len: sizeof(ts_pktinfo), data: &ts_pktinfo);
888}
889
890/*
891 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
892 */
893void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
894 struct sk_buff *skb)
895{
896 int need_software_tstamp = sock_flag(sk, flag: SOCK_RCVTSTAMP);
897 int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW);
898 struct scm_timestamping_internal tss;
899 int empty = 1, false_tstamp = 0;
900 struct skb_shared_hwtstamps *shhwtstamps =
901 skb_hwtstamps(skb);
902 int if_index;
903 ktime_t hwtstamp;
904 u32 tsflags;
905
906 /* Race occurred between timestamp enabling and packet
907 receiving. Fill in the current time for now. */
908 if (need_software_tstamp && skb->tstamp == 0) {
909 __net_timestamp(skb);
910 false_tstamp = 1;
911 }
912
913 if (need_software_tstamp) {
914 if (!sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) {
915 if (new_tstamp) {
916 struct __kernel_sock_timeval tv;
917
918 skb_get_new_timestamp(skb, stamp: &tv);
919 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
920 len: sizeof(tv), data: &tv);
921 } else {
922 struct __kernel_old_timeval tv;
923
924 skb_get_timestamp(skb, stamp: &tv);
925 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
926 len: sizeof(tv), data: &tv);
927 }
928 } else {
929 if (new_tstamp) {
930 struct __kernel_timespec ts;
931
932 skb_get_new_timestampns(skb, stamp: &ts);
933 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
934 len: sizeof(ts), data: &ts);
935 } else {
936 struct __kernel_old_timespec ts;
937
938 skb_get_timestampns(skb, stamp: &ts);
939 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
940 len: sizeof(ts), data: &ts);
941 }
942 }
943 }
944
945 memset(&tss, 0, sizeof(tss));
946 tsflags = READ_ONCE(sk->sk_tsflags);
947 if ((tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
948 ktime_to_timespec64_cond(kt: skb->tstamp, ts: tss.ts + 0))
949 empty = 0;
950 if (shhwtstamps &&
951 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
952 !skb_is_swtx_tstamp(skb, false_tstamp)) {
953 if_index = 0;
954 if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP_NETDEV)
955 hwtstamp = get_timestamp(sk, skb, if_index: &if_index);
956 else
957 hwtstamp = shhwtstamps->hwtstamp;
958
959 if (tsflags & SOF_TIMESTAMPING_BIND_PHC)
960 hwtstamp = ptp_convert_timestamp(hwtstamp: &hwtstamp,
961 READ_ONCE(sk->sk_bind_phc));
962
963 if (ktime_to_timespec64_cond(kt: hwtstamp, ts: tss.ts + 2)) {
964 empty = 0;
965
966 if ((tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
967 !skb_is_err_queue(skb))
968 put_ts_pktinfo(msg, skb, if_index);
969 }
970 }
971 if (!empty) {
972 if (sock_flag(sk, flag: SOCK_TSTAMP_NEW))
973 put_cmsg_scm_timestamping64(msg, tss: &tss);
974 else
975 put_cmsg_scm_timestamping(msg, tss: &tss);
976
977 if (skb_is_err_queue(skb) && skb->len &&
978 SKB_EXT_ERR(skb)->opt_stats)
979 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
980 len: skb->len, data: skb->data);
981 }
982}
983EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
984
985#ifdef CONFIG_WIRELESS
986void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
987 struct sk_buff *skb)
988{
989 int ack;
990
991 if (!sock_flag(sk, flag: SOCK_WIFI_STATUS))
992 return;
993 if (!skb->wifi_acked_valid)
994 return;
995
996 ack = skb->wifi_acked;
997
998 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, len: sizeof(ack), data: &ack);
999}
1000EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
1001#endif
1002
1003static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
1004 struct sk_buff *skb)
1005{
1006 if (sock_flag(sk, flag: SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
1007 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
1008 len: sizeof(__u32), data: &SOCK_SKB_CB(skb)->dropcount);
1009}
1010
1011static void sock_recv_mark(struct msghdr *msg, struct sock *sk,
1012 struct sk_buff *skb)
1013{
1014 if (sock_flag(sk, flag: SOCK_RCVMARK) && skb) {
1015 /* We must use a bounce buffer for CONFIG_HARDENED_USERCOPY=y */
1016 __u32 mark = skb->mark;
1017
1018 put_cmsg(msg, SOL_SOCKET, SO_MARK, len: sizeof(__u32), data: &mark);
1019 }
1020}
1021
1022void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
1023 struct sk_buff *skb)
1024{
1025 sock_recv_timestamp(msg, sk, skb);
1026 sock_recv_drops(msg, sk, skb);
1027 sock_recv_mark(msg, sk, skb);
1028}
1029EXPORT_SYMBOL_GPL(__sock_recv_cmsgs);
1030
1031INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
1032 size_t, int));
1033INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
1034 size_t, int));
1035
1036static noinline void call_trace_sock_recv_length(struct sock *sk, int ret, int flags)
1037{
1038 trace_sock_recv_length(sk, ret, flags);
1039}
1040
1041static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
1042 int flags)
1043{
1044 int ret = INDIRECT_CALL_INET(READ_ONCE(sock->ops)->recvmsg,
1045 inet6_recvmsg,
1046 inet_recvmsg, sock, msg,
1047 msg_data_left(msg), flags);
1048 if (trace_sock_recv_length_enabled())
1049 call_trace_sock_recv_length(sk: sock->sk, ret, flags);
1050 return ret;
1051}
1052
1053/**
1054 * sock_recvmsg - receive a message from @sock
1055 * @sock: socket
1056 * @msg: message to receive
1057 * @flags: message flags
1058 *
1059 * Receives @msg from @sock, passing through LSM. Returns the total number
1060 * of bytes received, or an error.
1061 */
1062int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
1063{
1064 int err = security_socket_recvmsg(sock, msg, size: msg_data_left(msg), flags);
1065
1066 return err ?: sock_recvmsg_nosec(sock, msg, flags);
1067}
1068EXPORT_SYMBOL(sock_recvmsg);
1069
1070/**
1071 * kernel_recvmsg - Receive a message from a socket (kernel space)
1072 * @sock: The socket to receive the message from
1073 * @msg: Received message
1074 * @vec: Input s/g array for message data
1075 * @num: Size of input s/g array
1076 * @size: Number of bytes to read
1077 * @flags: Message flags (MSG_DONTWAIT, etc...)
1078 *
1079 * On return the msg structure contains the scatter/gather array passed in the
1080 * vec argument. The array is modified so that it consists of the unfilled
1081 * portion of the original array.
1082 *
1083 * The returned value is the total number of bytes received, or an error.
1084 */
1085
1086int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
1087 struct kvec *vec, size_t num, size_t size, int flags)
1088{
1089 msg->msg_control_is_user = false;
1090 iov_iter_kvec(i: &msg->msg_iter, ITER_DEST, kvec: vec, nr_segs: num, count: size);
1091 return sock_recvmsg(sock, msg, flags);
1092}
1093EXPORT_SYMBOL(kernel_recvmsg);
1094
1095static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
1096 struct pipe_inode_info *pipe, size_t len,
1097 unsigned int flags)
1098{
1099 struct socket *sock = file->private_data;
1100 const struct proto_ops *ops;
1101
1102 ops = READ_ONCE(sock->ops);
1103 if (unlikely(!ops->splice_read))
1104 return copy_splice_read(in: file, ppos, pipe, len, flags);
1105
1106 return ops->splice_read(sock, ppos, pipe, len, flags);
1107}
1108
1109static void sock_splice_eof(struct file *file)
1110{
1111 struct socket *sock = file->private_data;
1112 const struct proto_ops *ops;
1113
1114 ops = READ_ONCE(sock->ops);
1115 if (ops->splice_eof)
1116 ops->splice_eof(sock);
1117}
1118
1119static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
1120{
1121 struct file *file = iocb->ki_filp;
1122 struct socket *sock = file->private_data;
1123 struct msghdr msg = {.msg_iter = *to,
1124 .msg_iocb = iocb};
1125 ssize_t res;
1126
1127 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1128 msg.msg_flags = MSG_DONTWAIT;
1129
1130 if (iocb->ki_pos != 0)
1131 return -ESPIPE;
1132
1133 if (!iov_iter_count(i: to)) /* Match SYS5 behaviour */
1134 return 0;
1135
1136 res = sock_recvmsg(sock, &msg, msg.msg_flags);
1137 *to = msg.msg_iter;
1138 return res;
1139}
1140
1141static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
1142{
1143 struct file *file = iocb->ki_filp;
1144 struct socket *sock = file->private_data;
1145 struct msghdr msg = {.msg_iter = *from,
1146 .msg_iocb = iocb};
1147 ssize_t res;
1148
1149 if (iocb->ki_pos != 0)
1150 return -ESPIPE;
1151
1152 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
1153 msg.msg_flags = MSG_DONTWAIT;
1154
1155 if (sock->type == SOCK_SEQPACKET)
1156 msg.msg_flags |= MSG_EOR;
1157
1158 res = __sock_sendmsg(sock, msg: &msg);
1159 *from = msg.msg_iter;
1160 return res;
1161}
1162
1163/*
1164 * Atomic setting of ioctl hooks to avoid race
1165 * with module unload.
1166 */
1167
1168static DEFINE_MUTEX(br_ioctl_mutex);
1169static int (*br_ioctl_hook)(struct net *net, struct net_bridge *br,
1170 unsigned int cmd, struct ifreq *ifr,
1171 void __user *uarg);
1172
1173void brioctl_set(int (*hook)(struct net *net, struct net_bridge *br,
1174 unsigned int cmd, struct ifreq *ifr,
1175 void __user *uarg))
1176{
1177 mutex_lock(&br_ioctl_mutex);
1178 br_ioctl_hook = hook;
1179 mutex_unlock(lock: &br_ioctl_mutex);
1180}
1181EXPORT_SYMBOL(brioctl_set);
1182
1183int br_ioctl_call(struct net *net, struct net_bridge *br, unsigned int cmd,
1184 struct ifreq *ifr, void __user *uarg)
1185{
1186 int err = -ENOPKG;
1187
1188 if (!br_ioctl_hook)
1189 request_module("bridge");
1190
1191 mutex_lock(&br_ioctl_mutex);
1192 if (br_ioctl_hook)
1193 err = br_ioctl_hook(net, br, cmd, ifr, uarg);
1194 mutex_unlock(lock: &br_ioctl_mutex);
1195
1196 return err;
1197}
1198
1199static DEFINE_MUTEX(vlan_ioctl_mutex);
1200static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1201
1202void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1203{
1204 mutex_lock(&vlan_ioctl_mutex);
1205 vlan_ioctl_hook = hook;
1206 mutex_unlock(lock: &vlan_ioctl_mutex);
1207}
1208EXPORT_SYMBOL(vlan_ioctl_set);
1209
1210static long sock_do_ioctl(struct net *net, struct socket *sock,
1211 unsigned int cmd, unsigned long arg)
1212{
1213 const struct proto_ops *ops = READ_ONCE(sock->ops);
1214 struct ifreq ifr;
1215 bool need_copyout;
1216 int err;
1217 void __user *argp = (void __user *)arg;
1218 void __user *data;
1219
1220 err = ops->ioctl(sock, cmd, arg);
1221
1222 /*
1223 * If this ioctl is unknown try to hand it down
1224 * to the NIC driver.
1225 */
1226 if (err != -ENOIOCTLCMD)
1227 return err;
1228
1229 if (!is_socket_ioctl_cmd(cmd))
1230 return -ENOTTY;
1231
1232 if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp))
1233 return -EFAULT;
1234 err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout);
1235 if (!err && need_copyout)
1236 if (put_user_ifreq(ifr: &ifr, arg: argp))
1237 return -EFAULT;
1238
1239 return err;
1240}
1241
1242/*
1243 * With an ioctl, arg may well be a user mode pointer, but we don't know
1244 * what to do with it - that's up to the protocol still.
1245 */
1246
1247static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1248{
1249 const struct proto_ops *ops;
1250 struct socket *sock;
1251 struct sock *sk;
1252 void __user *argp = (void __user *)arg;
1253 int pid, err;
1254 struct net *net;
1255
1256 sock = file->private_data;
1257 ops = READ_ONCE(sock->ops);
1258 sk = sock->sk;
1259 net = sock_net(sk);
1260 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1261 struct ifreq ifr;
1262 void __user *data;
1263 bool need_copyout;
1264 if (get_user_ifreq(ifr: &ifr, ifrdata: &data, arg: argp))
1265 return -EFAULT;
1266 err = dev_ioctl(net, cmd, ifr: &ifr, data, need_copyout: &need_copyout);
1267 if (!err && need_copyout)
1268 if (put_user_ifreq(ifr: &ifr, arg: argp))
1269 return -EFAULT;
1270 } else
1271#ifdef CONFIG_WEXT_CORE
1272 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1273 err = wext_handle_ioctl(net, cmd, arg: argp);
1274 } else
1275#endif
1276 switch (cmd) {
1277 case FIOSETOWN:
1278 case SIOCSPGRP:
1279 err = -EFAULT;
1280 if (get_user(pid, (int __user *)argp))
1281 break;
1282 err = f_setown(filp: sock->file, who: pid, force: 1);
1283 break;
1284 case FIOGETOWN:
1285 case SIOCGPGRP:
1286 err = put_user(f_getown(sock->file),
1287 (int __user *)argp);
1288 break;
1289 case SIOCGIFBR:
1290 case SIOCSIFBR:
1291 case SIOCBRADDBR:
1292 case SIOCBRDELBR:
1293 err = br_ioctl_call(net, NULL, cmd, NULL, uarg: argp);
1294 break;
1295 case SIOCGIFVLAN:
1296 case SIOCSIFVLAN:
1297 err = -ENOPKG;
1298 if (!vlan_ioctl_hook)
1299 request_module("8021q");
1300
1301 mutex_lock(&vlan_ioctl_mutex);
1302 if (vlan_ioctl_hook)
1303 err = vlan_ioctl_hook(net, argp);
1304 mutex_unlock(lock: &vlan_ioctl_mutex);
1305 break;
1306 case SIOCGSKNS:
1307 err = -EPERM;
1308 if (!ns_capable(ns: net->user_ns, CAP_NET_ADMIN))
1309 break;
1310
1311 err = open_related_ns(ns: &net->ns, get_ns: get_net_ns);
1312 break;
1313 case SIOCGSTAMP_OLD:
1314 case SIOCGSTAMPNS_OLD:
1315 if (!ops->gettstamp) {
1316 err = -ENOIOCTLCMD;
1317 break;
1318 }
1319 err = ops->gettstamp(sock, argp,
1320 cmd == SIOCGSTAMP_OLD,
1321 !IS_ENABLED(CONFIG_64BIT));
1322 break;
1323 case SIOCGSTAMP_NEW:
1324 case SIOCGSTAMPNS_NEW:
1325 if (!ops->gettstamp) {
1326 err = -ENOIOCTLCMD;
1327 break;
1328 }
1329 err = ops->gettstamp(sock, argp,
1330 cmd == SIOCGSTAMP_NEW,
1331 false);
1332 break;
1333
1334 case SIOCGIFCONF:
1335 err = dev_ifconf(net, ifc: argp);
1336 break;
1337
1338 default:
1339 err = sock_do_ioctl(net, sock, cmd, arg);
1340 break;
1341 }
1342 return err;
1343}
1344
1345/**
1346 * sock_create_lite - creates a socket
1347 * @family: protocol family (AF_INET, ...)
1348 * @type: communication type (SOCK_STREAM, ...)
1349 * @protocol: protocol (0, ...)
1350 * @res: new socket
1351 *
1352 * Creates a new socket and assigns it to @res, passing through LSM.
1353 * The new socket initialization is not complete, see kernel_accept().
1354 * Returns 0 or an error. On failure @res is set to %NULL.
1355 * This function internally uses GFP_KERNEL.
1356 */
1357
1358int sock_create_lite(int family, int type, int protocol, struct socket **res)
1359{
1360 int err;
1361 struct socket *sock = NULL;
1362
1363 err = security_socket_create(family, type, protocol, kern: 1);
1364 if (err)
1365 goto out;
1366
1367 sock = sock_alloc();
1368 if (!sock) {
1369 err = -ENOMEM;
1370 goto out;
1371 }
1372
1373 sock->type = type;
1374 err = security_socket_post_create(sock, family, type, protocol, kern: 1);
1375 if (err)
1376 goto out_release;
1377
1378out:
1379 *res = sock;
1380 return err;
1381out_release:
1382 sock_release(sock);
1383 sock = NULL;
1384 goto out;
1385}
1386EXPORT_SYMBOL(sock_create_lite);
1387
1388/* No kernel lock held - perfect */
1389static __poll_t sock_poll(struct file *file, poll_table *wait)
1390{
1391 struct socket *sock = file->private_data;
1392 const struct proto_ops *ops = READ_ONCE(sock->ops);
1393 __poll_t events = poll_requested_events(p: wait), flag = 0;
1394
1395 if (!ops->poll)
1396 return 0;
1397
1398 if (sk_can_busy_loop(sk: sock->sk)) {
1399 /* poll once if requested by the syscall */
1400 if (events & POLL_BUSY_LOOP)
1401 sk_busy_loop(sk: sock->sk, nonblock: 1);
1402
1403 /* if this socket can poll_ll, tell the system call */
1404 flag = POLL_BUSY_LOOP;
1405 }
1406
1407 return ops->poll(file, sock, wait) | flag;
1408}
1409
1410static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1411{
1412 struct socket *sock = file->private_data;
1413
1414 return READ_ONCE(sock->ops)->mmap(file, sock, vma);
1415}
1416
1417static int sock_close(struct inode *inode, struct file *filp)
1418{
1419 __sock_release(sock: SOCKET_I(inode), inode);
1420 return 0;
1421}
1422
1423/*
1424 * Update the socket async list
1425 *
1426 * Fasync_list locking strategy.
1427 *
1428 * 1. fasync_list is modified only under process context socket lock
1429 * i.e. under semaphore.
1430 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1431 * or under socket lock
1432 */
1433
1434static int sock_fasync(int fd, struct file *filp, int on)
1435{
1436 struct socket *sock = filp->private_data;
1437 struct sock *sk = sock->sk;
1438 struct socket_wq *wq = &sock->wq;
1439
1440 if (sk == NULL)
1441 return -EINVAL;
1442
1443 lock_sock(sk);
1444 fasync_helper(fd, filp, on, &wq->fasync_list);
1445
1446 if (!wq->fasync_list)
1447 sock_reset_flag(sk, flag: SOCK_FASYNC);
1448 else
1449 sock_set_flag(sk, flag: SOCK_FASYNC);
1450
1451 release_sock(sk);
1452 return 0;
1453}
1454
1455/* This function may be called only under rcu_lock */
1456
1457int sock_wake_async(struct socket_wq *wq, int how, int band)
1458{
1459 if (!wq || !wq->fasync_list)
1460 return -1;
1461
1462 switch (how) {
1463 case SOCK_WAKE_WAITD:
1464 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1465 break;
1466 goto call_kill;
1467 case SOCK_WAKE_SPACE:
1468 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, addr: &wq->flags))
1469 break;
1470 fallthrough;
1471 case SOCK_WAKE_IO:
1472call_kill:
1473 kill_fasync(&wq->fasync_list, SIGIO, band);
1474 break;
1475 case SOCK_WAKE_URG:
1476 kill_fasync(&wq->fasync_list, SIGURG, band);
1477 }
1478
1479 return 0;
1480}
1481EXPORT_SYMBOL(sock_wake_async);
1482
1483/**
1484 * __sock_create - creates a socket
1485 * @net: net namespace
1486 * @family: protocol family (AF_INET, ...)
1487 * @type: communication type (SOCK_STREAM, ...)
1488 * @protocol: protocol (0, ...)
1489 * @res: new socket
1490 * @kern: boolean for kernel space sockets
1491 *
1492 * Creates a new socket and assigns it to @res, passing through LSM.
1493 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1494 * be set to true if the socket resides in kernel space.
1495 * This function internally uses GFP_KERNEL.
1496 */
1497
1498int __sock_create(struct net *net, int family, int type, int protocol,
1499 struct socket **res, int kern)
1500{
1501 int err;
1502 struct socket *sock;
1503 const struct net_proto_family *pf;
1504
1505 /*
1506 * Check protocol is in range
1507 */
1508 if (family < 0 || family >= NPROTO)
1509 return -EAFNOSUPPORT;
1510 if (type < 0 || type >= SOCK_MAX)
1511 return -EINVAL;
1512
1513 /* Compatibility.
1514
1515 This uglymoron is moved from INET layer to here to avoid
1516 deadlock in module load.
1517 */
1518 if (family == PF_INET && type == SOCK_PACKET) {
1519 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1520 current->comm);
1521 family = PF_PACKET;
1522 }
1523
1524 err = security_socket_create(family, type, protocol, kern);
1525 if (err)
1526 return err;
1527
1528 /*
1529 * Allocate the socket and allow the family to set things up. if
1530 * the protocol is 0, the family is instructed to select an appropriate
1531 * default.
1532 */
1533 sock = sock_alloc();
1534 if (!sock) {
1535 net_warn_ratelimited("socket: no more sockets\n");
1536 return -ENFILE; /* Not exactly a match, but its the
1537 closest posix thing */
1538 }
1539
1540 sock->type = type;
1541
1542#ifdef CONFIG_MODULES
1543 /* Attempt to load a protocol module if the find failed.
1544 *
1545 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1546 * requested real, full-featured networking support upon configuration.
1547 * Otherwise module support will break!
1548 */
1549 if (rcu_access_pointer(net_families[family]) == NULL)
1550 request_module("net-pf-%d", family);
1551#endif
1552
1553 rcu_read_lock();
1554 pf = rcu_dereference(net_families[family]);
1555 err = -EAFNOSUPPORT;
1556 if (!pf)
1557 goto out_release;
1558
1559 /*
1560 * We will call the ->create function, that possibly is in a loadable
1561 * module, so we have to bump that loadable module refcnt first.
1562 */
1563 if (!try_module_get(module: pf->owner))
1564 goto out_release;
1565
1566 /* Now protected by module ref count */
1567 rcu_read_unlock();
1568
1569 err = pf->create(net, sock, protocol, kern);
1570 if (err < 0)
1571 goto out_module_put;
1572
1573 /*
1574 * Now to bump the refcnt of the [loadable] module that owns this
1575 * socket at sock_release time we decrement its refcnt.
1576 */
1577 if (!try_module_get(module: sock->ops->owner))
1578 goto out_module_busy;
1579
1580 /*
1581 * Now that we're done with the ->create function, the [loadable]
1582 * module can have its refcnt decremented
1583 */
1584 module_put(module: pf->owner);
1585 err = security_socket_post_create(sock, family, type, protocol, kern);
1586 if (err)
1587 goto out_sock_release;
1588 *res = sock;
1589
1590 return 0;
1591
1592out_module_busy:
1593 err = -EAFNOSUPPORT;
1594out_module_put:
1595 sock->ops = NULL;
1596 module_put(module: pf->owner);
1597out_sock_release:
1598 sock_release(sock);
1599 return err;
1600
1601out_release:
1602 rcu_read_unlock();
1603 goto out_sock_release;
1604}
1605EXPORT_SYMBOL(__sock_create);
1606
1607/**
1608 * sock_create - creates a socket
1609 * @family: protocol family (AF_INET, ...)
1610 * @type: communication type (SOCK_STREAM, ...)
1611 * @protocol: protocol (0, ...)
1612 * @res: new socket
1613 *
1614 * A wrapper around __sock_create().
1615 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1616 */
1617
1618int sock_create(int family, int type, int protocol, struct socket **res)
1619{
1620 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1621}
1622EXPORT_SYMBOL(sock_create);
1623
1624/**
1625 * sock_create_kern - creates a socket (kernel space)
1626 * @net: net namespace
1627 * @family: protocol family (AF_INET, ...)
1628 * @type: communication type (SOCK_STREAM, ...)
1629 * @protocol: protocol (0, ...)
1630 * @res: new socket
1631 *
1632 * A wrapper around __sock_create().
1633 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1634 */
1635
1636int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1637{
1638 return __sock_create(net, family, type, protocol, res, 1);
1639}
1640EXPORT_SYMBOL(sock_create_kern);
1641
1642static struct socket *__sys_socket_create(int family, int type, int protocol)
1643{
1644 struct socket *sock;
1645 int retval;
1646
1647 /* Check the SOCK_* constants for consistency. */
1648 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1649 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1650 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1651 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1652
1653 if ((type & ~SOCK_TYPE_MASK) & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1654 return ERR_PTR(error: -EINVAL);
1655 type &= SOCK_TYPE_MASK;
1656
1657 retval = sock_create(family, type, protocol, &sock);
1658 if (retval < 0)
1659 return ERR_PTR(error: retval);
1660
1661 return sock;
1662}
1663
1664struct file *__sys_socket_file(int family, int type, int protocol)
1665{
1666 struct socket *sock;
1667 int flags;
1668
1669 sock = __sys_socket_create(family, type, protocol);
1670 if (IS_ERR(ptr: sock))
1671 return ERR_CAST(ptr: sock);
1672
1673 flags = type & ~SOCK_TYPE_MASK;
1674 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1675 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1676
1677 return sock_alloc_file(sock, flags, NULL);
1678}
1679
1680/* A hook for bpf progs to attach to and update socket protocol.
1681 *
1682 * A static noinline declaration here could cause the compiler to
1683 * optimize away the function. A global noinline declaration will
1684 * keep the definition, but may optimize away the callsite.
1685 * Therefore, __weak is needed to ensure that the call is still
1686 * emitted, by telling the compiler that we don't know what the
1687 * function might eventually be.
1688 *
1689 * __diag_* below are needed to dismiss the missing prototype warning.
1690 */
1691
1692__diag_push();
1693__diag_ignore_all("-Wmissing-prototypes",
1694 "A fmod_ret entry point for BPF programs");
1695
1696__weak noinline int update_socket_protocol(int family, int type, int protocol)
1697{
1698 return protocol;
1699}
1700
1701__diag_pop();
1702
1703int __sys_socket(int family, int type, int protocol)
1704{
1705 struct socket *sock;
1706 int flags;
1707
1708 sock = __sys_socket_create(family, type,
1709 protocol: update_socket_protocol(family, type, protocol));
1710 if (IS_ERR(ptr: sock))
1711 return PTR_ERR(ptr: sock);
1712
1713 flags = type & ~SOCK_TYPE_MASK;
1714 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1715 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1716
1717 return sock_map_fd(sock, flags: flags & (O_CLOEXEC | O_NONBLOCK));
1718}
1719
1720SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1721{
1722 return __sys_socket(family, type, protocol);
1723}
1724
1725/*
1726 * Create a pair of connected sockets.
1727 */
1728
1729int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1730{
1731 struct socket *sock1, *sock2;
1732 int fd1, fd2, err;
1733 struct file *newfile1, *newfile2;
1734 int flags;
1735
1736 flags = type & ~SOCK_TYPE_MASK;
1737 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1738 return -EINVAL;
1739 type &= SOCK_TYPE_MASK;
1740
1741 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1742 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1743
1744 /*
1745 * reserve descriptors and make sure we won't fail
1746 * to return them to userland.
1747 */
1748 fd1 = get_unused_fd_flags(flags);
1749 if (unlikely(fd1 < 0))
1750 return fd1;
1751
1752 fd2 = get_unused_fd_flags(flags);
1753 if (unlikely(fd2 < 0)) {
1754 put_unused_fd(fd: fd1);
1755 return fd2;
1756 }
1757
1758 err = put_user(fd1, &usockvec[0]);
1759 if (err)
1760 goto out;
1761
1762 err = put_user(fd2, &usockvec[1]);
1763 if (err)
1764 goto out;
1765
1766 /*
1767 * Obtain the first socket and check if the underlying protocol
1768 * supports the socketpair call.
1769 */
1770
1771 err = sock_create(family, type, protocol, &sock1);
1772 if (unlikely(err < 0))
1773 goto out;
1774
1775 err = sock_create(family, type, protocol, &sock2);
1776 if (unlikely(err < 0)) {
1777 sock_release(sock1);
1778 goto out;
1779 }
1780
1781 err = security_socket_socketpair(socka: sock1, sockb: sock2);
1782 if (unlikely(err)) {
1783 sock_release(sock2);
1784 sock_release(sock1);
1785 goto out;
1786 }
1787
1788 err = READ_ONCE(sock1->ops)->socketpair(sock1, sock2);
1789 if (unlikely(err < 0)) {
1790 sock_release(sock2);
1791 sock_release(sock1);
1792 goto out;
1793 }
1794
1795 newfile1 = sock_alloc_file(sock1, flags, NULL);
1796 if (IS_ERR(ptr: newfile1)) {
1797 err = PTR_ERR(ptr: newfile1);
1798 sock_release(sock2);
1799 goto out;
1800 }
1801
1802 newfile2 = sock_alloc_file(sock2, flags, NULL);
1803 if (IS_ERR(ptr: newfile2)) {
1804 err = PTR_ERR(ptr: newfile2);
1805 fput(newfile1);
1806 goto out;
1807 }
1808
1809 audit_fd_pair(fd1, fd2);
1810
1811 fd_install(fd: fd1, file: newfile1);
1812 fd_install(fd: fd2, file: newfile2);
1813 return 0;
1814
1815out:
1816 put_unused_fd(fd: fd2);
1817 put_unused_fd(fd: fd1);
1818 return err;
1819}
1820
1821SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1822 int __user *, usockvec)
1823{
1824 return __sys_socketpair(family, type, protocol, usockvec);
1825}
1826
1827/*
1828 * Bind a name to a socket. Nothing much to do here since it's
1829 * the protocol's responsibility to handle the local address.
1830 *
1831 * We move the socket address to kernel space before we call
1832 * the protocol layer (having also checked the address is ok).
1833 */
1834
1835int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1836{
1837 struct socket *sock;
1838 struct sockaddr_storage address;
1839 int err, fput_needed;
1840
1841 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
1842 if (sock) {
1843 err = move_addr_to_kernel(uaddr: umyaddr, ulen: addrlen, kaddr: &address);
1844 if (!err) {
1845 err = security_socket_bind(sock,
1846 address: (struct sockaddr *)&address,
1847 addrlen);
1848 if (!err)
1849 err = READ_ONCE(sock->ops)->bind(sock,
1850 (struct sockaddr *)
1851 &address, addrlen);
1852 }
1853 fput_light(file: sock->file, fput_needed);
1854 }
1855 return err;
1856}
1857
1858SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1859{
1860 return __sys_bind(fd, umyaddr, addrlen);
1861}
1862
1863/*
1864 * Perform a listen. Basically, we allow the protocol to do anything
1865 * necessary for a listen, and if that works, we mark the socket as
1866 * ready for listening.
1867 */
1868
1869int __sys_listen(int fd, int backlog)
1870{
1871 struct socket *sock;
1872 int err, fput_needed;
1873 int somaxconn;
1874
1875 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
1876 if (sock) {
1877 somaxconn = READ_ONCE(sock_net(sock->sk)->core.sysctl_somaxconn);
1878 if ((unsigned int)backlog > somaxconn)
1879 backlog = somaxconn;
1880
1881 err = security_socket_listen(sock, backlog);
1882 if (!err)
1883 err = READ_ONCE(sock->ops)->listen(sock, backlog);
1884
1885 fput_light(file: sock->file, fput_needed);
1886 }
1887 return err;
1888}
1889
1890SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1891{
1892 return __sys_listen(fd, backlog);
1893}
1894
1895struct file *do_accept(struct file *file, unsigned file_flags,
1896 struct sockaddr __user *upeer_sockaddr,
1897 int __user *upeer_addrlen, int flags)
1898{
1899 struct socket *sock, *newsock;
1900 struct file *newfile;
1901 int err, len;
1902 struct sockaddr_storage address;
1903 const struct proto_ops *ops;
1904
1905 sock = sock_from_file(file);
1906 if (!sock)
1907 return ERR_PTR(error: -ENOTSOCK);
1908
1909 newsock = sock_alloc();
1910 if (!newsock)
1911 return ERR_PTR(error: -ENFILE);
1912 ops = READ_ONCE(sock->ops);
1913
1914 newsock->type = sock->type;
1915 newsock->ops = ops;
1916
1917 /*
1918 * We don't need try_module_get here, as the listening socket (sock)
1919 * has the protocol module (sock->ops->owner) held.
1920 */
1921 __module_get(module: ops->owner);
1922
1923 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1924 if (IS_ERR(ptr: newfile))
1925 return newfile;
1926
1927 err = security_socket_accept(sock, newsock);
1928 if (err)
1929 goto out_fd;
1930
1931 err = ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1932 false);
1933 if (err < 0)
1934 goto out_fd;
1935
1936 if (upeer_sockaddr) {
1937 len = ops->getname(newsock, (struct sockaddr *)&address, 2);
1938 if (len < 0) {
1939 err = -ECONNABORTED;
1940 goto out_fd;
1941 }
1942 err = move_addr_to_user(kaddr: &address,
1943 klen: len, uaddr: upeer_sockaddr, ulen: upeer_addrlen);
1944 if (err < 0)
1945 goto out_fd;
1946 }
1947
1948 /* File flags are not inherited via accept() unlike another OSes. */
1949 return newfile;
1950out_fd:
1951 fput(newfile);
1952 return ERR_PTR(error: err);
1953}
1954
1955static int __sys_accept4_file(struct file *file, struct sockaddr __user *upeer_sockaddr,
1956 int __user *upeer_addrlen, int flags)
1957{
1958 struct file *newfile;
1959 int newfd;
1960
1961 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1962 return -EINVAL;
1963
1964 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1965 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1966
1967 newfd = get_unused_fd_flags(flags);
1968 if (unlikely(newfd < 0))
1969 return newfd;
1970
1971 newfile = do_accept(file, file_flags: 0, upeer_sockaddr, upeer_addrlen,
1972 flags);
1973 if (IS_ERR(ptr: newfile)) {
1974 put_unused_fd(fd: newfd);
1975 return PTR_ERR(ptr: newfile);
1976 }
1977 fd_install(fd: newfd, file: newfile);
1978 return newfd;
1979}
1980
1981/*
1982 * For accept, we attempt to create a new socket, set up the link
1983 * with the client, wake up the client, then return the new
1984 * connected fd. We collect the address of the connector in kernel
1985 * space and move it to user at the very end. This is unclean because
1986 * we open the socket then return an error.
1987 *
1988 * 1003.1g adds the ability to recvmsg() to query connection pending
1989 * status to recvmsg. We need to add that support in a way thats
1990 * clean when we restructure accept also.
1991 */
1992
1993int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1994 int __user *upeer_addrlen, int flags)
1995{
1996 int ret = -EBADF;
1997 struct fd f;
1998
1999 f = fdget(fd);
2000 if (f.file) {
2001 ret = __sys_accept4_file(file: f.file, upeer_sockaddr,
2002 upeer_addrlen, flags);
2003 fdput(fd: f);
2004 }
2005
2006 return ret;
2007}
2008
2009SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
2010 int __user *, upeer_addrlen, int, flags)
2011{
2012 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
2013}
2014
2015SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
2016 int __user *, upeer_addrlen)
2017{
2018 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags: 0);
2019}
2020
2021/*
2022 * Attempt to connect to a socket with the server address. The address
2023 * is in user space so we verify it is OK and move it to kernel space.
2024 *
2025 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
2026 * break bindings
2027 *
2028 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
2029 * other SEQPACKET protocols that take time to connect() as it doesn't
2030 * include the -EINPROGRESS status for such sockets.
2031 */
2032
2033int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
2034 int addrlen, int file_flags)
2035{
2036 struct socket *sock;
2037 int err;
2038
2039 sock = sock_from_file(file);
2040 if (!sock) {
2041 err = -ENOTSOCK;
2042 goto out;
2043 }
2044
2045 err =
2046 security_socket_connect(sock, address: (struct sockaddr *)address, addrlen);
2047 if (err)
2048 goto out;
2049
2050 err = READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)address,
2051 addrlen, sock->file->f_flags | file_flags);
2052out:
2053 return err;
2054}
2055
2056int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
2057{
2058 int ret = -EBADF;
2059 struct fd f;
2060
2061 f = fdget(fd);
2062 if (f.file) {
2063 struct sockaddr_storage address;
2064
2065 ret = move_addr_to_kernel(uaddr: uservaddr, ulen: addrlen, kaddr: &address);
2066 if (!ret)
2067 ret = __sys_connect_file(file: f.file, address: &address, addrlen, file_flags: 0);
2068 fdput(fd: f);
2069 }
2070
2071 return ret;
2072}
2073
2074SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
2075 int, addrlen)
2076{
2077 return __sys_connect(fd, uservaddr, addrlen);
2078}
2079
2080/*
2081 * Get the local address ('name') of a socket object. Move the obtained
2082 * name to user space.
2083 */
2084
2085int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
2086 int __user *usockaddr_len)
2087{
2088 struct socket *sock;
2089 struct sockaddr_storage address;
2090 int err, fput_needed;
2091
2092 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2093 if (!sock)
2094 goto out;
2095
2096 err = security_socket_getsockname(sock);
2097 if (err)
2098 goto out_put;
2099
2100 err = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 0);
2101 if (err < 0)
2102 goto out_put;
2103 /* "err" is actually length in this case */
2104 err = move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr, ulen: usockaddr_len);
2105
2106out_put:
2107 fput_light(file: sock->file, fput_needed);
2108out:
2109 return err;
2110}
2111
2112SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
2113 int __user *, usockaddr_len)
2114{
2115 return __sys_getsockname(fd, usockaddr, usockaddr_len);
2116}
2117
2118/*
2119 * Get the remote address ('name') of a socket object. Move the obtained
2120 * name to user space.
2121 */
2122
2123int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
2124 int __user *usockaddr_len)
2125{
2126 struct socket *sock;
2127 struct sockaddr_storage address;
2128 int err, fput_needed;
2129
2130 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2131 if (sock != NULL) {
2132 const struct proto_ops *ops = READ_ONCE(sock->ops);
2133
2134 err = security_socket_getpeername(sock);
2135 if (err) {
2136 fput_light(file: sock->file, fput_needed);
2137 return err;
2138 }
2139
2140 err = ops->getname(sock, (struct sockaddr *)&address, 1);
2141 if (err >= 0)
2142 /* "err" is actually length in this case */
2143 err = move_addr_to_user(kaddr: &address, klen: err, uaddr: usockaddr,
2144 ulen: usockaddr_len);
2145 fput_light(file: sock->file, fput_needed);
2146 }
2147 return err;
2148}
2149
2150SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
2151 int __user *, usockaddr_len)
2152{
2153 return __sys_getpeername(fd, usockaddr, usockaddr_len);
2154}
2155
2156/*
2157 * Send a datagram to a given address. We move the address into kernel
2158 * space and check the user space data area is readable before invoking
2159 * the protocol.
2160 */
2161int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
2162 struct sockaddr __user *addr, int addr_len)
2163{
2164 struct socket *sock;
2165 struct sockaddr_storage address;
2166 int err;
2167 struct msghdr msg;
2168 struct iovec iov;
2169 int fput_needed;
2170
2171 err = import_single_range(ITER_SOURCE, buf: buff, len, iov: &iov, i: &msg.msg_iter);
2172 if (unlikely(err))
2173 return err;
2174 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2175 if (!sock)
2176 goto out;
2177
2178 msg.msg_name = NULL;
2179 msg.msg_control = NULL;
2180 msg.msg_controllen = 0;
2181 msg.msg_namelen = 0;
2182 msg.msg_ubuf = NULL;
2183 if (addr) {
2184 err = move_addr_to_kernel(uaddr: addr, ulen: addr_len, kaddr: &address);
2185 if (err < 0)
2186 goto out_put;
2187 msg.msg_name = (struct sockaddr *)&address;
2188 msg.msg_namelen = addr_len;
2189 }
2190 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2191 if (sock->file->f_flags & O_NONBLOCK)
2192 flags |= MSG_DONTWAIT;
2193 msg.msg_flags = flags;
2194 err = __sock_sendmsg(sock, msg: &msg);
2195
2196out_put:
2197 fput_light(file: sock->file, fput_needed);
2198out:
2199 return err;
2200}
2201
2202SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
2203 unsigned int, flags, struct sockaddr __user *, addr,
2204 int, addr_len)
2205{
2206 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
2207}
2208
2209/*
2210 * Send a datagram down a socket.
2211 */
2212
2213SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
2214 unsigned int, flags)
2215{
2216 return __sys_sendto(fd, buff, len, flags, NULL, addr_len: 0);
2217}
2218
2219/*
2220 * Receive a frame from the socket and optionally record the address of the
2221 * sender. We verify the buffers are writable and if needed move the
2222 * sender address from kernel to user space.
2223 */
2224int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
2225 struct sockaddr __user *addr, int __user *addr_len)
2226{
2227 struct sockaddr_storage address;
2228 struct msghdr msg = {
2229 /* Save some cycles and don't copy the address if not needed */
2230 .msg_name = addr ? (struct sockaddr *)&address : NULL,
2231 };
2232 struct socket *sock;
2233 struct iovec iov;
2234 int err, err2;
2235 int fput_needed;
2236
2237 err = import_single_range(ITER_DEST, buf: ubuf, len: size, iov: &iov, i: &msg.msg_iter);
2238 if (unlikely(err))
2239 return err;
2240 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2241 if (!sock)
2242 goto out;
2243
2244 if (sock->file->f_flags & O_NONBLOCK)
2245 flags |= MSG_DONTWAIT;
2246 err = sock_recvmsg(sock, &msg, flags);
2247
2248 if (err >= 0 && addr != NULL) {
2249 err2 = move_addr_to_user(kaddr: &address,
2250 klen: msg.msg_namelen, uaddr: addr, ulen: addr_len);
2251 if (err2 < 0)
2252 err = err2;
2253 }
2254
2255 fput_light(file: sock->file, fput_needed);
2256out:
2257 return err;
2258}
2259
2260SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2261 unsigned int, flags, struct sockaddr __user *, addr,
2262 int __user *, addr_len)
2263{
2264 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2265}
2266
2267/*
2268 * Receive a datagram from a socket.
2269 */
2270
2271SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2272 unsigned int, flags)
2273{
2274 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2275}
2276
2277static bool sock_use_custom_sol_socket(const struct socket *sock)
2278{
2279 return test_bit(SOCK_CUSTOM_SOCKOPT, &sock->flags);
2280}
2281
2282int do_sock_setsockopt(struct socket *sock, bool compat, int level,
2283 int optname, sockptr_t optval, int optlen)
2284{
2285 const struct proto_ops *ops;
2286 char *kernel_optval = NULL;
2287 int err;
2288
2289 if (optlen < 0)
2290 return -EINVAL;
2291
2292 err = security_socket_setsockopt(sock, level, optname);
2293 if (err)
2294 goto out_put;
2295
2296 if (!compat)
2297 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2298 optval, &optlen,
2299 &kernel_optval);
2300 if (err < 0)
2301 goto out_put;
2302 if (err > 0) {
2303 err = 0;
2304 goto out_put;
2305 }
2306
2307 if (kernel_optval)
2308 optval = KERNEL_SOCKPTR(p: kernel_optval);
2309 ops = READ_ONCE(sock->ops);
2310 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2311 err = sock_setsockopt(sock, level, op: optname, optval, optlen);
2312 else if (unlikely(!ops->setsockopt))
2313 err = -EOPNOTSUPP;
2314 else
2315 err = ops->setsockopt(sock, level, optname, optval,
2316 optlen);
2317 kfree(objp: kernel_optval);
2318out_put:
2319 return err;
2320}
2321EXPORT_SYMBOL(do_sock_setsockopt);
2322
2323/* Set a socket option. Because we don't know the option lengths we have
2324 * to pass the user mode parameter for the protocols to sort out.
2325 */
2326int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2327 int optlen)
2328{
2329 sockptr_t optval = USER_SOCKPTR(p: user_optval);
2330 bool compat = in_compat_syscall();
2331 int err, fput_needed;
2332 struct socket *sock;
2333
2334 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2335 if (!sock)
2336 return err;
2337
2338 err = do_sock_setsockopt(sock, compat, level, optname, optval, optlen);
2339
2340 fput_light(file: sock->file, fput_needed);
2341 return err;
2342}
2343
2344SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2345 char __user *, optval, int, optlen)
2346{
2347 return __sys_setsockopt(fd, level, optname, user_optval: optval, optlen);
2348}
2349
2350INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2351 int optname));
2352
2353int do_sock_getsockopt(struct socket *sock, bool compat, int level,
2354 int optname, sockptr_t optval, sockptr_t optlen)
2355{
2356 int max_optlen __maybe_unused;
2357 const struct proto_ops *ops;
2358 int err;
2359
2360 err = security_socket_getsockopt(sock, level, optname);
2361 if (err)
2362 return err;
2363
2364 if (!compat)
2365 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2366
2367 ops = READ_ONCE(sock->ops);
2368 if (level == SOL_SOCKET) {
2369 err = sk_getsockopt(sk: sock->sk, level, optname, optval, optlen);
2370 } else if (unlikely(!ops->getsockopt)) {
2371 err = -EOPNOTSUPP;
2372 } else {
2373 if (WARN_ONCE(optval.is_kernel || optlen.is_kernel,
2374 "Invalid argument type"))
2375 return -EOPNOTSUPP;
2376
2377 err = ops->getsockopt(sock, level, optname, optval.user,
2378 optlen.user);
2379 }
2380
2381 if (!compat)
2382 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2383 optval, optlen, max_optlen,
2384 err);
2385
2386 return err;
2387}
2388EXPORT_SYMBOL(do_sock_getsockopt);
2389
2390/*
2391 * Get a socket option. Because we don't know the option lengths we have
2392 * to pass a user mode parameter for the protocols to sort out.
2393 */
2394int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2395 int __user *optlen)
2396{
2397 int err, fput_needed;
2398 struct socket *sock;
2399 bool compat;
2400
2401 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2402 if (!sock)
2403 return err;
2404
2405 compat = in_compat_syscall();
2406 err = do_sock_getsockopt(sock, compat, level, optname,
2407 USER_SOCKPTR(p: optval), USER_SOCKPTR(p: optlen));
2408
2409 fput_light(file: sock->file, fput_needed);
2410 return err;
2411}
2412
2413SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2414 char __user *, optval, int __user *, optlen)
2415{
2416 return __sys_getsockopt(fd, level, optname, optval, optlen);
2417}
2418
2419/*
2420 * Shutdown a socket.
2421 */
2422
2423int __sys_shutdown_sock(struct socket *sock, int how)
2424{
2425 int err;
2426
2427 err = security_socket_shutdown(sock, how);
2428 if (!err)
2429 err = READ_ONCE(sock->ops)->shutdown(sock, how);
2430
2431 return err;
2432}
2433
2434int __sys_shutdown(int fd, int how)
2435{
2436 int err, fput_needed;
2437 struct socket *sock;
2438
2439 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2440 if (sock != NULL) {
2441 err = __sys_shutdown_sock(sock, how);
2442 fput_light(file: sock->file, fput_needed);
2443 }
2444 return err;
2445}
2446
2447SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2448{
2449 return __sys_shutdown(fd, how);
2450}
2451
2452/* A couple of helpful macros for getting the address of the 32/64 bit
2453 * fields which are the same type (int / unsigned) on our platforms.
2454 */
2455#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2456#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2457#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2458
2459struct used_address {
2460 struct sockaddr_storage name;
2461 unsigned int name_len;
2462};
2463
2464int __copy_msghdr(struct msghdr *kmsg,
2465 struct user_msghdr *msg,
2466 struct sockaddr __user **save_addr)
2467{
2468 ssize_t err;
2469
2470 kmsg->msg_control_is_user = true;
2471 kmsg->msg_get_inq = 0;
2472 kmsg->msg_control_user = msg->msg_control;
2473 kmsg->msg_controllen = msg->msg_controllen;
2474 kmsg->msg_flags = msg->msg_flags;
2475
2476 kmsg->msg_namelen = msg->msg_namelen;
2477 if (!msg->msg_name)
2478 kmsg->msg_namelen = 0;
2479
2480 if (kmsg->msg_namelen < 0)
2481 return -EINVAL;
2482
2483 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2484 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2485
2486 if (save_addr)
2487 *save_addr = msg->msg_name;
2488
2489 if (msg->msg_name && kmsg->msg_namelen) {
2490 if (!save_addr) {
2491 err = move_addr_to_kernel(uaddr: msg->msg_name,
2492 ulen: kmsg->msg_namelen,
2493 kaddr: kmsg->msg_name);
2494 if (err < 0)
2495 return err;
2496 }
2497 } else {
2498 kmsg->msg_name = NULL;
2499 kmsg->msg_namelen = 0;
2500 }
2501
2502 if (msg->msg_iovlen > UIO_MAXIOV)
2503 return -EMSGSIZE;
2504
2505 kmsg->msg_iocb = NULL;
2506 kmsg->msg_ubuf = NULL;
2507 return 0;
2508}
2509
2510static int copy_msghdr_from_user(struct msghdr *kmsg,
2511 struct user_msghdr __user *umsg,
2512 struct sockaddr __user **save_addr,
2513 struct iovec **iov)
2514{
2515 struct user_msghdr msg;
2516 ssize_t err;
2517
2518 if (copy_from_user(to: &msg, from: umsg, n: sizeof(*umsg)))
2519 return -EFAULT;
2520
2521 err = __copy_msghdr(kmsg, msg: &msg, save_addr);
2522 if (err)
2523 return err;
2524
2525 err = import_iovec(type: save_addr ? ITER_DEST : ITER_SOURCE,
2526 uvec: msg.msg_iov, nr_segs: msg.msg_iovlen,
2527 UIO_FASTIOV, iovp: iov, i: &kmsg->msg_iter);
2528 return err < 0 ? err : 0;
2529}
2530
2531static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2532 unsigned int flags, struct used_address *used_address,
2533 unsigned int allowed_msghdr_flags)
2534{
2535 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2536 __aligned(sizeof(__kernel_size_t));
2537 /* 20 is size of ipv6_pktinfo */
2538 unsigned char *ctl_buf = ctl;
2539 int ctl_len;
2540 ssize_t err;
2541
2542 err = -ENOBUFS;
2543
2544 if (msg_sys->msg_controllen > INT_MAX)
2545 goto out;
2546 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2547 ctl_len = msg_sys->msg_controllen;
2548 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2549 err =
2550 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2551 sizeof(ctl));
2552 if (err)
2553 goto out;
2554 ctl_buf = msg_sys->msg_control;
2555 ctl_len = msg_sys->msg_controllen;
2556 } else if (ctl_len) {
2557 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2558 CMSG_ALIGN(sizeof(struct cmsghdr)));
2559 if (ctl_len > sizeof(ctl)) {
2560 ctl_buf = sock_kmalloc(sk: sock->sk, size: ctl_len, GFP_KERNEL);
2561 if (ctl_buf == NULL)
2562 goto out;
2563 }
2564 err = -EFAULT;
2565 if (copy_from_user(to: ctl_buf, from: msg_sys->msg_control_user, n: ctl_len))
2566 goto out_freectl;
2567 msg_sys->msg_control = ctl_buf;
2568 msg_sys->msg_control_is_user = false;
2569 }
2570 flags &= ~MSG_INTERNAL_SENDMSG_FLAGS;
2571 msg_sys->msg_flags = flags;
2572
2573 if (sock->file->f_flags & O_NONBLOCK)
2574 msg_sys->msg_flags |= MSG_DONTWAIT;
2575 /*
2576 * If this is sendmmsg() and current destination address is same as
2577 * previously succeeded address, omit asking LSM's decision.
2578 * used_address->name_len is initialized to UINT_MAX so that the first
2579 * destination address never matches.
2580 */
2581 if (used_address && msg_sys->msg_name &&
2582 used_address->name_len == msg_sys->msg_namelen &&
2583 !memcmp(p: &used_address->name, q: msg_sys->msg_name,
2584 size: used_address->name_len)) {
2585 err = sock_sendmsg_nosec(sock, msg: msg_sys);
2586 goto out_freectl;
2587 }
2588 err = __sock_sendmsg(sock, msg: msg_sys);
2589 /*
2590 * If this is sendmmsg() and sending to current destination address was
2591 * successful, remember it.
2592 */
2593 if (used_address && err >= 0) {
2594 used_address->name_len = msg_sys->msg_namelen;
2595 if (msg_sys->msg_name)
2596 memcpy(&used_address->name, msg_sys->msg_name,
2597 used_address->name_len);
2598 }
2599
2600out_freectl:
2601 if (ctl_buf != ctl)
2602 sock_kfree_s(sk: sock->sk, mem: ctl_buf, size: ctl_len);
2603out:
2604 return err;
2605}
2606
2607int sendmsg_copy_msghdr(struct msghdr *msg,
2608 struct user_msghdr __user *umsg, unsigned flags,
2609 struct iovec **iov)
2610{
2611 int err;
2612
2613 if (flags & MSG_CMSG_COMPAT) {
2614 struct compat_msghdr __user *msg_compat;
2615
2616 msg_compat = (struct compat_msghdr __user *) umsg;
2617 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2618 } else {
2619 err = copy_msghdr_from_user(kmsg: msg, umsg, NULL, iov);
2620 }
2621 if (err < 0)
2622 return err;
2623
2624 return 0;
2625}
2626
2627static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2628 struct msghdr *msg_sys, unsigned int flags,
2629 struct used_address *used_address,
2630 unsigned int allowed_msghdr_flags)
2631{
2632 struct sockaddr_storage address;
2633 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2634 ssize_t err;
2635
2636 msg_sys->msg_name = &address;
2637
2638 err = sendmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, iov: &iov);
2639 if (err < 0)
2640 return err;
2641
2642 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2643 allowed_msghdr_flags);
2644 kfree(objp: iov);
2645 return err;
2646}
2647
2648/*
2649 * BSD sendmsg interface
2650 */
2651long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2652 unsigned int flags)
2653{
2654 return ____sys_sendmsg(sock, msg_sys: msg, flags, NULL, allowed_msghdr_flags: 0);
2655}
2656
2657long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2658 bool forbid_cmsg_compat)
2659{
2660 int fput_needed, err;
2661 struct msghdr msg_sys;
2662 struct socket *sock;
2663
2664 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2665 return -EINVAL;
2666
2667 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2668 if (!sock)
2669 goto out;
2670
2671 err = ___sys_sendmsg(sock, msg, msg_sys: &msg_sys, flags, NULL, allowed_msghdr_flags: 0);
2672
2673 fput_light(file: sock->file, fput_needed);
2674out:
2675 return err;
2676}
2677
2678SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2679{
2680 return __sys_sendmsg(fd, msg, flags, forbid_cmsg_compat: true);
2681}
2682
2683/*
2684 * Linux sendmmsg interface
2685 */
2686
2687int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2688 unsigned int flags, bool forbid_cmsg_compat)
2689{
2690 int fput_needed, err, datagrams;
2691 struct socket *sock;
2692 struct mmsghdr __user *entry;
2693 struct compat_mmsghdr __user *compat_entry;
2694 struct msghdr msg_sys;
2695 struct used_address used_address;
2696 unsigned int oflags = flags;
2697
2698 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2699 return -EINVAL;
2700
2701 if (vlen > UIO_MAXIOV)
2702 vlen = UIO_MAXIOV;
2703
2704 datagrams = 0;
2705
2706 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2707 if (!sock)
2708 return err;
2709
2710 used_address.name_len = UINT_MAX;
2711 entry = mmsg;
2712 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2713 err = 0;
2714 flags |= MSG_BATCH;
2715
2716 while (datagrams < vlen) {
2717 if (datagrams == vlen - 1)
2718 flags = oflags;
2719
2720 if (MSG_CMSG_COMPAT & flags) {
2721 err = ___sys_sendmsg(sock, msg: (struct user_msghdr __user *)compat_entry,
2722 msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR);
2723 if (err < 0)
2724 break;
2725 err = __put_user(err, &compat_entry->msg_len);
2726 ++compat_entry;
2727 } else {
2728 err = ___sys_sendmsg(sock,
2729 msg: (struct user_msghdr __user *)entry,
2730 msg_sys: &msg_sys, flags, used_address: &used_address, MSG_EOR);
2731 if (err < 0)
2732 break;
2733 err = put_user(err, &entry->msg_len);
2734 ++entry;
2735 }
2736
2737 if (err)
2738 break;
2739 ++datagrams;
2740 if (msg_data_left(msg: &msg_sys))
2741 break;
2742 cond_resched();
2743 }
2744
2745 fput_light(file: sock->file, fput_needed);
2746
2747 /* We only return an error if no datagrams were able to be sent */
2748 if (datagrams != 0)
2749 return datagrams;
2750
2751 return err;
2752}
2753
2754SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2755 unsigned int, vlen, unsigned int, flags)
2756{
2757 return __sys_sendmmsg(fd, mmsg, vlen, flags, forbid_cmsg_compat: true);
2758}
2759
2760int recvmsg_copy_msghdr(struct msghdr *msg,
2761 struct user_msghdr __user *umsg, unsigned flags,
2762 struct sockaddr __user **uaddr,
2763 struct iovec **iov)
2764{
2765 ssize_t err;
2766
2767 if (MSG_CMSG_COMPAT & flags) {
2768 struct compat_msghdr __user *msg_compat;
2769
2770 msg_compat = (struct compat_msghdr __user *) umsg;
2771 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2772 } else {
2773 err = copy_msghdr_from_user(kmsg: msg, umsg, save_addr: uaddr, iov);
2774 }
2775 if (err < 0)
2776 return err;
2777
2778 return 0;
2779}
2780
2781static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2782 struct user_msghdr __user *msg,
2783 struct sockaddr __user *uaddr,
2784 unsigned int flags, int nosec)
2785{
2786 struct compat_msghdr __user *msg_compat =
2787 (struct compat_msghdr __user *) msg;
2788 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2789 struct sockaddr_storage addr;
2790 unsigned long cmsg_ptr;
2791 int len;
2792 ssize_t err;
2793
2794 msg_sys->msg_name = &addr;
2795 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2796 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2797
2798 /* We assume all kernel code knows the size of sockaddr_storage */
2799 msg_sys->msg_namelen = 0;
2800
2801 if (sock->file->f_flags & O_NONBLOCK)
2802 flags |= MSG_DONTWAIT;
2803
2804 if (unlikely(nosec))
2805 err = sock_recvmsg_nosec(sock, msg: msg_sys, flags);
2806 else
2807 err = sock_recvmsg(sock, msg_sys, flags);
2808
2809 if (err < 0)
2810 goto out;
2811 len = err;
2812
2813 if (uaddr != NULL) {
2814 err = move_addr_to_user(kaddr: &addr,
2815 klen: msg_sys->msg_namelen, uaddr,
2816 ulen: uaddr_len);
2817 if (err < 0)
2818 goto out;
2819 }
2820 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2821 COMPAT_FLAGS(msg));
2822 if (err)
2823 goto out;
2824 if (MSG_CMSG_COMPAT & flags)
2825 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2826 &msg_compat->msg_controllen);
2827 else
2828 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2829 &msg->msg_controllen);
2830 if (err)
2831 goto out;
2832 err = len;
2833out:
2834 return err;
2835}
2836
2837static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2838 struct msghdr *msg_sys, unsigned int flags, int nosec)
2839{
2840 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2841 /* user mode address pointers */
2842 struct sockaddr __user *uaddr;
2843 ssize_t err;
2844
2845 err = recvmsg_copy_msghdr(msg: msg_sys, umsg: msg, flags, uaddr: &uaddr, iov: &iov);
2846 if (err < 0)
2847 return err;
2848
2849 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2850 kfree(objp: iov);
2851 return err;
2852}
2853
2854/*
2855 * BSD recvmsg interface
2856 */
2857
2858long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2859 struct user_msghdr __user *umsg,
2860 struct sockaddr __user *uaddr, unsigned int flags)
2861{
2862 return ____sys_recvmsg(sock, msg_sys: msg, msg: umsg, uaddr, flags, nosec: 0);
2863}
2864
2865long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2866 bool forbid_cmsg_compat)
2867{
2868 int fput_needed, err;
2869 struct msghdr msg_sys;
2870 struct socket *sock;
2871
2872 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2873 return -EINVAL;
2874
2875 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2876 if (!sock)
2877 goto out;
2878
2879 err = ___sys_recvmsg(sock, msg, msg_sys: &msg_sys, flags, nosec: 0);
2880
2881 fput_light(file: sock->file, fput_needed);
2882out:
2883 return err;
2884}
2885
2886SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2887 unsigned int, flags)
2888{
2889 return __sys_recvmsg(fd, msg, flags, forbid_cmsg_compat: true);
2890}
2891
2892/*
2893 * Linux recvmmsg interface
2894 */
2895
2896static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2897 unsigned int vlen, unsigned int flags,
2898 struct timespec64 *timeout)
2899{
2900 int fput_needed, err, datagrams;
2901 struct socket *sock;
2902 struct mmsghdr __user *entry;
2903 struct compat_mmsghdr __user *compat_entry;
2904 struct msghdr msg_sys;
2905 struct timespec64 end_time;
2906 struct timespec64 timeout64;
2907
2908 if (timeout &&
2909 poll_select_set_timeout(to: &end_time, sec: timeout->tv_sec,
2910 nsec: timeout->tv_nsec))
2911 return -EINVAL;
2912
2913 datagrams = 0;
2914
2915 sock = sockfd_lookup_light(fd, err: &err, fput_needed: &fput_needed);
2916 if (!sock)
2917 return err;
2918
2919 if (likely(!(flags & MSG_ERRQUEUE))) {
2920 err = sock_error(sk: sock->sk);
2921 if (err) {
2922 datagrams = err;
2923 goto out_put;
2924 }
2925 }
2926
2927 entry = mmsg;
2928 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2929
2930 while (datagrams < vlen) {
2931 /*
2932 * No need to ask LSM for more than the first datagram.
2933 */
2934 if (MSG_CMSG_COMPAT & flags) {
2935 err = ___sys_recvmsg(sock, msg: (struct user_msghdr __user *)compat_entry,
2936 msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE,
2937 nosec: datagrams);
2938 if (err < 0)
2939 break;
2940 err = __put_user(err, &compat_entry->msg_len);
2941 ++compat_entry;
2942 } else {
2943 err = ___sys_recvmsg(sock,
2944 msg: (struct user_msghdr __user *)entry,
2945 msg_sys: &msg_sys, flags: flags & ~MSG_WAITFORONE,
2946 nosec: datagrams);
2947 if (err < 0)
2948 break;
2949 err = put_user(err, &entry->msg_len);
2950 ++entry;
2951 }
2952
2953 if (err)
2954 break;
2955 ++datagrams;
2956
2957 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2958 if (flags & MSG_WAITFORONE)
2959 flags |= MSG_DONTWAIT;
2960
2961 if (timeout) {
2962 ktime_get_ts64(ts: &timeout64);
2963 *timeout = timespec64_sub(lhs: end_time, rhs: timeout64);
2964 if (timeout->tv_sec < 0) {
2965 timeout->tv_sec = timeout->tv_nsec = 0;
2966 break;
2967 }
2968
2969 /* Timeout, return less than vlen datagrams */
2970 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2971 break;
2972 }
2973
2974 /* Out of band data, return right away */
2975 if (msg_sys.msg_flags & MSG_OOB)
2976 break;
2977 cond_resched();
2978 }
2979
2980 if (err == 0)
2981 goto out_put;
2982
2983 if (datagrams == 0) {
2984 datagrams = err;
2985 goto out_put;
2986 }
2987
2988 /*
2989 * We may return less entries than requested (vlen) if the
2990 * sock is non block and there aren't enough datagrams...
2991 */
2992 if (err != -EAGAIN) {
2993 /*
2994 * ... or if recvmsg returns an error after we
2995 * received some datagrams, where we record the
2996 * error to return on the next call or if the
2997 * app asks about it using getsockopt(SO_ERROR).
2998 */
2999 WRITE_ONCE(sock->sk->sk_err, -err);
3000 }
3001out_put:
3002 fput_light(file: sock->file, fput_needed);
3003
3004 return datagrams;
3005}
3006
3007int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
3008 unsigned int vlen, unsigned int flags,
3009 struct __kernel_timespec __user *timeout,
3010 struct old_timespec32 __user *timeout32)
3011{
3012 int datagrams;
3013 struct timespec64 timeout_sys;
3014
3015 if (timeout && get_timespec64(ts: &timeout_sys, uts: timeout))
3016 return -EFAULT;
3017
3018 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
3019 return -EFAULT;
3020
3021 if (!timeout && !timeout32)
3022 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
3023
3024 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, timeout: &timeout_sys);
3025
3026 if (datagrams <= 0)
3027 return datagrams;
3028
3029 if (timeout && put_timespec64(ts: &timeout_sys, uts: timeout))
3030 datagrams = -EFAULT;
3031
3032 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
3033 datagrams = -EFAULT;
3034
3035 return datagrams;
3036}
3037
3038SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
3039 unsigned int, vlen, unsigned int, flags,
3040 struct __kernel_timespec __user *, timeout)
3041{
3042 if (flags & MSG_CMSG_COMPAT)
3043 return -EINVAL;
3044
3045 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
3046}
3047
3048#ifdef CONFIG_COMPAT_32BIT_TIME
3049SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
3050 unsigned int, vlen, unsigned int, flags,
3051 struct old_timespec32 __user *, timeout)
3052{
3053 if (flags & MSG_CMSG_COMPAT)
3054 return -EINVAL;
3055
3056 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout32: timeout);
3057}
3058#endif
3059
3060#ifdef __ARCH_WANT_SYS_SOCKETCALL
3061/* Argument list sizes for sys_socketcall */
3062#define AL(x) ((x) * sizeof(unsigned long))
3063static const unsigned char nargs[21] = {
3064 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
3065 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
3066 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
3067 AL(4), AL(5), AL(4)
3068};
3069
3070#undef AL
3071
3072/*
3073 * System call vectors.
3074 *
3075 * Argument checking cleaned up. Saved 20% in size.
3076 * This function doesn't need to set the kernel lock because
3077 * it is set by the callees.
3078 */
3079
3080SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
3081{
3082 unsigned long a[AUDITSC_ARGS];
3083 unsigned long a0, a1;
3084 int err;
3085 unsigned int len;
3086
3087 if (call < 1 || call > SYS_SENDMMSG)
3088 return -EINVAL;
3089 call = array_index_nospec(call, SYS_SENDMMSG + 1);
3090
3091 len = nargs[call];
3092 if (len > sizeof(a))
3093 return -EINVAL;
3094
3095 /* copy_from_user should be SMP safe. */
3096 if (copy_from_user(to: a, from: args, n: len))
3097 return -EFAULT;
3098
3099 err = audit_socketcall(nargs: nargs[call] / sizeof(unsigned long), args: a);
3100 if (err)
3101 return err;
3102
3103 a0 = a[0];
3104 a1 = a[1];
3105
3106 switch (call) {
3107 case SYS_SOCKET:
3108 err = __sys_socket(family: a0, type: a1, protocol: a[2]);
3109 break;
3110 case SYS_BIND:
3111 err = __sys_bind(fd: a0, umyaddr: (struct sockaddr __user *)a1, addrlen: a[2]);
3112 break;
3113 case SYS_CONNECT:
3114 err = __sys_connect(fd: a0, uservaddr: (struct sockaddr __user *)a1, addrlen: a[2]);
3115 break;
3116 case SYS_LISTEN:
3117 err = __sys_listen(fd: a0, backlog: a1);
3118 break;
3119 case SYS_ACCEPT:
3120 err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1,
3121 upeer_addrlen: (int __user *)a[2], flags: 0);
3122 break;
3123 case SYS_GETSOCKNAME:
3124 err =
3125 __sys_getsockname(fd: a0, usockaddr: (struct sockaddr __user *)a1,
3126 usockaddr_len: (int __user *)a[2]);
3127 break;
3128 case SYS_GETPEERNAME:
3129 err =
3130 __sys_getpeername(fd: a0, usockaddr: (struct sockaddr __user *)a1,
3131 usockaddr_len: (int __user *)a[2]);
3132 break;
3133 case SYS_SOCKETPAIR:
3134 err = __sys_socketpair(family: a0, type: a1, protocol: a[2], usockvec: (int __user *)a[3]);
3135 break;
3136 case SYS_SEND:
3137 err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3],
3138 NULL, addr_len: 0);
3139 break;
3140 case SYS_SENDTO:
3141 err = __sys_sendto(fd: a0, buff: (void __user *)a1, len: a[2], flags: a[3],
3142 addr: (struct sockaddr __user *)a[4], addr_len: a[5]);
3143 break;
3144 case SYS_RECV:
3145 err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3],
3146 NULL, NULL);
3147 break;
3148 case SYS_RECVFROM:
3149 err = __sys_recvfrom(fd: a0, ubuf: (void __user *)a1, size: a[2], flags: a[3],
3150 addr: (struct sockaddr __user *)a[4],
3151 addr_len: (int __user *)a[5]);
3152 break;
3153 case SYS_SHUTDOWN:
3154 err = __sys_shutdown(fd: a0, how: a1);
3155 break;
3156 case SYS_SETSOCKOPT:
3157 err = __sys_setsockopt(fd: a0, level: a1, optname: a[2], user_optval: (char __user *)a[3],
3158 optlen: a[4]);
3159 break;
3160 case SYS_GETSOCKOPT:
3161 err =
3162 __sys_getsockopt(fd: a0, level: a1, optname: a[2], optval: (char __user *)a[3],
3163 optlen: (int __user *)a[4]);
3164 break;
3165 case SYS_SENDMSG:
3166 err = __sys_sendmsg(fd: a0, msg: (struct user_msghdr __user *)a1,
3167 flags: a[2], forbid_cmsg_compat: true);
3168 break;
3169 case SYS_SENDMMSG:
3170 err = __sys_sendmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1, vlen: a[2],
3171 flags: a[3], forbid_cmsg_compat: true);
3172 break;
3173 case SYS_RECVMSG:
3174 err = __sys_recvmsg(fd: a0, msg: (struct user_msghdr __user *)a1,
3175 flags: a[2], forbid_cmsg_compat: true);
3176 break;
3177 case SYS_RECVMMSG:
3178 if (IS_ENABLED(CONFIG_64BIT))
3179 err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1,
3180 vlen: a[2], flags: a[3],
3181 timeout: (struct __kernel_timespec __user *)a[4],
3182 NULL);
3183 else
3184 err = __sys_recvmmsg(fd: a0, mmsg: (struct mmsghdr __user *)a1,
3185 vlen: a[2], flags: a[3], NULL,
3186 timeout32: (struct old_timespec32 __user *)a[4]);
3187 break;
3188 case SYS_ACCEPT4:
3189 err = __sys_accept4(fd: a0, upeer_sockaddr: (struct sockaddr __user *)a1,
3190 upeer_addrlen: (int __user *)a[2], flags: a[3]);
3191 break;
3192 default:
3193 err = -EINVAL;
3194 break;
3195 }
3196 return err;
3197}
3198
3199#endif /* __ARCH_WANT_SYS_SOCKETCALL */
3200
3201/**
3202 * sock_register - add a socket protocol handler
3203 * @ops: description of protocol
3204 *
3205 * This function is called by a protocol handler that wants to
3206 * advertise its address family, and have it linked into the
3207 * socket interface. The value ops->family corresponds to the
3208 * socket system call protocol family.
3209 */
3210int sock_register(const struct net_proto_family *ops)
3211{
3212 int err;
3213
3214 if (ops->family >= NPROTO) {
3215 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
3216 return -ENOBUFS;
3217 }
3218
3219 spin_lock(lock: &net_family_lock);
3220 if (rcu_dereference_protected(net_families[ops->family],
3221 lockdep_is_held(&net_family_lock)))
3222 err = -EEXIST;
3223 else {
3224 rcu_assign_pointer(net_families[ops->family], ops);
3225 err = 0;
3226 }
3227 spin_unlock(lock: &net_family_lock);
3228
3229 pr_info("NET: Registered %s protocol family\n", pf_family_names[ops->family]);
3230 return err;
3231}
3232EXPORT_SYMBOL(sock_register);
3233
3234/**
3235 * sock_unregister - remove a protocol handler
3236 * @family: protocol family to remove
3237 *
3238 * This function is called by a protocol handler that wants to
3239 * remove its address family, and have it unlinked from the
3240 * new socket creation.
3241 *
3242 * If protocol handler is a module, then it can use module reference
3243 * counts to protect against new references. If protocol handler is not
3244 * a module then it needs to provide its own protection in
3245 * the ops->create routine.
3246 */
3247void sock_unregister(int family)
3248{
3249 BUG_ON(family < 0 || family >= NPROTO);
3250
3251 spin_lock(lock: &net_family_lock);
3252 RCU_INIT_POINTER(net_families[family], NULL);
3253 spin_unlock(lock: &net_family_lock);
3254
3255 synchronize_rcu();
3256
3257 pr_info("NET: Unregistered %s protocol family\n", pf_family_names[family]);
3258}
3259EXPORT_SYMBOL(sock_unregister);
3260
3261bool sock_is_registered(int family)
3262{
3263 return family < NPROTO && rcu_access_pointer(net_families[family]);
3264}
3265
3266static int __init sock_init(void)
3267{
3268 int err;
3269 /*
3270 * Initialize the network sysctl infrastructure.
3271 */
3272 err = net_sysctl_init();
3273 if (err)
3274 goto out;
3275
3276 /*
3277 * Initialize skbuff SLAB cache
3278 */
3279 skb_init();
3280
3281 /*
3282 * Initialize the protocols module.
3283 */
3284
3285 init_inodecache();
3286
3287 err = register_filesystem(&sock_fs_type);
3288 if (err)
3289 goto out;
3290 sock_mnt = kern_mount(&sock_fs_type);
3291 if (IS_ERR(ptr: sock_mnt)) {
3292 err = PTR_ERR(ptr: sock_mnt);
3293 goto out_mount;
3294 }
3295
3296 /* The real protocol initialization is performed in later initcalls.
3297 */
3298
3299#ifdef CONFIG_NETFILTER
3300 err = netfilter_init();
3301 if (err)
3302 goto out;
3303#endif
3304
3305 ptp_classifier_init();
3306
3307out:
3308 return err;
3309
3310out_mount:
3311 unregister_filesystem(&sock_fs_type);
3312 goto out;
3313}
3314
3315core_initcall(sock_init); /* early initcall */
3316
3317#ifdef CONFIG_PROC_FS
3318void socket_seq_show(struct seq_file *seq)
3319{
3320 seq_printf(m: seq, fmt: "sockets: used %d\n",
3321 sock_inuse_get(net: seq->private));
3322}
3323#endif /* CONFIG_PROC_FS */
3324
3325/* Handle the fact that while struct ifreq has the same *layout* on
3326 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3327 * which are handled elsewhere, it still has different *size* due to
3328 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3329 * resulting in struct ifreq being 32 and 40 bytes respectively).
3330 * As a result, if the struct happens to be at the end of a page and
3331 * the next page isn't readable/writable, we get a fault. To prevent
3332 * that, copy back and forth to the full size.
3333 */
3334int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg)
3335{
3336 if (in_compat_syscall()) {
3337 struct compat_ifreq *ifr32 = (struct compat_ifreq *)ifr;
3338
3339 memset(ifr, 0, sizeof(*ifr));
3340 if (copy_from_user(to: ifr32, from: arg, n: sizeof(*ifr32)))
3341 return -EFAULT;
3342
3343 if (ifrdata)
3344 *ifrdata = compat_ptr(uptr: ifr32->ifr_data);
3345
3346 return 0;
3347 }
3348
3349 if (copy_from_user(to: ifr, from: arg, n: sizeof(*ifr)))
3350 return -EFAULT;
3351
3352 if (ifrdata)
3353 *ifrdata = ifr->ifr_data;
3354
3355 return 0;
3356}
3357EXPORT_SYMBOL(get_user_ifreq);
3358
3359int put_user_ifreq(struct ifreq *ifr, void __user *arg)
3360{
3361 size_t size = sizeof(*ifr);
3362
3363 if (in_compat_syscall())
3364 size = sizeof(struct compat_ifreq);
3365
3366 if (copy_to_user(to: arg, from: ifr, n: size))
3367 return -EFAULT;
3368
3369 return 0;
3370}
3371EXPORT_SYMBOL(put_user_ifreq);
3372
3373#ifdef CONFIG_COMPAT
3374static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3375{
3376 compat_uptr_t uptr32;
3377 struct ifreq ifr;
3378 void __user *saved;
3379 int err;
3380
3381 if (get_user_ifreq(&ifr, NULL, uifr32))
3382 return -EFAULT;
3383
3384 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3385 return -EFAULT;
3386
3387 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3388 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr: uptr32);
3389
3390 err = dev_ioctl(net, SIOCWANDEV, ifr: &ifr, NULL, NULL);
3391 if (!err) {
3392 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3393 if (put_user_ifreq(&ifr, uifr32))
3394 err = -EFAULT;
3395 }
3396 return err;
3397}
3398
3399/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3400static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3401 struct compat_ifreq __user *u_ifreq32)
3402{
3403 struct ifreq ifreq;
3404 void __user *data;
3405
3406 if (!is_socket_ioctl_cmd(cmd))
3407 return -ENOTTY;
3408 if (get_user_ifreq(&ifreq, &data, u_ifreq32))
3409 return -EFAULT;
3410 ifreq.ifr_data = data;
3411
3412 return dev_ioctl(net, cmd, ifr: &ifreq, data, NULL);
3413}
3414
3415static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3416 unsigned int cmd, unsigned long arg)
3417{
3418 void __user *argp = compat_ptr(uptr: arg);
3419 struct sock *sk = sock->sk;
3420 struct net *net = sock_net(sk);
3421 const struct proto_ops *ops;
3422
3423 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3424 return sock_ioctl(file, cmd, arg: (unsigned long)argp);
3425
3426 switch (cmd) {
3427 case SIOCWANDEV:
3428 return compat_siocwandev(net, uifr32: argp);
3429 case SIOCGSTAMP_OLD:
3430 case SIOCGSTAMPNS_OLD:
3431 ops = READ_ONCE(sock->ops);
3432 if (!ops->gettstamp)
3433 return -ENOIOCTLCMD;
3434 return ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3435 !COMPAT_USE_64BIT_TIME);
3436
3437 case SIOCETHTOOL:
3438 case SIOCBONDSLAVEINFOQUERY:
3439 case SIOCBONDINFOQUERY:
3440 case SIOCSHWTSTAMP:
3441 case SIOCGHWTSTAMP:
3442 return compat_ifr_data_ioctl(net, cmd, u_ifreq32: argp);
3443
3444 case FIOSETOWN:
3445 case SIOCSPGRP:
3446 case FIOGETOWN:
3447 case SIOCGPGRP:
3448 case SIOCBRADDBR:
3449 case SIOCBRDELBR:
3450 case SIOCGIFVLAN:
3451 case SIOCSIFVLAN:
3452 case SIOCGSKNS:
3453 case SIOCGSTAMP_NEW:
3454 case SIOCGSTAMPNS_NEW:
3455 case SIOCGIFCONF:
3456 case SIOCSIFBR:
3457 case SIOCGIFBR:
3458 return sock_ioctl(file, cmd, arg);
3459
3460 case SIOCGIFFLAGS:
3461 case SIOCSIFFLAGS:
3462 case SIOCGIFMAP:
3463 case SIOCSIFMAP:
3464 case SIOCGIFMETRIC:
3465 case SIOCSIFMETRIC:
3466 case SIOCGIFMTU:
3467 case SIOCSIFMTU:
3468 case SIOCGIFMEM:
3469 case SIOCSIFMEM:
3470 case SIOCGIFHWADDR:
3471 case SIOCSIFHWADDR:
3472 case SIOCADDMULTI:
3473 case SIOCDELMULTI:
3474 case SIOCGIFINDEX:
3475 case SIOCGIFADDR:
3476 case SIOCSIFADDR:
3477 case SIOCSIFHWBROADCAST:
3478 case SIOCDIFADDR:
3479 case SIOCGIFBRDADDR:
3480 case SIOCSIFBRDADDR:
3481 case SIOCGIFDSTADDR:
3482 case SIOCSIFDSTADDR:
3483 case SIOCGIFNETMASK:
3484 case SIOCSIFNETMASK:
3485 case SIOCSIFPFLAGS:
3486 case SIOCGIFPFLAGS:
3487 case SIOCGIFTXQLEN:
3488 case SIOCSIFTXQLEN:
3489 case SIOCBRADDIF:
3490 case SIOCBRDELIF:
3491 case SIOCGIFNAME:
3492 case SIOCSIFNAME:
3493 case SIOCGMIIPHY:
3494 case SIOCGMIIREG:
3495 case SIOCSMIIREG:
3496 case SIOCBONDENSLAVE:
3497 case SIOCBONDRELEASE:
3498 case SIOCBONDSETHWADDR:
3499 case SIOCBONDCHANGEACTIVE:
3500 case SIOCSARP:
3501 case SIOCGARP:
3502 case SIOCDARP:
3503 case SIOCOUTQ:
3504 case SIOCOUTQNSD:
3505 case SIOCATMARK:
3506 return sock_do_ioctl(net, sock, cmd, arg);
3507 }
3508
3509 return -ENOIOCTLCMD;
3510}
3511
3512static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3513 unsigned long arg)
3514{
3515 struct socket *sock = file->private_data;
3516 const struct proto_ops *ops = READ_ONCE(sock->ops);
3517 int ret = -ENOIOCTLCMD;
3518 struct sock *sk;
3519 struct net *net;
3520
3521 sk = sock->sk;
3522 net = sock_net(sk);
3523
3524 if (ops->compat_ioctl)
3525 ret = ops->compat_ioctl(sock, cmd, arg);
3526
3527 if (ret == -ENOIOCTLCMD &&
3528 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3529 ret = compat_wext_handle_ioctl(net, cmd, arg);
3530
3531 if (ret == -ENOIOCTLCMD)
3532 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3533
3534 return ret;
3535}
3536#endif
3537
3538/**
3539 * kernel_bind - bind an address to a socket (kernel space)
3540 * @sock: socket
3541 * @addr: address
3542 * @addrlen: length of address
3543 *
3544 * Returns 0 or an error.
3545 */
3546
3547int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3548{
3549 struct sockaddr_storage address;
3550
3551 memcpy(&address, addr, addrlen);
3552
3553 return READ_ONCE(sock->ops)->bind(sock, (struct sockaddr *)&address,
3554 addrlen);
3555}
3556EXPORT_SYMBOL(kernel_bind);
3557
3558/**
3559 * kernel_listen - move socket to listening state (kernel space)
3560 * @sock: socket
3561 * @backlog: pending connections queue size
3562 *
3563 * Returns 0 or an error.
3564 */
3565
3566int kernel_listen(struct socket *sock, int backlog)
3567{
3568 return READ_ONCE(sock->ops)->listen(sock, backlog);
3569}
3570EXPORT_SYMBOL(kernel_listen);
3571
3572/**
3573 * kernel_accept - accept a connection (kernel space)
3574 * @sock: listening socket
3575 * @newsock: new connected socket
3576 * @flags: flags
3577 *
3578 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3579 * If it fails, @newsock is guaranteed to be %NULL.
3580 * Returns 0 or an error.
3581 */
3582
3583int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3584{
3585 struct sock *sk = sock->sk;
3586 const struct proto_ops *ops = READ_ONCE(sock->ops);
3587 int err;
3588
3589 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3590 newsock);
3591 if (err < 0)
3592 goto done;
3593
3594 err = ops->accept(sock, *newsock, flags, true);
3595 if (err < 0) {
3596 sock_release(*newsock);
3597 *newsock = NULL;
3598 goto done;
3599 }
3600
3601 (*newsock)->ops = ops;
3602 __module_get(module: ops->owner);
3603
3604done:
3605 return err;
3606}
3607EXPORT_SYMBOL(kernel_accept);
3608
3609/**
3610 * kernel_connect - connect a socket (kernel space)
3611 * @sock: socket
3612 * @addr: address
3613 * @addrlen: address length
3614 * @flags: flags (O_NONBLOCK, ...)
3615 *
3616 * For datagram sockets, @addr is the address to which datagrams are sent
3617 * by default, and the only address from which datagrams are received.
3618 * For stream sockets, attempts to connect to @addr.
3619 * Returns 0 or an error code.
3620 */
3621
3622int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3623 int flags)
3624{
3625 struct sockaddr_storage address;
3626
3627 memcpy(&address, addr, addrlen);
3628
3629 return READ_ONCE(sock->ops)->connect(sock, (struct sockaddr *)&address,
3630 addrlen, flags);
3631}
3632EXPORT_SYMBOL(kernel_connect);
3633
3634/**
3635 * kernel_getsockname - get the address which the socket is bound (kernel space)
3636 * @sock: socket
3637 * @addr: address holder
3638 *
3639 * Fills the @addr pointer with the address which the socket is bound.
3640 * Returns the length of the address in bytes or an error code.
3641 */
3642
3643int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3644{
3645 return READ_ONCE(sock->ops)->getname(sock, addr, 0);
3646}
3647EXPORT_SYMBOL(kernel_getsockname);
3648
3649/**
3650 * kernel_getpeername - get the address which the socket is connected (kernel space)
3651 * @sock: socket
3652 * @addr: address holder
3653 *
3654 * Fills the @addr pointer with the address which the socket is connected.
3655 * Returns the length of the address in bytes or an error code.
3656 */
3657
3658int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3659{
3660 return READ_ONCE(sock->ops)->getname(sock, addr, 1);
3661}
3662EXPORT_SYMBOL(kernel_getpeername);
3663
3664/**
3665 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3666 * @sock: socket
3667 * @how: connection part
3668 *
3669 * Returns 0 or an error.
3670 */
3671
3672int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3673{
3674 return READ_ONCE(sock->ops)->shutdown(sock, how);
3675}
3676EXPORT_SYMBOL(kernel_sock_shutdown);
3677
3678/**
3679 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3680 * @sk: socket
3681 *
3682 * This routine returns the IP overhead imposed by a socket i.e.
3683 * the length of the underlying IP header, depending on whether
3684 * this is an IPv4 or IPv6 socket and the length from IP options turned
3685 * on at the socket. Assumes that the caller has a lock on the socket.
3686 */
3687
3688u32 kernel_sock_ip_overhead(struct sock *sk)
3689{
3690 struct inet_sock *inet;
3691 struct ip_options_rcu *opt;
3692 u32 overhead = 0;
3693#if IS_ENABLED(CONFIG_IPV6)
3694 struct ipv6_pinfo *np;
3695 struct ipv6_txoptions *optv6 = NULL;
3696#endif /* IS_ENABLED(CONFIG_IPV6) */
3697
3698 if (!sk)
3699 return overhead;
3700
3701 switch (sk->sk_family) {
3702 case AF_INET:
3703 inet = inet_sk(sk);
3704 overhead += sizeof(struct iphdr);
3705 opt = rcu_dereference_protected(inet->inet_opt,
3706 sock_owned_by_user(sk));
3707 if (opt)
3708 overhead += opt->opt.optlen;
3709 return overhead;
3710#if IS_ENABLED(CONFIG_IPV6)
3711 case AF_INET6:
3712 np = inet6_sk(sk: sk);
3713 overhead += sizeof(struct ipv6hdr);
3714 if (np)
3715 optv6 = rcu_dereference_protected(np->opt,
3716 sock_owned_by_user(sk));
3717 if (optv6)
3718 overhead += (optv6->opt_flen + optv6->opt_nflen);
3719 return overhead;
3720#endif /* IS_ENABLED(CONFIG_IPV6) */
3721 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3722 return overhead;
3723 }
3724}
3725EXPORT_SYMBOL(kernel_sock_ip_overhead);
3726

source code of linux/net/socket.c