1//===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file exposes the class definitions of all of the subclasses of the
10// Instruction class. This is meant to be an easy way to get access to all
11// instruction subclasses.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_IR_INSTRUCTIONS_H
16#define LLVM_IR_INSTRUCTIONS_H
17
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/Bitfields.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/STLExtras.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringRef.h"
24#include "llvm/ADT/Twine.h"
25#include "llvm/ADT/iterator.h"
26#include "llvm/ADT/iterator_range.h"
27#include "llvm/IR/Attributes.h"
28#include "llvm/IR/BasicBlock.h"
29#include "llvm/IR/CallingConv.h"
30#include "llvm/IR/CFG.h"
31#include "llvm/IR/Constant.h"
32#include "llvm/IR/DerivedTypes.h"
33#include "llvm/IR/Function.h"
34#include "llvm/IR/InstrTypes.h"
35#include "llvm/IR/Instruction.h"
36#include "llvm/IR/OperandTraits.h"
37#include "llvm/IR/Type.h"
38#include "llvm/IR/Use.h"
39#include "llvm/IR/User.h"
40#include "llvm/IR/Value.h"
41#include "llvm/Support/AtomicOrdering.h"
42#include "llvm/Support/Casting.h"
43#include "llvm/Support/ErrorHandling.h"
44#include <cassert>
45#include <cstddef>
46#include <cstdint>
47#include <iterator>
48
49namespace llvm {
50
51class APInt;
52class ConstantInt;
53class DataLayout;
54class LLVMContext;
55
56//===----------------------------------------------------------------------===//
57// AllocaInst Class
58//===----------------------------------------------------------------------===//
59
60/// an instruction to allocate memory on the stack
61class AllocaInst : public UnaryInstruction {
62 Type *AllocatedType;
63
64 using AlignmentField = AlignmentBitfieldElementT<0>;
65 using UsedWithInAllocaField = BoolBitfieldElementT<AlignmentField::NextBit>;
66 using SwiftErrorField = BoolBitfieldElementT<UsedWithInAllocaField::NextBit>;
67 static_assert(Bitfield::areContiguous<AlignmentField, UsedWithInAllocaField,
68 SwiftErrorField>(),
69 "Bitfields must be contiguous");
70
71protected:
72 // Note: Instruction needs to be a friend here to call cloneImpl.
73 friend class Instruction;
74
75 AllocaInst *cloneImpl() const;
76
77public:
78 explicit AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
79 const Twine &Name, Instruction *InsertBefore);
80 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
81 const Twine &Name, BasicBlock *InsertAtEnd);
82
83 AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
84 Instruction *InsertBefore);
85 AllocaInst(Type *Ty, unsigned AddrSpace,
86 const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, Align Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 /// Return true if there is an allocation size parameter to the allocation
94 /// instruction that is not 1.
95 bool isArrayAllocation() const;
96
97 /// Get the number of elements allocated. For a simple allocation of a single
98 /// element, this will return a constant 1 value.
99 const Value *getArraySize() const { return getOperand(0); }
100 Value *getArraySize() { return getOperand(0); }
101
102 /// Overload to return most specific pointer type.
103 PointerType *getType() const {
104 return cast<PointerType>(Instruction::getType());
105 }
106
107 /// Get allocation size in bits. Returns None if size can't be determined,
108 /// e.g. in case of a VLA.
109 Optional<TypeSize> getAllocationSizeInBits(const DataLayout &DL) const;
110
111 /// Return the type that is being allocated by the instruction.
112 Type *getAllocatedType() const { return AllocatedType; }
113 /// for use only in special circumstances that need to generically
114 /// transform a whole instruction (eg: IR linking and vectorization).
115 void setAllocatedType(Type *Ty) { AllocatedType = Ty; }
116
117 /// Return the alignment of the memory that is being allocated by the
118 /// instruction.
119 Align getAlign() const {
120 return Align(1ULL << getSubclassData<AlignmentField>());
121 }
122
123 void setAlignment(Align Align) {
124 setSubclassData<AlignmentField>(Log2(Align));
125 }
126
127 // FIXME: Remove this one transition to Align is over.
128 unsigned getAlignment() const { return getAlign().value(); }
129
130 /// Return true if this alloca is in the entry block of the function and is a
131 /// constant size. If so, the code generator will fold it into the
132 /// prolog/epilog code, so it is basically free.
133 bool isStaticAlloca() const;
134
135 /// Return true if this alloca is used as an inalloca argument to a call. Such
136 /// allocas are never considered static even if they are in the entry block.
137 bool isUsedWithInAlloca() const {
138 return getSubclassData<UsedWithInAllocaField>();
139 }
140
141 /// Specify whether this alloca is used to represent the arguments to a call.
142 void setUsedWithInAlloca(bool V) {
143 setSubclassData<UsedWithInAllocaField>(V);
144 }
145
146 /// Return true if this alloca is used as a swifterror argument to a call.
147 bool isSwiftError() const { return getSubclassData<SwiftErrorField>(); }
148 /// Specify whether this alloca is used to represent a swifterror.
149 void setSwiftError(bool V) { setSubclassData<SwiftErrorField>(V); }
150
151 // Methods for support type inquiry through isa, cast, and dyn_cast:
152 static bool classof(const Instruction *I) {
153 return (I->getOpcode() == Instruction::Alloca);
154 }
155 static bool classof(const Value *V) {
156 return isa<Instruction>(V) && classof(cast<Instruction>(V));
157 }
158
159private:
160 // Shadow Instruction::setInstructionSubclassData with a private forwarding
161 // method so that subclasses cannot accidentally use it.
162 template <typename Bitfield>
163 void setSubclassData(typename Bitfield::Type Value) {
164 Instruction::setSubclassData<Bitfield>(Value);
165 }
166};
167
168//===----------------------------------------------------------------------===//
169// LoadInst Class
170//===----------------------------------------------------------------------===//
171
172/// An instruction for reading from memory. This uses the SubclassData field in
173/// Value to store whether or not the load is volatile.
174class LoadInst : public UnaryInstruction {
175 using VolatileField = BoolBitfieldElementT<0>;
176 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
177 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
178 static_assert(
179 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
180 "Bitfields must be contiguous");
181
182 void AssertOK();
183
184protected:
185 // Note: Instruction needs to be a friend here to call cloneImpl.
186 friend class Instruction;
187
188 LoadInst *cloneImpl() const;
189
190public:
191 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr,
192 Instruction *InsertBefore);
193 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
194 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
195 Instruction *InsertBefore);
196 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
197 BasicBlock *InsertAtEnd);
198 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
199 Align Align, Instruction *InsertBefore = nullptr);
200 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
201 Align Align, BasicBlock *InsertAtEnd);
202 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
203 Align Align, AtomicOrdering Order,
204 SyncScope::ID SSID = SyncScope::System,
205 Instruction *InsertBefore = nullptr);
206 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile,
207 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
208 BasicBlock *InsertAtEnd);
209
210 /// Return true if this is a load from a volatile memory location.
211 bool isVolatile() const { return getSubclassData<VolatileField>(); }
212
213 /// Specify whether this is a volatile load or not.
214 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
215
216 /// Return the alignment of the access that is being performed.
217 /// FIXME: Remove this function once transition to Align is over.
218 /// Use getAlign() instead.
219 unsigned getAlignment() const { return getAlign().value(); }
220
221 /// Return the alignment of the access that is being performed.
222 Align getAlign() const {
223 return Align(1ULL << (getSubclassData<AlignmentField>()));
224 }
225
226 void setAlignment(Align Align) {
227 setSubclassData<AlignmentField>(Log2(Align));
228 }
229
230 /// Returns the ordering constraint of this load instruction.
231 AtomicOrdering getOrdering() const {
232 return getSubclassData<OrderingField>();
233 }
234 /// Sets the ordering constraint of this load instruction. May not be Release
235 /// or AcquireRelease.
236 void setOrdering(AtomicOrdering Ordering) {
237 setSubclassData<OrderingField>(Ordering);
238 }
239
240 /// Returns the synchronization scope ID of this load instruction.
241 SyncScope::ID getSyncScopeID() const {
242 return SSID;
243 }
244
245 /// Sets the synchronization scope ID of this load instruction.
246 void setSyncScopeID(SyncScope::ID SSID) {
247 this->SSID = SSID;
248 }
249
250 /// Sets the ordering constraint and the synchronization scope ID of this load
251 /// instruction.
252 void setAtomic(AtomicOrdering Ordering,
253 SyncScope::ID SSID = SyncScope::System) {
254 setOrdering(Ordering);
255 setSyncScopeID(SSID);
256 }
257
258 bool isSimple() const { return !isAtomic() && !isVolatile(); }
259
260 bool isUnordered() const {
261 return (getOrdering() == AtomicOrdering::NotAtomic ||
262 getOrdering() == AtomicOrdering::Unordered) &&
263 !isVolatile();
264 }
265
266 Value *getPointerOperand() { return getOperand(0); }
267 const Value *getPointerOperand() const { return getOperand(0); }
268 static unsigned getPointerOperandIndex() { return 0U; }
269 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
270
271 /// Returns the address space of the pointer operand.
272 unsigned getPointerAddressSpace() const {
273 return getPointerOperandType()->getPointerAddressSpace();
274 }
275
276 // Methods for support type inquiry through isa, cast, and dyn_cast:
277 static bool classof(const Instruction *I) {
278 return I->getOpcode() == Instruction::Load;
279 }
280 static bool classof(const Value *V) {
281 return isa<Instruction>(V) && classof(cast<Instruction>(V));
282 }
283
284private:
285 // Shadow Instruction::setInstructionSubclassData with a private forwarding
286 // method so that subclasses cannot accidentally use it.
287 template <typename Bitfield>
288 void setSubclassData(typename Bitfield::Type Value) {
289 Instruction::setSubclassData<Bitfield>(Value);
290 }
291
292 /// The synchronization scope ID of this load instruction. Not quite enough
293 /// room in SubClassData for everything, so synchronization scope ID gets its
294 /// own field.
295 SyncScope::ID SSID;
296};
297
298//===----------------------------------------------------------------------===//
299// StoreInst Class
300//===----------------------------------------------------------------------===//
301
302/// An instruction for storing to memory.
303class StoreInst : public Instruction {
304 using VolatileField = BoolBitfieldElementT<0>;
305 using AlignmentField = AlignmentBitfieldElementT<VolatileField::NextBit>;
306 using OrderingField = AtomicOrderingBitfieldElementT<AlignmentField::NextBit>;
307 static_assert(
308 Bitfield::areContiguous<VolatileField, AlignmentField, OrderingField>(),
309 "Bitfields must be contiguous");
310
311 void AssertOK();
312
313protected:
314 // Note: Instruction needs to be a friend here to call cloneImpl.
315 friend class Instruction;
316
317 StoreInst *cloneImpl() const;
318
319public:
320 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
321 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
322 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Instruction *InsertBefore);
323 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
324 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
325 Instruction *InsertBefore = nullptr);
326 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
327 BasicBlock *InsertAtEnd);
328 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
329 AtomicOrdering Order, SyncScope::ID SSID = SyncScope::System,
330 Instruction *InsertBefore = nullptr);
331 StoreInst(Value *Val, Value *Ptr, bool isVolatile, Align Align,
332 AtomicOrdering Order, SyncScope::ID SSID, BasicBlock *InsertAtEnd);
333
334 // allocate space for exactly two operands
335 void *operator new(size_t s) {
336 return User::operator new(s, 2);
337 }
338
339 /// Return true if this is a store to a volatile memory location.
340 bool isVolatile() const { return getSubclassData<VolatileField>(); }
341
342 /// Specify whether this is a volatile store or not.
343 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
344
345 /// Transparently provide more efficient getOperand methods.
346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
347
348 /// Return the alignment of the access that is being performed
349 /// FIXME: Remove this function once transition to Align is over.
350 /// Use getAlign() instead.
351 unsigned getAlignment() const { return getAlign().value(); }
352
353 Align getAlign() const {
354 return Align(1ULL << (getSubclassData<AlignmentField>()));
355 }
356
357 void setAlignment(Align Align) {
358 setSubclassData<AlignmentField>(Log2(Align));
359 }
360
361 /// Returns the ordering constraint of this store instruction.
362 AtomicOrdering getOrdering() const {
363 return getSubclassData<OrderingField>();
364 }
365
366 /// Sets the ordering constraint of this store instruction. May not be
367 /// Acquire or AcquireRelease.
368 void setOrdering(AtomicOrdering Ordering) {
369 setSubclassData<OrderingField>(Ordering);
370 }
371
372 /// Returns the synchronization scope ID of this store instruction.
373 SyncScope::ID getSyncScopeID() const {
374 return SSID;
375 }
376
377 /// Sets the synchronization scope ID of this store instruction.
378 void setSyncScopeID(SyncScope::ID SSID) {
379 this->SSID = SSID;
380 }
381
382 /// Sets the ordering constraint and the synchronization scope ID of this
383 /// store instruction.
384 void setAtomic(AtomicOrdering Ordering,
385 SyncScope::ID SSID = SyncScope::System) {
386 setOrdering(Ordering);
387 setSyncScopeID(SSID);
388 }
389
390 bool isSimple() const { return !isAtomic() && !isVolatile(); }
391
392 bool isUnordered() const {
393 return (getOrdering() == AtomicOrdering::NotAtomic ||
394 getOrdering() == AtomicOrdering::Unordered) &&
395 !isVolatile();
396 }
397
398 Value *getValueOperand() { return getOperand(0); }
399 const Value *getValueOperand() const { return getOperand(0); }
400
401 Value *getPointerOperand() { return getOperand(1); }
402 const Value *getPointerOperand() const { return getOperand(1); }
403 static unsigned getPointerOperandIndex() { return 1U; }
404 Type *getPointerOperandType() const { return getPointerOperand()->getType(); }
405
406 /// Returns the address space of the pointer operand.
407 unsigned getPointerAddressSpace() const {
408 return getPointerOperandType()->getPointerAddressSpace();
409 }
410
411 // Methods for support type inquiry through isa, cast, and dyn_cast:
412 static bool classof(const Instruction *I) {
413 return I->getOpcode() == Instruction::Store;
414 }
415 static bool classof(const Value *V) {
416 return isa<Instruction>(V) && classof(cast<Instruction>(V));
417 }
418
419private:
420 // Shadow Instruction::setInstructionSubclassData with a private forwarding
421 // method so that subclasses cannot accidentally use it.
422 template <typename Bitfield>
423 void setSubclassData(typename Bitfield::Type Value) {
424 Instruction::setSubclassData<Bitfield>(Value);
425 }
426
427 /// The synchronization scope ID of this store instruction. Not quite enough
428 /// room in SubClassData for everything, so synchronization scope ID gets its
429 /// own field.
430 SyncScope::ID SSID;
431};
432
433template <>
434struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
435};
436
437DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
438
439//===----------------------------------------------------------------------===//
440// FenceInst Class
441//===----------------------------------------------------------------------===//
442
443/// An instruction for ordering other memory operations.
444class FenceInst : public Instruction {
445 using OrderingField = AtomicOrderingBitfieldElementT<0>;
446
447 void Init(AtomicOrdering Ordering, SyncScope::ID SSID);
448
449protected:
450 // Note: Instruction needs to be a friend here to call cloneImpl.
451 friend class Instruction;
452
453 FenceInst *cloneImpl() const;
454
455public:
456 // Ordering may only be Acquire, Release, AcquireRelease, or
457 // SequentiallyConsistent.
458 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
459 SyncScope::ID SSID = SyncScope::System,
460 Instruction *InsertBefore = nullptr);
461 FenceInst(LLVMContext &C, AtomicOrdering Ordering, SyncScope::ID SSID,
462 BasicBlock *InsertAtEnd);
463
464 // allocate space for exactly zero operands
465 void *operator new(size_t s) {
466 return User::operator new(s, 0);
467 }
468
469 /// Returns the ordering constraint of this fence instruction.
470 AtomicOrdering getOrdering() const {
471 return getSubclassData<OrderingField>();
472 }
473
474 /// Sets the ordering constraint of this fence instruction. May only be
475 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
476 void setOrdering(AtomicOrdering Ordering) {
477 setSubclassData<OrderingField>(Ordering);
478 }
479
480 /// Returns the synchronization scope ID of this fence instruction.
481 SyncScope::ID getSyncScopeID() const {
482 return SSID;
483 }
484
485 /// Sets the synchronization scope ID of this fence instruction.
486 void setSyncScopeID(SyncScope::ID SSID) {
487 this->SSID = SSID;
488 }
489
490 // Methods for support type inquiry through isa, cast, and dyn_cast:
491 static bool classof(const Instruction *I) {
492 return I->getOpcode() == Instruction::Fence;
493 }
494 static bool classof(const Value *V) {
495 return isa<Instruction>(V) && classof(cast<Instruction>(V));
496 }
497
498private:
499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
500 // method so that subclasses cannot accidentally use it.
501 template <typename Bitfield>
502 void setSubclassData(typename Bitfield::Type Value) {
503 Instruction::setSubclassData<Bitfield>(Value);
504 }
505
506 /// The synchronization scope ID of this fence instruction. Not quite enough
507 /// room in SubClassData for everything, so synchronization scope ID gets its
508 /// own field.
509 SyncScope::ID SSID;
510};
511
512//===----------------------------------------------------------------------===//
513// AtomicCmpXchgInst Class
514//===----------------------------------------------------------------------===//
515
516/// An instruction that atomically checks whether a
517/// specified value is in a memory location, and, if it is, stores a new value
518/// there. The value returned by this instruction is a pair containing the
519/// original value as first element, and an i1 indicating success (true) or
520/// failure (false) as second element.
521///
522class AtomicCmpXchgInst : public Instruction {
523 void Init(Value *Ptr, Value *Cmp, Value *NewVal, Align Align,
524 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
525 SyncScope::ID SSID);
526
527 template <unsigned Offset>
528 using AtomicOrderingBitfieldElement =
529 typename Bitfield::Element<AtomicOrdering, Offset, 3,
530 AtomicOrdering::LAST>;
531
532protected:
533 // Note: Instruction needs to be a friend here to call cloneImpl.
534 friend class Instruction;
535
536 AtomicCmpXchgInst *cloneImpl() const;
537
538public:
539 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
540 AtomicOrdering SuccessOrdering,
541 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
542 Instruction *InsertBefore = nullptr);
543 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, Align Alignment,
544 AtomicOrdering SuccessOrdering,
545 AtomicOrdering FailureOrdering, SyncScope::ID SSID,
546 BasicBlock *InsertAtEnd);
547
548 // allocate space for exactly three operands
549 void *operator new(size_t s) {
550 return User::operator new(s, 3);
551 }
552
553 using VolatileField = BoolBitfieldElementT<0>;
554 using WeakField = BoolBitfieldElementT<VolatileField::NextBit>;
555 using SuccessOrderingField =
556 AtomicOrderingBitfieldElementT<WeakField::NextBit>;
557 using FailureOrderingField =
558 AtomicOrderingBitfieldElementT<SuccessOrderingField::NextBit>;
559 using AlignmentField =
560 AlignmentBitfieldElementT<FailureOrderingField::NextBit>;
561 static_assert(
562 Bitfield::areContiguous<VolatileField, WeakField, SuccessOrderingField,
563 FailureOrderingField, AlignmentField>(),
564 "Bitfields must be contiguous");
565
566 /// Return the alignment of the memory that is being allocated by the
567 /// instruction.
568 Align getAlign() const {
569 return Align(1ULL << getSubclassData<AlignmentField>());
570 }
571
572 void setAlignment(Align Align) {
573 setSubclassData<AlignmentField>(Log2(Align));
574 }
575
576 /// Return true if this is a cmpxchg from a volatile memory
577 /// location.
578 ///
579 bool isVolatile() const { return getSubclassData<VolatileField>(); }
580
581 /// Specify whether this is a volatile cmpxchg.
582 ///
583 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
584
585 /// Return true if this cmpxchg may spuriously fail.
586 bool isWeak() const { return getSubclassData<WeakField>(); }
587
588 void setWeak(bool IsWeak) { setSubclassData<WeakField>(IsWeak); }
589
590 /// Transparently provide more efficient getOperand methods.
591 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
592
593 /// Returns the success ordering constraint of this cmpxchg instruction.
594 AtomicOrdering getSuccessOrdering() const {
595 return getSubclassData<SuccessOrderingField>();
596 }
597
598 /// Sets the success ordering constraint of this cmpxchg instruction.
599 void setSuccessOrdering(AtomicOrdering Ordering) {
600 assert(Ordering != AtomicOrdering::NotAtomic &&
601 "CmpXchg instructions can only be atomic.");
602 setSubclassData<SuccessOrderingField>(Ordering);
603 }
604
605 /// Returns the failure ordering constraint of this cmpxchg instruction.
606 AtomicOrdering getFailureOrdering() const {
607 return getSubclassData<FailureOrderingField>();
608 }
609
610 /// Sets the failure ordering constraint of this cmpxchg instruction.
611 void setFailureOrdering(AtomicOrdering Ordering) {
612 assert(Ordering != AtomicOrdering::NotAtomic &&
613 "CmpXchg instructions can only be atomic.");
614 setSubclassData<FailureOrderingField>(Ordering);
615 }
616
617 /// Returns the synchronization scope ID of this cmpxchg instruction.
618 SyncScope::ID getSyncScopeID() const {
619 return SSID;
620 }
621
622 /// Sets the synchronization scope ID of this cmpxchg instruction.
623 void setSyncScopeID(SyncScope::ID SSID) {
624 this->SSID = SSID;
625 }
626
627 Value *getPointerOperand() { return getOperand(0); }
628 const Value *getPointerOperand() const { return getOperand(0); }
629 static unsigned getPointerOperandIndex() { return 0U; }
630
631 Value *getCompareOperand() { return getOperand(1); }
632 const Value *getCompareOperand() const { return getOperand(1); }
633
634 Value *getNewValOperand() { return getOperand(2); }
635 const Value *getNewValOperand() const { return getOperand(2); }
636
637 /// Returns the address space of the pointer operand.
638 unsigned getPointerAddressSpace() const {
639 return getPointerOperand()->getType()->getPointerAddressSpace();
640 }
641
642 /// Returns the strongest permitted ordering on failure, given the
643 /// desired ordering on success.
644 ///
645 /// If the comparison in a cmpxchg operation fails, there is no atomic store
646 /// so release semantics cannot be provided. So this function drops explicit
647 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
648 /// operation would remain SequentiallyConsistent.
649 static AtomicOrdering
650 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
651 switch (SuccessOrdering) {
652 default:
653 llvm_unreachable("invalid cmpxchg success ordering");
654 case AtomicOrdering::Release:
655 case AtomicOrdering::Monotonic:
656 return AtomicOrdering::Monotonic;
657 case AtomicOrdering::AcquireRelease:
658 case AtomicOrdering::Acquire:
659 return AtomicOrdering::Acquire;
660 case AtomicOrdering::SequentiallyConsistent:
661 return AtomicOrdering::SequentiallyConsistent;
662 }
663 }
664
665 // Methods for support type inquiry through isa, cast, and dyn_cast:
666 static bool classof(const Instruction *I) {
667 return I->getOpcode() == Instruction::AtomicCmpXchg;
668 }
669 static bool classof(const Value *V) {
670 return isa<Instruction>(V) && classof(cast<Instruction>(V));
671 }
672
673private:
674 // Shadow Instruction::setInstructionSubclassData with a private forwarding
675 // method so that subclasses cannot accidentally use it.
676 template <typename Bitfield>
677 void setSubclassData(typename Bitfield::Type Value) {
678 Instruction::setSubclassData<Bitfield>(Value);
679 }
680
681 /// The synchronization scope ID of this cmpxchg instruction. Not quite
682 /// enough room in SubClassData for everything, so synchronization scope ID
683 /// gets its own field.
684 SyncScope::ID SSID;
685};
686
687template <>
688struct OperandTraits<AtomicCmpXchgInst> :
689 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
690};
691
692DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
693
694//===----------------------------------------------------------------------===//
695// AtomicRMWInst Class
696//===----------------------------------------------------------------------===//
697
698/// an instruction that atomically reads a memory location,
699/// combines it with another value, and then stores the result back. Returns
700/// the old value.
701///
702class AtomicRMWInst : public Instruction {
703protected:
704 // Note: Instruction needs to be a friend here to call cloneImpl.
705 friend class Instruction;
706
707 AtomicRMWInst *cloneImpl() const;
708
709public:
710 /// This enumeration lists the possible modifications atomicrmw can make. In
711 /// the descriptions, 'p' is the pointer to the instruction's memory location,
712 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
713 /// instruction. These instructions always return 'old'.
714 enum BinOp : unsigned {
715 /// *p = v
716 Xchg,
717 /// *p = old + v
718 Add,
719 /// *p = old - v
720 Sub,
721 /// *p = old & v
722 And,
723 /// *p = ~(old & v)
724 Nand,
725 /// *p = old | v
726 Or,
727 /// *p = old ^ v
728 Xor,
729 /// *p = old >signed v ? old : v
730 Max,
731 /// *p = old <signed v ? old : v
732 Min,
733 /// *p = old >unsigned v ? old : v
734 UMax,
735 /// *p = old <unsigned v ? old : v
736 UMin,
737
738 /// *p = old + v
739 FAdd,
740
741 /// *p = old - v
742 FSub,
743
744 FIRST_BINOP = Xchg,
745 LAST_BINOP = FSub,
746 BAD_BINOP
747 };
748
749private:
750 template <unsigned Offset>
751 using AtomicOrderingBitfieldElement =
752 typename Bitfield::Element<AtomicOrdering, Offset, 3,
753 AtomicOrdering::LAST>;
754
755 template <unsigned Offset>
756 using BinOpBitfieldElement =
757 typename Bitfield::Element<BinOp, Offset, 4, BinOp::LAST_BINOP>;
758
759public:
760 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
761 AtomicOrdering Ordering, SyncScope::ID SSID,
762 Instruction *InsertBefore = nullptr);
763 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, Align Alignment,
764 AtomicOrdering Ordering, SyncScope::ID SSID,
765 BasicBlock *InsertAtEnd);
766
767 // allocate space for exactly two operands
768 void *operator new(size_t s) {
769 return User::operator new(s, 2);
770 }
771
772 using VolatileField = BoolBitfieldElementT<0>;
773 using AtomicOrderingField =
774 AtomicOrderingBitfieldElementT<VolatileField::NextBit>;
775 using OperationField = BinOpBitfieldElement<AtomicOrderingField::NextBit>;
776 using AlignmentField = AlignmentBitfieldElementT<OperationField::NextBit>;
777 static_assert(Bitfield::areContiguous<VolatileField, AtomicOrderingField,
778 OperationField, AlignmentField>(),
779 "Bitfields must be contiguous");
780
781 BinOp getOperation() const { return getSubclassData<OperationField>(); }
782
783 static StringRef getOperationName(BinOp Op);
784
785 static bool isFPOperation(BinOp Op) {
786 switch (Op) {
787 case AtomicRMWInst::FAdd:
788 case AtomicRMWInst::FSub:
789 return true;
790 default:
791 return false;
792 }
793 }
794
795 void setOperation(BinOp Operation) {
796 setSubclassData<OperationField>(Operation);
797 }
798
799 /// Return the alignment of the memory that is being allocated by the
800 /// instruction.
801 Align getAlign() const {
802 return Align(1ULL << getSubclassData<AlignmentField>());
803 }
804
805 void setAlignment(Align Align) {
806 setSubclassData<AlignmentField>(Log2(Align));
807 }
808
809 /// Return true if this is a RMW on a volatile memory location.
810 ///
811 bool isVolatile() const { return getSubclassData<VolatileField>(); }
812
813 /// Specify whether this is a volatile RMW or not.
814 ///
815 void setVolatile(bool V) { setSubclassData<VolatileField>(V); }
816
817 /// Transparently provide more efficient getOperand methods.
818 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
819
820 /// Returns the ordering constraint of this rmw instruction.
821 AtomicOrdering getOrdering() const {
822 return getSubclassData<AtomicOrderingField>();
823 }
824
825 /// Sets the ordering constraint of this rmw instruction.
826 void setOrdering(AtomicOrdering Ordering) {
827 assert(Ordering != AtomicOrdering::NotAtomic &&
828 "atomicrmw instructions can only be atomic.");
829 setSubclassData<AtomicOrderingField>(Ordering);
830 }
831
832 /// Returns the synchronization scope ID of this rmw instruction.
833 SyncScope::ID getSyncScopeID() const {
834 return SSID;
835 }
836
837 /// Sets the synchronization scope ID of this rmw instruction.
838 void setSyncScopeID(SyncScope::ID SSID) {
839 this->SSID = SSID;
840 }
841
842 Value *getPointerOperand() { return getOperand(0); }
843 const Value *getPointerOperand() const { return getOperand(0); }
844 static unsigned getPointerOperandIndex() { return 0U; }
845
846 Value *getValOperand() { return getOperand(1); }
847 const Value *getValOperand() const { return getOperand(1); }
848
849 /// Returns the address space of the pointer operand.
850 unsigned getPointerAddressSpace() const {
851 return getPointerOperand()->getType()->getPointerAddressSpace();
852 }
853
854 bool isFloatingPointOperation() const {
855 return isFPOperation(getOperation());
856 }
857
858 // Methods for support type inquiry through isa, cast, and dyn_cast:
859 static bool classof(const Instruction *I) {
860 return I->getOpcode() == Instruction::AtomicRMW;
861 }
862 static bool classof(const Value *V) {
863 return isa<Instruction>(V) && classof(cast<Instruction>(V));
864 }
865
866private:
867 void Init(BinOp Operation, Value *Ptr, Value *Val, Align Align,
868 AtomicOrdering Ordering, SyncScope::ID SSID);
869
870 // Shadow Instruction::setInstructionSubclassData with a private forwarding
871 // method so that subclasses cannot accidentally use it.
872 template <typename Bitfield>
873 void setSubclassData(typename Bitfield::Type Value) {
874 Instruction::setSubclassData<Bitfield>(Value);
875 }
876
877 /// The synchronization scope ID of this rmw instruction. Not quite enough
878 /// room in SubClassData for everything, so synchronization scope ID gets its
879 /// own field.
880 SyncScope::ID SSID;
881};
882
883template <>
884struct OperandTraits<AtomicRMWInst>
885 : public FixedNumOperandTraits<AtomicRMWInst,2> {
886};
887
888DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
889
890//===----------------------------------------------------------------------===//
891// GetElementPtrInst Class
892//===----------------------------------------------------------------------===//
893
894// checkGEPType - Simple wrapper function to give a better assertion failure
895// message on bad indexes for a gep instruction.
896//
897inline Type *checkGEPType(Type *Ty) {
898 assert(Ty && "Invalid GetElementPtrInst indices for type!");
899 return Ty;
900}
901
902/// an instruction for type-safe pointer arithmetic to
903/// access elements of arrays and structs
904///
905class GetElementPtrInst : public Instruction {
906 Type *SourceElementType;
907 Type *ResultElementType;
908
909 GetElementPtrInst(const GetElementPtrInst &GEPI);
910
911 /// Constructors - Create a getelementptr instruction with a base pointer an
912 /// list of indices. The first ctor can optionally insert before an existing
913 /// instruction, the second appends the new instruction to the specified
914 /// BasicBlock.
915 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
916 ArrayRef<Value *> IdxList, unsigned Values,
917 const Twine &NameStr, Instruction *InsertBefore);
918 inline GetElementPtrInst(Type *PointeeType, Value *Ptr,
919 ArrayRef<Value *> IdxList, unsigned Values,
920 const Twine &NameStr, BasicBlock *InsertAtEnd);
921
922 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
923
924protected:
925 // Note: Instruction needs to be a friend here to call cloneImpl.
926 friend class Instruction;
927
928 GetElementPtrInst *cloneImpl() const;
929
930public:
931 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
932 ArrayRef<Value *> IdxList,
933 const Twine &NameStr = "",
934 Instruction *InsertBefore = nullptr) {
935 unsigned Values = 1 + unsigned(IdxList.size());
936 if (!PointeeType)
937 PointeeType =
938 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
939 else
940 assert(
941 PointeeType ==
942 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
943 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
944 NameStr, InsertBefore);
945 }
946
947 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr,
948 ArrayRef<Value *> IdxList,
949 const Twine &NameStr,
950 BasicBlock *InsertAtEnd) {
951 unsigned Values = 1 + unsigned(IdxList.size());
952 if (!PointeeType)
953 PointeeType =
954 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType();
955 else
956 assert(
957 PointeeType ==
958 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType());
959 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values,
960 NameStr, InsertAtEnd);
961 }
962
963 /// Create an "inbounds" getelementptr. See the documentation for the
964 /// "inbounds" flag in LangRef.html for details.
965 static GetElementPtrInst *CreateInBounds(Value *Ptr,
966 ArrayRef<Value *> IdxList,
967 const Twine &NameStr = "",
968 Instruction *InsertBefore = nullptr){
969 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore);
970 }
971
972 static GetElementPtrInst *
973 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList,
974 const Twine &NameStr = "",
975 Instruction *InsertBefore = nullptr) {
976 GetElementPtrInst *GEP =
977 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore);
978 GEP->setIsInBounds(true);
979 return GEP;
980 }
981
982 static GetElementPtrInst *CreateInBounds(Value *Ptr,
983 ArrayRef<Value *> IdxList,
984 const Twine &NameStr,
985 BasicBlock *InsertAtEnd) {
986 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd);
987 }
988
989 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr,
990 ArrayRef<Value *> IdxList,
991 const Twine &NameStr,
992 BasicBlock *InsertAtEnd) {
993 GetElementPtrInst *GEP =
994 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd);
995 GEP->setIsInBounds(true);
996 return GEP;
997 }
998
999 /// Transparently provide more efficient getOperand methods.
1000 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1001
1002 Type *getSourceElementType() const { return SourceElementType; }
1003
1004 void setSourceElementType(Type *Ty) { SourceElementType = Ty; }
1005 void setResultElementType(Type *Ty) { ResultElementType = Ty; }
1006
1007 Type *getResultElementType() const {
1008 assert(ResultElementType ==
1009 cast<PointerType>(getType()->getScalarType())->getElementType());
1010 return ResultElementType;
1011 }
1012
1013 /// Returns the address space of this instruction's pointer type.
1014 unsigned getAddressSpace() const {
1015 // Note that this is always the same as the pointer operand's address space
1016 // and that is cheaper to compute, so cheat here.
1017 return getPointerAddressSpace();
1018 }
1019
1020 /// Returns the result type of a getelementptr with the given source
1021 /// element type and indexes.
1022 ///
1023 /// Null is returned if the indices are invalid for the specified
1024 /// source element type.
1025 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList);
1026 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList);
1027 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList);
1028
1029 /// Return the type of the element at the given index of an indexable
1030 /// type. This is equivalent to "getIndexedType(Agg, {Zero, Idx})".
1031 ///
1032 /// Returns null if the type can't be indexed, or the given index is not
1033 /// legal for the given type.
1034 static Type *getTypeAtIndex(Type *Ty, Value *Idx);
1035 static Type *getTypeAtIndex(Type *Ty, uint64_t Idx);
1036
1037 inline op_iterator idx_begin() { return op_begin()+1; }
1038 inline const_op_iterator idx_begin() const { return op_begin()+1; }
1039 inline op_iterator idx_end() { return op_end(); }
1040 inline const_op_iterator idx_end() const { return op_end(); }
1041
1042 inline iterator_range<op_iterator> indices() {
1043 return make_range(idx_begin(), idx_end());
1044 }
1045
1046 inline iterator_range<const_op_iterator> indices() const {
1047 return make_range(idx_begin(), idx_end());
1048 }
1049
1050 Value *getPointerOperand() {
1051 return getOperand(0);
1052 }
1053 const Value *getPointerOperand() const {
1054 return getOperand(0);
1055 }
1056 static unsigned getPointerOperandIndex() {
1057 return 0U; // get index for modifying correct operand.
1058 }
1059
1060 /// Method to return the pointer operand as a
1061 /// PointerType.
1062 Type *getPointerOperandType() const {
1063 return getPointerOperand()->getType();
1064 }
1065
1066 /// Returns the address space of the pointer operand.
1067 unsigned getPointerAddressSpace() const {
1068 return getPointerOperandType()->getPointerAddressSpace();
1069 }
1070
1071 /// Returns the pointer type returned by the GEP
1072 /// instruction, which may be a vector of pointers.
1073 static Type *getGEPReturnType(Type *ElTy, Value *Ptr,
1074 ArrayRef<Value *> IdxList) {
1075 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)),
1076 Ptr->getType()->getPointerAddressSpace());
1077 // Vector GEP
1078 if (auto *PtrVTy = dyn_cast<VectorType>(Ptr->getType())) {
1079 ElementCount EltCount = PtrVTy->getElementCount();
1080 return VectorType::get(PtrTy, EltCount);
1081 }
1082 for (Value *Index : IdxList)
1083 if (auto *IndexVTy = dyn_cast<VectorType>(Index->getType())) {
1084 ElementCount EltCount = IndexVTy->getElementCount();
1085 return VectorType::get(PtrTy, EltCount);
1086 }
1087 // Scalar GEP
1088 return PtrTy;
1089 }
1090
1091 unsigned getNumIndices() const { // Note: always non-negative
1092 return getNumOperands() - 1;
1093 }
1094
1095 bool hasIndices() const {
1096 return getNumOperands() > 1;
1097 }
1098
1099 /// Return true if all of the indices of this GEP are
1100 /// zeros. If so, the result pointer and the first operand have the same
1101 /// value, just potentially different types.
1102 bool hasAllZeroIndices() const;
1103
1104 /// Return true if all of the indices of this GEP are
1105 /// constant integers. If so, the result pointer and the first operand have
1106 /// a constant offset between them.
1107 bool hasAllConstantIndices() const;
1108
1109 /// Set or clear the inbounds flag on this GEP instruction.
1110 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1111 void setIsInBounds(bool b = true);
1112
1113 /// Determine whether the GEP has the inbounds flag.
1114 bool isInBounds() const;
1115
1116 /// Accumulate the constant address offset of this GEP if possible.
1117 ///
1118 /// This routine accepts an APInt into which it will accumulate the constant
1119 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1120 /// all-constant, it returns false and the value of the offset APInt is
1121 /// undefined (it is *not* preserved!). The APInt passed into this routine
1122 /// must be at least as wide as the IntPtr type for the address space of
1123 /// the base GEP pointer.
1124 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
1125
1126 // Methods for support type inquiry through isa, cast, and dyn_cast:
1127 static bool classof(const Instruction *I) {
1128 return (I->getOpcode() == Instruction::GetElementPtr);
1129 }
1130 static bool classof(const Value *V) {
1131 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1132 }
1133};
1134
1135template <>
1136struct OperandTraits<GetElementPtrInst> :
1137 public VariadicOperandTraits<GetElementPtrInst, 1> {
1138};
1139
1140GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1141 ArrayRef<Value *> IdxList, unsigned Values,
1142 const Twine &NameStr,
1143 Instruction *InsertBefore)
1144 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1145 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1146 Values, InsertBefore),
1147 SourceElementType(PointeeType),
1148 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1149 assert(ResultElementType ==
1150 cast<PointerType>(getType()->getScalarType())->getElementType());
1151 init(Ptr, IdxList, NameStr);
1152}
1153
1154GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr,
1155 ArrayRef<Value *> IdxList, unsigned Values,
1156 const Twine &NameStr,
1157 BasicBlock *InsertAtEnd)
1158 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr,
1159 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
1160 Values, InsertAtEnd),
1161 SourceElementType(PointeeType),
1162 ResultElementType(getIndexedType(PointeeType, IdxList)) {
1163 assert(ResultElementType ==
1164 cast<PointerType>(getType()->getScalarType())->getElementType());
1165 init(Ptr, IdxList, NameStr);
1166}
1167
1168DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
1169
1170//===----------------------------------------------------------------------===//
1171// ICmpInst Class
1172//===----------------------------------------------------------------------===//
1173
1174/// This instruction compares its operands according to the predicate given
1175/// to the constructor. It only operates on integers or pointers. The operands
1176/// must be identical types.
1177/// Represent an integer comparison operator.
1178class ICmpInst: public CmpInst {
1179 void AssertOK() {
1180 assert(isIntPredicate() &&
1181 "Invalid ICmp predicate value");
1182 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1183 "Both operands to ICmp instruction are not of the same type!");
1184 // Check that the operands are the right type
1185 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1186 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1187 "Invalid operand types for ICmp instruction");
1188 }
1189
1190protected:
1191 // Note: Instruction needs to be a friend here to call cloneImpl.
1192 friend class Instruction;
1193
1194 /// Clone an identical ICmpInst
1195 ICmpInst *cloneImpl() const;
1196
1197public:
1198 /// Constructor with insert-before-instruction semantics.
1199 ICmpInst(
1200 Instruction *InsertBefore, ///< Where to insert
1201 Predicate pred, ///< The predicate to use for the comparison
1202 Value *LHS, ///< The left-hand-side of the expression
1203 Value *RHS, ///< The right-hand-side of the expression
1204 const Twine &NameStr = "" ///< Name of the instruction
1205 ) : CmpInst(makeCmpResultType(LHS->getType()),
1206 Instruction::ICmp, pred, LHS, RHS, NameStr,
1207 InsertBefore) {
1208#ifndef NDEBUG
1209 AssertOK();
1210#endif
1211 }
1212
1213 /// Constructor with insert-at-end semantics.
1214 ICmpInst(
1215 BasicBlock &InsertAtEnd, ///< Block to insert into.
1216 Predicate pred, ///< The predicate to use for the comparison
1217 Value *LHS, ///< The left-hand-side of the expression
1218 Value *RHS, ///< The right-hand-side of the expression
1219 const Twine &NameStr = "" ///< Name of the instruction
1220 ) : CmpInst(makeCmpResultType(LHS->getType()),
1221 Instruction::ICmp, pred, LHS, RHS, NameStr,
1222 &InsertAtEnd) {
1223#ifndef NDEBUG
1224 AssertOK();
1225#endif
1226 }
1227
1228 /// Constructor with no-insertion semantics
1229 ICmpInst(
1230 Predicate pred, ///< The predicate to use for the comparison
1231 Value *LHS, ///< The left-hand-side of the expression
1232 Value *RHS, ///< The right-hand-side of the expression
1233 const Twine &NameStr = "" ///< Name of the instruction
1234 ) : CmpInst(makeCmpResultType(LHS->getType()),
1235 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1236#ifndef NDEBUG
1237 AssertOK();
1238#endif
1239 }
1240
1241 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1242 /// @returns the predicate that would be the result if the operand were
1243 /// regarded as signed.
1244 /// Return the signed version of the predicate
1245 Predicate getSignedPredicate() const {
1246 return getSignedPredicate(getPredicate());
1247 }
1248
1249 /// This is a static version that you can use without an instruction.
1250 /// Return the signed version of the predicate.
1251 static Predicate getSignedPredicate(Predicate pred);
1252
1253 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1254 /// @returns the predicate that would be the result if the operand were
1255 /// regarded as unsigned.
1256 /// Return the unsigned version of the predicate
1257 Predicate getUnsignedPredicate() const {
1258 return getUnsignedPredicate(getPredicate());
1259 }
1260
1261 /// This is a static version that you can use without an instruction.
1262 /// Return the unsigned version of the predicate.
1263 static Predicate getUnsignedPredicate(Predicate pred);
1264
1265 /// Return true if this predicate is either EQ or NE. This also
1266 /// tests for commutativity.
1267 static bool isEquality(Predicate P) {
1268 return P == ICMP_EQ || P == ICMP_NE;
1269 }
1270
1271 /// Return true if this predicate is either EQ or NE. This also
1272 /// tests for commutativity.
1273 bool isEquality() const {
1274 return isEquality(getPredicate());
1275 }
1276
1277 /// @returns true if the predicate of this ICmpInst is commutative
1278 /// Determine if this relation is commutative.
1279 bool isCommutative() const { return isEquality(); }
1280
1281 /// Return true if the predicate is relational (not EQ or NE).
1282 ///
1283 bool isRelational() const {
1284 return !isEquality();
1285 }
1286
1287 /// Return true if the predicate is relational (not EQ or NE).
1288 ///
1289 static bool isRelational(Predicate P) {
1290 return !isEquality(P);
1291 }
1292
1293 /// Return true if the predicate is SGT or UGT.
1294 ///
1295 static bool isGT(Predicate P) {
1296 return P == ICMP_SGT || P == ICMP_UGT;
1297 }
1298
1299 /// Return true if the predicate is SLT or ULT.
1300 ///
1301 static bool isLT(Predicate P) {
1302 return P == ICMP_SLT || P == ICMP_ULT;
1303 }
1304
1305 /// Return true if the predicate is SGE or UGE.
1306 ///
1307 static bool isGE(Predicate P) {
1308 return P == ICMP_SGE || P == ICMP_UGE;
1309 }
1310
1311 /// Return true if the predicate is SLE or ULE.
1312 ///
1313 static bool isLE(Predicate P) {
1314 return P == ICMP_SLE || P == ICMP_ULE;
1315 }
1316
1317 /// Exchange the two operands to this instruction in such a way that it does
1318 /// not modify the semantics of the instruction. The predicate value may be
1319 /// changed to retain the same result if the predicate is order dependent
1320 /// (e.g. ult).
1321 /// Swap operands and adjust predicate.
1322 void swapOperands() {
1323 setPredicate(getSwappedPredicate());
1324 Op<0>().swap(Op<1>());
1325 }
1326
1327 // Methods for support type inquiry through isa, cast, and dyn_cast:
1328 static bool classof(const Instruction *I) {
1329 return I->getOpcode() == Instruction::ICmp;
1330 }
1331 static bool classof(const Value *V) {
1332 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1333 }
1334};
1335
1336//===----------------------------------------------------------------------===//
1337// FCmpInst Class
1338//===----------------------------------------------------------------------===//
1339
1340/// This instruction compares its operands according to the predicate given
1341/// to the constructor. It only operates on floating point values or packed
1342/// vectors of floating point values. The operands must be identical types.
1343/// Represents a floating point comparison operator.
1344class FCmpInst: public CmpInst {
1345 void AssertOK() {
1346 assert(isFPPredicate() && "Invalid FCmp predicate value");
1347 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1348 "Both operands to FCmp instruction are not of the same type!");
1349 // Check that the operands are the right type
1350 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1351 "Invalid operand types for FCmp instruction");
1352 }
1353
1354protected:
1355 // Note: Instruction needs to be a friend here to call cloneImpl.
1356 friend class Instruction;
1357
1358 /// Clone an identical FCmpInst
1359 FCmpInst *cloneImpl() const;
1360
1361public:
1362 /// Constructor with insert-before-instruction semantics.
1363 FCmpInst(
1364 Instruction *InsertBefore, ///< Where to insert
1365 Predicate pred, ///< The predicate to use for the comparison
1366 Value *LHS, ///< The left-hand-side of the expression
1367 Value *RHS, ///< The right-hand-side of the expression
1368 const Twine &NameStr = "" ///< Name of the instruction
1369 ) : CmpInst(makeCmpResultType(LHS->getType()),
1370 Instruction::FCmp, pred, LHS, RHS, NameStr,
1371 InsertBefore) {
1372 AssertOK();
1373 }
1374
1375 /// Constructor with insert-at-end semantics.
1376 FCmpInst(
1377 BasicBlock &InsertAtEnd, ///< Block to insert into.
1378 Predicate pred, ///< The predicate to use for the comparison
1379 Value *LHS, ///< The left-hand-side of the expression
1380 Value *RHS, ///< The right-hand-side of the expression
1381 const Twine &NameStr = "" ///< Name of the instruction
1382 ) : CmpInst(makeCmpResultType(LHS->getType()),
1383 Instruction::FCmp, pred, LHS, RHS, NameStr,
1384 &InsertAtEnd) {
1385 AssertOK();
1386 }
1387
1388 /// Constructor with no-insertion semantics
1389 FCmpInst(
1390 Predicate Pred, ///< The predicate to use for the comparison
1391 Value *LHS, ///< The left-hand-side of the expression
1392 Value *RHS, ///< The right-hand-side of the expression
1393 const Twine &NameStr = "", ///< Name of the instruction
1394 Instruction *FlagsSource = nullptr
1395 ) : CmpInst(makeCmpResultType(LHS->getType()), Instruction::FCmp, Pred, LHS,
1396 RHS, NameStr, nullptr, FlagsSource) {
1397 AssertOK();
1398 }
1399
1400 /// @returns true if the predicate of this instruction is EQ or NE.
1401 /// Determine if this is an equality predicate.
1402 static bool isEquality(Predicate Pred) {
1403 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ ||
1404 Pred == FCMP_UNE;
1405 }
1406
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 bool isEquality() const { return isEquality(getPredicate()); }
1410
1411 /// @returns true if the predicate of this instruction is commutative.
1412 /// Determine if this is a commutative predicate.
1413 bool isCommutative() const {
1414 return isEquality() ||
1415 getPredicate() == FCMP_FALSE ||
1416 getPredicate() == FCMP_TRUE ||
1417 getPredicate() == FCMP_ORD ||
1418 getPredicate() == FCMP_UNO;
1419 }
1420
1421 /// @returns true if the predicate is relational (not EQ or NE).
1422 /// Determine if this a relational predicate.
1423 bool isRelational() const { return !isEquality(); }
1424
1425 /// Exchange the two operands to this instruction in such a way that it does
1426 /// not modify the semantics of the instruction. The predicate value may be
1427 /// changed to retain the same result if the predicate is order dependent
1428 /// (e.g. ult).
1429 /// Swap operands and adjust predicate.
1430 void swapOperands() {
1431 setPredicate(getSwappedPredicate());
1432 Op<0>().swap(Op<1>());
1433 }
1434
1435 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1436 static bool classof(const Instruction *I) {
1437 return I->getOpcode() == Instruction::FCmp;
1438 }
1439 static bool classof(const Value *V) {
1440 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1441 }
1442};
1443
1444//===----------------------------------------------------------------------===//
1445/// This class represents a function call, abstracting a target
1446/// machine's calling convention. This class uses low bit of the SubClassData
1447/// field to indicate whether or not this is a tail call. The rest of the bits
1448/// hold the calling convention of the call.
1449///
1450class CallInst : public CallBase {
1451 CallInst(const CallInst &CI);
1452
1453 /// Construct a CallInst given a range of arguments.
1454 /// Construct a CallInst from a range of arguments
1455 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1456 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1457 Instruction *InsertBefore);
1458
1459 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1460 const Twine &NameStr, Instruction *InsertBefore)
1461 : CallInst(Ty, Func, Args, None, NameStr, InsertBefore) {}
1462
1463 /// Construct a CallInst given a range of arguments.
1464 /// Construct a CallInst from a range of arguments
1465 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1466 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1467 BasicBlock *InsertAtEnd);
1468
1469 explicit CallInst(FunctionType *Ty, Value *F, const Twine &NameStr,
1470 Instruction *InsertBefore);
1471
1472 CallInst(FunctionType *ty, Value *F, const Twine &NameStr,
1473 BasicBlock *InsertAtEnd);
1474
1475 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
1476 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr);
1477 void init(FunctionType *FTy, Value *Func, const Twine &NameStr);
1478
1479 /// Compute the number of operands to allocate.
1480 static int ComputeNumOperands(int NumArgs, int NumBundleInputs = 0) {
1481 // We need one operand for the called function, plus the input operand
1482 // counts provided.
1483 return 1 + NumArgs + NumBundleInputs;
1484 }
1485
1486protected:
1487 // Note: Instruction needs to be a friend here to call cloneImpl.
1488 friend class Instruction;
1489
1490 CallInst *cloneImpl() const;
1491
1492public:
1493 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr = "",
1494 Instruction *InsertBefore = nullptr) {
1495 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertBefore);
1496 }
1497
1498 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1499 const Twine &NameStr,
1500 Instruction *InsertBefore = nullptr) {
1501 return new (ComputeNumOperands(Args.size()))
1502 CallInst(Ty, Func, Args, None, NameStr, InsertBefore);
1503 }
1504
1505 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1506 ArrayRef<OperandBundleDef> Bundles = None,
1507 const Twine &NameStr = "",
1508 Instruction *InsertBefore = nullptr) {
1509 const int NumOperands =
1510 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1511 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1512
1513 return new (NumOperands, DescriptorBytes)
1514 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore);
1515 }
1516
1517 static CallInst *Create(FunctionType *Ty, Value *F, const Twine &NameStr,
1518 BasicBlock *InsertAtEnd) {
1519 return new (ComputeNumOperands(0)) CallInst(Ty, F, NameStr, InsertAtEnd);
1520 }
1521
1522 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1523 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1524 return new (ComputeNumOperands(Args.size()))
1525 CallInst(Ty, Func, Args, None, NameStr, InsertAtEnd);
1526 }
1527
1528 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1529 ArrayRef<OperandBundleDef> Bundles,
1530 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1531 const int NumOperands =
1532 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles));
1533 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo);
1534
1535 return new (NumOperands, DescriptorBytes)
1536 CallInst(Ty, Func, Args, Bundles, NameStr, InsertAtEnd);
1537 }
1538
1539 static CallInst *Create(FunctionCallee Func, const Twine &NameStr = "",
1540 Instruction *InsertBefore = nullptr) {
1541 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1542 InsertBefore);
1543 }
1544
1545 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1546 ArrayRef<OperandBundleDef> Bundles = None,
1547 const Twine &NameStr = "",
1548 Instruction *InsertBefore = nullptr) {
1549 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1550 NameStr, InsertBefore);
1551 }
1552
1553 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1554 const Twine &NameStr,
1555 Instruction *InsertBefore = nullptr) {
1556 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1557 InsertBefore);
1558 }
1559
1560 static CallInst *Create(FunctionCallee Func, const Twine &NameStr,
1561 BasicBlock *InsertAtEnd) {
1562 return Create(Func.getFunctionType(), Func.getCallee(), NameStr,
1563 InsertAtEnd);
1564 }
1565
1566 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1567 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1568 return Create(Func.getFunctionType(), Func.getCallee(), Args, NameStr,
1569 InsertAtEnd);
1570 }
1571
1572 static CallInst *Create(FunctionCallee Func, ArrayRef<Value *> Args,
1573 ArrayRef<OperandBundleDef> Bundles,
1574 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1575 return Create(Func.getFunctionType(), Func.getCallee(), Args, Bundles,
1576 NameStr, InsertAtEnd);
1577 }
1578
1579 /// Create a clone of \p CI with a different set of operand bundles and
1580 /// insert it before \p InsertPt.
1581 ///
1582 /// The returned call instruction is identical \p CI in every way except that
1583 /// the operand bundles for the new instruction are set to the operand bundles
1584 /// in \p Bundles.
1585 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles,
1586 Instruction *InsertPt = nullptr);
1587
1588 /// Generate the IR for a call to malloc:
1589 /// 1. Compute the malloc call's argument as the specified type's size,
1590 /// possibly multiplied by the array size if the array size is not
1591 /// constant 1.
1592 /// 2. Call malloc with that argument.
1593 /// 3. Bitcast the result of the malloc call to the specified type.
1594 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1595 Type *AllocTy, Value *AllocSize,
1596 Value *ArraySize = nullptr,
1597 Function *MallocF = nullptr,
1598 const Twine &Name = "");
1599 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1600 Type *AllocTy, Value *AllocSize,
1601 Value *ArraySize = nullptr,
1602 Function *MallocF = nullptr,
1603 const Twine &Name = "");
1604 static Instruction *CreateMalloc(Instruction *InsertBefore, Type *IntPtrTy,
1605 Type *AllocTy, Value *AllocSize,
1606 Value *ArraySize = nullptr,
1607 ArrayRef<OperandBundleDef> Bundles = None,
1608 Function *MallocF = nullptr,
1609 const Twine &Name = "");
1610 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, Type *IntPtrTy,
1611 Type *AllocTy, Value *AllocSize,
1612 Value *ArraySize = nullptr,
1613 ArrayRef<OperandBundleDef> Bundles = None,
1614 Function *MallocF = nullptr,
1615 const Twine &Name = "");
1616 /// Generate the IR for a call to the builtin free function.
1617 static Instruction *CreateFree(Value *Source, Instruction *InsertBefore);
1618 static Instruction *CreateFree(Value *Source, BasicBlock *InsertAtEnd);
1619 static Instruction *CreateFree(Value *Source,
1620 ArrayRef<OperandBundleDef> Bundles,
1621 Instruction *InsertBefore);
1622 static Instruction *CreateFree(Value *Source,
1623 ArrayRef<OperandBundleDef> Bundles,
1624 BasicBlock *InsertAtEnd);
1625
1626 // Note that 'musttail' implies 'tail'.
1627 enum TailCallKind : unsigned {
1628 TCK_None = 0,
1629 TCK_Tail = 1,
1630 TCK_MustTail = 2,
1631 TCK_NoTail = 3,
1632 TCK_LAST = TCK_NoTail
1633 };
1634
1635 using TailCallKindField = Bitfield::Element<TailCallKind, 0, 2, TCK_LAST>;
1636 static_assert(
1637 Bitfield::areContiguous<TailCallKindField, CallBase::CallingConvField>(),
1638 "Bitfields must be contiguous");
1639
1640 TailCallKind getTailCallKind() const {
1641 return getSubclassData<TailCallKindField>();
1642 }
1643
1644 bool isTailCall() const {
1645 TailCallKind Kind = getTailCallKind();
1646 return Kind == TCK_Tail || Kind == TCK_MustTail;
1647 }
1648
1649 bool isMustTailCall() const { return getTailCallKind() == TCK_MustTail; }
1650
1651 bool isNoTailCall() const { return getTailCallKind() == TCK_NoTail; }
1652
1653 void setTailCallKind(TailCallKind TCK) {
1654 setSubclassData<TailCallKindField>(TCK);
1655 }
1656
1657 void setTailCall(bool IsTc = true) {
1658 setTailCallKind(IsTc ? TCK_Tail : TCK_None);
1659 }
1660
1661 /// Return true if the call can return twice
1662 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice); }
1663 void setCanReturnTwice() {
1664 addAttribute(AttributeList::FunctionIndex, Attribute::ReturnsTwice);
1665 }
1666
1667 // Methods for support type inquiry through isa, cast, and dyn_cast:
1668 static bool classof(const Instruction *I) {
1669 return I->getOpcode() == Instruction::Call;
1670 }
1671 static bool classof(const Value *V) {
1672 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1673 }
1674
1675 /// Updates profile metadata by scaling it by \p S / \p T.
1676 void updateProfWeight(uint64_t S, uint64_t T);
1677
1678private:
1679 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1680 // method so that subclasses cannot accidentally use it.
1681 template <typename Bitfield>
1682 void setSubclassData(typename Bitfield::Type Value) {
1683 Instruction::setSubclassData<Bitfield>(Value);
1684 }
1685};
1686
1687CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1688 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1689 BasicBlock *InsertAtEnd)
1690 : CallBase(Ty->getReturnType(), Instruction::Call,
1691 OperandTraits<CallBase>::op_end(this) -
1692 (Args.size() + CountBundleInputs(Bundles) + 1),
1693 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1694 InsertAtEnd) {
1695 init(Ty, Func, Args, Bundles, NameStr);
1696}
1697
1698CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args,
1699 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr,
1700 Instruction *InsertBefore)
1701 : CallBase(Ty->getReturnType(), Instruction::Call,
1702 OperandTraits<CallBase>::op_end(this) -
1703 (Args.size() + CountBundleInputs(Bundles) + 1),
1704 unsigned(Args.size() + CountBundleInputs(Bundles) + 1),
1705 InsertBefore) {
1706 init(Ty, Func, Args, Bundles, NameStr);
1707}
1708
1709//===----------------------------------------------------------------------===//
1710// SelectInst Class
1711//===----------------------------------------------------------------------===//
1712
1713/// This class represents the LLVM 'select' instruction.
1714///
1715class SelectInst : public Instruction {
1716 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1717 Instruction *InsertBefore)
1718 : Instruction(S1->getType(), Instruction::Select,
1719 &Op<0>(), 3, InsertBefore) {
1720 init(C, S1, S2);
1721 setName(NameStr);
1722 }
1723
1724 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1725 BasicBlock *InsertAtEnd)
1726 : Instruction(S1->getType(), Instruction::Select,
1727 &Op<0>(), 3, InsertAtEnd) {
1728 init(C, S1, S2);
1729 setName(NameStr);
1730 }
1731
1732 void init(Value *C, Value *S1, Value *S2) {
1733 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1734 Op<0>() = C;
1735 Op<1>() = S1;
1736 Op<2>() = S2;
1737 }
1738
1739protected:
1740 // Note: Instruction needs to be a friend here to call cloneImpl.
1741 friend class Instruction;
1742
1743 SelectInst *cloneImpl() const;
1744
1745public:
1746 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1747 const Twine &NameStr = "",
1748 Instruction *InsertBefore = nullptr,
1749 Instruction *MDFrom = nullptr) {
1750 SelectInst *Sel = new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1751 if (MDFrom)
1752 Sel->copyMetadata(*MDFrom);
1753 return Sel;
1754 }
1755
1756 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1757 const Twine &NameStr,
1758 BasicBlock *InsertAtEnd) {
1759 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1760 }
1761
1762 const Value *getCondition() const { return Op<0>(); }
1763 const Value *getTrueValue() const { return Op<1>(); }
1764 const Value *getFalseValue() const { return Op<2>(); }
1765 Value *getCondition() { return Op<0>(); }
1766 Value *getTrueValue() { return Op<1>(); }
1767 Value *getFalseValue() { return Op<2>(); }
1768
1769 void setCondition(Value *V) { Op<0>() = V; }
1770 void setTrueValue(Value *V) { Op<1>() = V; }
1771 void setFalseValue(Value *V) { Op<2>() = V; }
1772
1773 /// Swap the true and false values of the select instruction.
1774 /// This doesn't swap prof metadata.
1775 void swapValues() { Op<1>().swap(Op<2>()); }
1776
1777 /// Return a string if the specified operands are invalid
1778 /// for a select operation, otherwise return null.
1779 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1780
1781 /// Transparently provide more efficient getOperand methods.
1782 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1783
1784 OtherOps getOpcode() const {
1785 return static_cast<OtherOps>(Instruction::getOpcode());
1786 }
1787
1788 // Methods for support type inquiry through isa, cast, and dyn_cast:
1789 static bool classof(const Instruction *I) {
1790 return I->getOpcode() == Instruction::Select;
1791 }
1792 static bool classof(const Value *V) {
1793 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1794 }
1795};
1796
1797template <>
1798struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1799};
1800
1801DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1802
1803//===----------------------------------------------------------------------===//
1804// VAArgInst Class
1805//===----------------------------------------------------------------------===//
1806
1807/// This class represents the va_arg llvm instruction, which returns
1808/// an argument of the specified type given a va_list and increments that list
1809///
1810class VAArgInst : public UnaryInstruction {
1811protected:
1812 // Note: Instruction needs to be a friend here to call cloneImpl.
1813 friend class Instruction;
1814
1815 VAArgInst *cloneImpl() const;
1816
1817public:
1818 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1819 Instruction *InsertBefore = nullptr)
1820 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1821 setName(NameStr);
1822 }
1823
1824 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1825 BasicBlock *InsertAtEnd)
1826 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1827 setName(NameStr);
1828 }
1829
1830 Value *getPointerOperand() { return getOperand(0); }
1831 const Value *getPointerOperand() const { return getOperand(0); }
1832 static unsigned getPointerOperandIndex() { return 0U; }
1833
1834 // Methods for support type inquiry through isa, cast, and dyn_cast:
1835 static bool classof(const Instruction *I) {
1836 return I->getOpcode() == VAArg;
1837 }
1838 static bool classof(const Value *V) {
1839 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1840 }
1841};
1842
1843//===----------------------------------------------------------------------===//
1844// ExtractElementInst Class
1845//===----------------------------------------------------------------------===//
1846
1847/// This instruction extracts a single (scalar)
1848/// element from a VectorType value
1849///
1850class ExtractElementInst : public Instruction {
1851 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1852 Instruction *InsertBefore = nullptr);
1853 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1854 BasicBlock *InsertAtEnd);
1855
1856protected:
1857 // Note: Instruction needs to be a friend here to call cloneImpl.
1858 friend class Instruction;
1859
1860 ExtractElementInst *cloneImpl() const;
1861
1862public:
1863 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1864 const Twine &NameStr = "",
1865 Instruction *InsertBefore = nullptr) {
1866 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1867 }
1868
1869 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1870 const Twine &NameStr,
1871 BasicBlock *InsertAtEnd) {
1872 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1873 }
1874
1875 /// Return true if an extractelement instruction can be
1876 /// formed with the specified operands.
1877 static bool isValidOperands(const Value *Vec, const Value *Idx);
1878
1879 Value *getVectorOperand() { return Op<0>(); }
1880 Value *getIndexOperand() { return Op<1>(); }
1881 const Value *getVectorOperand() const { return Op<0>(); }
1882 const Value *getIndexOperand() const { return Op<1>(); }
1883
1884 VectorType *getVectorOperandType() const {
1885 return cast<VectorType>(getVectorOperand()->getType());
1886 }
1887
1888 /// Transparently provide more efficient getOperand methods.
1889 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1890
1891 // Methods for support type inquiry through isa, cast, and dyn_cast:
1892 static bool classof(const Instruction *I) {
1893 return I->getOpcode() == Instruction::ExtractElement;
1894 }
1895 static bool classof(const Value *V) {
1896 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1897 }
1898};
1899
1900template <>
1901struct OperandTraits<ExtractElementInst> :
1902 public FixedNumOperandTraits<ExtractElementInst, 2> {
1903};
1904
1905DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1906
1907//===----------------------------------------------------------------------===//
1908// InsertElementInst Class
1909//===----------------------------------------------------------------------===//
1910
1911/// This instruction inserts a single (scalar)
1912/// element into a VectorType value
1913///
1914class InsertElementInst : public Instruction {
1915 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1916 const Twine &NameStr = "",
1917 Instruction *InsertBefore = nullptr);
1918 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr,
1919 BasicBlock *InsertAtEnd);
1920
1921protected:
1922 // Note: Instruction needs to be a friend here to call cloneImpl.
1923 friend class Instruction;
1924
1925 InsertElementInst *cloneImpl() const;
1926
1927public:
1928 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1929 const Twine &NameStr = "",
1930 Instruction *InsertBefore = nullptr) {
1931 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1932 }
1933
1934 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1935 const Twine &NameStr,
1936 BasicBlock *InsertAtEnd) {
1937 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1938 }
1939
1940 /// Return true if an insertelement instruction can be
1941 /// formed with the specified operands.
1942 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1943 const Value *Idx);
1944
1945 /// Overload to return most specific vector type.
1946 ///
1947 VectorType *getType() const {
1948 return cast<VectorType>(Instruction::getType());
1949 }
1950
1951 /// Transparently provide more efficient getOperand methods.
1952 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1953
1954 // Methods for support type inquiry through isa, cast, and dyn_cast:
1955 static bool classof(const Instruction *I) {
1956 return I->getOpcode() == Instruction::InsertElement;
1957 }
1958 static bool classof(const Value *V) {
1959 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1960 }
1961};
1962
1963template <>
1964struct OperandTraits<InsertElementInst> :
1965 public FixedNumOperandTraits<InsertElementInst, 3> {
1966};
1967
1968DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1969
1970//===----------------------------------------------------------------------===//
1971// ShuffleVectorInst Class
1972//===----------------------------------------------------------------------===//
1973
1974constexpr int UndefMaskElem = -1;
1975
1976/// This instruction constructs a fixed permutation of two
1977/// input vectors.
1978///
1979/// For each element of the result vector, the shuffle mask selects an element
1980/// from one of the input vectors to copy to the result. Non-negative elements
1981/// in the mask represent an index into the concatenated pair of input vectors.
1982/// UndefMaskElem (-1) specifies that the result element is undefined.
1983///
1984/// For scalable vectors, all the elements of the mask must be 0 or -1. This
1985/// requirement may be relaxed in the future.
1986class ShuffleVectorInst : public Instruction {
1987 SmallVector<int, 4> ShuffleMask;
1988 Constant *ShuffleMaskForBitcode;
1989
1990protected:
1991 // Note: Instruction needs to be a friend here to call cloneImpl.
1992 friend class Instruction;
1993
1994 ShuffleVectorInst *cloneImpl() const;
1995
1996public:
1997 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1998 const Twine &NameStr = "",
1999 Instruction *InsertBefor = nullptr);
2000 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
2001 const Twine &NameStr, BasicBlock *InsertAtEnd);
2002 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2003 const Twine &NameStr = "",
2004 Instruction *InsertBefor = nullptr);
2005 ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
2006 const Twine &NameStr, BasicBlock *InsertAtEnd);
2007
2008 void *operator new(size_t s) { return User::operator new(s, 2); }
2009
2010 /// Swap the operands and adjust the mask to preserve the semantics
2011 /// of the instruction.
2012 void commute();
2013
2014 /// Return true if a shufflevector instruction can be
2015 /// formed with the specified operands.
2016 static bool isValidOperands(const Value *V1, const Value *V2,
2017 const Value *Mask);
2018 static bool isValidOperands(const Value *V1, const Value *V2,
2019 ArrayRef<int> Mask);
2020
2021 /// Overload to return most specific vector type.
2022 ///
2023 VectorType *getType() const {
2024 return cast<VectorType>(Instruction::getType());
2025 }
2026
2027 /// Transparently provide more efficient getOperand methods.
2028 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2029
2030 /// Return the shuffle mask value of this instruction for the given element
2031 /// index. Return UndefMaskElem if the element is undef.
2032 int getMaskValue(unsigned Elt) const { return ShuffleMask[Elt]; }
2033
2034 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2035 /// elements of the mask are returned as UndefMaskElem.
2036 static void getShuffleMask(const Constant *Mask,
2037 SmallVectorImpl<int> &Result);
2038
2039 /// Return the mask for this instruction as a vector of integers. Undefined
2040 /// elements of the mask are returned as UndefMaskElem.
2041 void getShuffleMask(SmallVectorImpl<int> &Result) const {
2042 Result.assign(ShuffleMask.begin(), ShuffleMask.end());
2043 }
2044
2045 /// Return the mask for this instruction, for use in bitcode.
2046 ///
2047 /// TODO: This is temporary until we decide a new bitcode encoding for
2048 /// shufflevector.
2049 Constant *getShuffleMaskForBitcode() const { return ShuffleMaskForBitcode; }
2050
2051 static Constant *convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2052 Type *ResultTy);
2053
2054 void setShuffleMask(ArrayRef<int> Mask);
2055
2056 ArrayRef<int> getShuffleMask() const { return ShuffleMask; }
2057
2058 /// Return true if this shuffle returns a vector with a different number of
2059 /// elements than its source vectors.
2060 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2061 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2062 bool changesLength() const {
2063 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2064 ->getElementCount()
2065 .getKnownMinValue();
2066 unsigned NumMaskElts = ShuffleMask.size();
2067 return NumSourceElts != NumMaskElts;
2068 }
2069
2070 /// Return true if this shuffle returns a vector with a greater number of
2071 /// elements than its source vectors.
2072 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2073 bool increasesLength() const {
2074 unsigned NumSourceElts = cast<VectorType>(Op<0>()->getType())
2075 ->getElementCount()
2076 .getKnownMinValue();
2077 unsigned NumMaskElts = ShuffleMask.size();
2078 return NumSourceElts < NumMaskElts;
2079 }
2080
2081 /// Return true if this shuffle mask chooses elements from exactly one source
2082 /// vector.
2083 /// Example: <7,5,undef,7>
2084 /// This assumes that vector operands are the same length as the mask.
2085 static bool isSingleSourceMask(ArrayRef<int> Mask);
2086 static bool isSingleSourceMask(const Constant *Mask) {
2087 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2088 SmallVector<int, 16> MaskAsInts;
2089 getShuffleMask(Mask, MaskAsInts);
2090 return isSingleSourceMask(MaskAsInts);
2091 }
2092
2093 /// Return true if this shuffle chooses elements from exactly one source
2094 /// vector without changing the length of that vector.
2095 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2096 /// TODO: Optionally allow length-changing shuffles.
2097 bool isSingleSource() const {
2098 return !changesLength() && isSingleSourceMask(ShuffleMask);
2099 }
2100
2101 /// Return true if this shuffle mask chooses elements from exactly one source
2102 /// vector without lane crossings. A shuffle using this mask is not
2103 /// necessarily a no-op because it may change the number of elements from its
2104 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2105 /// Example: <undef,undef,2,3>
2106 static bool isIdentityMask(ArrayRef<int> Mask);
2107 static bool isIdentityMask(const Constant *Mask) {
2108 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2109 SmallVector<int, 16> MaskAsInts;
2110 getShuffleMask(Mask, MaskAsInts);
2111 return isIdentityMask(MaskAsInts);
2112 }
2113
2114 /// Return true if this shuffle chooses elements from exactly one source
2115 /// vector without lane crossings and does not change the number of elements
2116 /// from its input vectors.
2117 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2118 bool isIdentity() const {
2119 return !changesLength() && isIdentityMask(ShuffleMask);
2120 }
2121
2122 /// Return true if this shuffle lengthens exactly one source vector with
2123 /// undefs in the high elements.
2124 bool isIdentityWithPadding() const;
2125
2126 /// Return true if this shuffle extracts the first N elements of exactly one
2127 /// source vector.
2128 bool isIdentityWithExtract() const;
2129
2130 /// Return true if this shuffle concatenates its 2 source vectors. This
2131 /// returns false if either input is undefined. In that case, the shuffle is
2132 /// is better classified as an identity with padding operation.
2133 bool isConcat() const;
2134
2135 /// Return true if this shuffle mask chooses elements from its source vectors
2136 /// without lane crossings. A shuffle using this mask would be
2137 /// equivalent to a vector select with a constant condition operand.
2138 /// Example: <4,1,6,undef>
2139 /// This returns false if the mask does not choose from both input vectors.
2140 /// In that case, the shuffle is better classified as an identity shuffle.
2141 /// This assumes that vector operands are the same length as the mask
2142 /// (a length-changing shuffle can never be equivalent to a vector select).
2143 static bool isSelectMask(ArrayRef<int> Mask);
2144 static bool isSelectMask(const Constant *Mask) {
2145 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2146 SmallVector<int, 16> MaskAsInts;
2147 getShuffleMask(Mask, MaskAsInts);
2148 return isSelectMask(MaskAsInts);
2149 }
2150
2151 /// Return true if this shuffle chooses elements from its source vectors
2152 /// without lane crossings and all operands have the same number of elements.
2153 /// In other words, this shuffle is equivalent to a vector select with a
2154 /// constant condition operand.
2155 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2156 /// This returns false if the mask does not choose from both input vectors.
2157 /// In that case, the shuffle is better classified as an identity shuffle.
2158 /// TODO: Optionally allow length-changing shuffles.
2159 bool isSelect() const {
2160 return !changesLength() && isSelectMask(ShuffleMask);
2161 }
2162
2163 /// Return true if this shuffle mask swaps the order of elements from exactly
2164 /// one source vector.
2165 /// Example: <7,6,undef,4>
2166 /// This assumes that vector operands are the same length as the mask.
2167 static bool isReverseMask(ArrayRef<int> Mask);
2168 static bool isReverseMask(const Constant *Mask) {
2169 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2170 SmallVector<int, 16> MaskAsInts;
2171 getShuffleMask(Mask, MaskAsInts);
2172 return isReverseMask(MaskAsInts);
2173 }
2174
2175 /// Return true if this shuffle swaps the order of elements from exactly
2176 /// one source vector.
2177 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2178 /// TODO: Optionally allow length-changing shuffles.
2179 bool isReverse() const {
2180 return !changesLength() && isReverseMask(ShuffleMask);
2181 }
2182
2183 /// Return true if this shuffle mask chooses all elements with the same value
2184 /// as the first element of exactly one source vector.
2185 /// Example: <4,undef,undef,4>
2186 /// This assumes that vector operands are the same length as the mask.
2187 static bool isZeroEltSplatMask(ArrayRef<int> Mask);
2188 static bool isZeroEltSplatMask(const Constant *Mask) {
2189 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2190 SmallVector<int, 16> MaskAsInts;
2191 getShuffleMask(Mask, MaskAsInts);
2192 return isZeroEltSplatMask(MaskAsInts);
2193 }
2194
2195 /// Return true if all elements of this shuffle are the same value as the
2196 /// first element of exactly one source vector without changing the length
2197 /// of that vector.
2198 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2199 /// TODO: Optionally allow length-changing shuffles.
2200 /// TODO: Optionally allow splats from other elements.
2201 bool isZeroEltSplat() const {
2202 return !changesLength() && isZeroEltSplatMask(ShuffleMask);
2203 }
2204
2205 /// Return true if this shuffle mask is a transpose mask.
2206 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2207 /// even- or odd-numbered vector elements from two n-dimensional source
2208 /// vectors and write each result into consecutive elements of an
2209 /// n-dimensional destination vector. Two shuffles are necessary to complete
2210 /// the transpose, one for the even elements and another for the odd elements.
2211 /// This description closely follows how the TRN1 and TRN2 AArch64
2212 /// instructions operate.
2213 ///
2214 /// For example, a simple 2x2 matrix can be transposed with:
2215 ///
2216 /// ; Original matrix
2217 /// m0 = < a, b >
2218 /// m1 = < c, d >
2219 ///
2220 /// ; Transposed matrix
2221 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2222 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2223 ///
2224 /// For matrices having greater than n columns, the resulting nx2 transposed
2225 /// matrix is stored in two result vectors such that one vector contains
2226 /// interleaved elements from all the even-numbered rows and the other vector
2227 /// contains interleaved elements from all the odd-numbered rows. For example,
2228 /// a 2x4 matrix can be transposed with:
2229 ///
2230 /// ; Original matrix
2231 /// m0 = < a, b, c, d >
2232 /// m1 = < e, f, g, h >
2233 ///
2234 /// ; Transposed matrix
2235 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2236 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2237 static bool isTransposeMask(ArrayRef<int> Mask);
2238 static bool isTransposeMask(const Constant *Mask) {
2239 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2240 SmallVector<int, 16> MaskAsInts;
2241 getShuffleMask(Mask, MaskAsInts);
2242 return isTransposeMask(MaskAsInts);
2243 }
2244
2245 /// Return true if this shuffle transposes the elements of its inputs without
2246 /// changing the length of the vectors. This operation may also be known as a
2247 /// merge or interleave. See the description for isTransposeMask() for the
2248 /// exact specification.
2249 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2250 bool isTranspose() const {
2251 return !changesLength() && isTransposeMask(ShuffleMask);
2252 }
2253
2254 /// Return true if this shuffle mask is an extract subvector mask.
2255 /// A valid extract subvector mask returns a smaller vector from a single
2256 /// source operand. The base extraction index is returned as well.
2257 static bool isExtractSubvectorMask(ArrayRef<int> Mask, int NumSrcElts,
2258 int &Index);
2259 static bool isExtractSubvectorMask(const Constant *Mask, int NumSrcElts,
2260 int &Index) {
2261 assert(Mask->getType()->isVectorTy() && "Shuffle needs vector constant.");
2262 // Not possible to express a shuffle mask for a scalable vector for this
2263 // case.
2264 if (isa<ScalableVectorType>(Mask->getType()))
2265 return false;
2266 SmallVector<int, 16> MaskAsInts;
2267 getShuffleMask(Mask, MaskAsInts);
2268 return isExtractSubvectorMask(MaskAsInts, NumSrcElts, Index);
2269 }
2270
2271 /// Return true if this shuffle mask is an extract subvector mask.
2272 bool isExtractSubvectorMask(int &Index) const {
2273 // Not possible to express a shuffle mask for a scalable vector for this
2274 // case.
2275 if (isa<ScalableVectorType>(getType()))
2276 return false;
2277
2278 int NumSrcElts =
2279 cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2280 return isExtractSubvectorMask(ShuffleMask, NumSrcElts, Index);
2281 }
2282
2283 /// Change values in a shuffle permute mask assuming the two vector operands
2284 /// of length InVecNumElts have swapped position.
2285 static void commuteShuffleMask(MutableArrayRef<int> Mask,
2286 unsigned InVecNumElts) {
2287 for (int &Idx : Mask) {
2288 if (Idx == -1)
2289 continue;
2290 Idx = Idx < (int)InVecNumElts ? Idx + InVecNumElts : Idx - InVecNumElts;
2291 assert(Idx >= 0 && Idx < (int)InVecNumElts * 2 &&
2292 "shufflevector mask index out of range");
2293 }
2294 }
2295
2296 // Methods for support type inquiry through isa, cast, and dyn_cast:
2297 static bool classof(const Instruction *I) {
2298 return I->getOpcode() == Instruction::ShuffleVector;
2299 }
2300 static bool classof(const Value *V) {
2301 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2302 }
2303};
2304
2305template <>
2306struct OperandTraits<ShuffleVectorInst>
2307 : public FixedNumOperandTraits<ShuffleVectorInst, 2> {};
2308
2309DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
2310
2311//===----------------------------------------------------------------------===//
2312// ExtractValueInst Class
2313//===----------------------------------------------------------------------===//
2314
2315/// This instruction extracts a struct member or array
2316/// element value from an aggregate value.
2317///
2318class ExtractValueInst : public UnaryInstruction {
2319 SmallVector<unsigned, 4> Indices;
2320
2321 ExtractValueInst(const ExtractValueInst &EVI);
2322
2323 /// Constructors - Create a extractvalue instruction with a base aggregate
2324 /// value and a list of indices. The first ctor can optionally insert before
2325 /// an existing instruction, the second appends the new instruction to the
2326 /// specified BasicBlock.
2327 inline ExtractValueInst(Value *Agg,
2328 ArrayRef<unsigned> Idxs,
2329 const Twine &NameStr,
2330 Instruction *InsertBefore);
2331 inline ExtractValueInst(Value *Agg,
2332 ArrayRef<unsigned> Idxs,
2333 const Twine &NameStr, BasicBlock *InsertAtEnd);
2334
2335 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
2336
2337protected:
2338 // Note: Instruction needs to be a friend here to call cloneImpl.
2339 friend class Instruction;
2340
2341 ExtractValueInst *cloneImpl() const;
2342
2343public:
2344 static ExtractValueInst *Create(Value *Agg,
2345 ArrayRef<unsigned> Idxs,
2346 const Twine &NameStr = "",
2347 Instruction *InsertBefore = nullptr) {
2348 return new
2349 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
2350 }
2351
2352 static ExtractValueInst *Create(Value *Agg,
2353 ArrayRef<unsigned> Idxs,
2354 const Twine &NameStr,
2355 BasicBlock *InsertAtEnd) {
2356 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
2357 }
2358
2359 /// Returns the type of the element that would be extracted
2360 /// with an extractvalue instruction with the specified parameters.
2361 ///
2362 /// Null is returned if the indices are invalid for the specified type.
2363 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
2364
2365 using idx_iterator = const unsigned*;
2366
2367 inline idx_iterator idx_begin() const { return Indices.begin(); }
2368 inline idx_iterator idx_end() const { return Indices.end(); }
2369 inline iterator_range<idx_iterator> indices() const {
2370 return make_range(idx_begin(), idx_end());
2371 }
2372
2373 Value *getAggregateOperand() {
2374 return getOperand(0);
2375 }
2376 const Value *getAggregateOperand() const {
2377 return getOperand(0);
2378 }
2379 static unsigned getAggregateOperandIndex() {
2380 return 0U; // get index for modifying correct operand
2381 }
2382
2383 ArrayRef<unsigned> getIndices() const {
2384 return Indices;
2385 }
2386
2387 unsigned getNumIndices() const {
2388 return (unsigned)Indices.size();
2389 }
2390
2391 bool hasIndices() const {
2392 return true;
2393 }
2394
2395 // Methods for support type inquiry through isa, cast, and dyn_cast:
2396 static bool classof(const Instruction *I) {
2397 return I->getOpcode() == Instruction::ExtractValue;
2398 }
2399 static bool classof(const Value *V) {
2400 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2401 }
2402};
2403
2404ExtractValueInst::ExtractValueInst(Value *Agg,
2405 ArrayRef<unsigned> Idxs,
2406 const Twine &NameStr,
2407 Instruction *InsertBefore)
2408 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2409 ExtractValue, Agg, InsertBefore) {
2410 init(Idxs, NameStr);
2411}
2412
2413ExtractValueInst::ExtractValueInst(Value *Agg,
2414 ArrayRef<unsigned> Idxs,
2415 const Twine &NameStr,
2416 BasicBlock *InsertAtEnd)
2417 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
2418 ExtractValue, Agg, InsertAtEnd) {
2419 init(Idxs, NameStr);
2420}
2421
2422//===----------------------------------------------------------------------===//
2423// InsertValueInst Class
2424//===----------------------------------------------------------------------===//
2425
2426/// This instruction inserts a struct field of array element
2427/// value into an aggregate value.
2428///
2429class InsertValueInst : public Instruction {
2430 SmallVector<unsigned, 4> Indices;
2431
2432 InsertValueInst(const InsertValueInst &IVI);
2433
2434 /// Constructors - Create a insertvalue instruction with a base aggregate
2435 /// value, a value to insert, and a list of indices. The first ctor can
2436 /// optionally insert before an existing instruction, the second appends
2437 /// the new instruction to the specified BasicBlock.
2438 inline InsertValueInst(Value *Agg, Value *Val,
2439 ArrayRef<unsigned> Idxs,
2440 const Twine &NameStr,
2441 Instruction *InsertBefore);
2442 inline InsertValueInst(Value *Agg, Value *Val,
2443 ArrayRef<unsigned> Idxs,
2444 const Twine &NameStr, BasicBlock *InsertAtEnd);
2445
2446 /// Constructors - These two constructors are convenience methods because one
2447 /// and two index insertvalue instructions are so common.
2448 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
2449 const Twine &NameStr = "",
2450 Instruction *InsertBefore = nullptr);
2451 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr,
2452 BasicBlock *InsertAtEnd);
2453
2454 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2455 const Twine &NameStr);
2456
2457protected:
2458 // Note: Instruction needs to be a friend here to call cloneImpl.
2459 friend class Instruction;
2460
2461 InsertValueInst *cloneImpl() const;
2462
2463public:
2464 // allocate space for exactly two operands
2465 void *operator new(size_t s) {
2466 return User::operator new(s, 2);
2467 }
2468
2469 static InsertValueInst *Create(Value *Agg, Value *Val,
2470 ArrayRef<unsigned> Idxs,
2471 const Twine &NameStr = "",
2472 Instruction *InsertBefore = nullptr) {
2473 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
2474 }
2475
2476 static InsertValueInst *Create(Value *Agg, Value *Val,
2477 ArrayRef<unsigned> Idxs,
2478 const Twine &NameStr,
2479 BasicBlock *InsertAtEnd) {
2480 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2481 }
2482
2483 /// Transparently provide more efficient getOperand methods.
2484 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2485
2486 using idx_iterator = const unsigned*;
2487
2488 inline idx_iterator idx_begin() const { return Indices.begin(); }
2489 inline idx_iterator idx_end() const { return Indices.end(); }
2490 inline iterator_range<idx_iterator> indices() const {
2491 return make_range(idx_begin(), idx_end());
2492 }
2493
2494 Value *getAggregateOperand() {
2495 return getOperand(0);
2496 }
2497 const Value *getAggregateOperand() const {
2498 return getOperand(0);
2499 }
2500 static unsigned getAggregateOperandIndex() {
2501 return 0U; // get index for modifying correct operand
2502 }
2503
2504 Value *getInsertedValueOperand() {
2505 return getOperand(1);
2506 }
2507 const Value *getInsertedValueOperand() const {
2508 return getOperand(1);
2509 }
2510 static unsigned getInsertedValueOperandIndex() {
2511 return 1U; // get index for modifying correct operand
2512 }
2513
2514 ArrayRef<unsigned> getIndices() const {
2515 return Indices;
2516 }
2517
2518 unsigned getNumIndices() const {
2519 return (unsigned)Indices.size();
2520 }
2521
2522 bool hasIndices() const {
2523 return true;
2524 }
2525
2526 // Methods for support type inquiry through isa, cast, and dyn_cast:
2527 static bool classof(const Instruction *I) {
2528 return I->getOpcode() == Instruction::InsertValue;
2529 }
2530 static bool classof(const Value *V) {
2531 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2532 }
2533};
2534
2535template <>
2536struct OperandTraits<InsertValueInst> :
2537 public FixedNumOperandTraits<InsertValueInst, 2> {
2538};
2539
2540InsertValueInst::InsertValueInst(Value *Agg,
2541 Value *Val,
2542 ArrayRef<unsigned> Idxs,
2543 const Twine &NameStr,
2544 Instruction *InsertBefore)
2545 : Instruction(Agg->getType(), InsertValue,
2546 OperandTraits<InsertValueInst>::op_begin(this),
2547 2, InsertBefore) {
2548 init(Agg, Val, Idxs, NameStr);
2549}
2550
2551InsertValueInst::InsertValueInst(Value *Agg,
2552 Value *Val,
2553 ArrayRef<unsigned> Idxs,
2554 const Twine &NameStr,
2555 BasicBlock *InsertAtEnd)
2556 : Instruction(Agg->getType(), InsertValue,
2557 OperandTraits<InsertValueInst>::op_begin(this),
2558 2, InsertAtEnd) {
2559 init(Agg, Val, Idxs, NameStr);
2560}
2561
2562DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2563
2564//===----------------------------------------------------------------------===//
2565// PHINode Class
2566//===----------------------------------------------------------------------===//
2567
2568// PHINode - The PHINode class is used to represent the magical mystical PHI
2569// node, that can not exist in nature, but can be synthesized in a computer
2570// scientist's overactive imagination.
2571//
2572class PHINode : public Instruction {
2573 /// The number of operands actually allocated. NumOperands is
2574 /// the number actually in use.
2575 unsigned ReservedSpace;
2576
2577 PHINode(const PHINode &PN);
2578
2579 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2580 const Twine &NameStr = "",
2581 Instruction *InsertBefore = nullptr)
2582 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2583 ReservedSpace(NumReservedValues) {
2584 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2585 setName(NameStr);
2586 allocHungoffUses(ReservedSpace);
2587 }
2588
2589 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2590 BasicBlock *InsertAtEnd)
2591 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2592 ReservedSpace(NumReservedValues) {
2593 assert(!Ty->isTokenTy() && "PHI nodes cannot have token type!");
2594 setName(NameStr);
2595 allocHungoffUses(ReservedSpace);
2596 }
2597
2598protected:
2599 // Note: Instruction needs to be a friend here to call cloneImpl.
2600 friend class Instruction;
2601
2602 PHINode *cloneImpl() const;
2603
2604 // allocHungoffUses - this is more complicated than the generic
2605 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2606 // values and pointers to the incoming blocks, all in one allocation.
2607 void allocHungoffUses(unsigned N) {
2608 User::allocHungoffUses(N, /* IsPhi */ true);
2609 }
2610
2611public:
2612 /// Constructors - NumReservedValues is a hint for the number of incoming
2613 /// edges that this phi node will have (use 0 if you really have no idea).
2614 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2615 const Twine &NameStr = "",
2616 Instruction *InsertBefore = nullptr) {
2617 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2618 }
2619
2620 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2621 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2622 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2623 }
2624
2625 /// Provide fast operand accessors
2626 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2627
2628 // Block iterator interface. This provides access to the list of incoming
2629 // basic blocks, which parallels the list of incoming values.
2630
2631 using block_iterator = BasicBlock **;
2632 using const_block_iterator = BasicBlock * const *;
2633
2634 block_iterator block_begin() {
2635 return reinterpret_cast<block_iterator>(op_begin() + ReservedSpace);
2636 }
2637
2638 const_block_iterator block_begin() const {
2639 return reinterpret_cast<const_block_iterator>(op_begin() + ReservedSpace);
2640 }
2641
2642 block_iterator block_end() {
2643 return block_begin() + getNumOperands();
2644 }
2645
2646 const_block_iterator block_end() const {
2647 return block_begin() + getNumOperands();
2648 }
2649
2650 iterator_range<block_iterator> blocks() {
2651 return make_range(block_begin(), block_end());
2652 }
2653
2654 iterator_range<const_block_iterator> blocks() const {
2655 return make_range(block_begin(), block_end());
2656 }
2657
2658 op_range incoming_values() { return operands(); }
2659
2660 const_op_range incoming_values() const { return operands(); }
2661
2662 /// Return the number of incoming edges
2663 ///
2664 unsigned getNumIncomingValues() const { return getNumOperands(); }
2665
2666 /// Return incoming value number x
2667 ///
2668 Value *getIncomingValue(unsigned i) const {
2669 return getOperand(i);
2670 }
2671 void setIncomingValue(unsigned i, Value *V) {
2672 assert(V && "PHI node got a null value!");
2673 assert(getType() == V->getType() &&
2674 "All operands to PHI node must be the same type as the PHI node!");
2675 setOperand(i, V);
2676 }
2677
2678 static unsigned getOperandNumForIncomingValue(unsigned i) {
2679 return i;
2680 }
2681
2682 static unsigned getIncomingValueNumForOperand(unsigned i) {
2683 return i;
2684 }
2685
2686 /// Return incoming basic block number @p i.
2687 ///
2688 BasicBlock *getIncomingBlock(unsigned i) const {
2689 return block_begin()[i];
2690 }
2691
2692 /// Return incoming basic block corresponding
2693 /// to an operand of the PHI.
2694 ///
2695 BasicBlock *getIncomingBlock(const Use &U) const {
2696 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2697 return getIncomingBlock(unsigned(&U - op_begin()));
2698 }
2699
2700 /// Return incoming basic block corresponding
2701 /// to value use iterator.
2702 ///
2703 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2704 return getIncomingBlock(I.getUse());
2705 }
2706
2707 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2708 assert(BB && "PHI node got a null basic block!");
2709 block_begin()[i] = BB;
2710 }
2711
2712 /// Replace every incoming basic block \p Old to basic block \p New.
2713 void replaceIncomingBlockWith(const BasicBlock *Old, BasicBlock *New) {
2714 assert(New && Old && "PHI node got a null basic block!");
2715 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2716 if (getIncomingBlock(Op) == Old)
2717 setIncomingBlock(Op, New);
2718 }
2719
2720 /// Add an incoming value to the end of the PHI list
2721 ///
2722 void addIncoming(Value *V, BasicBlock *BB) {
2723 if (getNumOperands() == ReservedSpace)
2724 growOperands(); // Get more space!
2725 // Initialize some new operands.
2726 setNumHungOffUseOperands(getNumOperands() + 1);
2727 setIncomingValue(getNumOperands() - 1, V);
2728 setIncomingBlock(getNumOperands() - 1, BB);
2729 }
2730
2731 /// Remove an incoming value. This is useful if a
2732 /// predecessor basic block is deleted. The value removed is returned.
2733 ///
2734 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2735 /// is true), the PHI node is destroyed and any uses of it are replaced with
2736 /// dummy values. The only time there should be zero incoming values to a PHI
2737 /// node is when the block is dead, so this strategy is sound.
2738 ///
2739 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2740
2741 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2742 int Idx = getBasicBlockIndex(BB);
2743 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2744 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2745 }
2746
2747 /// Return the first index of the specified basic
2748 /// block in the value list for this PHI. Returns -1 if no instance.
2749 ///
2750 int getBasicBlockIndex(const BasicBlock *BB) const {
2751 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2752 if (block_begin()[i] == BB)
2753 return i;
2754 return -1;
2755 }
2756
2757 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2758 int Idx = getBasicBlockIndex(BB);
2759 assert(Idx >= 0 && "Invalid basic block argument!");
2760 return getIncomingValue(Idx);
2761 }
2762
2763 /// Set every incoming value(s) for block \p BB to \p V.
2764 void setIncomingValueForBlock(const BasicBlock *BB, Value *V) {
2765 assert(BB && "PHI node got a null basic block!");
2766 bool Found = false;
2767 for (unsigned Op = 0, NumOps = getNumOperands(); Op != NumOps; ++Op)
2768 if (getIncomingBlock(Op) == BB) {
2769 Found = true;
2770 setIncomingValue(Op, V);
2771 }
2772 (void)Found;
2773 assert(Found && "Invalid basic block argument to set!");
2774 }
2775
2776 /// If the specified PHI node always merges together the
2777 /// same value, return the value, otherwise return null.
2778 Value *hasConstantValue() const;
2779
2780 /// Whether the specified PHI node always merges
2781 /// together the same value, assuming undefs are equal to a unique
2782 /// non-undef value.
2783 bool hasConstantOrUndefValue() const;
2784
2785 /// If the PHI node is complete which means all of its parent's predecessors
2786 /// have incoming value in this PHI, return true, otherwise return false.
2787 bool isComplete() const {
2788 return llvm::all_of(predecessors(getParent()),
2789 [this](const BasicBlock *Pred) {
2790 return getBasicBlockIndex(Pred) >= 0;
2791 });
2792 }
2793
2794 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2795 static bool classof(const Instruction *I) {
2796 return I->getOpcode() == Instruction::PHI;
2797 }
2798 static bool classof(const Value *V) {
2799 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2800 }
2801
2802private:
2803 void growOperands();
2804};
2805
2806template <>
2807struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2808};
2809
2810DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2811
2812//===----------------------------------------------------------------------===//
2813// LandingPadInst Class
2814//===----------------------------------------------------------------------===//
2815
2816//===---------------------------------------------------------------------------
2817/// The landingpad instruction holds all of the information
2818/// necessary to generate correct exception handling. The landingpad instruction
2819/// cannot be moved from the top of a landing pad block, which itself is
2820/// accessible only from the 'unwind' edge of an invoke. This uses the
2821/// SubclassData field in Value to store whether or not the landingpad is a
2822/// cleanup.
2823///
2824class LandingPadInst : public Instruction {
2825 using CleanupField = BoolBitfieldElementT<0>;
2826
2827 /// The number of operands actually allocated. NumOperands is
2828 /// the number actually in use.
2829 unsigned ReservedSpace;
2830
2831 LandingPadInst(const LandingPadInst &LP);
2832
2833public:
2834 enum ClauseType { Catch, Filter };