1/* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20/* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
23
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
29
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
35
36 We check (with modified_between_p) to avoid combining in such a way
37 as to move a computation to a place where its value would be different.
38
39 Combination is done by mathematically substituting the previous
40 insn(s) values for the regs they set into the expressions in
41 the later insns that refer to these regs. If the result is a valid insn
42 for our target machine, according to the machine description,
43 we install it, delete the earlier insns, and update the data flow
44 information (LOG_LINKS and REG_NOTES) for what we did.
45
46 There are a few exceptions where the dataflow information isn't
47 completely updated (however this is only a local issue since it is
48 regenerated before the next pass that uses it):
49
50 - reg_live_length is not updated
51 - reg_n_refs is not adjusted in the rare case when a register is
52 no longer required in a computation
53 - there are extremely rare cases (see distribute_notes) when a
54 REG_DEAD note is lost
55 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
56 removed because there is no way to know which register it was
57 linking
58
59 To simplify substitution, we combine only when the earlier insn(s)
60 consist of only a single assignment. To simplify updating afterward,
61 we never combine when a subroutine call appears in the middle. */
62
63#include "config.h"
64#include "system.h"
65#include "coretypes.h"
66#include "backend.h"
67#include "target.h"
68#include "rtl.h"
69#include "tree.h"
70#include "cfghooks.h"
71#include "predict.h"
72#include "df.h"
73#include "memmodel.h"
74#include "tm_p.h"
75#include "optabs.h"
76#include "regs.h"
77#include "emit-rtl.h"
78#include "recog.h"
79#include "cgraph.h"
80#include "stor-layout.h"
81#include "cfgrtl.h"
82#include "cfgcleanup.h"
83/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
84#include "explow.h"
85#include "insn-attr.h"
86#include "rtlhooks-def.h"
87#include "expr.h"
88#include "tree-pass.h"
89#include "valtrack.h"
90#include "rtl-iter.h"
91#include "print-rtl.h"
92#include "function-abi.h"
93#include "rtlanal.h"
94
95/* Number of attempts to combine instructions in this function. */
96
97static int combine_attempts;
98
99/* Number of attempts that got as far as substitution in this function. */
100
101static int combine_merges;
102
103/* Number of instructions combined with added SETs in this function. */
104
105static int combine_extras;
106
107/* Number of instructions combined in this function. */
108
109static int combine_successes;
110
111/* combine_instructions may try to replace the right hand side of the
112 second instruction with the value of an associated REG_EQUAL note
113 before throwing it at try_combine. That is problematic when there
114 is a REG_DEAD note for a register used in the old right hand side
115 and can cause distribute_notes to do wrong things. This is the
116 second instruction if it has been so modified, null otherwise. */
117
118static rtx_insn *i2mod;
119
120/* When I2MOD is nonnull, this is a copy of the old right hand side. */
121
122static rtx i2mod_old_rhs;
123
124/* When I2MOD is nonnull, this is a copy of the new right hand side. */
125
126static rtx i2mod_new_rhs;
127
128struct reg_stat_type {
129 /* Record last point of death of (hard or pseudo) register n. */
130 rtx_insn *last_death;
131
132 /* Record last point of modification of (hard or pseudo) register n. */
133 rtx_insn *last_set;
134
135 /* The next group of fields allows the recording of the last value assigned
136 to (hard or pseudo) register n. We use this information to see if an
137 operation being processed is redundant given a prior operation performed
138 on the register. For example, an `and' with a constant is redundant if
139 all the zero bits are already known to be turned off.
140
141 We use an approach similar to that used by cse, but change it in the
142 following ways:
143
144 (1) We do not want to reinitialize at each label.
145 (2) It is useful, but not critical, to know the actual value assigned
146 to a register. Often just its form is helpful.
147
148 Therefore, we maintain the following fields:
149
150 last_set_value the last value assigned
151 last_set_label records the value of label_tick when the
152 register was assigned
153 last_set_table_tick records the value of label_tick when a
154 value using the register is assigned
155 last_set_invalid set to true when it is not valid
156 to use the value of this register in some
157 register's value
158
159 To understand the usage of these tables, it is important to understand
160 the distinction between the value in last_set_value being valid and
161 the register being validly contained in some other expression in the
162 table.
163
164 (The next two parameters are out of date).
165
166 reg_stat[i].last_set_value is valid if it is nonzero, and either
167 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
168
169 Register I may validly appear in any expression returned for the value
170 of another register if reg_n_sets[i] is 1. It may also appear in the
171 value for register J if reg_stat[j].last_set_invalid is zero, or
172 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
173
174 If an expression is found in the table containing a register which may
175 not validly appear in an expression, the register is replaced by
176 something that won't match, (clobber (const_int 0)). */
177
178 /* Record last value assigned to (hard or pseudo) register n. */
179
180 rtx last_set_value;
181
182 /* Record the value of label_tick when an expression involving register n
183 is placed in last_set_value. */
184
185 int last_set_table_tick;
186
187 /* Record the value of label_tick when the value for register n is placed in
188 last_set_value. */
189
190 int last_set_label;
191
192 /* These fields are maintained in parallel with last_set_value and are
193 used to store the mode in which the register was last set, the bits
194 that were known to be zero when it was last set, and the number of
195 sign bits copies it was known to have when it was last set. */
196
197 unsigned HOST_WIDE_INT last_set_nonzero_bits;
198 char last_set_sign_bit_copies;
199 ENUM_BITFIELD(machine_mode) last_set_mode : MACHINE_MODE_BITSIZE;
200
201 /* Set to true if references to register n in expressions should not be
202 used. last_set_invalid is set nonzero when this register is being
203 assigned to and last_set_table_tick == label_tick. */
204
205 bool last_set_invalid;
206
207 /* Some registers that are set more than once and used in more than one
208 basic block are nevertheless always set in similar ways. For example,
209 a QImode register may be loaded from memory in two places on a machine
210 where byte loads zero extend.
211
212 We record in the following fields if a register has some leading bits
213 that are always equal to the sign bit, and what we know about the
214 nonzero bits of a register, specifically which bits are known to be
215 zero.
216
217 If an entry is zero, it means that we don't know anything special. */
218
219 unsigned char sign_bit_copies;
220
221 unsigned HOST_WIDE_INT nonzero_bits;
222
223 /* Record the value of the label_tick when the last truncation
224 happened. The field truncated_to_mode is only valid if
225 truncation_label == label_tick. */
226
227 int truncation_label;
228
229 /* Record the last truncation seen for this register. If truncation
230 is not a nop to this mode we might be able to save an explicit
231 truncation if we know that value already contains a truncated
232 value. */
233
234 ENUM_BITFIELD(machine_mode) truncated_to_mode : MACHINE_MODE_BITSIZE;
235};
236
237
238static vec<reg_stat_type> reg_stat;
239
240/* One plus the highest pseudo for which we track REG_N_SETS.
241 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
242 but during combine_split_insns new pseudos can be created. As we don't have
243 updated DF information in that case, it is hard to initialize the array
244 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
245 so instead of growing the arrays, just assume all newly created pseudos
246 during combine might be set multiple times. */
247
248static unsigned int reg_n_sets_max;
249
250/* Record the luid of the last insn that invalidated memory
251 (anything that writes memory, and subroutine calls, but not pushes). */
252
253static int mem_last_set;
254
255/* Record the luid of the last CALL_INSN
256 so we can tell whether a potential combination crosses any calls. */
257
258static int last_call_luid;
259
260/* When `subst' is called, this is the insn that is being modified
261 (by combining in a previous insn). The PATTERN of this insn
262 is still the old pattern partially modified and it should not be
263 looked at, but this may be used to examine the successors of the insn
264 to judge whether a simplification is valid. */
265
266static rtx_insn *subst_insn;
267
268/* This is the lowest LUID that `subst' is currently dealing with.
269 get_last_value will not return a value if the register was set at or
270 after this LUID. If not for this mechanism, we could get confused if
271 I2 or I1 in try_combine were an insn that used the old value of a register
272 to obtain a new value. In that case, we might erroneously get the
273 new value of the register when we wanted the old one. */
274
275static int subst_low_luid;
276
277/* This contains any hard registers that are used in newpat; reg_dead_at_p
278 must consider all these registers to be always live. */
279
280static HARD_REG_SET newpat_used_regs;
281
282/* This is an insn to which a LOG_LINKS entry has been added. If this
283 insn is the earlier than I2 or I3, combine should rescan starting at
284 that location. */
285
286static rtx_insn *added_links_insn;
287
288/* And similarly, for notes. */
289
290static rtx_insn *added_notes_insn;
291
292/* Basic block in which we are performing combines. */
293static basic_block this_basic_block;
294static bool optimize_this_for_speed_p;
295
296
297/* Length of the currently allocated uid_insn_cost array. */
298
299static int max_uid_known;
300
301/* The following array records the insn_cost for every insn
302 in the instruction stream. */
303
304static int *uid_insn_cost;
305
306/* The following array records the LOG_LINKS for every insn in the
307 instruction stream as struct insn_link pointers. */
308
309struct insn_link {
310 rtx_insn *insn;
311 unsigned int regno;
312 struct insn_link *next;
313};
314
315static struct insn_link **uid_log_links;
316
317static inline int
318insn_uid_check (const_rtx insn)
319{
320 int uid = INSN_UID (insn);
321 gcc_checking_assert (uid <= max_uid_known);
322 return uid;
323}
324
325#define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
326#define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
327
328#define FOR_EACH_LOG_LINK(L, INSN) \
329 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
330
331/* Links for LOG_LINKS are allocated from this obstack. */
332
333static struct obstack insn_link_obstack;
334
335/* Allocate a link. */
336
337static inline struct insn_link *
338alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
339{
340 struct insn_link *l
341 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
342 sizeof (struct insn_link));
343 l->insn = insn;
344 l->regno = regno;
345 l->next = next;
346 return l;
347}
348
349/* Incremented for each basic block. */
350
351static int label_tick;
352
353/* Reset to label_tick for each extended basic block in scanning order. */
354
355static int label_tick_ebb_start;
356
357/* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
358 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
359
360static scalar_int_mode nonzero_bits_mode;
361
362/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
363 be safely used. It is zero while computing them and after combine has
364 completed. This former test prevents propagating values based on
365 previously set values, which can be incorrect if a variable is modified
366 in a loop. */
367
368static int nonzero_sign_valid;
369
370
371/* Record one modification to rtl structure
372 to be undone by storing old_contents into *where. */
373
374enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
375
376struct undo
377{
378 struct undo *next;
379 enum undo_kind kind;
380 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
381 union { rtx *r; int *i; int regno; struct insn_link **l; } where;
382};
383
384/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
385 num_undo says how many are currently recorded.
386
387 other_insn is nonzero if we have modified some other insn in the process
388 of working on subst_insn. It must be verified too. */
389
390struct undobuf
391{
392 struct undo *undos;
393 struct undo *frees;
394 rtx_insn *other_insn;
395};
396
397static struct undobuf undobuf;
398
399/* Number of times the pseudo being substituted for
400 was found and replaced. */
401
402static int n_occurrences;
403
404static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
405 scalar_int_mode,
406 unsigned HOST_WIDE_INT *);
407static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
408 scalar_int_mode,
409 unsigned int *);
410static void do_SUBST (rtx *, rtx);
411static void do_SUBST_INT (int *, int);
412static void init_reg_last (void);
413static void setup_incoming_promotions (rtx_insn *);
414static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
415static bool cant_combine_insn_p (rtx_insn *);
416static bool can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
417 rtx_insn *, rtx_insn *, rtx *, rtx *);
418static bool combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx,
419 bool, bool, rtx *);
420static bool contains_muldiv (rtx);
421static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
422 bool *, rtx_insn *);
423static void undo_all (void);
424static void undo_commit (void);
425static rtx *find_split_point (rtx *, rtx_insn *, bool);
426static rtx subst (rtx, rtx, rtx, bool, bool, bool);
427static rtx combine_simplify_rtx (rtx, machine_mode, bool, bool);
428static rtx simplify_if_then_else (rtx);
429static rtx simplify_set (rtx);
430static rtx simplify_logical (rtx);
431static rtx expand_compound_operation (rtx);
432static const_rtx expand_field_assignment (const_rtx);
433static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT, rtx,
434 unsigned HOST_WIDE_INT, bool, bool, bool);
435static int get_pos_from_mask (unsigned HOST_WIDE_INT,
436 unsigned HOST_WIDE_INT *);
437static rtx canon_reg_for_combine (rtx, rtx);
438static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
439 scalar_int_mode, unsigned HOST_WIDE_INT, bool);
440static rtx force_to_mode (rtx, machine_mode,
441 unsigned HOST_WIDE_INT, bool);
442static rtx if_then_else_cond (rtx, rtx *, rtx *);
443static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
444static bool rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
445static rtx make_field_assignment (rtx);
446static rtx apply_distributive_law (rtx);
447static rtx distribute_and_simplify_rtx (rtx, int);
448static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
449 unsigned HOST_WIDE_INT);
450static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
451 unsigned HOST_WIDE_INT);
452static bool merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
453 HOST_WIDE_INT, machine_mode, bool *);
454static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
455static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
456 int);
457static int recog_for_combine (rtx *, rtx_insn *, rtx *);
458static rtx gen_lowpart_for_combine (machine_mode, rtx);
459static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
460 rtx *, rtx *);
461static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
462static void update_table_tick (rtx);
463static void record_value_for_reg (rtx, rtx_insn *, rtx);
464static void check_promoted_subreg (rtx_insn *, rtx);
465static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
466static void record_dead_and_set_regs (rtx_insn *);
467static bool get_last_value_validate (rtx *, rtx_insn *, int, bool);
468static rtx get_last_value (const_rtx);
469static void reg_dead_at_p_1 (rtx, const_rtx, void *);
470static bool reg_dead_at_p (rtx, rtx_insn *);
471static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
472static bool reg_bitfield_target_p (rtx, rtx);
473static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *,
474 rtx, rtx, rtx);
475static void distribute_links (struct insn_link *);
476static void mark_used_regs_combine (rtx);
477static void record_promoted_value (rtx_insn *, rtx);
478static bool unmentioned_reg_p (rtx, rtx);
479static void record_truncated_values (rtx *, void *);
480static bool reg_truncated_to_mode (machine_mode, const_rtx);
481static rtx gen_lowpart_or_truncate (machine_mode, rtx);
482
483
484/* It is not safe to use ordinary gen_lowpart in combine.
485 See comments in gen_lowpart_for_combine. */
486#undef RTL_HOOKS_GEN_LOWPART
487#define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
488
489/* Our implementation of gen_lowpart never emits a new pseudo. */
490#undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
491#define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
492
493#undef RTL_HOOKS_REG_NONZERO_REG_BITS
494#define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
495
496#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
497#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
498
499#undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
500#define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
501
502static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
503
504
505/* Convenience wrapper for the canonicalize_comparison target hook.
506 Target hooks cannot use enum rtx_code. */
507static inline void
508target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
509 bool op0_preserve_value)
510{
511 int code_int = (int)*code;
512 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
513 *code = (enum rtx_code)code_int;
514}
515
516/* Try to split PATTERN found in INSN. This returns NULL_RTX if
517 PATTERN cannot be split. Otherwise, it returns an insn sequence.
518 This is a wrapper around split_insns which ensures that the
519 reg_stat vector is made larger if the splitter creates a new
520 register. */
521
522static rtx_insn *
523combine_split_insns (rtx pattern, rtx_insn *insn)
524{
525 rtx_insn *ret;
526 unsigned int nregs;
527
528 ret = split_insns (pattern, insn);
529 nregs = max_reg_num ();
530 if (nregs > reg_stat.length ())
531 reg_stat.safe_grow_cleared (len: nregs, exact: true);
532 return ret;
533}
534
535/* This is used by find_single_use to locate an rtx in LOC that
536 contains exactly one use of DEST, which is typically a REG.
537 It returns a pointer to the innermost rtx expression
538 containing DEST. Appearances of DEST that are being used to
539 totally replace it are not counted. */
540
541static rtx *
542find_single_use_1 (rtx dest, rtx *loc)
543{
544 rtx x = *loc;
545 enum rtx_code code = GET_CODE (x);
546 rtx *result = NULL;
547 rtx *this_result;
548 int i;
549 const char *fmt;
550
551 switch (code)
552 {
553 case CONST:
554 case LABEL_REF:
555 case SYMBOL_REF:
556 CASE_CONST_ANY:
557 case CLOBBER:
558 return 0;
559
560 case SET:
561 /* If the destination is anything other than PC, a REG or a SUBREG
562 of a REG that occupies all of the REG, the insn uses DEST if
563 it is mentioned in the destination or the source. Otherwise, we
564 need just check the source. */
565 if (GET_CODE (SET_DEST (x)) != PC
566 && !REG_P (SET_DEST (x))
567 && ! (GET_CODE (SET_DEST (x)) == SUBREG
568 && REG_P (SUBREG_REG (SET_DEST (x)))
569 && !read_modify_subreg_p (SET_DEST (x))))
570 break;
571
572 return find_single_use_1 (dest, loc: &SET_SRC (x));
573
574 case MEM:
575 case SUBREG:
576 return find_single_use_1 (dest, loc: &XEXP (x, 0));
577
578 default:
579 break;
580 }
581
582 /* If it wasn't one of the common cases above, check each expression and
583 vector of this code. Look for a unique usage of DEST. */
584
585 fmt = GET_RTX_FORMAT (code);
586 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
587 {
588 if (fmt[i] == 'e')
589 {
590 if (dest == XEXP (x, i)
591 || (REG_P (dest) && REG_P (XEXP (x, i))
592 && REGNO (dest) == REGNO (XEXP (x, i))))
593 this_result = loc;
594 else
595 this_result = find_single_use_1 (dest, loc: &XEXP (x, i));
596
597 if (result == NULL)
598 result = this_result;
599 else if (this_result)
600 /* Duplicate usage. */
601 return NULL;
602 }
603 else if (fmt[i] == 'E')
604 {
605 int j;
606
607 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
608 {
609 if (XVECEXP (x, i, j) == dest
610 || (REG_P (dest)
611 && REG_P (XVECEXP (x, i, j))
612 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
613 this_result = loc;
614 else
615 this_result = find_single_use_1 (dest, loc: &XVECEXP (x, i, j));
616
617 if (result == NULL)
618 result = this_result;
619 else if (this_result)
620 return NULL;
621 }
622 }
623 }
624
625 return result;
626}
627
628
629/* See if DEST, produced in INSN, is used only a single time in the
630 sequel. If so, return a pointer to the innermost rtx expression in which
631 it is used.
632
633 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
634
635 Otherwise, we find the single use by finding an insn that has a
636 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
637 only referenced once in that insn, we know that it must be the first
638 and last insn referencing DEST. */
639
640static rtx *
641find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
642{
643 basic_block bb;
644 rtx_insn *next;
645 rtx *result;
646 struct insn_link *link;
647
648 if (!REG_P (dest))
649 return 0;
650
651 bb = BLOCK_FOR_INSN (insn);
652 for (next = NEXT_INSN (insn);
653 next && BLOCK_FOR_INSN (insn: next) == bb;
654 next = NEXT_INSN (insn: next))
655 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
656 {
657 FOR_EACH_LOG_LINK (link, next)
658 if (link->insn == insn && link->regno == REGNO (dest))
659 break;
660
661 if (link)
662 {
663 result = find_single_use_1 (dest, loc: &PATTERN (insn: next));
664 if (ploc)
665 *ploc = next;
666 return result;
667 }
668 }
669
670 return 0;
671}
672
673/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
674 insn. The substitution can be undone by undo_all. If INTO is already
675 set to NEWVAL, do not record this change. Because computing NEWVAL might
676 also call SUBST, we have to compute it before we put anything into
677 the undo table. */
678
679static void
680do_SUBST (rtx *into, rtx newval)
681{
682 struct undo *buf;
683 rtx oldval = *into;
684
685 if (oldval == newval)
686 return;
687
688 /* We'd like to catch as many invalid transformations here as
689 possible. Unfortunately, there are way too many mode changes
690 that are perfectly valid, so we'd waste too much effort for
691 little gain doing the checks here. Focus on catching invalid
692 transformations involving integer constants. */
693 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
694 && CONST_INT_P (newval))
695 {
696 /* Sanity check that we're replacing oldval with a CONST_INT
697 that is a valid sign-extension for the original mode. */
698 gcc_assert (INTVAL (newval)
699 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
700
701 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
702 CONST_INT is not valid, because after the replacement, the
703 original mode would be gone. Unfortunately, we can't tell
704 when do_SUBST is called to replace the operand thereof, so we
705 perform this test on oldval instead, checking whether an
706 invalid replacement took place before we got here. */
707 gcc_assert (!(GET_CODE (oldval) == SUBREG
708 && CONST_INT_P (SUBREG_REG (oldval))));
709 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
710 && CONST_INT_P (XEXP (oldval, 0))));
711 }
712
713 if (undobuf.frees)
714 buf = undobuf.frees, undobuf.frees = buf->next;
715 else
716 buf = XNEW (struct undo);
717
718 buf->kind = UNDO_RTX;
719 buf->where.r = into;
720 buf->old_contents.r = oldval;
721 *into = newval;
722
723 buf->next = undobuf.undos, undobuf.undos = buf;
724}
725
726#define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
727
728/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
729 for the value of a HOST_WIDE_INT value (including CONST_INT) is
730 not safe. */
731
732static void
733do_SUBST_INT (int *into, int newval)
734{
735 struct undo *buf;
736 int oldval = *into;
737
738 if (oldval == newval)
739 return;
740
741 if (undobuf.frees)
742 buf = undobuf.frees, undobuf.frees = buf->next;
743 else
744 buf = XNEW (struct undo);
745
746 buf->kind = UNDO_INT;
747 buf->where.i = into;
748 buf->old_contents.i = oldval;
749 *into = newval;
750
751 buf->next = undobuf.undos, undobuf.undos = buf;
752}
753
754#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
755
756/* Similar to SUBST, but just substitute the mode. This is used when
757 changing the mode of a pseudo-register, so that any other
758 references to the entry in the regno_reg_rtx array will change as
759 well. */
760
761static void
762subst_mode (int regno, machine_mode newval)
763{
764 struct undo *buf;
765 rtx reg = regno_reg_rtx[regno];
766 machine_mode oldval = GET_MODE (reg);
767
768 if (oldval == newval)
769 return;
770
771 if (undobuf.frees)
772 buf = undobuf.frees, undobuf.frees = buf->next;
773 else
774 buf = XNEW (struct undo);
775
776 buf->kind = UNDO_MODE;
777 buf->where.regno = regno;
778 buf->old_contents.m = oldval;
779 adjust_reg_mode (reg, newval);
780
781 buf->next = undobuf.undos, undobuf.undos = buf;
782}
783
784/* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
785
786static void
787do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
788{
789 struct undo *buf;
790 struct insn_link * oldval = *into;
791
792 if (oldval == newval)
793 return;
794
795 if (undobuf.frees)
796 buf = undobuf.frees, undobuf.frees = buf->next;
797 else
798 buf = XNEW (struct undo);
799
800 buf->kind = UNDO_LINKS;
801 buf->where.l = into;
802 buf->old_contents.l = oldval;
803 *into = newval;
804
805 buf->next = undobuf.undos, undobuf.undos = buf;
806}
807
808#define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
809
810/* Subroutine of try_combine. Determine whether the replacement patterns
811 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
812 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
813 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
814 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
815 of all the instructions can be estimated and the replacements are more
816 expensive than the original sequence. */
817
818static bool
819combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
820 rtx newpat, rtx newi2pat, rtx newotherpat)
821{
822 int i0_cost, i1_cost, i2_cost, i3_cost;
823 int new_i2_cost, new_i3_cost;
824 int old_cost, new_cost;
825
826 /* Lookup the original insn_costs. */
827 i2_cost = INSN_COST (i2);
828 i3_cost = INSN_COST (i3);
829
830 if (i1)
831 {
832 i1_cost = INSN_COST (i1);
833 if (i0)
834 {
835 i0_cost = INSN_COST (i0);
836 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
837 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
838 }
839 else
840 {
841 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
842 ? i1_cost + i2_cost + i3_cost : 0);
843 i0_cost = 0;
844 }
845 }
846 else
847 {
848 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
849 i1_cost = i0_cost = 0;
850 }
851
852 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
853 correct that. */
854 if (old_cost && i1 && INSN_UID (insn: i1) == INSN_UID (insn: i2))
855 old_cost -= i1_cost;
856
857
858 /* Calculate the replacement insn_costs. */
859 rtx tmp = PATTERN (insn: i3);
860 PATTERN (insn: i3) = newpat;
861 int tmpi = INSN_CODE (i3);
862 INSN_CODE (i3) = -1;
863 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
864 PATTERN (insn: i3) = tmp;
865 INSN_CODE (i3) = tmpi;
866 if (newi2pat)
867 {
868 tmp = PATTERN (insn: i2);
869 PATTERN (insn: i2) = newi2pat;
870 tmpi = INSN_CODE (i2);
871 INSN_CODE (i2) = -1;
872 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
873 PATTERN (insn: i2) = tmp;
874 INSN_CODE (i2) = tmpi;
875 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
876 ? new_i2_cost + new_i3_cost : 0;
877 }
878 else
879 {
880 new_cost = new_i3_cost;
881 new_i2_cost = 0;
882 }
883
884 if (undobuf.other_insn)
885 {
886 int old_other_cost, new_other_cost;
887
888 old_other_cost = INSN_COST (undobuf.other_insn);
889 tmp = PATTERN (insn: undobuf.other_insn);
890 PATTERN (insn: undobuf.other_insn) = newotherpat;
891 tmpi = INSN_CODE (undobuf.other_insn);
892 INSN_CODE (undobuf.other_insn) = -1;
893 new_other_cost = insn_cost (undobuf.other_insn,
894 optimize_this_for_speed_p);
895 PATTERN (insn: undobuf.other_insn) = tmp;
896 INSN_CODE (undobuf.other_insn) = tmpi;
897 if (old_other_cost > 0 && new_other_cost > 0)
898 {
899 old_cost += old_other_cost;
900 new_cost += new_other_cost;
901 }
902 else
903 old_cost = 0;
904 }
905
906 /* Disallow this combination if both new_cost and old_cost are greater than
907 zero, and new_cost is greater than old cost. */
908 bool reject = old_cost > 0 && new_cost > old_cost;
909
910 if (dump_file)
911 {
912 fprintf (stream: dump_file, format: "%s combination of insns ",
913 reject ? "rejecting" : "allowing");
914 if (i0)
915 fprintf (stream: dump_file, format: "%d, ", INSN_UID (insn: i0));
916 if (i1 && INSN_UID (insn: i1) != INSN_UID (insn: i2))
917 fprintf (stream: dump_file, format: "%d, ", INSN_UID (insn: i1));
918 fprintf (stream: dump_file, format: "%d and %d\n", INSN_UID (insn: i2), INSN_UID (insn: i3));
919
920 fprintf (stream: dump_file, format: "original costs ");
921 if (i0)
922 fprintf (stream: dump_file, format: "%d + ", i0_cost);
923 if (i1 && INSN_UID (insn: i1) != INSN_UID (insn: i2))
924 fprintf (stream: dump_file, format: "%d + ", i1_cost);
925 fprintf (stream: dump_file, format: "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
926
927 if (newi2pat)
928 fprintf (stream: dump_file, format: "replacement costs %d + %d = %d\n",
929 new_i2_cost, new_i3_cost, new_cost);
930 else
931 fprintf (stream: dump_file, format: "replacement cost %d\n", new_cost);
932 }
933
934 if (reject)
935 return false;
936
937 /* Update the uid_insn_cost array with the replacement costs. */
938 INSN_COST (i2) = new_i2_cost;
939 INSN_COST (i3) = new_i3_cost;
940 if (i1)
941 {
942 INSN_COST (i1) = 0;
943 if (i0)
944 INSN_COST (i0) = 0;
945 }
946
947 return true;
948}
949
950
951/* Delete any insns that copy a register to itself.
952 Return true if the CFG was changed. */
953
954static bool
955delete_noop_moves (void)
956{
957 rtx_insn *insn, *next;
958 basic_block bb;
959
960 bool edges_deleted = false;
961
962 FOR_EACH_BB_FN (bb, cfun)
963 {
964 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
965 {
966 next = NEXT_INSN (insn);
967 if (INSN_P (insn) && noop_move_p (insn))
968 {
969 if (dump_file)
970 fprintf (stream: dump_file, format: "deleting noop move %d\n", INSN_UID (insn));
971
972 edges_deleted |= delete_insn_and_edges (insn);
973 }
974 }
975 }
976
977 return edges_deleted;
978}
979
980
981/* Return false if we do not want to (or cannot) combine DEF. */
982static bool
983can_combine_def_p (df_ref def)
984{
985 /* Do not consider if it is pre/post modification in MEM. */
986 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
987 return false;
988
989 unsigned int regno = DF_REF_REGNO (def);
990
991 /* Do not combine frame pointer adjustments. */
992 if ((regno == FRAME_POINTER_REGNUM
993 && (!reload_completed || frame_pointer_needed))
994 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
995 && regno == HARD_FRAME_POINTER_REGNUM
996 && (!reload_completed || frame_pointer_needed))
997 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
998 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
999 return false;
1000
1001 return true;
1002}
1003
1004/* Return false if we do not want to (or cannot) combine USE. */
1005static bool
1006can_combine_use_p (df_ref use)
1007{
1008 /* Do not consider the usage of the stack pointer by function call. */
1009 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1010 return false;
1011
1012 return true;
1013}
1014
1015/* Fill in log links field for all insns. */
1016
1017static void
1018create_log_links (void)
1019{
1020 basic_block bb;
1021 rtx_insn **next_use;
1022 rtx_insn *insn;
1023 df_ref def, use;
1024
1025 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1026
1027 /* Pass through each block from the end, recording the uses of each
1028 register and establishing log links when def is encountered.
1029 Note that we do not clear next_use array in order to save time,
1030 so we have to test whether the use is in the same basic block as def.
1031
1032 There are a few cases below when we do not consider the definition or
1033 usage -- these are taken from original flow.c did. Don't ask me why it is
1034 done this way; I don't know and if it works, I don't want to know. */
1035
1036 FOR_EACH_BB_FN (bb, cfun)
1037 {
1038 FOR_BB_INSNS_REVERSE (bb, insn)
1039 {
1040 if (!NONDEBUG_INSN_P (insn))
1041 continue;
1042
1043 /* Log links are created only once. */
1044 gcc_assert (!LOG_LINKS (insn));
1045
1046 FOR_EACH_INSN_DEF (def, insn)
1047 {
1048 unsigned int regno = DF_REF_REGNO (def);
1049 rtx_insn *use_insn;
1050
1051 if (!next_use[regno])
1052 continue;
1053
1054 if (!can_combine_def_p (def))
1055 continue;
1056
1057 use_insn = next_use[regno];
1058 next_use[regno] = NULL;
1059
1060 if (BLOCK_FOR_INSN (insn: use_insn) != bb)
1061 continue;
1062
1063 /* flow.c claimed:
1064
1065 We don't build a LOG_LINK for hard registers contained
1066 in ASM_OPERANDs. If these registers get replaced,
1067 we might wind up changing the semantics of the insn,
1068 even if reload can make what appear to be valid
1069 assignments later. */
1070 if (regno < FIRST_PSEUDO_REGISTER
1071 && asm_noperands (PATTERN (insn: use_insn)) >= 0)
1072 continue;
1073
1074 /* Don't add duplicate links between instructions. */
1075 struct insn_link *links;
1076 FOR_EACH_LOG_LINK (links, use_insn)
1077 if (insn == links->insn && regno == links->regno)
1078 break;
1079
1080 if (!links)
1081 LOG_LINKS (use_insn)
1082 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1083 }
1084
1085 FOR_EACH_INSN_USE (use, insn)
1086 if (can_combine_use_p (use))
1087 next_use[DF_REF_REGNO (use)] = insn;
1088 }
1089 }
1090
1091 free (ptr: next_use);
1092}
1093
1094/* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1095 true if we found a LOG_LINK that proves that A feeds B. This only works
1096 if there are no instructions between A and B which could have a link
1097 depending on A, since in that case we would not record a link for B. */
1098
1099static bool
1100insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1101{
1102 struct insn_link *links;
1103 FOR_EACH_LOG_LINK (links, b)
1104 if (links->insn == a)
1105 return true;
1106 return false;
1107}
1108
1109/* Main entry point for combiner. F is the first insn of the function.
1110 NREGS is the first unused pseudo-reg number.
1111
1112 Return nonzero if the CFG was changed (e.g. if the combiner has
1113 turned an indirect jump instruction into a direct jump). */
1114static bool
1115combine_instructions (rtx_insn *f, unsigned int nregs)
1116{
1117 rtx_insn *insn, *next;
1118 struct insn_link *links, *nextlinks;
1119 rtx_insn *first;
1120 basic_block last_bb;
1121
1122 bool new_direct_jump_p = false;
1123
1124 for (first = f; first && !NONDEBUG_INSN_P (first); )
1125 first = NEXT_INSN (insn: first);
1126 if (!first)
1127 return false;
1128
1129 combine_attempts = 0;
1130 combine_merges = 0;
1131 combine_extras = 0;
1132 combine_successes = 0;
1133
1134 rtl_hooks = combine_rtl_hooks;
1135
1136 reg_stat.safe_grow_cleared (len: nregs, exact: true);
1137
1138 init_recog_no_volatile ();
1139
1140 /* Allocate array for insn info. */
1141 max_uid_known = get_max_uid ();
1142 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1143 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1144 gcc_obstack_init (&insn_link_obstack);
1145
1146 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, limit: 0).require ();
1147
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1150
1151 nonzero_sign_valid = 0;
1152 label_tick = label_tick_ebb_start = 1;
1153
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1157
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1160
1161 setup_incoming_promotions (first);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1165
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block, cfun)
1168 {
1169 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1170 last_call_luid = 0;
1171 mem_last_set = -1;
1172
1173 label_tick++;
1174 if (!single_pred_p (bb: this_basic_block)
1175 || single_pred (bb: this_basic_block) != last_bb)
1176 label_tick_ebb_start = label_tick;
1177 last_bb = this_basic_block;
1178
1179 FOR_BB_INSNS (this_basic_block, insn)
1180 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1181 {
1182 rtx links;
1183
1184 subst_low_luid = DF_INSN_LUID (insn);
1185 subst_insn = insn;
1186
1187 note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
1188 record_dead_and_set_regs (insn);
1189
1190 if (AUTO_INC_DEC)
1191 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1192 if (REG_NOTE_KIND (links) == REG_INC)
1193 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1194 insn);
1195
1196 /* Record the current insn_cost of this instruction. */
1197 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1198 if (dump_file)
1199 {
1200 fprintf (stream: dump_file, format: "insn_cost %d for ", INSN_COST (insn));
1201 dump_insn_slim (dump_file, insn);
1202 }
1203 }
1204 }
1205
1206 nonzero_sign_valid = 1;
1207
1208 /* Now scan all the insns in forward order. */
1209 label_tick = label_tick_ebb_start = 1;
1210 init_reg_last ();
1211 setup_incoming_promotions (first);
1212 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1213 int max_combine = param_max_combine_insns;
1214
1215 FOR_EACH_BB_FN (this_basic_block, cfun)
1216 {
1217 rtx_insn *last_combined_insn = NULL;
1218
1219 /* Ignore instruction combination in basic blocks that are going to
1220 be removed as unreachable anyway. See PR82386. */
1221 if (EDGE_COUNT (this_basic_block->preds) == 0)
1222 continue;
1223
1224 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1225 last_call_luid = 0;
1226 mem_last_set = -1;
1227
1228 label_tick++;
1229 if (!single_pred_p (bb: this_basic_block)
1230 || single_pred (bb: this_basic_block) != last_bb)
1231 label_tick_ebb_start = label_tick;
1232 last_bb = this_basic_block;
1233
1234 rtl_profile_for_bb (this_basic_block);
1235 for (insn = BB_HEAD (this_basic_block);
1236 insn != NEXT_INSN (BB_END (this_basic_block));
1237 insn = next ? next : NEXT_INSN (insn))
1238 {
1239 next = 0;
1240 if (!NONDEBUG_INSN_P (insn))
1241 continue;
1242
1243 while (last_combined_insn
1244 && (!NONDEBUG_INSN_P (last_combined_insn)
1245 || last_combined_insn->deleted ()))
1246 last_combined_insn = PREV_INSN (insn: last_combined_insn);
1247 if (last_combined_insn == NULL_RTX
1248 || BLOCK_FOR_INSN (insn: last_combined_insn) != this_basic_block
1249 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1250 last_combined_insn = insn;
1251
1252 /* See if we know about function return values before this
1253 insn based upon SUBREG flags. */
1254 check_promoted_subreg (insn, PATTERN (insn));
1255
1256 /* See if we can find hardregs and subreg of pseudos in
1257 narrower modes. This could help turning TRUNCATEs
1258 into SUBREGs. */
1259 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1260
1261 /* Try this insn with each insn it links back to. */
1262
1263 FOR_EACH_LOG_LINK (links, insn)
1264 if ((next = try_combine (insn, links->insn, NULL,
1265 NULL, &new_direct_jump_p,
1266 last_combined_insn)) != 0)
1267 {
1268 statistics_counter_event (cfun, "two-insn combine", 1);
1269 goto retry;
1270 }
1271
1272 /* Try each sequence of three linked insns ending with this one. */
1273
1274 if (max_combine >= 3)
1275 FOR_EACH_LOG_LINK (links, insn)
1276 {
1277 rtx_insn *link = links->insn;
1278
1279 /* If the linked insn has been replaced by a note, then there
1280 is no point in pursuing this chain any further. */
1281 if (NOTE_P (link))
1282 continue;
1283
1284 FOR_EACH_LOG_LINK (nextlinks, link)
1285 if ((next = try_combine (insn, link, nextlinks->insn,
1286 NULL, &new_direct_jump_p,
1287 last_combined_insn)) != 0)
1288 {
1289 statistics_counter_event (cfun, "three-insn combine", 1);
1290 goto retry;
1291 }
1292 }
1293
1294 /* Try combining an insn with two different insns whose results it
1295 uses. */
1296 if (max_combine >= 3)
1297 FOR_EACH_LOG_LINK (links, insn)
1298 for (nextlinks = links->next; nextlinks;
1299 nextlinks = nextlinks->next)
1300 if ((next = try_combine (insn, links->insn,
1301 nextlinks->insn, NULL,
1302 &new_direct_jump_p,
1303 last_combined_insn)) != 0)
1304
1305 {
1306 statistics_counter_event (cfun, "three-insn combine", 1);
1307 goto retry;
1308 }
1309
1310 /* Try four-instruction combinations. */
1311 if (max_combine >= 4)
1312 FOR_EACH_LOG_LINK (links, insn)
1313 {
1314 struct insn_link *next1;
1315 rtx_insn *link = links->insn;
1316
1317 /* If the linked insn has been replaced by a note, then there
1318 is no point in pursuing this chain any further. */
1319 if (NOTE_P (link))
1320 continue;
1321
1322 FOR_EACH_LOG_LINK (next1, link)
1323 {
1324 rtx_insn *link1 = next1->insn;
1325 if (NOTE_P (link1))
1326 continue;
1327 /* I0 -> I1 -> I2 -> I3. */
1328 FOR_EACH_LOG_LINK (nextlinks, link1)
1329 if ((next = try_combine (insn, link, link1,
1330 nextlinks->insn,
1331 &new_direct_jump_p,
1332 last_combined_insn)) != 0)
1333 {
1334 statistics_counter_event (cfun, "four-insn combine", 1);
1335 goto retry;
1336 }
1337 /* I0, I1 -> I2, I2 -> I3. */
1338 for (nextlinks = next1->next; nextlinks;
1339 nextlinks = nextlinks->next)
1340 if ((next = try_combine (insn, link, link1,
1341 nextlinks->insn,
1342 &new_direct_jump_p,
1343 last_combined_insn)) != 0)
1344 {
1345 statistics_counter_event (cfun, "four-insn combine", 1);
1346 goto retry;
1347 }
1348 }
1349
1350 for (next1 = links->next; next1; next1 = next1->next)
1351 {
1352 rtx_insn *link1 = next1->insn;
1353 if (NOTE_P (link1))
1354 continue;
1355 /* I0 -> I2; I1, I2 -> I3. */
1356 FOR_EACH_LOG_LINK (nextlinks, link)
1357 if ((next = try_combine (insn, link, link1,
1358 nextlinks->insn,
1359 &new_direct_jump_p,
1360 last_combined_insn)) != 0)
1361 {
1362 statistics_counter_event (cfun, "four-insn combine", 1);
1363 goto retry;
1364 }
1365 /* I0 -> I1; I1, I2 -> I3. */
1366 FOR_EACH_LOG_LINK (nextlinks, link1)
1367 if ((next = try_combine (insn, link, link1,
1368 nextlinks->insn,
1369 &new_direct_jump_p,
1370 last_combined_insn)) != 0)
1371 {
1372 statistics_counter_event (cfun, "four-insn combine", 1);
1373 goto retry;
1374 }
1375 }
1376 }
1377
1378 /* Try this insn with each REG_EQUAL note it links back to. */
1379 FOR_EACH_LOG_LINK (links, insn)
1380 {
1381 rtx set, note;
1382 rtx_insn *temp = links->insn;
1383 if ((set = single_set (insn: temp)) != 0
1384 && (note = find_reg_equal_equiv_note (temp)) != 0
1385 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1386 && ! side_effects_p (SET_SRC (set))
1387 /* Avoid using a register that may already been marked
1388 dead by an earlier instruction. */
1389 && ! unmentioned_reg_p (note, SET_SRC (set))
1390 && (GET_MODE (note) == VOIDmode
1391 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1392 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1393 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1394 || (GET_MODE (XEXP (SET_DEST (set), 0))
1395 == GET_MODE (note))))))
1396 {
1397 /* Temporarily replace the set's source with the
1398 contents of the REG_EQUAL note. The insn will
1399 be deleted or recognized by try_combine. */
1400 rtx orig_src = SET_SRC (set);
1401 rtx orig_dest = SET_DEST (set);
1402 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1403 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1404 SET_SRC (set) = note;
1405 i2mod = temp;
1406 i2mod_old_rhs = copy_rtx (orig_src);
1407 i2mod_new_rhs = copy_rtx (note);
1408 next = try_combine (insn, i2mod, NULL, NULL,
1409 &new_direct_jump_p,
1410 last_combined_insn);
1411 i2mod = NULL;
1412 if (next)
1413 {
1414 statistics_counter_event (cfun, "insn-with-note combine", 1);
1415 goto retry;
1416 }
1417 INSN_CODE (temp) = -1;
1418 SET_SRC (set) = orig_src;
1419 SET_DEST (set) = orig_dest;
1420 }
1421 }
1422
1423 if (!NOTE_P (insn))
1424 record_dead_and_set_regs (insn);
1425
1426retry:
1427 ;
1428 }
1429 }
1430
1431 default_rtl_profile ();
1432 clear_bb_flags ();
1433
1434 if (purge_all_dead_edges ())
1435 new_direct_jump_p = true;
1436 if (delete_noop_moves ())
1437 new_direct_jump_p = true;
1438
1439 /* Clean up. */
1440 obstack_free (&insn_link_obstack, NULL);
1441 free (ptr: uid_log_links);
1442 free (ptr: uid_insn_cost);
1443 reg_stat.release ();
1444
1445 {
1446 struct undo *undo, *next;
1447 for (undo = undobuf.frees; undo; undo = next)
1448 {
1449 next = undo->next;
1450 free (ptr: undo);
1451 }
1452 undobuf.frees = 0;
1453 }
1454
1455 statistics_counter_event (cfun, "attempts", combine_attempts);
1456 statistics_counter_event (cfun, "merges", combine_merges);
1457 statistics_counter_event (cfun, "extras", combine_extras);
1458 statistics_counter_event (cfun, "successes", combine_successes);
1459
1460 nonzero_sign_valid = 0;
1461 rtl_hooks = general_rtl_hooks;
1462
1463 /* Make recognizer allow volatile MEMs again. */
1464 init_recog ();
1465
1466 return new_direct_jump_p;
1467}
1468
1469/* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1470
1471static void
1472init_reg_last (void)
1473{
1474 unsigned int i;
1475 reg_stat_type *p;
1476
1477 FOR_EACH_VEC_ELT (reg_stat, i, p)
1478 memset (s: p, c: 0, offsetof (reg_stat_type, sign_bit_copies));
1479}
1480
1481/* Set up any promoted values for incoming argument registers. */
1482
1483static void
1484setup_incoming_promotions (rtx_insn *first)
1485{
1486 tree arg;
1487 bool strictly_local = false;
1488
1489 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1490 arg = DECL_CHAIN (arg))
1491 {
1492 rtx x, reg = DECL_INCOMING_RTL (arg);
1493 int uns1, uns3;
1494 machine_mode mode1, mode2, mode3, mode4;
1495
1496 /* Only continue if the incoming argument is in a register. */
1497 if (!REG_P (reg))
1498 continue;
1499
1500 /* Determine, if possible, whether all call sites of the current
1501 function lie within the current compilation unit. (This does
1502 take into account the exporting of a function via taking its
1503 address, and so forth.) */
1504 strictly_local
1505 = cgraph_node::local_info_node (decl: current_function_decl)->local;
1506
1507 /* The mode and signedness of the argument before any promotions happen
1508 (equal to the mode of the pseudo holding it at that stage). */
1509 mode1 = TYPE_MODE (TREE_TYPE (arg));
1510 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1511
1512 /* The mode and signedness of the argument after any source language and
1513 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1514 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1515 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1516
1517 /* The mode and signedness of the argument as it is actually passed,
1518 see assign_parm_setup_reg in function.cc. */
1519 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1520 TREE_TYPE (cfun->decl), 0);
1521
1522 /* The mode of the register in which the argument is being passed. */
1523 mode4 = GET_MODE (reg);
1524
1525 /* Eliminate sign extensions in the callee when:
1526 (a) A mode promotion has occurred; */
1527 if (mode1 == mode3)
1528 continue;
1529 /* (b) The mode of the register is the same as the mode of
1530 the argument as it is passed; */
1531 if (mode3 != mode4)
1532 continue;
1533 /* (c) There's no language level extension; */
1534 if (mode1 == mode2)
1535 ;
1536 /* (c.1) All callers are from the current compilation unit. If that's
1537 the case we don't have to rely on an ABI, we only have to know
1538 what we're generating right now, and we know that we will do the
1539 mode1 to mode2 promotion with the given sign. */
1540 else if (!strictly_local)
1541 continue;
1542 /* (c.2) The combination of the two promotions is useful. This is
1543 true when the signs match, or if the first promotion is unsigned.
1544 In the later case, (sign_extend (zero_extend x)) is the same as
1545 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1546 else if (uns1)
1547 uns3 = true;
1548 else if (uns3)
1549 continue;
1550
1551 /* Record that the value was promoted from mode1 to mode3,
1552 so that any sign extension at the head of the current
1553 function may be eliminated. */
1554 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1555 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1556 record_value_for_reg (reg, first, x);
1557 }
1558}
1559
1560/* If MODE has a precision lower than PREC and SRC is a non-negative constant
1561 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1562 because some machines (maybe most) will actually do the sign-extension and
1563 this is the conservative approach.
1564
1565 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1566 kludge. */
1567
1568static rtx
1569sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1570{
1571 scalar_int_mode int_mode;
1572 if (CONST_INT_P (src)
1573 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
1574 && GET_MODE_PRECISION (mode: int_mode) < prec
1575 && INTVAL (src) > 0
1576 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1577 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1578
1579 return src;
1580}
1581
1582/* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1583 and SET. */
1584
1585static void
1586update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1587 rtx x)
1588{
1589 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1590 unsigned HOST_WIDE_INT bits = 0;
1591 rtx reg_equal = NULL, src = SET_SRC (set);
1592 unsigned int num = 0;
1593
1594 if (reg_equal_note)
1595 reg_equal = XEXP (reg_equal_note, 0);
1596
1597 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1598 {
1599 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1600 if (reg_equal)
1601 reg_equal = sign_extend_short_imm (src: reg_equal, GET_MODE (x), BITS_PER_WORD);
1602 }
1603
1604 /* Don't call nonzero_bits if it cannot change anything. */
1605 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1606 {
1607 machine_mode mode = GET_MODE (x);
1608 if (GET_MODE_CLASS (mode) == MODE_INT
1609 && HWI_COMPUTABLE_MODE_P (mode))
1610 mode = nonzero_bits_mode;
1611 bits = nonzero_bits (src, mode);
1612 if (reg_equal && bits)
1613 bits &= nonzero_bits (reg_equal, mode);
1614 rsp->nonzero_bits |= bits;
1615 }
1616
1617 /* Don't call num_sign_bit_copies if it cannot change anything. */
1618 if (rsp->sign_bit_copies != 1)
1619 {
1620 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1621 if (reg_equal && maybe_ne (a: num, b: GET_MODE_PRECISION (GET_MODE (x))))
1622 {
1623 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1624 if (num == 0 || numeq > num)
1625 num = numeq;
1626 }
1627 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1628 rsp->sign_bit_copies = num;
1629 }
1630}
1631
1632/* Called via note_stores. If X is a pseudo that is narrower than
1633 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1634
1635 If we are setting only a portion of X and we can't figure out what
1636 portion, assume all bits will be used since we don't know what will
1637 be happening.
1638
1639 Similarly, set how many bits of X are known to be copies of the sign bit
1640 at all locations in the function. This is the smallest number implied
1641 by any set of X. */
1642
1643static void
1644set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1645{
1646 rtx_insn *insn = (rtx_insn *) data;
1647 scalar_int_mode mode;
1648
1649 if (REG_P (x)
1650 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1651 /* If this register is undefined at the start of the file, we can't
1652 say what its contents were. */
1653 && ! REGNO_REG_SET_P
1654 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1655 && is_a <scalar_int_mode> (GET_MODE (x), result: &mode)
1656 && HWI_COMPUTABLE_MODE_P (mode))
1657 {
1658 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1659
1660 if (set == 0 || GET_CODE (set) == CLOBBER)
1661 {
1662 rsp->nonzero_bits = GET_MODE_MASK (mode);
1663 rsp->sign_bit_copies = 1;
1664 return;
1665 }
1666
1667 /* If this register is being initialized using itself, and the
1668 register is uninitialized in this basic block, and there are
1669 no LOG_LINKS which set the register, then part of the
1670 register is uninitialized. In that case we can't assume
1671 anything about the number of nonzero bits.
1672
1673 ??? We could do better if we checked this in
1674 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1675 could avoid making assumptions about the insn which initially
1676 sets the register, while still using the information in other
1677 insns. We would have to be careful to check every insn
1678 involved in the combination. */
1679
1680 if (insn
1681 && reg_referenced_p (x, PATTERN (insn))
1682 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1683 REGNO (x)))
1684 {
1685 struct insn_link *link;
1686
1687 FOR_EACH_LOG_LINK (link, insn)
1688 if (dead_or_set_p (link->insn, x))
1689 break;
1690 if (!link)
1691 {
1692 rsp->nonzero_bits = GET_MODE_MASK (mode);
1693 rsp->sign_bit_copies = 1;
1694 return;
1695 }
1696 }
1697
1698 /* If this is a complex assignment, see if we can convert it into a
1699 simple assignment. */
1700 set = expand_field_assignment (set);
1701
1702 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1703 set what we know about X. */
1704
1705 if (SET_DEST (set) == x
1706 || (paradoxical_subreg_p (SET_DEST (set))
1707 && SUBREG_REG (SET_DEST (set)) == x))
1708 update_rsp_from_reg_equal (rsp, insn, set, x);
1709 else
1710 {
1711 rsp->nonzero_bits = GET_MODE_MASK (mode);
1712 rsp->sign_bit_copies = 1;
1713 }
1714 }
1715}
1716
1717/* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1721
1722 Return false if the combination is not allowed for any reason.
1723
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1726 will return true. */
1727
1728static bool
1729can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1730 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1731 rtx *pdest, rtx *psrc)
1732{
1733 int i;
1734 const_rtx set = 0;
1735 rtx src, dest;
1736 rtx_insn *p;
1737 rtx link;
1738 bool all_adjacent = true;
1739 bool (*is_volatile_p) (const_rtx);
1740
1741 if (succ)
1742 {
1743 if (succ2)
1744 {
1745 if (next_active_insn (succ2) != i3)
1746 all_adjacent = false;
1747 if (next_active_insn (succ) != succ2)
1748 all_adjacent = false;
1749 }
1750 else if (next_active_insn (succ) != i3)
1751 all_adjacent = false;
1752 if (next_active_insn (insn) != succ)
1753 all_adjacent = false;
1754 }
1755 else if (next_active_insn (insn) != i3)
1756 all_adjacent = false;
1757
1758 /* Can combine only if previous insn is a SET of a REG or a SUBREG,
1759 or a PARALLEL consisting of such a SET and CLOBBERs.
1760
1761 If INSN has CLOBBER parallel parts, ignore them for our processing.
1762 By definition, these happen during the execution of the insn. When it
1763 is merged with another insn, all bets are off. If they are, in fact,
1764 needed and aren't also supplied in I3, they may be added by
1765 recog_for_combine. Otherwise, it won't match.
1766
1767 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1768 note.
1769
1770 Get the source and destination of INSN. If more than one, can't
1771 combine. */
1772
1773 if (GET_CODE (PATTERN (insn)) == SET)
1774 set = PATTERN (insn);
1775 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1776 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1777 {
1778 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1779 {
1780 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1781
1782 switch (GET_CODE (elt))
1783 {
1784 /* This is important to combine floating point insns
1785 for the SH4 port. */
1786 case USE:
1787 /* Combining an isolated USE doesn't make sense.
1788 We depend here on combinable_i3pat to reject them. */
1789 /* The code below this loop only verifies that the inputs of
1790 the SET in INSN do not change. We call reg_set_between_p
1791 to verify that the REG in the USE does not change between
1792 I3 and INSN.
1793 If the USE in INSN was for a pseudo register, the matching
1794 insn pattern will likely match any register; combining this
1795 with any other USE would only be safe if we knew that the
1796 used registers have identical values, or if there was
1797 something to tell them apart, e.g. different modes. For
1798 now, we forgo such complicated tests and simply disallow
1799 combining of USES of pseudo registers with any other USE. */
1800 if (REG_P (XEXP (elt, 0))
1801 && GET_CODE (PATTERN (i3)) == PARALLEL)
1802 {
1803 rtx i3pat = PATTERN (insn: i3);
1804 int i = XVECLEN (i3pat, 0) - 1;
1805 unsigned int regno = REGNO (XEXP (elt, 0));
1806
1807 do
1808 {
1809 rtx i3elt = XVECEXP (i3pat, 0, i);
1810
1811 if (GET_CODE (i3elt) == USE
1812 && REG_P (XEXP (i3elt, 0))
1813 && (REGNO (XEXP (i3elt, 0)) == regno
1814 ? reg_set_between_p (XEXP (elt, 0),
1815 PREV_INSN (insn), i3)
1816 : regno >= FIRST_PSEUDO_REGISTER))
1817 return false;
1818 }
1819 while (--i >= 0);
1820 }
1821 break;
1822
1823 /* We can ignore CLOBBERs. */
1824 case CLOBBER:
1825 break;
1826
1827 case SET:
1828 /* Ignore SETs whose result isn't used but not those that
1829 have side-effects. */
1830 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1831 && insn_nothrow_p (insn)
1832 && !side_effects_p (elt))
1833 break;
1834
1835 /* If we have already found a SET, this is a second one and
1836 so we cannot combine with this insn. */
1837 if (set)
1838 return false;
1839
1840 set = elt;
1841 break;
1842
1843 default:
1844 /* Anything else means we can't combine. */
1845 return false;
1846 }
1847 }
1848
1849 if (set == 0
1850 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1851 so don't do anything with it. */
1852 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1853 return false;
1854 }
1855 else
1856 return false;
1857
1858 if (set == 0)
1859 return false;
1860
1861 /* The simplification in expand_field_assignment may call back to
1862 get_last_value, so set safe guard here. */
1863 subst_low_luid = DF_INSN_LUID (insn);
1864
1865 set = expand_field_assignment (set);
1866 src = SET_SRC (set), dest = SET_DEST (set);
1867
1868 /* Do not eliminate user-specified register if it is in an
1869 asm input because we may break the register asm usage defined
1870 in GCC manual if allow to do so.
1871 Be aware that this may cover more cases than we expect but this
1872 should be harmless. */
1873 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1874 && extract_asm_operands (PATTERN (insn: i3)))
1875 return false;
1876
1877 /* Don't eliminate a store in the stack pointer. */
1878 if (dest == stack_pointer_rtx
1879 /* Don't combine with an insn that sets a register to itself if it has
1880 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1881 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1882 /* Can't merge an ASM_OPERANDS. */
1883 || GET_CODE (src) == ASM_OPERANDS
1884 /* Can't merge a function call. */
1885 || GET_CODE (src) == CALL
1886 /* Don't eliminate a function call argument. */
1887 || (CALL_P (i3)
1888 && (find_reg_fusage (i3, USE, dest)
1889 || (REG_P (dest)
1890 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1891 && global_regs[REGNO (dest)])))
1892 /* Don't substitute into an incremented register. */
1893 || FIND_REG_INC_NOTE (i3, dest)
1894 || (succ && FIND_REG_INC_NOTE (succ, dest))
1895 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1896 /* Don't substitute into a non-local goto, this confuses CFG. */
1897 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1898 /* Make sure that DEST is not used after INSN but before SUCC, or
1899 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1900 || (!all_adjacent
1901 && ((succ2
1902 && (reg_used_between_p (dest, succ2, i3)
1903 || reg_used_between_p (dest, succ, succ2)))
1904 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1905 || (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
1906 || (succ
1907 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1908 that case SUCC is not in the insn stream, so use SUCC2
1909 instead for this test. */
1910 && reg_used_between_p (dest, insn,
1911 succ2
1912 && INSN_UID (insn: succ) == INSN_UID (insn: succ2)
1913 ? succ2 : succ))))
1914 /* Make sure that the value that is to be substituted for the register
1915 does not use any registers whose values alter in between. However,
1916 If the insns are adjacent, a use can't cross a set even though we
1917 think it might (this can happen for a sequence of insns each setting
1918 the same destination; last_set of that register might point to
1919 a NOTE). If INSN has a REG_EQUIV note, the register is always
1920 equivalent to the memory so the substitution is valid even if there
1921 are intervening stores. Also, don't move a volatile asm or
1922 UNSPEC_VOLATILE across any other insns. */
1923 || (! all_adjacent
1924 && (((!MEM_P (src)
1925 || ! find_reg_note (insn, REG_EQUIV, src))
1926 && modified_between_p (src, insn, i3))
1927 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1928 || GET_CODE (src) == UNSPEC_VOLATILE))
1929 /* Don't combine across a CALL_INSN, because that would possibly
1930 change whether the life span of some REGs crosses calls or not,
1931 and it is a pain to update that information.
1932 Exception: if source is a constant, moving it later can't hurt.
1933 Accept that as a special case. */
1934 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1935 return false;
1936
1937 /* DEST must be a REG. */
1938 if (REG_P (dest))
1939 {
1940 /* If register alignment is being enforced for multi-word items in all
1941 cases except for parameters, it is possible to have a register copy
1942 insn referencing a hard register that is not allowed to contain the
1943 mode being copied and which would not be valid as an operand of most
1944 insns. Eliminate this problem by not combining with such an insn.
1945
1946 Also, on some machines we don't want to extend the life of a hard
1947 register. */
1948
1949 if (REG_P (src)
1950 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1951 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
1952 /* Don't extend the life of a hard register unless it is
1953 user variable (if we have few registers) or it can't
1954 fit into the desired register (meaning something special
1955 is going on).
1956 Also avoid substituting a return register into I3, because
1957 reload can't handle a conflict with constraints of other
1958 inputs. */
1959 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1960 && !targetm.hard_regno_mode_ok (REGNO (src),
1961 GET_MODE (src)))))
1962 return false;
1963 }
1964 else
1965 return false;
1966
1967
1968 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1969 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1970 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1971 {
1972 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1973
1974 /* If the clobber represents an earlyclobber operand, we must not
1975 substitute an expression containing the clobbered register.
1976 As we do not analyze the constraint strings here, we have to
1977 make the conservative assumption. However, if the register is
1978 a fixed hard reg, the clobber cannot represent any operand;
1979 we leave it up to the machine description to either accept or
1980 reject use-and-clobber patterns. */
1981 if (!REG_P (reg)
1982 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1983 || !fixed_regs[REGNO (reg)])
1984 if (reg_overlap_mentioned_p (reg, src))
1985 return false;
1986 }
1987
1988 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1989 or not), reject, unless nothing volatile comes between it and I3 */
1990
1991 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1992 {
1993 /* Make sure neither succ nor succ2 contains a volatile reference. */
1994 if (succ2 != 0 && volatile_refs_p (PATTERN (insn: succ2)))
1995 return false;
1996 if (succ != 0 && volatile_refs_p (PATTERN (insn: succ)))
1997 return false;
1998 /* We'll check insns between INSN and I3 below. */
1999 }
2000
2001 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2002 to be an explicit register variable, and was chosen for a reason. */
2003
2004 if (GET_CODE (src) == ASM_OPERANDS
2005 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2006 return false;
2007
2008 /* If INSN contains volatile references (specifically volatile MEMs),
2009 we cannot combine across any other volatile references.
2010 Even if INSN doesn't contain volatile references, any intervening
2011 volatile insn might affect machine state. */
2012
2013 is_volatile_p = volatile_refs_p (PATTERN (insn))
2014 ? volatile_refs_p
2015 : volatile_insn_p;
2016
2017 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (insn: p))
2018 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (insn: p)))
2019 return false;
2020
2021 /* If INSN contains an autoincrement or autodecrement, make sure that
2022 register is not used between there and I3, and not already used in
2023 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2024 Also insist that I3 not be a jump if using LRA; if it were one
2025 and the incremented register were spilled, we would lose.
2026 Reload handles this correctly. */
2027
2028 if (AUTO_INC_DEC)
2029 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2030 if (REG_NOTE_KIND (link) == REG_INC
2031 && ((JUMP_P (i3) && targetm.lra_p ())
2032 || reg_used_between_p (XEXP (link, 0), insn, i3)
2033 || (pred != NULL_RTX
2034 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: pred)))
2035 || (pred2 != NULL_RTX
2036 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: pred2)))
2037 || (succ != NULL_RTX
2038 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: succ)))
2039 || (succ2 != NULL_RTX
2040 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: succ2)))
2041 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i3))))
2042 return false;
2043
2044 /* If we get here, we have passed all the tests and the combination is
2045 to be allowed. */
2046
2047 *pdest = dest;
2048 *psrc = src;
2049
2050 return true;
2051}
2052
2053/* LOC is the location within I3 that contains its pattern or the component
2054 of a PARALLEL of the pattern. We validate that it is valid for combining.
2055
2056 One problem is if I3 modifies its output, as opposed to replacing it
2057 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2058 doing so would produce an insn that is not equivalent to the original insns.
2059
2060 Consider:
2061
2062 (set (reg:DI 101) (reg:DI 100))
2063 (set (subreg:SI (reg:DI 101) 0) <foo>)
2064
2065 This is NOT equivalent to:
2066
2067 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2068 (set (reg:DI 101) (reg:DI 100))])
2069
2070 Not only does this modify 100 (in which case it might still be valid
2071 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2072
2073 We can also run into a problem if I2 sets a register that I1
2074 uses and I1 gets directly substituted into I3 (not via I2). In that
2075 case, we would be getting the wrong value of I2DEST into I3, so we
2076 must reject the combination. This case occurs when I2 and I1 both
2077 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2078 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2079 of a SET must prevent combination from occurring. The same situation
2080 can occur for I0, in which case I0_NOT_IN_SRC is set.
2081
2082 Before doing the above check, we first try to expand a field assignment
2083 into a set of logical operations.
2084
2085 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2086 we place a register that is both set and used within I3. If more than one
2087 such register is detected, we fail.
2088
2089 Return true if the combination is valid, false otherwise. */
2090
2091static bool
2092combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2093 bool i1_not_in_src, bool i0_not_in_src, rtx *pi3dest_killed)
2094{
2095 rtx x = *loc;
2096
2097 if (GET_CODE (x) == SET)
2098 {
2099 rtx set = x ;
2100 rtx dest = SET_DEST (set);
2101 rtx src = SET_SRC (set);
2102 rtx inner_dest = dest;
2103 rtx subdest;
2104
2105 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2106 || GET_CODE (inner_dest) == SUBREG
2107 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2108 inner_dest = XEXP (inner_dest, 0);
2109
2110 /* Check for the case where I3 modifies its output, as discussed
2111 above. We don't want to prevent pseudos from being combined
2112 into the address of a MEM, so only prevent the combination if
2113 i1 or i2 set the same MEM. */
2114 if ((inner_dest != dest &&
2115 (!MEM_P (inner_dest)
2116 || rtx_equal_p (i2dest, inner_dest)
2117 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2118 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2119 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2120 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2121 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2122
2123 /* This is the same test done in can_combine_p except we can't test
2124 all_adjacent; we don't have to, since this instruction will stay
2125 in place, thus we are not considering increasing the lifetime of
2126 INNER_DEST.
2127
2128 Also, if this insn sets a function argument, combining it with
2129 something that might need a spill could clobber a previous
2130 function argument; the all_adjacent test in can_combine_p also
2131 checks this; here, we do a more specific test for this case. */
2132
2133 || (REG_P (inner_dest)
2134 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2135 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2136 GET_MODE (inner_dest)))
2137 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2138 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2139 return false;
2140
2141 /* If DEST is used in I3, it is being killed in this insn, so
2142 record that for later. We have to consider paradoxical
2143 subregs here, since they kill the whole register, but we
2144 ignore partial subregs, STRICT_LOW_PART, etc.
2145 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2146 STACK_POINTER_REGNUM, since these are always considered to be
2147 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2148 subdest = dest;
2149 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (x: subdest))
2150 subdest = SUBREG_REG (subdest);
2151 if (pi3dest_killed
2152 && REG_P (subdest)
2153 && reg_referenced_p (subdest, PATTERN (insn: i3))
2154 && REGNO (subdest) != FRAME_POINTER_REGNUM
2155 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2157 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2158 || (REGNO (subdest) != ARG_POINTER_REGNUM
2159 || ! fixed_regs [REGNO (subdest)]))
2160 && REGNO (subdest) != STACK_POINTER_REGNUM)
2161 {
2162 if (*pi3dest_killed)
2163 return false;
2164
2165 *pi3dest_killed = subdest;
2166 }
2167 }
2168
2169 else if (GET_CODE (x) == PARALLEL)
2170 {
2171 int i;
2172
2173 for (i = 0; i < XVECLEN (x, 0); i++)
2174 if (! combinable_i3pat (i3, loc: &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2175 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2176 return false;
2177 }
2178
2179 return true;
2180}
2181
2182/* Return true if X is an arithmetic expression that contains a multiplication
2183 and division. We don't count multiplications by powers of two here. */
2184
2185static bool
2186contains_muldiv (rtx x)
2187{
2188 switch (GET_CODE (x))
2189 {
2190 case MOD: case DIV: case UMOD: case UDIV:
2191 return true;
2192
2193 case MULT:
2194 return ! (CONST_INT_P (XEXP (x, 1))
2195 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2196 default:
2197 if (BINARY_P (x))
2198 return contains_muldiv (XEXP (x, 0))
2199 || contains_muldiv (XEXP (x, 1));
2200
2201 if (UNARY_P (x))
2202 return contains_muldiv (XEXP (x, 0));
2203
2204 return false;
2205 }
2206}
2207
2208/* Determine whether INSN can be used in a combination. Return true if
2209 not. This is used in try_combine to detect early some cases where we
2210 can't perform combinations. */
2211
2212static bool
2213cant_combine_insn_p (rtx_insn *insn)
2214{
2215 rtx set;
2216 rtx src, dest;
2217
2218 /* If this isn't really an insn, we can't do anything.
2219 This can occur when flow deletes an insn that it has merged into an
2220 auto-increment address. */
2221 if (!NONDEBUG_INSN_P (insn))
2222 return true;
2223
2224 /* Never combine loads and stores involving hard regs that are likely
2225 to be spilled. The register allocator can usually handle such
2226 reg-reg moves by tying. If we allow the combiner to make
2227 substitutions of likely-spilled regs, reload might die.
2228 As an exception, we allow combinations involving fixed regs; these are
2229 not available to the register allocator so there's no risk involved. */
2230
2231 set = single_set (insn);
2232 if (! set)
2233 return false;
2234 src = SET_SRC (set);
2235 dest = SET_DEST (set);
2236 if (GET_CODE (src) == SUBREG)
2237 src = SUBREG_REG (src);
2238 if (GET_CODE (dest) == SUBREG)
2239 dest = SUBREG_REG (dest);
2240 if (REG_P (src) && REG_P (dest)
2241 && ((HARD_REGISTER_P (src)
2242 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2243#ifdef LEAF_REGISTERS
2244 && ! LEAF_REGISTERS [REGNO (src)])
2245#else
2246 )
2247#endif
2248 || (HARD_REGISTER_P (dest)
2249 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2250 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2251 return true;
2252
2253 return false;
2254}
2255
2256struct likely_spilled_retval_info
2257{
2258 unsigned regno, nregs;
2259 unsigned mask;
2260};
2261
2262/* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2263 hard registers that are known to be written to / clobbered in full. */
2264static void
2265likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2266{
2267 struct likely_spilled_retval_info *const info =
2268 (struct likely_spilled_retval_info *) data;
2269 unsigned regno, nregs;
2270 unsigned new_mask;
2271
2272 if (!REG_P (XEXP (set, 0)))
2273 return;
2274 regno = REGNO (x);
2275 if (regno >= info->regno + info->nregs)
2276 return;
2277 nregs = REG_NREGS (x);
2278 if (regno + nregs <= info->regno)
2279 return;
2280 new_mask = (2U << (nregs - 1)) - 1;
2281 if (regno < info->regno)
2282 new_mask >>= info->regno - regno;
2283 else
2284 new_mask <<= regno - info->regno;
2285 info->mask &= ~new_mask;
2286}
2287
2288/* Return true iff part of the return value is live during INSN, and
2289 it is likely spilled. This can happen when more than one insn is needed
2290 to copy the return value, e.g. when we consider to combine into the
2291 second copy insn for a complex value. */
2292
2293static bool
2294likely_spilled_retval_p (rtx_insn *insn)
2295{
2296 rtx_insn *use = BB_END (this_basic_block);
2297 rtx reg;
2298 rtx_insn *p;
2299 unsigned regno, nregs;
2300 /* We assume here that no machine mode needs more than
2301 32 hard registers when the value overlaps with a register
2302 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2303 unsigned mask;
2304 struct likely_spilled_retval_info info;
2305
2306 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2307 return false;
2308 reg = XEXP (PATTERN (use), 0);
2309 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2310 return false;
2311 regno = REGNO (reg);
2312 nregs = REG_NREGS (reg);
2313 if (nregs == 1)
2314 return false;
2315 mask = (2U << (nregs - 1)) - 1;
2316
2317 /* Disregard parts of the return value that are set later. */
2318 info.regno = regno;
2319 info.nregs = nregs;
2320 info.mask = mask;
2321 for (p = PREV_INSN (insn: use); info.mask && p != insn; p = PREV_INSN (insn: p))
2322 if (INSN_P (p))
2323 note_stores (p, likely_spilled_retval_1, &info);
2324 mask = info.mask;
2325
2326 /* Check if any of the (probably) live return value registers is
2327 likely spilled. */
2328 nregs --;
2329 do
2330 {
2331 if ((mask & 1 << nregs)
2332 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2333 return true;
2334 } while (nregs--);
2335 return false;
2336}
2337
2338/* Adjust INSN after we made a change to its destination.
2339
2340 Changing the destination can invalidate notes that say something about
2341 the results of the insn and a LOG_LINK pointing to the insn. */
2342
2343static void
2344adjust_for_new_dest (rtx_insn *insn)
2345{
2346 /* For notes, be conservative and simply remove them. */
2347 remove_reg_equal_equiv_notes (insn, true);
2348
2349 /* The new insn will have a destination that was previously the destination
2350 of an insn just above it. Call distribute_links to make a LOG_LINK from
2351 the next use of that destination. */
2352
2353 rtx set = single_set (insn);
2354 gcc_assert (set);
2355
2356 rtx reg = SET_DEST (set);
2357
2358 while (GET_CODE (reg) == ZERO_EXTRACT
2359 || GET_CODE (reg) == STRICT_LOW_PART
2360 || GET_CODE (reg) == SUBREG)
2361 reg = XEXP (reg, 0);
2362 gcc_assert (REG_P (reg));
2363
2364 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2365
2366 df_insn_rescan (insn);
2367}
2368
2369/* Return TRUE if combine can reuse reg X in mode MODE.
2370 ADDED_SETS is trueif the original set is still required. */
2371static bool
2372can_change_dest_mode (rtx x, bool added_sets, machine_mode mode)
2373{
2374 unsigned int regno;
2375
2376 if (!REG_P (x))
2377 return false;
2378
2379 /* Don't change between modes with different underlying register sizes,
2380 since this could lead to invalid subregs. */
2381 if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
2382 REGMODE_NATURAL_SIZE (GET_MODE (x))))
2383 return false;
2384
2385 regno = REGNO (x);
2386 /* Allow hard registers if the new mode is legal, and occupies no more
2387 registers than the old mode. */
2388 if (regno < FIRST_PSEUDO_REGISTER)
2389 return (targetm.hard_regno_mode_ok (regno, mode)
2390 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2391
2392 /* Or a pseudo that is only used once. */
2393 return (regno < reg_n_sets_max
2394 && REG_N_SETS (regno) == 1
2395 && !added_sets
2396 && !REG_USERVAR_P (x));
2397}
2398
2399
2400/* Check whether X, the destination of a set, refers to part of
2401 the register specified by REG. */
2402
2403static bool
2404reg_subword_p (rtx x, rtx reg)
2405{
2406 /* Check that reg is an integer mode register. */
2407 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2408 return false;
2409
2410 if (GET_CODE (x) == STRICT_LOW_PART
2411 || GET_CODE (x) == ZERO_EXTRACT)
2412 x = XEXP (x, 0);
2413
2414 return GET_CODE (x) == SUBREG
2415 && !paradoxical_subreg_p (x)
2416 && SUBREG_REG (x) == reg
2417 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2418}
2419
2420/* Return whether PAT is a PARALLEL of exactly N register SETs followed
2421 by an arbitrary number of CLOBBERs. */
2422static bool
2423is_parallel_of_n_reg_sets (rtx pat, int n)
2424{
2425 if (GET_CODE (pat) != PARALLEL)
2426 return false;
2427
2428 int len = XVECLEN (pat, 0);
2429 if (len < n)
2430 return false;
2431
2432 int i;
2433 for (i = 0; i < n; i++)
2434 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2435 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2436 return false;
2437 for ( ; i < len; i++)
2438 switch (GET_CODE (XVECEXP (pat, 0, i)))
2439 {
2440 case CLOBBER:
2441 if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2442 return false;
2443 break;
2444 default:
2445 return false;
2446 }
2447 return true;
2448}
2449
2450/* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2451 CLOBBERs), can be split into individual SETs in that order, without
2452 changing semantics. */
2453static bool
2454can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2455{
2456 if (!insn_nothrow_p (insn))
2457 return false;
2458
2459 rtx pat = PATTERN (insn);
2460
2461 int i, j;
2462 for (i = 0; i < n; i++)
2463 {
2464 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2465 return false;
2466
2467 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2468
2469 for (j = i + 1; j < n; j++)
2470 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2471 return false;
2472 }
2473
2474 return true;
2475}
2476
2477/* Return whether X is just a single_set, with the source
2478 a general_operand. */
2479static bool
2480is_just_move (rtx_insn *x)
2481{
2482 rtx set = single_set (insn: x);
2483 if (!set)
2484 return false;
2485
2486 return general_operand (SET_SRC (set), VOIDmode);
2487}
2488
2489/* Callback function to count autoincs. */
2490
2491static int
2492count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
2493{
2494 (*((int *) arg))++;
2495
2496 return 0;
2497}
2498
2499/* Try to combine the insns I0, I1 and I2 into I3.
2500 Here I0, I1 and I2 appear earlier than I3.
2501 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2502 I3.
2503
2504 If we are combining more than two insns and the resulting insn is not
2505 recognized, try splitting it into two insns. If that happens, I2 and I3
2506 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2507 Otherwise, I0, I1 and I2 are pseudo-deleted.
2508
2509 Return 0 if the combination does not work. Then nothing is changed.
2510 If we did the combination, return the insn at which combine should
2511 resume scanning.
2512
2513 Set NEW_DIRECT_JUMP_P to true if try_combine creates a
2514 new direct jump instruction.
2515
2516 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2517 been I3 passed to an earlier try_combine within the same basic
2518 block. */
2519
2520static rtx_insn *
2521try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2522 bool *new_direct_jump_p, rtx_insn *last_combined_insn)
2523{
2524 /* New patterns for I3 and I2, respectively. */
2525 rtx newpat, newi2pat = 0;
2526 rtvec newpat_vec_with_clobbers = 0;
2527 bool substed_i2 = false, substed_i1 = false, substed_i0 = false;
2528 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2529 dead. */
2530 bool added_sets_0, added_sets_1, added_sets_2;
2531 /* Total number of SETs to put into I3. */
2532 int total_sets;
2533 /* Nonzero if I2's or I1's body now appears in I3. */
2534 int i2_is_used = 0, i1_is_used = 0;
2535 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2536 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2537 /* Contains I3 if the destination of I3 is used in its source, which means
2538 that the old life of I3 is being killed. If that usage is placed into
2539 I2 and not in I3, a REG_DEAD note must be made. */
2540 rtx i3dest_killed = 0;
2541 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2542 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2543 /* Copy of SET_SRC of I1 and I0, if needed. */
2544 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2545 /* Set if I2DEST was reused as a scratch register. */
2546 bool i2scratch = false;
2547 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2548 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2549 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2550 bool i2dest_in_i2src = false, i1dest_in_i1src = false;
2551 bool i2dest_in_i1src = false, i0dest_in_i0src = false;
2552 bool i1dest_in_i0src = false, i2dest_in_i0src = false;;
2553 bool i2dest_killed = false, i1dest_killed = false, i0dest_killed = false;
2554 bool i1_feeds_i2_n = false, i0_feeds_i2_n = false, i0_feeds_i1_n = false;
2555 /* Notes that must be added to REG_NOTES in I3 and I2. */
2556 rtx new_i3_notes, new_i2_notes;
2557 /* Notes that we substituted I3 into I2 instead of the normal case. */
2558 bool i3_subst_into_i2 = false;
2559 /* Notes that I1, I2 or I3 is a MULT operation. */
2560 bool have_mult = false;
2561 bool swap_i2i3 = false;
2562 bool split_i2i3 = false;
2563 bool changed_i3_dest = false;
2564 bool i2_was_move = false, i3_was_move = false;
2565 int n_auto_inc = 0;
2566
2567 int maxreg;
2568 rtx_insn *temp_insn;
2569 rtx temp_expr;
2570 struct insn_link *link;
2571 rtx other_pat = 0;
2572 rtx new_other_notes;
2573 int i;
2574 scalar_int_mode dest_mode, temp_mode;
2575 bool has_non_call_exception = false;
2576
2577 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2578 never be). */
2579 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2580 return 0;
2581
2582 /* Only try four-insn combinations when there's high likelihood of
2583 success. Look for simple insns, such as loads of constants or
2584 binary operations involving a constant. */
2585 if (i0)
2586 {
2587 int i;
2588 int ngood = 0;
2589 int nshift = 0;
2590 rtx set0, set3;
2591
2592 if (!flag_expensive_optimizations)
2593 return 0;
2594
2595 for (i = 0; i < 4; i++)
2596 {
2597 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2598 rtx set = single_set (insn);
2599 rtx src;
2600 if (!set)
2601 continue;
2602 src = SET_SRC (set);
2603 if (CONSTANT_P (src))
2604 {
2605 ngood += 2;
2606 break;
2607 }
2608 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2609 ngood++;
2610 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2611 || GET_CODE (src) == LSHIFTRT)
2612 nshift++;
2613 }
2614
2615 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2616 are likely manipulating its value. Ideally we'll be able to combine
2617 all four insns into a bitfield insertion of some kind.
2618
2619 Note the source in I0 might be inside a sign/zero extension and the
2620 memory modes in I0 and I3 might be different. So extract the address
2621 from the destination of I3 and search for it in the source of I0.
2622
2623 In the event that there's a match but the source/dest do not actually
2624 refer to the same memory, the worst that happens is we try some
2625 combinations that we wouldn't have otherwise. */
2626 if ((set0 = single_set (insn: i0))
2627 /* Ensure the source of SET0 is a MEM, possibly buried inside
2628 an extension. */
2629 && (GET_CODE (SET_SRC (set0)) == MEM
2630 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2631 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2632 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2633 && (set3 = single_set (insn: i3))
2634 /* Ensure the destination of SET3 is a MEM. */
2635 && GET_CODE (SET_DEST (set3)) == MEM
2636 /* Would it be better to extract the base address for the MEM
2637 in SET3 and look for that? I don't have cases where it matters
2638 but I could envision such cases. */
2639 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2640 ngood += 2;
2641
2642 if (ngood < 2 && nshift < 2)
2643 return 0;
2644 }
2645
2646 /* Exit early if one of the insns involved can't be used for
2647 combinations. */
2648 if (CALL_P (i2)
2649 || (i1 && CALL_P (i1))
2650 || (i0 && CALL_P (i0))
2651 || cant_combine_insn_p (insn: i3)
2652 || cant_combine_insn_p (insn: i2)
2653 || (i1 && cant_combine_insn_p (insn: i1))
2654 || (i0 && cant_combine_insn_p (insn: i0))
2655 || likely_spilled_retval_p (insn: i3))
2656 return 0;
2657
2658 combine_attempts++;
2659 undobuf.other_insn = 0;
2660
2661 /* Reset the hard register usage information. */
2662 CLEAR_HARD_REG_SET (set&: newpat_used_regs);
2663
2664 if (dump_file && (dump_flags & TDF_DETAILS))
2665 {
2666 if (i0)
2667 fprintf (stream: dump_file, format: "\nTrying %d, %d, %d -> %d:\n",
2668 INSN_UID (insn: i0), INSN_UID (insn: i1), INSN_UID (insn: i2), INSN_UID (insn: i3));
2669 else if (i1)
2670 fprintf (stream: dump_file, format: "\nTrying %d, %d -> %d:\n",
2671 INSN_UID (insn: i1), INSN_UID (insn: i2), INSN_UID (insn: i3));
2672 else
2673 fprintf (stream: dump_file, format: "\nTrying %d -> %d:\n",
2674 INSN_UID (insn: i2), INSN_UID (insn: i3));
2675
2676 if (i0)
2677 dump_insn_slim (dump_file, i0);
2678 if (i1)
2679 dump_insn_slim (dump_file, i1);
2680 dump_insn_slim (dump_file, i2);
2681 dump_insn_slim (dump_file, i3);
2682 }
2683
2684 /* If multiple insns feed into one of I2 or I3, they can be in any
2685 order. To simplify the code below, reorder them in sequence. */
2686 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2687 std::swap (a&: i0, b&: i2);
2688 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2689 std::swap (a&: i0, b&: i1);
2690 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2691 std::swap (a&: i1, b&: i2);
2692
2693 added_links_insn = 0;
2694 added_notes_insn = 0;
2695
2696 /* First check for one important special case that the code below will
2697 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2698 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2699 we may be able to replace that destination with the destination of I3.
2700 This occurs in the common code where we compute both a quotient and
2701 remainder into a structure, in which case we want to do the computation
2702 directly into the structure to avoid register-register copies.
2703
2704 Note that this case handles both multiple sets in I2 and also cases
2705 where I2 has a number of CLOBBERs inside the PARALLEL.
2706
2707 We make very conservative checks below and only try to handle the
2708 most common cases of this. For example, we only handle the case
2709 where I2 and I3 are adjacent to avoid making difficult register
2710 usage tests. */
2711
2712 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2713 && REG_P (SET_SRC (PATTERN (i3)))
2714 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2715 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2716 && GET_CODE (PATTERN (i2)) == PARALLEL
2717 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2718 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2719 below would need to check what is inside (and reg_overlap_mentioned_p
2720 doesn't support those codes anyway). Don't allow those destinations;
2721 the resulting insn isn't likely to be recognized anyway. */
2722 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2723 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2724 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2725 SET_DEST (PATTERN (i3)))
2726 && next_active_insn (i2) == i3)
2727 {
2728 rtx p2 = PATTERN (insn: i2);
2729
2730 /* Make sure that the destination of I3,
2731 which we are going to substitute into one output of I2,
2732 is not used within another output of I2. We must avoid making this:
2733 (parallel [(set (mem (reg 69)) ...)
2734 (set (reg 69) ...)])
2735 which is not well-defined as to order of actions.
2736 (Besides, reload can't handle output reloads for this.)
2737
2738 The problem can also happen if the dest of I3 is a memory ref,
2739 if another dest in I2 is an indirect memory ref.
2740
2741 Neither can this PARALLEL be an asm. We do not allow combining
2742 that usually (see can_combine_p), so do not here either. */
2743 bool ok = true;
2744 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2745 {
2746 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2747 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2748 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2749 SET_DEST (XVECEXP (p2, 0, i))))
2750 ok = false;
2751 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2752 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2753 ok = false;
2754 }
2755
2756 if (ok)
2757 for (i = 0; i < XVECLEN (p2, 0); i++)
2758 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2759 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2760 {
2761 combine_merges++;
2762
2763 subst_insn = i3;
2764 subst_low_luid = DF_INSN_LUID (i2);
2765
2766 added_sets_2 = added_sets_1 = added_sets_0 = false;
2767 i2src = SET_SRC (XVECEXP (p2, 0, i));
2768 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2769 i2dest_killed = dead_or_set_p (i2, i2dest);
2770
2771 /* Replace the dest in I2 with our dest and make the resulting
2772 insn the new pattern for I3. Then skip to where we validate
2773 the pattern. Everything was set up above. */
2774 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2775 newpat = p2;
2776 i3_subst_into_i2 = true;
2777 goto validate_replacement;
2778 }
2779 }
2780
2781 /* If I2 is setting a pseudo to a constant and I3 is setting some
2782 sub-part of it to another constant, merge them by making a new
2783 constant. */
2784 if (i1 == 0
2785 && (temp_expr = single_set (insn: i2)) != 0
2786 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), result: &temp_mode)
2787 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2788 && GET_CODE (PATTERN (i3)) == SET
2789 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2790 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2791 {
2792 rtx dest = SET_DEST (PATTERN (i3));
2793 rtx temp_dest = SET_DEST (temp_expr);
2794 int offset = -1;
2795 int width = 0;
2796
2797 if (GET_CODE (dest) == ZERO_EXTRACT)
2798 {
2799 if (CONST_INT_P (XEXP (dest, 1))
2800 && CONST_INT_P (XEXP (dest, 2))
2801 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2802 result: &dest_mode))
2803 {
2804 width = INTVAL (XEXP (dest, 1));
2805 offset = INTVAL (XEXP (dest, 2));
2806 dest = XEXP (dest, 0);
2807 if (BITS_BIG_ENDIAN)
2808 offset = GET_MODE_PRECISION (mode: dest_mode) - width - offset;
2809 }
2810 }
2811 else
2812 {
2813 if (GET_CODE (dest) == STRICT_LOW_PART)
2814 dest = XEXP (dest, 0);
2815 if (is_a <scalar_int_mode> (GET_MODE (dest), result: &dest_mode))
2816 {
2817 width = GET_MODE_PRECISION (mode: dest_mode);
2818 offset = 0;
2819 }
2820 }
2821
2822 if (offset >= 0)
2823 {
2824 /* If this is the low part, we're done. */
2825 if (subreg_lowpart_p (dest))
2826 ;
2827 /* Handle the case where inner is twice the size of outer. */
2828 else if (GET_MODE_PRECISION (mode: temp_mode)
2829 == 2 * GET_MODE_PRECISION (mode: dest_mode))
2830 offset += GET_MODE_PRECISION (mode: dest_mode);
2831 /* Otherwise give up for now. */
2832 else
2833 offset = -1;
2834 }
2835
2836 if (offset >= 0)
2837 {
2838 rtx inner = SET_SRC (PATTERN (i3));
2839 rtx outer = SET_SRC (temp_expr);
2840
2841 wide_int o = wi::insert (x: rtx_mode_t (outer, temp_mode),
2842 y: rtx_mode_t (inner, dest_mode),
2843 offset, width);
2844
2845 combine_merges++;
2846 subst_insn = i3;
2847 subst_low_luid = DF_INSN_LUID (i2);
2848 added_sets_2 = added_sets_1 = added_sets_0 = false;
2849 i2dest = temp_dest;
2850 i2dest_killed = dead_or_set_p (i2, i2dest);
2851
2852 /* Replace the source in I2 with the new constant and make the
2853 resulting insn the new pattern for I3. Then skip to where we
2854 validate the pattern. Everything was set up above. */
2855 SUBST (SET_SRC (temp_expr),
2856 immed_wide_int_const (o, temp_mode));
2857
2858 newpat = PATTERN (insn: i2);
2859
2860 /* The dest of I3 has been replaced with the dest of I2. */
2861 changed_i3_dest = true;
2862 goto validate_replacement;
2863 }
2864 }
2865
2866 /* If we have no I1 and I2 looks like:
2867 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2868 (set Y OP)])
2869 make up a dummy I1 that is
2870 (set Y OP)
2871 and change I2 to be
2872 (set (reg:CC X) (compare:CC Y (const_int 0)))
2873
2874 (We can ignore any trailing CLOBBERs.)
2875
2876 This undoes a previous combination and allows us to match a branch-and-
2877 decrement insn. */
2878
2879 if (i1 == 0
2880 && is_parallel_of_n_reg_sets (pat: PATTERN (insn: i2), n: 2)
2881 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2882 == MODE_CC)
2883 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2884 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2885 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2886 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2887 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2888 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2889 {
2890 /* We make I1 with the same INSN_UID as I2. This gives it
2891 the same DF_INSN_LUID for value tracking. Our fake I1 will
2892 never appear in the insn stream so giving it the same INSN_UID
2893 as I2 will not cause a problem. */
2894
2895 i1 = gen_rtx_INSN (VOIDmode, NULL, next_insn: i2, bb: BLOCK_FOR_INSN (insn: i2),
2896 XVECEXP (PATTERN (i2), 0, 1), location: INSN_LOCATION (insn: i2),
2897 code: -1, NULL_RTX);
2898 INSN_UID (insn: i1) = INSN_UID (insn: i2);
2899
2900 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2901 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2902 SET_DEST (PATTERN (i1)));
2903 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
2904 SUBST_LINK (LOG_LINKS (i2),
2905 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
2906 }
2907
2908 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
2909 make those two SETs separate I1 and I2 insns, and make an I0 that is
2910 the original I1. */
2911 if (i0 == 0
2912 && is_parallel_of_n_reg_sets (pat: PATTERN (insn: i2), n: 2)
2913 && can_split_parallel_of_n_reg_sets (insn: i2, n: 2)
2914 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2915 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
2916 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2917 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2918 {
2919 /* If there is no I1, there is no I0 either. */
2920 i0 = i1;
2921
2922 /* We make I1 with the same INSN_UID as I2. This gives it
2923 the same DF_INSN_LUID for value tracking. Our fake I1 will
2924 never appear in the insn stream so giving it the same INSN_UID
2925 as I2 will not cause a problem. */
2926
2927 i1 = gen_rtx_INSN (VOIDmode, NULL, next_insn: i2, bb: BLOCK_FOR_INSN (insn: i2),
2928 XVECEXP (PATTERN (i2), 0, 0), location: INSN_LOCATION (insn: i2),
2929 code: -1, NULL_RTX);
2930 INSN_UID (insn: i1) = INSN_UID (insn: i2);
2931
2932 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
2933 }
2934
2935 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
2936 if (!can_combine_p (insn: i2, i3, pred: i0, pred2: i1, NULL, NULL, pdest: &i2dest, psrc: &i2src))
2937 {
2938 if (dump_file && (dump_flags & TDF_DETAILS))
2939 fprintf (stream: dump_file, format: "Can't combine i2 into i3\n");
2940 undo_all ();
2941 return 0;
2942 }
2943 if (i1 && !can_combine_p (insn: i1, i3, pred: i0, NULL, succ: i2, NULL, pdest: &i1dest, psrc: &i1src))
2944 {
2945 if (dump_file && (dump_flags & TDF_DETAILS))
2946 fprintf (stream: dump_file, format: "Can't combine i1 into i3\n");
2947 undo_all ();
2948 return 0;
2949 }
2950 if (i0 && !can_combine_p (insn: i0, i3, NULL, NULL, succ: i1, succ2: i2, pdest: &i0dest, psrc: &i0src))
2951 {
2952 if (dump_file && (dump_flags & TDF_DETAILS))
2953 fprintf (stream: dump_file, format: "Can't combine i0 into i3\n");
2954 undo_all ();
2955 return 0;
2956 }
2957
2958 /* With non-call exceptions we can end up trying to combine multiple
2959 insns with possible EH side effects. Make sure we can combine
2960 that to a single insn which means there must be at most one insn
2961 in the combination with an EH side effect. */
2962 if (cfun->can_throw_non_call_exceptions)
2963 {
2964 if (find_reg_note (i3, REG_EH_REGION, NULL_RTX)
2965 || find_reg_note (i2, REG_EH_REGION, NULL_RTX)
2966 || (i1 && find_reg_note (i1, REG_EH_REGION, NULL_RTX))
2967 || (i0 && find_reg_note (i0, REG_EH_REGION, NULL_RTX)))
2968 {
2969 has_non_call_exception = true;
2970 if (insn_could_throw_p (i3)
2971 + insn_could_throw_p (i2)
2972 + (i1 ? insn_could_throw_p (i1) : 0)
2973 + (i0 ? insn_could_throw_p (i0) : 0) > 1)
2974 {
2975 if (dump_file && (dump_flags & TDF_DETAILS))
2976 fprintf (stream: dump_file, format: "Can't combine multiple insns with EH "
2977 "side-effects\n");
2978 undo_all ();
2979 return 0;
2980 }
2981 }
2982 }
2983
2984 /* Record whether i2 and i3 are trivial moves. */
2985 i2_was_move = is_just_move (x: i2);
2986 i3_was_move = is_just_move (x: i3);
2987
2988 /* Record whether I2DEST is used in I2SRC and similarly for the other
2989 cases. Knowing this will help in register status updating below. */
2990 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2991 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2992 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2993 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
2994 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
2995 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
2996 i2dest_killed = dead_or_set_p (i2, i2dest);
2997 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2998 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
2999
3000 /* For the earlier insns, determine which of the subsequent ones they
3001 feed. */
3002 i1_feeds_i2_n = i1 && insn_a_feeds_b (a: i1, b: i2);
3003 i0_feeds_i1_n = i0 && insn_a_feeds_b (a: i0, b: i1);
3004 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (a: i0, b: i2)
3005 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3006 && reg_overlap_mentioned_p (i0dest, i2src))));
3007
3008 /* Ensure that I3's pattern can be the destination of combines. */
3009 if (! combinable_i3pat (i3, loc: &PATTERN (insn: i3), i2dest, i1dest, i0dest,
3010 i1_not_in_src: i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3011 i0_not_in_src: i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3012 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3013 pi3dest_killed: &i3dest_killed))
3014 {
3015 undo_all ();
3016 return 0;
3017 }
3018
3019 /* See if any of the insns is a MULT operation. Unless one is, we will
3020 reject a combination that is, since it must be slower. Be conservative
3021 here. */
3022 if (GET_CODE (i2src) == MULT
3023 || (i1 != 0 && GET_CODE (i1src) == MULT)
3024 || (i0 != 0 && GET_CODE (i0src) == MULT)
3025 || (GET_CODE (PATTERN (i3)) == SET
3026 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3027 have_mult = true;
3028
3029 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3030 We used to do this EXCEPT in one case: I3 has a post-inc in an
3031 output operand. However, that exception can give rise to insns like
3032 mov r3,(r3)+
3033 which is a famous insn on the PDP-11 where the value of r3 used as the
3034 source was model-dependent. Avoid this sort of thing. */
3035
3036#if 0
3037 if (!(GET_CODE (PATTERN (i3)) == SET
3038 && REG_P (SET_SRC (PATTERN (i3)))
3039 && MEM_P (SET_DEST (PATTERN (i3)))
3040 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3041 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3042 /* It's not the exception. */
3043#endif
3044 if (AUTO_INC_DEC)
3045 {
3046 rtx link;
3047 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3048 if (REG_NOTE_KIND (link) == REG_INC
3049 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i2))
3050 || (i1 != 0
3051 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (insn: i1)))))
3052 {
3053 undo_all ();
3054 return 0;
3055 }
3056 }
3057
3058 /* See if the SETs in I1 or I2 need to be kept around in the merged
3059 instruction: whenever the value set there is still needed past I3.
3060 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3061
3062 For the SET in I1, we have two cases: if I1 and I2 independently feed
3063 into I3, the set in I1 needs to be kept around unless I1DEST dies
3064 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3065 in I1 needs to be kept around unless I1DEST dies or is set in either
3066 I2 or I3. The same considerations apply to I0. */
3067
3068 added_sets_2 = !dead_or_set_p (i3, i2dest);
3069
3070 if (i1)
3071 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3072 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3073 else
3074 added_sets_1 = false;
3075
3076 if (i0)
3077 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3078 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3079 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3080 && dead_or_set_p (i2, i0dest)));
3081 else
3082 added_sets_0 = false;
3083
3084 /* We are about to copy insns for the case where they need to be kept
3085 around. Check that they can be copied in the merged instruction. */
3086
3087 if (targetm.cannot_copy_insn_p
3088 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3089 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3090 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3091 {
3092 undo_all ();
3093 return 0;
3094 }
3095
3096 /* We cannot safely duplicate volatile references in any case. */
3097
3098 if ((added_sets_2 && volatile_refs_p (PATTERN (insn: i2)))
3099 || (added_sets_1 && volatile_refs_p (PATTERN (insn: i1)))
3100 || (added_sets_0 && volatile_refs_p (PATTERN (insn: i0))))
3101 {
3102 undo_all ();
3103 return 0;
3104 }
3105
3106 /* Count how many auto_inc expressions there were in the original insns;
3107 we need to have the same number in the resulting patterns. */
3108
3109 if (i0)
3110 for_each_inc_dec (PATTERN (insn: i0), count_auto_inc, arg: &n_auto_inc);
3111 if (i1)
3112 for_each_inc_dec (PATTERN (insn: i1), count_auto_inc, arg: &n_auto_inc);
3113 for_each_inc_dec (PATTERN (insn: i2), count_auto_inc, arg: &n_auto_inc);
3114 for_each_inc_dec (PATTERN (insn: i3), count_auto_inc, arg: &n_auto_inc);
3115
3116 /* If the set in I2 needs to be kept around, we must make a copy of
3117 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3118 PATTERN (I2), we are only substituting for the original I1DEST, not into
3119 an already-substituted copy. This also prevents making self-referential
3120 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3121 I2DEST. */
3122
3123 if (added_sets_2)
3124 {
3125 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3126 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3127 else
3128 i2pat = copy_rtx (PATTERN (insn: i2));
3129 }
3130
3131 if (added_sets_1)
3132 {
3133 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3134 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3135 else
3136 i1pat = copy_rtx (PATTERN (insn: i1));
3137 }
3138
3139 if (added_sets_0)
3140 {
3141 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3142 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3143 else
3144 i0pat = copy_rtx (PATTERN (insn: i0));
3145 }
3146
3147 combine_merges++;
3148
3149 /* Substitute in the latest insn for the regs set by the earlier ones. */
3150
3151 maxreg = max_reg_num ();
3152
3153 subst_insn = i3;
3154
3155 /* Many machines have insns that can both perform an
3156 arithmetic operation and set the condition code. These operations will
3157 be represented as a PARALLEL with the first element of the vector
3158 being a COMPARE of an arithmetic operation with the constant zero.
3159 The second element of the vector will set some pseudo to the result
3160 of the same arithmetic operation. If we simplify the COMPARE, we won't
3161 match such a pattern and so will generate an extra insn. Here we test
3162 for this case, where both the comparison and the operation result are
3163 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3164 I2SRC. Later we will make the PARALLEL that contains I2. */
3165
3166 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3167 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3168 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3169 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3170 {
3171 rtx newpat_dest;
3172 rtx *cc_use_loc = NULL;
3173 rtx_insn *cc_use_insn = NULL;
3174 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3175 machine_mode compare_mode, orig_compare_mode;
3176 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3177 scalar_int_mode mode;
3178
3179 newpat = PATTERN (insn: i3);
3180 newpat_dest = SET_DEST (newpat);
3181 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3182
3183 if (undobuf.other_insn == 0
3184 && (cc_use_loc = find_single_use (SET_DEST (newpat), insn: i3,
3185 ploc: &cc_use_insn)))
3186 {
3187 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3188 if (is_a <scalar_int_mode> (GET_MODE (i2dest), result: &mode))
3189 compare_code = simplify_compare_const (compare_code, mode,
3190 &op0, &op1);
3191 target_canonicalize_comparison (code: &compare_code, op0: &op0, op1: &op1, op0_preserve_value: 1);
3192 }
3193
3194 /* Do the rest only if op1 is const0_rtx, which may be the
3195 result of simplification. */
3196 if (op1 == const0_rtx)
3197 {
3198 /* If a single use of the CC is found, prepare to modify it
3199 when SELECT_CC_MODE returns a new CC-class mode, or when
3200 the above simplify_compare_const() returned a new comparison
3201 operator. undobuf.other_insn is assigned the CC use insn
3202 when modifying it. */
3203 if (cc_use_loc)
3204 {
3205#ifdef SELECT_CC_MODE
3206 machine_mode new_mode
3207 = SELECT_CC_MODE (compare_code, op0, op1);
3208 if (new_mode != orig_compare_mode
3209 && can_change_dest_mode (SET_DEST (newpat),
3210 added_sets: added_sets_2, mode: new_mode))
3211 {
3212 unsigned int regno = REGNO (newpat_dest);
3213 compare_mode = new_mode;
3214 if (regno < FIRST_PSEUDO_REGISTER)
3215 newpat_dest = gen_rtx_REG (compare_mode, regno);
3216 else
3217 {
3218 subst_mode (regno, newval: compare_mode);
3219 newpat_dest = regno_reg_rtx[regno];
3220 }
3221 }
3222#endif
3223 /* Cases for modifying the CC-using comparison. */
3224 if (compare_code != orig_compare_code
3225 && COMPARISON_P (*cc_use_loc))
3226 {
3227 /* Replace cc_use_loc with entire new RTX. */
3228 SUBST (*cc_use_loc,
3229 gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
3230 newpat_dest, const0_rtx));
3231 undobuf.other_insn = cc_use_insn;
3232 }
3233 else if (compare_mode != orig_compare_mode)
3234 {
3235 subrtx_ptr_iterator::array_type array;
3236
3237 /* Just replace the CC reg with a new mode. */
3238 FOR_EACH_SUBRTX_PTR (iter, array, cc_use_loc, NONCONST)
3239 {
3240 rtx *loc = *iter;
3241 if (REG_P (*loc)
3242 && REGNO (*loc) == REGNO (newpat_dest))
3243 {
3244 SUBST (*loc, newpat_dest);
3245 iter.skip_subrtxes ();
3246 }
3247 }
3248 undobuf.other_insn = cc_use_insn;
3249 }
3250 }
3251
3252 /* Now we modify the current newpat:
3253 First, SET_DEST(newpat) is updated if the CC mode has been
3254 altered. For targets without SELECT_CC_MODE, this should be
3255 optimized away. */
3256 if (compare_mode != orig_compare_mode)
3257 SUBST (SET_DEST (newpat), newpat_dest);
3258 /* This is always done to propagate i2src into newpat. */
3259 SUBST (SET_SRC (newpat),
3260 gen_rtx_COMPARE (compare_mode, op0, op1));
3261 /* Create new version of i2pat if needed; the below PARALLEL
3262 creation needs this to work correctly. */
3263 if (! rtx_equal_p (i2src, op0))
3264 i2pat = gen_rtx_SET (i2dest, op0);
3265 i2_is_used = 1;
3266 }
3267 }
3268
3269 if (i2_is_used == 0)
3270 {
3271 /* It is possible that the source of I2 or I1 may be performing
3272 an unneeded operation, such as a ZERO_EXTEND of something
3273 that is known to have the high part zero. Handle that case
3274 by letting subst look at the inner insns.
3275
3276 Another way to do this would be to have a function that tries
3277 to simplify a single insn instead of merging two or more
3278 insns. We don't do this because of the potential of infinite
3279 loops and because of the potential extra memory required.
3280 However, doing it the way we are is a bit of a kludge and
3281 doesn't catch all cases.
3282
3283 But only do this if -fexpensive-optimizations since it slows
3284 things down and doesn't usually win.
3285
3286 This is not done in the COMPARE case above because the
3287 unmodified I2PAT is used in the PARALLEL and so a pattern
3288 with a modified I2SRC would not match. */
3289
3290 if (flag_expensive_optimizations)
3291 {
3292 /* Pass pc_rtx so no substitutions are done, just
3293 simplifications. */
3294 if (i1)
3295 {
3296 subst_low_luid = DF_INSN_LUID (i1);
3297 i1src = subst (i1src, pc_rtx, pc_rtx, false, false, false);
3298 }
3299
3300 subst_low_luid = DF_INSN_LUID (i2);
3301 i2src = subst (i2src, pc_rtx, pc_rtx, false, false, false);
3302 }
3303
3304 n_occurrences = 0; /* `subst' counts here */
3305 subst_low_luid = DF_INSN_LUID (i2);
3306
3307 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3308 copy of I2SRC each time we substitute it, in order to avoid creating
3309 self-referential RTL when we will be substituting I1SRC for I1DEST
3310 later. Likewise if I0 feeds into I2, either directly or indirectly
3311 through I1, and I0DEST is in I0SRC. */
3312 newpat = subst (PATTERN (insn: i3), i2dest, i2src, false, false,
3313 (i1_feeds_i2_n && i1dest_in_i1src)
3314 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3315 && i0dest_in_i0src));
3316 substed_i2 = true;
3317
3318 /* Record whether I2's body now appears within I3's body. */
3319 i2_is_used = n_occurrences;
3320 }
3321
3322 /* If we already got a failure, don't try to do more. Otherwise, try to
3323 substitute I1 if we have it. */
3324
3325 if (i1 && GET_CODE (newpat) != CLOBBER)
3326 {
3327 /* Before we can do this substitution, we must redo the test done
3328 above (see detailed comments there) that ensures I1DEST isn't
3329 mentioned in any SETs in NEWPAT that are field assignments. */
3330 if (!combinable_i3pat (NULL, loc: &newpat, i2dest: i1dest, NULL_RTX, NULL_RTX,
3331 i1_not_in_src: false, i0_not_in_src: false, pi3dest_killed: 0))
3332 {
3333 undo_all ();
3334 return 0;
3335 }
3336
3337 n_occurrences = 0;
3338 subst_low_luid = DF_INSN_LUID (i1);
3339
3340 /* If the following substitution will modify I1SRC, make a copy of it
3341 for the case where it is substituted for I1DEST in I2PAT later. */
3342 if (added_sets_2 && i1_feeds_i2_n)
3343 i1src_copy = copy_rtx (i1src);
3344
3345 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3346 copy of I1SRC each time we substitute it, in order to avoid creating
3347 self-referential RTL when we will be substituting I0SRC for I0DEST
3348 later. */
3349 newpat = subst (newpat, i1dest, i1src, false, false,
3350 i0_feeds_i1_n && i0dest_in_i0src);
3351 substed_i1 = true;
3352
3353 /* Record whether I1's body now appears within I3's body. */
3354 i1_is_used = n_occurrences;
3355 }
3356
3357 /* Likewise for I0 if we have it. */
3358
3359 if (i0 && GET_CODE (newpat) != CLOBBER)
3360 {
3361 if (!combinable_i3pat (NULL, loc: &newpat, i2dest: i0dest, NULL_RTX, NULL_RTX,
3362 i1_not_in_src: false, i0_not_in_src: false, pi3dest_killed: 0))
3363 {
3364 undo_all ();
3365 return 0;
3366 }
3367
3368 /* If the following substitution will modify I0SRC, make a copy of it
3369 for the case where it is substituted for I0DEST in I1PAT later. */
3370 if (added_sets_1 && i0_feeds_i1_n)
3371 i0src_copy = copy_rtx (i0src);
3372 /* And a copy for I0DEST in I2PAT substitution. */
3373 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3374 || (i0_feeds_i2_n)))
3375 i0src_copy2 = copy_rtx (i0src);
3376
3377 n_occurrences = 0;
3378 subst_low_luid = DF_INSN_LUID (i0);
3379 newpat = subst (newpat, i0dest, i0src, false, false, false);
3380 substed_i0 = true;
3381 }
3382
3383 if (n_auto_inc)
3384 {
3385 int new_n_auto_inc = 0;
3386 for_each_inc_dec (newpat, count_auto_inc, arg: &new_n_auto_inc);
3387
3388 if (n_auto_inc != new_n_auto_inc)
3389 {
3390 if (dump_file && (dump_flags & TDF_DETAILS))
3391 fprintf (stream: dump_file, format: "Number of auto_inc expressions changed\n");
3392 undo_all ();
3393 return 0;
3394 }
3395 }
3396
3397 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3398 to count all the ways that I2SRC and I1SRC can be used. */
3399 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3400 && i2_is_used + added_sets_2 > 1)
3401 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3402 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n) > 1))
3403 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3404 && (n_occurrences + added_sets_0
3405 + (added_sets_1 && i0_feeds_i1_n)
3406 + (added_sets_2 && i0_feeds_i2_n) > 1))
3407 /* Fail if we tried to make a new register. */
3408 || max_reg_num () != maxreg
3409 /* Fail if we couldn't do something and have a CLOBBER. */
3410 || GET_CODE (newpat) == CLOBBER
3411 /* Fail if this new pattern is a MULT and we didn't have one before
3412 at the outer level. */
3413 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3414 && ! have_mult))
3415 {
3416 undo_all ();
3417 return 0;
3418 }
3419
3420 /* If the actions of the earlier insns must be kept
3421 in addition to substituting them into the latest one,
3422 we must make a new PARALLEL for the latest insn
3423 to hold additional the SETs. */
3424
3425 if (added_sets_0 || added_sets_1 || added_sets_2)
3426 {
3427 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3428 combine_extras++;
3429
3430 if (GET_CODE (newpat) == PARALLEL)
3431 {
3432 rtvec old = XVEC (newpat, 0);
3433 total_sets = XVECLEN (newpat, 0) + extra_sets;
3434 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3435 memcpy (XVEC (newpat, 0)->elem, src: &old->elem[0],
3436 n: sizeof (old->elem[0]) * old->num_elem);
3437 }
3438 else
3439 {
3440 rtx old = newpat;
3441 total_sets = 1 + extra_sets;
3442 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3443 XVECEXP (newpat, 0, 0) = old;
3444 }
3445
3446 if (added_sets_0)
3447 XVECEXP (newpat, 0, --total_sets) = i0pat;
3448
3449 if (added_sets_1)
3450 {
3451 rtx t = i1pat;
3452 if (i0_feeds_i1_n)
3453 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src,
3454 false, false, false);
3455
3456 XVECEXP (newpat, 0, --total_sets) = t;
3457 }
3458 if (added_sets_2)
3459 {
3460 rtx t = i2pat;
3461 if (i1_feeds_i2_n)
3462 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, false, false,
3463 i0_feeds_i1_n && i0dest_in_i0src);
3464 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3465 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src,
3466 false, false, false);
3467
3468 XVECEXP (newpat, 0, --total_sets) = t;
3469 }
3470 }
3471
3472 validate_replacement:
3473
3474 /* Note which hard regs this insn has as inputs. */
3475 mark_used_regs_combine (newpat);
3476
3477 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3478 consider splitting this pattern, we might need these clobbers. */
3479 if (i1 && GET_CODE (newpat) == PARALLEL
3480 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3481 {
3482 int len = XVECLEN (newpat, 0);
3483
3484 newpat_vec_with_clobbers = rtvec_alloc (len);
3485 for (i = 0; i < len; i++)
3486 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3487 }
3488
3489 /* We have recognized nothing yet. */
3490 insn_code_number = -1;
3491
3492 /* See if this is a PARALLEL of two SETs where one SET's destination is
3493 a register that is unused and this isn't marked as an instruction that
3494 might trap in an EH region. In that case, we just need the other SET.
3495 We prefer this over the PARALLEL.
3496
3497 This can occur when simplifying a divmod insn. We *must* test for this
3498 case here because the code below that splits two independent SETs doesn't
3499 handle this case correctly when it updates the register status.
3500
3501 It's pointless doing this if we originally had two sets, one from
3502 i3, and one from i2. Combining then splitting the parallel results
3503 in the original i2 again plus an invalid insn (which we delete).
3504 The net effect is only to move instructions around, which makes
3505 debug info less accurate.
3506
3507 If the remaining SET came from I2 its destination should not be used
3508 between I2 and I3. See PR82024. */
3509
3510 if (!(added_sets_2 && i1 == 0)
3511 && is_parallel_of_n_reg_sets (pat: newpat, n: 2)
3512 && asm_noperands (newpat) < 0)
3513 {
3514 rtx set0 = XVECEXP (newpat, 0, 0);
3515 rtx set1 = XVECEXP (newpat, 0, 1);
3516 rtx oldpat = newpat;
3517
3518 if (((REG_P (SET_DEST (set1))
3519 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3520 || (GET_CODE (SET_DEST (set1)) == SUBREG
3521 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3522 && insn_nothrow_p (i3)
3523 && !side_effects_p (SET_SRC (set1)))
3524 {
3525 newpat = set0;
3526 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3527 }
3528
3529 else if (((REG_P (SET_DEST (set0))
3530 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3531 || (GET_CODE (SET_DEST (set0)) == SUBREG
3532 && find_reg_note (i3, REG_UNUSED,
3533 SUBREG_REG (SET_DEST (set0)))))
3534 && insn_nothrow_p (i3)
3535 && !side_effects_p (SET_SRC (set0)))
3536 {
3537 rtx dest = SET_DEST (set1);
3538 if (GET_CODE (dest) == SUBREG)
3539 dest = SUBREG_REG (dest);
3540 if (!reg_used_between_p (dest, i2, i3))
3541 {
3542 newpat = set1;
3543 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3544
3545 if (insn_code_number >= 0)
3546 changed_i3_dest = true;
3547 }
3548 }
3549
3550 if (insn_code_number < 0)
3551 newpat = oldpat;
3552 }
3553
3554 /* Is the result of combination a valid instruction? */
3555 if (insn_code_number < 0)
3556 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3557
3558 /* If we were combining three insns and the result is a simple SET
3559 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3560 insns. There are two ways to do this. It can be split using a
3561 machine-specific method (like when you have an addition of a large
3562 constant) or by combine in the function find_split_point. */
3563
3564 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3565 && asm_noperands (newpat) < 0)
3566 {
3567 rtx parallel, *split;
3568 rtx_insn *m_split_insn;
3569
3570 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3571 use I2DEST as a scratch register will help. In the latter case,
3572 convert I2DEST to the mode of the source of NEWPAT if we can. */
3573
3574 m_split_insn = combine_split_insns (pattern: newpat, insn: i3);
3575
3576 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3577 inputs of NEWPAT. */
3578
3579 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3580 possible to try that as a scratch reg. This would require adding
3581 more code to make it work though. */
3582
3583 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3584 {
3585 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3586
3587 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3588 (temporarily, until we are committed to this instruction
3589 combination) does not work: for example, any call to nonzero_bits
3590 on the register (from a splitter in the MD file, for example)
3591 will get the old information, which is invalid.
3592
3593 Since nowadays we can create registers during combine just fine,
3594 we should just create a new one here, not reuse i2dest. */
3595
3596 /* First try to split using the original register as a
3597 scratch register. */
3598 parallel = gen_rtx_PARALLEL (VOIDmode,
3599 gen_rtvec (2, newpat,
3600 gen_rtx_CLOBBER (VOIDmode,
3601 i2dest)));
3602 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3603
3604 /* If that didn't work, try changing the mode of I2DEST if
3605 we can. */
3606 if (m_split_insn == 0
3607 && new_mode != GET_MODE (i2dest)
3608 && new_mode != VOIDmode
3609 && can_change_dest_mode (x: i2dest, added_sets: added_sets_2, mode: new_mode))
3610 {
3611 machine_mode old_mode = GET_MODE (i2dest);
3612 rtx ni2dest;
3613
3614 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3615 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3616 else
3617 {
3618 subst_mode (REGNO (i2dest), newval: new_mode);
3619 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3620 }
3621
3622 parallel = (gen_rtx_PARALLEL
3623 (VOIDmode,
3624 gen_rtvec (2, newpat,
3625 gen_rtx_CLOBBER (VOIDmode,
3626 ni2dest))));
3627 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3628
3629 if (m_split_insn == 0
3630 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3631 {
3632 struct undo *buf;
3633
3634 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3635 buf = undobuf.undos;
3636 undobuf.undos = buf->next;
3637 buf->next = undobuf.frees;
3638 undobuf.frees = buf;
3639 }
3640 }
3641
3642 i2scratch = m_split_insn != 0;
3643 }
3644
3645 /* If recog_for_combine has discarded clobbers, try to use them
3646 again for the split. */
3647 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3648 {
3649 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3650 m_split_insn = combine_split_insns (pattern: parallel, insn: i3);
3651 }
3652
3653 if (m_split_insn && NEXT_INSN (insn: m_split_insn) == NULL_RTX)
3654 {
3655 rtx m_split_pat = PATTERN (insn: m_split_insn);
3656 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3657 if (insn_code_number >= 0)
3658 newpat = m_split_pat;
3659 }
3660 else if (m_split_insn && NEXT_INSN (insn: NEXT_INSN (insn: m_split_insn)) == NULL_RTX
3661 && (next_nonnote_nondebug_insn (i2) == i3
3662 || !modified_between_p (PATTERN (insn: m_split_insn), i2, i3)))
3663 {
3664 rtx i2set, i3set;
3665 rtx newi3pat = PATTERN (insn: NEXT_INSN (insn: m_split_insn));
3666 newi2pat = PATTERN (insn: m_split_insn);
3667
3668 i3set = single_set (insn: NEXT_INSN (insn: m_split_insn));
3669 i2set = single_set (insn: m_split_insn);
3670
3671 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3672
3673 /* If I2 or I3 has multiple SETs, we won't know how to track
3674 register status, so don't use these insns. If I2's destination
3675 is used between I2 and I3, we also can't use these insns. */
3676
3677 if (i2_code_number >= 0 && i2set && i3set
3678 && (next_nonnote_nondebug_insn (i2) == i3
3679 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3680 insn_code_number = recog_for_combine (&newi3pat, i3,
3681 &new_i3_notes);
3682 if (insn_code_number >= 0)
3683 newpat = newi3pat;
3684
3685 /* It is possible that both insns now set the destination of I3.
3686 If so, we must show an extra use of it. */
3687
3688 if (insn_code_number >= 0)
3689 {
3690 rtx new_i3_dest = SET_DEST (i3set);
3691 rtx new_i2_dest = SET_DEST (i2set);
3692
3693 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3694 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3695 || GET_CODE (new_i3_dest) == SUBREG)
3696 new_i3_dest = XEXP (new_i3_dest, 0);
3697
3698 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3699 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3700 || GET_CODE (new_i2_dest) == SUBREG)
3701 new_i2_dest = XEXP (new_i2_dest, 0);
3702
3703 if (REG_P (new_i3_dest)
3704 && REG_P (new_i2_dest)
3705 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3706 && REGNO (new_i2_dest) < reg_n_sets_max)
3707 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3708 }
3709 }
3710
3711 /* If we can split it and use I2DEST, go ahead and see if that
3712 helps things be recognized. Verify that none of the registers
3713 are set between I2 and I3. */
3714 if (insn_code_number < 0
3715 && (split = find_split_point (&newpat, i3, false)) != 0
3716 /* We need I2DEST in the proper mode. If it is a hard register
3717 or the only use of a pseudo, we can change its mode.
3718 Make sure we don't change a hard register to have a mode that
3719 isn't valid for it, or change the number of registers. */
3720 && (GET_MODE (*split) == GET_MODE (i2dest)
3721 || GET_MODE (*split) == VOIDmode
3722 || can_change_dest_mode (x: i2dest, added_sets: added_sets_2,
3723 GET_MODE (*split)))
3724 && (next_nonnote_nondebug_insn (i2) == i3
3725 || !modified_between_p (*split, i2, i3))
3726 /* We can't overwrite I2DEST if its value is still used by
3727 NEWPAT. */
3728 && ! reg_referenced_p (i2dest, newpat)
3729 /* We should not split a possibly trapping part when we
3730 care about non-call EH and have REG_EH_REGION notes
3731 to distribute. */
3732 && ! (cfun->can_throw_non_call_exceptions
3733 && has_non_call_exception
3734 && may_trap_p (*split)))
3735 {
3736 rtx newdest = i2dest;
3737 enum rtx_code split_code = GET_CODE (*split);
3738 machine_mode split_mode = GET_MODE (*split);
3739 bool subst_done = false;
3740 newi2pat = NULL_RTX;
3741
3742 i2scratch = true;
3743
3744 /* *SPLIT may be part of I2SRC, so make sure we have the
3745 original expression around for later debug processing.
3746 We should not need I2SRC any more in other cases. */
3747 if (MAY_HAVE_DEBUG_BIND_INSNS)
3748 i2src = copy_rtx (i2src);
3749 else
3750 i2src = NULL;
3751
3752 /* Get NEWDEST as a register in the proper mode. We have already
3753 validated that we can do this. */
3754 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3755 {
3756 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3757 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3758 else
3759 {
3760 subst_mode (REGNO (i2dest), newval: split_mode);
3761 newdest = regno_reg_rtx[REGNO (i2dest)];
3762 }
3763 }
3764
3765 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3766 an ASHIFT. This can occur if it was inside a PLUS and hence
3767 appeared to be a memory address. This is a kludge. */
3768 if (split_code == MULT
3769 && CONST_INT_P (XEXP (*split, 1))
3770 && INTVAL (XEXP (*split, 1)) > 0
3771 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3772 {
3773 rtx i_rtx = gen_int_shift_amount (split_mode, i);
3774 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3775 XEXP (*split, 0), i_rtx));
3776 /* Update split_code because we may not have a multiply
3777 anymore. */
3778 split_code = GET_CODE (*split);
3779 }
3780
3781 /* Similarly for (plus (mult FOO (const_int pow2))). */
3782 if (split_code == PLUS
3783 && GET_CODE (XEXP (*split, 0)) == MULT
3784 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3785 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3786 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3787 {
3788 rtx nsplit = XEXP (*split, 0);
3789 rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
3790 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3791 XEXP (nsplit, 0),
3792 i_rtx));
3793 /* Update split_code because we may not have a multiply
3794 anymore. */
3795 split_code = GET_CODE (*split);
3796 }
3797
3798#ifdef INSN_SCHEDULING
3799 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3800 be written as a ZERO_EXTEND. */
3801 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3802 {
3803 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3804 what it really is. */
3805 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3806 == SIGN_EXTEND)
3807 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3808 SUBREG_REG (*split)));
3809 else
3810 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3811 SUBREG_REG (*split)));
3812 }
3813#endif
3814
3815 /* Attempt to split binary operators using arithmetic identities. */
3816 if (BINARY_P (SET_SRC (newpat))
3817 && split_mode == GET_MODE (SET_SRC (newpat))
3818 && ! side_effects_p (SET_SRC (newpat)))
3819 {
3820 rtx setsrc = SET_SRC (newpat);
3821 machine_mode mode = GET_MODE (setsrc);
3822 enum rtx_code code = GET_CODE (setsrc);
3823 rtx src_op0 = XEXP (setsrc, 0);
3824 rtx src_op1 = XEXP (setsrc, 1);
3825
3826 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3827 if (rtx_equal_p (src_op0, src_op1))
3828 {
3829 newi2pat = gen_rtx_SET (newdest, src_op0);
3830 SUBST (XEXP (setsrc, 0), newdest);
3831 SUBST (XEXP (setsrc, 1), newdest);
3832 subst_done = true;
3833 }
3834 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3835 else if ((code == PLUS || code == MULT)
3836 && GET_CODE (src_op0) == code
3837 && GET_CODE (XEXP (src_op0, 0)) == code
3838 && (INTEGRAL_MODE_P (mode)
3839 || (FLOAT_MODE_P (mode)
3840 && flag_unsafe_math_optimizations)))
3841 {
3842 rtx p = XEXP (XEXP (src_op0, 0), 0);
3843 rtx q = XEXP (XEXP (src_op0, 0), 1);
3844 rtx r = XEXP (src_op0, 1);
3845 rtx s = src_op1;
3846
3847 /* Split both "((X op Y) op X) op Y" and
3848 "((X op Y) op Y) op X" as "T op T" where T is
3849 "X op Y". */
3850 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3851 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3852 {
3853 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3854 SUBST (XEXP (setsrc, 0), newdest);
3855 SUBST (XEXP (setsrc, 1), newdest);
3856 subst_done = true;
3857 }
3858 /* Split "((X op X) op Y) op Y)" as "T op T" where
3859 T is "X op Y". */
3860 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3861 {
3862 rtx tmp = simplify_gen_binary (code, mode, op0: p, op1: r);
3863 newi2pat = gen_rtx_SET (newdest, tmp);
3864 SUBST (XEXP (setsrc, 0), newdest);
3865 SUBST (XEXP (setsrc, 1), newdest);
3866 subst_done = true;
3867 }
3868 }
3869 }
3870
3871 if (!subst_done)
3872 {
3873 newi2pat = gen_rtx_SET (newdest, *split);
3874 SUBST (*split, newdest);
3875 }
3876
3877 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3878
3879 /* recog_for_combine might have added CLOBBERs to newi2pat.
3880 Make sure NEWPAT does not depend on the clobbered regs. */
3881 if (GET_CODE (newi2pat) == PARALLEL)
3882 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3883 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3884 {
3885 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3886 if (reg_overlap_mentioned_p (reg, newpat))
3887 {
3888 undo_all ();
3889 return 0;
3890 }
3891 }
3892
3893 /* If the split point was a MULT and we didn't have one before,
3894 don't use one now. */
3895 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3896 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3897 }
3898 }
3899
3900 /* Check for a case where we loaded from memory in a narrow mode and
3901 then sign extended it, but we need both registers. In that case,
3902 we have a PARALLEL with both loads from the same memory location.
3903 We can split this into a load from memory followed by a register-register
3904 copy. This saves at least one insn, more if register allocation can
3905 eliminate the copy.
3906
3907 We cannot do this if the destination of the first assignment is a
3908 condition code register. We eliminate this case by making sure
3909 the SET_DEST and SET_SRC have the same mode.
3910
3911 We cannot do this if the destination of the second assignment is
3912 a register that we have already assumed is zero-extended. Similarly
3913 for a SUBREG of such a register. */
3914
3915 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3916 && GET_CODE (newpat) == PARALLEL
3917 && XVECLEN (newpat, 0) == 2
3918 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3919 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3920 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3921 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3922 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3923 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3924 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3925 && !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
3926 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3927 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3928 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3929 (REG_P (temp_expr)
3930 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3931 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3932 BITS_PER_WORD)
3933 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3934 HOST_BITS_PER_INT)
3935 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3936 != GET_MODE_MASK (word_mode))))
3937 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3938 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3939 (REG_P (temp_expr)
3940 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3941 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3942 BITS_PER_WORD)
3943 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
3944 HOST_BITS_PER_INT)
3945 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3946 != GET_MODE_MASK (word_mode)))))
3947 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3948 SET_SRC (XVECEXP (newpat, 0, 1)))
3949 && ! find_reg_note (i3, REG_UNUSED,
3950 SET_DEST (XVECEXP (newpat, 0, 0))))
3951 {
3952 rtx ni2dest;
3953
3954 newi2pat = XVECEXP (newpat, 0, 0);
3955 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3956 newpat = XVECEXP (newpat, 0, 1);
3957 SUBST (SET_SRC (newpat),
3958 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3959 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3960
3961 if (i2_code_number >= 0)
3962 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3963
3964 if (insn_code_number >= 0)
3965 swap_i2i3 = 1;
3966 }
3967
3968 /* Similarly, check for a case where we have a PARALLEL of two independent
3969 SETs but we started with three insns. In this case, we can do the sets
3970 as two separate insns. This case occurs when some SET allows two
3971 other insns to combine, but the destination of that SET is still live.
3972
3973 Also do this if we started with two insns and (at least) one of the
3974 resulting sets is a noop; this noop will be deleted later.
3975
3976 Also do this if we started with two insns neither of which was a simple
3977 move. */
3978
3979 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3980 && GET_CODE (newpat) == PARALLEL
3981 && XVECLEN (newpat, 0) == 2
3982 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3983 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3984 && (i1
3985 || set_noop_p (XVECEXP (newpat, 0, 0))
3986 || set_noop_p (XVECEXP (newpat, 0, 1))
3987 || (!i2_was_move && !i3_was_move))
3988 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3989 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3990 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3991 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3992 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3993 XVECEXP (newpat, 0, 0))
3994 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3995 XVECEXP (newpat, 0, 1))
3996 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3997 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
3998 {
3999 rtx set0 = XVECEXP (newpat, 0, 0);
4000 rtx set1 = XVECEXP (newpat, 0, 1);
4001
4002 /* Normally, it doesn't matter which of the two is done first, but
4003 one which uses any regs/memory set in between i2 and i3 can't
4004 be first. The PARALLEL might also have been pre-existing in i3,
4005 so we need to make sure that we won't wrongly hoist a SET to i2
4006 that would conflict with a death note present in there, or would
4007 have its dest modified between i2 and i3. */
4008 if (!modified_between_p (SET_SRC (set1), i2, i3)
4009 && !(REG_P (SET_DEST (set1))
4010 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4011 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4012 && find_reg_note (i2, REG_DEAD,
4013 SUBREG_REG (SET_DEST (set1))))
4014 && !modified_between_p (SET_DEST (set1), i2, i3)
4015 /* If I3 is a jump, ensure that set0 is a jump so that
4016 we do not create invalid RTL. */
4017 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4018 )
4019 {
4020 newi2pat = set1;
4021 newpat = set0;
4022 }
4023 else if (!modified_between_p (SET_SRC (set0), i2, i3)
4024 && !(REG_P (SET_DEST (set0))
4025 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4026 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4027 && find_reg_note (i2, REG_DEAD,
4028 SUBREG_REG (SET_DEST (set0))))
4029 && !modified_between_p (SET_DEST (set0), i2, i3)
4030 /* If I3 is a jump, ensure that set1 is a jump so that
4031 we do not create invalid RTL. */
4032 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4033 )
4034 {
4035 newi2pat = set0;
4036 newpat = set1;
4037 }
4038 else
4039 {
4040 undo_all ();
4041 return 0;
4042 }
4043
4044 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4045
4046 if (i2_code_number >= 0)
4047 {
4048 /* recog_for_combine might have added CLOBBERs to newi2pat.
4049 Make sure NEWPAT does not depend on the clobbered regs. */
4050 if (GET_CODE (newi2pat) == PARALLEL)
4051 {
4052 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4053 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4054 {
4055 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4056 if (reg_overlap_mentioned_p (reg, newpat))
4057 {
4058 undo_all ();
4059 return 0;
4060 }
4061 }
4062 }
4063
4064 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4065
4066 /* Likewise, recog_for_combine might have added clobbers to NEWPAT.
4067 Checking that the SET0's SET_DEST and SET1's SET_DEST aren't
4068 mentioned/clobbered, ensures NEWI2PAT's SET_DEST is live. */
4069 if (insn_code_number >= 0 && GET_CODE (newpat) == PARALLEL)
4070 {
4071 for (i = XVECLEN (newpat, 0) - 1; i >= 0; i--)
4072 if (GET_CODE (XVECEXP (newpat, 0, i)) == CLOBBER)
4073 {
4074 rtx reg = XEXP (XVECEXP (newpat, 0, i), 0);
4075 if (reg_overlap_mentioned_p (reg, SET_DEST (set0))
4076 || reg_overlap_mentioned_p (reg, SET_DEST (set1)))
4077 {
4078 undo_all ();
4079 return 0;
4080 }
4081 }
4082 }
4083
4084 if (insn_code_number >= 0)
4085 split_i2i3 = true;
4086 }
4087 }
4088
4089 /* If it still isn't recognized, fail and change things back the way they
4090 were. */
4091 if ((insn_code_number < 0
4092 /* Is the result a reasonable ASM_OPERANDS? */
4093 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4094 {
4095 undo_all ();
4096 return 0;
4097 }
4098
4099 /* If we had to change another insn, make sure it is valid also. */
4100 if (undobuf.other_insn)
4101 {
4102 CLEAR_HARD_REG_SET (set&: newpat_used_regs);
4103
4104 other_pat = PATTERN (insn: undobuf.other_insn);
4105 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4106 &new_other_notes);
4107
4108 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4109 {
4110 undo_all ();
4111 return 0;
4112 }
4113 }
4114
4115 /* Only allow this combination if insn_cost reports that the
4116 replacement instructions are cheaper than the originals. */
4117 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, newotherpat: other_pat))
4118 {
4119 undo_all ();
4120 return 0;
4121 }
4122
4123 if (MAY_HAVE_DEBUG_BIND_INSNS)
4124 {
4125 struct undo *undo;
4126
4127 for (undo = undobuf.undos; undo; undo = undo->next)
4128 if (undo->kind == UNDO_MODE)
4129 {
4130 rtx reg = regno_reg_rtx[undo->where.regno];
4131 machine_mode new_mode = GET_MODE (reg);
4132 machine_mode old_mode = undo->old_contents.m;
4133
4134 /* Temporarily revert mode back. */
4135 adjust_reg_mode (reg, old_mode);
4136
4137 if (reg == i2dest && i2scratch)
4138 {
4139 /* If we used i2dest as a scratch register with a
4140 different mode, substitute it for the original
4141 i2src while its original mode is temporarily
4142 restored, and then clear i2scratch so that we don't
4143 do it again later. */
4144 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4145 this_basic_block);
4146 i2scratch = false;
4147 /* Put back the new mode. */
4148 adjust_reg_mode (reg, new_mode);
4149 }
4150 else
4151 {
4152 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4153 rtx_insn *first, *last;
4154
4155 if (reg == i2dest)
4156 {
4157 first = i2;
4158 last = last_combined_insn;
4159 }
4160 else
4161 {
4162 first = i3;
4163 last = undobuf.other_insn;
4164 gcc_assert (last);
4165 if (DF_INSN_LUID (last)
4166 < DF_INSN_LUID (last_combined_insn))
4167 last = last_combined_insn;
4168 }
4169
4170 /* We're dealing with a reg that changed mode but not
4171 meaning, so we want to turn it into a subreg for
4172 the new mode. However, because of REG sharing and
4173 because its mode had already changed, we have to do
4174 it in two steps. First, replace any debug uses of
4175 reg, with its original mode temporarily restored,
4176 with this copy we have created; then, replace the
4177 copy with the SUBREG of the original shared reg,
4178 once again changed to the new mode. */
4179 propagate_for_debug (first, last, reg, tempreg,
4180 this_basic_block);
4181 adjust_reg_mode (reg, new_mode);
4182 propagate_for_debug (first, last, tempreg,
4183 lowpart_subreg (outermode: old_mode, op: reg, innermode: new_mode),
4184 this_basic_block);
4185 }
4186 }
4187 }
4188
4189 /* If we will be able to accept this, we have made a
4190 change to the destination of I3. This requires us to
4191 do a few adjustments. */
4192
4193 if (changed_i3_dest)
4194 {
4195 PATTERN (insn: i3) = newpat;
4196 adjust_for_new_dest (insn: i3);
4197 }
4198
4199 /* We now know that we can do this combination. Merge the insns and
4200 update the status of registers and LOG_LINKS. */
4201
4202 if (undobuf.other_insn)
4203 {
4204 rtx note, next;
4205
4206 PATTERN (insn: undobuf.other_insn) = other_pat;
4207
4208 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4209 ensure that they are still valid. Then add any non-duplicate
4210 notes added by recog_for_combine. */
4211 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4212 {
4213 next = XEXP (note, 1);
4214
4215 if ((REG_NOTE_KIND (note) == REG_DEAD
4216 && !reg_referenced_p (XEXP (note, 0),
4217 PATTERN (insn: undobuf.other_insn)))
4218 ||(REG_NOTE_KIND (note) == REG_UNUSED
4219 && !reg_set_p (XEXP (note, 0),
4220 PATTERN (insn: undobuf.other_insn)))
4221 /* Simply drop equal note since it may be no longer valid
4222 for other_insn. It may be possible to record that CC
4223 register is changed and only discard those notes, but
4224 in practice it's unnecessary complication and doesn't
4225 give any meaningful improvement.
4226
4227 See PR78559. */
4228 || REG_NOTE_KIND (note) == REG_EQUAL
4229 || REG_NOTE_KIND (note) == REG_EQUIV)
4230 remove_note (undobuf.other_insn, note);
4231 }
4232
4233 distribute_notes (new_other_notes, undobuf.other_insn,
4234 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4235 NULL_RTX);
4236 }
4237
4238 if (swap_i2i3)
4239 {
4240 /* I3 now uses what used to be its destination and which is now
4241 I2's destination. This requires us to do a few adjustments. */
4242 PATTERN (insn: i3) = newpat;
4243 adjust_for_new_dest (insn: i3);
4244 }
4245
4246 if (swap_i2i3 || split_i2i3)
4247 {
4248 /* We might need a LOG_LINK from I3 to I2. But then we used to
4249 have one, so we still will.
4250
4251 However, some later insn might be using I2's dest and have
4252 a LOG_LINK pointing at I3. We should change it to point at
4253 I2 instead. */
4254
4255 /* newi2pat is usually a SET here; however, recog_for_combine might
4256 have added some clobbers. */
4257 rtx x = newi2pat;
4258 if (GET_CODE (x) == PARALLEL)
4259 x = XVECEXP (newi2pat, 0, 0);
4260
4261 if (REG_P (SET_DEST (x))
4262 || (GET_CODE (SET_DEST (x)) == SUBREG
4263 && REG_P (SUBREG_REG (SET_DEST (x)))))
4264 {
4265 unsigned int regno = reg_or_subregno (SET_DEST (x));
4266
4267 bool done = false;
4268 for (rtx_insn *insn = NEXT_INSN (insn: i3);
4269 !done
4270 && insn
4271 && INSN_P (insn)
4272 && BLOCK_FOR_INSN (insn) == this_basic_block;
4273 insn = NEXT_INSN (insn))
4274 {
4275 if (DEBUG_INSN_P (insn))
4276 continue;
4277 struct insn_link *link;
4278 FOR_EACH_LOG_LINK (link, insn)
4279 if (link->insn == i3 && link->regno == regno)
4280 {
4281 link->insn = i2;
4282 done = true;
4283 break;
4284 }
4285 }
4286 }
4287 }
4288
4289 {
4290 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4291 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4292 rtx midnotes = 0;
4293 int from_luid;
4294 /* Compute which registers we expect to eliminate. newi2pat may be setting
4295 either i3dest or i2dest, so we must check it. */
4296 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4297 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4298 || !i2dest_killed
4299 ? 0 : i2dest);
4300 /* For i1, we need to compute both local elimination and global
4301 elimination information with respect to newi2pat because i1dest
4302 may be the same as i3dest, in which case newi2pat may be setting
4303 i1dest. Global information is used when distributing REG_DEAD
4304 note for i2 and i3, in which case it does matter if newi2pat sets
4305 i1dest or not.
4306
4307 Local information is used when distributing REG_DEAD note for i1,
4308 in which case it doesn't matter if newi2pat sets i1dest or not.
4309 See PR62151, if we have four insns combination:
4310 i0: r0 <- i0src
4311 i1: r1 <- i1src (using r0)
4312 REG_DEAD (r0)
4313 i2: r0 <- i2src (using r1)
4314 i3: r3 <- i3src (using r0)
4315 ix: using r0
4316 From i1's point of view, r0 is eliminated, no matter if it is set
4317 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4318 should be discarded.
4319
4320 Note local information only affects cases in forms like "I1->I2->I3",
4321 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4322 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4323 i0dest anyway. */
4324 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4325 || !i1dest_killed
4326 ? 0 : i1dest);
4327 rtx elim_i1 = (local_elim_i1 == 0
4328 || (newi2pat && reg_set_p (i1dest, newi2pat))
4329 ? 0 : i1dest);
4330 /* Same case as i1. */
4331 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4332 ? 0 : i0dest);
4333 rtx elim_i0 = (local_elim_i0 == 0
4334 || (newi2pat && reg_set_p (i0dest, newi2pat))
4335 ? 0 : i0dest);
4336
4337 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4338 clear them. */
4339 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4340 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4341 if (i1)
4342 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4343 if (i0)
4344 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4345
4346 /* Ensure that we do not have something that should not be shared but
4347 occurs multiple times in the new insns. Check this by first
4348 resetting all the `used' flags and then copying anything is shared. */
4349
4350 reset_used_flags (i3notes);
4351 reset_used_flags (i2notes);
4352 reset_used_flags (i1notes);
4353 reset_used_flags (i0notes);
4354 reset_used_flags (newpat);
4355 reset_used_flags (newi2pat);
4356 if (undobuf.other_insn)
4357 reset_used_flags (PATTERN (insn: undobuf.other_insn));
4358
4359 i3notes = copy_rtx_if_shared (i3notes);
4360 i2notes = copy_rtx_if_shared (i2notes);
4361 i1notes = copy_rtx_if_shared (i1notes);
4362 i0notes = copy_rtx_if_shared (i0notes);
4363 newpat = copy_rtx_if_shared (newpat);
4364 newi2pat = copy_rtx_if_shared (newi2pat);
4365 if (undobuf.other_insn)
4366 reset_used_flags (PATTERN (insn: undobuf.other_insn));
4367
4368 INSN_CODE (i3) = insn_code_number;
4369 PATTERN (insn: i3) = newpat;
4370
4371 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4372 {
4373 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4374 link = XEXP (link, 1))
4375 {
4376 if (substed_i2)
4377 {
4378 /* I2SRC must still be meaningful at this point. Some
4379 splitting operations can invalidate I2SRC, but those
4380 operations do not apply to calls. */
4381 gcc_assert (i2src);
4382 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4383 i2dest, i2src);
4384 }
4385 if (substed_i1)
4386 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4387 i1dest, i1src);
4388 if (substed_i0)
4389 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4390 i0dest, i0src);
4391 }
4392 }
4393
4394 if (undobuf.other_insn)
4395 INSN_CODE (undobuf.other_insn) = other_code_number;
4396
4397 /* We had one special case above where I2 had more than one set and
4398 we replaced a destination of one of those sets with the destination
4399 of I3. In that case, we have to update LOG_LINKS of insns later
4400 in this basic block. Note that this (expensive) case is rare.
4401
4402 Also, in this case, we must pretend that all REG_NOTEs for I2
4403 actually came from I3, so that REG_UNUSED notes from I2 will be
4404 properly handled. */
4405
4406 if (i3_subst_into_i2)
4407 {
4408 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4409 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4410 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4411 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4412 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4413 && ! find_reg_note (i2, REG_UNUSED,
4414 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4415 for (temp_insn = NEXT_INSN (insn: i2);
4416 temp_insn
4417 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4418 || BB_HEAD (this_basic_block) != temp_insn);
4419 temp_insn = NEXT_INSN (insn: temp_insn))
4420 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4421 FOR_EACH_LOG_LINK (link, temp_insn)
4422 if (link->insn == i2)
4423 link->insn = i3;
4424
4425 if (i3notes)
4426 {
4427 rtx link = i3notes;
4428 while (XEXP (link, 1))
4429 link = XEXP (link, 1);
4430 XEXP (link, 1) = i2notes;
4431 }
4432 else
4433 i3notes = i2notes;
4434 i2notes = 0;
4435 }
4436
4437 LOG_LINKS (i3) = NULL;
4438 REG_NOTES (i3) = 0;
4439 LOG_LINKS (i2) = NULL;
4440 REG_NOTES (i2) = 0;
4441
4442 if (newi2pat)
4443 {
4444 if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
4445 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4446 this_basic_block);
4447 INSN_CODE (i2) = i2_code_number;
4448 PATTERN (insn: i2) = newi2pat;
4449 }
4450 else
4451 {
4452 if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
4453 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4454 this_basic_block);
4455 SET_INSN_DELETED (i2);
4456 }
4457
4458 if (i1)
4459 {
4460 LOG_LINKS (i1) = NULL;
4461 REG_NOTES (i1) = 0;
4462 if (MAY_HAVE_DEBUG_BIND_INSNS)
4463 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4464 this_basic_block);
4465 SET_INSN_DELETED (i1);
4466 }
4467
4468 if (i0)
4469 {
4470 LOG_LINKS (i0) = NULL;
4471 REG_NOTES (i0) = 0;
4472 if (MAY_HAVE_DEBUG_BIND_INSNS)
4473 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4474 this_basic_block);
4475 SET_INSN_DELETED (i0);
4476 }
4477
4478 /* Get death notes for everything that is now used in either I3 or
4479 I2 and used to die in a previous insn. If we built two new
4480 patterns, move from I1 to I2 then I2 to I3 so that we get the
4481 proper movement on registers that I2 modifies. */
4482
4483 if (i0)
4484 from_luid = DF_INSN_LUID (i0);
4485 else if (i1)
4486 from_luid = DF_INSN_LUID (i1);
4487 else
4488 from_luid = DF_INSN_LUID (i2);
4489 if (newi2pat)
4490 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4491 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4492
4493 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4494 if (i3notes)
4495 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4496 elim_i2, elim_i1, elim_i0);
4497 if (i2notes)
4498 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4499 elim_i2, elim_i1, elim_i0);
4500 if (i1notes)
4501 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4502 elim_i2, local_elim_i1, local_elim_i0);
4503 if (i0notes)
4504 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4505 elim_i2, elim_i1, local_elim_i0);
4506 if (midnotes)
4507 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4508 elim_i2, elim_i1, elim_i0);
4509
4510 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4511 know these are REG_UNUSED and want them to go to the desired insn,
4512 so we always pass it as i3. */
4513
4514 if (newi2pat && new_i2_notes)
4515 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4516 NULL_RTX);
4517
4518 if (new_i3_notes)
4519 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4520 NULL_RTX);
4521
4522 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4523 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4524 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4525 in that case, it might delete I2. Similarly for I2 and I1.
4526 Show an additional death due to the REG_DEAD note we make here. If
4527 we discard it in distribute_notes, we will decrement it again. */
4528
4529 if (i3dest_killed)
4530 {
4531 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4532 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4533 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4534 elim_i1, elim_i0);
4535 else
4536 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4537 elim_i2, elim_i1, elim_i0);
4538 }
4539
4540 if (i2dest_in_i2src)
4541 {
4542 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4543 if (newi2pat && reg_set_p (i2dest, newi2pat))
4544 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4545 NULL_RTX, NULL_RTX);
4546 else
4547 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4548 NULL_RTX, NULL_RTX, NULL_RTX);
4549 }
4550
4551 if (i1dest_in_i1src)
4552 {
4553 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4554 if (newi2pat && reg_set_p (i1dest, newi2pat))
4555 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4556 NULL_RTX, NULL_RTX);
4557 else
4558 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4559 NULL_RTX, NULL_RTX, NULL_RTX);
4560 }
4561
4562 if (i0dest_in_i0src)
4563 {
4564 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4565 if (newi2pat && reg_set_p (i0dest, newi2pat))
4566 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4567 NULL_RTX, NULL_RTX);
4568 else
4569 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4570 NULL_RTX, NULL_RTX, NULL_RTX);
4571 }
4572
4573 distribute_links (i3links);
4574 distribute_links (i2links);
4575 distribute_links (i1links);
4576 distribute_links (i0links);
4577
4578 if (REG_P (i2dest))
4579 {
4580 struct insn_link *link;
4581 rtx_insn *i2_insn = 0;
4582 rtx i2_val = 0, set;
4583
4584 /* The insn that used to set this register doesn't exist, and
4585 this life of the register may not exist either. See if one of
4586 I3's links points to an insn that sets I2DEST. If it does,
4587 that is now the last known value for I2DEST. If we don't update
4588 this and I2 set the register to a value that depended on its old
4589 contents, we will get confused. If this insn is used, thing
4590 will be set correctly in combine_instructions. */
4591 FOR_EACH_LOG_LINK (link, i3)
4592 if ((set = single_set (insn: link->insn)) != 0
4593 && rtx_equal_p (i2dest, SET_DEST (set)))
4594 i2_insn = link->insn, i2_val = SET_SRC (set);
4595
4596 record_value_for_reg (i2dest, i2_insn, i2_val);
4597
4598 /* If the reg formerly set in I2 died only once and that was in I3,
4599 zero its use count so it won't make `reload' do any work. */
4600 if (! added_sets_2
4601 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4602 && ! i2dest_in_i2src
4603 && REGNO (i2dest) < reg_n_sets_max)
4604 INC_REG_N_SETS (REGNO (i2dest), -1);
4605 }
4606
4607 if (i1 && REG_P (i1dest))
4608 {
4609 struct insn_link *link;
4610 rtx_insn *i1_insn = 0;
4611 rtx i1_val = 0, set;
4612
4613 FOR_EACH_LOG_LINK (link, i3)
4614 if ((set = single_set (insn: link->insn)) != 0
4615 && rtx_equal_p (i1dest, SET_DEST (set)))
4616 i1_insn = link->insn, i1_val = SET_SRC (set);
4617
4618 record_value_for_reg (i1dest, i1_insn, i1_val);
4619
4620 if (! added_sets_1
4621 && ! i1dest_in_i1src
4622 && REGNO (i1dest) < reg_n_sets_max)
4623 INC_REG_N_SETS (REGNO (i1dest), -1);
4624 }
4625
4626 if (i0 && REG_P (i0dest))
4627 {
4628 struct insn_link *link;
4629 rtx_insn *i0_insn = 0;
4630 rtx i0_val = 0, set;
4631
4632 FOR_EACH_LOG_LINK (link, i3)
4633 if ((set = single_set (insn: link->insn)) != 0
4634 && rtx_equal_p (i0dest, SET_DEST (set)))
4635 i0_insn = link->insn, i0_val = SET_SRC (set);
4636
4637 record_value_for_reg (i0dest, i0_insn, i0_val);
4638
4639 if (! added_sets_0
4640 && ! i0dest_in_i0src
4641 && REGNO (i0dest) < reg_n_sets_max)
4642 INC_REG_N_SETS (REGNO (i0dest), -1);
4643 }
4644
4645 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4646 been made to this insn. The order is important, because newi2pat
4647 can affect nonzero_bits of newpat. */
4648 if (newi2pat)
4649 note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4650 note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4651 }
4652
4653 if (undobuf.other_insn != NULL_RTX)
4654 {
4655 if (dump_file)
4656 {
4657 fprintf (stream: dump_file, format: "modifying other_insn ");
4658 dump_insn_slim (dump_file, undobuf.other_insn);
4659 }
4660 df_insn_rescan (undobuf.other_insn);
4661 }
4662
4663 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4664 {
4665 if (dump_file)
4666 {
4667 fprintf (stream: dump_file, format: "modifying insn i0 ");
4668 dump_insn_slim (dump_file, i0);
4669 }
4670 df_insn_rescan (i0);
4671 }
4672
4673 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4674 {
4675 if (dump_file)
4676 {
4677 fprintf (stream: dump_file, format: "modifying insn i1 ");
4678 dump_insn_slim (dump_file, i1);
4679 }
4680 df_insn_rescan (i1);
4681 }
4682
4683 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4684 {
4685 if (dump_file)
4686 {
4687 fprintf (stream: dump_file, format: "modifying insn i2 ");
4688 dump_insn_slim (dump_file, i2);
4689 }
4690 df_insn_rescan (i2);
4691 }
4692
4693 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4694 {
4695 if (dump_file)
4696 {
4697 fprintf (stream: dump_file, format: "modifying insn i3 ");
4698 dump_insn_slim (dump_file, i3);
4699 }
4700 df_insn_rescan (i3);
4701 }
4702
4703 /* Set new_direct_jump_p if a new return or simple jump instruction
4704 has been created. Adjust the CFG accordingly. */
4705 if (returnjump_p (i3) || any_uncondjump_p (i3))
4706 {
4707 *new_direct_jump_p = 1;
4708 mark_jump_label (PATTERN (insn: i3), i3, 0);
4709 update_cfg_for_uncondjump (i3);
4710 }
4711
4712 if (undobuf.other_insn != NULL_RTX
4713 && (returnjump_p (undobuf.other_insn)
4714 || any_uncondjump_p (undobuf.other_insn)))
4715 {
4716 *new_direct_jump_p = 1;
4717 update_cfg_for_uncondjump (undobuf.other_insn);
4718 }
4719
4720 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4721 && XEXP (PATTERN (i3), 0) == const1_rtx)
4722 {
4723 basic_block bb = BLOCK_FOR_INSN (insn: i3);
4724 gcc_assert (bb);
4725 remove_edge (split_block (bb, i3));
4726 emit_barrier_after_bb (bb);
4727 *new_direct_jump_p = 1;
4728 }
4729
4730 if (undobuf.other_insn
4731 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4732 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4733 {
4734 basic_block bb = BLOCK_FOR_INSN (insn: undobuf.other_insn);
4735 gcc_assert (bb);
4736 remove_edge (split_block (bb, undobuf.other_insn));
4737 emit_barrier_after_bb (bb);
4738 *new_direct_jump_p = 1;
4739 }
4740
4741 /* A noop might also need cleaning up of CFG, if it comes from the
4742 simplification of a jump. */
4743 if (JUMP_P (i3)
4744 && GET_CODE (newpat) == SET
4745 && SET_SRC (newpat) == pc_rtx
4746 && SET_DEST (newpat) == pc_rtx)
4747 {
4748 *new_direct_jump_p = 1;
4749 update_cfg_for_uncondjump (i3);
4750 }
4751
4752 if (undobuf.other_insn != NULL_RTX
4753 && JUMP_P (undobuf.other_insn)
4754 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4755 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4756 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4757 {
4758 *new_direct_jump_p = 1;
4759 update_cfg_for_uncondjump (undobuf.other_insn);
4760 }
4761
4762 combine_successes++;
4763 undo_commit ();
4764
4765 rtx_insn *ret = newi2pat ? i2 : i3;
4766 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4767 ret = added_links_insn;
4768 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4769 ret = added_notes_insn;
4770
4771 return ret;
4772}
4773
4774/* Get a marker for undoing to the current state. */
4775
4776static void *
4777get_undo_marker (void)
4778{
4779 return undobuf.undos;
4780}
4781
4782/* Undo the modifications up to the marker. */
4783
4784static void
4785undo_to_marker (void *marker)
4786{
4787 struct undo *undo, *next;
4788
4789 for (undo = undobuf.undos; undo != marker; undo = next)
4790 {
4791 gcc_assert (undo);
4792
4793 next = undo->next;
4794 switch (undo->kind)
4795 {
4796 case UNDO_RTX:
4797 *undo->where.r = undo->old_contents.r;
4798 break;
4799 case UNDO_INT:
4800 *undo->where.i = undo->old_contents.i;
4801 break;
4802 case UNDO_MODE:
4803 adjust_reg_mode (regno_reg_rtx[undo->where.regno],
4804 undo->old_contents.m);
4805 break;
4806 case UNDO_LINKS:
4807 *undo->where.l = undo->old_contents.l;
4808 break;
4809 default:
4810 gcc_unreachable ();
4811 }
4812
4813 undo->next = undobuf.frees;
4814 undobuf.frees = undo;
4815 }
4816
4817 undobuf.undos = (struct undo *) marker;
4818}
4819
4820/* Undo all the modifications recorded in undobuf. */
4821
4822static void
4823undo_all (void)
4824{
4825 undo_to_marker (marker: 0);
4826}
4827
4828/* We've committed to accepting the changes we made. Move all
4829 of the undos to the free list. */
4830
4831static void
4832undo_commit (void)
4833{
4834 struct undo *undo, *next;
4835
4836 for (undo = undobuf.undos; undo; undo = next)
4837 {
4838 next = undo->next;
4839 undo->next = undobuf.frees;
4840 undobuf.frees = undo;
4841 }
4842 undobuf.undos = 0;
4843}
4844
4845/* Find the innermost point within the rtx at LOC, possibly LOC itself,
4846 where we have an arithmetic expression and return that point. LOC will
4847 be inside INSN.
4848
4849 try_combine will call this function to see if an insn can be split into
4850 two insns. */
4851
4852static rtx *
4853find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4854{
4855 rtx x = *loc;
4856 enum rtx_code code = GET_CODE (x);
4857 rtx *split;
4858 unsigned HOST_WIDE_INT len = 0;
4859 HOST_WIDE_INT pos = 0;
4860 bool unsignedp = false;
4861 rtx inner = NULL_RTX;
4862 scalar_int_mode mode, inner_mode;
4863
4864 /* First special-case some codes. */
4865 switch (code)
4866 {
4867 case SUBREG:
4868#ifdef INSN_SCHEDULING
4869 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4870 point. */
4871 if (MEM_P (SUBREG_REG (x)))
4872 return loc;
4873#endif
4874 return find_split_point (loc: &SUBREG_REG (x), insn, set_src: false);
4875
4876 case MEM:
4877 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4878 using LO_SUM and HIGH. */
4879 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4880 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4881 {
4882 machine_mode address_mode = get_address_mode (mem: x);
4883
4884 SUBST (XEXP (x, 0),
4885 gen_rtx_LO_SUM (address_mode,
4886 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4887 XEXP (x, 0)));
4888 return &XEXP (XEXP (x, 0), 0);
4889 }
4890
4891 /* If we have a PLUS whose second operand is a constant and the
4892 address is not valid, perhaps we can split it up using
4893 the machine-specific way to split large constants. We use
4894 the first pseudo-reg (one of the virtual regs) as a placeholder;
4895 it will not remain in the result. */
4896 if (GET_CODE (XEXP (x, 0)) == PLUS
4897 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4898 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4899 MEM_ADDR_SPACE (x)))
4900 {
4901 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4902 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4903 insn: subst_insn);
4904
4905 /* This should have produced two insns, each of which sets our
4906 placeholder. If the source of the second is a valid address,
4907 we can put both sources together and make a split point
4908 in the middle. */
4909
4910 if (seq
4911 && NEXT_INSN (insn: seq) != NULL_RTX
4912 && NEXT_INSN (insn: NEXT_INSN (insn: seq)) == NULL_RTX
4913 && NONJUMP_INSN_P (seq)
4914 && GET_CODE (PATTERN (seq)) == SET
4915 && SET_DEST (PATTERN (seq)) == reg
4916 && ! reg_mentioned_p (reg,
4917 SET_SRC (PATTERN (seq)))
4918 && NONJUMP_INSN_P (NEXT_INSN (seq))
4919 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4920 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4921 && memory_address_addr_space_p
4922 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4923 MEM_ADDR_SPACE (x)))
4924 {
4925 rtx src1 = SET_SRC (PATTERN (seq));
4926 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4927
4928 /* Replace the placeholder in SRC2 with SRC1. If we can
4929 find where in SRC2 it was placed, that can become our
4930 split point and we can replace this address with SRC2.
4931 Just try two obvious places. */
4932
4933 src2 = replace_rtx (src2, reg, src1);
4934 split = 0;
4935 if (XEXP (src2, 0) == src1)
4936 split = &XEXP (src2, 0);
4937 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4938 && XEXP (XEXP (src2, 0), 0) == src1)
4939 split = &XEXP (XEXP (src2, 0), 0);
4940
4941 if (split)
4942 {
4943 SUBST (XEXP (x, 0), src2);
4944 return split;
4945 }
4946 }
4947
4948 /* If that didn't work and we have a nested plus, like:
4949 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
4950 is valid address, try to split (REG1 * CONST1). */
4951 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4952 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4953 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4954 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
4955 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4956 0), 0)))))
4957 {
4958 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
4959 XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
4960 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4961 MEM_ADDR_SPACE (x)))
4962 {
4963 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4964 return &XEXP (XEXP (XEXP (x, 0), 0), 0);
4965 }
4966 XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
4967 }
4968 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
4969 && OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
4970 && !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
4971 && ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
4972 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
4973 0), 1)))))
4974 {
4975 rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
4976 XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
4977 if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4978 MEM_ADDR_SPACE (x)))
4979 {
4980 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4981 return &XEXP (XEXP (XEXP (x, 0), 0), 1);
4982 }
4983 XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
4984 }
4985
4986 /* If that didn't work, perhaps the first operand is complex and
4987 needs to be computed separately, so make a split point there.
4988 This will occur on machines that just support REG + CONST
4989 and have a constant moved through some previous computation. */
4990 if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4991 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4992 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4993 return &XEXP (XEXP (x, 0), 0);
4994 }
4995
4996 /* If we have a PLUS whose first operand is complex, try computing it
4997 separately by making a split there. */
4998 if (GET_CODE (XEXP (x, 0)) == PLUS
4999 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
5000 MEM_ADDR_SPACE (x))
5001 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
5002 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
5003 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
5004 return &XEXP (XEXP (x, 0), 0);
5005 break;
5006
5007 case SET:
5008 /* See if we can split SET_SRC as it stands. */
5009 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5010 if (split && split != &SET_SRC (x))
5011 return split;
5012
5013 /* See if we can split SET_DEST as it stands. */
5014 split = find_split_point (loc: &SET_DEST (x), insn, set_src: false);
5015 if (split && split != &SET_DEST (x))
5016 return split;
5017
5018 /* See if this is a bitfield assignment with everything constant. If
5019 so, this is an IOR of an AND, so split it into that. */
5020 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5021 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
5022 result: &inner_mode)
5023 && HWI_COMPUTABLE_MODE_P (mode: inner_mode)
5024 && CONST_INT_P (XEXP (SET_DEST (x), 1))
5025 && CONST_INT_P (XEXP (SET_DEST (x), 2))
5026 && CONST_INT_P (SET_SRC (x))
5027 && ((INTVAL (XEXP (SET_DEST (x), 1))
5028 + INTVAL (XEXP (SET_DEST (x), 2)))
5029 <= GET_MODE_PRECISION (mode: inner_mode))
5030 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5031 {
5032 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5033 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5034 rtx dest = XEXP (SET_DEST (x), 0);
5035 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
5036 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
5037 rtx or_mask;
5038
5039 if (BITS_BIG_ENDIAN)
5040 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
5041
5042 or_mask = gen_int_mode (src << pos, inner_mode);
5043 if (src == mask)
5044 SUBST (SET_SRC (x),
5045 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5046 else
5047 {
5048 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5049 SUBST (SET_SRC (x),
5050 simplify_gen_binary (IOR, inner_mode,
5051 simplify_gen_binary (AND, inner_mode,
5052 dest, negmask),
5053 or_mask));
5054 }
5055
5056 SUBST (SET_DEST (x), dest);
5057
5058 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5059 if (split && split != &SET_SRC (x))
5060 return split;
5061 }
5062
5063 /* Otherwise, see if this is an operation that we can split into two.
5064 If so, try to split that. */
5065 code = GET_CODE (SET_SRC (x));
5066
5067 switch (code)
5068 {
5069 case AND:
5070 /* If we are AND'ing with a large constant that is only a single
5071 bit and the result is only being used in a context where we
5072 need to know if it is zero or nonzero, replace it with a bit
5073 extraction. This will avoid the large constant, which might
5074 have taken more than one insn to make. If the constant were
5075 not a valid argument to the AND but took only one insn to make,
5076 this is no worse, but if it took more than one insn, it will
5077 be better. */
5078
5079 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5080 && REG_P (XEXP (SET_SRC (x), 0))
5081 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5082 && REG_P (SET_DEST (x))
5083 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5084 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5085 && XEXP (*split, 0) == SET_DEST (x)
5086 && XEXP (*split, 1) == const0_rtx)
5087 {
5088 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5089 XEXP (SET_SRC (x), 0),
5090 pos, NULL_RTX, 1,
5091 true, false, false);
5092 if (extraction != 0)
5093 {
5094 SUBST (SET_SRC (x), extraction);
5095 return find_split_point (loc, insn, set_src: false);
5096 }
5097 }
5098 break;
5099
5100 case NE:
5101 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5102 is known to be on, this can be converted into a NEG of a shift. */
5103 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5104 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5105 && ((pos = exact_log2 (x: nonzero_bits (XEXP (SET_SRC (x), 0),
5106 GET_MODE (XEXP (SET_SRC (x),
5107 0))))) >= 1))
5108 {
5109 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5110 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5111 SUBST (SET_SRC (x),
5112 gen_rtx_NEG (mode,
5113 gen_rtx_LSHIFTRT (mode,
5114 XEXP (SET_SRC (x), 0),
5115 pos_rtx)));
5116
5117 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5118 if (split && split != &SET_SRC (x))
5119 return split;
5120 }
5121 break;
5122
5123 case SIGN_EXTEND:
5124 inner = XEXP (SET_SRC (x), 0);
5125
5126 /* We can't optimize if either mode is a partial integer
5127 mode as we don't know how many bits are significant
5128 in those modes. */
5129 if (!is_int_mode (GET_MODE (inner), int_mode: &inner_mode)
5130 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5131 break;
5132
5133 pos = 0;
5134 len = GET_MODE_PRECISION (mode: inner_mode);
5135 unsignedp = false;
5136 break;
5137
5138 case SIGN_EXTRACT:
5139 case ZERO_EXTRACT:
5140 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5141 result: &inner_mode)
5142 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5143 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5144 {
5145 inner = XEXP (SET_SRC (x), 0);
5146 len = INTVAL (XEXP (SET_SRC (x), 1));
5147 pos = INTVAL (XEXP (SET_SRC (x), 2));
5148
5149 if (BITS_BIG_ENDIAN)
5150 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
5151 unsignedp = (code == ZERO_EXTRACT);
5152 }
5153 break;
5154
5155 default:
5156 break;
5157 }
5158
5159 if (len
5160 && known_subrange_p (pos1: pos, size1: len,
5161 pos2: 0, size2: GET_MODE_PRECISION (GET_MODE (inner)))
5162 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), result: &mode))
5163 {
5164 /* For unsigned, we have a choice of a shift followed by an
5165 AND or two shifts. Use two shifts for field sizes where the
5166 constant might be too large. We assume here that we can
5167 always at least get 8-bit constants in an AND insn, which is
5168 true for every current RISC. */
5169
5170 if (unsignedp && len <= 8)
5171 {
5172 unsigned HOST_WIDE_INT mask
5173 = (HOST_WIDE_INT_1U << len) - 1;
5174 rtx pos_rtx = gen_int_shift_amount (mode, pos);
5175 SUBST (SET_SRC (x),
5176 gen_rtx_AND (mode,
5177 gen_rtx_LSHIFTRT
5178 (mode, gen_lowpart (mode, inner), pos_rtx),
5179 gen_int_mode (mask, mode)));
5180
5181 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5182 if (split && split != &SET_SRC (x))
5183 return split;
5184 }
5185 else
5186 {
5187 int left_bits = GET_MODE_PRECISION (mode) - len - pos;
5188 int right_bits = GET_MODE_PRECISION (mode) - len;
5189 SUBST (SET_SRC (x),
5190 gen_rtx_fmt_ee
5191 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5192 gen_rtx_ASHIFT (mode,
5193 gen_lowpart (mode, inner),
5194 gen_int_shift_amount (mode, left_bits)),
5195 gen_int_shift_amount (mode, right_bits)));
5196
5197 split = find_split_point (loc: &SET_SRC (x), insn, set_src: true);
5198 if (split && split != &SET_SRC (x))
5199 return split;
5200 }
5201 }
5202
5203 /* See if this is a simple operation with a constant as the second
5204 operand. It might be that this constant is out of range and hence
5205 could be used as a split point. */
5206 if (BINARY_P (SET_SRC (x))
5207 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5208 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5209 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5210 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5211 return &XEXP (SET_SRC (x), 1);
5212
5213 /* Finally, see if this is a simple operation with its first operand
5214 not in a register. The operation might require this operand in a
5215 register, so return it as a split point. We can always do this
5216 because if the first operand were another operation, we would have
5217 already found it as a split point. */
5218 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5219 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5220 return &XEXP (SET_SRC (x), 0);
5221
5222 return 0;
5223
5224 case AND:
5225 case IOR:
5226 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5227 it is better to write this as (not (ior A B)) so we can split it.
5228 Similarly for IOR. */
5229 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5230 {
5231 SUBST (*loc,
5232 gen_rtx_NOT (GET_MODE (x),
5233 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5234 GET_MODE (x),
5235 XEXP (XEXP (x, 0), 0),
5236 XEXP (XEXP (x, 1), 0))));
5237 return find_split_point (loc, insn, set_src);
5238 }
5239
5240 /* Many RISC machines have a large set of logical insns. If the
5241 second operand is a NOT, put it first so we will try to split the
5242 other operand first. */
5243 if (GET_CODE (XEXP (x, 1)) == NOT)
5244 {
5245 rtx tem = XEXP (x, 0);
5246 SUBST (XEXP (x, 0), XEXP (x, 1));
5247 SUBST (XEXP (x, 1), tem);
5248 }
5249 break;
5250
5251 case PLUS:
5252 case MINUS:
5253 /* Canonicalization can produce (minus A (mult B C)), where C is a
5254 constant. It may be better to try splitting (plus (mult B -C) A)
5255 instead if this isn't a multiply by a power of two. */
5256 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5257 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5258 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5259 {
5260 machine_mode mode = GET_MODE (x);
5261 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5262 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5263 SUBST (*loc, gen_rtx_PLUS (mode,
5264 gen_rtx_MULT (mode,
5265 XEXP (XEXP (x, 1), 0),
5266 gen_int_mode (other_int,
5267 mode)),
5268 XEXP (x, 0)));
5269 return find_split_point (loc, insn, set_src);
5270 }
5271
5272 /* Split at a multiply-accumulate instruction. However if this is
5273 the SET_SRC, we likely do not have such an instruction and it's
5274 worthless to try this split. */
5275 if (!set_src
5276 && (GET_CODE (XEXP (x, 0)) == MULT
5277 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5278 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5279 return loc;
5280
5281 default:
5282 break;
5283 }
5284
5285 /* Otherwise, select our actions depending on our rtx class. */
5286 switch (GET_RTX_CLASS (code))
5287 {
5288 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5289 case RTX_TERNARY:
5290 split = find_split_point (loc: &XEXP (x, 2), insn, set_src: false);
5291 if (split)
5292 return split;
5293 /* fall through */
5294 case RTX_BIN_ARITH:
5295 case RTX_COMM_ARITH:
5296 case RTX_COMPARE:
5297 case RTX_COMM_COMPARE:
5298 split = find_split_point (loc: &XEXP (x, 1), insn, set_src: false);
5299 if (split)
5300 return split;
5301 /* fall through */
5302 case RTX_UNARY:
5303 /* Some machines have (and (shift ...) ...) insns. If X is not
5304 an AND, but XEXP (X, 0) is, use it as our split point. */
5305 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5306 return &XEXP (x, 0);
5307
5308 split = find_split_point (loc: &XEXP (x, 0), insn, set_src: false);
5309 if (split)
5310 return split;
5311 return loc;
5312
5313 default:
5314 /* Otherwise, we don't have a split point. */
5315 return 0;
5316 }
5317}
5318
5319/* Throughout X, replace FROM with TO, and return the result.
5320 The result is TO if X is FROM;
5321 otherwise the result is X, but its contents may have been modified.
5322 If they were modified, a record was made in undobuf so that
5323 undo_all will (among other things) return X to its original state.
5324
5325 If the number of changes necessary is too much to record to undo,
5326 the excess changes are not made, so the result is invalid.
5327 The changes already made can still be undone.
5328 undobuf.num_undo is incremented for such changes, so by testing that
5329 the caller can tell whether the result is valid.
5330
5331 `n_occurrences' is incremented each time FROM is replaced.
5332
5333 IN_DEST is true if we are processing the SET_DEST of a SET.
5334
5335 IN_COND is true if we are at the top level of a condition.
5336
5337 UNIQUE_COPY is true if each substitution must be unique. We do this
5338 by copying if `n_occurrences' is nonzero. */
5339
5340static rtx
5341subst (rtx x, rtx from, rtx to, bool in_dest, bool in_cond, bool unique_copy)
5342{
5343 enum rtx_code code = GET_CODE (x);
5344 machine_mode op0_mode = VOIDmode;
5345 const char *fmt;
5346 int len, i;
5347 rtx new_rtx;
5348
5349/* Two expressions are equal if they are identical copies of a shared
5350 RTX or if they are both registers with the same register number
5351 and mode. */
5352
5353#define COMBINE_RTX_EQUAL_P(X,Y) \
5354 ((X) == (Y) \
5355 || (REG_P (X) && REG_P (Y) \
5356 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5357
5358 /* Do not substitute into clobbers of regs -- this will never result in
5359 valid RTL. */
5360 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5361 return x;
5362
5363 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5364 {
5365 n_occurrences++;
5366 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5367 }
5368
5369 /* If X and FROM are the same register but different modes, they
5370 will not have been seen as equal above. However, the log links code
5371 will make a LOG_LINKS entry for that case. If we do nothing, we
5372 will try to rerecognize our original insn and, when it succeeds,
5373 we will delete the feeding insn, which is incorrect.
5374
5375 So force this insn not to match in this (rare) case. */
5376 if (! in_dest && code == REG && REG_P (from)
5377 && reg_overlap_mentioned_p (x, from))
5378 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5379
5380 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5381 of which may contain things that can be combined. */
5382 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5383 return x;
5384
5385 /* It is possible to have a subexpression appear twice in the insn.
5386 Suppose that FROM is a register that appears within TO.
5387 Then, after that subexpression has been scanned once by `subst',
5388 the second time it is scanned, TO may be found. If we were
5389 to scan TO here, we would find FROM within it and create a
5390 self-referent rtl structure which is completely wrong. */
5391 if (COMBINE_RTX_EQUAL_P (x, to))
5392 return to;
5393
5394 /* Parallel asm_operands need special attention because all of the
5395 inputs are shared across the arms. Furthermore, unsharing the
5396 rtl results in recognition failures. Failure to handle this case
5397 specially can result in circular rtl.
5398
5399 Solve this by doing a normal pass across the first entry of the
5400 parallel, and only processing the SET_DESTs of the subsequent
5401 entries. Ug. */
5402
5403 if (code == PARALLEL
5404 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5405 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5406 {
5407 new_rtx = subst (XVECEXP (x, 0, 0), from, to, in_dest: false, in_cond: false, unique_copy);
5408
5409 /* If this substitution failed, this whole thing fails. */
5410 if (GET_CODE (new_rtx) == CLOBBER
5411 && XEXP (new_rtx, 0) == const0_rtx)
5412 return new_rtx;
5413
5414 SUBST (XVECEXP (x, 0, 0), new_rtx);
5415
5416 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5417 {
5418 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5419
5420 if (!REG_P (dest) && GET_CODE (dest) != PC)
5421 {
5422 new_rtx = subst (x: dest, from, to, in_dest: false, in_cond: false, unique_copy);
5423
5424 /* If this substitution failed, this whole thing fails. */
5425 if (GET_CODE (new_rtx) == CLOBBER
5426 && XEXP (new_rtx, 0) == const0_rtx)
5427 return new_rtx;
5428
5429 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5430 }
5431 }
5432 }
5433 else
5434 {
5435 len = GET_RTX_LENGTH (code);
5436 fmt = GET_RTX_FORMAT (code);
5437
5438 /* We don't need to process a SET_DEST that is a register or PC, so
5439 set up to skip this common case. All other cases where we want
5440 to suppress replacing something inside a SET_SRC are handled via
5441 the IN_DEST operand. */
5442 if (code == SET
5443 && (REG_P (SET_DEST (x))
5444 || GET_CODE (SET_DEST (x)) == PC))
5445 fmt = "ie";
5446
5447 /* Trying to simplify the operands of a widening MULT is not likely
5448 to create RTL matching a machine insn. */
5449 if (code == MULT
5450 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5451 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5452 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5453 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5454 && REG_P (XEXP (XEXP (x, 0), 0))
5455 && REG_P (XEXP (XEXP (x, 1), 0))
5456 && from == to)
5457 return x;
5458
5459
5460 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5461 constant. */
5462 if (fmt[0] == 'e')
5463 op0_mode = GET_MODE (XEXP (x, 0));
5464
5465 for (i = 0; i < len; i++)
5466 {
5467 if (fmt[i] == 'E')
5468 {
5469 int j;
5470 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5471 {
5472 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5473 {
5474 new_rtx = (unique_copy && n_occurrences
5475 ? copy_rtx (to) : to);
5476 n_occurrences++;
5477 }
5478 else
5479 {
5480 new_rtx = subst (XVECEXP (x, i, j), from, to,
5481 in_dest: false, in_cond: false, unique_copy);
5482
5483 /* If this substitution failed, this whole thing
5484 fails. */
5485 if (GET_CODE (new_rtx) == CLOBBER
5486 && XEXP (new_rtx, 0) == const0_rtx)
5487 return new_rtx;
5488 }
5489
5490 SUBST (XVECEXP (x, i, j), new_rtx);
5491 }
5492 }
5493 else if (fmt[i] == 'e')
5494 {
5495 /* If this is a register being set, ignore it. */
5496 new_rtx = XEXP (x, i);
5497 if (in_dest
5498 && i == 0
5499 && (((code == SUBREG || code == ZERO_EXTRACT)
5500 && REG_P (new_rtx))
5501 || code == STRICT_LOW_PART))
5502 ;
5503
5504 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5505 {
5506 /* In general, don't install a subreg involving two
5507 modes not tieable. It can worsen register
5508 allocation, and can even make invalid reload
5509 insns, since the reg inside may need to be copied
5510 from in the outside mode, and that may be invalid
5511 if it is an fp reg copied in integer mode.
5512
5513 We allow an exception to this: It is valid if
5514 it is inside another SUBREG and the mode of that
5515 SUBREG and the mode of the inside of TO is
5516 tieable. */
5517
5518 if (GET_CODE (to) == SUBREG
5519 && !targetm.modes_tieable_p (GET_MODE (to),
5520 GET_MODE (SUBREG_REG (to)))
5521 && ! (code == SUBREG
5522 && (targetm.modes_tieable_p
5523 (GET_MODE (x), GET_MODE (SUBREG_REG (to))))))
5524 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5525
5526 if (code == SUBREG
5527 && REG_P (to)
5528 && REGNO (to) < FIRST_PSEUDO_REGISTER
5529 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5530 SUBREG_BYTE (x),
5531 GET_MODE (x)) < 0)
5532 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5533
5534 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5535 n_occurrences++;
5536 }
5537 else
5538 /* If we are in a SET_DEST, suppress most cases unless we
5539 have gone inside a MEM, in which case we want to
5540 simplify the address. We assume here that things that
5541 are actually part of the destination have their inner
5542 parts in the first expression. This is true for SUBREG,
5543 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5544 things aside from REG and MEM that should appear in a
5545 SET_DEST. */
5546 new_rtx = subst (XEXP (x, i), from, to,
5547 in_dest: (((in_dest
5548 && (code == SUBREG || code == STRICT_LOW_PART
5549 || code == ZERO_EXTRACT))
5550 || code == SET)
5551 && i == 0),
5552 in_cond: code == IF_THEN_ELSE && i == 0,
5553 unique_copy);
5554
5555 /* If we found that we will have to reject this combination,
5556 indicate that by returning the CLOBBER ourselves, rather than
5557 an expression containing it. This will speed things up as
5558 well as prevent accidents where two CLOBBERs are considered
5559 to be equal, thus producing an incorrect simplification. */
5560
5561 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5562 return new_rtx;
5563
5564 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5565 {
5566 machine_mode mode = GET_MODE (x);
5567
5568 x = simplify_subreg (GET_MODE (x), op: new_rtx,
5569 GET_MODE (SUBREG_REG (x)),
5570 SUBREG_BYTE (x));
5571 if (! x)
5572 x = gen_rtx_CLOBBER (mode, const0_rtx);
5573 }
5574 else if (CONST_SCALAR_INT_P (new_rtx)
5575 && (GET_CODE (x) == ZERO_EXTEND
5576 || GET_CODE (x) == SIGN_EXTEND
5577 || GET_CODE (x) == FLOAT
5578 || GET_CODE (x) == UNSIGNED_FLOAT))
5579 {
5580 x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
5581 op: new_rtx,
5582 GET_MODE (XEXP (x, 0)));
5583 if (!x)
5584 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5585 }
5586 /* CONST_INTs shouldn't be substituted into PRE_DEC, PRE_MODIFY
5587 etc. arguments, otherwise we can ICE before trying to recog
5588 it. See PR104446. */
5589 else if (CONST_SCALAR_INT_P (new_rtx)
5590 && GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
5591 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5592 else
5593 SUBST (XEXP (x, i), new_rtx);
5594 }
5595 }
5596 }
5597
5598 /* Check if we are loading something from the constant pool via float
5599 extension; in this case we would undo compress_float_constant
5600 optimization and degenerate constant load to an immediate value. */
5601 if (GET_CODE (x) == FLOAT_EXTEND
5602 && MEM_P (XEXP (x, 0))
5603 && MEM_READONLY_P (XEXP (x, 0)))
5604 {
5605 rtx tmp = avoid_constant_pool_reference (x);
5606 if (x != tmp)
5607 return x;
5608 }
5609
5610 /* Try to simplify X. If the simplification changed the code, it is likely
5611 that further simplification will help, so loop, but limit the number
5612 of repetitions that will be performed. */
5613
5614 for (i = 0; i < 4; i++)
5615 {
5616 /* If X is sufficiently simple, don't bother trying to do anything
5617 with it. */
5618 if (code != CONST_INT && code != REG && code != CLOBBER)
5619 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5620
5621 if (GET_CODE (x) == code)
5622 break;
5623
5624 code = GET_CODE (x);
5625
5626 /* We no longer know the original mode of operand 0 since we
5627 have changed the form of X) */
5628 op0_mode = VOIDmode;
5629 }
5630
5631 return x;
5632}
5633
5634/* If X is a commutative operation whose operands are not in the canonical
5635 order, use substitutions to swap them. */
5636
5637static void
5638maybe_swap_commutative_operands (rtx x)
5639{
5640 if (COMMUTATIVE_ARITH_P (x)
5641 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5642 {
5643 rtx temp = XEXP (x, 0);
5644 SUBST (XEXP (x, 0), XEXP (x, 1));
5645 SUBST (XEXP (x, 1), temp);
5646 }
5647
5648 unsigned n_elts = 0;
5649 if (GET_CODE (x) == VEC_MERGE
5650 && CONST_INT_P (XEXP (x, 2))
5651 && GET_MODE_NUNITS (GET_MODE (x)).is_constant (const_value: &n_elts)
5652 && (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1))
5653 /* Two operands have same precedence, then
5654 first bit of mask select first operand. */
5655 || (!swap_commutative_operands_p (XEXP (x, 1), XEXP (x, 0))
5656 && !(UINTVAL (XEXP (x, 2)) & 1))))
5657 {
5658 rtx temp = XEXP (x, 0);
5659 unsigned HOST_WIDE_INT sel = UINTVAL (XEXP (x, 2));
5660 unsigned HOST_WIDE_INT mask = HOST_WIDE_INT_1U;
5661 if (n_elts == HOST_BITS_PER_WIDE_INT)
5662 mask = -1;
5663 else
5664 mask = (HOST_WIDE_INT_1U << n_elts) - 1;
5665 SUBST (XEXP (x, 0), XEXP (x, 1));
5666 SUBST (XEXP (x, 1), temp);
5667 SUBST (XEXP (x, 2), GEN_INT (~sel & mask));
5668 }
5669}
5670
5671/* Simplify X, a piece of RTL. We just operate on the expression at the
5672 outer level; call `subst' to simplify recursively. Return the new
5673 expression.
5674
5675 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is true
5676 if we are inside a SET_DEST. IN_COND is true if we are at the top level
5677 of a condition. */
5678
5679static rtx
5680combine_simplify_rtx (rtx x, machine_mode op0_mode, bool in_dest, bool in_cond)
5681{
5682 enum rtx_code code = GET_CODE (x);
5683 machine_mode mode = GET_MODE (x);
5684 scalar_int_mode int_mode;
5685 rtx temp;
5686 int i;
5687
5688 /* If this is a commutative operation, put a constant last and a complex
5689 expression first. We don't need to do this for comparisons here. */
5690 maybe_swap_commutative_operands (x);
5691
5692 /* Try to fold this expression in case we have constants that weren't
5693 present before. */
5694 temp = 0;
5695 switch (GET_RTX_CLASS (code))
5696 {
5697 case RTX_UNARY:
5698 if (op0_mode == VOIDmode)
5699 op0_mode = GET_MODE (XEXP (x, 0));
5700 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op_mode: op0_mode);
5701 break;
5702 case RTX_COMPARE:
5703 case RTX_COMM_COMPARE:
5704 {
5705 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5706 if (cmp_mode == VOIDmode)
5707 {
5708 cmp_mode = GET_MODE (XEXP (x, 1));
5709 if (cmp_mode == VOIDmode)
5710 cmp_mode = op0_mode;
5711 }
5712 temp = simplify_relational_operation (code, mode, op_mode: cmp_mode,
5713 XEXP (x, 0), XEXP (x, 1));
5714 }
5715 break;
5716 case RTX_COMM_ARITH:
5717 case RTX_BIN_ARITH:
5718 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5719 break;
5720 case RTX_BITFIELD_OPS:
5721 case RTX_TERNARY:
5722 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5723 XEXP (x, 1), XEXP (x, 2));
5724 break;
5725 default:
5726 break;
5727 }
5728
5729 if (temp)
5730 {
5731 x = temp;
5732 code = GET_CODE (temp);
5733 op0_mode = VOIDmode;
5734 mode = GET_MODE (temp);
5735 }
5736
5737 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5738 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5739 things. Check for cases where both arms are testing the same
5740 condition.
5741
5742 Don't do anything if all operands are very simple. */
5743
5744 if ((BINARY_P (x)
5745 && ((!OBJECT_P (XEXP (x, 0))
5746 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5747 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5748 || (!OBJECT_P (XEXP (x, 1))
5749 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5750 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5751 || (UNARY_P (x)
5752 && (!OBJECT_P (XEXP (x, 0))
5753 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5754 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5755 {
5756 rtx cond, true_rtx, false_rtx;
5757
5758 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5759 if (cond != 0
5760 /* If everything is a comparison, what we have is highly unlikely
5761 to be simpler, so don't use it. */
5762 && ! (COMPARISON_P (x)
5763 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
5764 /* Similarly, if we end up with one of the expressions the same
5765 as the original, it is certainly not simpler. */
5766 && ! rtx_equal_p (x, true_rtx)
5767 && ! rtx_equal_p (x, false_rtx))
5768 {
5769 rtx cop1 = const0_rtx;
5770 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5771
5772 if (cond_code == NE && COMPARISON_P (cond))
5773 return x;
5774
5775 /* Simplify the alternative arms; this may collapse the true and
5776 false arms to store-flag values. Be careful to use copy_rtx
5777 here since true_rtx or false_rtx might share RTL with x as a
5778 result of the if_then_else_cond call above. */
5779 true_rtx = subst (x: copy_rtx (true_rtx), from: pc_rtx, to: pc_rtx,
5780 in_dest: false, in_cond: false, unique_copy: false);
5781 false_rtx = subst (x: copy_rtx (false_rtx), from: pc_rtx, to: pc_rtx,
5782 in_dest: false, in_cond: false, unique_copy: false);
5783
5784 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5785 is unlikely to be simpler. */
5786 if (general_operand (true_rtx, VOIDmode)
5787 && general_operand (false_rtx, VOIDmode))
5788 {
5789 enum rtx_code reversed;
5790
5791 /* Restarting if we generate a store-flag expression will cause
5792 us to loop. Just drop through in this case. */
5793
5794 /* If the result values are STORE_FLAG_VALUE and zero, we can
5795 just make the comparison operation. */
5796 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5797 x = simplify_gen_relational (code: cond_code, mode, VOIDmode,
5798 op0: cond, op1: cop1);
5799 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5800 && ((reversed = reversed_comparison_code_parts
5801 (cond_code, cond, cop1, NULL))
5802 != UNKNOWN))
5803 x = simplify_gen_relational (code: reversed, mode, VOIDmode,
5804 op0: cond, op1: cop1);
5805
5806 /* Likewise, we can make the negate of a comparison operation
5807 if the result values are - STORE_FLAG_VALUE and zero. */
5808 else if (CONST_INT_P (true_rtx)
5809 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5810 && false_rtx == const0_rtx)
5811 x = simplify_gen_unary (code: NEG, mode,
5812 op: simplify_gen_relational (code: cond_code,
5813 mode, VOIDmode,
5814 op0: cond, op1: cop1),
5815 op_mode: mode);
5816 else if (CONST_INT_P (false_rtx)
5817 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5818 && true_rtx == const0_rtx
5819 && ((reversed = reversed_comparison_code_parts
5820 (cond_code, cond, cop1, NULL))
5821 != UNKNOWN))
5822 x = simplify_gen_unary (code: NEG, mode,
5823 op: simplify_gen_relational (code: reversed,
5824 mode, VOIDmode,
5825 op0: cond, op1: cop1),
5826 op_mode: mode);
5827
5828 code = GET_CODE (x);
5829 op0_mode = VOIDmode;
5830 }
5831 }
5832 }
5833
5834 /* First see if we can apply the inverse distributive law. */
5835 if (code == PLUS || code == MINUS
5836 || code == AND || code == IOR || code == XOR)
5837 {
5838 x = apply_distributive_law (x);
5839 code = GET_CODE (x);
5840 op0_mode = VOIDmode;
5841 }
5842
5843 /* If CODE is an associative operation not otherwise handled, see if we
5844 can associate some operands. This can win if they are constants or
5845 if they are logically related (i.e. (a & b) & a). */
5846 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5847 || code == AND || code == IOR || code == XOR
5848 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5849 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5850 || (flag_associative_math && FLOAT_MODE_P (mode))))
5851 {
5852 if (GET_CODE (XEXP (x, 0)) == code)
5853 {
5854 rtx other = XEXP (XEXP (x, 0), 0);
5855 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5856 rtx inner_op1 = XEXP (x, 1);
5857 rtx inner;
5858
5859 /* Make sure we pass the constant operand if any as the second
5860 one if this is a commutative operation. */
5861 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5862 std::swap (a&: inner_op0, b&: inner_op1);
5863 inner = simplify_binary_operation (code: code == MINUS ? PLUS
5864 : code == DIV ? MULT
5865 : code,
5866 mode, op0: inner_op0, op1: inner_op1);
5867
5868 /* For commutative operations, try the other pair if that one
5869 didn't simplify. */
5870 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5871 {
5872 other = XEXP (XEXP (x, 0), 1);
5873 inner = simplify_binary_operation (code, mode,
5874 XEXP (XEXP (x, 0), 0),
5875 XEXP (x, 1));
5876 }
5877
5878 if (inner)
5879 return simplify_gen_binary (code, mode, op0: other, op1: inner);
5880 }
5881 }
5882
5883 /* A little bit of algebraic simplification here. */
5884 switch (code)
5885 {
5886 case MEM:
5887 /* Ensure that our address has any ASHIFTs converted to MULT in case
5888 address-recognizing predicates are called later. */
5889 temp = make_compound_operation (XEXP (x, 0), MEM);
5890 SUBST (XEXP (x, 0), temp);
5891 break;
5892
5893 case SUBREG:
5894 if (op0_mode == VOIDmode)
5895 op0_mode = GET_MODE (SUBREG_REG (x));
5896
5897 /* See if this can be moved to simplify_subreg. */
5898 if (CONSTANT_P (SUBREG_REG (x))
5899 && known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
5900 /* Don't call gen_lowpart if the inner mode
5901 is VOIDmode and we cannot simplify it, as SUBREG without
5902 inner mode is invalid. */
5903 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5904 || gen_lowpart_common (mode, SUBREG_REG (x))))
5905 return gen_lowpart (mode, SUBREG_REG (x));
5906
5907 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5908 break;
5909 {
5910 rtx temp;
5911 temp = simplify_subreg (outermode: mode, SUBREG_REG (x), innermode: op0_mode,
5912 SUBREG_BYTE (x));
5913 if (temp)
5914 return temp;
5915
5916 /* If op is known to have all lower bits zero, the result is zero. */
5917 scalar_int_mode int_mode, int_op0_mode;
5918 if (!in_dest
5919 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
5920 && is_a <scalar_int_mode> (m: op0_mode, result: &int_op0_mode)
5921 && (GET_MODE_PRECISION (mode: int_mode)
5922 < GET_MODE_PRECISION (mode: int_op0_mode))
5923 && known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
5924 SUBREG_BYTE (x))
5925 && HWI_COMPUTABLE_MODE_P (mode: int_op0_mode)
5926 && ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
5927 & GET_MODE_MASK (int_mode)) == 0)
5928 && !side_effects_p (SUBREG_REG (x)))
5929 return CONST0_RTX (int_mode);
5930 }
5931
5932 /* Don't change the mode of the MEM if that would change the meaning
5933 of the address. */
5934 if (MEM_P (SUBREG_REG (x))
5935 && (MEM_VOLATILE_P (SUBREG_REG (x))
5936 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5937 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5938 return gen_rtx_CLOBBER (mode, const0_rtx);
5939
5940 /* Note that we cannot do any narrowing for non-constants since
5941 we might have been counting on using the fact that some bits were
5942 zero. We now do this in the SET. */
5943
5944 break;
5945
5946 case NEG:
5947 temp = expand_compound_operation (XEXP (x, 0));
5948
5949 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5950 replaced by (lshiftrt X C). This will convert
5951 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5952
5953 if (GET_CODE (temp) == ASHIFTRT
5954 && CONST_INT_P (XEXP (temp, 1))
5955 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5956 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5957 INTVAL (XEXP (temp, 1)));
5958
5959 /* If X has only a single bit that might be nonzero, say, bit I, convert
5960 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5961 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5962 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5963 or a SUBREG of one since we'd be making the expression more
5964 complex if it was just a register. */
5965
5966 if (!REG_P (temp)
5967 && ! (GET_CODE (temp) == SUBREG
5968 && REG_P (SUBREG_REG (temp)))
5969 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
5970 && (i = exact_log2 (x: nonzero_bits (temp, int_mode))) >= 0)
5971 {
5972 rtx temp1 = simplify_shift_const
5973 (NULL_RTX, ASHIFTRT, int_mode,
5974 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5975 GET_MODE_PRECISION (mode: int_mode) - 1 - i),
5976 GET_MODE_PRECISION (mode: int_mode) - 1 - i);
5977
5978 /* If all we did was surround TEMP with the two shifts, we
5979 haven't improved anything, so don't use it. Otherwise,
5980 we are better off with TEMP1. */
5981 if (GET_CODE (temp1) != ASHIFTRT
5982 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5983 || XEXP (XEXP (temp1, 0), 0) != temp)
5984 return temp1;
5985 }
5986 break;
5987
5988 case TRUNCATE:
5989 /* We can't handle truncation to a partial integer mode here
5990 because we don't know the real bitsize of the partial
5991 integer mode. */
5992 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5993 break;
5994
5995 if (HWI_COMPUTABLE_MODE_P (mode))
5996 SUBST (XEXP (x, 0),
5997 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5998 GET_MODE_MASK (mode), false));
5999
6000 /* We can truncate a constant value and return it. */
6001 {
6002 poly_int64 c;
6003 if (poly_int_rtx_p (XEXP (x, 0), res: &c))
6004 return gen_int_mode (c, mode);
6005 }
6006
6007 /* Similarly to what we do in simplify-rtx.cc, a truncate of a register
6008 whose value is a comparison can be replaced with a subreg if
6009 STORE_FLAG_VALUE permits. */
6010 if (HWI_COMPUTABLE_MODE_P (mode)
6011 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
6012 && (temp = get_last_value (XEXP (x, 0)))
6013 && COMPARISON_P (temp)
6014 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (XEXP (x, 0))))
6015 return gen_lowpart (mode, XEXP (x, 0));
6016 break;
6017
6018 case CONST:
6019 /* (const (const X)) can become (const X). Do it this way rather than
6020 returning the inner CONST since CONST can be shared with a
6021 REG_EQUAL note. */
6022 if (GET_CODE (XEXP (x, 0)) == CONST)
6023 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
6024 break;
6025
6026 case LO_SUM:
6027 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6028 can add in an offset. find_split_point will split this address up
6029 again if it doesn't match. */
6030 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
6031 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
6032 return XEXP (x, 1);
6033 break;
6034
6035 case PLUS:
6036 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6037 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6038 bit-field and can be replaced by either a sign_extend or a
6039 sign_extract. The `and' may be a zero_extend and the two
6040 <c>, -<c> constants may be reversed. */
6041 if (GET_CODE (XEXP (x, 0)) == XOR
6042 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6043 && CONST_INT_P (XEXP (x, 1))
6044 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
6045 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
6046 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
6047 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
6048 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6049 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
6050 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
6051 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
6052 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
6053 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
6054 && known_eq ((GET_MODE_PRECISION
6055 (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
6056 (unsigned int) i + 1))))
6057 return simplify_shift_const
6058 (NULL_RTX, ASHIFTRT, int_mode,
6059 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6060 XEXP (XEXP (XEXP (x, 0), 0), 0),
6061 GET_MODE_PRECISION (mode: int_mode) - (i + 1)),
6062 GET_MODE_PRECISION (mode: int_mode) - (i + 1));
6063
6064 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6065 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6066 the bitsize of the mode - 1. This allows simplification of
6067 "a = (b & 8) == 0;" */
6068 if (XEXP (x, 1) == constm1_rtx
6069 && !REG_P (XEXP (x, 0))
6070 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6071 && REG_P (SUBREG_REG (XEXP (x, 0))))
6072 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6073 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6074 return simplify_shift_const
6075 (NULL_RTX, ASHIFTRT, int_mode,
6076 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6077 gen_rtx_XOR (int_mode, XEXP (x, 0),
6078 const1_rtx),
6079 GET_MODE_PRECISION (mode: int_mode) - 1),
6080 GET_MODE_PRECISION (mode: int_mode) - 1);
6081
6082 /* If we are adding two things that have no bits in common, convert
6083 the addition into an IOR. This will often be further simplified,
6084 for example in cases like ((a & 1) + (a & 2)), which can
6085 become a & 3. */
6086
6087 if (HWI_COMPUTABLE_MODE_P (mode)
6088 && (nonzero_bits (XEXP (x, 0), mode)
6089 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6090 {
6091 /* Try to simplify the expression further. */
6092 rtx tor = simplify_gen_binary (code: IOR, mode, XEXP (x, 0), XEXP (x, 1));
6093 temp = combine_simplify_rtx (x: tor, VOIDmode, in_dest, in_cond: false);
6094
6095 /* If we could, great. If not, do not go ahead with the IOR
6096 replacement, since PLUS appears in many special purpose
6097 address arithmetic instructions. */
6098 if (GET_CODE (temp) != CLOBBER
6099 && (GET_CODE (temp) != IOR
6100 || ((XEXP (temp, 0) != XEXP (x, 0)
6101 || XEXP (temp, 1) != XEXP (x, 1))
6102 && (XEXP (temp, 0) != XEXP (x, 1)
6103 || XEXP (temp, 1) != XEXP (x, 0)))))
6104 return temp;
6105 }
6106
6107 /* Canonicalize x + x into x << 1. */
6108 if (GET_MODE_CLASS (mode) == MODE_INT
6109 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6110 && !side_effects_p (XEXP (x, 0)))
6111 return simplify_gen_binary (code: ASHIFT, mode, XEXP (x, 0), const1_rtx);
6112
6113 break;
6114
6115 case MINUS:
6116 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6117 (and <foo> (const_int pow2-1)) */
6118 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
6119 && GET_CODE (XEXP (x, 1)) == AND
6120 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6121 && pow2p_hwi (x: -UINTVAL (XEXP (XEXP (x, 1), 1)))
6122 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6123 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6124 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6125 break;
6126
6127 case MULT:
6128 /* If we have (mult (plus A B) C), apply the distributive law and then
6129 the inverse distributive law to see if things simplify. This
6130 occurs mostly in addresses, often when unrolling loops. */
6131
6132 if (GET_CODE (XEXP (x, 0)) == PLUS)
6133 {
6134 rtx result = distribute_and_simplify_rtx (x, 0);
6135 if (result)
6136 return result;
6137 }
6138
6139 /* Try simplify a*(b/c) as (a*b)/c. */
6140 if (FLOAT_MODE_P (mode) && flag_associative_math
6141 && GET_CODE (XEXP (x, 0)) == DIV)
6142 {
6143 rtx tem = simplify_binary_operation (code: MULT, mode,
6144 XEXP (XEXP (x, 0), 0),
6145 XEXP (x, 1));
6146 if (tem)
6147 return simplify_gen_binary (code: DIV, mode, op0: tem, XEXP (XEXP (x, 0), 1));
6148 }
6149 break;
6150
6151 case UDIV:
6152 /* If this is a divide by a power of two, treat it as a shift if
6153 its first operand is a shift. */
6154 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
6155 && CONST_INT_P (XEXP (x, 1))
6156 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6157 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6158 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6159 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6160 || GET_CODE (XEXP (x, 0)) == ROTATE
6161 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6162 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6163 XEXP (x, 0), i);
6164 break;
6165
6166 case EQ: case NE:
6167 case GT: case GTU: case GE: case GEU:
6168 case LT: case LTU: case LE: case LEU:
6169 case UNEQ: case LTGT:
6170 case UNGT: case UNGE:
6171 case UNLT: case UNLE:
6172 case UNORDERED: case ORDERED:
6173 /* If the first operand is a condition code, we can't do anything
6174 with it. */
6175 if (GET_CODE (XEXP (x, 0)) == COMPARE
6176 || GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC)
6177 {
6178 rtx op0 = XEXP (x, 0);
6179 rtx op1 = XEXP (x, 1);
6180 enum rtx_code new_code;
6181
6182 if (GET_CODE (op0) == COMPARE)
6183 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6184
6185 /* Simplify our comparison, if possible. */
6186 new_code = simplify_comparison (code, &op0, &op1);
6187
6188 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6189 if only the low-order bit is possibly nonzero in X (such as when
6190 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6191 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6192 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6193 (plus X 1).
6194
6195 Remove any ZERO_EXTRACT we made when thinking this was a
6196 comparison. It may now be simpler to use, e.g., an AND. If a
6197 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6198 the call to make_compound_operation in the SET case.
6199
6200 Don't apply these optimizations if the caller would
6201 prefer a comparison rather than a value.
6202 E.g., for the condition in an IF_THEN_ELSE most targets need
6203 an explicit comparison. */
6204
6205 if (in_cond)
6206 ;
6207
6208 else if (STORE_FLAG_VALUE == 1
6209 && new_code == NE
6210 && is_int_mode (mode, int_mode: &int_mode)
6211 && op1 == const0_rtx
6212 && int_mode == GET_MODE (op0)
6213 && nonzero_bits (op0, int_mode) == 1)
6214 return gen_lowpart (int_mode,
6215 expand_compound_operation (op0));
6216
6217 else if (STORE_FLAG_VALUE == 1
6218 && new_code == NE
6219 && is_int_mode (mode, int_mode: &int_mode)
6220 && op1 == const0_rtx
6221 && int_mode == GET_MODE (op0)
6222 && (num_sign_bit_copies (op0, int_mode)
6223 == GET_MODE_PRECISION (mode: int_mode)))
6224 {
6225 op0 = expand_compound_operation (op0);
6226 return simplify_gen_unary (code: NEG, mode: int_mode,
6227 gen_lowpart (int_mode, op0),
6228 op_mode: int_mode);
6229 }
6230
6231 else if (STORE_FLAG_VALUE == 1
6232 && new_code == EQ
6233 && is_int_mode (mode, int_mode: &int_mode)
6234 && op1 == const0_rtx
6235 && int_mode == GET_MODE (op0)
6236 && nonzero_bits (op0, int_mode) == 1)
6237 {
6238 op0 = expand_compound_operation (op0);
6239 return simplify_gen_binary (code: XOR, mode: int_mode,
6240 gen_lowpart (int_mode, op0),
6241 const1_rtx);
6242 }
6243
6244 else if (STORE_FLAG_VALUE == 1
6245 && new_code == EQ
6246 && is_int_mode (mode, int_mode: &int_mode)
6247 && op1 == const0_rtx
6248 && int_mode == GET_MODE (op0)
6249 && (num_sign_bit_copies (op0, int_mode)
6250 == GET_MODE_PRECISION (mode: int_mode)))
6251 {
6252 op0 = expand_compound_operation (op0);
6253 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6254 }
6255
6256 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6257 those above. */
6258 if (in_cond)
6259 ;
6260
6261 else if (STORE_FLAG_VALUE == -1
6262 && new_code == NE
6263 && is_int_mode (mode, int_mode: &int_mode)
6264 && op1 == const0_rtx
6265 && int_mode == GET_MODE (op0)
6266 && (num_sign_bit_copies (op0, int_mode)
6267 == GET_MODE_PRECISION (mode: int_mode)))
6268 return gen_lowpart (int_mode, expand_compound_operation (op0));
6269
6270 else if (STORE_FLAG_VALUE == -1
6271 && new_code == NE
6272 && is_int_mode (mode, int_mode: &int_mode)
6273 && op1 == const0_rtx
6274 && int_mode == GET_MODE (op0)
6275 && nonzero_bits (op0, int_mode) == 1)
6276 {
6277 op0 = expand_compound_operation (op0);
6278 return simplify_gen_unary (code: NEG, mode: int_mode,
6279 gen_lowpart (int_mode, op0),
6280 op_mode: int_mode);
6281 }
6282
6283 else if (STORE_FLAG_VALUE == -1
6284 && new_code == EQ
6285 && is_int_mode (mode, int_mode: &int_mode)
6286 && op1 == const0_rtx
6287 && int_mode == GET_MODE (op0)
6288 && (num_sign_bit_copies (op0, int_mode)
6289 == GET_MODE_PRECISION (mode: int_mode)))
6290 {
6291 op0 = expand_compound_operation (op0);
6292 return simplify_gen_unary (code: NOT, mode: int_mode,
6293 gen_lowpart (int_mode, op0),
6294 op_mode: int_mode);
6295 }
6296
6297 /* If X is 0/1, (eq X 0) is X-1. */
6298 else if (STORE_FLAG_VALUE == -1
6299 && new_code == EQ
6300 && is_int_mode (mode, int_mode: &int_mode)
6301 && op1 == const0_rtx
6302 && int_mode == GET_MODE (op0)
6303 && nonzero_bits (op0, int_mode) == 1)
6304 {
6305 op0 = expand_compound_operation (op0);
6306 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6307 }
6308
6309 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6310 one bit that might be nonzero, we can convert (ne x 0) to
6311 (ashift x c) where C puts the bit in the sign bit. Remove any
6312 AND with STORE_FLAG_VALUE when we are done, since we are only
6313 going to test the sign bit. */
6314 if (new_code == NE
6315 && is_int_mode (mode, int_mode: &int_mode)
6316 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6317 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6318 && op1 == const0_rtx
6319 && int_mode == GET_MODE (op0)
6320 && (i = exact_log2 (x: nonzero_bits (op0, int_mode))) >= 0)
6321 {
6322 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6323 expand_compound_operation (op0),
6324 GET_MODE_PRECISION (mode: int_mode) - 1 - i);
6325 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6326 return XEXP (x, 0);
6327 else
6328 return x;
6329 }
6330
6331 /* If the code changed, return a whole new comparison.
6332 We also need to avoid using SUBST in cases where
6333 simplify_comparison has widened a comparison with a CONST_INT,
6334 since in that case the wider CONST_INT may fail the sanity
6335 checks in do_SUBST. */
6336 if (new_code != code
6337 || (CONST_INT_P (op1)
6338 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6339 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6340 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6341
6342 /* Otherwise, keep this operation, but maybe change its operands.
6343 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6344 SUBST (XEXP (x, 0), op0);
6345 SUBST (XEXP (x, 1), op1);
6346 }
6347 break;
6348
6349 case IF_THEN_ELSE:
6350 return simplify_if_then_else (x);
6351
6352 case ZERO_EXTRACT:
6353 case SIGN_EXTRACT:
6354 case ZERO_EXTEND:
6355 case SIGN_EXTEND:
6356 /* If we are processing SET_DEST, we are done. */
6357 if (in_dest)
6358 return x;
6359
6360 return expand_compound_operation (x);
6361
6362 case SET:
6363 return simplify_set (x);
6364
6365 case AND:
6366 case IOR:
6367 return simplify_logical (x);
6368
6369 case ASHIFT:
6370 case LSHIFTRT:
6371 case ASHIFTRT:
6372 case ROTATE:
6373 case ROTATERT:
6374 /* If this is a shift by a constant amount, simplify it. */
6375 if (CONST_INT_P (XEXP (x, 1)))
6376 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6377 INTVAL (XEXP (x, 1)));
6378
6379 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6380 SUBST (XEXP (x, 1),
6381 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6382 (HOST_WIDE_INT_1U
6383 << exact_log2 (GET_MODE_UNIT_BITSIZE
6384 (GET_MODE (x)))) - 1, false));
6385 break;
6386 case VEC_SELECT:
6387 {
6388 rtx trueop0 = XEXP (x, 0);
6389 mode = GET_MODE (trueop0);
6390 rtx trueop1 = XEXP (x, 1);
6391 /* If we select a low-part subreg, return that. */
6392 if (vec_series_lowpart_p (GET_MODE (x), op_mode: mode, sel: trueop1))
6393 {
6394 rtx new_rtx = lowpart_subreg (GET_MODE (x), op: trueop0, innermode: mode);
6395 if (new_rtx != NULL_RTX)
6396 return new_rtx;
6397 }
6398 }
6399
6400 default:
6401 break;
6402 }
6403
6404 return x;
6405}
6406
6407/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6408
6409static rtx
6410simplify_if_then_else (rtx x)
6411{
6412 machine_mode mode = GET_MODE (x);
6413 rtx cond = XEXP (x, 0);
6414 rtx true_rtx = XEXP (x, 1);
6415 rtx false_rtx = XEXP (x, 2);
6416 enum rtx_code true_code = GET_CODE (cond);
6417 bool comparison_p = COMPARISON_P (cond);
6418 rtx temp;
6419 int i;
6420 enum rtx_code false_code;
6421 rtx reversed;
6422 scalar_int_mode int_mode, inner_mode;
6423
6424 /* Simplify storing of the truth value. */
6425 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6426 return simplify_gen_relational (code: true_code, mode, VOIDmode,
6427 XEXP (cond, 0), XEXP (cond, 1));
6428
6429 /* Also when the truth value has to be reversed. */
6430 if (comparison_p
6431 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6432 && (reversed = reversed_comparison (cond, mode)))
6433 return reversed;
6434
6435 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6436 in it is being compared against certain values. Get the true and false
6437 comparisons and see if that says anything about the value of each arm. */
6438
6439 if (comparison_p
6440 && ((false_code = reversed_comparison_code (cond, NULL))
6441 != UNKNOWN)
6442 && REG_P (XEXP (cond, 0)))
6443 {
6444 HOST_WIDE_INT nzb;
6445 rtx from = XEXP (cond, 0);
6446 rtx true_val = XEXP (cond, 1);
6447 rtx false_val = true_val;
6448 bool swapped = false;
6449
6450 /* If FALSE_CODE is EQ, swap the codes and arms. */
6451
6452 if (false_code == EQ)
6453 {
6454 swapped = true, true_code = EQ, false_code = NE;
6455 std::swap (a&: true_rtx, b&: false_rtx);
6456 }
6457
6458 scalar_int_mode from_mode;
6459 if (is_a <scalar_int_mode> (GET_MODE (from), result: &from_mode))
6460 {
6461 /* If we are comparing against zero and the expression being
6462 tested has only a single bit that might be nonzero, that is
6463 its value when it is not equal to zero. Similarly if it is
6464 known to be -1 or 0. */
6465 if (true_code == EQ
6466 && true_val == const0_rtx
6467 && pow2p_hwi (x: nzb = nonzero_bits (from, from_mode)))
6468 {
6469 false_code = EQ;
6470 false_val = gen_int_mode (nzb, from_mode);
6471 }
6472 else if (true_code == EQ
6473 && true_val == const0_rtx
6474 && (num_sign_bit_copies (from, from_mode)
6475 == GET_MODE_PRECISION (mode: from_mode)))
6476 {
6477 false_code = EQ;
6478 false_val = constm1_rtx;
6479 }
6480 }
6481
6482 /* Now simplify an arm if we know the value of the register in the
6483 branch and it is used in the arm. Be careful due to the potential
6484 of locally-shared RTL. */
6485
6486 if (reg_mentioned_p (from, true_rtx))
6487 true_rtx = subst (x: known_cond (copy_rtx (true_rtx), true_code,
6488 from, true_val),
6489 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6490 if (reg_mentioned_p (from, false_rtx))
6491 false_rtx = subst (x: known_cond (copy_rtx (false_rtx), false_code,
6492 from, false_val),
6493 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6494
6495 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6496 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6497
6498 true_rtx = XEXP (x, 1);
6499 false_rtx = XEXP (x, 2);
6500 true_code = GET_CODE (cond);
6501 }
6502
6503 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6504 reversed, do so to avoid needing two sets of patterns for
6505 subtract-and-branch insns. Similarly if we have a constant in the true
6506 arm, the false arm is the same as the first operand of the comparison, or
6507 the false arm is more complicated than the true arm. */
6508
6509 if (comparison_p
6510 && reversed_comparison_code (cond, NULL) != UNKNOWN
6511 && (true_rtx == pc_rtx
6512 || (CONSTANT_P (true_rtx)
6513 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6514 || true_rtx == const0_rtx
6515 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6516 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6517 && !OBJECT_P (false_rtx))
6518 || reg_mentioned_p (true_rtx, false_rtx)
6519 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6520 {
6521 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6522 SUBST (XEXP (x, 1), false_rtx);
6523 SUBST (XEXP (x, 2), true_rtx);
6524
6525 std::swap (a&: true_rtx, b&: false_rtx);
6526 cond = XEXP (x, 0);
6527
6528 /* It is possible that the conditional has been simplified out. */
6529 true_code = GET_CODE (cond);
6530 comparison_p = COMPARISON_P (cond);
6531 }
6532
6533 /* If the two arms are identical, we don't need the comparison. */
6534
6535 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6536 return true_rtx;
6537
6538 /* Convert a == b ? b : a to "a". */
6539 if (true_code == EQ && ! side_effects_p (cond)
6540 && !HONOR_NANS (mode)
6541 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6542 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6543 return false_rtx;
6544 else if (true_code == NE && ! side_effects_p (cond)
6545 && !HONOR_NANS (mode)
6546 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6547 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6548 return true_rtx;
6549
6550 /* Look for cases where we have (abs x) or (neg (abs X)). */
6551
6552 if (GET_MODE_CLASS (mode) == MODE_INT
6553 && comparison_p
6554 && XEXP (cond, 1) == const0_rtx
6555 && GET_CODE (false_rtx) == NEG
6556 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6557 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6558 && ! side_effects_p (true_rtx))
6559 switch (true_code)
6560 {
6561 case GT:
6562 case GE:
6563 return simplify_gen_unary (code: ABS, mode, op: true_rtx, op_mode: mode);
6564 case LT:
6565 case LE:
6566 return
6567 simplify_gen_unary (code: NEG, mode,
6568 op: simplify_gen_unary (code: ABS, mode, op: true_rtx, op_mode: mode),
6569 op_mode: mode);
6570 default:
6571 break;
6572 }
6573
6574 /* Look for MIN or MAX. */
6575
6576 if ((! FLOAT_MODE_P (mode)
6577 || (flag_unsafe_math_optimizations
6578 && !HONOR_NANS (mode)
6579 && !HONOR_SIGNED_ZEROS (mode)))
6580 && comparison_p
6581 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6582 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6583 && ! side_effects_p (cond))
6584 switch (true_code)
6585 {
6586 case GE:
6587 case GT:
6588 return simplify_gen_binary (code: SMAX, mode, op0: true_rtx, op1: false_rtx);
6589 case LE:
6590 case LT:
6591 return simplify_gen_binary (code: SMIN, mode, op0: true_rtx, op1: false_rtx);
6592 case GEU:
6593 case GTU:
6594 return simplify_gen_binary (code: UMAX, mode, op0: true_rtx, op1: false_rtx);
6595 case LEU:
6596 case LTU:
6597 return simplify_gen_binary (code: UMIN, mode, op0: true_rtx, op1: false_rtx);
6598 default:
6599 break;
6600 }
6601
6602 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6603 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6604 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6605 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6606 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6607 neither 1 or -1, but it isn't worth checking for. */
6608
6609 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6610 && comparison_p
6611 && is_int_mode (mode, int_mode: &int_mode)
6612 && ! side_effects_p (x))
6613 {
6614 rtx t = make_compound_operation (true_rtx, SET);
6615 rtx f = make_compound_operation (false_rtx, SET);
6616 rtx cond_op0 = XEXP (cond, 0);
6617 rtx cond_op1 = XEXP (cond, 1);
6618 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6619 scalar_int_mode m = int_mode;
6620 rtx z = 0, c1 = NULL_RTX;
6621
6622 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6623 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6624 || GET_CODE (t) == ASHIFT
6625 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6626 && rtx_equal_p (XEXP (t, 0), f))
6627 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6628
6629 /* If an identity-zero op is commutative, check whether there
6630 would be a match if we swapped the operands. */
6631 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6632 || GET_CODE (t) == XOR)
6633 && rtx_equal_p (XEXP (t, 1), f))
6634 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6635 else if (GET_CODE (t) == SIGN_EXTEND
6636 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6637 && (GET_CODE (XEXP (t, 0)) == PLUS
6638 || GET_CODE (XEXP (t, 0)) == MINUS
6639 || GET_CODE (XEXP (t, 0)) == IOR
6640 || GET_CODE (XEXP (t, 0)) == XOR
6641 || GET_CODE (XEXP (t, 0)) == ASHIFT
6642 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6643 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6644 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6645 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6646 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6647 && (num_sign_bit_copies (f, GET_MODE (f))
6648 > (unsigned int)
6649 (GET_MODE_PRECISION (mode: int_mode)
6650 - GET_MODE_PRECISION (mode: inner_mode))))
6651 {
6652 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6653 extend_op = SIGN_EXTEND;
6654 m = inner_mode;
6655 }
6656 else if (GET_CODE (t) == SIGN_EXTEND
6657 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6658 && (GET_CODE (XEXP (t, 0)) == PLUS
6659 || GET_CODE (XEXP (t, 0)) == IOR
6660 || GET_CODE (XEXP (t, 0)) == XOR)
6661 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6662 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6663 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6664 && (num_sign_bit_copies (f, GET_MODE (f))
6665 > (unsigned int)
6666 (GET_MODE_PRECISION (mode: int_mode)
6667 - GET_MODE_PRECISION (mode: inner_mode))))
6668 {
6669 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6670 extend_op = SIGN_EXTEND;
6671 m = inner_mode;
6672 }
6673 else if (GET_CODE (t) == ZERO_EXTEND
6674 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6675 && (GET_CODE (XEXP (t, 0)) == PLUS
6676 || GET_CODE (XEXP (t, 0)) == MINUS
6677 || GET_CODE (XEXP (t, 0)) == IOR
6678 || GET_CODE (XEXP (t, 0)) == XOR
6679 || GET_CODE (XEXP (t, 0)) == ASHIFT
6680 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6681 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6682 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6683 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6684 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6685 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6686 && ((nonzero_bits (f, GET_MODE (f))
6687 & ~GET_MODE_MASK (inner_mode))
6688 == 0))
6689 {
6690 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6691 extend_op = ZERO_EXTEND;
6692 m = inner_mode;
6693 }
6694 else if (GET_CODE (t) == ZERO_EXTEND
6695 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), result: &inner_mode)
6696 && (GET_CODE (XEXP (t, 0)) == PLUS
6697 || GET_CODE (XEXP (t, 0)) == IOR
6698 || GET_CODE (XEXP (t, 0)) == XOR)
6699 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6700 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
6701 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6702 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6703 && ((nonzero_bits (f, GET_MODE (f))
6704 & ~GET_MODE_MASK (inner_mode))
6705 == 0))
6706 {
6707 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6708 extend_op = ZERO_EXTEND;
6709 m = inner_mode;
6710 }
6711
6712 if (z)
6713 {
6714 machine_mode cm = m;
6715 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6716 && GET_MODE (c1) != VOIDmode)
6717 cm = GET_MODE (c1);
6718 temp = subst (x: simplify_gen_relational (code: true_code, mode: cm, VOIDmode,
6719 op0: cond_op0, op1: cond_op1),
6720 from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6721 temp = simplify_gen_binary (code: MULT, mode: cm, op0: temp,
6722 op1: simplify_gen_binary (code: MULT, mode: cm, op0: c1,
6723 op1: const_true_rtx));
6724 temp = subst (x: temp, from: pc_rtx, to: pc_rtx, in_dest: false, in_cond: false, unique_copy: false);
6725 temp = simplify_gen_binary (code: op, mode: m, gen_lowpart (m, z), op1: temp);
6726
6727 if (extend_op != UNKNOWN)
6728 temp = simplify_gen_unary (code: extend_op, mode: int_mode, op: temp, op_mode: m);
6729
6730 return temp;
6731 }
6732 }
6733
6734 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6735 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6736 negation of a single bit, we can convert this operation to a shift. We
6737 can actually do this more generally, but it doesn't seem worth it. */
6738
6739 if (true_code == NE
6740 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6741 && XEXP (cond, 1) == const0_rtx
6742 && false_rtx == const0_rtx
6743 && CONST_INT_P (true_rtx)
6744 && ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
6745 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6746 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6747 == GET_MODE_PRECISION (mode: int_mode))
6748 && (i = exact_log2 (x: -UINTVAL (true_rtx))) >= 0)))
6749 return
6750 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6751 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6752
6753 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6754 non-zero bit in A is C1. */
6755 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6756 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6757 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
6758 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), result: &inner_mode)
6759 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6760 == nonzero_bits (XEXP (cond, 0), inner_mode)
6761 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6762 {
6763 rtx val = XEXP (cond, 0);
6764 if (inner_mode == int_mode)
6765 return val;
6766 else if (GET_MODE_PRECISION (mode: inner_mode) < GET_MODE_PRECISION (mode: int_mode))
6767 return simplify_gen_unary (code: ZERO_EXTEND, mode: int_mode, op: val, op_mode: inner_mode);
6768 }
6769
6770 return x;
6771}
6772
6773/* Simplify X, a SET expression. Return the new expression. */
6774
6775static rtx
6776simplify_set (rtx x)
6777{
6778 rtx src = SET_SRC (x);
6779 rtx dest = SET_DEST (x);
6780 machine_mode mode
6781 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6782 rtx_insn *other_insn;
6783 rtx *cc_use;
6784 scalar_int_mode int_mode;
6785
6786 /* (set (pc) (return)) gets written as (return). */
6787 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6788 return src;
6789
6790 /* Now that we know for sure which bits of SRC we are using, see if we can
6791 simplify the expression for the object knowing that we only need the
6792 low-order bits. */
6793
6794 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6795 {
6796 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, false);
6797 SUBST (SET_SRC (x), src);
6798 }
6799
6800 /* If the source is a COMPARE, look for the use of the comparison result
6801 and try to simplify it unless we already have used undobuf.other_insn. */
6802 if ((GET_MODE_CLASS (mode) == MODE_CC || GET_CODE (src) == COMPARE)
6803 && (cc_use = find_single_use (dest, insn: subst_insn, ploc: &other_insn)) != 0
6804 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6805 && COMPARISON_P (*cc_use)
6806 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6807 {
6808 enum rtx_code old_code = GET_CODE (*cc_use);
6809 enum rtx_code new_code;
6810 rtx op0, op1, tmp;
6811 bool other_changed = false;
6812 rtx inner_compare = NULL_RTX;
6813 machine_mode compare_mode = GET_MODE (dest);
6814
6815 if (GET_CODE (src) == COMPARE)
6816 {
6817 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6818 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6819 {
6820 inner_compare = op0;
6821 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6822 }
6823 }
6824 else
6825 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6826
6827 tmp = simplify_relational_operation (code: old_code, mode: compare_mode, VOIDmode,
6828 op0, op1);
6829 if (!tmp)
6830 new_code = old_code;
6831 else if (!CONSTANT_P (tmp))
6832 {
6833 new_code = GET_CODE (tmp);
6834 op0 = XEXP (tmp, 0);
6835 op1 = XEXP (tmp, 1);
6836 }
6837 else
6838 {
6839 rtx pat = PATTERN (insn: other_insn);
6840 undobuf.other_insn = other_insn;
6841 SUBST (*cc_use, tmp);
6842
6843 /* Attempt to simplify CC user. */
6844 if (GET_CODE (pat) == SET)
6845 {
6846 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6847 if (new_rtx != NULL_RTX)
6848 SUBST (SET_SRC (pat), new_rtx);
6849 }
6850
6851 /* Convert X into a no-op move. */
6852 SUBST (SET_DEST (x), pc_rtx);
6853 SUBST (SET_SRC (x), pc_rtx);
6854 return x;
6855 }
6856
6857 /* Simplify our comparison, if possible. */
6858 new_code = simplify_comparison (new_code, &op0, &op1);
6859
6860#ifdef SELECT_CC_MODE
6861 /* If this machine has CC modes other than CCmode, check to see if we
6862 need to use a different CC mode here. */
6863 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6864 compare_mode = GET_MODE (op0);
6865 else if (inner_compare
6866 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6867 && new_code == old_code
6868 && op0 == XEXP (inner_compare, 0)
6869 && op1 == XEXP (inner_compare, 1))
6870 compare_mode = GET_MODE (inner_compare);
6871 else
6872 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6873
6874 /* If the mode changed, we have to change SET_DEST, the mode in the
6875 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6876 a hard register, just build new versions with the proper mode. If it
6877 is a pseudo, we lose unless it is only time we set the pseudo, in
6878 which case we can safely change its mode. */
6879 if (compare_mode != GET_MODE (dest))
6880 {
6881 if (can_change_dest_mode (x: dest, added_sets: 0, mode: compare_mode))
6882 {
6883 unsigned int regno = REGNO (dest);
6884 rtx new_dest;
6885
6886 if (regno < FIRST_PSEUDO_REGISTER)
6887 new_dest = gen_rtx_REG (compare_mode, regno);
6888 else
6889 {
6890 subst_mode (regno, newval: compare_mode);
6891 new_dest = regno_reg_rtx[regno];
6892 }
6893
6894 SUBST (SET_DEST (x), new_dest);
6895 SUBST (XEXP (*cc_use, 0), new_dest);
6896 other_changed = true;
6897
6898 dest = new_dest;
6899 }
6900 }
6901#endif /* SELECT_CC_MODE */
6902
6903 /* If the code changed, we have to build a new comparison in
6904 undobuf.other_insn. */
6905 if (new_code != old_code)
6906 {
6907 bool other_changed_previously = other_changed;
6908 unsigned HOST_WIDE_INT mask;
6909 rtx old_cc_use = *cc_use;
6910
6911 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6912 dest, const0_rtx));
6913 other_changed = true;
6914
6915 /* If the only change we made was to change an EQ into an NE or
6916 vice versa, OP0 has only one bit that might be nonzero, and OP1
6917 is zero, check if changing the user of the condition code will
6918 produce a valid insn. If it won't, we can keep the original code
6919 in that insn by surrounding our operation with an XOR. */
6920
6921 if (((old_code == NE && new_code == EQ)
6922 || (old_code == EQ && new_code == NE))
6923 && ! other_changed_previously && op1 == const0_rtx
6924 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6925 && pow2p_hwi (x: mask = nonzero_bits (op0, GET_MODE (op0))))
6926 {
6927 rtx pat = PATTERN (insn: other_insn), note = 0;
6928
6929 if ((recog_for_combine (&pat, other_insn, &note) < 0
6930 && ! check_asm_operands (pat)))
6931 {
6932 *cc_use = old_cc_use;
6933 other_changed = false;
6934
6935 op0 = simplify_gen_binary (code: XOR, GET_MODE (op0), op0,
6936 op1: gen_int_mode (mask,
6937 GET_MODE (op0)));
6938 }
6939 }
6940 }
6941
6942 if (other_changed)
6943 undobuf.other_insn = other_insn;
6944
6945 /* Don't generate a compare of a CC with 0, just use that CC. */
6946 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6947 {
6948 SUBST (SET_SRC (x), op0);
6949 src = SET_SRC (x);
6950 }
6951 /* Otherwise, if we didn't previously have the same COMPARE we
6952 want, create it from scratch. */
6953 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6954 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6955 {
6956 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6957 src = SET_SRC (x);
6958 }
6959 }
6960 else
6961 {
6962 /* Get SET_SRC in a form where we have placed back any
6963 compound expressions. Then do the checks below. */
6964 src = make_compound_operation (src, SET);
6965 SUBST (SET_SRC (x), src);
6966 }
6967
6968 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6969 and X being a REG or (subreg (reg)), we may be able to convert this to
6970 (set (subreg:m2 x) (op)).
6971
6972 We can always do this if M1 is narrower than M2 because that means that
6973 we only care about the low bits of the result.
6974
6975 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6976 perform a narrower operation than requested since the high-order bits will
6977 be undefined. On machine where it is defined, this transformation is safe
6978 as long as M1 and M2 have the same number of words. */
6979
6980 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6981 && !OBJECT_P (SUBREG_REG (src))
6982 && (known_equal_after_align_up
6983 (a: GET_MODE_SIZE (GET_MODE (src)),
6984 b: GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
6985 UNITS_PER_WORD))
6986 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (x: src))
6987 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6988 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6989 GET_MODE (SUBREG_REG (src)),
6990 GET_MODE (src)))
6991 && (REG_P (dest)
6992 || (GET_CODE (dest) == SUBREG
6993 && REG_P (SUBREG_REG (dest)))))
6994 {
6995 SUBST (SET_DEST (x),
6996 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6997 dest));
6998 SUBST (SET_SRC (x), SUBREG_REG (src));
6999
7000 src = SET_SRC (x), dest = SET_DEST (x);
7001 }
7002
7003 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7004 would require a paradoxical subreg. Replace the subreg with a
7005 zero_extend to avoid the reload that would otherwise be required.
7006 Don't do this unless we have a scalar integer mode, otherwise the
7007 transformation is incorrect. */
7008
7009 enum rtx_code extend_op;
7010 if (paradoxical_subreg_p (x: src)
7011 && MEM_P (SUBREG_REG (src))
7012 && SCALAR_INT_MODE_P (GET_MODE (src))
7013 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
7014 {
7015 SUBST (SET_SRC (x),
7016 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
7017
7018 src = SET_SRC (x);
7019 }
7020
7021 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7022 are comparing an item known to be 0 or -1 against 0, use a logical
7023 operation instead. Check for one of the arms being an IOR of the other
7024 arm with some value. We compute three terms to be IOR'ed together. In
7025 practice, at most two will be nonzero. Then we do the IOR's. */
7026
7027 if (GET_CODE (dest) != PC
7028 && GET_CODE (src) == IF_THEN_ELSE
7029 && is_int_mode (GET_MODE (src), int_mode: &int_mode)
7030 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
7031 && XEXP (XEXP (src, 0), 1) == const0_rtx
7032 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
7033 && (!HAVE_conditional_move
7034 || ! can_conditionally_move_p (mode: int_mode))
7035 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
7036 == GET_MODE_PRECISION (mode: int_mode))
7037 && ! side_effects_p (src))
7038 {
7039 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
7040 ? XEXP (src, 1) : XEXP (src, 2));
7041 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
7042 ? XEXP (src, 2) : XEXP (src, 1));
7043 rtx term1 = const0_rtx, term2, term3;
7044
7045 if (GET_CODE (true_rtx) == IOR
7046 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
7047 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
7048 else if (GET_CODE (true_rtx) == IOR
7049 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
7050 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
7051 else if (GET_CODE (false_rtx) == IOR
7052 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
7053 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7054 else if (GET_CODE (false_rtx) == IOR
7055 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7056 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7057
7058 term2 = simplify_gen_binary (code: AND, mode: int_mode,
7059 XEXP (XEXP (src, 0), 0), op1: true_rtx);
7060 term3 = simplify_gen_binary (code: AND, mode: int_mode,
7061 op0: simplify_gen_unary (code: NOT, mode: int_mode,
7062 XEXP (XEXP (src, 0), 0),
7063 op_mode: int_mode),
7064 op1: false_rtx);
7065
7066 SUBST (SET_SRC (x),
7067 simplify_gen_binary (IOR, int_mode,
7068 simplify_gen_binary (IOR, int_mode,
7069 term1, term2),
7070 term3));
7071
7072 src = SET_SRC (x);
7073 }
7074
7075 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7076 whole thing fail. */
7077 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7078 return src;
7079 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7080 return dest;
7081 else
7082 /* Convert this into a field assignment operation, if possible. */
7083 return make_field_assignment (x);
7084}
7085
7086/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7087 result. */
7088
7089static rtx
7090simplify_logical (rtx x)
7091{
7092 rtx op0 = XEXP (x, 0);
7093 rtx op1 = XEXP (x, 1);
7094 scalar_int_mode mode;
7095
7096 switch (GET_CODE (x))
7097 {
7098 case AND:
7099 /* We can call simplify_and_const_int only if we don't lose
7100 any (sign) bits when converting INTVAL (op1) to
7101 "unsigned HOST_WIDE_INT". */
7102 if (is_a <scalar_int_mode> (GET_MODE (x), result: &mode)
7103 && CONST_INT_P (op1)
7104 && (HWI_COMPUTABLE_MODE_P (mode)
7105 || INTVAL (op1) > 0))
7106 {
7107 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7108 if (GET_CODE (x) != AND)
7109 return x;
7110
7111 op0 = XEXP (x, 0);
7112 op1 = XEXP (x, 1);
7113 }
7114
7115 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7116 apply the distributive law and then the inverse distributive
7117 law to see if things simplify. */
7118 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7119 {
7120 rtx result = distribute_and_simplify_rtx (x, 0);
7121 if (result)
7122 return result;
7123 }
7124 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7125 {
7126 rtx result = distribute_and_simplify_rtx (x, 1);
7127 if (result)
7128 return result;
7129 }
7130 break;
7131
7132 case IOR:
7133 /* If we have (ior (and A B) C), apply the distributive law and then
7134 the inverse distributive law to see if things simplify. */
7135
7136 if (GET_CODE (op0) == AND)
7137 {
7138 rtx result = distribute_and_simplify_rtx (x, 0);
7139 if (result)
7140 return result;
7141 }
7142
7143 if (GET_CODE (op1) == AND)
7144 {
7145 rtx result = distribute_and_simplify_rtx (x, 1);
7146 if (result)
7147 return result;
7148 }
7149 break;
7150
7151 default:
7152 gcc_unreachable ();
7153 }
7154
7155 return x;
7156}
7157
7158/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7159 operations" because they can be replaced with two more basic operations.
7160 ZERO_EXTEND is also considered "compound" because it can be replaced with
7161 an AND operation, which is simpler, though only one operation.
7162
7163 The function expand_compound_operation is called with an rtx expression
7164 and will convert it to the appropriate shifts and AND operations,
7165 simplifying at each stage.
7166
7167 The function make_compound_operation is called to convert an expression
7168 consisting of shifts and ANDs into the equivalent compound expression.
7169 It is the inverse of this function, loosely speaking. */
7170
7171static rtx
7172expand_compound_operation (rtx x)
7173{
7174 unsigned HOST_WIDE_INT pos = 0, len;
7175 bool unsignedp = false;
7176 unsigned int modewidth;
7177 rtx tem;
7178 scalar_int_mode inner_mode;
7179
7180 switch (GET_CODE (x))
7181 {
7182 case ZERO_EXTEND:
7183 unsignedp = true;
7184 /* FALLTHRU */
7185 case SIGN_EXTEND:
7186 /* We can't necessarily use a const_int for a multiword mode;
7187 it depends on implicitly extending the value.
7188 Since we don't know the right way to extend it,
7189 we can't tell whether the implicit way is right.
7190
7191 Even for a mode that is no wider than a const_int,
7192 we can't win, because we need to sign extend one of its bits through
7193 the rest of it, and we don't know which bit. */
7194 if (CONST_INT_P (XEXP (x, 0)))
7195 return x;
7196
7197 /* Reject modes that aren't scalar integers because turning vector
7198 or complex modes into shifts causes problems. */
7199 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode))
7200 return x;
7201
7202 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7203 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7204 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7205 reloaded. If not for that, MEM's would very rarely be safe.
7206
7207 Reject modes bigger than a word, because we might not be able
7208 to reference a two-register group starting with an arbitrary register
7209 (and currently gen_lowpart might crash for a SUBREG). */
7210
7211 if (GET_MODE_SIZE (mode: inner_mode) > UNITS_PER_WORD)
7212 return x;
7213
7214 len = GET_MODE_PRECISION (mode: inner_mode);
7215 /* If the inner object has VOIDmode (the only way this can happen
7216 is if it is an ASM_OPERANDS), we can't do anything since we don't
7217 know how much masking to do. */
7218 if (len == 0)
7219 return x;
7220
7221 break;
7222
7223 case ZERO_EXTRACT:
7224 unsignedp = true;
7225
7226 /* fall through */
7227
7228 case SIGN_EXTRACT:
7229 /* If the operand is a CLOBBER, just return it. */
7230 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7231 return XEXP (x, 0);
7232
7233 if (!CONST_INT_P (XEXP (x, 1))
7234 || !CONST_INT_P (XEXP (x, 2)))
7235 return x;
7236
7237 /* Reject modes that aren't scalar integers because turning vector
7238 or complex modes into shifts causes problems. */
7239 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode))
7240 return x;
7241
7242 len = INTVAL (XEXP (x, 1));
7243 pos = INTVAL (XEXP (x, 2));
7244
7245 /* This should stay within the object being extracted, fail otherwise. */
7246 if (len + pos > GET_MODE_PRECISION (mode: inner_mode))
7247 return x;
7248
7249 if (BITS_BIG_ENDIAN)
7250 pos = GET_MODE_PRECISION (mode: inner_mode) - len - pos;
7251
7252 break;
7253
7254 default:
7255 return x;
7256 }
7257
7258 /* We've rejected non-scalar operations by now. */
7259 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7260
7261 /* Convert sign extension to zero extension, if we know that the high
7262 bit is not set, as this is easier to optimize. It will be converted
7263 back to cheaper alternative in make_extraction. */
7264 if (GET_CODE (x) == SIGN_EXTEND
7265 && HWI_COMPUTABLE_MODE_P (mode)
7266 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7267 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7268 == 0))
7269 {
7270 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7271 rtx temp2 = expand_compound_operation (x: temp);
7272
7273 /* Make sure this is a profitable operation. */
7274 if (set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)
7275 > set_src_cost (x: temp2, mode, speed_p: optimize_this_for_speed_p))
7276 return temp2;
7277 else if (set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)
7278 > set_src_cost (x: temp, mode, speed_p: optimize_this_for_speed_p))
7279 return temp;
7280 else
7281 return x;
7282 }
7283
7284 /* We can optimize some special cases of ZERO_EXTEND. */
7285 if (GET_CODE (x) == ZERO_EXTEND)
7286 {
7287 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7288 know that the last value didn't have any inappropriate bits
7289 set. */
7290 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7291 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7292 && HWI_COMPUTABLE_MODE_P (mode)
7293 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7294 & ~GET_MODE_MASK (inner_mode)) == 0)
7295 return XEXP (XEXP (x, 0), 0);
7296
7297 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7298 if (GET_CODE (XEXP (x, 0)) == SUBREG
7299 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7300 && subreg_lowpart_p (XEXP (x, 0))
7301 && HWI_COMPUTABLE_MODE_P (mode)
7302 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7303 & ~GET_MODE_MASK (inner_mode)) == 0)
7304 return SUBREG_REG (XEXP (x, 0));
7305
7306 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7307 is a comparison and STORE_FLAG_VALUE permits. This is like
7308 the first case, but it works even when MODE is larger
7309 than HOST_WIDE_INT. */
7310 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7311 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7312 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7313 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
7314 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7315 return XEXP (XEXP (x, 0), 0);
7316
7317 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7318 if (GET_CODE (XEXP (x, 0)) == SUBREG
7319 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7320 && subreg_lowpart_p (XEXP (x, 0))
7321 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7322 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
7323 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7324 return SUBREG_REG (XEXP (x, 0));
7325
7326 }
7327
7328 /* If we reach here, we want to return a pair of shifts. The inner
7329 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7330 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7331 logical depending on the value of UNSIGNEDP.
7332
7333 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7334 converted into an AND of a shift.
7335
7336 We must check for the case where the left shift would have a negative
7337 count. This can happen in a case like (x >> 31) & 255 on machines
7338 that can't shift by a constant. On those machines, we would first
7339 combine the shift with the AND to produce a variable-position
7340 extraction. Then the constant of 31 would be substituted in
7341 to produce such a position. */
7342
7343 modewidth = GET_MODE_PRECISION (mode);
7344 if (modewidth >= pos + len)
7345 {
7346 tem = gen_lowpart (mode, XEXP (x, 0));
7347 if (!tem || GET_CODE (tem) == CLOBBER)
7348 return x;
7349 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7350 tem, modewidth - pos - len);
7351 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7352 mode, tem, modewidth - len);
7353 }
7354 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7355 {
7356 tem = simplify_shift_const (NULL_RTX, LSHIFTRT, inner_mode,
7357 XEXP (x, 0), pos);
7358 tem = gen_lowpart (mode, tem);
7359 if (!tem || GET_CODE (tem) == CLOBBER)
7360 return x;
7361 tem = simplify_and_const_int (NULL_RTX, mode, tem,
7362 (HOST_WIDE_INT_1U << len) - 1);
7363 }
7364 else
7365 /* Any other cases we can't handle. */
7366 return x;
7367
7368 /* If we couldn't do this for some reason, return the original
7369 expression. */
7370 if (GET_CODE (tem) == CLOBBER)
7371 return x;
7372
7373 return tem;
7374}
7375
7376/* X is a SET which contains an assignment of one object into
7377 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7378 or certain SUBREGS). If possible, convert it into a series of
7379 logical operations.
7380
7381 We half-heartedly support variable positions, but do not at all
7382 support variable lengths. */
7383
7384static const_rtx
7385expand_field_assignment (const_rtx x)
7386{
7387 rtx inner;
7388 rtx pos; /* Always counts from low bit. */
7389 int len, inner_len;
7390 rtx mask, cleared, masked;
7391 scalar_int_mode compute_mode;
7392
7393 /* Loop until we find something we can't simplify. */
7394 while (1)
7395 {
7396 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7397 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7398 {
7399 rtx x0 = XEXP (SET_DEST (x), 0);
7400 if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (const_value: &len))
7401 break;
7402 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7403 pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
7404 MAX_MODE_INT);
7405 }
7406 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7407 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7408 {
7409 inner = XEXP (SET_DEST (x), 0);
7410 if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (const_value: &inner_len))
7411 break;
7412
7413 len = INTVAL (XEXP (SET_DEST (x), 1));
7414 pos = XEXP (SET_DEST (x), 2);
7415
7416 /* A constant position should stay within the width of INNER. */
7417 if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
7418 break;
7419
7420 if (BITS_BIG_ENDIAN)
7421 {
7422 if (CONST_INT_P (pos))
7423 pos = GEN_INT (inner_len - len - INTVAL (pos));
7424 else if (GET_CODE (pos) == MINUS
7425 && CONST_INT_P (XEXP (pos, 1))
7426 && INTVAL (XEXP (pos, 1)) == inner_len - len)
7427 /* If position is ADJUST - X, new position is X. */
7428 pos = XEXP (pos, 0);
7429 else
7430 pos = simplify_gen_binary (code: MINUS, GET_MODE (pos),
7431 op0: gen_int_mode (inner_len - len,
7432 GET_MODE (pos)),
7433 op1: pos);
7434 }
7435 }
7436
7437 /* If the destination is a subreg that overwrites the whole of the inner
7438 register, we can move the subreg to the source. */
7439 else if (GET_CODE (SET_DEST (x)) == SUBREG
7440 /* We need SUBREGs to compute nonzero_bits properly. */
7441 && nonzero_sign_valid
7442 && !read_modify_subreg_p (SET_DEST (x)))
7443 {
7444 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7445 gen_lowpart
7446 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7447 SET_SRC (x)));
7448 continue;
7449 }
7450 else
7451 break;
7452
7453 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7454 inner = SUBREG_REG (inner);
7455
7456 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7457 if (!is_a <scalar_int_mode> (GET_MODE (inner), result: &compute_mode))
7458 {
7459 /* Don't do anything for vector or complex integral types. */
7460 if (! FLOAT_MODE_P (GET_MODE (inner)))
7461 break;
7462
7463 /* Try to find an integral mode to pun with. */
7464 if (!int_mode_for_size (size: GET_MODE_BITSIZE (GET_MODE (inner)), limit: 0)
7465 .exists (mode: &compute_mode))
7466 break;
7467
7468 inner = gen_lowpart (compute_mode, inner);
7469 }
7470
7471 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7472 if (len >= HOST_BITS_PER_WIDE_INT)
7473 break;
7474
7475 /* Don't try to compute in too wide unsupported modes. */
7476 if (!targetm.scalar_mode_supported_p (compute_mode))
7477 break;
7478
7479 /* gen_lowpart_for_combine returns CLOBBER on failure. */
7480 rtx lowpart = gen_lowpart (compute_mode, SET_SRC (x));
7481 if (GET_CODE (lowpart) == CLOBBER)
7482 break;
7483
7484 /* Now compute the equivalent expression. Make a copy of INNER
7485 for the SET_DEST in case it is a MEM into which we will substitute;
7486 we don't want shared RTL in that case. */
7487 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7488 compute_mode);
7489 cleared = simplify_gen_binary (code: AND, mode: compute_mode,
7490 op0: simplify_gen_unary (code: NOT, mode: compute_mode,
7491 op: simplify_gen_binary (code: ASHIFT,
7492 mode: compute_mode,
7493 op0: mask, op1: pos),
7494 op_mode: compute_mode),
7495 op1: inner);
7496 masked = simplify_gen_binary (code: ASHIFT, mode: compute_mode,
7497 op0: simplify_gen_binary (
7498 code: AND, mode: compute_mode, op0: lowpart, op1: mask),
7499 op1: pos);
7500
7501 x = gen_rtx_SET (copy_rtx (inner),
7502 simplify_gen_binary (IOR, compute_mode,
7503 cleared, masked));
7504 }
7505
7506 return x;
7507}
7508
7509/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7510 it is an RTX that represents the (variable) starting position; otherwise,
7511 POS is the (constant) starting bit position. Both are counted from the LSB.
7512
7513 UNSIGNEDP is true for an unsigned reference and zero for a signed one.
7514
7515 IN_DEST is true if this is a reference in the destination of a SET.
7516 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7517 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7518 be used.
7519
7520 IN_COMPARE is true if we are in a COMPARE. This means that a
7521 ZERO_EXTRACT should be built even for bits starting at bit 0.
7522
7523 MODE is the desired mode of the result (if IN_DEST == 0).
7524
7525 The result is an RTX for the extraction or NULL_RTX if the target
7526 can't handle it. */
7527
7528static rtx
7529make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7530 rtx pos_rtx, unsigned HOST_WIDE_INT len, bool unsignedp,
7531 bool in_dest, bool in_compare)
7532{
7533 /* This mode describes the size of the storage area
7534 to fetch the overall value from. Within that, we
7535 ignore the POS lowest bits, etc. */
7536 machine_mode is_mode = GET_MODE (inner);
7537 machine_mode inner_mode;
7538 scalar_int_mode wanted_inner_mode;
7539 scalar_int_mode wanted_inner_reg_mode = word_mode;
7540 scalar_int_mode pos_mode = word_mode;
7541 machine_mode extraction_mode = word_mode;
7542 rtx new_rtx = 0;
7543 rtx orig_pos_rtx = pos_rtx;
7544 HOST_WIDE_INT orig_pos;
7545
7546 if (pos_rtx && CONST_INT_P (pos_rtx))
7547 pos = INTVAL (pos_rtx), pos_rtx = 0;
7548
7549 if (GET_CODE (inner) == SUBREG
7550 && subreg_lowpart_p (inner)
7551 && (paradoxical_subreg_p (x: inner)
7552 /* If trying or potentionally trying to extract
7553 bits outside of is_mode, don't look through
7554 non-paradoxical SUBREGs. See PR82192. */
7555 || (pos_rtx == NULL_RTX
7556 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
7557 {
7558 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7559 consider just the QI as the memory to extract from.
7560 The subreg adds or removes high bits; its mode is
7561 irrelevant to the meaning of this extraction,
7562 since POS and LEN count from the lsb. */
7563 if (MEM_P (SUBREG_REG (inner)))
7564 is_mode = GET_MODE (SUBREG_REG (inner));
7565 inner = SUBREG_REG (inner);
7566 }
7567 else if (GET_CODE (inner) == ASHIFT
7568 && CONST_INT_P (XEXP (inner, 1))
7569 && pos_rtx == 0 && pos == 0
7570 && len > UINTVAL (XEXP (inner, 1)))
7571 {
7572 /* We're extracting the least significant bits of an rtx
7573 (ashift X (const_int C)), where LEN > C. Extract the
7574 least significant (LEN - C) bits of X, giving an rtx
7575 whose mode is MODE, then shift it left C times. */
7576 new_rtx = make_extraction (mode, XEXP (inner, 0),
7577 pos: 0, pos_rtx: 0, len: len - INTVAL (XEXP (inner, 1)),
7578 unsignedp, in_dest, in_compare);
7579 if (new_rtx != 0)
7580 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7581 }
7582 else if (GET_CODE (inner) == MULT
7583 && CONST_INT_P (XEXP (inner, 1))
7584 && pos_rtx == 0 && pos == 0)
7585 {
7586 /* We're extracting the least significant bits of an rtx
7587 (mult X (const_int 2^C)), where LEN > C. Extract the
7588 least significant (LEN - C) bits of X, giving an rtx
7589 whose mode is MODE, then multiply it by 2^C. */
7590 const HOST_WIDE_INT shift_amt = exact_log2 (INTVAL (XEXP (inner, 1)));
7591 if (IN_RANGE (shift_amt, 1, len - 1))
7592 {
7593 new_rtx = make_extraction (mode, XEXP (inner, 0),
7594 pos: 0, pos_rtx: 0, len: len - shift_amt,
7595 unsignedp, in_dest, in_compare);
7596 if (new_rtx)
7597 return gen_rtx_MULT (mode, new_rtx, XEXP (inner, 1));
7598 }
7599 }
7600 else if (GET_CODE (inner) == TRUNCATE
7601 /* If trying or potentionally trying to extract
7602 bits outside of is_mode, don't look through
7603 TRUNCATE. See PR82192. */
7604 && pos_rtx == NULL_RTX
7605 && known_le (pos + len, GET_MODE_PRECISION (is_mode)))
7606 inner = XEXP (inner, 0);
7607
7608 inner_mode = GET_MODE (inner);
7609
7610 /* See if this can be done without an extraction. We never can if the
7611 width of the field is not the same as that of some integer mode. For
7612 registers, we can only avoid the extraction if the position is at the
7613 low-order bit and this is either not in the destination or we have the
7614 appropriate STRICT_LOW_PART operation available.
7615
7616 For MEM, we can avoid an extract if the field starts on an appropriate
7617 boundary and we can change the mode of the memory reference. */
7618
7619 scalar_int_mode tmode;
7620 if (int_mode_for_size (size: len, limit: 1).exists (mode: &tmode)
7621 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7622 && !MEM_P (inner)
7623 && (pos == 0 || REG_P (inner))
7624 && (inner_mode == tmode
7625 || !REG_P (inner)
7626 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7627 || reg_truncated_to_mode (tmode, inner))
7628 && (! in_dest
7629 || (REG_P (inner)
7630 && have_insn_for (STRICT_LOW_PART, tmode))))
7631 || (MEM_P (inner) && pos_rtx == 0
7632 && (pos
7633 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7634 : BITS_PER_UNIT)) == 0
7635 /* We can't do this if we are widening INNER_MODE (it
7636 may not be aligned, for one thing). */
7637 && !paradoxical_subreg_p (outermode: tmode, innermode: inner_mode)
7638 && known_le (pos + len, GET_MODE_PRECISION (is_mode))
7639 && (inner_mode == tmode
7640 || (! mode_dependent_address_p (XEXP (inner, 0),
7641 MEM_ADDR_SPACE (inner))
7642 && ! MEM_VOLATILE_P (inner))))))
7643 {
7644 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7645 field. If the original and current mode are the same, we need not
7646 adjust the offset. Otherwise, we do if bytes big endian.
7647
7648 If INNER is not a MEM, get a piece consisting of just the field
7649 of interest (in this case POS % BITS_PER_WORD must be 0). */
7650
7651 if (MEM_P (inner))
7652 {
7653 poly_int64 offset;
7654
7655 /* POS counts from lsb, but make OFFSET count in memory order. */
7656 if (BYTES_BIG_ENDIAN)
7657 offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
7658 - len - pos);
7659 else
7660 offset = pos / BITS_PER_UNIT;
7661
7662 new_rtx = adjust_address_nv (inner, tmode, offset);
7663 }
7664 else if (REG_P (inner))
7665 {
7666 if (tmode != inner_mode)
7667 {
7668 /* We can't call gen_lowpart in a DEST since we
7669 always want a SUBREG (see below) and it would sometimes
7670 return a new hard register. */
7671 if (pos || in_dest)
7672 {
7673 poly_uint64 offset
7674 = subreg_offset_from_lsb (outer_mode: tmode, inner_mode, lsb_shift: pos);
7675
7676 /* Avoid creating invalid subregs, for example when
7677 simplifying (x>>32)&255. */
7678 if (!validate_subreg (tmode, inner_mode, inner, offset))
7679 return NULL_RTX;
7680
7681 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7682 }
7683 else
7684 new_rtx = gen_lowpart (tmode, inner);
7685 }
7686 else
7687 new_rtx = inner;
7688 }
7689 else
7690 new_rtx = force_to_mode (inner, tmode,
7691 len >= HOST_BITS_PER_WIDE_INT
7692 ? HOST_WIDE_INT_M1U
7693 : (HOST_WIDE_INT_1U << len) - 1, false);
7694
7695 /* If this extraction is going into the destination of a SET,
7696 make a STRICT_LOW_PART unless we made a MEM. */
7697
7698 if (in_dest)
7699 return (MEM_P (new_rtx) ? new_rtx
7700 : (GET_CODE (new_rtx) != SUBREG
7701 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7702 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7703
7704 if (mode == tmode)
7705 return new_rtx;
7706
7707 if (CONST_SCALAR_INT_P (new_rtx))
7708 return simplify_unary_operation (code: unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7709 mode, op: new_rtx, op_mode: tmode);
7710
7711 /* If we know that no extraneous bits are set, and that the high
7712 bit is not set, convert the extraction to the cheaper of
7713 sign and zero extension, that are equivalent in these cases. */
7714 if (flag_expensive_optimizations
7715 && (HWI_COMPUTABLE_MODE_P (mode: tmode)
7716 && ((nonzero_bits (new_rtx, tmode)
7717 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7718 == 0)))
7719 {
7720 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7721 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7722
7723 /* Prefer ZERO_EXTENSION, since it gives more information to
7724 backends. */
7725 if (set_src_cost (x: temp, mode, speed_p: optimize_this_for_speed_p)
7726 <= set_src_cost (x: temp1, mode, speed_p: optimize_this_for_speed_p))
7727 return temp;
7728 return temp1;
7729 }
7730
7731 /* Otherwise, sign- or zero-extend unless we already are in the
7732 proper mode. */
7733
7734 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7735 mode, new_rtx));
7736 }
7737
7738 /* Unless this is a COMPARE or we have a funny memory reference,
7739 don't do anything with zero-extending field extracts starting at
7740 the low-order bit since they are simple AND operations. */
7741 if (pos_rtx == 0 && pos == 0 && ! in_dest
7742 && ! in_compare && unsignedp)
7743 return 0;
7744
7745 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7746 if the position is not a constant and the length is not 1. In all
7747 other cases, we would only be going outside our object in cases when
7748 an original shift would have been undefined. */
7749 if (MEM_P (inner)
7750 && ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
7751 || (pos_rtx != 0 && len != 1)))
7752 return 0;
7753
7754 enum extraction_pattern pattern = (in_dest ? EP_insv
7755 : unsignedp ? EP_extzv : EP_extv);
7756
7757 /* If INNER is not from memory, we want it to have the mode of a register
7758 extraction pattern's structure operand, or word_mode if there is no
7759 such pattern. The same applies to extraction_mode and pos_mode
7760 and their respective operands.
7761
7762 For memory, assume that the desired extraction_mode and pos_mode
7763 are the same as for a register operation, since at present we don't
7764 have named patterns for aligned memory structures. */
7765 class extraction_insn insn;
7766 unsigned int inner_size;
7767 if (GET_MODE_BITSIZE (mode: inner_mode).is_constant (const_value: &inner_size)
7768 && get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
7769 {
7770 wanted_inner_reg_mode = insn.struct_mode.require ();
7771 pos_mode = insn.pos_mode;
7772 extraction_mode = insn.field_mode;
7773 }
7774
7775 /* Never narrow an object, since that might not be safe. */
7776
7777 if (mode != VOIDmode
7778 && partial_subreg_p (outermode: extraction_mode, innermode: mode))
7779 extraction_mode = mode;
7780
7781 /* Punt if len is too large for extraction_mode. */
7782 if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
7783 return NULL_RTX;
7784
7785 if (!MEM_P (inner))
7786 wanted_inner_mode = wanted_inner_reg_mode;
7787 else
7788 {
7789 /* Be careful not to go beyond the extracted object and maintain the
7790 natural alignment of the memory. */
7791 wanted_inner_mode = smallest_int_mode_for_size (size: len);
7792 while (pos % GET_MODE_BITSIZE (mode: wanted_inner_mode) + len
7793 > GET_MODE_BITSIZE (mode: wanted_inner_mode))
7794 wanted_inner_mode = GET_MODE_WIDER_MODE (m: wanted_inner_mode).require ();
7795 }
7796
7797 orig_pos = pos;
7798
7799 if (BITS_BIG_ENDIAN)
7800 {
7801 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7802 BITS_BIG_ENDIAN style. If position is constant, compute new
7803 position. Otherwise, build subtraction.
7804 Note that POS is relative to the mode of the original argument.
7805 If it's a MEM we need to recompute POS relative to that.
7806 However, if we're extracting from (or inserting into) a register,
7807 we want to recompute POS relative to wanted_inner_mode. */
7808 int width;
7809 if (!MEM_P (inner))
7810 width = GET_MODE_BITSIZE (mode: wanted_inner_mode);
7811 else if (!GET_MODE_BITSIZE (mode: is_mode).is_constant (const_value: &width))
7812 return NULL_RTX;
7813
7814 if (pos_rtx == 0)
7815 pos = width - len - pos;
7816 else
7817 pos_rtx
7818 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7819 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7820 pos_rtx);
7821 /* POS may be less than 0 now, but we check for that below.
7822 Note that it can only be less than 0 if !MEM_P (inner). */
7823 }
7824
7825 /* If INNER has a wider mode, and this is a constant extraction, try to
7826 make it smaller and adjust the byte to point to the byte containing
7827 the value. */
7828 if (wanted_inner_mode != VOIDmode
7829 && inner_mode != wanted_inner_mode
7830 && ! pos_rtx
7831 && partial_subreg_p (outermode: wanted_inner_mode, innermode: is_mode)
7832 && MEM_P (inner)
7833 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7834 && ! MEM_VOLATILE_P (inner))
7835 {
7836 poly_int64 offset = 0;
7837
7838 /* The computations below will be correct if the machine is big
7839 endian in both bits and bytes or little endian in bits and bytes.
7840 If it is mixed, we must adjust. */
7841
7842 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7843 adjust OFFSET to compensate. */
7844 if (BYTES_BIG_ENDIAN
7845 && paradoxical_subreg_p (outermode: is_mode, innermode: inner_mode))
7846 offset -= GET_MODE_SIZE (mode: is_mode) - GET_MODE_SIZE (mode: inner_mode);
7847
7848 /* We can now move to the desired byte. */
7849 offset += (pos / GET_MODE_BITSIZE (mode: wanted_inner_mode))
7850 * GET_MODE_SIZE (mode: wanted_inner_mode);
7851 pos %= GET_MODE_BITSIZE (mode: wanted_inner_mode);
7852
7853 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7854 && is_mode != wanted_inner_mode)
7855 offset = (GET_MODE_SIZE (mode: is_mode)
7856 - GET_MODE_SIZE (mode: wanted_inner_mode) - offset);
7857
7858 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7859 }
7860
7861 /* If INNER is not memory, get it into the proper mode. If we are changing
7862 its mode, POS must be a constant and smaller than the size of the new
7863 mode. */
7864 else if (!MEM_P (inner))
7865 {
7866 /* On the LHS, don't create paradoxical subregs implicitely truncating
7867 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7868 if (in_dest
7869 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7870 wanted_inner_mode))
7871 return NULL_RTX;
7872
7873 if (GET_MODE (inner) != wanted_inner_mode
7874 && (pos_rtx != 0
7875 || orig_pos + len > GET_MODE_BITSIZE (mode: wanted_inner_mode)))
7876 return NULL_RTX;
7877
7878 if (orig_pos < 0)
7879 return NULL_RTX;
7880
7881 inner = force_to_mode (inner, wanted_inner_mode,
7882 pos_rtx
7883 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7884 ? HOST_WIDE_INT_M1U
7885 : (((HOST_WIDE_INT_1U << len) - 1)
7886 << orig_pos), false);
7887 }
7888
7889 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7890 have to zero extend. Otherwise, we can just use a SUBREG.
7891
7892 We dealt with constant rtxes earlier, so pos_rtx cannot
7893 have VOIDmode at this point. */
7894 if (pos_rtx != 0
7895 && (GET_MODE_SIZE (mode: pos_mode)
7896 > GET_MODE_SIZE (mode: as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7897 {
7898 rtx temp = simplify_gen_unary (code: ZERO_EXTEND, mode: pos_mode, op: pos_rtx,
7899 GET_MODE (pos_rtx));
7900
7901 /* If we know that no extraneous bits are set, and that the high
7902 bit is not set, convert extraction to cheaper one - either
7903 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7904 cases. */
7905 if (flag_expensive_optimizations
7906 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7907 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7908 & ~(((unsigned HOST_WIDE_INT)
7909 GET_MODE_MASK (GET_MODE (pos_rtx)))
7910 >> 1))
7911 == 0)))
7912 {
7913 rtx temp1 = simplify_gen_unary (code: SIGN_EXTEND, mode: pos_mode, op: pos_rtx,
7914 GET_MODE (pos_rtx));
7915
7916 /* Prefer ZERO_EXTENSION, since it gives more information to
7917 backends. */
7918 if (set_src_cost (x: temp1, mode: pos_mode, speed_p: optimize_this_for_speed_p)
7919 < set_src_cost (x: temp, mode: pos_mode, speed_p: optimize_this_for_speed_p))
7920 temp = temp1;
7921 }
7922 pos_rtx = temp;
7923 }
7924
7925 /* Make POS_RTX unless we already have it and it is correct. If we don't
7926 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7927 be a CONST_INT. */
7928 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7929 pos_rtx = orig_pos_rtx;
7930
7931 else if (pos_rtx == 0)
7932 pos_rtx = GEN_INT (pos);
7933
7934 /* Make the required operation. See if we can use existing rtx. */
7935 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7936 extraction_mode, inner, GEN_INT (len), pos_rtx);
7937 if (! in_dest)
7938 new_rtx = gen_lowpart (mode, new_rtx);
7939
7940 return new_rtx;
7941}
7942
7943/* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7944 can be commuted with any other operations in X. Return X without
7945 that shift if so. */
7946
7947static rtx
7948extract_left_shift (scalar_int_mode mode, rtx x, int count)
7949{
7950 enum rtx_code code = GET_CODE (x);
7951 rtx tem;
7952
7953 switch (code)
7954 {
7955 case ASHIFT:
7956 /* This is the shift itself. If it is wide enough, we will return
7957 either the value being shifted if the shift count is equal to
7958 COUNT or a shift for the difference. */
7959 if (CONST_INT_P (XEXP (x, 1))
7960 && INTVAL (XEXP (x, 1)) >= count)
7961 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7962 INTVAL (XEXP (x, 1)) - count);
7963 break;
7964
7965 case NEG: case NOT:
7966 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7967 return simplify_gen_unary (code, mode, op: tem, op_mode: mode);
7968
7969 break;
7970
7971 case PLUS: case IOR: case XOR: case AND:
7972 /* If we can safely shift this constant and we find the inner shift,
7973 make a new operation. */
7974 if (CONST_INT_P (XEXP (x, 1))
7975 && (UINTVAL (XEXP (x, 1))
7976 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7977 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7978 {
7979 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7980 return simplify_gen_binary (code, mode, op0: tem,
7981 op1: gen_int_mode (val, mode));
7982 }
7983 break;
7984
7985 default:
7986 break;
7987 }
7988
7989 return 0;
7990}
7991
7992/* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7993 level of the expression and MODE is its mode. IN_CODE is as for
7994 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7995 that should be used when recursing on operands of *X_PTR.
7996
7997 There are two possible actions:
7998
7999 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8000 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8001
8002 - Return a new rtx, which the caller returns directly. */
8003
8004static rtx
8005make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
8006 enum rtx_code in_code,
8007 enum rtx_code *next_code_ptr)
8008{
8009 rtx x = *x_ptr;
8010 enum rtx_code next_code = *next_code_ptr;
8011 enum rtx_code code = GET_CODE (x);
8012 int mode_width = GET_MODE_PRECISION (mode);
8013 rtx rhs, lhs;
8014 rtx new_rtx = 0;
8015 int i;
8016 rtx tem;
8017 scalar_int_mode inner_mode;
8018 bool equality_comparison = false;
8019
8020 if (in_code == EQ)
8021 {
8022 equality_comparison = true;
8023 in_code = COMPARE;
8024 }
8025
8026 /* Process depending on the code of this operation. If NEW is set
8027 nonzero, it will be returned. */
8028
8029 switch (code)
8030 {
8031 case ASHIFT:
8032 /* Convert shifts by constants into multiplications if inside
8033 an address. */
8034 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
8035 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8036 && INTVAL (XEXP (x, 1)) >= 0)
8037 {
8038 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
8039 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
8040
8041 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8042 if (GET_CODE (new_rtx) == NEG)
8043 {
8044 new_rtx = XEXP (new_rtx, 0);
8045 multval = -multval;
8046 }
8047 multval = trunc_int_for_mode (multval, mode);
8048 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
8049 }
8050 break;
8051
8052 case PLUS:
8053 lhs = XEXP (x, 0);
8054 rhs = XEXP (x, 1);
8055 lhs = make_compound_operation (lhs, next_code);
8056 rhs = make_compound_operation (rhs, next_code);
8057 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
8058 {
8059 tem = simplify_gen_binary (code: MULT, mode, XEXP (XEXP (lhs, 0), 0),
8060 XEXP (lhs, 1));
8061 new_rtx = simplify_gen_binary (code: MINUS, mode, op0: rhs, op1: tem);
8062 }
8063 else if (GET_CODE (lhs) == MULT
8064 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
8065 {
8066 tem = simplify_gen_binary (code: MULT, mode, XEXP (lhs, 0),
8067 op1: simplify_gen_unary (code: NEG, mode,
8068 XEXP (lhs, 1),
8069 op_mode: mode));
8070 new_rtx = simplify_gen_binary (code: MINUS, mode, op0: rhs, op1: tem);
8071 }
8072 else
8073 {
8074 SUBST (XEXP (x, 0), lhs);
8075 SUBST (XEXP (x, 1), rhs);
8076 }
8077 maybe_swap_commutative_operands (x);
8078 return x;
8079
8080 case MINUS:
8081 lhs = XEXP (x, 0);
8082 rhs = XEXP (x, 1);
8083 lhs = make_compound_operation (lhs, next_code);
8084 rhs = make_compound_operation (rhs, next_code);
8085 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8086 {
8087 tem = simplify_gen_binary (code: MULT, mode, XEXP (XEXP (rhs, 0), 0),
8088 XEXP (rhs, 1));
8089 return simplify_gen_binary (code: PLUS, mode, op0: tem, op1: lhs);
8090 }
8091 else if (GET_CODE (rhs) == MULT
8092 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8093 {
8094 tem = simplify_gen_binary (code: MULT, mode, XEXP (rhs, 0),
8095 op1: simplify_gen_unary (code: NEG, mode,
8096 XEXP (rhs, 1),
8097 op_mode: mode));
8098 return simplify_gen_binary (code: PLUS, mode, op0: tem, op1: lhs);
8099 }
8100 else
8101 {
8102 SUBST (XEXP (x, 0), lhs);
8103 SUBST (XEXP (x, 1), rhs);
8104 return x;
8105 }
8106
8107 case AND:
8108 /* If the second operand is not a constant, we can't do anything
8109 with it. */
8110 if (!CONST_INT_P (XEXP (x, 1)))
8111 break;
8112
8113 /* If the constant is a power of two minus one and the first operand
8114 is a logical right shift, make an extraction. */
8115 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8116 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8117 {
8118 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8119 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, XEXP (XEXP (x, 0), 1),
8120 len: i, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8121 }
8122
8123 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8124 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8125 && subreg_lowpart_p (XEXP (x, 0))
8126 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8127 result: &inner_mode)
8128 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8129 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8130 {
8131 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8132 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8133 new_rtx = make_extraction (mode: inner_mode, inner: new_rtx, pos: 0,
8134 XEXP (inner_x0, 1),
8135 len: i, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8136
8137 /* If we narrowed the mode when dropping the subreg, then we lose. */
8138 if (GET_MODE_SIZE (mode: inner_mode) < GET_MODE_SIZE (mode))
8139 new_rtx = NULL;
8140
8141 /* If that didn't give anything, see if the AND simplifies on
8142 its own. */
8143 if (!new_rtx && i >= 0)
8144 {
8145 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8146 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, NULL_RTX, len: i,
8147 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8148 }
8149 }
8150 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8151 else if ((GET_CODE (XEXP (x, 0)) == XOR
8152 || GET_CODE (XEXP (x, 0)) == IOR)
8153 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8154 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8155 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8156 {
8157 /* Apply the distributive law, and then try to make extractions. */
8158 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8159 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8160 XEXP (x, 1)),
8161 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8162 XEXP (x, 1)));
8163 new_rtx = make_compound_operation (new_rtx, in_code);
8164 }
8165
8166 /* If we are have (and (rotate X C) M) and C is larger than the number
8167 of bits in M, this is an extraction. */
8168
8169 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8170 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8171 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8172 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8173 {
8174 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8175 new_rtx = make_extraction (mode, inner: new_rtx,
8176 pos: (GET_MODE_PRECISION (mode)
8177 - INTVAL (XEXP (XEXP (x, 0), 1))),
8178 NULL_RTX, len: i, unsignedp: true, in_dest: false,
8179 in_compare: in_code == COMPARE);
8180 }
8181
8182 /* On machines without logical shifts, if the operand of the AND is
8183 a logical shift and our mask turns off all the propagated sign
8184 bits, we can replace the logical shift with an arithmetic shift. */
8185 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8186 && !have_insn_for (LSHIFTRT, mode)
8187 && have_insn_for (ASHIFTRT, mode)
8188 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8189 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8190 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8191 && mode_width <= HOST_BITS_PER_WIDE_INT)
8192 {
8193 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8194
8195 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8196 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8197 SUBST (XEXP (x, 0),
8198 gen_rtx_ASHIFTRT (mode,
8199 make_compound_operation (XEXP (XEXP (x,
8200 0),
8201 0),
8202 next_code),
8203 XEXP (XEXP (x, 0), 1)));
8204 }
8205
8206 /* If the constant is one less than a power of two, this might be
8207 representable by an extraction even if no shift is present.
8208 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8209 we are in a COMPARE. */
8210 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8211 new_rtx = make_extraction (mode,
8212 inner: make_compound_operation (XEXP (x, 0),
8213 next_code),
8214 pos: 0, NULL_RTX, len: i,
8215 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8216
8217 /* If we are in a comparison and this is an AND with a power of two,
8218 convert this into the appropriate bit extract. */
8219 else if (in_code == COMPARE
8220 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8221 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8222 new_rtx = make_extraction (mode,
8223 inner: make_compound_operation (XEXP (x, 0),
8224 next_code),
8225 pos: i, NULL_RTX, len: 1, unsignedp: true, in_dest: false, in_compare: true);
8226
8227 /* If the one operand is a paradoxical subreg of a register or memory and
8228 the constant (limited to the smaller mode) has only zero bits where
8229 the sub expression has known zero bits, this can be expressed as
8230 a zero_extend. */
8231 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8232 {
8233 rtx sub;
8234
8235 sub = XEXP (XEXP (x, 0), 0);
8236 machine_mode sub_mode = GET_MODE (sub);
8237 int sub_width;
8238 if ((REG_P (sub) || MEM_P (sub))
8239 && GET_MODE_PRECISION (mode: sub_mode).is_constant (const_value: &sub_width)
8240 && sub_width < mode_width
8241 && (!WORD_REGISTER_OPERATIONS
8242 || sub_width >= BITS_PER_WORD
8243 /* On WORD_REGISTER_OPERATIONS targets the bits
8244 beyond sub_mode aren't considered undefined,
8245 so optimize only if it is a MEM load when MEM loads
8246 zero extend, because then the upper bits are all zero. */
8247 || (MEM_P (sub)
8248 && load_extend_op (mode: sub_mode) == ZERO_EXTEND)))
8249 {
8250 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8251 unsigned HOST_WIDE_INT mask;
8252
8253 /* Original AND constant with all the known zero bits set. */
8254 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8255 if ((mask & mode_mask) == mode_mask)
8256 {
8257 new_rtx = make_compound_operation (sub, next_code);
8258 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, pos_rtx: 0, len: sub_width,
8259 unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8260 }
8261 }
8262 }
8263
8264 break;
8265
8266 case LSHIFTRT:
8267 /* If the sign bit is known to be zero, replace this with an
8268 arithmetic shift. */
8269 if (have_insn_for (ASHIFTRT, mode)
8270 && ! have_insn_for (LSHIFTRT, mode)
8271 && mode_width <= HOST_BITS_PER_WIDE_INT
8272 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8273 {
8274 new_rtx = gen_rtx_ASHIFTRT (mode,
8275 make_compound_operation (XEXP (x, 0),
8276 next_code),
8277 XEXP (x, 1));
8278 break;
8279 }
8280
8281 /* fall through */
8282
8283 case ASHIFTRT:
8284 lhs = XEXP (x, 0);
8285 rhs = XEXP (x, 1);
8286
8287 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8288 this is a SIGN_EXTRACT. */
8289 if (CONST_INT_P (rhs)
8290 && GET_CODE (lhs) == ASHIFT
8291 && CONST_INT_P (XEXP (lhs, 1))
8292 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8293 && INTVAL (XEXP (lhs, 1)) >= 0
8294 && INTVAL (rhs) < mode_width)
8295 {
8296 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8297 new_rtx = make_extraction (mode, inner: new_rtx,
8298 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8299 NULL_RTX, len: mode_width - INTVAL (rhs),
8300 unsignedp: code == LSHIFTRT, in_dest: false,
8301 in_compare: in_code == COMPARE);
8302 break;
8303 }
8304
8305 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8306 If so, try to merge the shifts into a SIGN_EXTEND. We could
8307 also do this for some cases of SIGN_EXTRACT, but it doesn't
8308 seem worth the effort; the case checked for occurs on Alpha. */
8309
8310 if (!OBJECT_P (lhs)
8311 && ! (GET_CODE (lhs) == SUBREG
8312 && (OBJECT_P (SUBREG_REG (lhs))))
8313 && CONST_INT_P (rhs)
8314 && INTVAL (rhs) >= 0
8315 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8316 && INTVAL (rhs) < mode_width
8317 && (new_rtx = extract_left_shift (mode, x: lhs, INTVAL (rhs))) != 0)
8318 new_rtx = make_extraction (mode, inner: make_compound_operation (new_rtx,
8319 next_code),
8320 pos: 0, NULL_RTX, len: mode_width - INTVAL (rhs),
8321 unsignedp: code == LSHIFTRT, in_dest: false, in_compare: in_code == COMPARE);
8322
8323 break;
8324
8325 case SUBREG:
8326 /* Call ourselves recursively on the inner expression. If we are
8327 narrowing the object and it has a different RTL code from
8328 what it originally did, do this SUBREG as a force_to_mode. */
8329 {
8330 rtx inner = SUBREG_REG (x), simplified;
8331 enum rtx_code subreg_code = in_code;
8332
8333 /* If the SUBREG is masking of a logical right shift,
8334 make an extraction. */
8335 if (GET_CODE (inner) == LSHIFTRT
8336 && is_a <scalar_int_mode> (GET_MODE (inner), result: &inner_mode)
8337 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (mode: inner_mode)
8338 && CONST_INT_P (XEXP (inner, 1))
8339 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (mode: inner_mode)
8340 && subreg_lowpart_p (x))
8341 {
8342 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8343 int width = GET_MODE_PRECISION (mode: inner_mode)
8344 - INTVAL (XEXP (inner, 1));
8345 if (width > mode_width)
8346 width = mode_width;
8347 new_rtx = make_extraction (mode, inner: new_rtx, pos: 0, XEXP (inner, 1),
8348 len: width, unsignedp: true, in_dest: false, in_compare: in_code == COMPARE);
8349 break;
8350 }
8351
8352 /* If in_code is COMPARE, it isn't always safe to pass it through
8353 to the recursive make_compound_operation call. */
8354 if (subreg_code == COMPARE
8355 && (!subreg_lowpart_p (x)
8356 || GET_CODE (inner) == SUBREG
8357 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8358 is (const_int 0), rather than
8359 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8360 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8361 for non-equality comparisons against 0 is not equivalent
8362 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8363 || (GET_CODE (inner) == AND
8364 && CONST_INT_P (XEXP (inner, 1))
8365 && partial_subreg_p (x)
8366 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8367 >= GET_MODE_BITSIZE (mode) - 1)))
8368 subreg_code = SET;
8369
8370 tem = make_compound_operation (inner, subreg_code);
8371
8372 simplified
8373 = simplify_subreg (outermode: mode, op: tem, GET_MODE (inner), SUBREG_BYTE (x));
8374 if (simplified)
8375 tem = simplified;
8376
8377 if (GET_CODE (tem) != GET_CODE (inner)
8378 && partial_subreg_p (x)
8379 && subreg_lowpart_p (x))
8380 {
8381 rtx newer
8382 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, false);
8383
8384 /* If we have something other than a SUBREG, we might have
8385 done an expansion, so rerun ourselves. */
8386 if (GET_CODE (newer) != SUBREG)
8387 newer = make_compound_operation (newer, in_code);
8388
8389 /* force_to_mode can expand compounds. If it just re-expanded
8390 the compound, use gen_lowpart to convert to the desired
8391 mode. */
8392 if (rtx_equal_p (newer, x)
8393 /* Likewise if it re-expanded the compound only partially.
8394 This happens for SUBREG of ZERO_EXTRACT if they extract
8395 the same number of bits. */
8396 || (GET_CODE (newer) == SUBREG
8397 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8398 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8399 && GET_CODE (inner) == AND
8400 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8401 return gen_lowpart (GET_MODE (x), tem);
8402
8403 return newer;
8404 }
8405
8406 if (simplified)
8407 return tem;
8408 }
8409 break;
8410
8411 default:
8412 break;
8413 }
8414
8415 if (new_rtx)
8416 *x_ptr = gen_lowpart (mode, new_rtx);
8417 *next_code_ptr = next_code;
8418 return NULL_RTX;
8419}
8420
8421/* Look at the expression rooted at X. Look for expressions
8422 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8423 Form these expressions.
8424
8425 Return the new rtx, usually just X.
8426
8427 Also, for machines like the VAX that don't have logical shift insns,
8428 try to convert logical to arithmetic shift operations in cases where
8429 they are equivalent. This undoes the canonicalizations to logical
8430 shifts done elsewhere.
8431
8432 We try, as much as possible, to re-use rtl expressions to save memory.
8433
8434 IN_CODE says what kind of expression we are processing. Normally, it is
8435 SET. In a memory address it is MEM. When processing the arguments of
8436 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8437 precisely it is an equality comparison against zero. */
8438
8439rtx
8440make_compound_operation (rtx x, enum rtx_code in_code)
8441{
8442 enum rtx_code code = GET_CODE (x);
8443 const char *fmt;
8444 int i, j;
8445 enum rtx_code next_code;
8446 rtx new_rtx, tem;
8447
8448 /* Select the code to be used in recursive calls. Once we are inside an
8449 address, we stay there. If we have a comparison, set to COMPARE,
8450 but once inside, go back to our default of SET. */
8451
8452 next_code = (code == MEM ? MEM
8453 : ((code == COMPARE || COMPARISON_P (x))
8454 && XEXP (x, 1) == const0_rtx) ? COMPARE
8455 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8456
8457 scalar_int_mode mode;
8458 if (is_a <scalar_int_mode> (GET_MODE (x), result: &mode))
8459 {
8460 rtx new_rtx = make_compound_operation_int (mode, x_ptr: &x, in_code,
8461 next_code_ptr: &next_code);
8462 if (new_rtx)
8463 return new_rtx;
8464 code = GET_CODE (x);
8465 }
8466
8467 /* Now recursively process each operand of this operation. We need to
8468 handle ZERO_EXTEND specially so that we don't lose track of the
8469 inner mode. */
8470 if (code == ZERO_EXTEND)
8471 {
8472 new_rtx = make_compound_operation (XEXP (x, 0), in_code: next_code);
8473 tem = simplify_unary_operation (code: ZERO_EXTEND, GET_MODE (x),
8474 op: new_rtx, GET_MODE (XEXP (x, 0)));
8475 if (tem)
8476 return tem;
8477 SUBST (XEXP (x, 0), new_rtx);
8478 return x;
8479 }
8480
8481 fmt = GET_RTX_FORMAT (code);
8482 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8483 if (fmt[i] == 'e')
8484 {
8485 new_rtx = make_compound_operation (XEXP (x, i), in_code: next_code);
8486 SUBST (XEXP (x, i), new_rtx);
8487 }
8488 else if (fmt[i] == 'E')
8489 for (j = 0; j < XVECLEN (x, i); j++)
8490 {
8491 new_rtx = make_compound_operation (XVECEXP (x, i, j), in_code: next_code);
8492 SUBST (XVECEXP (x, i, j), new_rtx);
8493 }
8494
8495 maybe_swap_commutative_operands (x);
8496 return x;
8497}
8498
8499/* Given M see if it is a value that would select a field of bits
8500 within an item, but not the entire word. Return -1 if not.
8501 Otherwise, return the starting position of the field, where 0 is the
8502 low-order bit.
8503
8504 *PLEN is set to the length of the field. */
8505
8506static int
8507get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8508{
8509 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8510 int pos = m ? ctz_hwi (x: m) : -1;
8511 int len = 0;
8512
8513 if (pos >= 0)
8514 /* Now shift off the low-order zero bits and see if we have a
8515 power of two minus 1. */
8516 len = exact_log2 (x: (m >> pos) + 1);
8517
8518 if (len <= 0)
8519 pos = -1;
8520
8521 *plen = len;
8522 return pos;
8523}
8524
8525/* If X refers to a register that equals REG in value, replace these
8526 references with REG. */
8527static rtx
8528canon_reg_for_combine (rtx x, rtx reg)
8529{
8530 rtx op0, op1, op2;
8531 const char *fmt;
8532 int i;
8533 bool copied;
8534
8535 enum rtx_code code = GET_CODE (x);
8536 switch (GET_RTX_CLASS (code))
8537 {
8538 case RTX_UNARY:
8539 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8540 if (op0 != XEXP (x, 0))
8541 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op: op0,
8542 GET_MODE (reg));
8543 break;
8544
8545 case RTX_BIN_ARITH:
8546 case RTX_COMM_ARITH:
8547 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8548 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8549 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8550 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8551 break;
8552
8553 case RTX_COMPARE:
8554 case RTX_COMM_COMPARE:
8555 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8556 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8557 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8558 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8559 GET_MODE (op0), op0, op1);
8560 break;
8561
8562 case RTX_TERNARY:
8563 case RTX_BITFIELD_OPS:
8564 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8565 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8566 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8567 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8568 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8569 GET_MODE (op0), op0, op1, op2);
8570 /* FALLTHRU */
8571
8572 case RTX_OBJ:
8573 if (REG_P (x))
8574 {
8575 if (rtx_equal_p (get_last_value (reg), x)
8576 || rtx_equal_p (reg, get_last_value (x)))
8577 return reg;
8578 else
8579 break;
8580 }
8581
8582 /* fall through */
8583
8584 default:
8585 fmt = GET_RTX_FORMAT (code);
8586 copied = false;
8587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8588 if (fmt[i] == 'e')
8589 {
8590 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8591 if (op != XEXP (x, i))
8592 {
8593 if (!copied)
8594 {
8595 copied = true;
8596 x = copy_rtx (x);
8597 }
8598 XEXP (x, i) = op;
8599 }
8600 }
8601 else if (fmt[i] == 'E')
8602 {
8603 int j;
8604 for (j = 0; j < XVECLEN (x, i); j++)
8605 {
8606 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8607 if (op != XVECEXP (x, i, j))
8608 {
8609 if (!copied)
8610 {
8611 copied = true;
8612 x = copy_rtx (x);
8613 }
8614 XVECEXP (x, i, j) = op;
8615 }
8616 }
8617 }
8618
8619 break;
8620 }
8621
8622 return x;
8623}
8624
8625/* Return X converted to MODE. If the value is already truncated to
8626 MODE we can just return a subreg even though in the general case we
8627 would need an explicit truncation. */
8628
8629static rtx
8630gen_lowpart_or_truncate (machine_mode mode, rtx x)
8631{
8632 if (!CONST_INT_P (x)
8633 && partial_subreg_p (outermode: mode, GET_MODE (x))
8634 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8635 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8636 {
8637 /* Bit-cast X into an integer mode. */
8638 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8639 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8640 x = simplify_gen_unary (code: TRUNCATE, mode: int_mode_for_mode (mode).require (),
8641 op: x, GET_MODE (x));
8642 }
8643
8644 return gen_lowpart (mode, x);
8645}
8646
8647/* See if X can be simplified knowing that we will only refer to it in
8648 MODE and will only refer to those bits that are nonzero in MASK.
8649 If other bits are being computed or if masking operations are done
8650 that select a superset of the bits in MASK, they can sometimes be
8651 ignored.
8652
8653 Return a possibly simplified expression, but always convert X to
8654 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8655
8656 If JUST_SELECT is true, don't optimize by noticing that bits in MASK
8657 are all off in X. This is used when X will be complemented, by either
8658 NOT, NEG, or XOR. */
8659
8660static rtx
8661force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8662 bool just_select)
8663{
8664 enum rtx_code code = GET_CODE (x);
8665 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8666 machine_mode op_mode;
8667 unsigned HOST_WIDE_INT nonzero;
8668
8669 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8670 code below will do the wrong thing since the mode of such an
8671 expression is VOIDmode.
8672
8673 Also do nothing if X is a CLOBBER; this can happen if X was
8674 the return value from a call to gen_lowpart. */
8675 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8676 return x;
8677
8678 /* We want to perform the operation in its present mode unless we know
8679 that the operation is valid in MODE, in which case we do the operation
8680 in MODE. */
8681 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8682 && have_insn_for (code, mode))
8683 ? mode : GET_MODE (x));
8684
8685 /* It is not valid to do a right-shift in a narrower mode
8686 than the one it came in with. */
8687 if ((code == LSHIFTRT || code == ASHIFTRT)
8688 && partial_subreg_p (outermode: mode, GET_MODE (x)))
8689 op_mode = GET_MODE (x);
8690
8691 /* Truncate MASK to fit OP_MODE. */
8692 if (op_mode)
8693 mask &= GET_MODE_MASK (op_mode);
8694
8695 /* Determine what bits of X are guaranteed to be (non)zero. */
8696 nonzero = nonzero_bits (x, mode);
8697
8698 /* If none of the bits in X are needed, return a zero. */
8699 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8700 x = const0_rtx;
8701
8702 /* If X is a CONST_INT, return a new one. Do this here since the
8703 test below will fail. */
8704 if (CONST_INT_P (x))
8705 {
8706 if (SCALAR_INT_MODE_P (mode))
8707 return gen_int_mode (INTVAL (x) & mask, mode);
8708 else
8709 {
8710 x = GEN_INT (INTVAL (x) & mask);
8711 return gen_lowpart_common (mode, x);
8712 }
8713 }
8714
8715 /* If X is narrower than MODE and we want all the bits in X's mode, just
8716 get X in the proper mode. */
8717 if (paradoxical_subreg_p (outermode: mode, GET_MODE (x))
8718 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8719 return gen_lowpart (mode, x);
8720
8721 /* We can ignore the effect of a SUBREG if it narrows the mode or
8722 if the constant masks to zero all the bits the mode doesn't have. */
8723 if (GET_CODE (x) == SUBREG
8724 && subreg_lowpart_p (x)
8725 && (partial_subreg_p (x)
8726 || (mask
8727 & GET_MODE_MASK (GET_MODE (x))
8728 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
8729 return force_to_mode (SUBREG_REG (x), mode, mask, just_select: next_select);
8730
8731 scalar_int_mode int_mode, xmode;
8732 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
8733 && is_a <scalar_int_mode> (GET_MODE (x), result: &xmode))
8734 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8735 integer too. */
8736 return force_int_to_mode (x, int_mode, xmode,
8737 as_a <scalar_int_mode> (m: op_mode),
8738 mask, just_select);
8739
8740 return gen_lowpart_or_truncate (mode, x);
8741}
8742
8743/* Subroutine of force_to_mode that handles cases in which both X and
8744 the result are scalar integers. MODE is the mode of the result,
8745 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8746 is preferred for simplified versions of X. The other arguments
8747 are as for force_to_mode. */
8748
8749static rtx
8750force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8751 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8752 bool just_select)
8753{
8754 enum rtx_code code = GET_CODE (x);
8755 bool next_select = just_select || code == XOR || code == NOT || code == NEG;
8756 unsigned HOST_WIDE_INT fuller_mask;
8757 rtx op0, op1, temp;
8758 poly_int64 const_op0;
8759
8760 /* When we have an arithmetic operation, or a shift whose count we
8761 do not know, we need to assume that all bits up to the highest-order
8762 bit in MASK will be needed. This is how we form such a mask. */
8763 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8764 fuller_mask = HOST_WIDE_INT_M1U;
8765 else
8766 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (x: mask) + 1)) - 1);
8767
8768 switch (code)
8769 {
8770 case CLOBBER:
8771 /* If X is a (clobber (const_int)), return it since we know we are
8772 generating something that won't match. */
8773 return x;
8774
8775 case SIGN_EXTEND:
8776 case ZERO_EXTEND:
8777 case ZERO_EXTRACT:
8778 case SIGN_EXTRACT:
8779 x = expand_compound_operation (x);
8780 if (GET_CODE (x) != code)
8781 return force_to_mode (x, mode, mask, just_select: next_select);
8782 break;
8783
8784 case TRUNCATE:
8785 /* Similarly for a truncate. */
8786 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
8787
8788 case AND:
8789 /* If this is an AND with a constant, convert it into an AND
8790 whose constant is the AND of that constant with MASK. If it
8791 remains an AND of MASK, delete it since it is redundant. */
8792
8793 if (CONST_INT_P (XEXP (x, 1)))
8794 {
8795 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8796 mask & INTVAL (XEXP (x, 1)));
8797 xmode = op_mode;
8798
8799 /* If X is still an AND, see if it is an AND with a mask that
8800 is just some low-order bits. If so, and it is MASK, we don't
8801 need it. */
8802
8803 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8804 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8805 x = XEXP (x, 0);
8806
8807 /* If it remains an AND, try making another AND with the bits
8808 in the mode mask that aren't in MASK turned on. If the
8809 constant in the AND is wide enough, this might make a
8810 cheaper constant. */
8811
8812 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8813 && GET_MODE_MASK (xmode) != mask
8814 && HWI_COMPUTABLE_MODE_P (mode: xmode))
8815 {
8816 unsigned HOST_WIDE_INT cval
8817 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8818 rtx y;
8819
8820 y = simplify_gen_binary (code: AND, mode: xmode, XEXP (x, 0),
8821 op1: gen_int_mode (cval, xmode));
8822 if (set_src_cost (x: y, mode: xmode, speed_p: optimize_this_for_speed_p)
8823 < set_src_cost (x, mode: xmode, speed_p: optimize_this_for_speed_p))
8824 x = y;
8825 }
8826
8827 break;
8828 }
8829
8830 goto binop;
8831
8832 case PLUS:
8833 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8834 low-order bits (as in an alignment operation) and FOO is already
8835 aligned to that boundary, mask C1 to that boundary as well.
8836 This may eliminate that PLUS and, later, the AND. */
8837
8838 {
8839 unsigned int width = GET_MODE_PRECISION (mode);
8840 unsigned HOST_WIDE_INT smask = mask;
8841
8842 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8843 number, sign extend it. */
8844
8845 if (width < HOST_BITS_PER_WIDE_INT
8846 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8847 smask |= HOST_WIDE_INT_M1U << width;
8848
8849 if (CONST_INT_P (XEXP (x, 1))
8850 && pow2p_hwi (x: - smask)
8851 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8852 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8853 return force_to_mode (x: plus_constant (xmode, XEXP (x, 0),
8854 (INTVAL (XEXP (x, 1)) & smask)),
8855 mode, mask: smask, just_select: next_select);
8856 }
8857
8858 /* fall through */
8859
8860 case MULT:
8861 /* Substituting into the operands of a widening MULT is not likely to
8862 create RTL matching a machine insn. */
8863 if (code == MULT
8864 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8865 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8866 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8867 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8868 && REG_P (XEXP (XEXP (x, 0), 0))
8869 && REG_P (XEXP (XEXP (x, 1), 0)))
8870 return gen_lowpart_or_truncate (mode, x);
8871
8872 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8873 most significant bit in MASK since carries from those bits will
8874 affect the bits we are interested in. */
8875 mask = fuller_mask;
8876 goto binop;
8877
8878 case MINUS:
8879 /* If X is (minus C Y) where C's least set bit is larger than any bit
8880 in the mask, then we may replace with (neg Y). */
8881 if (poly_int_rtx_p (XEXP (x, 0), res: &const_op0)
8882 && known_alignment (a: poly_uint64 (const_op0)) > mask)
8883 {
8884 x = simplify_gen_unary (code: NEG, mode: xmode, XEXP (x, 1), op_mode: xmode);
8885 return force_to_mode (x, mode, mask, just_select: next_select);
8886 }
8887
8888 /* Similarly, if C contains every bit in the fuller_mask, then we may
8889 replace with (not Y). */
8890 if (CONST_INT_P (XEXP (x, 0))
8891 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8892 {
8893 x = simplify_gen_unary (code: NOT, mode: xmode, XEXP (x, 1), op_mode: xmode);
8894 return force_to_mode (x, mode, mask, just_select: next_select);
8895 }
8896
8897 mask = fuller_mask;
8898 goto binop;
8899
8900 case IOR:
8901 case XOR:
8902 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8903 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8904 operation which may be a bitfield extraction. Ensure that the
8905 constant we form is not wider than the mode of X. */
8906
8907 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8908 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8909 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8910 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8911 && CONST_INT_P (XEXP (x, 1))
8912 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8913 + floor_log2 (INTVAL (XEXP (x, 1))))
8914 < GET_MODE_PRECISION (mode: xmode))
8915 && (UINTVAL (XEXP (x, 1))
8916 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8917 {
8918 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8919 << INTVAL (XEXP (XEXP (x, 0), 1)),
8920 xmode);
8921 temp = simplify_gen_binary (GET_CODE (x), mode: xmode,
8922 XEXP (XEXP (x, 0), 0), op1: temp);
8923 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, op0: temp,
8924 XEXP (XEXP (x, 0), 1));
8925 return force_to_mode (x, mode, mask, just_select: next_select);
8926 }
8927
8928 binop:
8929 /* For most binary operations, just propagate into the operation and
8930 change the mode if we have an operation of that mode. */
8931
8932 op0 = force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
8933 op1 = force_to_mode (XEXP (x, 1), mode, mask, just_select: next_select);
8934
8935 /* If we ended up truncating both operands, truncate the result of the
8936 operation instead. */
8937 if (GET_CODE (op0) == TRUNCATE
8938 && GET_CODE (op1) == TRUNCATE)
8939 {
8940 op0 = XEXP (op0, 0);
8941 op1 = XEXP (op1, 0);
8942 }
8943
8944 op0 = gen_lowpart_or_truncate (mode: op_mode, x: op0);
8945 op1 = gen_lowpart_or_truncate (mode: op_mode, x: op1);
8946
8947 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8948 {
8949 x = simplify_gen_binary (code, mode: op_mode, op0, op1);
8950 xmode = op_mode;
8951 }
8952 break;
8953
8954 case ASHIFT:
8955 /* For left shifts, do the same, but just for the first operand.
8956 However, we cannot do anything with shifts where we cannot
8957 guarantee that the counts are smaller than the size of the mode
8958 because such a count will have a different meaning in a
8959 wider mode. */
8960
8961 if (! (CONST_INT_P (XEXP (x, 1))
8962 && INTVAL (XEXP (x, 1)) >= 0
8963 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8964 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8965 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8966 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8967 break;
8968
8969 /* If the shift count is a constant and we can do arithmetic in
8970 the mode of the shift, refine which bits we need. Otherwise, use the
8971 conservative form of the mask. */
8972 if (CONST_INT_P (XEXP (x, 1))
8973 && INTVAL (XEXP (x, 1)) >= 0
8974 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode: op_mode)
8975 && HWI_COMPUTABLE_MODE_P (mode: op_mode))
8976 mask >>= INTVAL (XEXP (x, 1));
8977 else
8978 mask = fuller_mask;
8979
8980 op0 = gen_lowpart_or_truncate (mode: op_mode,
8981 x: force_to_mode (XEXP (x, 0), mode,
8982 mask, just_select: next_select));
8983
8984 if (op_mode != xmode || op0 != XEXP (x, 0))
8985 {
8986 x = simplify_gen_binary (code, mode: op_mode, op0, XEXP (x, 1));
8987 xmode = op_mode;
8988 }
8989 break;
8990
8991 case LSHIFTRT:
8992 /* Here we can only do something if the shift count is a constant,
8993 this shift constant is valid for the host, and we can do arithmetic
8994 in OP_MODE. */
8995
8996 if (CONST_INT_P (XEXP (x, 1))
8997 && INTVAL (XEXP (x, 1)) >= 0
8998 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8999 && HWI_COMPUTABLE_MODE_P (mode: op_mode))
9000 {
9001 rtx inner = XEXP (x, 0);
9002 unsigned HOST_WIDE_INT inner_mask;
9003
9004 /* Select the mask of the bits we need for the shift operand. */
9005 inner_mask = mask << INTVAL (XEXP (x, 1));
9006
9007 /* We can only change the mode of the shift if we can do arithmetic
9008 in the mode of the shift and INNER_MASK is no wider than the
9009 width of X's mode. */
9010 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
9011 op_mode = xmode;
9012
9013 inner = force_to_mode (x: inner, mode: op_mode, mask: inner_mask, just_select: next_select);
9014
9015 if (xmode != op_mode || inner != XEXP (x, 0))
9016 {
9017 x = simplify_gen_binary (code: LSHIFTRT, mode: op_mode, op0: inner, XEXP (x, 1));
9018 xmode = op_mode;
9019 }
9020 }
9021
9022 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9023 shift and AND produces only copies of the sign bit (C2 is one less
9024 than a power of two), we can do this with just a shift. */
9025
9026 if (GET_CODE (x) == LSHIFTRT
9027 && CONST_INT_P (XEXP (x, 1))
9028 /* The shift puts one of the sign bit copies in the least significant
9029 bit. */
9030 && ((INTVAL (XEXP (x, 1))
9031 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
9032 >= GET_MODE_PRECISION (mode: xmode))
9033 && pow2p_hwi (x: mask + 1)
9034 /* Number of bits left after the shift must be more than the mask
9035 needs. */
9036 && ((INTVAL (XEXP (x, 1)) + exact_log2 (x: mask + 1))
9037 <= GET_MODE_PRECISION (mode: xmode))
9038 /* Must be more sign bit copies than the mask needs. */
9039 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
9040 >= exact_log2 (x: mask + 1)))
9041 {
9042 int nbits = GET_MODE_PRECISION (mode: xmode) - exact_log2 (x: mask + 1);
9043 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, XEXP (x, 0),
9044 op1: gen_int_shift_amount (xmode, nbits));
9045 }
9046 goto shiftrt;
9047
9048 case ASHIFTRT:
9049 /* If we are just looking for the sign bit, we don't need this shift at
9050 all, even if it has a variable count. */
9051 if (val_signbit_p (xmode, mask))
9052 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
9053
9054 /* If this is a shift by a constant, get a mask that contains those bits
9055 that are not copies of the sign bit. We then have two cases: If
9056 MASK only includes those bits, this can be a logical shift, which may
9057 allow simplifications. If MASK is a single-bit field not within
9058 those bits, we are requesting a copy of the sign bit and hence can
9059 shift the sign bit to the appropriate location. */
9060
9061 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
9062 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
9063 {
9064 unsigned HOST_WIDE_INT nonzero;
9065 int i;
9066
9067 /* If the considered data is wider than HOST_WIDE_INT, we can't
9068 represent a mask for all its bits in a single scalar.
9069 But we only care about the lower bits, so calculate these. */
9070
9071 if (GET_MODE_PRECISION (mode: xmode) > HOST_BITS_PER_WIDE_INT)
9072 {
9073 nonzero = HOST_WIDE_INT_M1U;
9074
9075 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9076 is the number of bits a full-width mask would have set.
9077 We need only shift if these are fewer than nonzero can
9078 hold. If not, we must keep all bits set in nonzero. */
9079
9080 if (GET_MODE_PRECISION (mode: xmode) - INTVAL (XEXP (x, 1))
9081 < HOST_BITS_PER_WIDE_INT)
9082 nonzero >>= INTVAL (XEXP (x, 1))
9083 + HOST_BITS_PER_WIDE_INT
9084 - GET_MODE_PRECISION (mode: xmode);
9085 }
9086 else
9087 {
9088 nonzero = GET_MODE_MASK (xmode);
9089 nonzero >>= INTVAL (XEXP (x, 1));
9090 }
9091
9092 if ((mask & ~nonzero) == 0)
9093 {
9094 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
9095 XEXP (x, 0), INTVAL (XEXP (x, 1)));
9096 if (GET_CODE (x) != ASHIFTRT)
9097 return force_to_mode (x, mode, mask, just_select: next_select);
9098 }
9099
9100 else if ((i = exact_log2 (x: mask)) >= 0)
9101 {
9102 x = simplify_shift_const
9103 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9104 GET_MODE_PRECISION (mode: xmode) - 1 - i);
9105
9106 if (GET_CODE (x) != ASHIFTRT)
9107 return force_to_mode (x, mode, mask, just_select: next_select);
9108 }
9109 }
9110
9111 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9112 even if the shift count isn't a constant. */
9113 if (mask == 1)
9114 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode, XEXP (x, 0), XEXP (x, 1));
9115
9116 shiftrt:
9117
9118 /* If this is a zero- or sign-extension operation that just affects bits
9119 we don't care about, remove it. Be sure the call above returned
9120 something that is still a shift. */
9121
9122 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9123 && CONST_INT_P (XEXP (x, 1))
9124 && INTVAL (XEXP (x, 1)) >= 0
9125 && (INTVAL (XEXP (x, 1))
9126 <= GET_MODE_PRECISION (mode: xmode) - (floor_log2 (x: mask) + 1))
9127 && GET_CODE (XEXP (x, 0)) == ASHIFT
9128 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9129 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask, just_select: next_select);
9130
9131 break;
9132
9133 case ROTATE:
9134 case ROTATERT:
9135 /* If the shift count is constant and we can do computations
9136 in the mode of X, compute where the bits we care about are.
9137 Otherwise, we can't do anything. Don't change the mode of
9138 the shift or propagate MODE into the shift, though. */
9139 if (CONST_INT_P (XEXP (x, 1))
9140 && INTVAL (XEXP (x, 1)) >= 0)
9141 {
9142 temp = simplify_binary_operation (code: code == ROTATE ? ROTATERT : ROTATE,
9143 mode: xmode, op0: gen_int_mode (mask, xmode),
9144 XEXP (x, 1));
9145 if (temp && CONST_INT_P (temp))
9146 x = simplify_gen_binary (code, mode: xmode,
9147 op0: force_to_mode (XEXP (x, 0), mode: xmode,
9148 INTVAL (temp), just_select: next_select),
9149 XEXP (x, 1));
9150 }
9151 break;
9152
9153 case NEG:
9154 /* If we just want the low-order bit, the NEG isn't needed since it
9155 won't change the low-order bit. */
9156 if (mask == 1)
9157 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9158
9159 /* We need any bits less significant than the most significant bit in
9160 MASK since carries from those bits will affect the bits we are
9161 interested in. */
9162 mask = fuller_mask;
9163 goto unop;
9164
9165 case NOT:
9166 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9167 same as the XOR case above. Ensure that the constant we form is not
9168 wider than the mode of X. */
9169
9170 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9171 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9172 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9173 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (x: mask)
9174 < GET_MODE_PRECISION (mode: xmode))
9175 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9176 {
9177 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9178 temp = simplify_gen_binary (code: XOR, mode: xmode, XEXP (XEXP (x, 0), 0), op1: temp);
9179 x = simplify_gen_binary (code: LSHIFTRT, mode: xmode,
9180 op0: temp, XEXP (XEXP (x, 0), 1));
9181
9182 return force_to_mode (x, mode, mask, just_select: next_select);
9183 }
9184
9185 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9186 use the full mask inside the NOT. */
9187 mask = fuller_mask;
9188
9189 unop:
9190 op0 = gen_lowpart_or_truncate (mode: op_mode,
9191 x: force_to_mode (XEXP (x, 0), mode, mask,
9192 just_select: next_select));
9193 if (op_mode != xmode || op0 != XEXP (x, 0))
9194 {
9195 x = simplify_gen_unary (code, mode: op_mode, op: op0, op_mode);
9196 xmode = op_mode;
9197 }
9198 break;
9199
9200 case NE:
9201 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9202 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9203 which is equal to STORE_FLAG_VALUE. */
9204 if ((mask & ~STORE_FLAG_VALUE) == 0
9205 && XEXP (x, 1) == const0_rtx
9206 && GET_MODE (XEXP (x, 0)) == mode
9207 && pow2p_hwi (x: nonzero_bits (XEXP (x, 0), mode))
9208 && (nonzero_bits (XEXP (x, 0), mode)
9209 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9210 return force_to_mode (XEXP (x, 0), mode, mask, just_select: next_select);
9211
9212 break;
9213
9214 case IF_THEN_ELSE:
9215 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9216 written in a narrower mode. We play it safe and do not do so. */
9217
9218 op0 = gen_lowpart_or_truncate (mode: xmode,
9219 x: force_to_mode (XEXP (x, 1), mode,
9220 mask, just_select: next_select));
9221 op1 = gen_lowpart_or_truncate (mode: xmode,
9222 x: force_to_mode (XEXP (x, 2), mode,
9223 mask, just_select: next_select));
9224 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9225 x = simplify_gen_ternary (code: IF_THEN_ELSE, mode: xmode,
9226 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9227 op1: op0, op2: op1);
9228 break;
9229
9230 default:
9231 break;
9232 }
9233
9234 /* Ensure we return a value of the proper mode. */
9235 return gen_lowpart_or_truncate (mode, x);
9236}
9237
9238/* Return nonzero if X is an expression that has one of two values depending on
9239 whether some other value is zero or nonzero. In that case, we return the
9240 value that is being tested, *PTRUE is set to the value if the rtx being
9241 returned has a nonzero value, and *PFALSE is set to the other alternative.
9242
9243 If we return zero, we set *PTRUE and *PFALSE to X. */
9244
9245static rtx
9246if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9247{
9248 machine_mode mode = GET_MODE (x);
9249 enum rtx_code code = GET_CODE (x);
9250 rtx cond0, cond1, true0, true1, false0, false1;
9251 unsigned HOST_WIDE_INT nz;
9252 scalar_int_mode int_mode;
9253
9254 /* If we are comparing a value against zero, we are done. */
9255 if ((code == NE || code == EQ)
9256 && XEXP (x, 1) == const0_rtx)
9257 {
9258 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9259 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9260 return XEXP (x, 0);
9261 }
9262
9263 /* If this is a unary operation whose operand has one of two values, apply
9264 our opcode to compute those values. */
9265 else if (UNARY_P (x)
9266 && (cond0 = if_then_else_cond (XEXP (x, 0), ptrue: &true0, pfalse: &false0)) != 0)
9267 {
9268 *ptrue = simplify_gen_unary (code, mode, op: true0, GET_MODE (XEXP (x, 0)));
9269 *pfalse = simplify_gen_unary (code, mode, op: false0,
9270 GET_MODE (XEXP (x, 0)));
9271 return cond0;
9272 }
9273
9274 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9275 make can't possibly match and would suppress other optimizations. */
9276 else if (code == COMPARE)
9277 ;
9278
9279 /* If this is a binary operation, see if either side has only one of two
9280 values. If either one does or if both do and they are conditional on
9281 the same value, compute the new true and false values. */
9282 else if (BINARY_P (x))
9283 {
9284 rtx op0 = XEXP (x, 0);
9285 rtx op1 = XEXP (x, 1);
9286 cond0 = if_then_else_cond (x: op0, ptrue: &true0, pfalse: &false0);
9287 cond1 = if_then_else_cond (x: op1, ptrue: &true1, pfalse: &false1);
9288
9289 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9290 && (REG_P (op0) || REG_P (op1)))
9291 {
9292 /* Try to enable a simplification by undoing work done by
9293 if_then_else_cond if it converted a REG into something more
9294 complex. */
9295 if (REG_P (op0))
9296 {
9297 cond0 = 0;
9298 true0 = false0 = op0;
9299 }
9300 else
9301 {
9302 cond1 = 0;
9303 true1 = false1 = op1;
9304 }
9305 }
9306
9307 if ((cond0 != 0 || cond1 != 0)
9308 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9309 {
9310 /* If if_then_else_cond returned zero, then true/false are the
9311 same rtl. We must copy one of them to prevent invalid rtl
9312 sharing. */
9313 if (cond0 == 0)
9314 true0 = copy_rtx (true0);
9315 else if (cond1 == 0)
9316 true1 = copy_rtx (true1);
9317
9318 if (COMPARISON_P (x))
9319 {
9320 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9321 op0: true0, op1: true1);
9322 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9323 op0: false0, op1: false1);
9324 }
9325 else
9326 {
9327 *ptrue = simplify_gen_binary (code, mode, op0: true0, op1: true1);
9328 *pfalse = simplify_gen_binary (code, mode, op0: false0, op1: false1);
9329 }
9330
9331 return cond0 ? cond0 : cond1;
9332 }
9333
9334 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9335 operands is zero when the other is nonzero, and vice-versa,
9336 and STORE_FLAG_VALUE is 1 or -1. */
9337
9338 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9339 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9340 || code == UMAX)
9341 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9342 {
9343 rtx op0 = XEXP (XEXP (x, 0), 1);
9344 rtx op1 = XEXP (XEXP (x, 1), 1);
9345
9346 cond0 = XEXP (XEXP (x, 0), 0);
9347 cond1 = XEXP (XEXP (x, 1), 0);
9348
9349 if (COMPARISON_P (cond0)
9350 && COMPARISON_P (cond1)
9351 && SCALAR_INT_MODE_P (mode)
9352 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9353 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9354 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9355 || ((swap_condition (GET_CODE (cond0))
9356 == reversed_comparison_code (cond1, NULL))
9357 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9358 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9359 && ! side_effects_p (x))
9360 {
9361 *ptrue = simplify_gen_binary (code: MULT, mode, op0, op1: const_true_rtx);
9362 *pfalse = simplify_gen_binary (code: MULT, mode,
9363 op0: (code == MINUS
9364 ? simplify_gen_unary (code: NEG, mode,
9365 op: op1, op_mode: mode)
9366 : op1),
9367 op1: const_true_rtx);
9368 return cond0;
9369 }
9370 }
9371
9372 /* Similarly for MULT, AND and UMIN, except that for these the result
9373 is always zero. */
9374 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9375 && (code == MULT || code == AND || code == UMIN)
9376 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9377 {
9378 cond0 = XEXP (XEXP (x, 0), 0);
9379 cond1 = XEXP (XEXP (x, 1), 0);
9380
9381 if (COMPARISON_P (cond0)
9382 && COMPARISON_P (cond1)
9383 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9384 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9385 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9386 || ((swap_condition (GET_CODE (cond0))
9387 == reversed_comparison_code (cond1, NULL))
9388 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9389 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9390 && ! side_effects_p (x))
9391 {
9392 *ptrue = *pfalse = const0_rtx;
9393 return cond0;
9394 }
9395 }
9396 }
9397
9398 else if (code == IF_THEN_ELSE)
9399 {
9400 /* If we have IF_THEN_ELSE already, extract the condition and
9401 canonicalize it if it is NE or EQ. */
9402 cond0 = XEXP (x, 0);
9403 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9404 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9405 return XEXP (cond0, 0);
9406 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9407 {
9408 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9409 return XEXP (cond0, 0);
9410 }
9411 else
9412 return cond0;
9413 }
9414
9415 /* If X is a SUBREG, we can narrow both the true and false values
9416 if the inner expression, if there is a condition. */
9417 else if (code == SUBREG
9418 && (cond0 = if_then_else_cond (SUBREG_REG (x), ptrue: &true0,
9419 pfalse: &false0)) != 0)
9420 {
9421 true0 = simplify_gen_subreg (outermode: mode, op: true0,
9422 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9423 false0 = simplify_gen_subreg (outermode: mode, op: false0,
9424 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9425 if (true0 && false0)
9426 {
9427 *ptrue = true0;
9428 *pfalse = false0;
9429 return cond0;
9430 }
9431 }
9432
9433 /* If X is a constant, this isn't special and will cause confusions
9434 if we treat it as such. Likewise if it is equivalent to a constant. */
9435 else if (CONSTANT_P (x)
9436 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9437 ;
9438
9439 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9440 will be least confusing to the rest of the compiler. */
9441 else if (mode == BImode)
9442 {
9443 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9444 return x;
9445 }
9446
9447 /* If X is known to be either 0 or -1, those are the true and
9448 false values when testing X. */
9449 else if (x == constm1_rtx || x == const0_rtx
9450 || (is_a <scalar_int_mode> (m: mode, result: &int_mode)
9451 && (num_sign_bit_copies (x, int_mode)
9452 == GET_MODE_PRECISION (mode: int_mode))))
9453 {
9454 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9455 return x;
9456 }
9457
9458 /* Likewise for 0 or a single bit. */
9459 else if (HWI_COMPUTABLE_MODE_P (mode)
9460 && pow2p_hwi (x: nz = nonzero_bits (x, mode)))
9461 {
9462 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9463 return x;
9464 }
9465
9466 /* Otherwise fail; show no condition with true and false values the same. */
9467 *ptrue = *pfalse = x;
9468 return 0;
9469}
9470
9471/* Return the value of expression X given the fact that condition COND
9472 is known to be true when applied to REG as its first operand and VAL
9473 as its second. X is known to not be shared and so can be modified in
9474 place.
9475
9476 We only handle the simplest cases, and specifically those cases that
9477 arise with IF_THEN_ELSE expressions. */
9478
9479static rtx
9480known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9481{
9482 enum rtx_code code = GET_CODE (x);
9483 const char *fmt;
9484 int i, j;
9485
9486 if (side_effects_p (x))
9487 return x;
9488
9489 /* If either operand of the condition is a floating point value,
9490 then we have to avoid collapsing an EQ comparison. */
9491 if (cond == EQ
9492 && rtx_equal_p (x, reg)
9493 && ! FLOAT_MODE_P (GET_MODE (x))
9494 && ! FLOAT_MODE_P (GET_MODE (val)))
9495 return val;
9496
9497 if (cond == UNEQ && rtx_equal_p (x, reg))
9498 return val;
9499
9500 /* If X is (abs REG) and we know something about REG's relationship
9501 with zero, we may be able to simplify this. */
9502
9503 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9504 switch (cond)
9505 {
9506 case GE: case GT: case EQ:
9507 return XEXP (x, 0);
9508 case LT: case LE:
9509 return simplify_gen_unary (code: NEG, GET_MODE (XEXP (x, 0)),
9510 XEXP (x, 0),
9511 GET_MODE (XEXP (x, 0)));
9512 default:
9513 break;
9514 }
9515
9516 /* The only other cases we handle are MIN, MAX, and comparisons if the
9517 operands are the same as REG and VAL. */
9518
9519 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9520 {
9521 if (rtx_equal_p (XEXP (x, 0), val))
9522 {
9523 std::swap (a&: val, b&: reg);
9524 cond = swap_condition (cond);
9525 }
9526
9527 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9528 {
9529 if (COMPARISON_P (x))
9530 {
9531 if (comparison_dominates_p (cond, code))
9532 return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
9533
9534 code = reversed_comparison_code (x, NULL);
9535 if (code != UNKNOWN
9536 && comparison_dominates_p (cond, code))
9537 return CONST0_RTX (GET_MODE (x));
9538 else
9539 return x;
9540 }
9541 else if (code == SMAX || code == SMIN
9542 || code == UMIN || code == UMAX)
9543 {
9544 int unsignedp = (code == UMIN || code == UMAX);
9545
9546 /* Do not reverse the condition when it is NE or EQ.
9547 This is because we cannot conclude anything about
9548 the value of 'SMAX (x, y)' when x is not equal to y,
9549 but we can when x equals y. */
9550 if ((code == SMAX || code == UMAX)
9551 && ! (cond == EQ || cond == NE))
9552 cond = reverse_condition (cond);
9553
9554 switch (cond)
9555 {
9556 case GE: case GT:
9557 return unsignedp ? x : XEXP (x, 1);
9558 case LE: case LT:
9559 return unsignedp ? x : XEXP (x, 0);
9560 case GEU: case GTU:
9561 return unsignedp ? XEXP (x, 1) : x;
9562 case LEU: case LTU:
9563 return unsignedp ? XEXP (x, 0) : x;
9564 default:
9565 break;
9566 }
9567 }
9568 }
9569 }
9570 else if (code == SUBREG)
9571 {
9572 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9573 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9574
9575 if (SUBREG_REG (x) != r)
9576 {
9577 /* We must simplify subreg here, before we lose track of the
9578 original inner_mode. */
9579 new_rtx = simplify_subreg (GET_MODE (x), op: r,
9580 innermode: inner_mode, SUBREG_BYTE (x));
9581 if (new_rtx)
9582 return new_rtx;
9583 else
9584 SUBST (SUBREG_REG (x), r);
9585 }
9586
9587 return x;
9588 }
9589 /* We don't have to handle SIGN_EXTEND here, because even in the
9590 case of replacing something with a modeless CONST_INT, a
9591 CONST_INT is already (supposed to be) a valid sign extension for
9592 its narrower mode, which implies it's already properly
9593 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9594 story is different. */
9595 else if (code == ZERO_EXTEND)
9596 {
9597 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9598 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9599
9600 if (XEXP (x, 0) != r)
9601 {
9602 /* We must simplify the zero_extend here, before we lose
9603 track of the original inner_mode. */
9604 new_rtx = simplify_unary_operation (code: ZERO_EXTEND, GET_MODE (x),
9605 op: r, op_mode: inner_mode);
9606 if (new_rtx)
9607 return new_rtx;
9608 else
9609 SUBST (XEXP (x, 0), r);
9610 }
9611
9612 return x;
9613 }
9614
9615 fmt = GET_RTX_FORMAT (code);
9616 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9617 {
9618 if (fmt[i] == 'e')
9619 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9620 else if (fmt[i] == 'E')
9621 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9622 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9623 cond, reg, val));
9624 }
9625
9626 return x;
9627}
9628
9629/* See if X and Y are equal for the purposes of seeing if we can rewrite an
9630 assignment as a field assignment. */
9631
9632static bool
9633rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9634{
9635 if (widen_x && GET_MODE (x) != GET_MODE (y))
9636 {
9637 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9638 return false;
9639 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9640 return false;
9641 x = adjust_address_nv (x, GET_MODE (y),
9642 byte_lowpart_offset (GET_MODE (y),
9643 GET_MODE (x)));
9644 }
9645
9646 if (x == y || rtx_equal_p (x, y))
9647 return true;
9648
9649 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9650 return false;
9651
9652 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9653 Note that all SUBREGs of MEM are paradoxical; otherwise they
9654 would have been rewritten. */
9655 if (MEM_P (x) && GET_CODE (y) == SUBREG
9656 && MEM_P (SUBREG_REG (y))
9657 && rtx_equal_p (SUBREG_REG (y),
9658 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9659 return true;
9660
9661 if (MEM_P (y) && GET_CODE (x) == SUBREG
9662 && MEM_P (SUBREG_REG (x))
9663 && rtx_equal_p (SUBREG_REG (x),
9664 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9665 return true;
9666
9667 /* We used to see if get_last_value of X and Y were the same but that's
9668 not correct. In one direction, we'll cause the assignment to have
9669 the wrong destination and in the case, we'll import a register into this
9670 insn that might have already have been dead. So fail if none of the
9671 above cases are true. */
9672 return false;
9673}
9674
9675/* See if X, a SET operation, can be rewritten as a bit-field assignment.
9676 Return that assignment if so.
9677
9678 We only handle the most common cases. */
9679
9680static rtx
9681make_field_assignment (rtx x)
9682{
9683 rtx dest = SET_DEST (x);
9684 rtx src = SET_SRC (x);
9685 rtx assign;
9686 rtx rhs, lhs;
9687 HOST_WIDE_INT c1;
9688 HOST_WIDE_INT pos;
9689 unsigned HOST_WIDE_INT len;
9690 rtx other;
9691
9692 /* All the rules in this function are specific to scalar integers. */
9693 scalar_int_mode mode;
9694 if (!is_a <scalar_int_mode> (GET_MODE (dest), result: &mode))
9695 return x;
9696
9697 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9698 a clear of a one-bit field. We will have changed it to
9699 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9700 for a SUBREG. */
9701
9702 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9703 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9704 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9705 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9706 {
9707 assign = make_extraction (VOIDmode, inner: dest, pos: 0, XEXP (XEXP (src, 0), 1),
9708 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9709 if (assign != 0)
9710 return gen_rtx_SET (assign, const0_rtx);
9711 return x;
9712 }
9713
9714 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9715 && subreg_lowpart_p (XEXP (src, 0))
9716 && partial_subreg_p (XEXP (src, 0))
9717 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9718 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9719 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9720 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9721 {
9722 assign = make_extraction (VOIDmode, inner: dest, pos: 0,
9723 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9724 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9725 if (assign != 0)
9726 return gen_rtx_SET (assign, const0_rtx);
9727 return x;
9728 }
9729
9730 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9731 one-bit field. */
9732 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9733 && XEXP (XEXP (src, 0), 0) == const1_rtx
9734 && rtx_equal_for_field_assignment_p (x: dest, XEXP (src, 1)))
9735 {
9736 assign = make_extraction (VOIDmode, inner: dest, pos: 0, XEXP (XEXP (src, 0), 1),
9737 len: 1, unsignedp: true, in_dest: true, in_compare: false);
9738 if (assign != 0)
9739 return gen_rtx_SET (assign, const1_rtx);
9740 return x;
9741 }
9742
9743 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9744 SRC is an AND with all bits of that field set, then we can discard
9745 the AND. */
9746 if (GET_CODE (dest) == ZERO_EXTRACT
9747 && CONST_INT_P (XEXP (dest, 1))
9748 && GET_CODE (src) == AND
9749 && CONST_INT_P (XEXP (src, 1)))
9750 {
9751 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9752 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9753 unsigned HOST_WIDE_INT ze_mask;
9754
9755 if (width >= HOST_BITS_PER_WIDE_INT)
9756 ze_mask = -1;
9757 else
9758 ze_mask = (HOST_WIDE_INT_1U << width) - 1;
9759
9760 /* Complete overlap. We can remove the source AND. */
9761 if ((and_mask & ze_mask) == ze_mask)
9762 return gen_rtx_SET (dest, XEXP (src, 0));
9763
9764 /* Partial overlap. We can reduce the source AND. */
9765 if ((and_mask & ze_mask) != and_mask)
9766 {
9767 src = gen_rtx_AND (mode, XEXP (src, 0),
9768 gen_int_mode (and_mask & ze_mask, mode));
9769 return gen_rtx_SET (dest, src);
9770 }
9771 }
9772
9773 /* The other case we handle is assignments into a constant-position
9774 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9775 a mask that has all one bits except for a group of zero bits and
9776 OTHER is known to have zeros where C1 has ones, this is such an
9777 assignment. Compute the position and length from C1. Shift OTHER
9778 to the appropriate position, force it to the required mode, and
9779 make the extraction. Check for the AND in both operands. */
9780
9781 /* One or more SUBREGs might obscure the constant-position field
9782 assignment. The first one we are likely to encounter is an outer
9783 narrowing SUBREG, which we can just strip for the purposes of
9784 identifying the constant-field assignment. */
9785 scalar_int_mode src_mode = mode;
9786 if (GET_CODE (src) == SUBREG
9787 && subreg_lowpart_p (src)
9788 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), result: &src_mode))
9789 src = SUBREG_REG (src);
9790
9791 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9792 return x;
9793
9794 rhs = expand_compound_operation (XEXP (src, 0));
9795 lhs = expand_compound_operation (XEXP (src, 1));
9796
9797 if (GET_CODE (rhs) == AND
9798 && CONST_INT_P (XEXP (rhs, 1))
9799 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), y: dest))
9800 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9801 /* The second SUBREG that might get in the way is a paradoxical
9802 SUBREG around the first operand of the AND. We want to
9803 pretend the operand is as wide as the destination here. We
9804 do this by adjusting the MEM to wider mode for the sole
9805 purpose of the call to rtx_equal_for_field_assignment_p. Also
9806 note this trick only works for MEMs. */
9807 else if (GET_CODE (rhs) == AND
9808 && paradoxical_subreg_p (XEXP (rhs, 0))
9809 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9810 && CONST_INT_P (XEXP (rhs, 1))
9811 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9812 y: dest, widen_x: true))
9813 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9814 else if (GET_CODE (lhs) == AND
9815 && CONST_INT_P (XEXP (lhs, 1))
9816 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), y: dest))
9817 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9818 /* The second SUBREG that might get in the way is a paradoxical
9819 SUBREG around the first operand of the AND. We want to
9820 pretend the operand is as wide as the destination here. We
9821 do this by adjusting the MEM to wider mode for the sole
9822 purpose of the call to rtx_equal_for_field_assignment_p. Also
9823 note this trick only works for MEMs. */
9824 else if (GET_CODE (lhs) == AND
9825 && paradoxical_subreg_p (XEXP (lhs, 0))
9826 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9827 && CONST_INT_P (XEXP (lhs, 1))
9828 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9829 y: dest, widen_x: true))
9830 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9831 else
9832 return x;
9833
9834 pos = get_pos_from_mask (m: (~c1) & GET_MODE_MASK (mode), plen: &len);
9835 if (pos < 0
9836 || pos + len > GET_MODE_PRECISION (mode)
9837 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9838 || (c1 & nonzero_bits (other, mode)) != 0)
9839 return x;
9840
9841 assign = make_extraction (VOIDmode, inner: dest, pos, NULL_RTX, len,
9842 unsignedp: true, in_dest: true, in_compare: false);
9843 if (assign == 0)
9844 return x;
9845
9846 /* The mode to use for the source is the mode of the assignment, or of
9847 what is inside a possible STRICT_LOW_PART. */
9848 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9849 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9850
9851 /* Shift OTHER right POS places and make it the source, restricting it
9852 to the proper length and mode. */
9853
9854 src = canon_reg_for_combine (x: simplify_shift_const (NULL_RTX, LSHIFTRT,
9855 src_mode, other, pos),
9856 reg: dest);
9857 src = force_to_mode (x: src, mode: new_mode,
9858 mask: len >= HOST_BITS_PER_WIDE_INT
9859 ? HOST_WIDE_INT_M1U
9860 : (HOST_WIDE_INT_1U << len) - 1, just_select: false);
9861
9862 /* If SRC is masked by an AND that does not make a difference in
9863 the value being stored, strip it. */
9864 if (GET_CODE (assign) == ZERO_EXTRACT
9865 && CONST_INT_P (XEXP (assign, 1))
9866 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9867 && GET_CODE (src) == AND
9868 && CONST_INT_P (XEXP (src, 1))
9869 && UINTVAL (XEXP (src, 1))
9870 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9871 src = XEXP (src, 0);
9872
9873 return gen_rtx_SET (assign, src);
9874}
9875
9876/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9877 if so. */
9878
9879static rtx
9880apply_distributive_law (rtx x)
9881{
9882 enum rtx_code code = GET_CODE (x);
9883 enum rtx_code inner_code;
9884 rtx lhs, rhs, other;
9885 rtx tem;
9886
9887 /* Distributivity is not true for floating point as it can change the
9888 value. So we don't do it unless -funsafe-math-optimizations. */
9889 if (FLOAT_MODE_P (GET_MODE (x))
9890 && ! flag_unsafe_math_optimizations)
9891 return x;
9892
9893 /* The outer operation can only be one of the following: */
9894 if (code != IOR && code != AND && code != XOR
9895 && code != PLUS && code != MINUS)
9896 return x;
9897
9898 lhs = XEXP (x, 0);
9899 rhs = XEXP (x, 1);
9900
9901 /* If either operand is a primitive we can't do anything, so get out
9902 fast. */
9903 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9904 return x;
9905
9906 lhs = expand_compound_operation (x: lhs);
9907 rhs = expand_compound_operation (x: rhs);
9908 inner_code = GET_CODE (lhs);
9909 if (inner_code != GET_CODE (rhs))
9910 return x;
9911
9912 /* See if the inner and outer operations distribute. */
9913 switch (inner_code)
9914 {
9915 case LSHIFTRT:
9916 case ASHIFTRT:
9917 case AND:
9918 case IOR:
9919 /* These all distribute except over PLUS. */
9920 if (code == PLUS || code == MINUS)
9921 return x;
9922 break;
9923
9924 case MULT:
9925 if (code != PLUS && code != MINUS)
9926 return x;
9927 break;
9928
9929 case ASHIFT:
9930 /* This is also a multiply, so it distributes over everything. */
9931 break;
9932
9933 /* This used to handle SUBREG, but this turned out to be counter-
9934 productive, since (subreg (op ...)) usually is not handled by
9935 insn patterns, and this "optimization" therefore transformed
9936 recognizable patterns into unrecognizable ones. Therefore the
9937 SUBREG case was removed from here.
9938
9939 It is possible that distributing SUBREG over arithmetic operations
9940 leads to an intermediate result than can then be optimized further,
9941 e.g. by moving the outer SUBREG to the other side of a SET as done
9942 in simplify_set. This seems to have been the original intent of
9943 handling SUBREGs here.
9944
9945 However, with current GCC this does not appear to actually happen,
9946 at least on major platforms. If some case is found where removing
9947 the SUBREG case here prevents follow-on optimizations, distributing
9948 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9949
9950 default:
9951 return x;
9952 }
9953
9954 /* Set LHS and RHS to the inner operands (A and B in the example
9955 above) and set OTHER to the common operand (C in the example).
9956 There is only one way to do this unless the inner operation is
9957 commutative. */
9958 if (COMMUTATIVE_ARITH_P (lhs)
9959 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9960 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9961 else if (COMMUTATIVE_ARITH_P (lhs)
9962 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9963 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9964 else if (COMMUTATIVE_ARITH_P (lhs)
9965 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9966 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9967 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9968 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9969 else
9970 return x;
9971
9972 /* Form the new inner operation, seeing if it simplifies first. */
9973 tem = simplify_gen_binary (code, GET_MODE (x), op0: lhs, op1: rhs);
9974
9975 /* There is one exception to the general way of distributing:
9976 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9977 if (code == XOR && inner_code == IOR)
9978 {
9979 inner_code = AND;
9980 other = simplify_gen_unary (code: NOT, GET_MODE (x), op: other, GET_MODE (x));
9981 }
9982
9983 /* We may be able to continuing distributing the result, so call
9984 ourselves recursively on the inner operation before forming the
9985 outer operation, which we return. */
9986 return simplify_gen_binary (code: inner_code, GET_MODE (x),
9987 op0: apply_distributive_law (x: tem), op1: other);
9988}
9989
9990/* See if X is of the form (* (+ A B) C), and if so convert to
9991 (+ (* A C) (* B C)) and try to simplify.
9992
9993 Most of the time, this results in no change. However, if some of
9994 the operands are the same or inverses of each other, simplifications
9995 will result.
9996
9997 For example, (and (ior A B) (not B)) can occur as the result of
9998 expanding a bit field assignment. When we apply the distributive
9999 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10000 which then simplifies to (and (A (not B))).
10001
10002 Note that no checks happen on the validity of applying the inverse
10003 distributive law. This is pointless since we can do it in the
10004 few places where this routine is called.
10005
10006 N is the index of the term that is decomposed (the arithmetic operation,
10007 i.e. (+ A B) in the first example above). !N is the index of the term that
10008 is distributed, i.e. of C in the first example above. */
10009static rtx
10010distribute_and_simplify_rtx (rtx x, int n)
10011{
10012 machine_mode mode;
10013 enum rtx_code outer_code, inner_code;
10014 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
10015
10016 /* Distributivity is not true for floating point as it can change the
10017 value. So we don't do it unless -funsafe-math-optimizations. */
10018 if (FLOAT_MODE_P (GET_MODE (x))
10019 && ! flag_unsafe_math_optimizations)
10020 return NULL_RTX;
10021
10022 decomposed = XEXP (x, n);
10023 if (!ARITHMETIC_P (decomposed))
10024 return NULL_RTX;
10025
10026 mode = GET_MODE (x);
10027 outer_code = GET_CODE (x);
10028 distributed = XEXP (x, !n);
10029
10030 inner_code = GET_CODE (decomposed);
10031 inner_op0 = XEXP (decomposed, 0);
10032 inner_op1 = XEXP (decomposed, 1);
10033
10034 /* Special case (and (xor B C) (not A)), which is equivalent to
10035 (xor (ior A B) (ior A C)) */
10036 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
10037 {
10038 distributed = XEXP (distributed, 0);
10039 outer_code = IOR;
10040 }
10041
10042 if (n == 0)
10043 {
10044 /* Distribute the second term. */
10045 new_op0 = simplify_gen_binary (code: outer_code, mode, op0: inner_op0, op1: distributed);
10046 new_op1 = simplify_gen_binary (code: outer_code, mode, op0: inner_op1, op1: distributed);
10047 }
10048 else
10049 {
10050 /* Distribute the first term. */
10051 new_op0 = simplify_gen_binary (code: outer_code, mode, op0: distributed, op1: inner_op0);
10052 new_op1 = simplify_gen_binary (code: outer_code, mode, op0: distributed, op1: inner_op1);
10053 }
10054
10055 tmp = apply_distributive_law (x: simplify_gen_binary (code: inner_code, mode,
10056 op0: new_op0, op1: new_op1));
10057 if (GET_CODE (tmp) != outer_code
10058 && (set_src_cost (x: tmp, mode, speed_p: optimize_this_for_speed_p)
10059 < set_src_cost (x, mode, speed_p: optimize_this_for_speed_p)))
10060 return tmp;
10061
10062 return NULL_RTX;
10063}
10064
10065/* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10066 in MODE. Return an equivalent form, if different from (and VAROP
10067 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10068
10069static rtx
10070simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
10071 unsigned HOST_WIDE_INT constop)
10072{
10073 unsigned HOST_WIDE_INT nonzero;
10074 unsigned HOST_WIDE_INT orig_constop;
10075 rtx orig_varop;
10076 int i;
10077
10078 orig_varop = varop;
10079 orig_constop = constop;
10080 if (GET_CODE (varop) == CLOBBER)
10081 return NULL_RTX;
10082
10083 /* Simplify VAROP knowing that we will be only looking at some of the
10084 bits in it.
10085
10086 Note by passing in CONSTOP, we guarantee that the bits not set in
10087 CONSTOP are not significant and will never be examined. We must
10088 ensure that is the case by explicitly masking out those bits
10089 before returning. */
10090 varop = force_to_mode (x: varop, mode, mask: constop, just_select: false);
10091
10092 /* If VAROP is a CLOBBER, we will fail so return it. */
10093 if (GET_CODE (varop) == CLOBBER)
10094 return varop;
10095
10096 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10097 to VAROP and return the new constant. */
10098 if (CONST_INT_P (varop))
10099 return gen_int_mode (INTVAL (varop) & constop, mode);
10100
10101 /* See what bits may be nonzero in VAROP. Unlike the general case of
10102 a call to nonzero_bits, here we don't care about bits outside
10103 MODE unless WORD_REGISTER_OPERATIONS is true. */
10104
10105 scalar_int_mode tmode = mode;
10106 if (WORD_REGISTER_OPERATIONS && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
10107 tmode = word_mode;
10108 nonzero = nonzero_bits (varop, tmode) & GET_MODE_MASK (tmode);
10109
10110 /* Turn off all bits in the constant that are known to already be zero.
10111 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10112 which is tested below. */
10113
10114 constop &= nonzero;
10115
10116 /* If we don't have any bits left, return zero. */
10117 if (constop == 0 && !side_effects_p (varop))
10118 return const0_rtx;
10119
10120 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10121 a power of two, we can replace this with an ASHIFT. */
10122 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), tmode) == 1
10123 && (i = exact_log2 (x: constop)) >= 0)
10124 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10125
10126 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10127 or XOR, then try to apply the distributive law. This may eliminate
10128 operations if either branch can be simplified because of the AND.
10129 It may also make some cases more complex, but those cases probably
10130 won't match a pattern either with or without this. */
10131
10132 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10133 {
10134 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10135 return
10136 gen_lowpart
10137 (mode,
10138 apply_distributive_law
10139 (x: simplify_gen_binary (GET_CODE (varop), mode: varop_mode,
10140 op0: simplify_and_const_int (NULL_RTX, varop_mode,
10141 XEXP (varop, 0),
10142 constop),
10143 op1: simplify_and_const_int (NULL_RTX, varop_mode,
10144 XEXP (varop, 1),
10145 constop))));
10146 }
10147
10148 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10149 the AND and see if one of the operands simplifies to zero. If so, we
10150 may eliminate it. */
10151
10152 if (GET_CODE (varop) == PLUS
10153 && pow2p_hwi (x: constop + 1))
10154 {
10155 rtx o0, o1;
10156
10157 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10158 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10159 if (o0 == const0_rtx)
10160 return o1;
10161 if (o1 == const0_rtx)
10162 return o0;
10163 }
10164
10165 /* Make a SUBREG if necessary. If we can't make it, fail. */
10166 varop = gen_lowpart (mode, varop);
10167 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10168 return NULL_RTX;
10169
10170 /* If we are only masking insignificant bits, return VAROP. */
10171 if (constop == nonzero)
10172 return varop;
10173
10174 if (varop == orig_varop && constop == orig_constop)
10175 return NULL_RTX;
10176
10177 /* Otherwise, return an AND. */
10178 return simplify_gen_binary (code: AND, mode, op0: varop, op1: gen_int_mode (constop, mode));
10179}
10180
10181
10182/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10183 in MODE.
10184
10185 Return an equivalent form, if different from X. Otherwise, return X. If
10186 X is zero, we are to always construct the equivalent form. */
10187
10188static rtx
10189simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10190 unsigned HOST_WIDE_INT constop)
10191{
10192 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10193 if (tem)
10194 return tem;
10195
10196 if (!x)
10197 x = simplify_gen_binary (code: AND, GET_MODE (varop), op0: varop,
10198 op1: gen_int_mode (constop, mode));
10199 if (GET_MODE (x) != mode)
10200 x = gen_lowpart (mode, x);
10201 return x;
10202}
10203
10204/* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10205 We don't care about bits outside of those defined in MODE.
10206 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10207
10208 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10209 a shift, AND, or zero_extract, we can do better. */
10210
10211static rtx
10212reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10213 scalar_int_mode mode,
10214 unsigned HOST_WIDE_INT *nonzero)
10215{
10216 rtx tem;
10217 reg_stat_type *rsp;
10218
10219 /* If X is a register whose nonzero bits value is current, use it.
10220 Otherwise, if X is a register whose value we can find, use that
10221 value. Otherwise, use the previously-computed global nonzero bits
10222 for this register. */
10223
10224 rsp = &reg_stat[REGNO (x)];
10225 if (rsp->last_set_value != 0
10226 && (rsp->last_set_mode == mode
10227 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10228 && GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10229 && GET_MODE_CLASS (mode) == MODE_INT))
10230 && ((rsp->last_set_label >= label_tick_ebb_start
10231 && rsp->last_set_label < label_tick)
10232 || (rsp->last_set_label == label_tick
10233 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10234 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10235 && REGNO (x) < reg_n_sets_max
10236 && REG_N_SETS (REGNO (x)) == 1
10237 && !REGNO_REG_SET_P
10238 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10239 REGNO (x)))))
10240 {
10241 /* Note that, even if the precision of last_set_mode is lower than that
10242 of mode, record_value_for_reg invoked nonzero_bits on the register
10243 with nonzero_bits_mode (because last_set_mode is necessarily integral
10244 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10245 are all valid, hence in mode too since nonzero_bits_mode is defined
10246 to the largest HWI_COMPUTABLE_MODE_P mode. */
10247 *nonzero &= rsp->last_set_nonzero_bits;
10248 return NULL;
10249 }
10250
10251 tem = get_last_value (x);
10252 if (tem)
10253 {
10254 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10255 tem = sign_extend_short_imm (src: tem, mode: xmode, prec: GET_MODE_PRECISION (mode));
10256
10257 return tem;
10258 }
10259
10260 if (nonzero_sign_valid && rsp->nonzero_bits)
10261 {
10262 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10263
10264 if (GET_MODE_PRECISION (mode: xmode) < GET_MODE_PRECISION (mode))
10265 /* We don't know anything about the upper bits. */
10266 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10267
10268 *nonzero &= mask;
10269 }
10270
10271 return NULL;
10272}
10273
10274/* Given a reg X of mode XMODE, return the number of bits at the high-order
10275 end of X that are known to be equal to the sign bit. X will be used
10276 in mode MODE; the returned value will always be between 1 and the
10277 number of bits in MODE. */
10278
10279static rtx
10280reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10281 scalar_int_mode mode,
10282 unsigned int *result)
10283{
10284 rtx tem;
10285 reg_stat_type *rsp;
10286
10287 rsp = &reg_stat[REGNO (x)];
10288 if (rsp->last_set_value != 0
10289 && rsp->last_set_mode == mode
10290 && ((rsp->last_set_label >= label_tick_ebb_start
10291 && rsp->last_set_label < label_tick)
10292 || (rsp->last_set_label == label_tick
10293 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10294 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10295 && REGNO (x) < reg_n_sets_max
10296 && REG_N_SETS (REGNO (x)) == 1
10297 && !REGNO_REG_SET_P
10298 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10299 REGNO (x)))))
10300 {
10301 *result = rsp->last_set_sign_bit_copies;
10302 return NULL;
10303 }
10304
10305 tem = get_last_value (x);
10306 if (tem != 0)
10307 return tem;
10308
10309 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10310 && GET_MODE_PRECISION (mode: xmode) == GET_MODE_PRECISION (mode))
10311 *result = rsp->sign_bit_copies;
10312
10313 return NULL;
10314}
10315
10316/* Return the number of "extended" bits there are in X, when interpreted
10317 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10318 unsigned quantities, this is the number of high-order zero bits.
10319 For signed quantities, this is the number of copies of the sign bit
10320 minus 1. In both case, this function returns the number of "spare"
10321 bits. For example, if two quantities for which this function returns
10322 at least 1 are added, the addition is known not to overflow.
10323
10324 This function will always return 0 unless called during combine, which
10325 implies that it must be called from a define_split. */
10326
10327unsigned int
10328extended_count (const_rtx x, machine_mode mode, bool unsignedp)
10329{
10330 if (nonzero_sign_valid == 0)
10331 return 0;
10332
10333 scalar_int_mode int_mode;
10334 return (unsignedp
10335 ? (is_a <scalar_int_mode> (m: mode, result: &int_mode)
10336 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
10337 ? (unsigned int) (GET_MODE_PRECISION (mode: int_mode) - 1
10338 - floor_log2 (x: nonzero_bits (x, int_mode)))
10339 : 0)
10340 : num_sign_bit_copies (x, mode) - 1);
10341}
10342
10343/* This function is called from `simplify_shift_const' to merge two
10344 outer operations. Specifically, we have already found that we need
10345 to perform operation *POP0 with constant *PCONST0 at the outermost
10346 position. We would now like to also perform OP1 with constant CONST1
10347 (with *POP0 being done last).
10348
10349 Return true if we can do the operation and update *POP0 and *PCONST0 with
10350 the resulting operation. *PCOMP_P is set to true if we would need to
10351 complement the innermost operand, otherwise it is unchanged.
10352
10353 MODE is the mode in which the operation will be done. No bits outside
10354 the width of this mode matter. It is assumed that the width of this mode
10355 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10356
10357 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10358 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10359 result is simply *PCONST0.
10360
10361 If the resulting operation cannot be expressed as one operation, we
10362 return false and do not change *POP0, *PCONST0, and *PCOMP_P. */
10363
10364static bool
10365merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0,
10366 enum rtx_code op1, HOST_WIDE_INT const1,
10367 machine_mode mode, bool *pcomp_p)
10368{
10369 enum rtx_code op0 = *pop0;
10370 HOST_WIDE_INT const0 = *pconst0;
10371
10372 const0 &= GET_MODE_MASK (mode);
10373 const1 &= GET_MODE_MASK (mode);
10374
10375 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10376 if (op0 == AND)
10377 const1 &= const0;
10378
10379 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10380 if OP0 is SET. */
10381
10382 if (op1 == UNKNOWN || op0 == SET)
10383 return true;
10384
10385 else if (op0 == UNKNOWN)
10386 op0 = op1, const0 = const1;
10387
10388 else if (op0 == op1)
10389 {
10390 switch (op0)
10391 {
10392 case AND:
10393 const0 &= const1;
10394 break;
10395 case IOR:
10396 const0 |= const1;
10397 break;
10398 case XOR:
10399 const0 ^= const1;
10400 break;
10401 case PLUS:
10402 const0 += const1;
10403 break;
10404 case NEG:
10405 op0 = UNKNOWN;
10406 break;
10407 default:
10408 break;
10409 }
10410 }
10411
10412 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10413 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10414 return false;
10415
10416 /* If the two constants aren't the same, we can't do anything. The
10417 remaining six cases can all be done. */
10418 else if (const0 != const1)
10419 return false;
10420
10421 else
10422 switch (op0)
10423 {
10424 case IOR:
10425 if (op1 == AND)
10426 /* (a & b) | b == b */
10427 op0 = SET;
10428 else /* op1 == XOR */
10429 /* (a ^ b) | b == a | b */
10430 {;}
10431 break;
10432
10433 case XOR:
10434 if (op1 == AND)
10435 /* (a & b) ^ b == (~a) & b */
10436 op0 = AND, *pcomp_p = true;
10437 else /* op1 == IOR */
10438 /* (a | b) ^ b == a & ~b */
10439 op0 = AND, const0 = ~const0;
10440 break;
10441
10442 case AND:
10443 if (op1 == IOR)
10444 /* (a | b) & b == b */
10445 op0 = SET;
10446 else /* op1 == XOR */
10447 /* (a ^ b) & b) == (~a) & b */
10448 *pcomp_p = true;
10449 break;
10450 default:
10451 break;
10452 }
10453
10454 /* Check for NO-OP cases. */
10455 const0 &= GET_MODE_MASK (mode);
10456 if (const0 == 0
10457 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10458 op0 = UNKNOWN;
10459 else if (const0 == 0 && op0 == AND)
10460 op0 = SET;
10461 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10462 && op0 == AND)
10463 op0 = UNKNOWN;
10464
10465 *pop0 = op0;
10466
10467 /* ??? Slightly redundant with the above mask, but not entirely.
10468 Moving this above means we'd have to sign-extend the mode mask
10469 for the final test. */
10470 if (op0 != UNKNOWN && op0 != NEG)
10471 *pconst0 = trunc_int_for_mode (const0, mode);
10472
10473 return true;
10474}
10475
10476/* A helper to simplify_shift_const_1 to determine the mode we can perform
10477 the shift in. The original shift operation CODE is performed on OP in
10478 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10479 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10480 result of the shift is subject to operation OUTER_CODE with operand
10481 OUTER_CONST. */
10482
10483static scalar_int_mode
10484try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10485 scalar_int_mode orig_mode, scalar_int_mode mode,
10486 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10487{
10488 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10489
10490 /* In general we can't perform in wider mode for right shift and rotate. */
10491 switch (code)
10492 {
10493 case ASHIFTRT:
10494 /* We can still widen if the bits brought in from the left are identical
10495 to the sign bit of ORIG_MODE. */
10496 if (num_sign_bit_copies (op, mode)
10497 > (unsigned) (GET_MODE_PRECISION (mode)
10498 - GET_MODE_PRECISION (mode: orig_mode)))
10499 return mode;
10500 return orig_mode;
10501
10502 case LSHIFTRT:
10503 /* Similarly here but with zero bits. */
10504 if (HWI_COMPUTABLE_MODE_P (mode)
10505 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10506 return mode;
10507
10508 /* We can also widen if the bits brought in will be masked off. This
10509 operation is performed in ORIG_MODE. */
10510 if (outer_code == AND)
10511 {
10512 int care_bits = low_bitmask_len (orig_mode, outer_const);
10513
10514 if (care_bits >= 0
10515 && GET_MODE_PRECISION (mode: orig_mode) - care_bits >= count)
10516 return mode;
10517 }
10518 /* fall through */
10519
10520 case ROTATE:
10521 return orig_mode;
10522
10523 case ROTATERT:
10524 gcc_unreachable ();
10525
10526 default:
10527 return mode;
10528 }
10529}
10530
10531/* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10532 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10533 if we cannot simplify it. Otherwise, return a simplified value.
10534
10535 The shift is normally computed in the widest mode we find in VAROP, as
10536 long as it isn't a different number of words than RESULT_MODE. Exceptions
10537 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10538
10539static rtx
10540simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10541 rtx varop, int orig_count)
10542{
10543 enum rtx_code orig_code = code;
10544 rtx orig_varop = varop;
10545 int count, log2;
10546 machine_mode mode = result_mode;
10547 machine_mode shift_mode;
10548 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10549 /* We form (outer_op (code varop count) (outer_const)). */
10550 enum rtx_code outer_op = UNKNOWN;
10551 HOST_WIDE_INT outer_const = 0;
10552 bool complement_p = false;
10553 rtx new_rtx, x;
10554
10555 /* Make sure and truncate the "natural" shift on the way in. We don't
10556 want to do this inside the loop as it makes it more difficult to
10557 combine shifts. */
10558 if (SHIFT_COUNT_TRUNCATED)
10559 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10560
10561 /* If we were given an invalid count, don't do anything except exactly
10562 what was requested. */
10563
10564 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10565 return NULL_RTX;
10566
10567 count = orig_count;
10568
10569 /* Unless one of the branches of the `if' in this loop does a `continue',
10570 we will `break' the loop after the `if'. */
10571
10572 while (count != 0)
10573 {
10574 /* If we have an operand of (clobber (const_int 0)), fail. */
10575 if (GET_CODE (varop) == CLOBBER)
10576 return NULL_RTX;
10577
10578 /* Convert ROTATERT to ROTATE. */
10579 if (code == ROTATERT)
10580 {
10581 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10582 code = ROTATE;
10583 count = bitsize - count;
10584 }
10585
10586 shift_mode = result_mode;
10587 if (shift_mode != mode)
10588 {
10589 /* We only change the modes of scalar shifts. */
10590 int_mode = as_a <scalar_int_mode> (m: mode);
10591 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10592 shift_mode = try_widen_shift_mode (code, op: varop, count,
10593 orig_mode: int_result_mode, mode: int_mode,
10594 outer_code: outer_op, outer_const);
10595 }
10596
10597 scalar_int_mode shift_unit_mode
10598 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10599
10600 /* Handle cases where the count is greater than the size of the mode
10601 minus 1. For ASHIFT, use the size minus one as the count (this can
10602 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10603 take the count modulo the size. For other shifts, the result is
10604 zero.
10605
10606 Since these shifts are being produced by the compiler by combining
10607 multiple operations, each of which are defined, we know what the
10608 result is supposed to be. */
10609
10610 if (count > (GET_MODE_PRECISION (mode: shift_unit_mode) - 1))
10611 {
10612 if (code == ASHIFTRT)
10613 count = GET_MODE_PRECISION (mode: shift_unit_mode) - 1;
10614 else if (code == ROTATE || code == ROTATERT)
10615 count %= GET_MODE_PRECISION (mode: shift_unit_mode);
10616 else
10617 {
10618 /* We can't simply return zero because there may be an
10619 outer op. */
10620 varop = const0_rtx;
10621 count = 0;
10622 break;
10623 }
10624 }
10625
10626 /* If we discovered we had to complement VAROP, leave. Making a NOT
10627 here would cause an infinite loop. */
10628 if (complement_p)
10629 break;
10630
10631 if (shift_mode == shift_unit_mode)
10632 {
10633 /* An arithmetic right shift of a quantity known to be -1 or 0
10634 is a no-op. */
10635 if (code == ASHIFTRT
10636 && (num_sign_bit_copies (varop, shift_unit_mode)
10637 == GET_MODE_PRECISION (mode: shift_unit_mode)))
10638 {
10639 count = 0;
10640 break;
10641 }
10642
10643 /* If we are doing an arithmetic right shift and discarding all but
10644 the sign bit copies, this is equivalent to doing a shift by the
10645 bitsize minus one. Convert it into that shift because it will
10646 often allow other simplifications. */
10647
10648 if (code == ASHIFTRT
10649 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10650 >= GET_MODE_PRECISION (mode: shift_unit_mode)))
10651 count = GET_MODE_PRECISION (mode: shift_unit_mode) - 1;
10652
10653 /* We simplify the tests below and elsewhere by converting
10654 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10655 `make_compound_operation' will convert it to an ASHIFTRT for
10656 those machines (such as VAX) that don't have an LSHIFTRT. */
10657 if (code == ASHIFTRT
10658 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10659 && val_signbit_known_clear_p (shift_unit_mode,
10660 nonzero_bits (varop,
10661 shift_unit_mode)))
10662 code = LSHIFTRT;
10663
10664 if (((code == LSHIFTRT
10665 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10666 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10667 || (code == ASHIFT
10668 && HWI_COMPUTABLE_MODE_P (mode: shift_unit_mode)
10669 && !((nonzero_bits (varop, shift_unit_mode) << count)
10670 & GET_MODE_MASK (shift_unit_mode))))
10671 && !side_effects_p (varop))
10672 varop = const0_rtx;
10673 }
10674
10675 switch (GET_CODE (varop))
10676 {
10677 case SIGN_EXTEND:
10678 case ZERO_EXTEND:
10679 case SIGN_EXTRACT:
10680 case ZERO_EXTRACT:
10681 new_rtx = expand_compound_operation (x: varop);
10682 if (new_rtx != varop)
10683 {
10684 varop = new_rtx;
10685 continue;
10686 }
10687 break;
10688
10689 case MEM:
10690 /* The following rules apply only to scalars. */
10691 if (shift_mode != shift_unit_mode)
10692 break;
10693 int_mode = as_a <scalar_int_mode> (m: mode);
10694
10695 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10696 minus the width of a smaller mode, we can do this with a
10697 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10698 if ((code == ASHIFTRT || code == LSHIFTRT)
10699 && ! mode_dependent_address_p (XEXP (varop, 0),
10700 MEM_ADDR_SPACE (varop))
10701 && ! MEM_VOLATILE_P (varop)
10702 && (int_mode_for_size (size: GET_MODE_BITSIZE (mode: int_mode) - count, limit: 1)
10703 .exists (mode: &tmode)))
10704 {
10705 new_rtx = adjust_address_nv (varop, tmode,
10706 BYTES_BIG_ENDIAN ? 0
10707 : count / BITS_PER_UNIT);
10708
10709 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10710 : ZERO_EXTEND, int_mode, new_rtx);
10711 count = 0;
10712 continue;
10713 }
10714 break;
10715
10716 case SUBREG:
10717 /* The following rules apply only to scalars. */
10718 if (shift_mode != shift_unit_mode)
10719 break;
10720 int_mode = as_a <scalar_int_mode> (m: mode);
10721 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10722
10723 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10724 the same number of words as what we've seen so far. Then store
10725 the widest mode in MODE. */
10726 if (subreg_lowpart_p (varop)
10727 && is_int_mode (GET_MODE (SUBREG_REG (varop)), int_mode: &inner_mode)
10728 && GET_MODE_SIZE (mode: inner_mode) > GET_MODE_SIZE (mode: int_varop_mode)
10729 && (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
10730 == CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
10731 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10732 {
10733 varop = SUBREG_REG (varop);
10734 if (GET_MODE_SIZE (mode: inner_mode) > GET_MODE_SIZE (mode: int_mode))
10735 mode = inner_mode;
10736 continue;
10737 }
10738 break;
10739
10740 case MULT:
10741 /* Some machines use MULT instead of ASHIFT because MULT
10742 is cheaper. But it is still better on those machines to
10743 merge two shifts into one. */
10744 if (CONST_INT_P (XEXP (varop, 1))
10745 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10746 {
10747 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10748 varop = simplify_gen_binary (code: ASHIFT, GET_MODE (varop),
10749 XEXP (varop, 0), op1: log2_rtx);
10750 continue;
10751 }
10752 break;
10753
10754 case UDIV:
10755 /* Similar, for when divides are cheaper. */
10756 if (CONST_INT_P (XEXP (varop, 1))
10757 && (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
10758 {
10759 rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
10760 varop = simplify_gen_binary (code: LSHIFTRT, GET_MODE (varop),
10761 XEXP (varop, 0), op1: log2_rtx);
10762 continue;
10763 }
10764 break;
10765
10766 case ASHIFTRT:
10767 /* If we are extracting just the sign bit of an arithmetic
10768 right shift, that shift is not needed. However, the sign
10769 bit of a wider mode may be different from what would be
10770 interpreted as the sign bit in a narrower mode, so, if
10771 the result is narrower, don't discard the shift. */
10772 if (code == LSHIFTRT
10773 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10774 && (GET_MODE_UNIT_BITSIZE (result_mode)
10775 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10776 {
10777 varop = XEXP (varop, 0);
10778 continue;
10779 }
10780
10781 /* fall through */
10782
10783 case LSHIFTRT:
10784 case ASHIFT:
10785 case ROTATE:
10786 /* The following rules apply only to scalars. */
10787 if (shift_mode != shift_unit_mode)
10788 break;
10789 int_mode = as_a <scalar_int_mode> (m: mode);
10790 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10791 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10792
10793 /* Here we have two nested shifts. The result is usually the
10794 AND of a new shift with a mask. We compute the result below. */
10795 if (CONST_INT_P (XEXP (varop, 1))
10796 && INTVAL (XEXP (varop, 1)) >= 0
10797 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (mode: int_varop_mode)
10798 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
10799 && HWI_COMPUTABLE_MODE_P (mode: int_mode))
10800 {
10801 enum rtx_code first_code = GET_CODE (varop);
10802 unsigned int first_count = INTVAL (XEXP (varop, 1));
10803 unsigned HOST_WIDE_INT mask;
10804 rtx mask_rtx;
10805
10806 /* We have one common special case. We can't do any merging if
10807 the inner code is an ASHIFTRT of a smaller mode. However, if
10808 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10809 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10810 we can convert it to
10811 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10812 This simplifies certain SIGN_EXTEND operations. */
10813 if (code == ASHIFT && first_code == ASHIFTRT
10814 && count == (GET_MODE_PRECISION (mode: int_result_mode)
10815 - GET_MODE_PRECISION (mode: int_varop_mode)))
10816 {
10817 /* C3 has the low-order C1 bits zero. */
10818
10819 mask = GET_MODE_MASK (int_mode)
10820 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10821
10822 varop = simplify_and_const_int (NULL_RTX, mode: int_result_mode,
10823 XEXP (varop, 0), constop: mask);
10824 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10825 int_result_mode, varop, count);
10826 count = first_count;
10827 code = ASHIFTRT;
10828 continue;
10829 }
10830
10831 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10832 than C1 high-order bits equal to the sign bit, we can convert
10833 this to either an ASHIFT or an ASHIFTRT depending on the
10834 two counts.
10835
10836 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10837
10838 if (code == ASHIFTRT && first_code == ASHIFT
10839 && int_varop_mode == shift_unit_mode
10840 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10841 > first_count))
10842 {
10843 varop = XEXP (varop, 0);
10844 count -= first_count;
10845 if (count < 0)
10846 {
10847 count = -count;
10848 code = ASHIFT;
10849 }
10850
10851 continue;
10852 }
10853
10854 /* There are some cases we can't do. If CODE is ASHIFTRT,
10855 we can only do this if FIRST_CODE is also ASHIFTRT.
10856
10857 We can't do the case when CODE is ROTATE and FIRST_CODE is
10858 ASHIFTRT.
10859
10860 If the mode of this shift is not the mode of the outer shift,
10861 we can't do this if either shift is a right shift or ROTATE.
10862
10863 Finally, we can't do any of these if the mode is too wide
10864 unless the codes are the same.
10865
10866 Handle the case where the shift codes are the same
10867 first. */
10868
10869 if (code == first_code)
10870 {
10871 if (int_varop_mode != int_result_mode
10872 && (code == ASHIFTRT || code == LSHIFTRT
10873 || code == ROTATE))
10874 break;
10875
10876 count += first_count;
10877 varop = XEXP (varop, 0);
10878 continue;
10879 }
10880
10881 if (code == ASHIFTRT
10882 || (code == ROTATE && first_code == ASHIFTRT)
10883 || GET_MODE_PRECISION (mode: int_mode) > HOST_BITS_PER_WIDE_INT
10884 || (int_varop_mode != int_result_mode
10885 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10886 || first_code == ROTATE
10887 || code == ROTATE)))
10888 break;
10889
10890 /* To compute the mask to apply after the shift, shift the
10891 nonzero bits of the inner shift the same way the
10892 outer shift will. */
10893
10894 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10895 int_result_mode);
10896 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10897 mask_rtx
10898 = simplify_const_binary_operation (code, int_result_mode,
10899 mask_rtx, count_rtx);
10900
10901 /* Give up if we can't compute an outer operation to use. */
10902 if (mask_rtx == 0
10903 || !CONST_INT_P (mask_rtx)
10904 || ! merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: AND,
10905 INTVAL (mask_rtx),
10906 mode: int_result_mode, pcomp_p: &complement_p))
10907 break;
10908
10909 /* If the shifts are in the same direction, we add the
10910 counts. Otherwise, we subtract them. */
10911 if ((code == ASHIFTRT || code == LSHIFTRT)
10912 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10913 count += first_count;
10914 else
10915 count -= first_count;
10916
10917 /* If COUNT is positive, the new shift is usually CODE,
10918 except for the two exceptions below, in which case it is
10919 FIRST_CODE. If the count is negative, FIRST_CODE should
10920 always be used */
10921 if (count > 0
10922 && ((first_code == ROTATE && code == ASHIFT)
10923 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10924 code = first_code;
10925 else if (count < 0)
10926 code = first_code, count = -count;
10927
10928 varop = XEXP (varop, 0);
10929 continue;
10930 }
10931
10932 /* If we have (A << B << C) for any shift, we can convert this to
10933 (A << C << B). This wins if A is a constant. Only try this if
10934 B is not a constant. */
10935
10936 else if (GET_CODE (varop) == code
10937 && CONST_INT_P (XEXP (varop, 0))
10938 && !CONST_INT_P (XEXP (varop, 1)))
10939 {
10940 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10941 sure the result will be masked. See PR70222. */
10942 if (code == LSHIFTRT
10943 && int_mode != int_result_mode
10944 && !merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: AND,
10945 GET_MODE_MASK (int_result_mode)
10946 >> orig_count, mode: int_result_mode,
10947 pcomp_p: &complement_p))
10948 break;
10949 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10950 up outer sign extension (often left and right shift) is
10951 hardly more efficient than the original. See PR70429.
10952 Similarly punt for rotates with different modes.
10953 See PR97386. */
10954 if ((code == ASHIFTRT || code == ROTATE)
10955 && int_mode != int_result_mode)
10956 break;
10957
10958 rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
10959 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10960 XEXP (varop, 0),
10961 count_rtx);
10962 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10963 count = 0;
10964 continue;
10965 }
10966 break;
10967
10968 case NOT:
10969 /* The following rules apply only to scalars. */
10970 if (shift_mode != shift_unit_mode)
10971 break;
10972
10973 /* Make this fit the case below. */
10974 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10975 continue;
10976
10977 case IOR:
10978 case AND:
10979 case XOR:
10980 /* The following rules apply only to scalars. */
10981 if (shift_mode != shift_unit_mode)
10982 break;
10983 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10984 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
10985
10986 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10987 with C the size of VAROP - 1 and the shift is logical if
10988 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10989 we have an (le X 0) operation. If we have an arithmetic shift
10990 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10991 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10992
10993 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10994 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10995 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10996 && (code == LSHIFTRT || code == ASHIFTRT)
10997 && count == (GET_MODE_PRECISION (mode: int_varop_mode) - 1)
10998 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10999 {
11000 count = 0;
11001 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
11002 const0_rtx);
11003
11004 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11005 varop = gen_rtx_NEG (int_varop_mode, varop);
11006
11007 continue;
11008 }
11009
11010 /* If we have (shift (logical)), move the logical to the outside
11011 to allow it to possibly combine with another logical and the
11012 shift to combine with another shift. This also canonicalizes to
11013 what a ZERO_EXTRACT looks like. Also, some machines have
11014 (and (shift)) insns. */
11015
11016 if (CONST_INT_P (XEXP (varop, 1))
11017 /* We can't do this if we have (ashiftrt (xor)) and the
11018 constant has its sign bit set in shift_unit_mode with
11019 shift_unit_mode wider than result_mode. */
11020 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11021 && int_result_mode != shift_unit_mode
11022 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11023 shift_unit_mode) < 0)
11024 && (new_rtx = simplify_const_binary_operation
11025 (code, int_result_mode,
11026 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11027 gen_int_shift_amount (int_result_mode, count))) != 0
11028 && CONST_INT_P (new_rtx)
11029 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, GET_CODE (varop),
11030 INTVAL (new_rtx), mode: int_result_mode,
11031 pcomp_p: &complement_p))
11032 {
11033 varop = XEXP (varop, 0);
11034 continue;
11035 }
11036
11037 /* If we can't do that, try to simplify the shift in each arm of the
11038 logical expression, make a new logical expression, and apply
11039 the inverse distributive law. This also can't be done for
11040 (ashiftrt (xor)) where we've widened the shift and the constant
11041 changes the sign bit. */
11042 if (CONST_INT_P (XEXP (varop, 1))
11043 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
11044 && int_result_mode != shift_unit_mode
11045 && trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
11046 shift_unit_mode) < 0))
11047 {
11048 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11049 XEXP (varop, 0), count);
11050 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
11051 XEXP (varop, 1), count);
11052
11053 varop = simplify_gen_binary (GET_CODE (varop), mode: shift_unit_mode,
11054 op0: lhs, op1: rhs);
11055 varop = apply_distributive_law (x: varop);
11056
11057 count = 0;
11058 continue;
11059 }
11060 break;
11061
11062 case EQ:
11063 /* The following rules apply only to scalars. */
11064 if (shift_mode != shift_unit_mode)
11065 break;
11066 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11067
11068 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11069 says that the sign bit can be tested, FOO has mode MODE, C is
11070 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11071 that may be nonzero. */
11072 if (code == LSHIFTRT
11073 && XEXP (varop, 1) == const0_rtx
11074 && GET_MODE (XEXP (varop, 0)) == int_result_mode
11075 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11076 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
11077 && STORE_FLAG_VALUE == -1
11078 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11079 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR, const1: 1,
11080 mode: int_result_mode, pcomp_p: &complement_p))
11081 {
11082 varop = XEXP (varop, 0);
11083 count = 0;
11084 continue;
11085 }
11086 break;
11087
11088 case NEG:
11089 /* The following rules apply only to scalars. */
11090 if (shift_mode != shift_unit_mode)
11091 break;
11092 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11093
11094 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11095 than the number of bits in the mode is equivalent to A. */
11096 if (code == LSHIFTRT
11097 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11098 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
11099 {
11100 varop = XEXP (varop, 0);
11101 count = 0;
11102 continue;
11103 }
11104
11105 /* NEG commutes with ASHIFT since it is multiplication. Move the
11106 NEG outside to allow shifts to combine. */
11107 if (code == ASHIFT
11108 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: NEG, const1: 0,
11109 mode: int_result_mode, pcomp_p: &complement_p))
11110 {
11111 varop = XEXP (varop, 0);
11112 continue;
11113 }
11114 break;
11115
11116 case PLUS:
11117 /* The following rules apply only to scalars. */
11118 if (shift_mode != shift_unit_mode)
11119 break;
11120 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11121
11122 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11123 is one less than the number of bits in the mode is
11124 equivalent to (xor A 1). */
11125 if (code == LSHIFTRT
11126 && count == (GET_MODE_PRECISION (mode: int_result_mode) - 1)
11127 && XEXP (varop, 1) == constm1_rtx
11128 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11129 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR, const1: 1,
11130 mode: int_result_mode, pcomp_p: &complement_p))
11131 {
11132 count = 0;
11133 varop = XEXP (varop, 0);
11134 continue;
11135 }
11136
11137 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11138 that might be nonzero in BAR are those being shifted out and those
11139 bits are known zero in FOO, we can replace the PLUS with FOO.
11140 Similarly in the other operand order. This code occurs when
11141 we are computing the size of a variable-size array. */
11142
11143 if ((code == ASHIFTRT || code == LSHIFTRT)
11144 && count < HOST_BITS_PER_WIDE_INT
11145 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11146 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11147 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11148 {
11149 varop = XEXP (varop, 0);
11150 continue;
11151 }
11152 else if ((code == ASHIFTRT || code == LSHIFTRT)
11153 && count < HOST_BITS_PER_WIDE_INT
11154 && HWI_COMPUTABLE_MODE_P (mode: int_result_mode)
11155 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11156 >> count) == 0
11157 && (nonzero_bits (XEXP (varop, 0), int_result_mode)
11158 & nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
11159 {
11160 varop = XEXP (varop, 1);
11161 continue;
11162 }
11163
11164 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11165 if (code == ASHIFT
11166 && CONST_INT_P (XEXP (varop, 1))
11167 && (new_rtx = simplify_const_binary_operation
11168 (ASHIFT, int_result_mode,
11169 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11170 gen_int_shift_amount (int_result_mode, count))) != 0
11171 && CONST_INT_P (new_rtx)
11172 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: PLUS,
11173 INTVAL (new_rtx), mode: int_result_mode,
11174 pcomp_p: &complement_p))
11175 {
11176 varop = XEXP (varop, 0);
11177 continue;
11178 }
11179
11180 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11181 signbit', and attempt to change the PLUS to an XOR and move it to
11182 the outer operation as is done above in the AND/IOR/XOR case
11183 leg for shift(logical). See details in logical handling above
11184 for reasoning in doing so. */
11185 if (code == LSHIFTRT
11186 && CONST_INT_P (XEXP (varop, 1))
11187 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11188 && (new_rtx = simplify_const_binary_operation
11189 (code, int_result_mode,
11190 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11191 gen_int_shift_amount (int_result_mode, count))) != 0
11192 && CONST_INT_P (new_rtx)
11193 && merge_outer_ops (pop0: &outer_op, pconst0: &outer_const, op1: XOR,
11194 INTVAL (new_rtx), mode: int_result_mode,
11195 pcomp_p: &complement_p))
11196 {
11197 varop = XEXP (varop, 0);
11198 continue;
11199 }
11200
11201 break;
11202
11203 case MINUS:
11204 /* The following rules apply only to scalars. */
11205 if (shift_mode != shift_unit_mode)
11206 break;
11207 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11208
11209 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11210 with C the size of VAROP - 1 and the shift is logical if
11211 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11212 we have a (gt X 0) operation. If the shift is arithmetic with
11213 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11214 we have a (neg (gt X 0)) operation. */
11215
11216 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11217 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11218 && count == (GET_MODE_PRECISION (mode: int_varop_mode) - 1)
11219 && (code == LSHIFTRT || code == ASHIFTRT)
11220 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11221 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11222 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11223 {
11224 count = 0;
11225 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11226 const0_rtx);
11227
11228 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11229 varop = gen_rtx_NEG (int_varop_mode, varop);
11230
11231 continue;
11232 }
11233 break;
11234
11235 case TRUNCATE:
11236 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11237 if the truncate does not affect the value. */
11238 if (code == LSHIFTRT
11239 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11240 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11241 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11242 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11243 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11244 {
11245 rtx varop_inner = XEXP (varop, 0);
11246 int new_count = count + INTVAL (XEXP (varop_inner, 1));
11247 rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
11248 new_count);
11249 varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11250 XEXP (varop_inner, 0),
11251 new_count_rtx);
11252 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11253 count = 0;
11254 continue;
11255 }
11256 break;
11257
11258 default:
11259 break;
11260 }
11261
11262 break;
11263 }
11264
11265 shift_mode = result_mode;
11266 if (shift_mode != mode)
11267 {
11268 /* We only change the modes of scalar shifts. */
11269 int_mode = as_a <scalar_int_mode> (m: mode);
11270 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11271 shift_mode = try_widen_shift_mode (code, op: varop, count, orig_mode: int_result_mode,
11272 mode: int_mode, outer_code: outer_op, outer_const);
11273 }
11274
11275 /* We have now finished analyzing the shift. The result should be
11276 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11277 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11278 to the result of the shift. OUTER_CONST is the relevant constant,
11279 but we must turn off all bits turned off in the shift. */
11280
11281 if (outer_op == UNKNOWN
11282 && orig_code == code && orig_count == count
11283 && varop == orig_varop
11284 && shift_mode == GET_MODE (varop))
11285 return NULL_RTX;
11286
11287 /* Make a SUBREG if necessary. If we can't make it, fail. */
11288 varop = gen_lowpart (shift_mode, varop);
11289 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11290 return NULL_RTX;
11291
11292 /* If we have an outer operation and we just made a shift, it is
11293 possible that we could have simplified the shift were it not
11294 for the outer operation. So try to do the simplification
11295 recursively. */
11296
11297 if (outer_op != UNKNOWN)
11298 x = simplify_shift_const_1 (code, result_mode: shift_mode, varop, orig_count: count);
11299 else
11300 x = NULL_RTX;
11301
11302 if (x == NULL_RTX)
11303 x = simplify_gen_binary (code, mode: shift_mode, op0: varop,
11304 op1: gen_int_shift_amount (shift_mode, count));
11305
11306 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11307 turn off all the bits that the shift would have turned off. */
11308 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11309 /* We only change the modes of scalar shifts. */
11310 x = simplify_and_const_int (NULL_RTX, mode: as_a <scalar_int_mode> (m: shift_mode),
11311 varop: x, GET_MODE_MASK (result_mode) >> orig_count);
11312
11313 /* Do the remainder of the processing in RESULT_MODE. */
11314 x = gen_lowpart_or_truncate (mode: result_mode, x);
11315
11316 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11317 operation. */
11318 if (complement_p)
11319 x = simplify_gen_unary (code: NOT, mode: result_mode, op: x, op_mode: result_mode);
11320
11321 if (outer_op != UNKNOWN)
11322 {
11323 int_result_mode = as_a <scalar_int_mode> (m: result_mode);
11324
11325 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11326 && GET_MODE_PRECISION (mode: int_result_mode) < HOST_BITS_PER_WIDE_INT)
11327 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11328
11329 if (outer_op == AND)
11330 x = simplify_and_const_int (NULL_RTX, mode: int_result_mode, varop: x, constop: outer_const);
11331 else if (outer_op == SET)
11332 {
11333 /* This means that we have determined that the result is
11334 equivalent to a constant. This should be rare. */
11335 if (!side_effects_p (x))
11336 x = GEN_INT (outer_const);
11337 }
11338 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11339 x = simplify_gen_unary (code: outer_op, mode: int_result_mode, op: x, op_mode: int_result_mode);
11340 else
11341 x = simplify_gen_binary (code: outer_op, mode: int_result_mode, op0: x,
11342 GEN_INT (outer_const));
11343 }
11344
11345 return x;
11346}
11347
11348/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11349 The result of the shift is RESULT_MODE. If we cannot simplify it,
11350 return X or, if it is NULL, synthesize the expression with
11351 simplify_gen_binary. Otherwise, return a simplified value.
11352
11353 The shift is normally computed in the widest mode we find in VAROP, as
11354 long as it isn't a different number of words than RESULT_MODE. Exceptions
11355 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11356
11357static rtx
11358simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11359 rtx varop, int count)
11360{
11361 rtx tem = simplify_shift_const_1 (code, result_mode, varop, orig_count: count);
11362 if (tem)
11363 return tem;
11364
11365 if (!x)
11366 x = simplify_gen_binary (code, GET_MODE (varop), op0: varop,
11367 op1: gen_int_shift_amount (GET_MODE (varop), count));
11368 if (GET_MODE (x) != result_mode)
11369 x = gen_lowpart (result_mode, x);
11370 return x;
11371}
11372
11373
11374/* A subroutine of recog_for_combine. See there for arguments and
11375 return value. */
11376
11377static int
11378recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11379{
11380 rtx pat = *pnewpat;
11381 rtx pat_without_clobbers;
11382 int insn_code_number;
11383 int num_clobbers_to_add = 0;
11384 int i;
11385 rtx notes = NULL_RTX;
11386 rtx old_notes, old_pat;
11387 int old_icode;
11388
11389 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11390 we use to indicate that something didn't match. If we find such a
11391 thing, force rejection. */
11392 if (GET_CODE (pat) == PARALLEL)
11393 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11394 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11395 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11396 return -1;
11397
11398 old_pat = PATTERN (insn);
11399 old_notes = REG_NOTES (insn);
11400 PATTERN (insn) = pat;
11401 REG_NOTES (insn) = NULL_RTX;
11402
11403 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11404 if (dump_file && (dump_flags & TDF_DETAILS))
11405 {
11406 if (insn_code_number < 0)
11407 fputs (s: "Failed to match this instruction:\n", stream: dump_file);
11408 else
11409 fputs (s: "Successfully matched this instruction:\n", stream: dump_file);
11410 print_rtl_single (dump_file, pat);
11411 }
11412
11413 /* If it isn't, there is the possibility that we previously had an insn
11414 that clobbered some register as a side effect, but the combined
11415 insn doesn't need to do that. So try once more without the clobbers
11416 unless this represents an ASM insn. */
11417
11418 if (insn_code_number < 0 && ! check_asm_operands (pat)
11419 && GET_CODE (pat) == PARALLEL)
11420 {
11421 int pos;
11422
11423 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11424 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11425 {
11426 if (i != pos)
11427 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11428 pos++;
11429 }
11430
11431 SUBST_INT (XVECLEN (pat, 0), pos);
11432
11433 if (pos == 1)
11434 pat = XVECEXP (pat, 0, 0);
11435
11436 PATTERN (insn) = pat;
11437 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11438 if (dump_file && (dump_flags & TDF_DETAILS))
11439 {
11440 if (insn_code_number < 0)
11441 fputs (s: "Failed to match this instruction:\n", stream: dump_file);
11442 else
11443 fputs (s: "Successfully matched this instruction:\n", stream: dump_file);
11444 print_rtl_single (dump_file, pat);
11445 }
11446 }
11447
11448 pat_without_clobbers = pat;
11449
11450 PATTERN (insn) = old_pat;
11451 REG_NOTES (insn) = old_notes;
11452
11453 /* Recognize all noop sets, these will be killed by followup pass. */
11454 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11455 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11456
11457 /* If we had any clobbers to add, make a new pattern than contains
11458 them. Then check to make sure that all of them are dead. */
11459 if (num_clobbers_to_add)
11460 {
11461 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11462 rtvec_alloc (GET_CODE (pat) == PARALLEL
11463 ? (XVECLEN (pat, 0)
11464 + num_clobbers_to_add)
11465 : num_clobbers_to_add + 1));
11466
11467 if (GET_CODE (pat) == PARALLEL)
11468 for (i = 0; i < XVECLEN (pat, 0); i++)
11469 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11470 else
11471 XVECEXP (newpat, 0, 0) = pat;
11472
11473 add_clobbers (newpat, insn_code_number);
11474
11475 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11476 i < XVECLEN (newpat, 0); i++)
11477 {
11478 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11479 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11480 return -1;
11481 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11482 {
11483 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11484 notes = alloc_reg_note (REG_UNUSED,
11485 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11486 }
11487 }
11488 pat = newpat;
11489 }
11490
11491 if (insn_code_number >= 0
11492 && insn_code_number != NOOP_MOVE_INSN_CODE)
11493 {
11494 old_pat = PATTERN (insn);
11495 old_notes = REG_NOTES (insn);
11496 old_icode = INSN_CODE (insn);
11497 PATTERN (insn) = pat;
11498 REG_NOTES (insn) = notes;
11499 INSN_CODE (insn) = insn_code_number;
11500
11501 /* Allow targets to reject combined insn. */
11502 if (!targetm.legitimate_combined_insn (insn))
11503 {
11504 if (dump_file && (dump_flags & TDF_DETAILS))
11505 fputs (s: "Instruction not appropriate for target.",
11506 stream: dump_file);
11507
11508 /* Callers expect recog_for_combine to strip
11509 clobbers from the pattern on failure. */
11510 pat = pat_without_clobbers;
11511 notes = NULL_RTX;
11512
11513 insn_code_number = -1;
11514 }
11515
11516 PATTERN (insn) = old_pat;
11517 REG_NOTES (insn) = old_notes;
11518 INSN_CODE (insn) = old_icode;
11519 }
11520
11521 *pnewpat = pat;
11522 *pnotes = notes;
11523
11524 return insn_code_number;
11525}
11526
11527/* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11528 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11529 Return whether anything was so changed. */
11530
11531static bool
11532change_zero_ext (rtx pat)
11533{
11534 bool changed = false;
11535 rtx *src = &SET_SRC (pat);
11536
11537 subrtx_ptr_iterator::array_type array;
11538 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11539 {
11540 rtx x = **iter;
11541 scalar_int_mode mode, inner_mode;
11542 if (!is_a <scalar_int_mode> (GET_MODE (x), result: &mode))
11543 continue;
11544 int size;
11545
11546 if (GET_CODE (x) == ZERO_EXTRACT
11547 && CONST_INT_P (XEXP (x, 1))
11548 && CONST_INT_P (XEXP (x, 2))
11549 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &inner_mode)
11550 && GET_MODE_PRECISION (mode: inner_mode) <= GET_MODE_PRECISION (mode))
11551 {
11552 size = INTVAL (XEXP (x, 1));
11553
11554 int start = INTVAL (XEXP (x, 2));
11555 if (BITS_BIG_ENDIAN)
11556 start = GET_MODE_PRECISION (mode: inner_mode) - size - start;
11557
11558 if (start != 0)
11559 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
11560 gen_int_shift_amount (inner_mode, start));
11561 else
11562 x = XEXP (x, 0);
11563
11564 if (mode != inner_mode)
11565 {
11566 if (REG_P (x) && HARD_REGISTER_P (x)
11567 && !can_change_dest_mode (x, added_sets: 0, mode))
11568 continue;
11569
11570 x = gen_lowpart_SUBREG (mode, x);
11571 }
11572 }
11573 else if (GET_CODE (x) == ZERO_EXTEND
11574 && GET_CODE (XEXP (x, 0)) == SUBREG
11575 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11576 && !paradoxical_subreg_p (XEXP (x, 0))
11577 && subreg_lowpart_p (XEXP (x, 0)))
11578 {
11579 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11580 size = GET_MODE_PRECISION (mode: inner_mode);
11581 x = SUBREG_REG (XEXP (x, 0));
11582 if (GET_MODE (x) != mode)
11583 {
11584 if (REG_P (x) && HARD_REGISTER_P (x)
11585 && !can_change_dest_mode (x, added_sets: 0, mode))
11586 continue;
11587
11588 x = gen_lowpart_SUBREG (mode, x);
11589 }
11590 }
11591 else if (GET_CODE (x) == ZERO_EXTEND
11592 && REG_P (XEXP (x, 0))
11593 && HARD_REGISTER_P (XEXP (x, 0))
11594 && can_change_dest_mode (XEXP (x, 0), added_sets: 0, mode))
11595 {
11596 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11597 size = GET_MODE_PRECISION (mode: inner_mode);
11598 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11599 }
11600 else
11601 continue;
11602
11603 if (!(GET_CODE (x) == LSHIFTRT
11604 && CONST_INT_P (XEXP (x, 1))
11605 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11606 {
11607 wide_int mask = wi::mask (width: size, negate_p: false, precision: GET_MODE_PRECISION (mode));
11608 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11609 }
11610
11611 SUBST (**iter, x);
11612 changed = true;
11613 }
11614
11615 if (changed)
11616 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11617 maybe_swap_commutative_operands (x: **iter);
11618
11619 rtx *dst = &SET_DEST (pat);
11620 scalar_int_mode mode;
11621 if (GET_CODE (*dst) == ZERO_EXTRACT
11622 && REG_P (XEXP (*dst, 0))
11623 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), result: &mode)
11624 && CONST_INT_P (XEXP (*dst, 1))
11625 && CONST_INT_P (XEXP (*dst, 2)))
11626 {
11627 rtx reg = XEXP (*dst, 0);
11628 int width = INTVAL (XEXP (*dst, 1));
11629 int offset = INTVAL (XEXP (*dst, 2));
11630 int reg_width = GET_MODE_PRECISION (mode);
11631 if (BITS_BIG_ENDIAN)
11632 offset = reg_width - width - offset;
11633
11634 rtx x, y, z, w;
11635 wide_int mask = wi::shifted_mask (start: offset, width, negate_p: true, precision: reg_width);
11636 wide_int mask2 = wi::shifted_mask (start: offset, width, negate_p: false, precision: reg_width);
11637 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11638 if (offset)
11639 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11640 else
11641 y = SET_SRC (pat);
11642 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11643 w = gen_rtx_IOR (mode, x, z);
11644 SUBST (SET_DEST (pat), reg);
11645 SUBST (SET_SRC (pat), w);
11646
11647 changed = true;
11648 }
11649
11650 return changed;
11651}
11652
11653/* Like recog, but we receive the address of a pointer to a new pattern.
11654 We try to match the rtx that the pointer points to.
11655 If that fails, we may try to modify or replace the pattern,
11656 storing the replacement into the same pointer object.
11657
11658 Modifications include deletion or addition of CLOBBERs. If the
11659 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11660 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11661 (and undo if that fails).
11662
11663 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11664 the CLOBBERs are placed.
11665
11666 The value is the final insn code from the pattern ultimately matched,
11667 or -1. */
11668
11669static int
11670recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11671{
11672 rtx pat = *pnewpat;
11673 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11674 if (insn_code_number >= 0 || check_asm_operands (pat))
11675 return insn_code_number;
11676
11677 void *marker = get_undo_marker ();
11678 bool changed = false;
11679
11680 if (GET_CODE (pat) == SET)
11681 {
11682 /* For an unrecognized single set of a constant, try placing it in
11683 the constant pool, if this function already uses one. */
11684 rtx src = SET_SRC (pat);
11685 if (CONSTANT_P (src)
11686 && !CONST_INT_P (src)
11687 && crtl->uses_const_pool)
11688 {
11689 machine_mode mode = GET_MODE (src);
11690 if (mode == VOIDmode)
11691 mode = GET_MODE (SET_DEST (pat));
11692 src = force_const_mem (mode, src);
11693 if (src)
11694 {
11695 SUBST (SET_SRC (pat), src);
11696 changed = true;
11697 }
11698 }
11699 else
11700 changed = change_zero_ext (pat);
11701 }
11702 else if (GET_CODE (pat) == PARALLEL)
11703 {
11704 int i;
11705 for (i = 0; i < XVECLEN (pat, 0); i++)
11706 {
11707 rtx set = XVECEXP (pat, 0, i);
11708 if (GET_CODE (set) == SET)
11709 changed |= change_zero_ext (pat: set);
11710 }
11711 }
11712
11713 if (changed)
11714 {
11715 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11716
11717 if (insn_code_number < 0)
11718 undo_to_marker (marker);
11719 }
11720
11721 return insn_code_number;
11722}
11723
11724/* Like gen_lowpart_general but for use by combine. In combine it
11725 is not possible to create any new pseudoregs. However, it is
11726 safe to create invalid memory addresses, because combine will
11727 try to recognize them and all they will do is make the combine
11728 attempt fail.
11729
11730 If for some reason this cannot do its job, an rtx
11731 (clobber (const_int 0)) is returned.
11732 An insn containing that will not be recognized. */
11733
11734static rtx
11735gen_lowpart_for_combine (machine_mode omode, rtx x)
11736{
11737 machine_mode imode = GET_MODE (x);
11738 rtx result;
11739
11740 if (omode == imode)
11741 return x;
11742
11743 /* We can only support MODE being wider than a word if X is a
11744 constant integer or has a mode the same size. */
11745 if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
11746 && ! (CONST_SCALAR_INT_P (x)
11747 || known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
11748 goto fail;
11749
11750 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11751 won't know what to do. So we will strip off the SUBREG here and
11752 process normally. */
11753 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11754 {
11755 x = SUBREG_REG (x);
11756
11757 /* For use in case we fall down into the address adjustments
11758 further below, we need to adjust the known mode and size of
11759 x; imode and isize, since we just adjusted x. */
11760 imode = GET_MODE (x);
11761
11762 if (imode == omode)
11763 return x;
11764 }
11765
11766 result = gen_lowpart_common (omode, x);
11767
11768 if (result)
11769 return result;
11770
11771 if (MEM_P (x))
11772 {
11773 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11774 address. */
11775 if (MEM_VOLATILE_P (x)
11776 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11777 goto fail;
11778
11779 /* If we want to refer to something bigger than the original memref,
11780 generate a paradoxical subreg instead. That will force a reload
11781 of the original memref X. */
11782 if (paradoxical_subreg_p (outermode: omode, innermode: imode))
11783 return gen_rtx_SUBREG (omode, x, 0);
11784
11785 poly_int64 offset = byte_lowpart_offset (omode, imode);
11786 return adjust_address_nv (x, omode, offset);
11787 }
11788
11789 /* If X is a comparison operator, rewrite it in a new mode. This
11790 probably won't match, but may allow further simplifications. */
11791 else if (COMPARISON_P (x)
11792 && SCALAR_INT_MODE_P (imode)
11793 && SCALAR_INT_MODE_P (omode))
11794 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11795
11796 /* If we couldn't simplify X any other way, just enclose it in a
11797 SUBREG. Normally, this SUBREG won't match, but some patterns may
11798 include an explicit SUBREG or we may simplify it further in combine. */
11799 else
11800 {
11801 rtx res;
11802
11803 if (imode == VOIDmode)
11804 {
11805 imode = int_mode_for_mode (omode).require ();
11806 x = gen_lowpart_common (imode, x);
11807 if (x == NULL)
11808 goto fail;
11809 }
11810 res = lowpart_subreg (outermode: omode, op: x, innermode: imode);
11811 if (res)
11812 return res;
11813 }
11814
11815 fail:
11816 return gen_rtx_CLOBBER (omode, const0_rtx);
11817}
11818
11819/* Try to simplify a comparison between OP0 and a constant OP1,
11820 where CODE is the comparison code that will be tested, into a
11821 (CODE OP0 const0_rtx) form.
11822
11823 The result is a possibly different comparison code to use.
11824 *POP0 and *POP1 may be updated. */
11825
11826static enum rtx_code
11827simplify_compare_const (enum rtx_code code, machine_mode mode,
11828 rtx *pop0, rtx *pop1)
11829{
11830 scalar_int_mode int_mode;
11831 rtx op0 = *pop0;
11832 HOST_WIDE_INT const_op = INTVAL (*pop1);
11833
11834 /* Get the constant we are comparing against and turn off all bits
11835 not on in our mode. */
11836 if (mode != VOIDmode)
11837 const_op = trunc_int_for_mode (const_op, mode);
11838
11839 /* If we are comparing against a constant power of two and the value
11840 being compared can only have that single bit nonzero (e.g., it was
11841 `and'ed with that bit), we can replace this with a comparison
11842 with zero. */
11843 if (const_op
11844 && (code == EQ || code == NE || code == GE || code == GEU
11845 || code == LT || code == LTU)
11846 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11847 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11848 && pow2p_hwi (x: const_op & GET_MODE_MASK (int_mode))
11849 && (nonzero_bits (op0, int_mode)
11850 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11851 {
11852 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11853 const_op = 0;
11854 }
11855
11856 /* Similarly, if we are comparing a value known to be either -1 or
11857 0 with -1, change it to the opposite comparison against zero. */
11858 if (const_op == -1
11859 && (code == EQ || code == NE || code == GT || code == LE
11860 || code == GEU || code == LTU)
11861 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11862 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (mode: int_mode))
11863 {
11864 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11865 const_op = 0;
11866 }
11867
11868 /* Do some canonicalizations based on the comparison code. We prefer
11869 comparisons against zero and then prefer equality comparisons.
11870 If we can reduce the size of a constant, we will do that too. */
11871 switch (code)
11872 {
11873 case LT:
11874 /* < C is equivalent to <= (C - 1) */
11875 if (const_op > 0)
11876 {
11877 const_op -= 1;
11878 code = LE;
11879 /* ... fall through to LE case below. */
11880 gcc_fallthrough ();
11881 }
11882 else
11883 break;
11884
11885 case LE:
11886 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11887 if (const_op < 0)
11888 {
11889 const_op += 1;
11890 code = LT;
11891 }
11892
11893 /* If we are doing a <= 0 comparison on a value known to have
11894 a zero sign bit, we can replace this with == 0. */
11895 else if (const_op == 0
11896 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11897 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11898 && (nonzero_bits (op0, int_mode)
11899 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11900 == 0)
11901 code = EQ;
11902 break;
11903
11904 case GE:
11905 /* >= C is equivalent to > (C - 1). */
11906 if (const_op > 0)
11907 {
11908 const_op -= 1;
11909 code = GT;
11910 /* ... fall through to GT below. */
11911 gcc_fallthrough ();
11912 }
11913 else
11914 break;
11915
11916 case GT:
11917 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11918 if (const_op < 0)
11919 {
11920 const_op += 1;
11921 code = GE;
11922 }
11923
11924 /* If we are doing a > 0 comparison on a value known to have
11925 a zero sign bit, we can replace this with != 0. */
11926 else if (const_op == 0
11927 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
11928 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11929 && (nonzero_bits (op0, int_mode)
11930 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11931 == 0)
11932 code = NE;
11933 break;
11934
11935 case LTU:
11936 /* < C is equivalent to <= (C - 1). */
11937 if (const_op > 0)
11938 {
11939 const_op -= 1;
11940 code = LEU;
11941 /* ... fall through ... */
11942 gcc_fallthrough ();
11943 }
11944 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11945 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11946 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11947 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11948 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11949 {
11950 const_op = 0;
11951 code = GE;
11952 break;
11953 }
11954 else
11955 break;
11956
11957 case LEU:
11958 /* unsigned <= 0 is equivalent to == 0 */
11959 if (const_op == 0)
11960 code = EQ;
11961 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11962 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11963 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11964 && ((unsigned HOST_WIDE_INT) const_op
11965 == ((HOST_WIDE_INT_1U
11966 << (GET_MODE_PRECISION (mode: int_mode) - 1)) - 1)))
11967 {
11968 const_op = 0;
11969 code = GE;
11970 }
11971 break;
11972
11973 case GEU:
11974 /* >= C is equivalent to > (C - 1). */
11975 if (const_op > 1)
11976 {
11977 const_op -= 1;
11978 code = GTU;
11979 /* ... fall through ... */
11980 gcc_fallthrough ();
11981 }
11982
11983 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11984 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
11985 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11986 && (((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
11987 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (mode: int_mode) - 1)))
11988 {
11989 const_op = 0;
11990 code = LT;
11991 break;
11992 }
11993 else
11994 break;
11995
11996 case GTU:
11997 /* unsigned > 0 is equivalent to != 0 */
11998 if (const_op == 0)
11999 code = NE;
12000 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12001 else if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
12002 && GET_MODE_PRECISION (mode: int_mode) - 1 < HOST_BITS_PER_WIDE_INT
12003 && ((unsigned HOST_WIDE_INT) const_op
12004 == (HOST_WIDE_INT_1U
12005 << (GET_MODE_PRECISION (mode: int_mode) - 1)) - 1))
12006 {
12007 const_op = 0;
12008 code = LT;
12009 }
12010 break;
12011
12012 default:
12013 break;
12014 }
12015
12016 /* Narrow non-symmetric comparison of memory and constant as e.g.
12017 x0...x7 <= 0x3fffffffffffffff into x0 <= 0x3f where x0 is the most
12018 significant byte. Likewise, transform x0...x7 >= 0x4000000000000000 into
12019 x0 >= 0x40. */
12020 if ((code == LEU || code == LTU || code == GEU || code == GTU)
12021 && is_a <scalar_int_mode> (GET_MODE (op0), result: &int_mode)
12022 && HWI_COMPUTABLE_MODE_P (mode: int_mode)
12023 && MEM_P (op0)
12024 && !MEM_VOLATILE_P (op0)
12025 /* The optimization makes only sense for constants which are big enough
12026 so that we have a chance to chop off something at all. */
12027 && ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode)) > 0xff
12028 /* Ensure that we do not overflow during normalization. */
12029 && (code != GTU
12030 || ((unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode))
12031 < HOST_WIDE_INT_M1U)
12032 && trunc_int_for_mode (const_op, int_mode) == const_op)
12033 {
12034 unsigned HOST_WIDE_INT n
12035 = (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode);
12036 enum rtx_code adjusted_code;
12037
12038 /* Normalize code to either LEU or GEU. */
12039 if (code == LTU)
12040 {
12041 --n;
12042 adjusted_code = LEU;
12043 }
12044 else if (code == GTU)
12045 {
12046 ++n;
12047 adjusted_code = GEU;
12048 }
12049 else
12050 adjusted_code = code;
12051
12052 scalar_int_mode narrow_mode_iter;
12053 FOR_EACH_MODE_UNTIL (narrow_mode_iter, int_mode)
12054 {
12055 unsigned nbits = GET_MODE_PRECISION (mode: int_mode)
12056 - GET_MODE_PRECISION (mode: narrow_mode_iter);
12057 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << nbits) - 1;
12058 unsigned HOST_WIDE_INT lower_bits = n & mask;
12059 if ((adjusted_code == LEU && lower_bits == mask)
12060 || (adjusted_code == GEU && lower_bits == 0))
12061 {
12062 n >>= nbits;
12063 break;
12064 }
12065 }
12066
12067 if (narrow_mode_iter < int_mode)
12068 {
12069 if (dump_file && (dump_flags & TDF_DETAILS))
12070 {
12071 fprintf (
12072 stream: dump_file, format: "narrow comparison from mode %s to %s: (MEM %s "
12073 HOST_WIDE_INT_PRINT_HEX ") to (MEM %s "
12074 HOST_WIDE_INT_PRINT_HEX ").\n", GET_MODE_NAME (int_mode),
12075 GET_MODE_NAME (narrow_mode_iter), GET_RTX_NAME (code),
12076 (unsigned HOST_WIDE_INT) const_op & GET_MODE_MASK (int_mode),
12077 GET_RTX_NAME (adjusted_code), n);
12078 }
12079 poly_int64 offset = (BYTES_BIG_ENDIAN
12080 ? 0
12081 : (GET_MODE_SIZE (mode: int_mode)
12082 - GET_MODE_SIZE (mode: narrow_mode_iter)));
12083 *pop0 = adjust_address_nv (op0, narrow_mode_iter, offset);
12084 *pop1 = gen_int_mode (n, narrow_mode_iter);
12085 return adjusted_code;
12086 }
12087 }
12088
12089 *pop1 = GEN_INT (const_op);
12090 return code;
12091}
12092
12093/* Simplify a comparison between *POP0 and *POP1 where CODE is the
12094 comparison code that will be tested.
12095
12096 The result is a possibly different comparison code to use. *POP0 and
12097 *POP1 may be updated.
12098
12099 It is possible that we might detect that a comparison is either always
12100 true or always false. However, we do not perform general constant
12101 folding in combine, so this knowledge isn't useful. Such tautologies
12102 should have been detected earlier. Hence we ignore all such cases. */
12103
12104static enum rtx_code
12105simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
12106{
12107 rtx op0 = *pop0;
12108 rtx op1 = *pop1;
12109 rtx tem, tem1;
12110 int i;
12111 scalar_int_mode mode, inner_mode, tmode;
12112 opt_scalar_int_mode tmode_iter;
12113
12114 /* Try a few ways of applying the same transformation to both operands. */
12115 while (1)
12116 {
12117 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12118 so check specially. */
12119 if (!WORD_REGISTER_OPERATIONS
12120 && code != GTU && code != GEU && code != LTU && code != LEU
12121 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
12122 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12123 && GET_CODE (XEXP (op1, 0)) == ASHIFT
12124 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
12125 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
12126 && is_a <scalar_int_mode> (GET_MODE (op0), result: &mode)
12127 && (is_a <scalar_int_mode>
12128 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), result: &inner_mode))
12129 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
12130 && CONST_INT_P (XEXP (op0, 1))
12131 && XEXP (op0, 1) == XEXP (op1, 1)
12132 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12133 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
12134 && (INTVAL (XEXP (op0, 1))
12135 == (GET_MODE_PRECISION (mode)
12136 - GET_MODE_PRECISION (mode: inner_mode))))
12137 {
12138 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
12139 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
12140 }
12141
12142 /* If both operands are the same constant shift, see if we can ignore the
12143 shift. We can if the shift is a rotate or if the bits shifted out of
12144 this shift are known to be zero for both inputs and if the type of
12145 comparison is compatible with the shift. */
12146 if (GET_CODE (op0) == GET_CODE (op1)
12147 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
12148 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
12149 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
12150 && (code != GT && code != LT && code != GE && code != LE))
12151 || (GET_CODE (op0) == ASHIFTRT
12152 && (code != GTU && code != LTU
12153 && code != GEU && code != LEU)))
12154 && CONST_INT_P (XEXP (op0, 1))
12155 && INTVAL (XEXP (op0, 1)) >= 0
12156 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12157 && XEXP (op0, 1) == XEXP (op1, 1))
12158 {
12159 machine_mode mode = GET_MODE (op0);
12160 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12161 int shift_count = INTVAL (XEXP (op0, 1));
12162
12163 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
12164 mask &= (mask >> shift_count) << shift_count;
12165 else if (GET_CODE (op0) == ASHIFT)
12166 mask = (mask & (mask << shift_count)) >> shift_count;
12167
12168 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
12169 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
12170 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
12171 else
12172 break;
12173 }
12174
12175 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12176 SUBREGs are of the same mode, and, in both cases, the AND would
12177 be redundant if the comparison was done in the narrower mode,
12178 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12179 and the operand's possibly nonzero bits are 0xffffff01; in that case
12180 if we only care about QImode, we don't need the AND). This case
12181 occurs if the output mode of an scc insn is not SImode and
12182 STORE_FLAG_VALUE == 1 (e.g., the 386).
12183
12184 Similarly, check for a case where the AND's are ZERO_EXTEND
12185 operations from some narrower mode even though a SUBREG is not
12186 present. */
12187
12188 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
12189 && CONST_INT_P (XEXP (op0, 1))
12190 && CONST_INT_P (XEXP (op1, 1)))
12191 {
12192 rtx inner_op0 = XEXP (op0, 0);
12193 rtx inner_op1 = XEXP (op1, 0);
12194 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
12195 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
12196 bool changed = false;
12197
12198 if (paradoxical_subreg_p (x: inner_op0)
12199 && GET_CODE (inner_op1) == SUBREG
12200 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
12201 && (GET_MODE (SUBREG_REG (inner_op0))
12202 == GET_MODE (SUBREG_REG (inner_op1)))
12203 && ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
12204 GET_MODE (SUBREG_REG (inner_op0)))) == 0
12205 && ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
12206 GET_MODE (SUBREG_REG (inner_op1)))) == 0)
12207 {
12208 op0 = SUBREG_REG (inner_op0);
12209 op1 = SUBREG_REG (inner_op1);
12210
12211 /* The resulting comparison is always unsigned since we masked
12212 off the original sign bit. */
12213 code = unsigned_condition (code);
12214
12215 changed = true;
12216 }
12217
12218 else if (c0 == c1)
12219 FOR_EACH_MODE_UNTIL (tmode,
12220 as_a <scalar_int_mode> (GET_MODE (op0)))
12221 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12222 {
12223 op0 = gen_lowpart_or_truncate (mode: tmode, x: inner_op0);
12224 op1 = gen_lowpart_or_truncate (mode: tmode, x: inner_op1);
12225 code = unsigned_condition (code);
12226 changed = true;
12227 break;
12228 }
12229
12230 if (! changed)
12231 break;
12232 }
12233
12234 /* If both operands are NOT, we can strip off the outer operation
12235 and adjust the comparison code for swapped operands; similarly for
12236 NEG, except that this must be an equality comparison. */
12237 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12238 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12239 && (code == EQ || code == NE)))
12240 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12241
12242 else
12243 break;
12244 }
12245
12246 /* If the first operand is a constant, swap the operands and adjust the
12247 comparison code appropriately, but don't do this if the second operand
12248 is already a constant integer. */
12249 if (swap_commutative_operands_p (op0, op1))
12250 {
12251 std::swap (a&: op0, b&: op1);
12252 code = swap_condition (code);
12253 }
12254
12255 /* We now enter a loop during which we will try to simplify the comparison.
12256 For the most part, we only are concerned with comparisons with zero,
12257 but some things may really be comparisons with zero but not start
12258 out looking that way. */
12259
12260 while (CONST_INT_P (op1))
12261 {
12262 machine_mode raw_mode = GET_MODE (op0);
12263 scalar_int_mode int_mode;
12264 int equality_comparison_p;
12265 int sign_bit_comparison_p;
12266 int unsigned_comparison_p;
12267 HOST_WIDE_INT const_op;
12268
12269 /* We only want to handle integral modes. This catches VOIDmode,
12270 CCmode, and the floating-point modes. An exception is that we
12271 can handle VOIDmode if OP0 is a COMPARE or a comparison
12272 operation. */
12273
12274 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12275 && ! (raw_mode == VOIDmode
12276 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12277 break;
12278
12279 /* Try to simplify the compare to constant, possibly changing the
12280 comparison op, and/or changing op1 to zero. */
12281 code = simplify_compare_const (code, mode: raw_mode, pop0: &op0, pop1: &op1);
12282 const_op = INTVAL (op1);
12283
12284 /* Compute some predicates to simplify code below. */
12285
12286 equality_comparison_p = (code == EQ || code == NE);
12287 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12288 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12289 || code == GEU);
12290
12291 /* If this is a sign bit comparison and we can do arithmetic in
12292 MODE, say that we will only be needing the sign bit of OP0. */
12293 if (sign_bit_comparison_p
12294 && is_a <scalar_int_mode> (m: raw_mode, result: &int_mode)
12295 && HWI_COMPUTABLE_MODE_P (mode: int_mode))
12296 op0 = force_to_mode (x: op0, mode: int_mode,
12297 HOST_WIDE_INT_1U
12298 << (GET_MODE_PRECISION (mode: int_mode) - 1), just_select: false);
12299
12300 if (COMPARISON_P (op0))
12301 {
12302 /* We can't do anything if OP0 is a condition code value, rather
12303 than an actual data value. */
12304 if (const_op != 0
12305 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12306 break;
12307
12308 /* Get the two operands being compared. */
12309 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12310 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12311 else
12312 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12313
12314 /* Check for the cases where we simply want the result of the
12315 earlier test or the opposite of that result. */
12316 if (code == NE || code == EQ
12317 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12318 && (code == LT || code == GE)))
12319 {
12320 enum rtx_code new_code;
12321 if (code == LT || code == NE)
12322 new_code = GET_CODE (op0);
12323 else
12324 new_code = reversed_comparison_code (op0, NULL);
12325
12326 if (new_code != UNKNOWN)
12327 {
12328 code = new_code;
12329 op0 = tem;
12330 op1 = tem1;
12331 continue;
12332 }
12333 }
12334 break;
12335 }
12336
12337 if (raw_mode == VOIDmode)
12338 break;
12339 scalar_int_mode mode = as_a <scalar_int_mode> (m: raw_mode);
12340
12341 /* Now try cases based on the opcode of OP0. If none of the cases
12342 does a "continue", we exit this loop immediately after the
12343 switch. */
12344
12345 unsigned int mode_width = GET_MODE_PRECISION (mode);
12346 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12347 switch (GET_CODE (op0))
12348 {
12349 case ZERO_EXTRACT:
12350 /* If we are extracting a single bit from a variable position in
12351 a constant that has only a single bit set and are comparing it
12352 with zero, we can convert this into an equality comparison
12353 between the position and the location of the single bit. */
12354 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12355 have already reduced the shift count modulo the word size. */
12356 if (!SHIFT_COUNT_TRUNCATED
12357 && CONST_INT_P (XEXP (op0, 0))
12358 && XEXP (op0, 1) == const1_rtx
12359 && equality_comparison_p && const_op == 0
12360 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12361 {
12362 if (BITS_BIG_ENDIAN)
12363 i = BITS_PER_WORD - 1 - i;
12364
12365 op0 = XEXP (op0, 2);
12366 op1 = GEN_INT (i);
12367 const_op = i;
12368
12369 /* Result is nonzero iff shift count is equal to I. */
12370 code = reverse_condition (code);
12371 continue;
12372 }
12373
12374 /* fall through */
12375
12376 case SIGN_EXTRACT:
12377 tem = expand_compound_operation (x: op0);
12378 if (tem != op0)
12379 {
12380 op0 = tem;
12381 continue;
12382 }
12383 break;
12384
12385 case NOT:
12386 /* If testing for equality, we can take the NOT of the constant. */
12387 if (equality_comparison_p
12388 && (tem = simplify_unary_operation (code: NOT, mode, op: op1, op_mode: mode)) != 0)
12389 {
12390 op0 = XEXP (op0, 0);
12391 op1 = tem;
12392 continue;
12393 }
12394
12395 /* If just looking at the sign bit, reverse the sense of the
12396 comparison. */
12397 if (sign_bit_comparison_p)
12398 {
12399 op0 = XEXP (op0, 0);
12400 code = (code == GE ? LT : GE);
12401 continue;
12402 }
12403 break;
12404
12405 case NEG:
12406 /* If testing for equality, we can take the NEG of the constant. */
12407 if (equality_comparison_p
12408 && (tem = simplify_unary_operation (code: NEG, mode, op: op1, op_mode: mode)) != 0)
12409 {
12410 op0 = XEXP (op0, 0);
12411 op1 = tem;
12412 continue;
12413 }
12414
12415 /* The remaining cases only apply to comparisons with zero. */
12416 if (const_op != 0)
12417 break;
12418
12419 /* When X is ABS or is known positive,
12420 (neg X) is < 0 if and only if X != 0. */
12421
12422 if (sign_bit_comparison_p
12423 && (GET_CODE (XEXP (op0, 0)) == ABS
12424 || (mode_width <= HOST_BITS_PER_WIDE_INT
12425 && (nonzero_bits (XEXP (op0, 0), mode)
12426 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12427 == 0)))
12428 {
12429 op0 = XEXP (op0, 0);
12430 code = (code == LT ? NE : EQ);
12431 continue;
12432 }
12433
12434 /* If we have NEG of something whose two high-order bits are the
12435 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12436 if (num_sign_bit_copies (op0, mode) >= 2)
12437 {
12438 op0 = XEXP (op0, 0);
12439 code = swap_condition (code);
12440 continue;
12441 }
12442 break;
12443
12444 case ROTATE:
12445 /* If we are testing equality and our count is a constant, we
12446 can perform the inverse operation on our RHS. */
12447 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12448 && (tem = simplify_binary_operation (code: ROTATERT, mode,
12449 op0: op1, XEXP (op0, 1))) != 0)
12450 {
12451 op0 = XEXP (op0, 0);
12452 op1 = tem;
12453 continue;
12454 }
12455
12456 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12457 a particular bit. Convert it to an AND of a constant of that
12458 bit. This will be converted into a ZERO_EXTRACT. */
12459 if (const_op == 0 && sign_bit_comparison_p
12460 && CONST_INT_P (XEXP (op0, 1))
12461 && mode_width <= HOST_BITS_PER_WIDE_INT
12462 && UINTVAL (XEXP (op0, 1)) < mode_width)
12463 {
12464 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12465 constop: (HOST_WIDE_INT_1U
12466 << (mode_width - 1
12467 - INTVAL (XEXP (op0, 1)))));
12468 code = (code == LT ? NE : EQ);
12469 continue;
12470 }
12471
12472 /* Fall through. */
12473
12474 case ABS:
12475 /* ABS is ignorable inside an equality comparison with zero. */
12476 if (const_op == 0 && equality_comparison_p)
12477 {
12478 op0 = XEXP (op0, 0);
12479 continue;
12480 }
12481 break;
12482
12483 case SIGN_EXTEND:
12484 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12485 (compare FOO CONST) if CONST fits in FOO's mode and we
12486 are either testing inequality or have an unsigned
12487 comparison with ZERO_EXTEND or a signed comparison with
12488 SIGN_EXTEND. But don't do it if we don't have a compare
12489 insn of the given mode, since we'd have to revert it
12490 later on, and then we wouldn't know whether to sign- or
12491 zero-extend. */
12492 if (is_int_mode (GET_MODE (XEXP (op0, 0)), int_mode: &mode)
12493 && ! unsigned_comparison_p
12494 && HWI_COMPUTABLE_MODE_P (mode)
12495 && trunc_int_for_mode (const_op, mode) == const_op
12496 && have_insn_for (COMPARE, mode))
12497 {
12498 op0 = XEXP (op0, 0);
12499 continue;
12500 }
12501 break;
12502
12503 case SUBREG:
12504 /* Check for the case where we are comparing A - C1 with C2, that is
12505
12506 (subreg:MODE (plus (A) (-C1))) op (C2)
12507
12508 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12509 comparison in the wider mode. One of the following two conditions
12510 must be true in order for this to be valid:
12511
12512 1. The mode extension results in the same bit pattern being added
12513 on both sides and the comparison is equality or unsigned. As
12514 C2 has been truncated to fit in MODE, the pattern can only be
12515 all 0s or all 1s.
12516
12517 2. The mode extension results in the sign bit being copied on
12518 each side.
12519
12520 The difficulty here is that we have predicates for A but not for
12521 (A - C1) so we need to check that C1 is within proper bounds so
12522 as to perturbate A as little as possible. */
12523
12524 if (mode_width <= HOST_BITS_PER_WIDE_INT
12525 && subreg_lowpart_p (op0)
12526 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12527 result: &inner_mode)
12528 && GET_MODE_PRECISION (mode: inner_mode) > mode_width
12529 && GET_CODE (SUBREG_REG (op0)) == PLUS
12530 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12531 {
12532 rtx a = XEXP (SUBREG_REG (op0), 0);
12533 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12534
12535 if ((c1 > 0
12536 && (unsigned HOST_WIDE_INT) c1
12537 < HOST_WIDE_INT_1U << (mode_width - 1)
12538 && (equality_comparison_p || unsigned_comparison_p)
12539 /* (A - C1) zero-extends if it is positive and sign-extends
12540 if it is negative, C2 both zero- and sign-extends. */
12541 && (((nonzero_bits (a, inner_mode)
12542 & ~GET_MODE_MASK (mode)) == 0
12543 && const_op >= 0)
12544 /* (A - C1) sign-extends if it is positive and 1-extends
12545 if it is negative, C2 both sign- and 1-extends. */
12546 || (num_sign_bit_copies (a, inner_mode)
12547 > (unsigned int) (GET_MODE_PRECISION (mode: inner_mode)
12548 - mode_width)
12549 && const_op < 0)))
12550 || ((unsigned HOST_WIDE_INT) c1
12551 < HOST_WIDE_INT_1U << (mode_width - 2)
12552 /* (A - C1) always sign-extends, like C2. */
12553 && num_sign_bit_copies (a, inner_mode)
12554 > (unsigned int) (GET_MODE_PRECISION (mode: inner_mode)
12555 - (mode_width - 1))))
12556 {
12557 op0 = SUBREG_REG (op0);
12558 continue;
12559 }
12560 }
12561
12562 /* If the inner mode is narrower and we are extracting the low part,
12563 we can treat the SUBREG as if it were a ZERO_EXTEND ... */
12564 if (paradoxical_subreg_p (x: op0))
12565 {
12566 if (WORD_REGISTER_OPERATIONS
12567 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12568 result: &inner_mode)
12569 && GET_MODE_PRECISION (mode: inner_mode) < BITS_PER_WORD
12570 /* On WORD_REGISTER_OPERATIONS targets the bits
12571 beyond sub_mode aren't considered undefined,
12572 so optimize only if it is a MEM load when MEM loads
12573 zero extend, because then the upper bits are all zero. */
12574 && !(MEM_P (SUBREG_REG (op0))
12575 && load_extend_op (mode: inner_mode) == ZERO_EXTEND))
12576 break;
12577 /* FALLTHROUGH to case ZERO_EXTEND */
12578 }
12579 else if (subreg_lowpart_p (op0)
12580 && GET_MODE_CLASS (mode) == MODE_INT
12581 && is_int_mode (GET_MODE (SUBREG_REG (op0)), int_mode: &inner_mode)
12582 && (code == NE || code == EQ)
12583 && GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
12584 && !paradoxical_subreg_p (x: op0)
12585 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12586 & ~GET_MODE_MASK (mode)) == 0)
12587 {
12588 /* Remove outer subregs that don't do anything. */
12589 tem = gen_lowpart (inner_mode, op1);
12590
12591 if ((nonzero_bits (tem, inner_mode)
12592 & ~GET_MODE_MASK (mode)) == 0)
12593 {
12594 op0 = SUBREG_REG (op0);
12595 op1 = tem;
12596 continue;
12597 }
12598 break;
12599 }
12600 else
12601 break;
12602
12603 /* FALLTHROUGH */
12604
12605 case ZERO_EXTEND:
12606 if (is_int_mode (GET_MODE (XEXP (op0, 0)), int_mode: &mode)
12607 && (unsigned_comparison_p || equality_comparison_p)
12608 && HWI_COMPUTABLE_MODE_P (mode)
12609 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12610 && const_op >= 0
12611 && have_insn_for (COMPARE, mode))
12612 {
12613 op0 = XEXP (op0, 0);
12614 continue;
12615 }
12616 break;
12617
12618 case PLUS:
12619 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12620 this for equality comparisons due to pathological cases involving
12621 overflows. */
12622 if (equality_comparison_p
12623 && (tem = simplify_binary_operation (code: MINUS, mode,
12624 op0: op1, XEXP (op0, 1))) != 0)
12625 {
12626 op0 = XEXP (op0, 0);
12627 op1 = tem;
12628 continue;
12629 }
12630
12631 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12632 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12633 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12634 {
12635 op0 = XEXP (XEXP (op0, 0), 0);
12636 code = (code == LT ? EQ : NE);
12637 continue;
12638 }
12639 break;
12640
12641 case MINUS:
12642 /* We used to optimize signed comparisons against zero, but that
12643 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12644 arrive here as equality comparisons, or (GEU, LTU) are
12645 optimized away. No need to special-case them. */
12646
12647 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12648 (eq B (minus A C)), whichever simplifies. We can only do
12649 this for equality comparisons due to pathological cases involving
12650 overflows. */
12651 if (equality_comparison_p
12652 && (tem = simplify_binary_operation (code: PLUS, mode,
12653 XEXP (op0, 1), op1)) != 0)
12654 {
12655 op0 = XEXP (op0, 0);
12656 op1 = tem;
12657 continue;
12658 }
12659
12660 if (equality_comparison_p
12661 && (tem = simplify_binary_operation (code: MINUS, mode,
12662 XEXP (op0, 0), op1)) != 0)
12663 {
12664 op0 = XEXP (op0, 1);
12665 op1 = tem;
12666 continue;
12667 }
12668
12669 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12670 of bits in X minus 1, is one iff X > 0. */
12671 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12672 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12673 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12674 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12675 {
12676 op0 = XEXP (op0, 1);
12677 code = (code == GE ? LE : GT);
12678 continue;
12679 }
12680 break;
12681
12682 case XOR:
12683 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12684 if C is zero or B is a constant. */
12685 if (equality_comparison_p
12686 && (tem = simplify_binary_operation (code: XOR, mode,
12687 XEXP (op0, 1), op1)) != 0)
12688 {
12689 op0 = XEXP (op0, 0);
12690 op1 = tem;
12691 continue;
12692 }
12693 break;
12694
12695
12696 case IOR:
12697 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12698 iff X <= 0. */
12699 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12700 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12701 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12702 {
12703 op0 = XEXP (op0, 1);
12704 code = (code == GE ? GT : LE);
12705 continue;
12706 }
12707 break;
12708
12709 case AND:
12710 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12711 will be converted to a ZERO_EXTRACT later. */
12712 if (const_op == 0 && equality_comparison_p
12713 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12714 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12715 {
12716 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12717 XEXP (XEXP (op0, 0), 1));
12718 op0 = simplify_and_const_int (NULL_RTX, mode, varop: op0, constop: 1);
12719 continue;
12720 }
12721
12722 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12723 zero and X is a comparison and C1 and C2 describe only bits set
12724 in STORE_FLAG_VALUE, we can compare with X. */
12725 if (const_op == 0 && equality_comparison_p
12726 && mode_width <= HOST_BITS_PER_WIDE_INT
12727 && CONST_INT_P (XEXP (op0, 1))
12728 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12729 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12730 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12731 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12732 {
12733 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12734 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12735 if ((~STORE_FLAG_VALUE & mask) == 0
12736 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12737 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12738 && COMPARISON_P (tem))))
12739 {
12740 op0 = XEXP (XEXP (op0, 0), 0);
12741 continue;
12742 }
12743 }
12744
12745 /* If we are doing an equality comparison of an AND of a bit equal
12746 to the sign bit, replace this with a LT or GE comparison of
12747 the underlying value. */
12748 if (equality_comparison_p
12749 && const_op == 0
12750 && CONST_INT_P (XEXP (op0, 1))
12751 && mode_width <= HOST_BITS_PER_WIDE_INT
12752 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12753 == HOST_WIDE_INT_1U << (mode_width - 1)))
12754 {
12755 op0 = XEXP (op0, 0);
12756 code = (code == EQ ? GE : LT);
12757 continue;
12758 }
12759
12760 /* If this AND operation is really a ZERO_EXTEND from a narrower
12761 mode, the constant fits within that mode, and this is either an
12762 equality or unsigned comparison, try to do this comparison in
12763 the narrower mode.
12764
12765 Note that in:
12766
12767 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12768 -> (ne:DI (reg:SI 4) (const_int 0))
12769
12770 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12771 known to hold a value of the required mode the
12772 transformation is invalid. */
12773 if ((equality_comparison_p || unsigned_comparison_p)
12774 && CONST_INT_P (XEXP (op0, 1))
12775 && (i = exact_log2 (x: (UINTVAL (XEXP (op0, 1))
12776 & GET_MODE_MASK (mode))
12777 + 1)) >= 0
12778 && const_op >> i == 0
12779 && int_mode_for_size (size: i, limit: 1).exists (mode: &tmode))
12780 {
12781 op0 = gen_lowpart_or_truncate (mode: tmode, XEXP (op0, 0));
12782 continue;
12783 }
12784
12785 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12786 fits in both M1 and M2 and the SUBREG is either paradoxical
12787 or represents the low part, permute the SUBREG and the AND
12788 and try again. */
12789 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12790 && CONST_INT_P (XEXP (op0, 1)))
12791 {
12792 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12793 /* Require an integral mode, to avoid creating something like
12794 (AND:SF ...). */
12795 if ((is_a <scalar_int_mode>
12796 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), result: &tmode))
12797 /* It is unsafe to commute the AND into the SUBREG if the
12798 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12799 not defined. As originally written the upper bits
12800 have a defined value due to the AND operation.
12801 However, if we commute the AND inside the SUBREG then
12802 they no longer have defined values and the meaning of
12803 the code has been changed.
12804 Also C1 should not change value in the smaller mode,
12805 see PR67028 (a positive C1 can become negative in the
12806 smaller mode, so that the AND does no longer mask the
12807 upper bits). */
12808 && ((WORD_REGISTER_OPERATIONS
12809 && mode_width > GET_MODE_PRECISION (mode: tmode)
12810 && mode_width <= BITS_PER_WORD
12811 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12812 || (mode_width <= GET_MODE_PRECISION (mode: tmode)
12813 && subreg_lowpart_p (XEXP (op0, 0))))
12814 && mode_width <= HOST_BITS_PER_WIDE_INT
12815 && HWI_COMPUTABLE_MODE_P (mode: tmode)
12816 && (c1 & ~mask) == 0
12817 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12818 && c1 != mask
12819 && c1 != GET_MODE_MASK (tmode))
12820 {
12821 op0 = simplify_gen_binary (code: AND, mode: tmode,
12822 SUBREG_REG (XEXP (op0, 0)),
12823 op1: gen_int_mode (c1, tmode));
12824 op0 = gen_lowpart (mode, op0);
12825 continue;
12826 }
12827 }
12828
12829 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12830 if (const_op == 0 && equality_comparison_p
12831 && XEXP (op0, 1) == const1_rtx
12832 && GET_CODE (XEXP (op0, 0)) == NOT)
12833 {
12834 op0 = simplify_and_const_int (NULL_RTX, mode,
12835 XEXP (XEXP (op0, 0), 0), constop: 1);
12836 code = (code == NE ? EQ : NE);
12837 continue;
12838 }
12839
12840 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12841 (eq (and (lshiftrt X) 1) 0).
12842 Also handle the case where (not X) is expressed using xor. */
12843 if (const_op == 0 && equality_comparison_p
12844 && XEXP (op0, 1) == const1_rtx
12845 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12846 {
12847 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12848 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12849
12850 if (GET_CODE (shift_op) == NOT
12851 || (GET_CODE (shift_op) == XOR
12852 && CONST_INT_P (XEXP (shift_op, 1))
12853 && CONST_INT_P (shift_count)
12854 && HWI_COMPUTABLE_MODE_P (mode)
12855 && (UINTVAL (XEXP (shift_op, 1))
12856 == HOST_WIDE_INT_1U
12857 << INTVAL (shift_count))))
12858 {
12859 op0
12860 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12861 op0 = simplify_and_const_int (NULL_RTX, mode, varop: op0, constop: 1);
12862 code = (code == NE ? EQ : NE);
12863 continue;
12864 }
12865 }
12866 break;
12867
12868 case ASHIFT:
12869 /* If we have (compare (ashift FOO N) (const_int C)) and
12870 the high order N bits of FOO (N+1 if an inequality comparison)
12871 are known to be zero, we can do this by comparing FOO with C
12872 shifted right N bits so long as the low-order N bits of C are
12873 zero. */
12874 if (CONST_INT_P (XEXP (op0, 1))
12875 && INTVAL (XEXP (op0, 1)) >= 0
12876 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12877 < HOST_BITS_PER_WIDE_INT)
12878 && (((unsigned HOST_WIDE_INT) const_op
12879 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12880 - 1)) == 0)
12881 && mode_width <= HOST_BITS_PER_WIDE_INT
12882 && (nonzero_bits (XEXP (op0, 0), mode)
12883 & ~(mask >> (INTVAL (XEXP (op0, 1))
12884 + ! equality_comparison_p))) == 0)
12885 {
12886 /* We must perform a logical shift, not an arithmetic one,
12887 as we want the top N bits of C to be zero. */
12888 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12889
12890 temp >>= INTVAL (XEXP (op0, 1));
12891 op1 = gen_int_mode (temp, mode);
12892 op0 = XEXP (op0, 0);
12893 continue;
12894 }
12895
12896 /* If we are doing a sign bit comparison, it means we are testing
12897 a particular bit. Convert it to the appropriate AND. */
12898 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12899 && mode_width <= HOST_BITS_PER_WIDE_INT)
12900 {
12901 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12902 constop: (HOST_WIDE_INT_1U
12903 << (mode_width - 1
12904 - INTVAL (XEXP (op0, 1)))));
12905 code = (code == LT ? NE : EQ);
12906 continue;
12907 }
12908
12909 /* If this an equality comparison with zero and we are shifting
12910 the low bit to the sign bit, we can convert this to an AND of the
12911 low-order bit. */
12912 if (const_op == 0 && equality_comparison_p
12913 && CONST_INT_P (XEXP (op0, 1))
12914 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12915 {
12916 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), constop: 1);
12917 continue;
12918 }
12919 break;
12920
12921 case ASHIFTRT:
12922 /* If this is an equality comparison with zero, we can do this
12923 as a logical shift, which might be much simpler. */
12924 if (equality_comparison_p && const_op == 0
12925 && CONST_INT_P (XEXP (op0, 1)))
12926 {
12927 op0 = simplify_shift_const (NULL_RTX, code: LSHIFTRT, result_mode: mode,
12928 XEXP (op0, 0),
12929 INTVAL (XEXP (op0, 1)));
12930 continue;
12931 }
12932
12933 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12934 do the comparison in a narrower mode. */
12935 if (! unsigned_comparison_p
12936 && CONST_INT_P (XEXP (op0, 1))
12937 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12938 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12939 && (int_mode_for_size (size: mode_width - INTVAL (XEXP (op0, 1)), limit: 1)
12940 .exists (mode: &tmode))
12941 && (((unsigned HOST_WIDE_INT) const_op
12942 + (GET_MODE_MASK (tmode) >> 1) + 1)
12943 <= GET_MODE_MASK (tmode)))
12944 {
12945 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12946 continue;
12947 }
12948
12949 /* Likewise if OP0 is a PLUS of a sign extension with a
12950 constant, which is usually represented with the PLUS
12951 between the shifts. */
12952 if (! unsigned_comparison_p
12953 && CONST_INT_P (XEXP (op0, 1))
12954 && GET_CODE (XEXP (op0, 0)) == PLUS
12955 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12956 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12957 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12958 && (int_mode_for_size (size: mode_width - INTVAL (XEXP (op0, 1)), limit: 1)
12959 .exists (mode: &tmode))
12960 && (((unsigned HOST_WIDE_INT) const_op
12961 + (GET_MODE_MASK (tmode) >> 1) + 1)
12962 <= GET_MODE_MASK (tmode)))
12963 {
12964 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12965 rtx add_const = XEXP (XEXP (op0, 0), 1);
12966 rtx new_const = simplify_gen_binary (code: ASHIFTRT, mode,
12967 op0: add_const, XEXP (op0, 1));
12968
12969 op0 = simplify_gen_binary (code: PLUS, mode: tmode,
12970 gen_lowpart (tmode, inner),
12971 op1: new_const);
12972 continue;
12973 }
12974
12975 /* FALLTHROUGH */
12976 case LSHIFTRT:
12977 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12978 the low order N bits of FOO are known to be zero, we can do this
12979 by comparing FOO with C shifted left N bits so long as no
12980 overflow occurs. Even if the low order N bits of FOO aren't known
12981 to be zero, if the comparison is >= or < we can use the same
12982 optimization and for > or <= by setting all the low
12983 order N bits in the comparison constant. */
12984 if (CONST_INT_P (XEXP (op0, 1))
12985 && INTVAL (XEXP (op0, 1)) > 0
12986 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12987 && mode_width <= HOST_BITS_PER_WIDE_INT
12988 && (((unsigned HOST_WIDE_INT) const_op
12989 + (GET_CODE (op0) != LSHIFTRT
12990 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12991 + 1)
12992 : 0))
12993 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12994 {
12995 unsigned HOST_WIDE_INT low_bits
12996 = (nonzero_bits (XEXP (op0, 0), mode)
12997 & ((HOST_WIDE_INT_1U
12998 << INTVAL (XEXP (op0, 1))) - 1));
12999 if (low_bits == 0 || !equality_comparison_p)
13000 {
13001 /* If the shift was logical, then we must make the condition
13002 unsigned. */
13003 if (GET_CODE (op0) == LSHIFTRT)
13004 code = unsigned_condition (code);
13005
13006 const_op = (unsigned HOST_WIDE_INT) const_op
13007 << INTVAL (XEXP (op0, 1));
13008 if (low_bits != 0
13009 && (code == GT || code == GTU
13010 || code == LE || code == LEU))
13011 const_op
13012 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
13013 op1 = GEN_INT (const_op);
13014 op0 = XEXP (op0, 0);
13015 continue;
13016 }
13017 }
13018
13019 /* If we are using this shift to extract just the sign bit, we
13020 can replace this with an LT or GE comparison. */
13021 if (const_op == 0
13022 && (equality_comparison_p || sign_bit_comparison_p)
13023 && CONST_INT_P (XEXP (op0, 1))
13024 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
13025 {
13026 op0 = XEXP (op0, 0);
13027 code = (code == NE || code == GT ? LT : GE);
13028 continue;
13029 }
13030 break;
13031
13032 default:
13033 break;
13034 }
13035
13036 break;
13037 }
13038
13039 /* Now make any compound operations involved in this comparison. Then,
13040 check for an outmost SUBREG on OP0 that is not doing anything or is
13041 paradoxical. The latter transformation must only be performed when
13042 it is known that the "extra" bits will be the same in op0 and op1 or
13043 that they don't matter. There are three cases to consider:
13044
13045 1. SUBREG_REG (op0) is a register. In this case the bits are don't
13046 care bits and we can assume they have any convenient value. So
13047 making the transformation is safe.
13048
13049 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
13050 In this case the upper bits of op0 are undefined. We should not make
13051 the simplification in that case as we do not know the contents of
13052 those bits.
13053
13054 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
13055 In that case we know those bits are zeros or ones. We must also be
13056 sure that they are the same as the upper bits of op1.
13057
13058 We can never remove a SUBREG for a non-equality comparison because
13059 the sign bit is in a different place in the underlying object. */
13060
13061 rtx_code op0_mco_code = SET;
13062 if (op1 == const0_rtx)
13063 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
13064
13065 op0 = make_compound_operation (x: op0, in_code: op0_mco_code);
13066 op1 = make_compound_operation (x: op1, in_code: SET);
13067
13068 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
13069 && is_int_mode (GET_MODE (op0), int_mode: &mode)
13070 && is_int_mode (GET_MODE (SUBREG_REG (op0)), int_mode: &inner_mode)
13071 && (code == NE || code == EQ))
13072 {
13073 if (paradoxical_subreg_p (x: op0))
13074 {
13075 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13076 implemented. */
13077 if (REG_P (SUBREG_REG (op0)))
13078 {
13079 op0 = SUBREG_REG (op0);
13080 op1 = gen_lowpart (inner_mode, op1);
13081 }
13082 }
13083 else if (GET_MODE_PRECISION (mode: inner_mode) <= HOST_BITS_PER_WIDE_INT
13084 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
13085 & ~GET_MODE_MASK (mode)) == 0)
13086 {
13087 tem = gen_lowpart (inner_mode, op1);
13088
13089 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
13090 op0 = SUBREG_REG (op0), op1 = tem;
13091 }
13092 }
13093
13094 /* We now do the opposite procedure: Some machines don't have compare
13095 insns in all modes. If OP0's mode is an integer mode smaller than a
13096 word and we can't do a compare in that mode, see if there is a larger
13097 mode for which we can do the compare. There are a number of cases in
13098 which we can use the wider mode. */
13099
13100 if (is_int_mode (GET_MODE (op0), int_mode: &mode)
13101 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
13102 && ! have_insn_for (COMPARE, mode))
13103 FOR_EACH_WIDER_MODE (tmode_iter, mode)
13104 {
13105 tmode = tmode_iter.require ();
13106 if (!HWI_COMPUTABLE_MODE_P (mode: tmode))
13107 break;
13108 if (have_insn_for (COMPARE, tmode))
13109 {
13110 int zero_extended;
13111
13112 /* If this is a test for negative, we can make an explicit
13113 test of the sign bit. Test this first so we can use
13114 a paradoxical subreg to extend OP0. */
13115
13116 if (op1 == const0_rtx && (code == LT || code == GE)
13117 && HWI_COMPUTABLE_MODE_P (mode))
13118 {
13119 unsigned HOST_WIDE_INT sign
13120 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
13121 op0 = simplify_gen_binary (code: AND, mode: tmode,
13122 gen_lowpart (tmode, op0),
13123 op1: gen_int_mode (sign, tmode));
13124 code = (code == LT) ? NE : EQ;
13125 break;
13126 }
13127
13128 /* If the only nonzero bits in OP0 and OP1 are those in the
13129 narrower mode and this is an equality or unsigned comparison,
13130 we can use the wider mode. Similarly for sign-extended
13131 values, in which case it is true for all comparisons. */
13132 zero_extended = ((code == EQ || code == NE
13133 || code == GEU || code == GTU
13134 || code == LEU || code == LTU)
13135 && (nonzero_bits (op0, tmode)
13136 & ~GET_MODE_MASK (mode)) == 0
13137 && ((CONST_INT_P (op1)
13138 || (nonzero_bits (op1, tmode)
13139 & ~GET_MODE_MASK (mode)) == 0)));
13140
13141 if (zero_extended
13142 || ((num_sign_bit_copies (op0, tmode)
13143 > (unsigned int) (GET_MODE_PRECISION (mode: tmode)
13144 - GET_MODE_PRECISION (mode)))
13145 && (num_sign_bit_copies (op1, tmode)
13146 > (unsigned int) (GET_MODE_PRECISION (mode: tmode)
13147 - GET_MODE_PRECISION (mode)))))
13148 {
13149 /* If OP0 is an AND and we don't have an AND in MODE either,
13150 make a new AND in the proper mode. */
13151 if (GET_CODE (op0) == AND
13152 && !have_insn_for (AND, mode))
13153 op0 = simplify_gen_binary (code: AND, mode: tmode,
13154 gen_lowpart (tmode,
13155 XEXP (op0, 0)),
13156 gen_lowpart (tmode,
13157 XEXP (op0, 1)));
13158 else
13159 {
13160 if (zero_extended)
13161 {
13162 op0 = simplify_gen_unary (code: ZERO_EXTEND, mode: tmode,
13163 op: op0, op_mode: mode);
13164 op1 = simplify_gen_unary (code: ZERO_EXTEND, mode: tmode,
13165 op: op1, op_mode: mode);
13166 }
13167 else
13168 {
13169 op0 = simplify_gen_unary (code: SIGN_EXTEND, mode: tmode,
13170 op: op0, op_mode: mode);
13171 op1 = simplify_gen_unary (code: SIGN_EXTEND, mode: tmode,
13172 op: op1, op_mode: mode);
13173 }
13174 break;
13175 }
13176 }
13177 }
13178 }
13179
13180 /* We may have changed the comparison operands. Re-canonicalize. */
13181 if (swap_commutative_operands_p (op0, op1))
13182 {
13183 std::swap (a&: op0, b&: op1);
13184 code = swap_condition (code);
13185 }
13186
13187 /* If this machine only supports a subset of valid comparisons, see if we
13188 can convert an unsupported one into a supported one. */
13189 target_canonicalize_comparison (code: &code, op0: &op0, op1: &op1, op0_preserve_value: 0);
13190
13191 *pop0 = op0;
13192 *pop1 = op1;
13193
13194 return code;
13195}
13196
13197/* Utility function for record_value_for_reg. Count number of
13198 rtxs in X. */
13199static int
13200count_rtxs (rtx x)
13201{
13202 enum rtx_code code = GET_CODE (x);
13203 const char *fmt;
13204 int i, j, ret = 1;
13205
13206 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
13207 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
13208 {
13209 rtx x0 = XEXP (x, 0);
13210 rtx x1 = XEXP (x, 1);
13211
13212 if (x0 == x1)
13213 return 1 + 2 * count_rtxs (x: x0);
13214
13215 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
13216 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
13217 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13218 return 2 + 2 * count_rtxs (x: x0)
13219 + count_rtxs (x: x == XEXP (x1, 0)
13220 ? XEXP (x1, 1) : XEXP (x1, 0));
13221
13222 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
13223 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
13224 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13225 return 2 + 2 * count_rtxs (x: x1)
13226 + count_rtxs (x: x == XEXP (x0, 0)
13227 ? XEXP (x0, 1) : XEXP (x0, 0));
13228 }
13229
13230 fmt = GET_RTX_FORMAT (code);
13231 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13232 if (fmt[i] == 'e')
13233 ret += count_rtxs (XEXP (x, i));
13234 else if (fmt[i] == 'E')
13235 for (j = 0; j < XVECLEN (x, i); j++)
13236 ret += count_rtxs (XVECEXP (x, i, j));
13237
13238 return ret;
13239}
13240
13241/* Utility function for following routine. Called when X is part of a value
13242 being stored into last_set_value. Sets last_set_table_tick
13243 for each register mentioned. Similar to mention_regs in cse.cc */
13244
13245static void
13246update_table_tick (rtx x)
13247{
13248 enum rtx_code code = GET_CODE (x);
13249 const char *fmt = GET_RTX_FORMAT (code);
13250 int i, j;
13251
13252 if (code == REG)
13253 {
13254 unsigned int regno = REGNO (x);
13255 unsigned int endregno = END_REGNO (x);
13256 unsigned int r;
13257
13258 for (r = regno; r < endregno; r++)
13259 {
13260 reg_stat_type *rsp = &reg_stat[r];
13261 rsp->last_set_table_tick = label_tick;
13262 }
13263
13264 return;
13265 }
13266
13267 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13268 if (fmt[i] == 'e')
13269 {
13270 /* Check for identical subexpressions. If x contains
13271 identical subexpression we only have to traverse one of
13272 them. */
13273 if (i == 0 && ARITHMETIC_P (x))
13274 {
13275 /* Note that at this point x1 has already been
13276 processed. */
13277 rtx x0 = XEXP (x, 0);
13278 rtx x1 = XEXP (x, 1);
13279
13280 /* If x0 and x1 are identical then there is no need to
13281 process x0. */
13282 if (x0 == x1)
13283 break;
13284
13285 /* If x0 is identical to a subexpression of x1 then while
13286 processing x1, x0 has already been processed. Thus we
13287 are done with x. */
13288 if (ARITHMETIC_P (x1)
13289 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13290 break;
13291
13292 /* If x1 is identical to a subexpression of x0 then we
13293 still have to process the rest of x0. */
13294 if (ARITHMETIC_P (x0)
13295 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13296 {
13297 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13298 break;
13299 }
13300 }
13301
13302 update_table_tick (XEXP (x, i));
13303 }
13304 else if (fmt[i] == 'E')
13305 for (j = 0; j < XVECLEN (x, i); j++)
13306 update_table_tick (XVECEXP (x, i, j));
13307}
13308
13309/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13310 are saying that the register is clobbered and we no longer know its
13311 value. If INSN is zero, don't update reg_stat[].last_set; this is
13312 only permitted with VALUE also zero and is used to invalidate the
13313 register. */
13314
13315static void
13316record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13317{
13318 unsigned int regno = REGNO (reg);
13319 unsigned int endregno = END_REGNO (x: reg);
13320 unsigned int i;
13321 reg_stat_type *rsp;
13322
13323 /* If VALUE contains REG and we have a previous value for REG, substitute
13324 the previous value. */
13325 if (value && insn && reg_overlap_mentioned_p (reg, value))
13326 {
13327 rtx tem;
13328
13329 /* Set things up so get_last_value is allowed to see anything set up to
13330 our insn. */
13331 subst_low_luid = DF_INSN_LUID (insn);
13332 tem = get_last_value (reg);
13333
13334 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13335 it isn't going to be useful and will take a lot of time to process,
13336 so just use the CLOBBER. */
13337
13338 if (tem)
13339 {
13340 if (ARITHMETIC_P (tem)
13341 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13342 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13343 tem = XEXP (tem, 0);
13344 else if (count_occurrences (value, reg, 1) >= 2)
13345 {
13346 /* If there are two or more occurrences of REG in VALUE,
13347 prevent the value from growing too much. */
13348 if (count_rtxs (x: tem) > param_max_last_value_rtl)
13349 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13350 }
13351
13352 value = replace_rtx (copy_rtx (value), reg, tem);
13353 }
13354 }
13355
13356 /* For each register modified, show we don't know its value, that
13357 we don't know about its bitwise content, that its value has been
13358 updated, and that we don't know the location of the death of the
13359 register. */
13360 for (i = regno; i < endregno; i++)
13361 {
13362 rsp = &reg_stat[i];
13363
13364 if (insn)
13365 rsp->last_set = insn;
13366
13367 rsp->last_set_value = 0;
13368 rsp->last_set_mode = VOIDmode;
13369 rsp->last_set_nonzero_bits = 0;
13370 rsp->last_set_sign_bit_copies = 0;
13371 rsp->last_death = 0;
13372 rsp->truncated_to_mode = VOIDmode;
13373 }
13374
13375 /* Mark registers that are being referenced in this value. */
13376 if (value)
13377 update_table_tick (x: value);
13378
13379 /* Now update the status of each register being set.
13380 If someone is using this register in this block, set this register
13381 to invalid since we will get confused between the two lives in this
13382 basic block. This makes using this register always invalid. In cse, we
13383 scan the table to invalidate all entries using this register, but this
13384 is too much work for us. */
13385
13386 for (i = regno; i < endregno; i++)
13387 {
13388 rsp = &reg_stat[i];
13389 rsp->last_set_label = label_tick;
13390 if (!insn
13391 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13392 rsp->last_set_invalid = true;
13393 else
13394 rsp->last_set_invalid = false;
13395 }
13396
13397 /* The value being assigned might refer to X (like in "x++;"). In that
13398 case, we must replace it with (clobber (const_int 0)) to prevent
13399 infinite loops. */
13400 rsp = &reg_stat[regno];
13401 if (value && !get_last_value_validate (&value, insn, label_tick, false))
13402 {
13403 value = copy_rtx (value);
13404 if (!get_last_value_validate (&value, insn, label_tick, true))
13405 value = 0;
13406 }
13407
13408 /* For the main register being modified, update the value, the mode, the
13409 nonzero bits, and the number of sign bit copies. */
13410
13411 rsp->last_set_value = value;
13412
13413 if (value)
13414 {
13415 machine_mode mode = GET_MODE (reg);
13416 subst_low_luid = DF_INSN_LUID (insn);
13417 rsp->last_set_mode = mode;
13418 if (GET_MODE_CLASS (mode) == MODE_INT
13419 && HWI_COMPUTABLE_MODE_P (mode))
13420 mode = nonzero_bits_mode;
13421 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13422 rsp->last_set_sign_bit_copies
13423 = num_sign_bit_copies (value, GET_MODE (reg));
13424 }
13425}
13426
13427/* Called via note_stores from record_dead_and_set_regs to handle one
13428 SET or CLOBBER in an insn. DATA is the instruction in which the
13429 set is occurring. */
13430
13431static void
13432record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13433{
13434 rtx_insn *record_dead_insn = (rtx_insn *) data;
13435
13436 if (GET_CODE (dest) == SUBREG)
13437 dest = SUBREG_REG (dest);
13438
13439 if (!record_dead_insn)
13440 {
13441 if (REG_P (dest))
13442 record_value_for_reg (reg: dest, NULL, NULL_RTX);
13443 return;
13444 }
13445
13446 if (REG_P (dest))
13447 {
13448 /* If we are setting the whole register, we know its value. */
13449 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13450 record_value_for_reg (reg: dest, insn: record_dead_insn, SET_SRC (setter));
13451 /* We can handle a SUBREG if it's the low part, but we must be
13452 careful with paradoxical SUBREGs on RISC architectures because
13453 we cannot strip e.g. an extension around a load and record the
13454 naked load since the RTL middle-end considers that the upper bits
13455 are defined according to LOAD_EXTEND_OP. */
13456 else if (GET_CODE (setter) == SET
13457 && GET_CODE (SET_DEST (setter)) == SUBREG
13458 && SUBREG_REG (SET_DEST (setter)) == dest
13459 && known_le (GET_MODE_PRECISION (GET_MODE (dest)),
13460 BITS_PER_WORD)
13461 && subreg_lowpart_p (SET_DEST (setter)))
13462 {
13463 if (WORD_REGISTER_OPERATIONS
13464 && word_register_operation_p (SET_SRC (setter))
13465 && paradoxical_subreg_p (SET_DEST (setter)))
13466 record_value_for_reg (reg: dest, insn: record_dead_insn, SET_SRC (setter));
13467 else if (!partial_subreg_p (SET_DEST (setter)))
13468 record_value_for_reg (reg: dest, insn: record_dead_insn,
13469 gen_lowpart (GET_MODE (dest),
13470 SET_SRC (setter)));
13471 else
13472 {
13473 record_value_for_reg (reg: dest, insn: record_dead_insn,
13474 gen_lowpart (GET_MODE (dest),
13475 SET_SRC (setter)));
13476
13477 unsigned HOST_WIDE_INT mask;
13478 reg_stat_type *rsp = &reg_stat[REGNO (dest)];
13479 mask = GET_MODE_MASK (GET_MODE (SET_DEST (setter)));
13480 rsp->last_set_nonzero_bits |= ~mask;
13481 rsp->last_set_sign_bit_copies = 1;
13482 }
13483 }
13484 /* Otherwise show that we don't know the value. */
13485 else
13486 record_value_for_reg (reg: dest, insn: record_dead_insn, NULL_RTX);
13487 }
13488 else if (MEM_P (dest)
13489 /* Ignore pushes, they clobber nothing. */
13490 && ! push_operand (dest, GET_MODE (dest)))
13491 mem_last_set = DF_INSN_LUID (record_dead_insn);
13492}
13493
13494/* Update the records of when each REG was most recently set or killed
13495 for the things done by INSN. This is the last thing done in processing
13496 INSN in the combiner loop.
13497
13498 We update reg_stat[], in particular fields last_set, last_set_value,
13499 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13500 last_death, and also the similar information mem_last_set (which insn
13501 most recently modified memory) and last_call_luid (which insn was the
13502 most recent subroutine call). */
13503
13504static void
13505record_dead_and_set_regs (rtx_insn *insn)
13506{
13507 rtx link;
13508 unsigned int i;
13509
13510 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13511 {
13512 if (REG_NOTE_KIND (link) == REG_DEAD
13513 && REG_P (XEXP (link, 0)))
13514 {
13515 unsigned int regno = REGNO (XEXP (link, 0));
13516 unsigned int endregno = END_REGNO (XEXP (link, 0));
13517
13518 for (i = regno; i < endregno; i++)
13519 {
13520 reg_stat_type *rsp;
13521
13522 rsp = &reg_stat[i];
13523 rsp->last_death = insn;
13524 }
13525 }
13526 else if (REG_NOTE_KIND (link) == REG_INC)
13527 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13528 }
13529
13530 if (CALL_P (insn))
13531 {
13532 HARD_REG_SET callee_clobbers
13533 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
13534 hard_reg_set_iterator hrsi;
13535 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
13536 {
13537 reg_stat_type *rsp;
13538
13539 /* ??? We could try to preserve some information from the last
13540 set of register I if the call doesn't actually clobber
13541 (reg:last_set_mode I), which might be true for ABIs with
13542 partial clobbers. However, it would be difficult to
13543 update last_set_nonzero_bits and last_sign_bit_copies
13544 to account for the part of I that actually was clobbered.
13545 It wouldn't help much anyway, since we rarely see this
13546 situation before RA. */
13547 rsp = &reg_stat[i];
13548 rsp->last_set_invalid = true;
13549 rsp->last_set = insn;
13550 rsp->last_set_value = 0;
13551 rsp->last_set_mode = VOIDmode;
13552 rsp->last_set_nonzero_bits = 0;
13553 rsp->last_set_sign_bit_copies = 0;
13554 rsp->last_death = 0;
13555 rsp->truncated_to_mode = VOIDmode;
13556 }
13557
13558 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13559
13560 /* We can't combine into a call pattern. Remember, though, that
13561 the return value register is set at this LUID. We could
13562 still replace a register with the return value from the
13563 wrong subroutine call! */
13564 note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
13565 }
13566 else
13567 note_stores (insn, record_dead_and_set_regs_1, insn);
13568}
13569
13570/* If a SUBREG has the promoted bit set, it is in fact a property of the
13571 register present in the SUBREG, so for each such SUBREG go back and
13572 adjust nonzero and sign bit information of the registers that are
13573 known to have some zero/sign bits set.
13574
13575 This is needed because when combine blows the SUBREGs away, the
13576 information on zero/sign bits is lost and further combines can be
13577 missed because of that. */
13578
13579static void
13580record_promoted_value (rtx_insn *insn, rtx subreg)
13581{
13582 struct insn_link *links;
13583 rtx set;
13584 unsigned int regno = REGNO (SUBREG_REG (subreg));
13585 machine_mode mode = GET_MODE (subreg);
13586
13587 if (!HWI_COMPUTABLE_MODE_P (mode))
13588 return;
13589
13590 for (links = LOG_LINKS (insn); links;)
13591 {
13592 reg_stat_type *rsp;
13593
13594 insn = links->insn;
13595 set = single_set (insn);
13596
13597 if (! set || !REG_P (SET_DEST (set))
13598 || REGNO (SET_DEST (set)) != regno
13599 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13600 {
13601 links = links->next;
13602 continue;
13603 }
13604
13605 rsp = &reg_stat[regno];
13606 if (rsp->last_set == insn)
13607 {
13608 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13609 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13610 }
13611
13612 if (REG_P (SET_SRC (set)))
13613 {
13614 regno = REGNO (SET_SRC (set));
13615 links = LOG_LINKS (insn);
13616 }
13617 else
13618 break;
13619 }
13620}
13621
13622/* Check if X, a register, is known to contain a value already
13623 truncated to MODE. In this case we can use a subreg to refer to
13624 the truncated value even though in the generic case we would need
13625 an explicit truncation. */
13626
13627static bool
13628reg_truncated_to_mode (machine_mode mode, const_rtx x)
13629{
13630 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13631 machine_mode truncated = rsp->truncated_to_mode;
13632
13633 if (truncated == 0
13634 || rsp->truncation_label < label_tick_ebb_start)
13635 return false;
13636 if (!partial_subreg_p (outermode: mode, innermode: truncated))
13637 return true;
13638 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13639 return true;
13640 return false;
13641}
13642
13643/* If X is a hard reg or a subreg record the mode that the register is
13644 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13645 able to turn a truncate into a subreg using this information. Return true
13646 if traversing X is complete. */
13647
13648static bool
13649record_truncated_value (rtx x)
13650{
13651 machine_mode truncated_mode;
13652 reg_stat_type *rsp;
13653
13654 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13655 {
13656 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13657 truncated_mode = GET_MODE (x);
13658
13659 if (!partial_subreg_p (outermode: truncated_mode, innermode: original_mode))
13660 return true;
13661
13662 truncated_mode = GET_MODE (x);
13663 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13664 return true;
13665
13666 x = SUBREG_REG (x);
13667 }
13668 /* ??? For hard-regs we now record everything. We might be able to
13669 optimize this using last_set_mode. */
13670 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13671 truncated_mode = GET_MODE (x);
13672 else
13673 return false;
13674
13675 rsp = &reg_stat[REGNO (x)];
13676 if (rsp->truncated_to_mode == 0
13677 || rsp->truncation_label < label_tick_ebb_start
13678 || partial_subreg_p (outermode: truncated_mode, innermode: rsp->truncated_to_mode))
13679 {
13680 rsp->truncated_to_mode = truncated_mode;
13681 rsp->truncation_label = label_tick;
13682 }
13683
13684 return true;
13685}
13686
13687/* Callback for note_uses. Find hardregs and subregs of pseudos and
13688 the modes they are used in. This can help truning TRUNCATEs into
13689 SUBREGs. */
13690
13691static void
13692record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13693{
13694 subrtx_var_iterator::array_type array;
13695 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13696 if (record_truncated_value (x: *iter))
13697 iter.skip_subrtxes ();
13698}
13699
13700/* Scan X for promoted SUBREGs. For each one found,
13701 note what it implies to the registers used in it. */
13702
13703static void
13704check_promoted_subreg (rtx_insn *insn, rtx x)
13705{
13706 if (GET_CODE (x) == SUBREG
13707 && SUBREG_PROMOTED_VAR_P (x)
13708 && REG_P (SUBREG_REG (x)))
13709 record_promoted_value (insn, subreg: x);
13710 else
13711 {
13712 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13713 int i, j;
13714
13715 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13716 switch (format[i])
13717 {
13718 case 'e':
13719 check_promoted_subreg (insn, XEXP (x, i));
13720 break;
13721 case 'V':
13722 case 'E':
13723 if (XVEC (x, i) != 0)
13724 for (j = 0; j < XVECLEN (x, i); j++)
13725 check_promoted_subreg (insn, XVECEXP (x, i, j));
13726 break;
13727 }
13728 }
13729}
13730
13731/* Verify that all the registers and memory references mentioned in *LOC are
13732 still valid. *LOC was part of a value set in INSN when label_tick was
13733 equal to TICK. Return false if some are not. If REPLACE is true, replace
13734 the invalid references with (clobber (const_int 0)) and return true. This
13735 replacement is useful because we often can get useful information about
13736 the form of a value (e.g., if it was produced by a shift that always
13737 produces -1 or 0) even though we don't know exactly what registers it
13738 was produced from. */
13739
13740static bool
13741get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, bool replace)
13742{
13743 rtx x = *loc;
13744 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13745 int len = GET_RTX_LENGTH (GET_CODE (x));
13746 int i, j;
13747
13748 if (REG_P (x))
13749 {
13750 unsigned int regno = REGNO (x);
13751 unsigned int endregno = END_REGNO (x);
13752 unsigned int j;
13753
13754 for (j = regno; j < endregno; j++)
13755 {
13756 reg_stat_type *rsp = &reg_stat[j];
13757 if (rsp->last_set_invalid
13758 /* If this is a pseudo-register that was only set once and not
13759 live at the beginning of the function, it is always valid. */
13760 || (! (regno >= FIRST_PSEUDO_REGISTER
13761 && regno < reg_n_sets_max
13762 && REG_N_SETS (regno) == 1
13763 && (!REGNO_REG_SET_P
13764 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13765 regno)))
13766 && rsp->last_set_label > tick))
13767 {
13768 if (replace)
13769 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13770 return replace;
13771 }
13772 }
13773
13774 return true;
13775 }
13776 /* If this is a memory reference, make sure that there were no stores after
13777 it that might have clobbered the value. We don't have alias info, so we
13778 assume any store invalidates it. Moreover, we only have local UIDs, so
13779 we also assume that there were stores in the intervening basic blocks. */
13780 else if (MEM_P (x) && !MEM_READONLY_P (x)
13781 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13782 {
13783 if (replace)
13784 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13785 return replace;
13786 }
13787
13788 for (i = 0; i < len; i++)
13789 {
13790 if (fmt[i] == 'e')
13791 {
13792 /* Check for identical subexpressions. If x contains
13793 identical subexpression we only have to traverse one of
13794 them. */
13795 if (i == 1 && ARITHMETIC_P (x))
13796 {
13797 /* Note that at this point x0 has already been checked
13798 and found valid. */
13799 rtx x0 = XEXP (x, 0);
13800 rtx x1 = XEXP (x, 1);
13801
13802 /* If x0 and x1 are identical then x is also valid. */
13803 if (x0 == x1)
13804 return true;
13805
13806 /* If x1 is identical to a subexpression of x0 then
13807 while checking x0, x1 has already been checked. Thus
13808 it is valid and so as x. */
13809 if (ARITHMETIC_P (x0)
13810 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13811 return true;
13812
13813 /* If x0 is identical to a subexpression of x1 then x is
13814 valid iff the rest of x1 is valid. */
13815 if (ARITHMETIC_P (x1)
13816 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13817 return
13818 get_last_value_validate (loc: &XEXP (x1,
13819 x0 == XEXP (x1, 0) ? 1 : 0),
13820 insn, tick, replace);
13821 }
13822
13823 if (!get_last_value_validate (loc: &XEXP (x, i), insn, tick, replace))
13824 return false;
13825 }
13826 else if (fmt[i] == 'E')
13827 for (j = 0; j < XVECLEN (x, i); j++)
13828 if (!get_last_value_validate (loc: &XVECEXP (x, i, j),
13829 insn, tick, replace))
13830 return false;
13831 }
13832
13833 /* If we haven't found a reason for it to be invalid, it is valid. */
13834 return true;
13835}
13836
13837/* Get the last value assigned to X, if known. Some registers
13838 in the value may be replaced with (clobber (const_int 0)) if their value
13839 is known longer known reliably. */
13840
13841static rtx
13842get_last_value (const_rtx x)
13843{
13844 unsigned int regno;
13845 rtx value;
13846 reg_stat_type *rsp;
13847
13848 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13849 then convert it to the desired mode. If this is a paradoxical SUBREG,
13850 we cannot predict what values the "extra" bits might have. */
13851 if (GET_CODE (x) == SUBREG
13852 && subreg_lowpart_p (x)
13853 && !paradoxical_subreg_p (x)
13854 && (value = get_last_value (SUBREG_REG (x))) != 0)
13855 return gen_lowpart (GET_MODE (x), value);
13856
13857 if (!REG_P (x))
13858 return 0;
13859
13860 regno = REGNO (x);
13861 rsp = &reg_stat[regno];
13862 value = rsp->last_set_value;
13863
13864 /* If we don't have a value, or if it isn't for this basic block and
13865 it's either a hard register, set more than once, or it's a live
13866 at the beginning of the function, return 0.
13867
13868 Because if it's not live at the beginning of the function then the reg
13869 is always set before being used (is never used without being set).
13870 And, if it's set only once, and it's always set before use, then all
13871 uses must have the same last value, even if it's not from this basic
13872 block. */
13873
13874 if (value == 0
13875 || (rsp->last_set_label < label_tick_ebb_start
13876 && (regno < FIRST_PSEUDO_REGISTER
13877 || regno >= reg_n_sets_max
13878 || REG_N_SETS (regno) != 1
13879 || REGNO_REG_SET_P
13880 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13881 return 0;
13882
13883 /* If the value was set in a later insn than the ones we are processing,
13884 we can't use it even if the register was only set once. */
13885 if (rsp->last_set_label == label_tick
13886 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13887 return 0;
13888
13889 /* If fewer bits were set than what we are asked for now, we cannot use
13890 the value. */
13891 if (maybe_lt (a: GET_MODE_PRECISION (mode: rsp->last_set_mode),
13892 b: GET_MODE_PRECISION (GET_MODE (x))))
13893 return 0;
13894
13895 /* If the value has all its registers valid, return it. */
13896 if (get_last_value_validate (loc: &value, insn: rsp->last_set,
13897 tick: rsp->last_set_label, replace: false))
13898 return value;
13899
13900 /* Otherwise, make a copy and replace any invalid register with
13901 (clobber (const_int 0)). If that fails for some reason, return 0. */
13902
13903 value = copy_rtx (value);
13904 if (get_last_value_validate (loc: &value, insn: rsp->last_set,
13905 tick: rsp->last_set_label, replace: true))
13906 return value;
13907
13908 return 0;
13909}
13910
13911/* Define three variables used for communication between the following
13912 routines. */
13913
13914static unsigned int reg_dead_regno, reg_dead_endregno;
13915static int reg_dead_flag;
13916rtx reg_dead_reg;
13917
13918/* Function called via note_stores from reg_dead_at_p.
13919
13920 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13921 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13922
13923static void
13924reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13925{
13926 unsigned int regno, endregno;
13927
13928 if (!REG_P (dest))
13929 return;
13930
13931 regno = REGNO (dest);
13932 endregno = END_REGNO (x: dest);
13933 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13934 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13935}
13936
13937/* Return true if REG is known to be dead at INSN.
13938
13939 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13940 referencing REG, it is dead. If we hit a SET referencing REG, it is
13941 live. Otherwise, see if it is live or dead at the start of the basic
13942 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13943 must be assumed to be always live. */
13944
13945static bool
13946reg_dead_at_p (rtx reg, rtx_insn *insn)
13947{
13948 basic_block block;
13949 unsigned int i;
13950
13951 /* Set variables for reg_dead_at_p_1. */
13952 reg_dead_regno = REGNO (reg);
13953 reg_dead_endregno = END_REGNO (x: reg);
13954 reg_dead_reg = reg;
13955
13956 reg_dead_flag = 0;
13957
13958 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13959 we allow the machine description to decide whether use-and-clobber
13960 patterns are OK. */
13961 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13962 {
13963 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13964 if (!fixed_regs[i] && TEST_HARD_REG_BIT (set: newpat_used_regs, bit: i))
13965 return false;
13966 }
13967
13968 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13969 beginning of basic block. */
13970 block = BLOCK_FOR_INSN (insn);
13971 for (;;)
13972 {
13973 if (INSN_P (insn))
13974 {
13975 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13976 return true;
13977
13978 note_stores (insn, reg_dead_at_p_1, NULL);
13979 if (reg_dead_flag)
13980 return reg_dead_flag == 1 ? 1 : 0;
13981
13982 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13983 return true;
13984 }
13985
13986 if (insn == BB_HEAD (block))
13987 break;
13988
13989 insn = PREV_INSN (insn);
13990 }
13991
13992 /* Look at live-in sets for the basic block that we were in. */
13993 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13994 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13995 return false;
13996
13997 return true;
13998}
13999
14000/* Note hard registers in X that are used. */
14001
14002static void
14003mark_used_regs_combine (rtx x)
14004{
14005 RTX_CODE code = GET_CODE (x);
14006 unsigned int regno;
14007 int i;
14008
14009 switch (code)
14010 {
14011 case LABEL_REF:
14012 case SYMBOL_REF:
14013 case CONST:
14014 CASE_CONST_ANY:
14015 case PC:
14016 case ADDR_VEC:
14017 case ADDR_DIFF_VEC:
14018 case ASM_INPUT:
14019 return;
14020
14021 case CLOBBER:
14022 /* If we are clobbering a MEM, mark any hard registers inside the
14023 address as used. */
14024 if (MEM_P (XEXP (x, 0)))
14025 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
14026 return;
14027
14028 case REG:
14029 regno = REGNO (x);
14030 /* A hard reg in a wide mode may really be multiple registers.
14031 If so, mark all of them just like the first. */
14032 if (regno < FIRST_PSEUDO_REGISTER)
14033 {
14034 /* None of this applies to the stack, frame or arg pointers. */
14035 if (regno == STACK_POINTER_REGNUM
14036 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
14037 && regno == HARD_FRAME_POINTER_REGNUM)
14038 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
14039 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
14040 || regno == FRAME_POINTER_REGNUM)
14041 return;
14042
14043 add_to_hard_reg_set (regs: &newpat_used_regs, GET_MODE (x), regno);
14044 }
14045 return;
14046
14047 case SET:
14048 {
14049 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
14050 the address. */
14051 rtx testreg = SET_DEST (x);
14052
14053 while (GET_CODE (testreg) == SUBREG
14054 || GET_CODE (testreg) == ZERO_EXTRACT
14055 || GET_CODE (testreg) == STRICT_LOW_PART)
14056 testreg = XEXP (testreg, 0);
14057
14058 if (MEM_P (testreg))
14059 mark_used_regs_combine (XEXP (testreg, 0));
14060
14061 mark_used_regs_combine (SET_SRC (x));
14062 }
14063 return;
14064
14065 default:
14066 break;
14067 }
14068
14069 /* Recursively scan the operands of this expression. */
14070
14071 {
14072 const char *fmt = GET_RTX_FORMAT (code);
14073
14074 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
14075 {
14076 if (fmt[i] == 'e')
14077 mark_used_regs_combine (XEXP (x, i));
14078 else if (fmt[i] == 'E')
14079 {
14080 int j;
14081
14082 for (j = 0; j < XVECLEN (x, i); j++)
14083 mark_used_regs_combine (XVECEXP (x, i, j));
14084 }
14085 }
14086 }
14087}
14088
14089/* Remove register number REGNO from the dead registers list of INSN.
14090
14091 Return the note used to record the death, if there was one. */
14092
14093rtx
14094remove_death (unsigned int regno, rtx_insn *insn)
14095{
14096 rtx note = find_regno_note (insn, REG_DEAD, regno);
14097
14098 if (note)
14099 remove_note (insn, note);
14100
14101 return note;
14102}
14103
14104/* For each register (hardware or pseudo) used within expression X, if its
14105 death is in an instruction with luid between FROM_LUID (inclusive) and
14106 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14107 list headed by PNOTES.
14108
14109 That said, don't move registers killed by maybe_kill_insn.
14110
14111 This is done when X is being merged by combination into TO_INSN. These
14112 notes will then be distributed as needed. */
14113
14114static void
14115move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
14116 rtx *pnotes)
14117{
14118 const char *fmt;
14119 int len, i;
14120 enum rtx_code code = GET_CODE (x);
14121
14122 if (code == REG)
14123 {
14124 unsigned int regno = REGNO (x);
14125 rtx_insn *where_dead = reg_stat[regno].last_death;
14126
14127 /* If we do not know where the register died, it may still die between
14128 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14129 if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
14130 {
14131 rtx_insn *insn = prev_real_nondebug_insn (to_insn);
14132 while (insn
14133 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (insn: to_insn)
14134 && DF_INSN_LUID (insn) >= from_luid)
14135 {
14136 if (dead_or_set_regno_p (insn, regno))
14137 {
14138 if (find_regno_note (insn, REG_DEAD, regno))
14139 where_dead = insn;
14140 break;
14141 }
14142
14143 insn = prev_real_nondebug_insn (insn);
14144 }
14145 }
14146
14147 /* Don't move the register if it gets killed in between from and to. */
14148 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
14149 && ! reg_referenced_p (x, maybe_kill_insn))
14150 return;
14151
14152 if (where_dead
14153 && BLOCK_FOR_INSN (insn: where_dead) == BLOCK_FOR_INSN (insn: to_insn)
14154 && DF_INSN_LUID (where_dead) >= from_luid
14155 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
14156 {
14157 rtx note = remove_death (regno, insn: where_dead);
14158
14159 /* It is possible for the call above to return 0. This can occur
14160 when last_death points to I2 or I1 that we combined with.
14161 In that case make a new note.
14162
14163 We must also check for the case where X is a hard register
14164 and NOTE is a death note for a range of hard registers
14165 including X. In that case, we must put REG_DEAD notes for
14166 the remaining registers in place of NOTE. */
14167
14168 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
14169 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
14170 {
14171 unsigned int deadregno = REGNO (XEXP (note, 0));
14172 unsigned int deadend = END_REGNO (XEXP (note, 0));
14173 unsigned int ourend = END_REGNO (x);
14174 unsigned int i;
14175
14176 for (i = deadregno; i < deadend; i++)
14177 if (i < regno || i >= ourend)
14178 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
14179 }
14180
14181 /* If we didn't find any note, or if we found a REG_DEAD note that
14182 covers only part of the given reg, and we have a multi-reg hard
14183 register, then to be safe we must check for REG_DEAD notes
14184 for each register other than the first. They could have
14185 their own REG_DEAD notes lying around. */
14186 else if ((note == 0
14187 || (note != 0
14188 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
14189 GET_MODE (x))))
14190 && regno < FIRST_PSEUDO_REGISTER
14191 && REG_NREGS (x) > 1)
14192 {
14193 unsigned int ourend = END_REGNO (x);
14194 unsigned int i, offset;
14195 rtx oldnotes = 0;
14196
14197 if (note)
14198 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
14199 else
14200 offset = 1;
14201
14202 for (i = regno + offset; i < ourend; i++)
14203 move_deaths (x: regno_reg_rtx[i],
14204 maybe_kill_insn, from_luid, to_insn, pnotes: &oldnotes);
14205 }
14206
14207 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
14208 {
14209 XEXP (note, 1) = *pnotes;
14210 *pnotes = note;
14211 }
14212 else
14213 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
14214 }
14215
14216 return;
14217 }
14218
14219 else if (GET_CODE (x) == SET)
14220 {
14221 rtx dest = SET_DEST (x);
14222
14223 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
14224
14225 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14226 that accesses one word of a multi-word item, some
14227 piece of everything register in the expression is used by
14228 this insn, so remove any old death. */
14229 /* ??? So why do we test for equality of the sizes? */
14230
14231 if (GET_CODE (dest) == ZERO_EXTRACT
14232 || GET_CODE (dest) == STRICT_LOW_PART
14233 || (GET_CODE (dest) == SUBREG
14234 && !read_modify_subreg_p (dest)))
14235 {
14236 move_deaths (x: dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14237 return;
14238 }
14239
14240 /* If this is some other SUBREG, we know it replaces the entire
14241 value, so use that as the destination. */
14242 if (GET_CODE (dest) == SUBREG)
14243 dest = SUBREG_REG (dest);
14244
14245 /* If this is a MEM, adjust deaths of anything used in the address.
14246 For a REG (the only other possibility), the entire value is
14247 being replaced so the old value is not used in this insn. */
14248
14249 if (MEM_P (dest))
14250 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14251 to_insn, pnotes);
14252 return;
14253 }
14254
14255 else if (GET_CODE (x) == CLOBBER)
14256 return;
14257
14258 len = GET_RTX_LENGTH (code);
14259 fmt = GET_RTX_FORMAT (code);
14260
14261 for (i = 0; i < len; i++)
14262 {
14263 if (fmt[i] == 'E')
14264 {
14265 int j;
14266 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14267 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14268 to_insn, pnotes);
14269 }
14270 else if (fmt[i] == 'e')
14271 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14272 }
14273}
14274
14275/* Return true if X is the target of a bit-field assignment in BODY, the
14276 pattern of an insn. X must be a REG. */
14277
14278static bool
14279reg_bitfield_target_p (rtx x, rtx body)
14280{
14281 int i;
14282
14283 if (GET_CODE (body) == SET)
14284 {
14285 rtx dest = SET_DEST (body);
14286 rtx target;
14287 unsigned int regno, tregno, endregno, endtregno;
14288
14289 if (GET_CODE (dest) == ZERO_EXTRACT)
14290 target = XEXP (dest, 0);
14291 else if (GET_CODE (dest) == STRICT_LOW_PART)
14292 target = SUBREG_REG (XEXP (dest, 0));
14293 else
14294 return false;
14295
14296 if (GET_CODE (target) == SUBREG)
14297 target = SUBREG_REG (target);
14298
14299 if (!REG_P (target))
14300 return false;
14301
14302 tregno = REGNO (target), regno = REGNO (x);
14303 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14304 return target == x;
14305
14306 endtregno = end_hard_regno (GET_MODE (target), regno: tregno);
14307 endregno = end_hard_regno (GET_MODE (x), regno);
14308
14309 return endregno > tregno && regno < endtregno;
14310 }
14311
14312 else if (GET_CODE (body) == PARALLEL)
14313 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14314 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14315 return true;
14316
14317 return false;
14318}
14319
14320/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14321 as appropriate. I3 and I2 are the insns resulting from the combination
14322 insns including FROM (I2 may be zero).
14323
14324 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14325 not need REG_DEAD notes because they are being substituted for. This
14326 saves searching in the most common cases.
14327
14328 Each note in the list is either ignored or placed on some insns, depending
14329 on the type of note. */
14330
14331static void
14332distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14333 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14334{
14335 rtx note, next_note;
14336 rtx tem_note;
14337 rtx_insn *tem_insn;
14338
14339 for (note = notes; note; note = next_note)
14340 {
14341 rtx_insn *place = 0, *place2 = 0;
14342
14343 next_note = XEXP (note, 1);
14344 switch (REG_NOTE_KIND (note))
14345 {
14346 case REG_BR_PROB:
14347 case REG_BR_PRED:
14348 /* Doesn't matter much where we put this, as long as it's somewhere.
14349 It is preferable to keep these notes on branches, which is most
14350 likely to be i3. */
14351 place = i3;
14352 break;
14353
14354 case REG_NON_LOCAL_GOTO:
14355 if (JUMP_P (i3))
14356 place = i3;
14357 else
14358 {
14359 gcc_assert (i2 && JUMP_P (i2));
14360 place = i2;
14361 }
14362 break;
14363
14364 case REG_EH_REGION:
14365 {
14366 /* The landing pad handling needs to be kept in sync with the
14367 prerequisite checking in try_combine. */
14368 int lp_nr = INTVAL (XEXP (note, 0));
14369 /* A REG_EH_REGION note transfering control can only ever come
14370 from i3. */
14371 if (lp_nr > 0)
14372 gcc_assert (from_insn == i3);
14373 /* We are making sure there is a single effective REG_EH_REGION
14374 note and it's valid to put it on i3. */
14375 if (!insn_could_throw_p (from_insn)
14376 && !(lp_nr == INT_MIN && can_nonlocal_goto (from_insn)))
14377 /* Throw away stray notes on insns that can never throw or
14378 make a nonlocal goto. */
14379 ;
14380 else
14381 {
14382 if (CALL_P (i3))
14383 place = i3;
14384 else
14385 {
14386 gcc_assert (cfun->can_throw_non_call_exceptions);
14387 /* If i3 can still trap preserve the note, otherwise we've
14388 combined things such that we can now prove that the
14389 instructions can't trap. Drop the note in this case. */
14390 if (may_trap_p (i3))
14391 place = i3;
14392 }
14393 }
14394 break;
14395 }
14396
14397 case REG_ARGS_SIZE:
14398 /* ??? How to distribute between i3-i1. Assume i3 contains the
14399 entire adjustment. Assert i3 contains at least some adjust. */
14400 if (!noop_move_p (i3))
14401 {
14402 poly_int64 old_size, args_size = get_args_size (note);
14403 /* fixup_args_size_notes looks at REG_NORETURN note,
14404 so ensure the note is placed there first. */
14405 if (CALL_P (i3))
14406 {
14407 rtx *np;
14408 for (np = &next_note; *np; np = &XEXP (*np, 1))
14409 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14410 {
14411 rtx n = *np;
14412 *np = XEXP (n, 1);
14413 XEXP (n, 1) = REG_NOTES (i3);
14414 REG_NOTES (i3) = n;
14415 break;
14416 }
14417 }
14418 old_size = fixup_args_size_notes (PREV_INSN (insn: i3), i3, args_size);
14419 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14420 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14421 gcc_assert (maybe_ne (old_size, args_size)
14422 || (CALL_P (i3)
14423 && !ACCUMULATE_OUTGOING_ARGS
14424 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14425 }
14426 break;
14427
14428 case REG_NORETURN:
14429 case REG_SETJMP:
14430 case REG_TM:
14431 case REG_CALL_DECL:
14432 case REG_UNTYPED_CALL:
14433 case REG_CALL_NOCF_CHECK:
14434 /* These notes must remain with the call. It should not be
14435 possible for both I2 and I3 to be a call. */
14436 if (CALL_P (i3))
14437 place = i3;
14438 else
14439 {
14440 gcc_assert (i2 && CALL_P (i2));
14441 place = i2;
14442 }
14443 break;
14444
14445 case REG_UNUSED:
14446 /* Any clobbers for i3 may still exist, and so we must process
14447 REG_UNUSED notes from that insn.
14448
14449 Any clobbers from i2 or i1 can only exist if they were added by
14450 recog_for_combine. In that case, recog_for_combine created the
14451 necessary REG_UNUSED notes. Trying to keep any original
14452 REG_UNUSED notes from these insns can cause incorrect output
14453 if it is for the same register as the original i3 dest.
14454 In that case, we will notice that the register is set in i3,
14455 and then add a REG_UNUSED note for the destination of i3, which
14456 is wrong. However, it is possible to have REG_UNUSED notes from
14457 i2 or i1 for register which were both used and clobbered, so
14458 we keep notes from i2 or i1 if they will turn into REG_DEAD
14459 notes. */
14460
14461 /* If this register is set or clobbered between FROM_INSN and I3,
14462 we should not create a note for it. */
14463 if (reg_set_between_p (XEXP (note, 0), from_insn, i3))
14464 break;
14465
14466 /* If this register is set or clobbered in I3, put the note there
14467 unless there is one already. */
14468 if (reg_set_p (XEXP (note, 0), PATTERN (insn: i3)))
14469 {
14470 if (from_insn != i3)
14471 break;
14472
14473 if (! (REG_P (XEXP (note, 0))
14474 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14475 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14476 place = i3;
14477 }
14478 /* Otherwise, if this register is used by I3, then this register
14479 now dies here, so we must put a REG_DEAD note here unless there
14480 is one already. */
14481 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: i3))
14482 && ! (REG_P (XEXP (note, 0))
14483 ? find_regno_note (i3, REG_DEAD,
14484 REGNO (XEXP (note, 0)))
14485 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14486 {
14487 PUT_REG_NOTE_KIND (note, REG_DEAD);
14488 place = i3;
14489 }
14490
14491 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14492 but we can't tell which at this point. We must reset any
14493 expectations we had about the value that was previously
14494 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14495 and, if appropriate, restore its previous value, but we
14496 don't have enough information for that at this point. */
14497 else
14498 {
14499 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14500
14501 /* Otherwise, if this register is now referenced in i2
14502 then the register used to be modified in one of the
14503 original insns. If it was i3 (say, in an unused
14504 parallel), it's now completely gone, so the note can
14505 be discarded. But if it was modified in i2, i1 or i0
14506 and we still reference it in i2, then we're
14507 referencing the previous value, and since the
14508 register was modified and REG_UNUSED, we know that
14509 the previous value is now dead. So, if we only
14510 reference the register in i2, we change the note to
14511 REG_DEAD, to reflect the previous value. However, if
14512 we're also setting or clobbering the register as
14513 scratch, we know (because the register was not
14514 referenced in i3) that it's unused, just as it was
14515 unused before, and we place the note in i2. */
14516 if (from_insn != i3 && i2 && INSN_P (i2)
14517 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14518 {
14519 if (!reg_set_p (XEXP (note, 0), PATTERN (insn: i2)))
14520 PUT_REG_NOTE_KIND (note, REG_DEAD);
14521 if (! (REG_P (XEXP (note, 0))
14522 ? find_regno_note (i2, REG_NOTE_KIND (note),
14523 REGNO (XEXP (note, 0)))
14524 : find_reg_note (i2, REG_NOTE_KIND (note),
14525 XEXP (note, 0))))
14526 place = i2;
14527 }
14528 }
14529
14530 break;
14531
14532 case REG_EQUAL:
14533 case REG_EQUIV:
14534 case REG_NOALIAS:
14535 /* These notes say something about results of an insn. We can
14536 only support them if they used to be on I3 in which case they
14537 remain on I3. Otherwise they are ignored.
14538
14539 If the note refers to an expression that is not a constant, we
14540 must also ignore the note since we cannot tell whether the
14541 equivalence is still true. It might be possible to do
14542 slightly better than this (we only have a problem if I2DEST
14543 or I1DEST is present in the expression), but it doesn't
14544 seem worth the trouble. */
14545
14546 if (from_insn == i3
14547 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14548 place = i3;
14549 break;
14550
14551 case REG_INC:
14552 /* These notes say something about how a register is used. They must
14553 be present on any use of the register in I2 or I3. */
14554 if (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i3)))
14555 place = i3;
14556
14557 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i2)))
14558 {
14559 if (place)
14560 place2 = i2;
14561 else
14562 place = i2;
14563 }
14564 break;
14565
14566 case REG_LABEL_TARGET:
14567 case REG_LABEL_OPERAND:
14568 /* This can show up in several ways -- either directly in the
14569 pattern, or hidden off in the constant pool with (or without?)
14570 a REG_EQUAL note. */
14571 /* ??? Ignore the without-reg_equal-note problem for now. */
14572 if (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i3))
14573 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14574 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14575 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14576 place = i3;
14577
14578 if (i2
14579 && (reg_mentioned_p (XEXP (note, 0), PATTERN (insn: i2))
14580 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14581 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14582 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14583 {
14584 if (place)
14585 place2 = i2;
14586 else
14587 place = i2;
14588 }
14589
14590 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14591 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14592 there. */
14593 if (place && JUMP_P (place)
14594 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14595 && (JUMP_LABEL (place) == NULL
14596 || JUMP_LABEL (place) == XEXP (note, 0)))
14597 {
14598 rtx label = JUMP_LABEL (place);
14599
14600 if (!label)
14601 JUMP_LABEL (place) = XEXP (note, 0);
14602 else if (LABEL_P (label))
14603 LABEL_NUSES (label)--;
14604 }
14605
14606 if (place2 && JUMP_P (place2)
14607 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14608 && (JUMP_LABEL (place2) == NULL
14609 || JUMP_LABEL (place2) == XEXP (note, 0)))
14610 {
14611 rtx label = JUMP_LABEL (place2);
14612
14613 if (!label)
14614 JUMP_LABEL (place2) = XEXP (note, 0);
14615 else if (LABEL_P (label))
14616 LABEL_NUSES (label)--;
14617 place2 = 0;
14618 }
14619 break;
14620
14621 case REG_NONNEG:
14622 /* This note says something about the value of a register prior
14623 to the execution of an insn. It is too much trouble to see
14624 if the note is still correct in all situations. It is better
14625 to simply delete it. */
14626 break;
14627
14628 case REG_DEAD:
14629 /* If we replaced the right hand side of FROM_INSN with a
14630 REG_EQUAL note, the original use of the dying register
14631 will not have been combined into I3 and I2. In such cases,
14632 FROM_INSN is guaranteed to be the first of the combined
14633 instructions, so we simply need to search back before
14634 FROM_INSN for the previous use or set of this register,
14635 then alter the notes there appropriately.
14636
14637 If the register is used as an input in I3, it dies there.
14638 Similarly for I2, if it is nonzero and adjacent to I3.
14639
14640 If the register is not used as an input in either I3 or I2
14641 and it is not one of the registers we were supposed to eliminate,
14642 there are two possibilities. We might have a non-adjacent I2
14643 or we might have somehow eliminated an additional register
14644 from a computation. For example, we might have had A & B where
14645 we discover that B will always be zero. In this case we will
14646 eliminate the reference to A.
14647
14648 In both cases, we must search to see if we can find a previous
14649 use of A and put the death note there. */
14650
14651 if (from_insn
14652 && from_insn == i2mod
14653 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14654 tem_insn = from_insn;
14655 else
14656 {
14657 if (from_insn
14658 && CALL_P (from_insn)
14659 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14660 place = from_insn;
14661 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (insn: i2)))
14662 {
14663 /* If the new I2 sets the same register that is marked
14664 dead in the note, we do not in general know where to
14665 put the note. One important case we _can_ handle is
14666 when the note comes from I3. */
14667 if (from_insn == i3)
14668 place = i3;
14669 else
14670 break;
14671 }
14672 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: i3)))
14673 place = i3;
14674 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14675 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14676 place = i2;
14677 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14678 && !(i2mod
14679 && reg_overlap_mentioned_p (XEXP (note, 0),
14680 i2mod_old_rhs)))
14681 || rtx_equal_p (XEXP (note, 0), elim_i1)
14682 || rtx_equal_p (XEXP (note, 0), elim_i0))
14683 break;
14684 tem_insn = i3;
14685 }
14686
14687 if (place == 0)
14688 {
14689 basic_block bb = this_basic_block;
14690
14691 for (tem_insn = PREV_INSN (insn: tem_insn); place == 0; tem_insn = PREV_INSN (insn: tem_insn))
14692 {
14693 if (!NONDEBUG_INSN_P (tem_insn))
14694 {
14695 if (tem_insn == BB_HEAD (bb))
14696 break;
14697 continue;
14698 }
14699
14700 /* If the register is being set at TEM_INSN, see if that is all
14701 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14702 into a REG_UNUSED note instead. Don't delete sets to
14703 global register vars. */
14704 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14705 || !global_regs[REGNO (XEXP (note, 0))])
14706 && reg_set_p (XEXP (note, 0), PATTERN (insn: tem_insn)))
14707 {
14708 rtx set = single_set (insn: tem_insn);
14709 rtx inner_dest = 0;
14710
14711 if (set != 0)
14712 for (inner_dest = SET_DEST (set);
14713 (GET_CODE (inner_dest) == STRICT_LOW_PART
14714 || GET_CODE (inner_dest) == SUBREG
14715 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14716 inner_dest = XEXP (inner_dest, 0))
14717 ;
14718
14719 /* Verify that it was the set, and not a clobber that
14720 modified the register.
14721
14722 If we cannot delete the setter due to side
14723 effects, mark the user with an UNUSED note instead
14724 of deleting it. */
14725
14726 if (set != 0 && ! side_effects_p (SET_SRC (set))
14727 && rtx_equal_p (XEXP (note, 0), inner_dest))
14728 {
14729 /* Move the notes and links of TEM_INSN elsewhere.
14730 This might delete other dead insns recursively.
14731 First set the pattern to something that won't use
14732 any register. */
14733 rtx old_notes = REG_NOTES (tem_insn);
14734
14735 PATTERN (insn: tem_insn) = pc_rtx;
14736 REG_NOTES (tem_insn) = NULL;
14737
14738 distribute_notes (notes: old_notes, from_insn: tem_insn, i3: tem_insn, NULL,
14739 NULL_RTX, NULL_RTX, NULL_RTX);
14740 distribute_links (LOG_LINKS (tem_insn));
14741
14742 unsigned int regno = REGNO (XEXP (note, 0));
14743 reg_stat_type *rsp = &reg_stat[regno];
14744 if (rsp->last_set == tem_insn)
14745 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14746
14747 SET_INSN_DELETED (tem_insn);
14748 if (tem_insn == i2)
14749 i2 = NULL;
14750 }
14751 else
14752 {
14753 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14754
14755 /* If there isn't already a REG_UNUSED note, put one
14756 here. Do not place a REG_DEAD note, even if
14757 the register is also used here; that would not
14758 match the algorithm used in lifetime analysis
14759 and can cause the consistency check in the
14760 scheduler to fail. */
14761 if (! find_regno_note (tem_insn, REG_UNUSED,
14762 REGNO (XEXP (note, 0))))
14763 place = tem_insn;
14764 break;
14765 }
14766 }
14767 else if (reg_referenced_p (XEXP (note, 0), PATTERN (insn: tem_insn))
14768 || (CALL_P (tem_insn)
14769 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14770 {
14771 place = tem_insn;
14772
14773 /* If we are doing a 3->2 combination, and we have a
14774 register which formerly died in i3 and was not used
14775 by i2, which now no longer dies in i3 and is used in
14776 i2 but does not die in i2, and place is between i2
14777 and i3, then we may need to move a link from place to
14778 i2. */
14779 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14780 && from_insn
14781 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14782 && reg_referenced_p (XEXP (note, 0), PATTERN (insn: i2)))
14783 {
14784 struct insn_link *links = LOG_LINKS (place);
14785 LOG_LINKS (place) = NULL;
14786 distribute_links (links);
14787 }
14788 break;
14789 }
14790
14791 if (tem_insn == BB_HEAD (bb))
14792 break;
14793 }
14794
14795 }
14796
14797 /* If the register is set or already dead at PLACE, we needn't do
14798 anything with this note if it is still a REG_DEAD note.
14799 We check here if it is set at all, not if is it totally replaced,
14800 which is what `dead_or_set_p' checks, so also check for it being
14801 set partially. */
14802
14803 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14804 {
14805 unsigned int regno = REGNO (XEXP (note, 0));
14806 reg_stat_type *rsp = &reg_stat[regno];
14807
14808 if (dead_or_set_p (place, XEXP (note, 0))
14809 || reg_bitfield_target_p (XEXP (note, 0), body: PATTERN (insn: place)))
14810 {
14811 /* Unless the register previously died in PLACE, clear
14812 last_death. [I no longer understand why this is
14813 being done.] */
14814 if (rsp->last_death != place)
14815 rsp->last_death = 0;
14816 place = 0;
14817 }
14818 else
14819 rsp->last_death = place;
14820
14821 /* If this is a death note for a hard reg that is occupying
14822 multiple registers, ensure that we are still using all
14823 parts of the object. If we find a piece of the object
14824 that is unused, we must arrange for an appropriate REG_DEAD
14825 note to be added for it. However, we can't just emit a USE
14826 and tag the note to it, since the register might actually
14827 be dead; so we recourse, and the recursive call then finds
14828 the previous insn that used this register. */
14829
14830 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14831 {
14832 unsigned int endregno = END_REGNO (XEXP (note, 0));
14833 bool all_used = true;
14834 unsigned int i;
14835
14836 for (i = regno; i < endregno; i++)
14837 if ((! refers_to_regno_p (regnum: i, x: PATTERN (insn: place))
14838 && ! find_regno_fusage (place, USE, i))
14839 || dead_or_set_regno_p (place, i))
14840 {
14841 all_used = false;
14842 break;
14843 }
14844
14845 if (! all_used)
14846 {
14847 /* Put only REG_DEAD notes for pieces that are
14848 not already dead or set. */
14849
14850 for (i = regno; i < endregno;
14851 i += hard_regno_nregs (regno: i, reg_raw_mode[i]))
14852 {
14853 rtx piece = regno_reg_rtx[i];
14854 basic_block bb = this_basic_block;
14855
14856 if (! dead_or_set_p (place, piece)
14857 && ! reg_bitfield_target_p (x: piece,
14858 body: PATTERN (insn: place)))
14859 {
14860 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14861 NULL_RTX);
14862
14863 distribute_notes (notes: new_note, from_insn: place, i3: place,
14864 NULL, NULL_RTX, NULL_RTX,
14865 NULL_RTX);
14866 }
14867 else if (! refers_to_regno_p (regnum: i, x: PATTERN (insn: place))
14868 && ! find_regno_fusage (place, USE, i))
14869 for (tem_insn = PREV_INSN (insn: place); ;
14870 tem_insn = PREV_INSN (insn: tem_insn))
14871 {
14872 if (!NONDEBUG_INSN_P (tem_insn))
14873 {
14874 if (tem_insn == BB_HEAD (bb))
14875 break;
14876 continue;
14877 }
14878 if (dead_or_set_p (tem_insn, piece)
14879 || reg_bitfield_target_p (x: piece,
14880 body: PATTERN (insn: tem_insn)))
14881 {
14882 add_reg_note (tem_insn, REG_UNUSED, piece);
14883 break;
14884 }
14885 }
14886 }
14887
14888 place = 0;
14889 }
14890 }
14891 }
14892 break;
14893
14894 default:
14895 /* Any other notes should not be present at this point in the
14896 compilation. */
14897 gcc_unreachable ();
14898 }
14899
14900 if (place)
14901 {
14902 XEXP (note, 1) = REG_NOTES (place);
14903 REG_NOTES (place) = note;
14904
14905 /* Set added_notes_insn to the earliest insn we added a note to. */
14906 if (added_notes_insn == 0
14907 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14908 added_notes_insn = place;
14909 }
14910
14911 if (place2)
14912 {
14913 add_shallow_copy_of_reg_note (place2, note);
14914
14915 /* Set added_notes_insn to the earliest insn we added a note to. */
14916 if (added_notes_insn == 0
14917 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14918 added_notes_insn = place2;
14919 }
14920 }
14921}
14922
14923/* Similarly to above, distribute the LOG_LINKS that used to be present on
14924 I3, I2, and I1 to new locations. This is also called to add a link
14925 pointing at I3 when I3's destination is changed. */
14926
14927static void
14928distribute_links (struct insn_link *links)
14929{
14930 struct insn_link *link, *next_link;
14931
14932 for (link = links; link; link = next_link)
14933 {
14934 rtx_insn *place = 0;
14935 rtx_insn *insn;
14936 rtx set, reg;
14937
14938 next_link = link->next;
14939
14940 /* If the insn that this link points to is a NOTE, ignore it. */
14941 if (NOTE_P (link->insn))
14942 continue;
14943
14944 set = 0;
14945 rtx pat = PATTERN (insn: link->insn);
14946 if (GET_CODE (pat) == SET)
14947 set = pat;
14948 else if (GET_CODE (pat) == PARALLEL)
14949 {
14950 int i;
14951 for (i = 0; i < XVECLEN (pat, 0); i++)
14952 {
14953 set = XVECEXP (pat, 0, i);
14954 if (GET_CODE (set) != SET)
14955 continue;
14956
14957 reg = SET_DEST (set);
14958 while (GET_CODE (reg) == ZERO_EXTRACT
14959 || GET_CODE (reg) == STRICT_LOW_PART
14960 || GET_CODE (reg) == SUBREG)
14961 reg = XEXP (reg, 0);
14962
14963 if (!REG_P (reg))
14964 continue;
14965
14966 if (REGNO (reg) == link->regno)
14967 break;
14968 }
14969 if (i == XVECLEN (pat, 0))
14970 continue;
14971 }
14972 else
14973 continue;
14974
14975 reg = SET_DEST (set);
14976
14977 while (GET_CODE (reg) == ZERO_EXTRACT
14978 || GET_CODE (reg) == STRICT_LOW_PART
14979 || GET_CODE (reg) == SUBREG)
14980 reg = XEXP (reg, 0);
14981
14982 if (reg == pc_rtx)
14983 continue;
14984
14985 /* A LOG_LINK is defined as being placed on the first insn that uses
14986 a register and points to the insn that sets the register. Start
14987 searching at the next insn after the target of the link and stop
14988 when we reach a set of the register or the end of the basic block.
14989
14990 Note that this correctly handles the link that used to point from
14991 I3 to I2. Also note that not much searching is typically done here
14992 since most links don't point very far away. */
14993
14994 for (insn = NEXT_INSN (insn: link->insn);
14995 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14996 || BB_HEAD (this_basic_block->next_bb) != insn));
14997 insn = NEXT_INSN (insn))
14998 if (DEBUG_INSN_P (insn))
14999 continue;
15000 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
15001 {
15002 if (reg_referenced_p (reg, PATTERN (insn)))
15003 place = insn;
15004 break;
15005 }
15006 else if (CALL_P (insn)
15007 && find_reg_fusage (insn, USE, reg))
15008 {
15009 place = insn;
15010 break;
15011 }
15012 else if (INSN_P (insn) && reg_set_p (reg, insn))
15013 break;
15014
15015 /* If we found a place to put the link, place it there unless there
15016 is already a link to the same insn as LINK at that point. */
15017
15018 if (place)
15019 {
15020 struct insn_link *link2;
15021
15022 FOR_EACH_LOG_LINK (link2, place)
15023 if (link2->insn == link->insn && link2->regno == link->regno)
15024 break;
15025
15026 if (link2 == NULL)
15027 {
15028 link->next = LOG_LINKS (place);
15029 LOG_LINKS (place) = link;
15030
15031 /* Set added_links_insn to the earliest insn we added a
15032 link to. */
15033 if (added_links_insn == 0
15034 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
15035 added_links_insn = place;
15036 }
15037 }
15038 }
15039}
15040
15041/* Check for any register or memory mentioned in EQUIV that is not
15042 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
15043 of EXPR where some registers may have been replaced by constants. */
15044
15045static bool
15046unmentioned_reg_p (rtx equiv, rtx expr)
15047{
15048 subrtx_iterator::array_type array;
15049 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
15050 {
15051 const_rtx x = *iter;
15052 if ((REG_P (x) || MEM_P (x))
15053 && !reg_mentioned_p (x, expr))
15054 return true;
15055 }
15056 return false;
15057}
15058
15059/* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15060 the reg-to-reg copy can usefully combine with later instructions, but we
15061 do not want to combine the hard reg into later instructions, for that
15062 restricts register allocation. */
15063static void
15064make_more_copies (void)
15065{
15066 basic_block bb;
15067
15068 FOR_EACH_BB_FN (bb, cfun)
15069 {
15070 rtx_insn *insn;
15071
15072 FOR_BB_INSNS (bb, insn)
15073 {
15074 if (!NONDEBUG_INSN_P (insn))
15075 continue;
15076
15077 rtx set = single_set (insn);
15078 if (!set)
15079 continue;
15080
15081 rtx dest = SET_DEST (set);
15082 if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
15083 continue;
15084
15085 rtx src = SET_SRC (set);
15086 if (!(REG_P (src) && HARD_REGISTER_P (src)))
15087 continue;
15088 if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
15089 continue;
15090
15091 rtx new_reg = gen_reg_rtx (GET_MODE (dest));
15092 rtx_insn *new_insn = gen_move_insn (new_reg, src);
15093 SET_SRC (set) = new_reg;
15094 emit_insn_before (new_insn, insn);
15095 df_insn_rescan (insn);
15096 }
15097 }
15098}
15099
15100/* Try combining insns through substitution. */
15101static void
15102rest_of_handle_combine (void)
15103{
15104 make_more_copies ();
15105
15106 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
15107 df_note_add_problem ();
15108 df_analyze ();
15109
15110 regstat_init_n_sets_and_refs ();
15111 reg_n_sets_max = max_reg_num ();
15112
15113 bool rebuild_jump_labels_after_combine
15114 = combine_instructions (f: get_insns (), nregs: max_reg_num ());
15115
15116 /* Combining insns may have turned an indirect jump into a
15117 direct jump. Rebuild the JUMP_LABEL fields of jumping
15118 instructions. */
15119 if (rebuild_jump_labels_after_combine)
15120 {
15121 if (dom_info_available_p (CDI_DOMINATORS))
15122 free_dominance_info (CDI_DOMINATORS);
15123 timevar_push (tv: TV_JUMP);
15124 rebuild_jump_labels (get_insns ());
15125 cleanup_cfg (0);
15126 timevar_pop (tv: TV_JUMP);
15127 }
15128
15129 regstat_free_n_sets_and_refs ();
15130}
15131
15132namespace {
15133
15134const pass_data pass_data_combine =
15135{
15136 .type: RTL_PASS, /* type */
15137 .name: "combine", /* name */
15138 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
15139 .tv_id: TV_COMBINE, /* tv_id */
15140 PROP_cfglayout, /* properties_required */
15141 .properties_provided: 0, /* properties_provided */
15142 .properties_destroyed: 0, /* properties_destroyed */
15143 .todo_flags_start: 0, /* todo_flags_start */
15144 TODO_df_finish, /* todo_flags_finish */
15145};
15146
15147class pass_combine : public rtl_opt_pass
15148{
15149public:
15150 pass_combine (gcc::context *ctxt)
15151 : rtl_opt_pass (pass_data_combine, ctxt)
15152 {}
15153
15154 /* opt_pass methods: */
15155 bool gate (function *) final override { return (optimize > 0); }
15156 unsigned int execute (function *) final override
15157 {
15158 rest_of_handle_combine ();
15159 return 0;
15160 }
15161
15162}; // class pass_combine
15163
15164} // anon namespace
15165
15166rtl_opt_pass *
15167make_pass_combine (gcc::context *ctxt)
15168{
15169 return new pass_combine (ctxt);
15170}
15171

source code of gcc/combine.cc