1/* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.cc, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
33
34#include "config.h"
35#include "system.h"
36#include "coretypes.h"
37#include "memmodel.h"
38#include "backend.h"
39#include "target.h"
40#include "rtl.h"
41#include "tree.h"
42#include "df.h"
43#include "tm_p.h"
44#include "stringpool.h"
45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
49#include "diagnostic-core.h"
50#include "alias.h"
51#include "fold-const.h"
52#include "varasm.h"
53#include "cfgrtl.h"
54#include "tree-eh.h"
55#include "explow.h"
56#include "expr.h"
57#include "builtins.h"
58#include "rtl-iter.h"
59#include "stor-layout.h"
60#include "opts.h"
61#include "optabs.h"
62#include "predict.h"
63#include "rtx-vector-builder.h"
64#include "gimple.h"
65#include "gimple-ssa.h"
66#include "gimplify.h"
67
68struct target_rtl default_target_rtl;
69#if SWITCHABLE_TARGET
70struct target_rtl *this_target_rtl = &default_target_rtl;
71#endif
72
73#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
74
75/* Commonly used modes. */
76
77scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
78scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
79scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
80
81/* Datastructures maintained for currently processed function in RTL form. */
82
83struct rtl_data x_rtl;
84
85/* Indexed by pseudo register number, gives the rtx for that pseudo.
86 Allocated in parallel with regno_pointer_align.
87 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
88 with length attribute nested in top level structures. */
89
90rtx * regno_reg_rtx;
91
92/* This is *not* reset after each function. It gives each CODE_LABEL
93 in the entire compilation a unique label number. */
94
95static GTY(()) int label_num = 1;
96
97/* We record floating-point CONST_DOUBLEs in each floating-point mode for
98 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
99 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
100 is set only for MODE_INT and MODE_VECTOR_INT modes. */
101
102rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
103
104rtx const_true_rtx;
105
106REAL_VALUE_TYPE dconst0;
107REAL_VALUE_TYPE dconst1;
108REAL_VALUE_TYPE dconst2;
109REAL_VALUE_TYPE dconstm0;
110REAL_VALUE_TYPE dconstm1;
111REAL_VALUE_TYPE dconsthalf;
112REAL_VALUE_TYPE dconstinf;
113REAL_VALUE_TYPE dconstninf;
114
115/* Record fixed-point constant 0 and 1. */
116FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
117FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
118
119/* We make one copy of (const_int C) where C is in
120 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
121 to save space during the compilation and simplify comparisons of
122 integers. */
123
124rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
125
126/* Standard pieces of rtx, to be substituted directly into things. */
127rtx pc_rtx;
128rtx ret_rtx;
129rtx simple_return_rtx;
130
131/* Marker used for denoting an INSN, which should never be accessed (i.e.,
132 this pointer should normally never be dereferenced), but is required to be
133 distinct from NULL_RTX. Currently used by peephole2 pass. */
134rtx_insn *invalid_insn_rtx;
135
136/* A hash table storing CONST_INTs whose absolute value is greater
137 than MAX_SAVED_CONST_INT. */
138
139struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
140{
141 typedef HOST_WIDE_INT compare_type;
142
143 static hashval_t hash (rtx i);
144 static bool equal (rtx i, HOST_WIDE_INT h);
145};
146
147static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
148
149struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
150{
151 static hashval_t hash (rtx x);
152 static bool equal (rtx x, rtx y);
153};
154
155static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
156
157struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
158{
159 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
160
161 static hashval_t hash (rtx x);
162 static bool equal (rtx x, const compare_type &y);
163};
164
165static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
166
167/* A hash table storing register attribute structures. */
168struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
169{
170 static hashval_t hash (reg_attrs *x);
171 static bool equal (reg_attrs *a, reg_attrs *b);
172};
173
174static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
175
176/* A hash table storing all CONST_DOUBLEs. */
177struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
178{
179 static hashval_t hash (rtx x);
180 static bool equal (rtx x, rtx y);
181};
182
183static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
184
185/* A hash table storing all CONST_FIXEDs. */
186struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
187{
188 static hashval_t hash (rtx x);
189 static bool equal (rtx x, rtx y);
190};
191
192static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
193
194#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
195#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
196#define first_label_num (crtl->emit.x_first_label_num)
197
198static void set_used_decls (tree);
199static void mark_label_nuses (rtx);
200#if TARGET_SUPPORTS_WIDE_INT
201static rtx lookup_const_wide_int (rtx);
202#endif
203static rtx lookup_const_double (rtx);
204static rtx lookup_const_fixed (rtx);
205static rtx gen_const_vector (machine_mode, int);
206static void copy_rtx_if_shared_1 (rtx *orig);
207
208/* Probability of the conditional branch currently proceeded by try_split. */
209profile_probability split_branch_probability;
210
211/* Returns a hash code for X (which is a really a CONST_INT). */
212
213hashval_t
214const_int_hasher::hash (rtx x)
215{
216 return (hashval_t) INTVAL (x);
217}
218
219/* Returns true if the value represented by X (which is really a
220 CONST_INT) is the same as that given by Y (which is really a
221 HOST_WIDE_INT *). */
222
223bool
224const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
225{
226 return (INTVAL (x) == y);
227}
228
229#if TARGET_SUPPORTS_WIDE_INT
230/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
231
232hashval_t
233const_wide_int_hasher::hash (rtx x)
234{
235 int i;
236 unsigned HOST_WIDE_INT hash = 0;
237 const_rtx xr = x;
238
239 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
240 hash += CONST_WIDE_INT_ELT (xr, i);
241
242 return (hashval_t) hash;
243}
244
245/* Returns true if the value represented by X (which is really a
246 CONST_WIDE_INT) is the same as that given by Y (which is really a
247 CONST_WIDE_INT). */
248
249bool
250const_wide_int_hasher::equal (rtx x, rtx y)
251{
252 int i;
253 const_rtx xr = x;
254 const_rtx yr = y;
255 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
256 return false;
257
258 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
259 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
260 return false;
261
262 return true;
263}
264#endif
265
266/* Returns a hash code for CONST_POLY_INT X. */
267
268hashval_t
269const_poly_int_hasher::hash (rtx x)
270{
271 inchash::hash h;
272 h.add_int (GET_MODE (x));
273 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
274 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
275 return h.end ();
276}
277
278/* Returns true if CONST_POLY_INT X is an rtx representation of Y. */
279
280bool
281const_poly_int_hasher::equal (rtx x, const compare_type &y)
282{
283 if (GET_MODE (x) != y.first)
284 return false;
285 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
286 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
287 return false;
288 return true;
289}
290
291/* Returns a hash code for X (which is really a CONST_DOUBLE). */
292hashval_t
293const_double_hasher::hash (rtx x)
294{
295 const_rtx const value = x;
296 hashval_t h;
297
298 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
299 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
300 else
301 {
302 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
303 /* MODE is used in the comparison, so it should be in the hash. */
304 h ^= GET_MODE (value);
305 }
306 return h;
307}
308
309/* Returns true if the value represented by X (really a ...)
310 is the same as that represented by Y (really a ...) */
311bool
312const_double_hasher::equal (rtx x, rtx y)
313{
314 const_rtx const a = x, b = y;
315
316 if (GET_MODE (a) != GET_MODE (b))
317 return false;
318 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
319 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
320 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
321 else
322 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
323 CONST_DOUBLE_REAL_VALUE (b));
324}
325
326/* Returns a hash code for X (which is really a CONST_FIXED). */
327
328hashval_t
329const_fixed_hasher::hash (rtx x)
330{
331 const_rtx const value = x;
332 hashval_t h;
333
334 h = fixed_hash (CONST_FIXED_VALUE (value));
335 /* MODE is used in the comparison, so it should be in the hash. */
336 h ^= GET_MODE (value);
337 return h;
338}
339
340/* Returns true if the value represented by X is the same as that
341 represented by Y. */
342
343bool
344const_fixed_hasher::equal (rtx x, rtx y)
345{
346 const_rtx const a = x, b = y;
347
348 if (GET_MODE (a) != GET_MODE (b))
349 return false;
350 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
351}
352
353/* Return true if the given memory attributes are equal. */
354
355bool
356mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
357{
358 if (p == q)
359 return true;
360 if (!p || !q)
361 return false;
362 return (p->alias == q->alias
363 && p->offset_known_p == q->offset_known_p
364 && (!p->offset_known_p || known_eq (p->offset, q->offset))
365 && p->size_known_p == q->size_known_p
366 && (!p->size_known_p || known_eq (p->size, q->size))
367 && p->align == q->align
368 && p->addrspace == q->addrspace
369 && (p->expr == q->expr
370 || (p->expr != NULL_TREE && q->expr != NULL_TREE
371 && operand_equal_p (p->expr, q->expr, flags: 0))));
372}
373
374/* Set MEM's memory attributes so that they are the same as ATTRS. */
375
376static void
377set_mem_attrs (rtx mem, mem_attrs *attrs)
378{
379 /* If everything is the default, we can just clear the attributes. */
380 if (mem_attrs_eq_p (p: attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
381 {
382 MEM_ATTRS (mem) = 0;
383 return;
384 }
385
386 if (!MEM_ATTRS (mem)
387 || !mem_attrs_eq_p (p: attrs, MEM_ATTRS (mem)))
388 {
389 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
390 memcpy (MEM_ATTRS (mem), src: attrs, n: sizeof (mem_attrs));
391 }
392}
393
394/* Returns a hash code for X (which is a really a reg_attrs *). */
395
396hashval_t
397reg_attr_hasher::hash (reg_attrs *x)
398{
399 const reg_attrs *const p = x;
400
401 inchash::hash h;
402 h.add_ptr (ptr: p->decl);
403 h.add_poly_hwi (v: p->offset);
404 return h.end ();
405}
406
407/* Returns true if the value represented by X is the same as that given by
408 Y. */
409
410bool
411reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
412{
413 const reg_attrs *const p = x;
414 const reg_attrs *const q = y;
415
416 return (p->decl == q->decl && known_eq (p->offset, q->offset));
417}
418/* Allocate a new reg_attrs structure and insert it into the hash table if
419 one identical to it is not already in the table. We are doing this for
420 MEM of mode MODE. */
421
422static reg_attrs *
423get_reg_attrs (tree decl, poly_int64 offset)
424{
425 reg_attrs attrs;
426
427 /* If everything is the default, we can just return zero. */
428 if (decl == 0 && known_eq (offset, 0))
429 return 0;
430
431 attrs.decl = decl;
432 attrs.offset = offset;
433
434 reg_attrs **slot = reg_attrs_htab->find_slot (value: &attrs, insert: INSERT);
435 if (*slot == 0)
436 {
437 *slot = ggc_alloc<reg_attrs> ();
438 memcpy (dest: *slot, src: &attrs, n: sizeof (reg_attrs));
439 }
440
441 return *slot;
442}
443
444
445#if !HAVE_blockage
446/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
447 and to block register equivalences to be seen across this insn. */
448
449rtx
450gen_blockage (void)
451{
452 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
453 MEM_VOLATILE_P (x) = true;
454 return x;
455}
456#endif
457
458
459/* Set the mode and register number of X to MODE and REGNO. */
460
461void
462set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
463{
464 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
465 ? hard_regno_nregs (regno, mode)
466 : 1);
467 PUT_MODE_RAW (x, mode);
468 set_regno_raw (x, regno, nregs);
469}
470
471/* Initialize a fresh REG rtx with mode MODE and register REGNO. */
472
473rtx
474init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
475{
476 set_mode_and_regno (x, mode, regno);
477 REG_ATTRS (x) = NULL;
478 ORIGINAL_REGNO (x) = regno;
479 return x;
480}
481
482/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
483 don't attempt to share with the various global pieces of rtl (such as
484 frame_pointer_rtx). */
485
486rtx
487gen_raw_REG (machine_mode mode, unsigned int regno)
488{
489 rtx x = rtx_alloc (REG MEM_STAT_INFO);
490 init_raw_REG (x, mode, regno);
491 return x;
492}
493
494/* There are some RTL codes that require special attention; the generation
495 functions do the raw handling. If you add to this list, modify
496 special_rtx in gengenrtl.cc as well. */
497
498rtx_expr_list *
499gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
500{
501 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
502 expr_list));
503}
504
505rtx_insn_list *
506gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
507{
508 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
509 insn_list));
510}
511
512rtx_insn *
513gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
514 basic_block bb, rtx pattern, int location, int code,
515 rtx reg_notes)
516{
517 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
518 prev_insn, next_insn,
519 bb, pattern, location, code,
520 reg_notes));
521}
522
523rtx
524gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
525{
526 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
527 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
528
529#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
530 if (const_true_rtx && arg == STORE_FLAG_VALUE)
531 return const_true_rtx;
532#endif
533
534 /* Look up the CONST_INT in the hash table. */
535 rtx *slot = const_int_htab->find_slot_with_hash (comparable: arg, hash: (hashval_t) arg,
536 insert: INSERT);
537 if (*slot == 0)
538 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
539
540 return *slot;
541}
542
543rtx
544gen_int_mode (poly_int64 c, machine_mode mode)
545{
546 c = trunc_int_for_mode (c, mode);
547 if (c.is_constant ())
548 return GEN_INT (c.coeffs[0]);
549 unsigned int prec = GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode));
550 return immed_wide_int_const (poly_wide_int::from (a: c, bitsize: prec, sgn: SIGNED), mode);
551}
552
553/* CONST_DOUBLEs might be created from pairs of integers, or from
554 REAL_VALUE_TYPEs. Also, their length is known only at run time,
555 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
556
557/* Determine whether REAL, a CONST_DOUBLE, already exists in the
558 hash table. If so, return its counterpart; otherwise add it
559 to the hash table and return it. */
560static rtx
561lookup_const_double (rtx real)
562{
563 rtx *slot = const_double_htab->find_slot (value: real, insert: INSERT);
564 if (*slot == 0)
565 *slot = real;
566
567 return *slot;
568}
569
570/* Return a CONST_DOUBLE rtx for a floating-point value specified by
571 VALUE in mode MODE. */
572rtx
573const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
574{
575 rtx real = rtx_alloc (CONST_DOUBLE);
576 PUT_MODE (x: real, mode);
577
578 real->u.rv = value;
579
580 return lookup_const_double (real);
581}
582
583/* Determine whether FIXED, a CONST_FIXED, already exists in the
584 hash table. If so, return its counterpart; otherwise add it
585 to the hash table and return it. */
586
587static rtx
588lookup_const_fixed (rtx fixed)
589{
590 rtx *slot = const_fixed_htab->find_slot (value: fixed, insert: INSERT);
591 if (*slot == 0)
592 *slot = fixed;
593
594 return *slot;
595}
596
597/* Return a CONST_FIXED rtx for a fixed-point value specified by
598 VALUE in mode MODE. */
599
600rtx
601const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
602{
603 rtx fixed = rtx_alloc (CONST_FIXED);
604 PUT_MODE (x: fixed, mode);
605
606 fixed->u.fv = value;
607
608 return lookup_const_fixed (fixed);
609}
610
611#if TARGET_SUPPORTS_WIDE_INT == 0
612/* Constructs double_int from rtx CST. */
613
614double_int
615rtx_to_double_int (const_rtx cst)
616{
617 double_int r;
618
619 if (CONST_INT_P (cst))
620 r = double_int::from_shwi (INTVAL (cst));
621 else if (CONST_DOUBLE_AS_INT_P (cst))
622 {
623 r.low = CONST_DOUBLE_LOW (cst);
624 r.high = CONST_DOUBLE_HIGH (cst);
625 }
626 else
627 gcc_unreachable ();
628
629 return r;
630}
631#endif
632
633#if TARGET_SUPPORTS_WIDE_INT
634/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
635 If so, return its counterpart; otherwise add it to the hash table and
636 return it. */
637
638static rtx
639lookup_const_wide_int (rtx wint)
640{
641 rtx *slot = const_wide_int_htab->find_slot (value: wint, insert: INSERT);
642 if (*slot == 0)
643 *slot = wint;
644
645 return *slot;
646}
647#endif
648
649/* Return an rtx constant for V, given that the constant has mode MODE.
650 The returned rtx will be a CONST_INT if V fits, otherwise it will be
651 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
652 (if TARGET_SUPPORTS_WIDE_INT). */
653
654static rtx
655immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
656{
657 unsigned int len = v.get_len ();
658 /* Not scalar_int_mode because we also allow pointer bound modes. */
659 unsigned int prec = GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode));
660
661 /* Allow truncation but not extension since we do not know if the
662 number is signed or unsigned. */
663 gcc_assert (prec <= v.get_precision ());
664
665 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
666 return gen_int_mode (c: v.elt (i: 0), mode);
667
668#if TARGET_SUPPORTS_WIDE_INT
669 {
670 unsigned int i;
671 rtx value;
672 unsigned int blocks_needed
673 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
674
675 if (len > blocks_needed)
676 len = blocks_needed;
677
678 value = const_wide_int_alloc (len);
679
680 /* It is so tempting to just put the mode in here. Must control
681 myself ... */
682 PUT_MODE (x: value, VOIDmode);
683 CWI_PUT_NUM_ELEM (value, len);
684
685 for (i = 0; i < len; i++)
686 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
687
688 return lookup_const_wide_int (wint: value);
689 }
690#else
691 return immed_double_const (v.elt (0), v.elt (1), mode);
692#endif
693}
694
695#if TARGET_SUPPORTS_WIDE_INT == 0
696/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
697 of ints: I0 is the low-order word and I1 is the high-order word.
698 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
699 implied upper bits are copies of the high bit of i1. The value
700 itself is neither signed nor unsigned. Do not use this routine for
701 non-integer modes; convert to REAL_VALUE_TYPE and use
702 const_double_from_real_value. */
703
704rtx
705immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
706{
707 rtx value;
708 unsigned int i;
709
710 /* There are the following cases (note that there are no modes with
711 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
712
713 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
714 gen_int_mode.
715 2) If the value of the integer fits into HOST_WIDE_INT anyway
716 (i.e., i1 consists only from copies of the sign bit, and sign
717 of i0 and i1 are the same), then we return a CONST_INT for i0.
718 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
719 scalar_mode smode;
720 if (is_a <scalar_mode> (mode, &smode)
721 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
722 return gen_int_mode (i0, mode);
723
724 /* If this integer fits in one word, return a CONST_INT. */
725 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
726 return GEN_INT (i0);
727
728 /* We use VOIDmode for integers. */
729 value = rtx_alloc (CONST_DOUBLE);
730 PUT_MODE (value, VOIDmode);
731
732 CONST_DOUBLE_LOW (value) = i0;
733 CONST_DOUBLE_HIGH (value) = i1;
734
735 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
736 XWINT (value, i) = 0;
737
738 return lookup_const_double (value);
739}
740#endif
741
742/* Return an rtx representation of C in mode MODE. */
743
744rtx
745immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
746{
747 if (c.is_constant ())
748 return immed_wide_int_const_1 (v: c.coeffs[0], mode);
749
750 /* Not scalar_int_mode because we also allow pointer bound modes. */
751 unsigned int prec = GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode));
752
753 /* Allow truncation but not extension since we do not know if the
754 number is signed or unsigned. */
755 gcc_assert (prec <= c.coeffs[0].get_precision ());
756 poly_wide_int newc = poly_wide_int::from (a: c, bitsize: prec, sgn: SIGNED);
757
758 /* See whether we already have an rtx for this constant. */
759 inchash::hash h;
760 h.add_int (v: mode);
761 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
762 h.add_wide_int (x: newc.coeffs[i]);
763 const_poly_int_hasher::compare_type typed_value (mode, newc);
764 rtx *slot = const_poly_int_htab->find_slot_with_hash (comparable: typed_value,
765 hash: h.end (), insert: INSERT);
766 rtx x = *slot;
767 if (x)
768 return x;
769
770 /* Create a new rtx. There's a choice to be made here between installing
771 the actual mode of the rtx or leaving it as VOIDmode (for consistency
772 with CONST_INT). In practice the handling of the codes is different
773 enough that we get no benefit from using VOIDmode, and various places
774 assume that VOIDmode implies CONST_INT. Using the real mode seems like
775 the right long-term direction anyway. */
776 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
777 size_t extra_size = twi::extra_size (precision: prec);
778 x = rtx_alloc_v (CONST_POLY_INT,
779 sizeof (struct const_poly_int_def) + extra_size);
780 PUT_MODE (x, mode);
781 CONST_POLY_INT_COEFFS (x).set_precision (precision: prec);
782 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
783 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
784
785 *slot = x;
786 return x;
787}
788
789rtx
790gen_rtx_REG (machine_mode mode, unsigned int regno)
791{
792 /* In case the MD file explicitly references the frame pointer, have
793 all such references point to the same frame pointer. This is
794 used during frame pointer elimination to distinguish the explicit
795 references to these registers from pseudos that happened to be
796 assigned to them.
797
798 If we have eliminated the frame pointer or arg pointer, we will
799 be using it as a normal register, for example as a spill
800 register. In such cases, we might be accessing it in a mode that
801 is not Pmode and therefore cannot use the pre-allocated rtx.
802
803 Also don't do this when we are making new REGs in reload, since
804 we don't want to get confused with the real pointers. */
805
806 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
807 {
808 if (regno == FRAME_POINTER_REGNUM
809 && (!reload_completed || frame_pointer_needed))
810 return frame_pointer_rtx;
811
812 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
813 && regno == HARD_FRAME_POINTER_REGNUM
814 && (!reload_completed || frame_pointer_needed))
815 return hard_frame_pointer_rtx;
816#if !HARD_FRAME_POINTER_IS_ARG_POINTER
817 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
818 && regno == ARG_POINTER_REGNUM)
819 return arg_pointer_rtx;
820#endif
821#ifdef RETURN_ADDRESS_POINTER_REGNUM
822 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
823 return return_address_pointer_rtx;
824#endif
825 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
826 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
827 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
828 return pic_offset_table_rtx;
829 if (regno == STACK_POINTER_REGNUM)
830 return stack_pointer_rtx;
831 }
832
833#if 0
834 /* If the per-function register table has been set up, try to re-use
835 an existing entry in that table to avoid useless generation of RTL.
836
837 This code is disabled for now until we can fix the various backends
838 which depend on having non-shared hard registers in some cases. Long
839 term we want to re-enable this code as it can significantly cut down
840 on the amount of useless RTL that gets generated.
841
842 We'll also need to fix some code that runs after reload that wants to
843 set ORIGINAL_REGNO. */
844
845 if (cfun
846 && cfun->emit
847 && regno_reg_rtx
848 && regno < FIRST_PSEUDO_REGISTER
849 && reg_raw_mode[regno] == mode)
850 return regno_reg_rtx[regno];
851#endif
852
853 return gen_raw_REG (mode, regno);
854}
855
856rtx
857gen_rtx_MEM (machine_mode mode, rtx addr)
858{
859 rtx rt = gen_rtx_raw_MEM (mode, addr);
860
861 /* This field is not cleared by the mere allocation of the rtx, so
862 we clear it here. */
863 MEM_ATTRS (rt) = 0;
864
865 return rt;
866}
867
868/* Generate a memory referring to non-trapping constant memory. */
869
870rtx
871gen_const_mem (machine_mode mode, rtx addr)
872{
873 rtx mem = gen_rtx_MEM (mode, addr);
874 MEM_READONLY_P (mem) = 1;
875 MEM_NOTRAP_P (mem) = 1;
876 return mem;
877}
878
879/* Generate a MEM referring to fixed portions of the frame, e.g., register
880 save areas. */
881
882rtx
883gen_frame_mem (machine_mode mode, rtx addr)
884{
885 rtx mem = gen_rtx_MEM (mode, addr);
886 MEM_NOTRAP_P (mem) = 1;
887 set_mem_alias_set (mem, get_frame_alias_set ());
888 return mem;
889}
890
891/* Generate a MEM referring to a temporary use of the stack, not part
892 of the fixed stack frame. For example, something which is pushed
893 by a target splitter. */
894rtx
895gen_tmp_stack_mem (machine_mode mode, rtx addr)
896{
897 rtx mem = gen_rtx_MEM (mode, addr);
898 MEM_NOTRAP_P (mem) = 1;
899 if (!cfun->calls_alloca)
900 set_mem_alias_set (mem, get_frame_alias_set ());
901 return mem;
902}
903
904/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
905 this construct would be valid, and false otherwise. */
906
907bool
908validate_subreg (machine_mode omode, machine_mode imode,
909 const_rtx reg, poly_uint64 offset)
910{
911 poly_uint64 isize = GET_MODE_SIZE (mode: imode);
912 poly_uint64 osize = GET_MODE_SIZE (mode: omode);
913
914 /* The sizes must be ordered, so that we know whether the subreg
915 is partial, paradoxical or complete. */
916 if (!ordered_p (a: isize, b: osize))
917 return false;
918
919 /* All subregs must be aligned. */
920 if (!multiple_p (a: offset, b: osize))
921 return false;
922
923 /* The subreg offset cannot be outside the inner object. */
924 if (maybe_ge (offset, isize))
925 return false;
926
927 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
928
929 /* ??? This should not be here. Temporarily continue to allow word_mode
930 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
931 Generally, backends are doing something sketchy but it'll take time to
932 fix them all. */
933 if (omode == word_mode)
934 ;
935 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
936 is the culprit here, and not the backends. */
937 else if (known_ge (osize, regsize) && known_ge (isize, osize))
938 ;
939 /* Allow component subregs of complex and vector. Though given the below
940 extraction rules, it's not always clear what that means. */
941 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
942 && GET_MODE_INNER (imode) == omode)
943 ;
944 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
945 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
946 surely isn't the cleanest way to represent this. It's questionable
947 if this ought to be represented at all -- why can't this all be hidden
948 in post-reload splitters that make arbitrarily mode changes to the
949 registers themselves. */
950 else if (VECTOR_MODE_P (omode)
951 && GET_MODE_UNIT_SIZE (omode) == GET_MODE_UNIT_SIZE (imode))
952 ;
953 /* Subregs involving floating point modes are not allowed to
954 change size unless it's an insert into a complex mode.
955 Therefore (subreg:DI (reg:DF) 0) and (subreg:CS (reg:SF) 0) are fine, but
956 (subreg:SI (reg:DF) 0) isn't. */
957 else if ((FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
958 && !COMPLEX_MODE_P (omode))
959 {
960 if (! (known_eq (isize, osize)
961 /* LRA can use subreg to store a floating point value in
962 an integer mode. Although the floating point and the
963 integer modes need the same number of hard registers,
964 the size of floating point mode can be less than the
965 integer mode. LRA also uses subregs for a register
966 should be used in different mode in on insn. */
967 || lra_in_progress))
968 return false;
969 }
970
971 /* Paradoxical subregs must have offset zero. */
972 if (maybe_gt (osize, isize))
973 return known_eq (offset, 0U);
974
975 /* This is a normal subreg. Verify that the offset is representable. */
976
977 /* For hard registers, we already have most of these rules collected in
978 subreg_offset_representable_p. */
979 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
980 {
981 unsigned int regno = REGNO (reg);
982
983 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
984 && GET_MODE_INNER (imode) == omode)
985 ;
986 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
987 return false;
988
989 return subreg_offset_representable_p (regno, imode, offset, omode);
990 }
991 /* Do not allow SUBREG with stricter alignment than the inner MEM. */
992 else if (reg && MEM_P (reg) && STRICT_ALIGNMENT
993 && MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (omode))
994 return false;
995
996 /* The outer size must be ordered wrt the register size, otherwise
997 we wouldn't know at compile time how many registers the outer
998 mode occupies. */
999 if (!ordered_p (a: osize, b: regsize))
1000 return false;
1001
1002 /* For pseudo registers, we want most of the same checks. Namely:
1003
1004 Assume that the pseudo register will be allocated to hard registers
1005 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
1006 the remainder must correspond to the lowpart of the containing hard
1007 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
1008 otherwise it is at the lowest offset.
1009
1010 Given that we've already checked the mode and offset alignment,
1011 we only have to check subblock subregs here. */
1012 if (maybe_lt (a: osize, b: regsize)
1013 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
1014 {
1015 /* It is invalid for the target to pick a register size for a mode
1016 that isn't ordered wrt to the size of that mode. */
1017 poly_uint64 block_size = ordered_min (a: isize, b: regsize);
1018 unsigned int start_reg;
1019 poly_uint64 offset_within_reg;
1020 if (!can_div_trunc_p (a: offset, b: block_size, quotient: &start_reg, remainder: &offset_within_reg)
1021 || (BYTES_BIG_ENDIAN
1022 ? maybe_ne (a: offset_within_reg, b: block_size - osize)
1023 : maybe_ne (a: offset_within_reg, b: 0U)))
1024 return false;
1025 }
1026 return true;
1027}
1028
1029rtx
1030gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
1031{
1032 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
1033 return gen_rtx_raw_SUBREG (mode, reg, offset);
1034}
1035
1036/* Generate a SUBREG representing the least-significant part of REG if MODE
1037 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1038
1039rtx
1040gen_lowpart_SUBREG (machine_mode mode, rtx reg)
1041{
1042 machine_mode inmode;
1043
1044 inmode = GET_MODE (reg);
1045 if (inmode == VOIDmode)
1046 inmode = mode;
1047 return gen_rtx_SUBREG (mode, reg,
1048 offset: subreg_lowpart_offset (outermode: mode, innermode: inmode));
1049}
1050
1051rtx
1052gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
1053 enum var_init_status status)
1054{
1055 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1056 PAT_VAR_LOCATION_STATUS (x) = status;
1057 return x;
1058}
1059
1060
1061/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1062
1063rtvec
1064gen_rtvec (int n, ...)
1065{
1066 int i;
1067 rtvec rt_val;
1068 va_list p;
1069
1070 va_start (p, n);
1071
1072 /* Don't allocate an empty rtvec... */
1073 if (n == 0)
1074 {
1075 va_end (p);
1076 return NULL_RTVEC;
1077 }
1078
1079 rt_val = rtvec_alloc (n);
1080
1081 for (i = 0; i < n; i++)
1082 rt_val->elem[i] = va_arg (p, rtx);
1083
1084 va_end (p);
1085 return rt_val;
1086}
1087
1088rtvec
1089gen_rtvec_v (int n, rtx *argp)
1090{
1091 int i;
1092 rtvec rt_val;
1093
1094 /* Don't allocate an empty rtvec... */
1095 if (n == 0)
1096 return NULL_RTVEC;
1097
1098 rt_val = rtvec_alloc (n);
1099
1100 for (i = 0; i < n; i++)
1101 rt_val->elem[i] = *argp++;
1102
1103 return rt_val;
1104}
1105
1106rtvec
1107gen_rtvec_v (int n, rtx_insn **argp)
1108{
1109 int i;
1110 rtvec rt_val;
1111
1112 /* Don't allocate an empty rtvec... */
1113 if (n == 0)
1114 return NULL_RTVEC;
1115
1116 rt_val = rtvec_alloc (n);
1117
1118 for (i = 0; i < n; i++)
1119 rt_val->elem[i] = *argp++;
1120
1121 return rt_val;
1122}
1123
1124
1125/* Return the number of bytes between the start of an OUTER_MODE
1126 in-memory value and the start of an INNER_MODE in-memory value,
1127 given that the former is a lowpart of the latter. It may be a
1128 paradoxical lowpart, in which case the offset will be negative
1129 on big-endian targets. */
1130
1131poly_int64
1132byte_lowpart_offset (machine_mode outer_mode,
1133 machine_mode inner_mode)
1134{
1135 if (paradoxical_subreg_p (outermode: outer_mode, innermode: inner_mode))
1136 return -subreg_lowpart_offset (outermode: inner_mode, innermode: outer_mode);
1137 else
1138 return subreg_lowpart_offset (outermode: outer_mode, innermode: inner_mode);
1139}
1140
1141/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1142 from address X. For paradoxical big-endian subregs this is a
1143 negative value, otherwise it's the same as OFFSET. */
1144
1145poly_int64
1146subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1147 poly_uint64 offset)
1148{
1149 if (paradoxical_subreg_p (outermode: outer_mode, innermode: inner_mode))
1150 {
1151 gcc_assert (known_eq (offset, 0U));
1152 return -subreg_lowpart_offset (outermode: inner_mode, innermode: outer_mode);
1153 }
1154 return offset;
1155}
1156
1157/* As above, but return the offset that existing subreg X would have
1158 if SUBREG_REG (X) were stored in memory. The only significant thing
1159 about the current SUBREG_REG is its mode. */
1160
1161poly_int64
1162subreg_memory_offset (const_rtx x)
1163{
1164 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1165 SUBREG_BYTE (x));
1166}
1167
1168/* Generate a REG rtx for a new pseudo register of mode MODE.
1169 This pseudo is assigned the next sequential register number. */
1170
1171rtx
1172gen_reg_rtx (machine_mode mode)
1173{
1174 rtx val;
1175 unsigned int align = GET_MODE_ALIGNMENT (mode);
1176
1177 gcc_assert (can_create_pseudo_p ());
1178
1179 /* If a virtual register with bigger mode alignment is generated,
1180 increase stack alignment estimation because it might be spilled
1181 to stack later. */
1182 if (SUPPORTS_STACK_ALIGNMENT
1183 && crtl->stack_alignment_estimated < align
1184 && !crtl->stack_realign_processed)
1185 {
1186 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1187 if (crtl->stack_alignment_estimated < min_align)
1188 crtl->stack_alignment_estimated = min_align;
1189 }
1190
1191 if (generating_concat_p
1192 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1193 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
1194 {
1195 /* For complex modes, don't make a single pseudo.
1196 Instead, make a CONCAT of two pseudos.
1197 This allows noncontiguous allocation of the real and imaginary parts,
1198 which makes much better code. Besides, allocating DCmode
1199 pseudos overstrains reload on some machines like the 386. */
1200 rtx realpart, imagpart;
1201 machine_mode partmode = GET_MODE_INNER (mode);
1202
1203 realpart = gen_reg_rtx (mode: partmode);
1204 imagpart = gen_reg_rtx (mode: partmode);
1205 return gen_rtx_CONCAT (mode, realpart, imagpart);
1206 }
1207
1208 /* Do not call gen_reg_rtx with uninitialized crtl. */
1209 gcc_assert (crtl->emit.regno_pointer_align_length);
1210
1211 crtl->emit.ensure_regno_capacity ();
1212 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
1213
1214 val = gen_raw_REG (mode, reg_rtx_no);
1215 regno_reg_rtx[reg_rtx_no++] = val;
1216 return val;
1217}
1218
1219/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1220 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1221
1222void
1223emit_status::ensure_regno_capacity ()
1224{
1225 int old_size = regno_pointer_align_length;
1226
1227 if (reg_rtx_no < old_size)
1228 return;
1229
1230 int new_size = old_size * 2;
1231 while (reg_rtx_no >= new_size)
1232 new_size *= 2;
1233
1234 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1235 memset (s: tmp + old_size, c: 0, n: new_size - old_size);
1236 regno_pointer_align = (unsigned char *) tmp;
1237
1238 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1239 memset (s: new1 + old_size, c: 0, n: (new_size - old_size) * sizeof (rtx));
1240 regno_reg_rtx = new1;
1241
1242 crtl->emit.regno_pointer_align_length = new_size;
1243}
1244
1245/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1246
1247bool
1248reg_is_parm_p (rtx reg)
1249{
1250 tree decl;
1251
1252 gcc_assert (REG_P (reg));
1253 decl = REG_EXPR (reg);
1254 return (decl && TREE_CODE (decl) == PARM_DECL);
1255}
1256
1257/* Update NEW with the same attributes as REG, but with OFFSET added
1258 to the REG_OFFSET. */
1259
1260static void
1261update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1262{
1263 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1264 REG_OFFSET (reg) + offset);
1265}
1266
1267/* Generate a register with same attributes as REG, but with OFFSET
1268 added to the REG_OFFSET. */
1269
1270rtx
1271gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1272 poly_int64 offset)
1273{
1274 /* Use gen_raw_REG rather than gen_rtx_REG, because otherwise we'd
1275 overwrite REG_ATTRS (and in the callers often ORIGINAL_REGNO too)
1276 of the shared REG rtxes like stack_pointer_rtx etc. This should
1277 happen only for SUBREGs from DEBUG_INSNs, RA should ensure
1278 multi-word registers don't overlap the special registers like
1279 stack pointer. */
1280 rtx new_rtx = gen_raw_REG (mode, regno);
1281
1282 update_reg_offset (new_rtx, reg, offset);
1283 return new_rtx;
1284}
1285
1286/* Generate a new pseudo-register with the same attributes as REG, but
1287 with OFFSET added to the REG_OFFSET. */
1288
1289rtx
1290gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1291{
1292 rtx new_rtx = gen_reg_rtx (mode);
1293
1294 update_reg_offset (new_rtx, reg, offset);
1295 return new_rtx;
1296}
1297
1298/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1299 new register is a (possibly paradoxical) lowpart of the old one. */
1300
1301void
1302adjust_reg_mode (rtx reg, machine_mode mode)
1303{
1304 update_reg_offset (new_rtx: reg, reg, offset: byte_lowpart_offset (outer_mode: mode, GET_MODE (reg)));
1305 PUT_MODE (x: reg, mode);
1306}
1307
1308/* Copy REG's attributes from X, if X has any attributes. If REG and X
1309 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1310
1311void
1312set_reg_attrs_from_value (rtx reg, rtx x)
1313{
1314 poly_int64 offset;
1315 bool can_be_reg_pointer = true;
1316
1317 /* Don't call mark_reg_pointer for incompatible pointer sign
1318 extension. */
1319 while (GET_CODE (x) == SIGN_EXTEND
1320 || GET_CODE (x) == ZERO_EXTEND
1321 || GET_CODE (x) == TRUNCATE
1322 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1323 {
1324#if defined(POINTERS_EXTEND_UNSIGNED)
1325 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1326 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1327 || (paradoxical_subreg_p (x)
1328 && ! (SUBREG_PROMOTED_VAR_P (x)
1329 && SUBREG_CHECK_PROMOTED_SIGN (x,
1330 POINTERS_EXTEND_UNSIGNED))))
1331 && !targetm.have_ptr_extend ())
1332 can_be_reg_pointer = false;
1333#endif
1334 x = XEXP (x, 0);
1335 }
1336
1337 /* Hard registers can be reused for multiple purposes within the same
1338 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1339 on them is wrong. */
1340 if (HARD_REGISTER_P (reg))
1341 return;
1342
1343 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
1344 if (MEM_P (x))
1345 {
1346 if (MEM_OFFSET_KNOWN_P (x))
1347 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1348 MEM_OFFSET (x) + offset);
1349 if (can_be_reg_pointer && MEM_POINTER (x))
1350 mark_reg_pointer (reg, 0);
1351 }
1352 else if (REG_P (x))
1353 {
1354 if (REG_ATTRS (x))
1355 update_reg_offset (new_rtx: reg, reg: x, offset);
1356 if (can_be_reg_pointer && REG_POINTER (x))
1357 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1358 }
1359}
1360
1361/* Generate a REG rtx for a new pseudo register, copying the mode
1362 and attributes from X. */
1363
1364rtx
1365gen_reg_rtx_and_attrs (rtx x)
1366{
1367 rtx reg = gen_reg_rtx (GET_MODE (x));
1368 set_reg_attrs_from_value (reg, x);
1369 return reg;
1370}
1371
1372/* Set the register attributes for registers contained in PARM_RTX.
1373 Use needed values from memory attributes of MEM. */
1374
1375void
1376set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
1377{
1378 if (REG_P (parm_rtx))
1379 set_reg_attrs_from_value (reg: parm_rtx, x: mem);
1380 else if (GET_CODE (parm_rtx) == PARALLEL)
1381 {
1382 /* Check for a NULL entry in the first slot, used to indicate that the
1383 parameter goes both on the stack and in registers. */
1384 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1385 for (; i < XVECLEN (parm_rtx, 0); i++)
1386 {
1387 rtx x = XVECEXP (parm_rtx, 0, i);
1388 if (REG_P (XEXP (x, 0)))
1389 REG_ATTRS (XEXP (x, 0))
1390 = get_reg_attrs (MEM_EXPR (mem),
1391 INTVAL (XEXP (x, 1)));
1392 }
1393 }
1394}
1395
1396/* Set the REG_ATTRS for registers in value X, given that X represents
1397 decl T. */
1398
1399void
1400set_reg_attrs_for_decl_rtl (tree t, rtx x)
1401{
1402 if (!t)
1403 return;
1404 tree tdecl = t;
1405 if (GET_CODE (x) == SUBREG)
1406 {
1407 gcc_assert (subreg_lowpart_p (x));
1408 x = SUBREG_REG (x);
1409 }
1410 if (REG_P (x))
1411 REG_ATTRS (x)
1412 = get_reg_attrs (decl: t, offset: byte_lowpart_offset (GET_MODE (x),
1413 DECL_P (tdecl)
1414 ? DECL_MODE (tdecl)
1415 : TYPE_MODE (TREE_TYPE (tdecl))));
1416 if (GET_CODE (x) == CONCAT)
1417 {
1418 if (REG_P (XEXP (x, 0)))
1419 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (decl: t, offset: 0);
1420 if (REG_P (XEXP (x, 1)))
1421 REG_ATTRS (XEXP (x, 1))
1422 = get_reg_attrs (decl: t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1423 }
1424 if (GET_CODE (x) == PARALLEL)
1425 {
1426 int i, start;
1427
1428 /* Check for a NULL entry, used to indicate that the parameter goes
1429 both on the stack and in registers. */
1430 if (XEXP (XVECEXP (x, 0, 0), 0))
1431 start = 0;
1432 else
1433 start = 1;
1434
1435 for (i = start; i < XVECLEN (x, 0); i++)
1436 {
1437 rtx y = XVECEXP (x, 0, i);
1438 if (REG_P (XEXP (y, 0)))
1439 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (decl: t, INTVAL (XEXP (y, 1)));
1440 }
1441 }
1442}
1443
1444/* Assign the RTX X to declaration T. */
1445
1446void
1447set_decl_rtl (tree t, rtx x)
1448{
1449 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1450 if (x)
1451 set_reg_attrs_for_decl_rtl (t, x);
1452}
1453
1454/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1455 if the ABI requires the parameter to be passed by reference. */
1456
1457void
1458set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1459{
1460 DECL_INCOMING_RTL (t) = x;
1461 if (x && !by_reference_p)
1462 set_reg_attrs_for_decl_rtl (t, x);
1463}
1464
1465/* Identify REG (which may be a CONCAT) as a user register. */
1466
1467void
1468mark_user_reg (rtx reg)
1469{
1470 if (GET_CODE (reg) == CONCAT)
1471 {
1472 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1473 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1474 }
1475 else
1476 {
1477 gcc_assert (REG_P (reg));
1478 REG_USERVAR_P (reg) = 1;
1479 }
1480}
1481
1482/* Identify REG as a probable pointer register and show its alignment
1483 as ALIGN, if nonzero. */
1484
1485void
1486mark_reg_pointer (rtx reg, int align)
1487{
1488 if (! REG_POINTER (reg))
1489 {
1490 REG_POINTER (reg) = 1;
1491
1492 if (align)
1493 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1494 }
1495 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1496 /* We can no-longer be sure just how aligned this pointer is. */
1497 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1498}
1499
1500/* Return 1 plus largest pseudo reg number used in the current function. */
1501
1502int
1503max_reg_num (void)
1504{
1505 return reg_rtx_no;
1506}
1507
1508/* Return 1 + the largest label number used so far in the current function. */
1509
1510int
1511max_label_num (void)
1512{
1513 return label_num;
1514}
1515
1516/* Return first label number used in this function (if any were used). */
1517
1518int
1519get_first_label_num (void)
1520{
1521 return first_label_num;
1522}
1523
1524/* If the rtx for label was created during the expansion of a nested
1525 function, then first_label_num won't include this label number.
1526 Fix this now so that array indices work later. */
1527
1528void
1529maybe_set_first_label_num (rtx_code_label *x)
1530{
1531 if (CODE_LABEL_NUMBER (x) < first_label_num)
1532 first_label_num = CODE_LABEL_NUMBER (x);
1533}
1534
1535/* For use by the RTL function loader, when mingling with normal
1536 functions.
1537 Ensure that label_num is greater than the label num of X, to avoid
1538 duplicate labels in the generated assembler. */
1539
1540void
1541maybe_set_max_label_num (rtx_code_label *x)
1542{
1543 if (CODE_LABEL_NUMBER (x) >= label_num)
1544 label_num = CODE_LABEL_NUMBER (x) + 1;
1545}
1546
1547
1548/* Return a value representing some low-order bits of X, where the number
1549 of low-order bits is given by MODE. Note that no conversion is done
1550 between floating-point and fixed-point values, rather, the bit
1551 representation is returned.
1552
1553 This function handles the cases in common between gen_lowpart, below,
1554 and two variants in cse.cc and combine.cc. These are the cases that can
1555 be safely handled at all points in the compilation.
1556
1557 If this is not a case we can handle, return 0. */
1558
1559rtx
1560gen_lowpart_common (machine_mode mode, rtx x)
1561{
1562 poly_uint64 msize = GET_MODE_SIZE (mode);
1563 machine_mode innermode;
1564
1565 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1566 so we have to make one up. Yuk. */
1567 innermode = GET_MODE (x);
1568 if (CONST_INT_P (x)
1569 && known_le (msize * BITS_PER_UNIT,
1570 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1571 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, limit: 0).require ();
1572 else if (innermode == VOIDmode)
1573 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, limit: 0).require ();
1574
1575 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1576
1577 if (innermode == mode)
1578 return x;
1579
1580 /* The size of the outer and inner modes must be ordered. */
1581 poly_uint64 xsize = GET_MODE_SIZE (mode: innermode);
1582 if (!ordered_p (a: msize, b: xsize))
1583 return 0;
1584
1585 if (SCALAR_FLOAT_MODE_P (mode))
1586 {
1587 /* Don't allow paradoxical FLOAT_MODE subregs. */
1588 if (maybe_gt (msize, xsize))
1589 return 0;
1590 }
1591 else
1592 {
1593 /* MODE must occupy no more of the underlying registers than X. */
1594 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1595 unsigned int mregs, xregs;
1596 if (!can_div_away_from_zero_p (a: msize, b: regsize, quotient: &mregs)
1597 || !can_div_away_from_zero_p (a: xsize, b: regsize, quotient: &xregs)
1598 || mregs > xregs)
1599 return 0;
1600 }
1601
1602 scalar_int_mode int_mode, int_innermode, from_mode;
1603 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1604 && is_a <scalar_int_mode> (m: mode, result: &int_mode)
1605 && is_a <scalar_int_mode> (m: innermode, result: &int_innermode)
1606 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), result: &from_mode))
1607 {
1608 /* If we are getting the low-order part of something that has been
1609 sign- or zero-extended, we can either just use the object being
1610 extended or make a narrower extension. If we want an even smaller
1611 piece than the size of the object being extended, call ourselves
1612 recursively.
1613
1614 This case is used mostly by combine and cse. */
1615
1616 if (from_mode == int_mode)
1617 return XEXP (x, 0);
1618 else if (GET_MODE_SIZE (mode: int_mode) < GET_MODE_SIZE (mode: from_mode))
1619 return gen_lowpart_common (mode: int_mode, XEXP (x, 0));
1620 else if (GET_MODE_SIZE (mode: int_mode) < GET_MODE_SIZE (mode: int_innermode))
1621 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1622 }
1623 else if (GET_CODE (x) == SUBREG || REG_P (x)
1624 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1625 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1626 || CONST_POLY_INT_P (x))
1627 return lowpart_subreg (outermode: mode, op: x, innermode);
1628
1629 /* Otherwise, we can't do this. */
1630 return 0;
1631}
1632
1633rtx
1634gen_highpart (machine_mode mode, rtx x)
1635{
1636 poly_uint64 msize = GET_MODE_SIZE (mode);
1637 rtx result;
1638
1639 /* This case loses if X is a subreg. To catch bugs early,
1640 complain if an invalid MODE is used even in other cases. */
1641 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1642 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1643
1644 /* gen_lowpart_common handles a lot of special cases due to needing to handle
1645 paradoxical subregs; it only calls simplify_gen_subreg when certain that
1646 it will produce something meaningful. The only case we need to handle
1647 specially here is MEM. */
1648 if (MEM_P (x))
1649 {
1650 poly_int64 offset = subreg_highpart_offset (outermode: mode, GET_MODE (x));
1651 return adjust_address (x, mode, offset);
1652 }
1653
1654 result = simplify_gen_subreg (outermode: mode, op: x, GET_MODE (x),
1655 byte: subreg_highpart_offset (outermode: mode, GET_MODE (x)));
1656 /* Since we handle MEM directly above, we should never get a MEM back
1657 from simplify_gen_subreg. */
1658 gcc_assert (result && !MEM_P (result));
1659
1660 return result;
1661}
1662
1663/* Like gen_highpart, but accept mode of EXP operand in case EXP can
1664 be VOIDmode constant. */
1665rtx
1666gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
1667{
1668 if (GET_MODE (exp) != VOIDmode)
1669 {
1670 gcc_assert (GET_MODE (exp) == innermode);
1671 return gen_highpart (mode: outermode, x: exp);
1672 }
1673 return simplify_gen_subreg (outermode, op: exp, innermode,
1674 byte: subreg_highpart_offset (outermode, innermode));
1675}
1676
1677/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1678 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1679
1680poly_uint64
1681subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1682{
1683 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1684 if (maybe_gt (outer_bytes, inner_bytes))
1685 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1686 return 0;
1687
1688 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1689 return inner_bytes - outer_bytes;
1690 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1691 return 0;
1692 else
1693 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
1694}
1695
1696/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1697 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1698
1699poly_uint64
1700subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1701{
1702 gcc_assert (known_ge (inner_bytes, outer_bytes));
1703
1704 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1705 return 0;
1706 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1707 return inner_bytes - outer_bytes;
1708 else
1709 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1710 (inner_bytes - outer_bytes)
1711 * BITS_PER_UNIT);
1712}
1713
1714/* Return true iff X, assumed to be a SUBREG,
1715 refers to the least significant part of its containing reg.
1716 If X is not a SUBREG, always return true (it is its own low part!). */
1717
1718bool
1719subreg_lowpart_p (const_rtx x)
1720{
1721 if (GET_CODE (x) != SUBREG)
1722 return true;
1723 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1724 return false;
1725
1726 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1727 GET_MODE (SUBREG_REG (x))),
1728 SUBREG_BYTE (x));
1729}
1730
1731/* Return subword OFFSET of operand OP.
1732 The word number, OFFSET, is interpreted as the word number starting
1733 at the low-order address. OFFSET 0 is the low-order word if not
1734 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1735
1736 If we cannot extract the required word, we return zero. Otherwise,
1737 an rtx corresponding to the requested word will be returned.
1738
1739 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1740 reload has completed, a valid address will always be returned. After
1741 reload, if a valid address cannot be returned, we return zero.
1742
1743 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1744 it is the responsibility of the caller.
1745
1746 MODE is the mode of OP in case it is a CONST_INT.
1747
1748 ??? This is still rather broken for some cases. The problem for the
1749 moment is that all callers of this thing provide no 'goal mode' to
1750 tell us to work with. This exists because all callers were written
1751 in a word based SUBREG world.
1752 Now use of this function can be deprecated by simplify_subreg in most
1753 cases.
1754 */
1755
1756rtx
1757operand_subword (rtx op, poly_uint64 offset, int validate_address,
1758 machine_mode mode)
1759{
1760 if (mode == VOIDmode)
1761 mode = GET_MODE (op);
1762
1763 gcc_assert (mode != VOIDmode);
1764
1765 /* If OP is narrower than a word, fail. */
1766 if (mode != BLKmode
1767 && maybe_lt (a: GET_MODE_SIZE (mode), UNITS_PER_WORD))
1768 return 0;
1769
1770 /* If we want a word outside OP, return zero. */
1771 if (mode != BLKmode
1772 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1773 return const0_rtx;
1774
1775 /* Form a new MEM at the requested address. */
1776 if (MEM_P (op))
1777 {
1778 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1779
1780 if (! validate_address)
1781 return new_rtx;
1782
1783 else if (reload_completed)
1784 {
1785 if (! strict_memory_address_addr_space_p (word_mode,
1786 XEXP (new_rtx, 0),
1787 MEM_ADDR_SPACE (op)))
1788 return 0;
1789 }
1790 else
1791 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
1792 }
1793
1794 /* Rest can be handled by simplify_subreg. */
1795 return simplify_gen_subreg (outermode: word_mode, op, innermode: mode, byte: (offset * UNITS_PER_WORD));
1796}
1797
1798/* Similar to `operand_subword', but never return 0. If we can't
1799 extract the required subword, put OP into a register and try again.
1800 The second attempt must succeed. We always validate the address in
1801 this case.
1802
1803 MODE is the mode of OP, in case it is CONST_INT. */
1804
1805rtx
1806operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1807{
1808 rtx result = operand_subword (op, offset, validate_address: 1, mode);
1809
1810 if (result)
1811 return result;
1812
1813 if (mode != BLKmode && mode != VOIDmode)
1814 {
1815 /* If this is a register which cannot be accessed by words, copy it
1816 to a pseudo register. */
1817 if (REG_P (op))
1818 op = copy_to_reg (op);
1819 else
1820 op = force_reg (mode, op);
1821 }
1822
1823 result = operand_subword (op, offset, validate_address: 1, mode);
1824 gcc_assert (result);
1825
1826 return result;
1827}
1828
1829mem_attrs::mem_attrs ()
1830 : expr (NULL_TREE),
1831 offset (0),
1832 size (0),
1833 alias (0),
1834 align (0),
1835 addrspace (ADDR_SPACE_GENERIC),
1836 offset_known_p (false),
1837 size_known_p (false)
1838{}
1839
1840/* Returns true if both MEM_EXPR can be considered equal
1841 and false otherwise. */
1842
1843bool
1844mem_expr_equal_p (const_tree expr1, const_tree expr2)
1845{
1846 if (expr1 == expr2)
1847 return true;
1848
1849 if (! expr1 || ! expr2)
1850 return false;
1851
1852 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1853 return false;
1854
1855 return operand_equal_p (expr1, expr2, flags: 0);
1856}
1857
1858/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1859 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1860 -1 if not known. */
1861
1862int
1863get_mem_align_offset (rtx mem, unsigned int align)
1864{
1865 tree expr;
1866 poly_uint64 offset;
1867
1868 /* This function can't use
1869 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1870 || (MAX (MEM_ALIGN (mem),
1871 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1872 < align))
1873 return -1;
1874 else
1875 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1876 for two reasons:
1877 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1878 for <variable>. get_inner_reference doesn't handle it and
1879 even if it did, the alignment in that case needs to be determined
1880 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1881 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1882 isn't sufficiently aligned, the object it is in might be. */
1883 gcc_assert (MEM_P (mem));
1884 expr = MEM_EXPR (mem);
1885 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
1886 return -1;
1887
1888 offset = MEM_OFFSET (mem);
1889 if (DECL_P (expr))
1890 {
1891 if (DECL_ALIGN (expr) < align)
1892 return -1;
1893 }
1894 else if (INDIRECT_REF_P (expr))
1895 {
1896 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1897 return -1;
1898 }
1899 else if (TREE_CODE (expr) == COMPONENT_REF)
1900 {
1901 while (1)
1902 {
1903 tree inner = TREE_OPERAND (expr, 0);
1904 tree field = TREE_OPERAND (expr, 1);
1905 tree byte_offset = component_ref_field_offset (expr);
1906 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1907
1908 poly_uint64 suboffset;
1909 if (!byte_offset
1910 || !poly_int_tree_p (t: byte_offset, value: &suboffset)
1911 || !tree_fits_uhwi_p (bit_offset))
1912 return -1;
1913
1914 offset += suboffset;
1915 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1916
1917 if (inner == NULL_TREE)
1918 {
1919 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1920 < (unsigned int) align)
1921 return -1;
1922 break;
1923 }
1924 else if (DECL_P (inner))
1925 {
1926 if (DECL_ALIGN (inner) < align)
1927 return -1;
1928 break;
1929 }
1930 else if (TREE_CODE (inner) != COMPONENT_REF)
1931 return -1;
1932 expr = inner;
1933 }
1934 }
1935 else
1936 return -1;
1937
1938 HOST_WIDE_INT misalign;
1939 if (!known_misalignment (value: offset, align: align / BITS_PER_UNIT, misalign: &misalign))
1940 return -1;
1941 return misalign;
1942}
1943
1944/* Given REF (a MEM) and T, either the type of X or the expression
1945 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1946 if we are making a new object of this type. BITPOS is nonzero if
1947 there is an offset outstanding on T that will be applied later. */
1948
1949void
1950set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1951 poly_int64 bitpos)
1952{
1953 poly_int64 apply_bitpos = 0;
1954 tree type;
1955 class mem_attrs attrs, *defattrs, *refattrs;
1956 addr_space_t as;
1957
1958 /* It can happen that type_for_mode was given a mode for which there
1959 is no language-level type. In which case it returns NULL, which
1960 we can see here. */
1961 if (t == NULL_TREE)
1962 return;
1963
1964 type = TYPE_P (t) ? t : TREE_TYPE (t);
1965 if (type == error_mark_node)
1966 return;
1967
1968 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1969 wrong answer, as it assumes that DECL_RTL already has the right alias
1970 info. Callers should not set DECL_RTL until after the call to
1971 set_mem_attributes. */
1972 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1973
1974 /* Get the alias set from the expression or type (perhaps using a
1975 front-end routine) and use it. */
1976 attrs.alias = get_alias_set (t);
1977
1978 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1979 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1980
1981 /* Default values from pre-existing memory attributes if present. */
1982 refattrs = MEM_ATTRS (ref);
1983 if (refattrs)
1984 {
1985 /* ??? Can this ever happen? Calling this routine on a MEM that
1986 already carries memory attributes should probably be invalid. */
1987 attrs.expr = refattrs->expr;
1988 attrs.offset_known_p = refattrs->offset_known_p;
1989 attrs.offset = refattrs->offset;
1990 attrs.size_known_p = refattrs->size_known_p;
1991 attrs.size = refattrs->size;
1992 attrs.align = refattrs->align;
1993 }
1994
1995 /* Otherwise, default values from the mode of the MEM reference. */
1996 else
1997 {
1998 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1999 gcc_assert (!defattrs->expr);
2000 gcc_assert (!defattrs->offset_known_p);
2001
2002 /* Respect mode size. */
2003 attrs.size_known_p = defattrs->size_known_p;
2004 attrs.size = defattrs->size;
2005 /* ??? Is this really necessary? We probably should always get
2006 the size from the type below. */
2007
2008 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
2009 if T is an object, always compute the object alignment below. */
2010 if (TYPE_P (t))
2011 attrs.align = defattrs->align;
2012 else
2013 attrs.align = BITS_PER_UNIT;
2014 /* ??? If T is a type, respecting mode alignment may *also* be wrong
2015 e.g. if the type carries an alignment attribute. Should we be
2016 able to simply always use TYPE_ALIGN? */
2017 }
2018
2019 /* We can set the alignment from the type if we are making an object or if
2020 this is an INDIRECT_REF. */
2021 if (objectp || TREE_CODE (t) == INDIRECT_REF)
2022 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
2023
2024 /* If the size is known, we can set that. */
2025 tree new_size = TYPE_SIZE_UNIT (type);
2026
2027 /* The address-space is that of the type. */
2028 as = TYPE_ADDR_SPACE (type);
2029
2030 /* If T is not a type, we may be able to deduce some more information about
2031 the expression. */
2032 if (! TYPE_P (t))
2033 {
2034 tree base;
2035
2036 if (TREE_THIS_VOLATILE (t))
2037 MEM_VOLATILE_P (ref) = 1;
2038
2039 /* Now remove any conversions: they don't change what the underlying
2040 object is. Likewise for SAVE_EXPR. */
2041 while (CONVERT_EXPR_P (t)
2042 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2043 || TREE_CODE (t) == SAVE_EXPR)
2044 t = TREE_OPERAND (t, 0);
2045
2046 /* Note whether this expression can trap. */
2047 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2048
2049 base = get_base_address (t);
2050 if (base)
2051 {
2052 if (DECL_P (base)
2053 && TREE_READONLY (base)
2054 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2055 && !TREE_THIS_VOLATILE (base))
2056 MEM_READONLY_P (ref) = 1;
2057
2058 /* Mark static const strings readonly as well. */
2059 if (TREE_CODE (base) == STRING_CST
2060 && TREE_READONLY (base)
2061 && TREE_STATIC (base))
2062 MEM_READONLY_P (ref) = 1;
2063
2064 /* Address-space information is on the base object. */
2065 if (TREE_CODE (base) == MEM_REF
2066 || TREE_CODE (base) == TARGET_MEM_REF)
2067 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2068 0))));
2069 else
2070 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2071 }
2072
2073 /* If this expression uses it's parent's alias set, mark it such
2074 that we won't change it. */
2075 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
2076 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2077
2078 /* If this is a decl, set the attributes of the MEM from it. */
2079 if (DECL_P (t))
2080 {
2081 attrs.expr = t;
2082 attrs.offset_known_p = true;
2083 attrs.offset = 0;
2084 apply_bitpos = bitpos;
2085 new_size = DECL_SIZE_UNIT (t);
2086 }
2087
2088 /* ??? If we end up with a constant or a descriptor do not
2089 record a MEM_EXPR. */
2090 else if (CONSTANT_CLASS_P (t)
2091 || TREE_CODE (t) == CONSTRUCTOR)
2092 ;
2093
2094 /* If this is a field reference, record it. */
2095 else if (TREE_CODE (t) == COMPONENT_REF)
2096 {
2097 attrs.expr = t;
2098 attrs.offset_known_p = true;
2099 attrs.offset = 0;
2100 apply_bitpos = bitpos;
2101 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2102 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
2103 }
2104
2105 /* Else record it. */
2106 else
2107 {
2108 gcc_assert (handled_component_p (t)
2109 || TREE_CODE (t) == MEM_REF
2110 || TREE_CODE (t) == TARGET_MEM_REF);
2111 attrs.expr = t;
2112 attrs.offset_known_p = true;
2113 attrs.offset = 0;
2114 apply_bitpos = bitpos;
2115 }
2116
2117 /* If this is a reference based on a partitioned decl replace the
2118 base with a MEM_REF of the pointer representative we created
2119 during stack slot partitioning. */
2120 if (attrs.expr
2121 && VAR_P (base)
2122 && ! is_global_var (t: base)
2123 && cfun->gimple_df->decls_to_pointers != NULL)
2124 {
2125 tree *namep = cfun->gimple_df->decls_to_pointers->get (k: base);
2126 if (namep)
2127 {
2128 attrs.expr = unshare_expr (attrs.expr);
2129 tree *orig_base = &attrs.expr;
2130 while (handled_component_p (t: *orig_base))
2131 orig_base = &TREE_OPERAND (*orig_base, 0);
2132 if (TREE_CODE (*orig_base) == MEM_REF
2133 || TREE_CODE (*orig_base) == TARGET_MEM_REF)
2134 TREE_OPERAND (*orig_base, 0) = *namep;
2135 else
2136 {
2137 tree aptrt = reference_alias_ptr_type (*orig_base);
2138 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base),
2139 *namep, build_int_cst (aptrt, 0));
2140 }
2141 }
2142 }
2143
2144 /* Compute the alignment. */
2145 unsigned int obj_align;
2146 unsigned HOST_WIDE_INT obj_bitpos;
2147 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2148 unsigned int diff_align = known_alignment (a: obj_bitpos - bitpos);
2149 if (diff_align != 0)
2150 obj_align = MIN (obj_align, diff_align);
2151 attrs.align = MAX (attrs.align, obj_align);
2152 }
2153
2154 poly_uint64 const_size;
2155 if (poly_int_tree_p (t: new_size, value: &const_size))
2156 {
2157 attrs.size_known_p = true;
2158 attrs.size = const_size;
2159 }
2160
2161 /* If we modified OFFSET based on T, then subtract the outstanding
2162 bit position offset. Similarly, increase the size of the accessed
2163 object to contain the negative offset. */
2164 if (maybe_ne (a: apply_bitpos, b: 0))
2165 {
2166 gcc_assert (attrs.offset_known_p);
2167 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2168 attrs.offset -= bytepos;
2169 if (attrs.size_known_p)
2170 attrs.size += bytepos;
2171 }
2172
2173 /* Now set the attributes we computed above. */
2174 attrs.addrspace = as;
2175 set_mem_attrs (mem: ref, attrs: &attrs);
2176}
2177
2178void
2179set_mem_attributes (rtx ref, tree t, int objectp)
2180{
2181 set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos: 0);
2182}
2183
2184/* Set the alias set of MEM to SET. */
2185
2186void
2187set_mem_alias_set (rtx mem, alias_set_type set)
2188{
2189 /* If the new and old alias sets don't conflict, something is wrong. */
2190 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2191 mem_attrs attrs (*get_mem_attrs (x: mem));
2192 attrs.alias = set;
2193 set_mem_attrs (mem, attrs: &attrs);
2194}
2195
2196/* Set the address space of MEM to ADDRSPACE (target-defined). */
2197
2198void
2199set_mem_addr_space (rtx mem, addr_space_t addrspace)
2200{
2201 mem_attrs attrs (*get_mem_attrs (x: mem));
2202 attrs.addrspace = addrspace;
2203 set_mem_attrs (mem, attrs: &attrs);
2204}
2205
2206/* Set the alignment of MEM to ALIGN bits. */
2207
2208void
2209set_mem_align (rtx mem, unsigned int align)
2210{
2211 mem_attrs attrs (*get_mem_attrs (x: mem));
2212 attrs.align = align;
2213 set_mem_attrs (mem, attrs: &attrs);
2214}
2215
2216/* Set the expr for MEM to EXPR. */
2217
2218void
2219set_mem_expr (rtx mem, tree expr)
2220{
2221 mem_attrs attrs (*get_mem_attrs (x: mem));
2222 attrs.expr = expr;
2223 set_mem_attrs (mem, attrs: &attrs);
2224}
2225
2226/* Set the offset of MEM to OFFSET. */
2227
2228void
2229set_mem_offset (rtx mem, poly_int64 offset)
2230{
2231 mem_attrs attrs (*get_mem_attrs (x: mem));
2232 attrs.offset_known_p = true;
2233 attrs.offset = offset;
2234 set_mem_attrs (mem, attrs: &attrs);
2235}
2236
2237/* Clear the offset of MEM. */
2238
2239void
2240clear_mem_offset (rtx mem)
2241{
2242 mem_attrs attrs (*get_mem_attrs (x: mem));
2243 attrs.offset_known_p = false;
2244 set_mem_attrs (mem, attrs: &attrs);
2245}
2246
2247/* Set the size of MEM to SIZE. */
2248
2249void
2250set_mem_size (rtx mem, poly_int64 size)
2251{
2252 mem_attrs attrs (*get_mem_attrs (x: mem));
2253 attrs.size_known_p = true;
2254 attrs.size = size;
2255 set_mem_attrs (mem, attrs: &attrs);
2256}
2257
2258/* Clear the size of MEM. */
2259
2260void
2261clear_mem_size (rtx mem)
2262{
2263 mem_attrs attrs (*get_mem_attrs (x: mem));
2264 attrs.size_known_p = false;
2265 set_mem_attrs (mem, attrs: &attrs);
2266}
2267
2268/* Return a memory reference like MEMREF, but with its mode changed to MODE
2269 and its address changed to ADDR. (VOIDmode means don't change the mode.
2270 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2271 returned memory location is required to be valid. INPLACE is true if any
2272 changes can be made directly to MEMREF or false if MEMREF must be treated
2273 as immutable.
2274
2275 The memory attributes are not changed. */
2276
2277static rtx
2278change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
2279 bool inplace)
2280{
2281 addr_space_t as;
2282 rtx new_rtx;
2283
2284 gcc_assert (MEM_P (memref));
2285 as = MEM_ADDR_SPACE (memref);
2286 if (mode == VOIDmode)
2287 mode = GET_MODE (memref);
2288 if (addr == 0)
2289 addr = XEXP (memref, 0);
2290 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
2291 && (!validate || memory_address_addr_space_p (mode, addr, as)))
2292 return memref;
2293
2294 /* Don't validate address for LRA. LRA can make the address valid
2295 by itself in most efficient way. */
2296 if (validate && !lra_in_progress)
2297 {
2298 if (reload_in_progress || reload_completed)
2299 gcc_assert (memory_address_addr_space_p (mode, addr, as));
2300 else
2301 addr = memory_address_addr_space (mode, addr, as);
2302 }
2303
2304 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2305 return memref;
2306
2307 if (inplace)
2308 {
2309 XEXP (memref, 0) = addr;
2310 return memref;
2311 }
2312
2313 new_rtx = gen_rtx_MEM (mode, addr);
2314 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2315 return new_rtx;
2316}
2317
2318/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2319 way we are changing MEMREF, so we only preserve the alias set. */
2320
2321rtx
2322change_address (rtx memref, machine_mode mode, rtx addr)
2323{
2324 rtx new_rtx = change_address_1 (memref, mode, addr, validate: 1, inplace: false);
2325 machine_mode mmode = GET_MODE (new_rtx);
2326 class mem_attrs *defattrs;
2327
2328 mem_attrs attrs (*get_mem_attrs (x: memref));
2329 defattrs = mode_mem_attrs[(int) mmode];
2330 attrs.expr = NULL_TREE;
2331 attrs.offset_known_p = false;
2332 attrs.size_known_p = defattrs->size_known_p;
2333 attrs.size = defattrs->size;
2334 attrs.align = defattrs->align;
2335
2336 /* If there are no changes, just return the original memory reference. */
2337 if (new_rtx == memref)
2338 {
2339 if (mem_attrs_eq_p (p: get_mem_attrs (x: memref), q: &attrs))
2340 return new_rtx;
2341
2342 new_rtx = gen_rtx_MEM (mode: mmode, XEXP (memref, 0));
2343 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2344 }
2345
2346 set_mem_attrs (mem: new_rtx, attrs: &attrs);
2347 return new_rtx;
2348}
2349
2350/* Return a memory reference like MEMREF, but with its mode changed
2351 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2352 nonzero, the memory address is forced to be valid.
2353 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2354 and the caller is responsible for adjusting MEMREF base register.
2355 If ADJUST_OBJECT is zero, the underlying object associated with the
2356 memory reference is left unchanged and the caller is responsible for
2357 dealing with it. Otherwise, if the new memory reference is outside
2358 the underlying object, even partially, then the object is dropped.
2359 SIZE, if nonzero, is the size of an access in cases where MODE
2360 has no inherent size. */
2361
2362rtx
2363adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2364 int validate, int adjust_address, int adjust_object,
2365 poly_int64 size)
2366{
2367 rtx addr = XEXP (memref, 0);
2368 rtx new_rtx;
2369 scalar_int_mode address_mode;
2370 class mem_attrs attrs (*get_mem_attrs (x: memref)), *defattrs;
2371 unsigned HOST_WIDE_INT max_align;
2372#ifdef POINTERS_EXTEND_UNSIGNED
2373 scalar_int_mode pointer_mode
2374 = targetm.addr_space.pointer_mode (attrs.addrspace);
2375#endif
2376
2377 /* VOIDmode means no mode change for change_address_1. */
2378 if (mode == VOIDmode)
2379 mode = GET_MODE (memref);
2380
2381 /* Take the size of non-BLKmode accesses from the mode. */
2382 defattrs = mode_mem_attrs[(int) mode];
2383 if (defattrs->size_known_p)
2384 size = defattrs->size;
2385
2386 /* If there are no changes, just return the original memory reference. */
2387 if (mode == GET_MODE (memref)
2388 && known_eq (offset, 0)
2389 && (known_eq (size, 0)
2390 || (attrs.size_known_p && known_eq (attrs.size, size)))
2391 && (!validate || memory_address_addr_space_p (mode, addr,
2392 attrs.addrspace)))
2393 return memref;
2394
2395 /* ??? Prefer to create garbage instead of creating shared rtl.
2396 This may happen even if offset is nonzero -- consider
2397 (plus (plus reg reg) const_int) -- so do this always. */
2398 addr = copy_rtx (addr);
2399
2400 /* Convert a possibly large offset to a signed value within the
2401 range of the target address space. */
2402 address_mode = get_address_mode (mem: memref);
2403 offset = trunc_int_for_mode (offset, address_mode);
2404
2405 if (adjust_address)
2406 {
2407 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2408 object, we can merge it into the LO_SUM. */
2409 if (GET_MODE (memref) != BLKmode
2410 && GET_CODE (addr) == LO_SUM
2411 && known_in_range_p (val: offset,
2412 pos: 0, size: (GET_MODE_ALIGNMENT (GET_MODE (memref))
2413 / BITS_PER_UNIT)))
2414 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2415 plus_constant (address_mode,
2416 XEXP (addr, 1), offset));
2417#ifdef POINTERS_EXTEND_UNSIGNED
2418 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2419 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2420 the fact that pointers are not allowed to overflow. */
2421 else if (POINTERS_EXTEND_UNSIGNED > 0
2422 && GET_CODE (addr) == ZERO_EXTEND
2423 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2424 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2425 addr = gen_rtx_ZERO_EXTEND (address_mode,
2426 plus_constant (pointer_mode,
2427 XEXP (addr, 0), offset));
2428#endif
2429 else
2430 addr = plus_constant (address_mode, addr, offset);
2431 }
2432
2433 new_rtx = change_address_1 (memref, mode, addr, validate, inplace: false);
2434
2435 /* If the address is a REG, change_address_1 rightfully returns memref,
2436 but this would destroy memref's MEM_ATTRS. */
2437 if (new_rtx == memref && maybe_ne (a: offset, b: 0))
2438 new_rtx = copy_rtx (new_rtx);
2439
2440 /* Conservatively drop the object if we don't know where we start from. */
2441 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2442 {
2443 attrs.expr = NULL_TREE;
2444 attrs.alias = 0;
2445 }
2446
2447 /* Compute the new values of the memory attributes due to this adjustment.
2448 We add the offsets and update the alignment. */
2449 if (attrs.offset_known_p)
2450 {
2451 attrs.offset += offset;
2452
2453 /* Drop the object if the new left end is not within its bounds. */
2454 if (adjust_object && maybe_lt (a: attrs.offset, b: 0))
2455 {
2456 attrs.expr = NULL_TREE;
2457 attrs.alias = 0;
2458 }
2459 }
2460
2461 /* Compute the new alignment by taking the MIN of the alignment and the
2462 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2463 if zero. */
2464 if (maybe_ne (a: offset, b: 0))
2465 {
2466 max_align = known_alignment (a: offset) * BITS_PER_UNIT;
2467 attrs.align = MIN (attrs.align, max_align);
2468 }
2469
2470 if (maybe_ne (a: size, b: 0))
2471 {
2472 /* Drop the object if the new right end is not within its bounds. */
2473 if (adjust_object && maybe_gt (offset + size, attrs.size))
2474 {
2475 attrs.expr = NULL_TREE;
2476 attrs.alias = 0;
2477 }
2478 attrs.size_known_p = true;
2479 attrs.size = size;
2480 }
2481 else if (attrs.size_known_p)
2482 {
2483 gcc_assert (!adjust_object);
2484 attrs.size -= offset;
2485 /* ??? The store_by_pieces machinery generates negative sizes,
2486 so don't assert for that here. */
2487 }
2488
2489 set_mem_attrs (mem: new_rtx, attrs: &attrs);
2490
2491 return new_rtx;
2492}
2493
2494/* Return a memory reference like MEMREF, but with its mode changed
2495 to MODE and its address changed to ADDR, which is assumed to be
2496 MEMREF offset by OFFSET bytes. If VALIDATE is
2497 nonzero, the memory address is forced to be valid. */
2498
2499rtx
2500adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2501 poly_int64 offset, int validate)
2502{
2503 memref = change_address_1 (memref, VOIDmode, addr, validate, inplace: false);
2504 return adjust_address_1 (memref, mode, offset, validate, adjust_address: 0, adjust_object: 0, size: 0);
2505}
2506
2507/* Return a memory reference like MEMREF, but whose address is changed by
2508 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2509 known to be in OFFSET (possibly 1). */
2510
2511rtx
2512offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2513{
2514 rtx new_rtx, addr = XEXP (memref, 0);
2515 machine_mode address_mode;
2516 class mem_attrs *defattrs;
2517
2518 mem_attrs attrs (*get_mem_attrs (x: memref));
2519 address_mode = get_address_mode (mem: memref);
2520 new_rtx = simplify_gen_binary (code: PLUS, mode: address_mode, op0: addr, op1: offset);
2521
2522 /* At this point we don't know _why_ the address is invalid. It
2523 could have secondary memory references, multiplies or anything.
2524
2525 However, if we did go and rearrange things, we can wind up not
2526 being able to recognize the magic around pic_offset_table_rtx.
2527 This stuff is fragile, and is yet another example of why it is
2528 bad to expose PIC machinery too early. */
2529 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2530 attrs.addrspace)
2531 && GET_CODE (addr) == PLUS
2532 && XEXP (addr, 0) == pic_offset_table_rtx)
2533 {
2534 addr = force_reg (GET_MODE (addr), addr);
2535 new_rtx = simplify_gen_binary (code: PLUS, mode: address_mode, op0: addr, op1: offset);
2536 }
2537
2538 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2539 new_rtx = change_address_1 (memref, VOIDmode, addr: new_rtx, validate: 1, inplace: false);
2540
2541 /* If there are no changes, just return the original memory reference. */
2542 if (new_rtx == memref)
2543 return new_rtx;
2544
2545 /* Update the alignment to reflect the offset. Reset the offset, which
2546 we don't know. */
2547 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2548 attrs.offset_known_p = false;
2549 attrs.size_known_p = defattrs->size_known_p;
2550 attrs.size = defattrs->size;
2551 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2552 set_mem_attrs (mem: new_rtx, attrs: &attrs);
2553 return new_rtx;
2554}
2555
2556/* Return a memory reference like MEMREF, but with its address changed to
2557 ADDR. The caller is asserting that the actual piece of memory pointed
2558 to is the same, just the form of the address is being changed, such as
2559 by putting something into a register. INPLACE is true if any changes
2560 can be made directly to MEMREF or false if MEMREF must be treated as
2561 immutable. */
2562
2563rtx
2564replace_equiv_address (rtx memref, rtx addr, bool inplace)
2565{
2566 /* change_address_1 copies the memory attribute structure without change
2567 and that's exactly what we want here. */
2568 update_temp_slot_address (XEXP (memref, 0), addr);
2569 return change_address_1 (memref, VOIDmode, addr, validate: 1, inplace);
2570}
2571
2572/* Likewise, but the reference is not required to be valid. */
2573
2574rtx
2575replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
2576{
2577 return change_address_1 (memref, VOIDmode, addr, validate: 0, inplace);
2578}
2579
2580
2581/* Emit insns to reload VALUE into a new register. VALUE is an
2582 auto-increment or auto-decrement RTX whose operand is a register or
2583 memory location; so reloading involves incrementing that location.
2584
2585 INC_AMOUNT is the number to increment or decrement by (always
2586 positive and ignored for POST_MODIFY/PRE_MODIFY).
2587
2588 Return a pseudo containing the result. */
2589rtx
2590address_reload_context::emit_autoinc (rtx value, poly_int64 inc_amount)
2591{
2592 /* Since we're going to call recog, and might be called within recog,
2593 we need to ensure we save and restore recog_data. */
2594 recog_data_saver recog_save;
2595
2596 /* REG or MEM to be copied and incremented. */
2597 rtx incloc = XEXP (value, 0);
2598
2599 const rtx_code code = GET_CODE (value);
2600 const bool post_p
2601 = code == POST_DEC || code == POST_INC || code == POST_MODIFY;
2602
2603 bool plus_p = true;
2604 rtx inc;
2605 if (code == PRE_MODIFY || code == POST_MODIFY)
2606 {
2607 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS
2608 || GET_CODE (XEXP (value, 1)) == MINUS);
2609 gcc_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
2610 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
2611 inc = XEXP (XEXP (value, 1), 1);
2612 }
2613 else
2614 {
2615 if (code == PRE_DEC || code == POST_DEC)
2616 inc_amount = -inc_amount;
2617
2618 inc = gen_int_mode (c: inc_amount, GET_MODE (value));
2619 }
2620
2621 rtx result;
2622 if (!post_p && REG_P (incloc))
2623 result = incloc;
2624 else
2625 {
2626 result = get_reload_reg ();
2627 /* First copy the location to the result register. */
2628 emit_insn (gen_move_insn (result, incloc));
2629 }
2630
2631 /* See if we can directly increment INCLOC. */
2632 rtx_insn *last = get_last_insn ();
2633 rtx_insn *add_insn = emit_insn (plus_p
2634 ? gen_add2_insn (incloc, inc)
2635 : gen_sub2_insn (incloc, inc));
2636 const int icode = recog_memoized (insn: add_insn);
2637 if (icode >= 0)
2638 {
2639 if (!post_p && result != incloc)
2640 emit_insn (gen_move_insn (result, incloc));
2641 return result;
2642 }
2643 delete_insns_since (last);
2644
2645 /* If couldn't do the increment directly, must increment in RESULT.
2646 The way we do this depends on whether this is pre- or
2647 post-increment. For pre-increment, copy INCLOC to the reload
2648 register, increment it there, then save back. */
2649 if (!post_p)
2650 {
2651 if (incloc != result)
2652 emit_insn (gen_move_insn (result, incloc));
2653 if (plus_p)
2654 emit_insn (gen_add2_insn (result, inc));
2655 else
2656 emit_insn (gen_sub2_insn (result, inc));
2657 if (incloc != result)
2658 emit_insn (gen_move_insn (incloc, result));
2659 }
2660 else
2661 {
2662 /* Post-increment.
2663
2664 Because this might be a jump insn or a compare, and because
2665 RESULT may not be available after the insn in an input
2666 reload, we must do the incrementing before the insn being
2667 reloaded for.
2668
2669 We have already copied INCLOC to RESULT. Increment the copy in
2670 RESULT, save that back, then decrement RESULT so it has
2671 the original value. */
2672 if (plus_p)
2673 emit_insn (gen_add2_insn (result, inc));
2674 else
2675 emit_insn (gen_sub2_insn (result, inc));
2676 emit_insn (gen_move_insn (incloc, result));
2677 /* Restore non-modified value for the result. We prefer this
2678 way because it does not require an additional hard
2679 register. */
2680 if (plus_p)
2681 {
2682 poly_int64 offset;
2683 if (poly_int_rtx_p (x: inc, res: &offset))
2684 emit_insn (gen_add2_insn (result,
2685 gen_int_mode (c: -offset,
2686 GET_MODE (result))));
2687 else
2688 emit_insn (gen_sub2_insn (result, inc));
2689 }
2690 else
2691 emit_insn (gen_add2_insn (result, inc));
2692 }
2693 return result;
2694}
2695
2696/* Return a memory reference like MEM, but with the address reloaded into a
2697 pseudo register. */
2698
2699rtx
2700force_reload_address (rtx mem)
2701{
2702 rtx addr = XEXP (mem, 0);
2703 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
2704 {
2705 const auto size = GET_MODE_SIZE (GET_MODE (mem));
2706 addr = address_reload_context ().emit_autoinc (value: addr, inc_amount: size);
2707 }
2708 else
2709 addr = force_reg (Pmode, addr);
2710
2711 return replace_equiv_address (memref: mem, addr);
2712}
2713
2714/* Return a memory reference like MEMREF, but with its mode widened to
2715 MODE and offset by OFFSET. This would be used by targets that e.g.
2716 cannot issue QImode memory operations and have to use SImode memory
2717 operations plus masking logic. */
2718
2719rtx
2720widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2721{
2722 rtx new_rtx = adjust_address_1 (memref, mode, offset, validate: 1, adjust_address: 1, adjust_object: 0, size: 0);
2723 poly_uint64 size = GET_MODE_SIZE (mode);
2724
2725 /* If there are no changes, just return the original memory reference. */
2726 if (new_rtx == memref)
2727 return new_rtx;
2728
2729 mem_attrs attrs (*get_mem_attrs (x: new_rtx));
2730
2731 /* If we don't know what offset we were at within the expression, then
2732 we can't know if we've overstepped the bounds. */
2733 if (! attrs.offset_known_p)
2734 attrs.expr = NULL_TREE;
2735
2736 while (attrs.expr)
2737 {
2738 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
2739 {
2740 tree field = TREE_OPERAND (attrs.expr, 1);
2741 tree offset = component_ref_field_offset (attrs.expr);
2742
2743 if (! DECL_SIZE_UNIT (field))
2744 {
2745 attrs.expr = NULL_TREE;
2746 break;
2747 }
2748
2749 /* Is the field at least as large as the access? If so, ok,
2750 otherwise strip back to the containing structure. */
2751 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2752 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2753 && known_ge (attrs.offset, 0))
2754 break;
2755
2756 poly_uint64 suboffset;
2757 if (!poly_int_tree_p (t: offset, value: &suboffset))
2758 {
2759 attrs.expr = NULL_TREE;
2760 break;
2761 }
2762
2763 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2764 attrs.offset += suboffset;
2765 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2766 / BITS_PER_UNIT);
2767 }
2768 /* Similarly for the decl. */
2769 else if (DECL_P (attrs.expr)
2770 && DECL_SIZE_UNIT (attrs.expr)
2771 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2772 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2773 size)
2774 && known_ge (attrs.offset, 0))
2775 break;
2776 else
2777 {
2778 /* The widened memory access overflows the expression, which means
2779 that it could alias another expression. Zap it. */
2780 attrs.expr = NULL_TREE;
2781 break;
2782 }
2783 }
2784
2785 if (! attrs.expr)
2786 attrs.offset_known_p = false;
2787
2788 /* The widened memory may alias other stuff, so zap the alias set. */
2789 /* ??? Maybe use get_alias_set on any remaining expression. */
2790 attrs.alias = 0;
2791 attrs.size_known_p = true;
2792 attrs.size = size;
2793 set_mem_attrs (mem: new_rtx, attrs: &attrs);
2794 return new_rtx;
2795}
2796
2797/* A fake decl that is used as the MEM_EXPR of spill slots. */
2798static GTY(()) tree spill_slot_decl;
2799
2800tree
2801get_spill_slot_decl (bool force_build_p)
2802{
2803 tree d = spill_slot_decl;
2804 rtx rd;
2805
2806 if (d || !force_build_p)
2807 return d;
2808
2809 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2810 VAR_DECL, get_identifier ("%sfp"), void_type_node);
2811 DECL_ARTIFICIAL (d) = 1;
2812 DECL_IGNORED_P (d) = 1;
2813 TREE_USED (d) = 1;
2814 spill_slot_decl = d;
2815
2816 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2817 MEM_NOTRAP_P (rd) = 1;
2818 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2819 attrs.alias = new_alias_set ();
2820 attrs.expr = d;
2821 set_mem_attrs (mem: rd, attrs: &attrs);
2822 SET_DECL_RTL (d, rd);
2823
2824 return d;
2825}
2826
2827/* Given MEM, a result from assign_stack_local, fill in the memory
2828 attributes as appropriate for a register allocator spill slot.
2829 These slots are not aliasable by other memory. We arrange for
2830 them all to use a single MEM_EXPR, so that the aliasing code can
2831 work properly in the case of shared spill slots. */
2832
2833void
2834set_mem_attrs_for_spill (rtx mem)
2835{
2836 rtx addr;
2837
2838 mem_attrs attrs (*get_mem_attrs (x: mem));
2839 attrs.expr = get_spill_slot_decl (force_build_p: true);
2840 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2841 attrs.addrspace = ADDR_SPACE_GENERIC;
2842
2843 /* We expect the incoming memory to be of the form:
2844 (mem:MODE (plus (reg sfp) (const_int offset)))
2845 with perhaps the plus missing for offset = 0. */
2846 addr = XEXP (mem, 0);
2847 attrs.offset_known_p = true;
2848 strip_offset (addr, &attrs.offset);
2849
2850 set_mem_attrs (mem, attrs: &attrs);
2851 MEM_NOTRAP_P (mem) = 1;
2852}
2853
2854/* Return a newly created CODE_LABEL rtx with a unique label number. */
2855
2856rtx_code_label *
2857gen_label_rtx (void)
2858{
2859 return as_a <rtx_code_label *> (
2860 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2861 NULL, label_num++, NULL));
2862}
2863
2864/* For procedure integration. */
2865
2866/* Install new pointers to the first and last insns in the chain.
2867 Also, set cur_insn_uid to one higher than the last in use.
2868 Used for an inline-procedure after copying the insn chain. */
2869
2870void
2871set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
2872{
2873 rtx_insn *insn;
2874
2875 set_first_insn (first);
2876 set_last_insn (last);
2877 cur_insn_uid = 0;
2878
2879 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
2880 {
2881 int debug_count = 0;
2882
2883 cur_insn_uid = param_min_nondebug_insn_uid - 1;
2884 cur_debug_insn_uid = 0;
2885
2886 for (insn = first; insn; insn = NEXT_INSN (insn))
2887 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
2888 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2889 else
2890 {
2891 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2892 if (DEBUG_INSN_P (insn))
2893 debug_count++;
2894 }
2895
2896 if (debug_count)
2897 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
2898 else
2899 cur_debug_insn_uid++;
2900 }
2901 else
2902 for (insn = first; insn; insn = NEXT_INSN (insn))
2903 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2904
2905 cur_insn_uid++;
2906}
2907
2908/* Go through all the RTL insn bodies and copy any invalid shared
2909 structure. This routine should only be called once. */
2910
2911static void
2912unshare_all_rtl_1 (rtx_insn *insn)
2913{
2914 /* Unshare just about everything else. */
2915 unshare_all_rtl_in_chain (insn);
2916
2917 /* Make sure the addresses of stack slots found outside the insn chain
2918 (such as, in DECL_RTL of a variable) are not shared
2919 with the insn chain.
2920
2921 This special care is necessary when the stack slot MEM does not
2922 actually appear in the insn chain. If it does appear, its address
2923 is unshared from all else at that point. */
2924 unsigned int i;
2925 rtx temp;
2926 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2927 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
2928}
2929
2930/* Go through all the RTL insn bodies and copy any invalid shared
2931 structure, again. This is a fairly expensive thing to do so it
2932 should be done sparingly. */
2933
2934void
2935unshare_all_rtl_again (rtx_insn *insn)
2936{
2937 rtx_insn *p;
2938 tree decl;
2939
2940 for (p = insn; p; p = NEXT_INSN (insn: p))
2941 if (INSN_P (p))
2942 {
2943 reset_used_flags (PATTERN (insn: p));
2944 reset_used_flags (REG_NOTES (p));
2945 if (CALL_P (p))
2946 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2947 }
2948
2949 /* Make sure that virtual stack slots are not shared. */
2950 set_used_decls (DECL_INITIAL (cfun->decl));
2951
2952 /* Make sure that virtual parameters are not shared. */
2953 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2954 set_used_flags (DECL_RTL (decl));
2955
2956 rtx temp;
2957 unsigned int i;
2958 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2959 reset_used_flags (temp);
2960
2961 unshare_all_rtl_1 (insn);
2962}
2963
2964void
2965unshare_all_rtl (void)
2966{
2967 unshare_all_rtl_1 (insn: get_insns ());
2968
2969 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2970 {
2971 if (DECL_RTL_SET_P (decl))
2972 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2973 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2974 }
2975}
2976
2977
2978/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2979 Recursively does the same for subexpressions. */
2980
2981static void
2982verify_rtx_sharing (rtx orig, rtx insn)
2983{
2984 rtx x = orig;
2985 int i;
2986 enum rtx_code code;
2987 const char *format_ptr;
2988
2989 if (x == 0)
2990 return;
2991
2992 code = GET_CODE (x);
2993
2994 /* These types may be freely shared. */
2995
2996 switch (code)
2997 {
2998 case REG:
2999 case DEBUG_EXPR:
3000 case VALUE:
3001 CASE_CONST_ANY:
3002 case SYMBOL_REF:
3003 case LABEL_REF:
3004 case CODE_LABEL:
3005 case PC:
3006 case RETURN:
3007 case SIMPLE_RETURN:
3008 case SCRATCH:
3009 /* SCRATCH must be shared because they represent distinct values. */
3010 return;
3011 case CLOBBER:
3012 /* Share clobbers of hard registers, but do not share pseudo reg
3013 clobbers or clobbers of hard registers that originated as pseudos.
3014 This is needed to allow safe register renaming. */
3015 if (REG_P (XEXP (x, 0))
3016 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3017 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3018 return;
3019 break;
3020
3021 case CONST:
3022 if (shared_const_p (orig))
3023 return;
3024 break;
3025
3026 case MEM:
3027 /* A MEM is allowed to be shared if its address is constant. */
3028 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
3029 || reload_completed || reload_in_progress)
3030 return;
3031
3032 break;
3033
3034 default:
3035 break;
3036 }
3037
3038 /* This rtx may not be shared. If it has already been seen,
3039 replace it with a copy of itself. */
3040 if (flag_checking && RTX_FLAG (x, used))
3041 {
3042 error ("invalid rtl sharing found in the insn");
3043 debug_rtx (insn);
3044 error ("shared rtx");
3045 debug_rtx (x);
3046 internal_error ("internal consistency failure");
3047 }
3048 gcc_assert (!RTX_FLAG (x, used));
3049
3050 RTX_FLAG (x, used) = 1;
3051
3052 /* Now scan the subexpressions recursively. */
3053
3054 format_ptr = GET_RTX_FORMAT (code);
3055
3056 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3057 {
3058 switch (*format_ptr++)
3059 {
3060 case 'e':
3061 verify_rtx_sharing (XEXP (x, i), insn);
3062 break;
3063
3064 case 'E':
3065 if (XVEC (x, i) != NULL)
3066 {
3067 int j;
3068 int len = XVECLEN (x, i);
3069
3070 for (j = 0; j < len; j++)
3071 {
3072 /* We allow sharing of ASM_OPERANDS inside single
3073 instruction. */
3074 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
3075 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
3076 == ASM_OPERANDS))
3077 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
3078 else
3079 verify_rtx_sharing (XVECEXP (x, i, j), insn);
3080 }
3081 }
3082 break;
3083 }
3084 }
3085}
3086
3087/* Reset used-flags for INSN. */
3088
3089static void
3090reset_insn_used_flags (rtx insn)
3091{
3092 gcc_assert (INSN_P (insn));
3093 reset_used_flags (PATTERN (insn));
3094 reset_used_flags (REG_NOTES (insn));
3095 if (CALL_P (insn))
3096 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
3097}
3098
3099/* Go through all the RTL insn bodies and clear all the USED bits. */
3100
3101static void
3102reset_all_used_flags (void)
3103{
3104 rtx_insn *p;
3105
3106 for (p = get_insns (); p; p = NEXT_INSN (insn: p))
3107 if (INSN_P (p))
3108 {
3109 rtx pat = PATTERN (insn: p);
3110 if (GET_CODE (pat) != SEQUENCE)
3111 reset_insn_used_flags (insn: p);
3112 else
3113 {
3114 gcc_assert (REG_NOTES (p) == NULL);
3115 for (int i = 0; i < XVECLEN (pat, 0); i++)
3116 {
3117 rtx insn = XVECEXP (pat, 0, i);
3118 if (INSN_P (insn))
3119 reset_insn_used_flags (insn);
3120 }
3121 }
3122 }
3123}
3124
3125/* Verify sharing in INSN. */
3126
3127static void
3128verify_insn_sharing (rtx insn)
3129{
3130 gcc_assert (INSN_P (insn));
3131 verify_rtx_sharing (orig: PATTERN (insn), insn);
3132 verify_rtx_sharing (REG_NOTES (insn), insn);
3133 if (CALL_P (insn))
3134 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
3135}
3136
3137/* Go through all the RTL insn bodies and check that there is no unexpected
3138 sharing in between the subexpressions. */
3139
3140DEBUG_FUNCTION void
3141verify_rtl_sharing (void)
3142{
3143 rtx_insn *p;
3144
3145 timevar_push (tv: TV_VERIFY_RTL_SHARING);
3146
3147 reset_all_used_flags ();
3148
3149 for (p = get_insns (); p; p = NEXT_INSN (insn: p))
3150 if (INSN_P (p))
3151 {
3152 rtx pat = PATTERN (insn: p);
3153 if (GET_CODE (pat) != SEQUENCE)
3154 verify_insn_sharing (insn: p);
3155 else
3156 for (int i = 0; i < XVECLEN (pat, 0); i++)
3157 {
3158 rtx insn = XVECEXP (pat, 0, i);
3159 if (INSN_P (insn))
3160 verify_insn_sharing (insn);
3161 }
3162 }
3163
3164 reset_all_used_flags ();
3165
3166 timevar_pop (tv: TV_VERIFY_RTL_SHARING);
3167}
3168
3169/* Go through all the RTL insn bodies and copy any invalid shared structure.
3170 Assumes the mark bits are cleared at entry. */
3171
3172void
3173unshare_all_rtl_in_chain (rtx_insn *insn)
3174{
3175 for (; insn; insn = NEXT_INSN (insn))
3176 if (INSN_P (insn))
3177 {
3178 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3179 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
3180 if (CALL_P (insn))
3181 CALL_INSN_FUNCTION_USAGE (insn)
3182 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
3183 }
3184}
3185
3186/* Go through all virtual stack slots of a function and mark them as
3187 shared. We never replace the DECL_RTLs themselves with a copy,
3188 but expressions mentioned into a DECL_RTL cannot be shared with
3189 expressions in the instruction stream.
3190
3191 Note that reload may convert pseudo registers into memories in-place.
3192 Pseudo registers are always shared, but MEMs never are. Thus if we
3193 reset the used flags on MEMs in the instruction stream, we must set
3194 them again on MEMs that appear in DECL_RTLs. */
3195
3196static void
3197set_used_decls (tree blk)
3198{
3199 tree t;
3200
3201 /* Mark decls. */
3202 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
3203 if (DECL_RTL_SET_P (t))
3204 set_used_flags (DECL_RTL (t));
3205
3206 /* Now process sub-blocks. */
3207 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
3208 set_used_decls (t);
3209}
3210
3211/* Mark ORIG as in use, and return a copy of it if it was already in use.
3212 Recursively does the same for subexpressions. Uses
3213 copy_rtx_if_shared_1 to reduce stack space. */
3214
3215rtx
3216copy_rtx_if_shared (rtx orig)
3217{
3218 copy_rtx_if_shared_1 (orig: &orig);
3219 return orig;
3220}
3221
3222/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3223 use. Recursively does the same for subexpressions. */
3224
3225static void
3226copy_rtx_if_shared_1 (rtx *orig1)
3227{
3228 rtx x;
3229 int i;
3230 enum rtx_code code;
3231 rtx *last_ptr;
3232 const char *format_ptr;
3233 int copied = 0;
3234 int length;
3235
3236 /* Repeat is used to turn tail-recursion into iteration. */
3237repeat:
3238 x = *orig1;
3239
3240 if (x == 0)
3241 return;
3242
3243 code = GET_CODE (x);
3244
3245 /* These types may be freely shared. */
3246
3247 switch (code)
3248 {
3249 case REG:
3250 case DEBUG_EXPR:
3251 case VALUE:
3252 CASE_CONST_ANY:
3253 case SYMBOL_REF:
3254 case LABEL_REF:
3255 case CODE_LABEL:
3256 case PC:
3257 case RETURN:
3258 case SIMPLE_RETURN:
3259 case SCRATCH:
3260 /* SCRATCH must be shared because they represent distinct values. */
3261 return;
3262 case CLOBBER:
3263 /* Share clobbers of hard registers, but do not share pseudo reg
3264 clobbers or clobbers of hard registers that originated as pseudos.
3265 This is needed to allow safe register renaming. */
3266 if (REG_P (XEXP (x, 0))
3267 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3268 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3269 return;
3270 break;
3271
3272 case CONST:
3273 if (shared_const_p (x))
3274 return;
3275 break;
3276
3277 case DEBUG_INSN:
3278 case INSN:
3279 case JUMP_INSN:
3280 case CALL_INSN:
3281 case NOTE:
3282 case BARRIER:
3283 /* The chain of insns is not being copied. */
3284 return;
3285
3286 default:
3287 break;
3288 }
3289
3290 /* This rtx may not be shared. If it has already been seen,
3291 replace it with a copy of itself. */
3292
3293 if (RTX_FLAG (x, used))
3294 {
3295 x = shallow_copy_rtx (x);
3296 copied = 1;
3297 }
3298 RTX_FLAG (x, used) = 1;
3299
3300 /* Now scan the subexpressions recursively.
3301 We can store any replaced subexpressions directly into X
3302 since we know X is not shared! Any vectors in X
3303 must be copied if X was copied. */
3304
3305 format_ptr = GET_RTX_FORMAT (code);
3306 length = GET_RTX_LENGTH (code);
3307 last_ptr = NULL;
3308
3309 for (i = 0; i < length; i++)
3310 {
3311 switch (*format_ptr++)
3312 {
3313 case 'e':
3314 if (last_ptr)
3315 copy_rtx_if_shared_1 (orig1: last_ptr);
3316 last_ptr = &XEXP (x, i);
3317 break;
3318
3319 case 'E':
3320 if (XVEC (x, i) != NULL)
3321 {
3322 int j;
3323 int len = XVECLEN (x, i);
3324
3325 /* Copy the vector iff I copied the rtx and the length
3326 is nonzero. */
3327 if (copied && len > 0)
3328 XVEC (x, i) = gen_rtvec_v (n: len, XVEC (x, i)->elem);
3329
3330 /* Call recursively on all inside the vector. */
3331 for (j = 0; j < len; j++)
3332 {
3333 if (last_ptr)
3334 copy_rtx_if_shared_1 (orig1: last_ptr);
3335 last_ptr = &XVECEXP (x, i, j);
3336 }
3337 }
3338 break;
3339 }
3340 }
3341 *orig1 = x;
3342 if (last_ptr)
3343 {
3344 orig1 = last_ptr;
3345 goto repeat;
3346 }
3347}
3348
3349/* Set the USED bit in X and its non-shareable subparts to FLAG. */
3350
3351static void
3352mark_used_flags (rtx x, int flag)
3353{
3354 int i, j;
3355 enum rtx_code code;
3356 const char *format_ptr;
3357 int length;
3358
3359 /* Repeat is used to turn tail-recursion into iteration. */
3360repeat:
3361 if (x == 0)
3362 return;
3363
3364 code = GET_CODE (x);
3365
3366 /* These types may be freely shared so we needn't do any resetting
3367 for them. */
3368
3369 switch (code)
3370 {
3371 case REG:
3372 case DEBUG_EXPR:
3373 case VALUE:
3374 CASE_CONST_ANY:
3375 case SYMBOL_REF:
3376 case CODE_LABEL:
3377 case PC:
3378 case RETURN:
3379 case SIMPLE_RETURN:
3380 return;
3381
3382 case DEBUG_INSN:
3383 case INSN:
3384 case JUMP_INSN:
3385 case CALL_INSN:
3386 case NOTE:
3387 case LABEL_REF:
3388 case BARRIER:
3389 /* The chain of insns is not being copied. */
3390 return;
3391
3392 default:
3393 break;
3394 }
3395
3396 RTX_FLAG (x, used) = flag;
3397
3398 format_ptr = GET_RTX_FORMAT (code);
3399 length = GET_RTX_LENGTH (code);
3400
3401 for (i = 0; i < length; i++)
3402 {
3403 switch (*format_ptr++)
3404 {
3405 case 'e':
3406 if (i == length-1)
3407 {
3408 x = XEXP (x, i);
3409 goto repeat;
3410 }
3411 mark_used_flags (XEXP (x, i), flag);
3412 break;
3413
3414 case 'E':
3415 for (j = 0; j < XVECLEN (x, i); j++)
3416 mark_used_flags (XVECEXP (x, i, j), flag);
3417 break;
3418 }
3419 }
3420}
3421
3422/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3423 to look for shared sub-parts. */
3424
3425void
3426reset_used_flags (rtx x)
3427{
3428 mark_used_flags (x, flag: 0);
3429}
3430
3431/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3432 to look for shared sub-parts. */
3433
3434void
3435set_used_flags (rtx x)
3436{
3437 mark_used_flags (x, flag: 1);
3438}
3439
3440/* Copy X if necessary so that it won't be altered by changes in OTHER.
3441 Return X or the rtx for the pseudo reg the value of X was copied into.
3442 OTHER must be valid as a SET_DEST. */
3443
3444rtx
3445make_safe_from (rtx x, rtx other)
3446{
3447 while (1)
3448 switch (GET_CODE (other))
3449 {
3450 case SUBREG:
3451 other = SUBREG_REG (other);
3452 break;
3453 case STRICT_LOW_PART:
3454 case SIGN_EXTEND:
3455 case ZERO_EXTEND:
3456 other = XEXP (other, 0);
3457 break;
3458 default:
3459 goto done;
3460 }
3461 done:
3462 if ((MEM_P (other)
3463 && ! CONSTANT_P (x)
3464 && !REG_P (x)
3465 && GET_CODE (x) != SUBREG)
3466 || (REG_P (other)
3467 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3468 || reg_mentioned_p (other, x))))
3469 {
3470 rtx temp = gen_reg_rtx (GET_MODE (x));
3471 emit_move_insn (temp, x);
3472 return temp;
3473 }
3474 return x;
3475}
3476
3477/* Emission of insns (adding them to the doubly-linked list). */
3478
3479/* Return the last insn emitted, even if it is in a sequence now pushed. */
3480
3481rtx_insn *
3482get_last_insn_anywhere (void)
3483{
3484 struct sequence_stack *seq;
3485 for (seq = get_current_sequence (); seq; seq = seq->next)
3486 if (seq->last != 0)
3487 return seq->last;
3488 return 0;
3489}
3490
3491/* Return the first nonnote insn emitted in current sequence or current
3492 function. This routine looks inside SEQUENCEs. */
3493
3494rtx_insn *
3495get_first_nonnote_insn (void)
3496{
3497 rtx_insn *insn = get_insns ();
3498
3499 if (insn)
3500 {
3501 if (NOTE_P (insn))
3502 for (insn = next_insn (insn);
3503 insn && NOTE_P (insn);
3504 insn = next_insn (insn))
3505 continue;
3506 else
3507 {
3508 if (NONJUMP_INSN_P (insn)
3509 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3510 insn = as_a <rtx_sequence *> (p: PATTERN (insn))->insn (index: 0);
3511 }
3512 }
3513
3514 return insn;
3515}
3516
3517/* Return the last nonnote insn emitted in current sequence or current
3518 function. This routine looks inside SEQUENCEs. */
3519
3520rtx_insn *
3521get_last_nonnote_insn (void)
3522{
3523 rtx_insn *insn = get_last_insn ();
3524
3525 if (insn)
3526 {
3527 if (NOTE_P (insn))
3528 for (insn = previous_insn (insn);
3529 insn && NOTE_P (insn);
3530 insn = previous_insn (insn))
3531 continue;
3532 else
3533 {
3534 if (NONJUMP_INSN_P (insn))
3535 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: PATTERN (insn)))
3536 insn = seq->insn (index: seq->len () - 1);
3537 }
3538 }
3539
3540 return insn;
3541}
3542
3543/* Return the number of actual (non-debug) insns emitted in this
3544 function. */
3545
3546int
3547get_max_insn_count (void)
3548{
3549 int n = cur_insn_uid;
3550
3551 /* The table size must be stable across -g, to avoid codegen
3552 differences due to debug insns, and not be affected by
3553 -fmin-insn-uid, to avoid excessive table size and to simplify
3554 debugging of -fcompare-debug failures. */
3555 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
3556 n -= cur_debug_insn_uid;
3557 else
3558 n -= param_min_nondebug_insn_uid;
3559
3560 return n;
3561}
3562
3563
3564/* Return the next insn. If it is a SEQUENCE, return the first insn
3565 of the sequence. */
3566
3567rtx_insn *
3568next_insn (rtx_insn *insn)
3569{
3570 if (insn)
3571 {
3572 insn = NEXT_INSN (insn);
3573 if (insn && NONJUMP_INSN_P (insn)
3574 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3575 insn = as_a <rtx_sequence *> (p: PATTERN (insn))->insn (index: 0);
3576 }
3577
3578 return insn;
3579}
3580
3581/* Return the previous insn. If it is a SEQUENCE, return the last insn
3582 of the sequence. */
3583
3584rtx_insn *
3585previous_insn (rtx_insn *insn)
3586{
3587 if (insn)
3588 {
3589 insn = PREV_INSN (insn);
3590 if (insn && NONJUMP_INSN_P (insn))
3591 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (p: PATTERN (insn)))
3592 insn = seq->insn (index: seq->len () - 1);
3593 }
3594
3595 return insn;
3596}
3597
3598/* Return the next insn after INSN that is not a NOTE. This routine does not
3599 look inside SEQUENCEs. */
3600
3601rtx_insn *
3602next_nonnote_insn (rtx_insn *insn)
3603{
3604 while (insn)
3605 {
3606 insn = NEXT_INSN (insn);
3607 if (insn == 0 || !NOTE_P (insn))
3608 break;
3609 }
3610
3611 return insn;
3612}
3613
3614/* Return the next insn after INSN that is not a DEBUG_INSN. This
3615 routine does not look inside SEQUENCEs. */
3616
3617rtx_insn *
3618next_nondebug_insn (rtx_insn *insn)
3619{
3620 while (insn)
3621 {
3622 insn = NEXT_INSN (insn);
3623 if (insn == 0 || !DEBUG_INSN_P (insn))
3624 break;
3625 }
3626
3627 return insn;
3628}
3629
3630/* Return the previous insn before INSN that is not a NOTE. This routine does
3631 not look inside SEQUENCEs. */
3632
3633rtx_insn *
3634prev_nonnote_insn (rtx_insn *insn)
3635{
3636 while (insn)
3637 {
3638 insn = PREV_INSN (insn);
3639 if (insn == 0 || !NOTE_P (insn))
3640 break;
3641 }
3642
3643 return insn;
3644}
3645
3646/* Return the previous insn before INSN that is not a DEBUG_INSN.
3647 This routine does not look inside SEQUENCEs. */
3648
3649rtx_insn *
3650prev_nondebug_insn (rtx_insn *insn)
3651{
3652 while (insn)
3653 {
3654 insn = PREV_INSN (insn);
3655 if (insn == 0 || !DEBUG_INSN_P (insn))
3656 break;
3657 }
3658
3659 return insn;
3660}
3661
3662/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3663 This routine does not look inside SEQUENCEs. */
3664
3665rtx_insn *
3666next_nonnote_nondebug_insn (rtx_insn *insn)
3667{
3668 while (insn)
3669 {
3670 insn = NEXT_INSN (insn);
3671 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3672 break;
3673 }
3674
3675 return insn;
3676}
3677
3678/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3679 but stop the search before we enter another basic block. This
3680 routine does not look inside SEQUENCEs. */
3681
3682rtx_insn *
3683next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3684{
3685 while (insn)
3686 {
3687 insn = NEXT_INSN (insn);
3688 if (insn == 0)
3689 break;
3690 if (DEBUG_INSN_P (insn))
3691 continue;
3692 if (!NOTE_P (insn))
3693 break;
3694 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3695 return NULL;
3696 }
3697
3698 return insn;
3699}
3700
3701/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3702 This routine does not look inside SEQUENCEs. */
3703
3704rtx_insn *
3705prev_nonnote_nondebug_insn (rtx_insn *insn)
3706{
3707 while (insn)
3708 {
3709 insn = PREV_INSN (insn);
3710 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3711 break;
3712 }
3713
3714 return insn;
3715}
3716
3717/* Return the previous insn before INSN that is not a NOTE nor
3718 DEBUG_INSN, but stop the search before we enter another basic
3719 block. This routine does not look inside SEQUENCEs. */
3720
3721rtx_insn *
3722prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3723{
3724 while (insn)
3725 {
3726 insn = PREV_INSN (insn);
3727 if (insn == 0)
3728 break;
3729 if (DEBUG_INSN_P (insn))
3730 continue;
3731 if (!NOTE_P (insn))
3732 break;
3733 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3734 return NULL;
3735 }
3736
3737 return insn;
3738}
3739
3740/* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3741 or 0, if there is none. This routine does not look inside
3742 SEQUENCEs. */
3743
3744rtx_insn *
3745next_real_insn (rtx_insn *insn)
3746{
3747 while (insn)
3748 {
3749 insn = NEXT_INSN (insn);
3750 if (insn == 0 || INSN_P (insn))
3751 break;
3752 }
3753
3754 return insn;
3755}
3756
3757/* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3758 or 0, if there is none. This routine does not look inside
3759 SEQUENCEs. */
3760
3761rtx_insn *
3762prev_real_insn (rtx_insn *insn)
3763{
3764 while (insn)
3765 {
3766 insn = PREV_INSN (insn);
3767 if (insn == 0 || INSN_P (insn))
3768 break;
3769 }
3770
3771 return insn;
3772}
3773
3774/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3775 or 0, if there is none. This routine does not look inside
3776 SEQUENCEs. */
3777
3778rtx_insn *
3779next_real_nondebug_insn (rtx uncast_insn)
3780{
3781 rtx_insn *insn = safe_as_a <rtx_insn *> (p: uncast_insn);
3782
3783 while (insn)
3784 {
3785 insn = NEXT_INSN (insn);
3786 if (insn == 0 || NONDEBUG_INSN_P (insn))
3787 break;
3788 }
3789
3790 return insn;
3791}
3792
3793/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3794 or 0, if there is none. This routine does not look inside
3795 SEQUENCEs. */
3796
3797rtx_insn *
3798prev_real_nondebug_insn (rtx_insn *insn)
3799{
3800 while (insn)
3801 {
3802 insn = PREV_INSN (insn);
3803 if (insn == 0 || NONDEBUG_INSN_P (insn))
3804 break;
3805 }
3806
3807 return insn;
3808}
3809
3810/* Return the last CALL_INSN in the current list, or 0 if there is none.
3811 This routine does not look inside SEQUENCEs. */
3812
3813rtx_call_insn *
3814last_call_insn (void)
3815{
3816 rtx_insn *insn;
3817
3818 for (insn = get_last_insn ();
3819 insn && !CALL_P (insn);
3820 insn = PREV_INSN (insn))
3821 ;
3822
3823 return safe_as_a <rtx_call_insn *> (p: insn);
3824}
3825
3826bool
3827active_insn_p (const rtx_insn *insn)
3828{
3829 return (CALL_P (insn) || JUMP_P (insn)
3830 || JUMP_TABLE_DATA_P (insn) /* FIXME */
3831 || (NONJUMP_INSN_P (insn)
3832 && (! reload_completed
3833 || (GET_CODE (PATTERN (insn)) != USE
3834 && GET_CODE (PATTERN (insn)) != CLOBBER))));
3835}
3836
3837/* Find the next insn after INSN that really does something. This routine
3838 does not look inside SEQUENCEs. After reload this also skips over
3839 standalone USE and CLOBBER insn. */
3840
3841rtx_insn *
3842next_active_insn (rtx_insn *insn)
3843{
3844 while (insn)
3845 {
3846 insn = NEXT_INSN (insn);
3847 if (insn == 0 || active_insn_p (insn))
3848 break;
3849 }
3850
3851 return insn;
3852}
3853
3854/* Find the last insn before INSN that really does something. This routine
3855 does not look inside SEQUENCEs. After reload this also skips over
3856 standalone USE and CLOBBER insn. */
3857
3858rtx_insn *
3859prev_active_insn (rtx_insn *insn)
3860{
3861 while (insn)
3862 {
3863 insn = PREV_INSN (insn);
3864 if (insn == 0 || active_insn_p (insn))
3865 break;
3866 }
3867
3868 return insn;
3869}
3870
3871/* Find a RTX_AUTOINC class rtx which matches DATA. */
3872
3873static int
3874find_auto_inc (const_rtx x, const_rtx reg)
3875{
3876 subrtx_iterator::array_type array;
3877 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
3878 {
3879 const_rtx x = *iter;
3880 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3881 && rtx_equal_p (reg, XEXP (x, 0)))
3882 return true;
3883 }
3884 return false;
3885}
3886
3887/* Increment the label uses for all labels present in rtx. */
3888
3889static void
3890mark_label_nuses (rtx x)
3891{
3892 enum rtx_code code;
3893 int i, j;
3894 const char *fmt;
3895
3896 code = GET_CODE (x);
3897 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3898 LABEL_NUSES (label_ref_label (x))++;
3899
3900 fmt = GET_RTX_FORMAT (code);
3901 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3902 {
3903 if (fmt[i] == 'e')
3904 mark_label_nuses (XEXP (x, i));
3905 else if (fmt[i] == 'E')
3906 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3907 mark_label_nuses (XVECEXP (x, i, j));
3908 }
3909}
3910
3911
3912/* Try splitting insns that can be split for better scheduling.
3913 PAT is the pattern which might split.
3914 TRIAL is the insn providing PAT.
3915 LAST is nonzero if we should return the last insn of the sequence produced.
3916
3917 If this routine succeeds in splitting, it returns the first or last
3918 replacement insn depending on the value of LAST. Otherwise, it
3919 returns TRIAL. If the insn to be returned can be split, it will be. */
3920
3921rtx_insn *
3922try_split (rtx pat, rtx_insn *trial, int last)
3923{
3924 rtx_insn *before, *after;
3925 rtx note;
3926 rtx_insn *seq, *tem;
3927 profile_probability probability;
3928 rtx_insn *insn_last, *insn;
3929 int njumps = 0;
3930 rtx_insn *call_insn = NULL;
3931
3932 if (any_condjump_p (trial)
3933 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3934 split_branch_probability
3935 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3936 else
3937 split_branch_probability = profile_probability::uninitialized ();
3938
3939 probability = split_branch_probability;
3940
3941 seq = split_insns (pat, trial);
3942
3943 split_branch_probability = profile_probability::uninitialized ();
3944
3945 if (!seq)
3946 return trial;
3947
3948 int split_insn_count = 0;
3949 /* Avoid infinite loop if any insn of the result matches
3950 the original pattern. */
3951 insn_last = seq;
3952 while (1)
3953 {
3954 if (INSN_P (insn_last)
3955 && rtx_equal_p (PATTERN (insn: insn_last), pat))
3956 return trial;
3957 split_insn_count++;
3958 if (!NEXT_INSN (insn: insn_last))
3959 break;
3960 insn_last = NEXT_INSN (insn: insn_last);
3961 }
3962
3963 /* We're not good at redistributing frame information if
3964 the split occurs before reload or if it results in more
3965 than one insn. */
3966 if (RTX_FRAME_RELATED_P (trial))
3967 {
3968 if (!reload_completed || split_insn_count != 1)
3969 return trial;
3970
3971 rtx_insn *new_insn = seq;
3972 rtx_insn *old_insn = trial;
3973 copy_frame_info_to_split_insn (old_insn, new_insn);
3974 }
3975
3976 /* We will be adding the new sequence to the function. The splitters
3977 may have introduced invalid RTL sharing, so unshare the sequence now. */
3978 unshare_all_rtl_in_chain (insn: seq);
3979
3980 /* Mark labels and copy flags. */
3981 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3982 {
3983 if (JUMP_P (insn))
3984 {
3985 if (JUMP_P (trial))
3986 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
3987 mark_jump_label (PATTERN (insn), insn, 0);
3988 njumps++;
3989 if (probability.initialized_p ()
3990 && any_condjump_p (insn)
3991 && !find_reg_note (insn, REG_BR_PROB, 0))
3992 {
3993 /* We can preserve the REG_BR_PROB notes only if exactly
3994 one jump is created, otherwise the machine description
3995 is responsible for this step using
3996 split_branch_probability variable. */
3997 gcc_assert (njumps == 1);
3998 add_reg_br_prob_note (insn, probability);
3999 }
4000 }
4001 }
4002
4003 /* If we are splitting a CALL_INSN, look for the CALL_INSN
4004 in SEQ and copy any additional information across. */
4005 if (CALL_P (trial))
4006 {
4007 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4008 if (CALL_P (insn))
4009 {
4010 gcc_assert (call_insn == NULL_RTX);
4011 call_insn = insn;
4012
4013 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
4014 target may have explicitly specified. */
4015 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
4016 while (*p)
4017 p = &XEXP (*p, 1);
4018 *p = CALL_INSN_FUNCTION_USAGE (trial);
4019
4020 /* If the old call was a sibling call, the new one must
4021 be too. */
4022 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
4023 }
4024 }
4025
4026 /* Copy notes, particularly those related to the CFG. */
4027 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
4028 {
4029 switch (REG_NOTE_KIND (note))
4030 {
4031 case REG_EH_REGION:
4032 copy_reg_eh_region_note_backward (note, insn_last, NULL);
4033 break;
4034
4035 case REG_NORETURN:
4036 case REG_SETJMP:
4037 case REG_TM:
4038 case REG_CALL_NOCF_CHECK:
4039 case REG_CALL_ARG_LOCATION:
4040 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
4041 {
4042 if (CALL_P (insn))
4043 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
4044 }
4045 break;
4046
4047 case REG_NON_LOCAL_GOTO:
4048 case REG_LABEL_TARGET:
4049 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
4050 {
4051 if (JUMP_P (insn))
4052 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
4053 }
4054 break;
4055
4056 case REG_INC:
4057 if (!AUTO_INC_DEC)
4058 break;
4059
4060 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
4061 {
4062 rtx reg = XEXP (note, 0);
4063 if (!FIND_REG_INC_NOTE (insn, reg)
4064 && find_auto_inc (x: PATTERN (insn), reg))
4065 add_reg_note (insn, REG_INC, reg);
4066 }
4067 break;
4068
4069 case REG_ARGS_SIZE:
4070 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
4071 break;
4072
4073 case REG_CALL_DECL:
4074 case REG_UNTYPED_CALL:
4075 gcc_assert (call_insn != NULL_RTX);
4076 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
4077 break;
4078
4079 default:
4080 break;
4081 }
4082 }
4083
4084 /* If there are LABELS inside the split insns increment the
4085 usage count so we don't delete the label. */
4086 if (INSN_P (trial))
4087 {
4088 insn = insn_last;
4089 while (insn != NULL_RTX)
4090 {
4091 /* JUMP_P insns have already been "marked" above. */
4092 if (NONJUMP_INSN_P (insn))
4093 mark_label_nuses (x: PATTERN (insn));
4094
4095 insn = PREV_INSN (insn);
4096 }
4097 }
4098
4099 before = PREV_INSN (insn: trial);
4100 after = NEXT_INSN (insn: trial);
4101
4102 emit_insn_after_setloc (seq, trial, INSN_LOCATION (insn: trial));
4103
4104 delete_insn (trial);
4105
4106 /* Recursively call try_split for each new insn created; by the
4107 time control returns here that insn will be fully split, so
4108 set LAST and continue from the insn after the one returned.
4109 We can't use next_active_insn here since AFTER may be a note.
4110 Ignore deleted insns, which can be occur if not optimizing. */
4111 for (tem = NEXT_INSN (insn: before); tem != after; tem = NEXT_INSN (insn: tem))
4112 if (! tem->deleted () && INSN_P (tem))
4113 tem = try_split (pat: PATTERN (insn: tem), trial: tem, last: 1);
4114
4115 /* Return either the first or the last insn, depending on which was
4116 requested. */
4117 return last
4118 ? (after ? PREV_INSN (insn: after) : get_last_insn ())
4119 : NEXT_INSN (insn: before);
4120}
4121
4122/* Make and return an INSN rtx, initializing all its slots.
4123 Store PATTERN in the pattern slots. */
4124
4125rtx_insn *
4126make_insn_raw (rtx pattern)
4127{
4128 rtx_insn *insn;
4129
4130 insn = as_a <rtx_insn *> (p: rtx_alloc (INSN));
4131
4132 INSN_UID (insn) = cur_insn_uid++;
4133 PATTERN (insn) = pattern;
4134 INSN_CODE (insn) = -1;
4135 REG_NOTES (insn) = NULL;
4136 INSN_LOCATION (insn) = curr_insn_location ();
4137 BLOCK_FOR_INSN (insn) = NULL;
4138
4139#ifdef ENABLE_RTL_CHECKING
4140 if (insn
4141 && INSN_P (insn)
4142 && (returnjump_p (insn)
4143 || (GET_CODE (insn) == SET
4144 && SET_DEST (insn) == pc_rtx)))
4145 {
4146 warning (0, "ICE: %<emit_insn%> used where %<emit_jump_insn%> needed:");
4147 debug_rtx (insn);
4148 }
4149#endif
4150
4151 return insn;
4152}
4153
4154/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4155
4156static rtx_insn *
4157make_debug_insn_raw (rtx pattern)
4158{
4159 rtx_debug_insn *insn;
4160
4161 insn = as_a <rtx_debug_insn *> (p: rtx_alloc (DEBUG_INSN));
4162 INSN_UID (insn) = cur_debug_insn_uid++;
4163 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
4164 INSN_UID (insn) = cur_insn_uid++;
4165
4166 PATTERN (insn) = pattern;
4167 INSN_CODE (insn) = -1;
4168 REG_NOTES (insn) = NULL;
4169 INSN_LOCATION (insn) = curr_insn_location ();
4170 BLOCK_FOR_INSN (insn) = NULL;
4171
4172 return insn;
4173}
4174
4175/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4176
4177static rtx_insn *
4178make_jump_insn_raw (rtx pattern)
4179{
4180 rtx_jump_insn *insn;
4181
4182 insn = as_a <rtx_jump_insn *> (p: rtx_alloc (JUMP_INSN));
4183 INSN_UID (insn) = cur_insn_uid++;
4184
4185 PATTERN (insn) = pattern;
4186 INSN_CODE (insn) = -1;
4187 REG_NOTES (insn) = NULL;
4188 JUMP_LABEL (insn) = NULL;
4189 INSN_LOCATION (insn) = curr_insn_location ();
4190 BLOCK_FOR_INSN (insn) = NULL;
4191
4192 return insn;
4193}
4194
4195/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4196
4197static rtx_insn *
4198make_call_insn_raw (rtx pattern)
4199{
4200 rtx_call_insn *insn;
4201
4202 insn = as_a <rtx_call_insn *> (p: rtx_alloc (CALL_INSN));
4203 INSN_UID (insn) = cur_insn_uid++;
4204
4205 PATTERN (insn) = pattern;
4206 INSN_CODE (insn) = -1;
4207 REG_NOTES (insn) = NULL;
4208 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
4209 INSN_LOCATION (insn) = curr_insn_location ();
4210 BLOCK_FOR_INSN (insn) = NULL;
4211
4212 return insn;
4213}
4214
4215/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4216
4217static rtx_note *
4218make_note_raw (enum insn_note subtype)
4219{
4220 /* Some notes are never created this way at all. These notes are
4221 only created by patching out insns. */
4222 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4223 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4224
4225 rtx_note *note = as_a <rtx_note *> (p: rtx_alloc (NOTE));
4226 INSN_UID (insn: note) = cur_insn_uid++;
4227 NOTE_KIND (note) = subtype;
4228 BLOCK_FOR_INSN (insn: note) = NULL;
4229 memset (s: &NOTE_DATA (note), c: 0, n: sizeof (NOTE_DATA (note)));
4230 return note;
4231}
4232
4233/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4234 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4235 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4236
4237static inline void
4238link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4239{
4240 SET_PREV_INSN (insn) = prev;
4241 SET_NEXT_INSN (insn) = next;
4242 if (prev != NULL)
4243 {
4244 SET_NEXT_INSN (prev) = insn;
4245 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4246 {
4247 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn: prev));
4248 SET_NEXT_INSN (sequence->insn (index: sequence->len () - 1)) = insn;
4249 }
4250 }
4251 if (next != NULL)
4252 {
4253 SET_PREV_INSN (next) = insn;
4254 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4255 {
4256 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn: next));
4257 SET_PREV_INSN (sequence->insn (index: 0)) = insn;
4258 }
4259 }
4260
4261 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4262 {
4263 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn));
4264 SET_PREV_INSN (sequence->insn (index: 0)) = prev;
4265 SET_NEXT_INSN (sequence->insn (index: sequence->len () - 1)) = next;
4266 }
4267}
4268
4269/* Add INSN to the end of the doubly-linked list.
4270 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4271
4272void
4273add_insn (rtx_insn *insn)
4274{
4275 rtx_insn *prev = get_last_insn ();
4276 link_insn_into_chain (insn, prev, NULL);
4277 if (get_insns () == NULL)
4278 set_first_insn (insn);
4279 set_last_insn (insn);
4280}
4281
4282/* Add INSN into the doubly-linked list after insn AFTER. */
4283
4284static void
4285add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
4286{
4287 rtx_insn *next = NEXT_INSN (insn: after);
4288
4289 gcc_assert (!optimize || !after->deleted ());
4290
4291 link_insn_into_chain (insn, prev: after, next);
4292
4293 if (next == NULL)
4294 {
4295 struct sequence_stack *seq;
4296
4297 for (seq = get_current_sequence (); seq; seq = seq->next)
4298 if (after == seq->last)
4299 {
4300 seq->last = insn;
4301 break;
4302 }
4303 }
4304}
4305
4306/* Add INSN into the doubly-linked list before insn BEFORE. */
4307
4308static void
4309add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
4310{
4311 rtx_insn *prev = PREV_INSN (insn: before);
4312
4313 gcc_assert (!optimize || !before->deleted ());
4314
4315 link_insn_into_chain (insn, prev, next: before);
4316
4317 if (prev == NULL)
4318 {
4319 struct sequence_stack *seq;
4320
4321 for (seq = get_current_sequence (); seq; seq = seq->next)
4322 if (before == seq->first)
4323 {
4324 seq->first = insn;
4325 break;
4326 }
4327
4328 gcc_assert (seq);
4329 }
4330}
4331
4332/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4333 If BB is NULL, an attempt is made to infer the bb from before.
4334
4335 This and the next function should be the only functions called
4336 to insert an insn once delay slots have been filled since only
4337 they know how to update a SEQUENCE. */
4338
4339void
4340add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4341{
4342 add_insn_after_nobb (insn, after);
4343 if (!BARRIER_P (after)
4344 && !BARRIER_P (insn)
4345 && (bb = BLOCK_FOR_INSN (insn: after)))
4346 {
4347 set_block_for_insn (insn, bb);
4348 if (INSN_P (insn))
4349 df_insn_rescan (insn);
4350 /* Should not happen as first in the BB is always
4351 either NOTE or LABEL. */
4352 if (BB_END (bb) == after
4353 /* Avoid clobbering of structure when creating new BB. */
4354 && !BARRIER_P (insn)
4355 && !NOTE_INSN_BASIC_BLOCK_P (insn))
4356 BB_END (bb) = insn;
4357 }
4358}
4359
4360/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4361 If BB is NULL, an attempt is made to infer the bb from before.
4362
4363 This and the previous function should be the only functions called
4364 to insert an insn once delay slots have been filled since only
4365 they know how to update a SEQUENCE. */
4366
4367void
4368add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4369{
4370 add_insn_before_nobb (insn, before);
4371
4372 if (!bb
4373 && !BARRIER_P (before)
4374 && !BARRIER_P (insn))
4375 bb = BLOCK_FOR_INSN (insn: before);
4376
4377 if (bb)
4378 {
4379 set_block_for_insn (insn, bb);
4380 if (INSN_P (insn))
4381 df_insn_rescan (insn);
4382 /* Should not happen as first in the BB is always either NOTE or
4383 LABEL. */
4384 gcc_assert (BB_HEAD (bb) != insn
4385 /* Avoid clobbering of structure when creating new BB. */
4386 || BARRIER_P (insn)
4387 || NOTE_INSN_BASIC_BLOCK_P (insn));
4388 }
4389}
4390
4391/* Replace insn with an deleted instruction note. */
4392
4393void
4394set_insn_deleted (rtx_insn *insn)
4395{
4396 if (INSN_P (insn))
4397 df_insn_delete (insn);
4398 PUT_CODE (insn, NOTE);
4399 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4400}
4401
4402
4403/* Unlink INSN from the insn chain.
4404
4405 This function knows how to handle sequences.
4406
4407 This function does not invalidate data flow information associated with
4408 INSN (i.e. does not call df_insn_delete). That makes this function
4409 usable for only disconnecting an insn from the chain, and re-emit it
4410 elsewhere later.
4411
4412 To later insert INSN elsewhere in the insn chain via add_insn and
4413 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4414 the caller. Nullifying them here breaks many insn chain walks.
4415
4416 To really delete an insn and related DF information, use delete_insn. */
4417
4418void
4419remove_insn (rtx_insn *insn)
4420{
4421 rtx_insn *next = NEXT_INSN (insn);
4422 rtx_insn *prev = PREV_INSN (insn);
4423 basic_block bb;
4424
4425 if (prev)
4426 {
4427 SET_NEXT_INSN (prev) = next;
4428 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4429 {
4430 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn: prev));
4431 SET_NEXT_INSN (sequence->insn (index: sequence->len () - 1)) = next;
4432 }
4433 }
4434 else
4435 {
4436 struct sequence_stack *seq;
4437
4438 for (seq = get_current_sequence (); seq; seq = seq->next)
4439 if (insn == seq->first)
4440 {
4441 seq->first = next;
4442 break;
4443 }
4444
4445 gcc_assert (seq);
4446 }
4447
4448 if (next)
4449 {
4450 SET_PREV_INSN (next) = prev;
4451 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4452 {
4453 rtx_sequence *sequence = as_a <rtx_sequence *> (p: PATTERN (insn: next));
4454 SET_PREV_INSN (sequence->insn (index: 0)) = prev;
4455 }
4456 }
4457 else
4458 {
4459 struct sequence_stack *seq;
4460
4461 for (seq = get_current_sequence (); seq; seq = seq->next)
4462 if (insn == seq->last)
4463 {
4464 seq->last = prev;
4465 break;
4466 }
4467
4468 gcc_assert (seq);
4469 }
4470
4471 /* Fix up basic block boundaries, if necessary. */
4472 if (!BARRIER_P (insn)
4473 && (bb = BLOCK_FOR_INSN (insn)))
4474 {
4475 if (BB_HEAD (bb) == insn)
4476 {
4477 /* Never ever delete the basic block note without deleting whole
4478 basic block. */
4479 gcc_assert (!NOTE_P (insn));
4480 BB_HEAD (bb) = next;
4481 }
4482 if (BB_END (bb) == insn)
4483 BB_END (bb) = prev;
4484 }
4485}
4486
4487/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4488
4489void
4490add_function_usage_to (rtx call_insn, rtx call_fusage)
4491{
4492 gcc_assert (call_insn && CALL_P (call_insn));
4493
4494 /* Put the register usage information on the CALL. If there is already
4495 some usage information, put ours at the end. */
4496 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4497 {
4498 rtx link;
4499
4500 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4501 link = XEXP (link, 1))
4502 ;
4503
4504 XEXP (link, 1) = call_fusage;
4505 }
4506 else
4507 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4508}
4509
4510/* Delete all insns made since FROM.
4511 FROM becomes the new last instruction. */
4512
4513void
4514delete_insns_since (rtx_insn *from)
4515{
4516 if (from == 0)
4517 set_first_insn (0);
4518 else
4519 SET_NEXT_INSN (from) = 0;
4520 set_last_insn (from);
4521}
4522
4523/* This function is deprecated, please use sequences instead.
4524
4525 Move a consecutive bunch of insns to a different place in the chain.
4526 The insns to be moved are those between FROM and TO.
4527 They are moved to a new position after the insn AFTER.
4528 AFTER must not be FROM or TO or any insn in between.
4529
4530 This function does not know about SEQUENCEs and hence should not be
4531 called after delay-slot filling has been done. */
4532
4533void
4534reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4535{
4536 if (flag_checking)
4537 {
4538 for (rtx_insn *x = from; x != to; x = NEXT_INSN (insn: x))
4539 gcc_assert (after != x);
4540 gcc_assert (after != to);
4541 }
4542
4543 /* Splice this bunch out of where it is now. */
4544 if (PREV_INSN (insn: from))
4545 SET_NEXT_INSN (PREV_INSN (insn: from)) = NEXT_INSN (insn: to);
4546 if (NEXT_INSN (insn: to))
4547 SET_PREV_INSN (NEXT_INSN (insn: to)) = PREV_INSN (insn: from);
4548 if (get_last_insn () == to)
4549 set_last_insn (PREV_INSN (insn: from));
4550 if (get_insns () == from)
4551 set_first_insn (NEXT_INSN (insn: to));
4552
4553 /* Make the new neighbors point to it and it to them. */
4554 if (NEXT_INSN (insn: after))
4555 SET_PREV_INSN (NEXT_INSN (insn: after)) = to;
4556
4557 SET_NEXT_INSN (to) = NEXT_INSN (insn: after);
4558 SET_PREV_INSN (from) = after;
4559 SET_NEXT_INSN (after) = from;
4560 if (after == get_last_insn ())
4561 set_last_insn (to);
4562}
4563
4564/* Same as function above, but take care to update BB boundaries. */
4565void
4566reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
4567{
4568 rtx_insn *prev = PREV_INSN (insn: from);
4569 basic_block bb, bb2;
4570
4571 reorder_insns_nobb (from, to, after);
4572
4573 if (!BARRIER_P (after)
4574 && (bb = BLOCK_FOR_INSN (insn: after)))
4575 {
4576 rtx_insn *x;
4577 df_set_bb_dirty (bb);
4578
4579 if (!BARRIER_P (from)
4580 && (bb2 = BLOCK_FOR_INSN (insn: from)))
4581 {
4582 if (BB_END (bb2) == to)
4583 BB_END (bb2) = prev;
4584 df_set_bb_dirty (bb2);
4585 }
4586
4587 if (BB_END (bb) == after)
4588 BB_END (bb) = to;
4589
4590 for (x = from; x != NEXT_INSN (insn: to); x = NEXT_INSN (insn: x))
4591 if (!BARRIER_P (x))
4592 df_insn_change_bb (x, bb);
4593 }
4594}
4595
4596
4597/* Emit insn(s) of given code and pattern
4598 at a specified place within the doubly-linked list.
4599
4600 All of the emit_foo global entry points accept an object
4601 X which is either an insn list or a PATTERN of a single
4602 instruction.
4603
4604 There are thus a few canonical ways to generate code and
4605 emit it at a specific place in the instruction stream. For
4606 example, consider the instruction named SPOT and the fact that
4607 we would like to emit some instructions before SPOT. We might
4608 do it like this:
4609
4610 start_sequence ();
4611 ... emit the new instructions ...
4612 insns_head = get_insns ();
4613 end_sequence ();
4614
4615 emit_insn_before (insns_head, SPOT);
4616
4617 It used to be common to generate SEQUENCE rtl instead, but that
4618 is a relic of the past which no longer occurs. The reason is that
4619 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4620 generated would almost certainly die right after it was created. */
4621
4622static rtx_insn *
4623emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4624 basic_block bb,
4625 rtx_insn *(*make_raw) (rtx))
4626{
4627 rtx_insn *insn;
4628
4629 gcc_assert (before);
4630
4631 if (x == NULL_RTX)
4632 return last;
4633
4634 switch (GET_CODE (x))
4635 {
4636 case DEBUG_INSN:
4637 case INSN:
4638 case JUMP_INSN:
4639 case CALL_INSN:
4640 case CODE_LABEL:
4641 case BARRIER:
4642 case NOTE:
4643 insn = as_a <rtx_insn *> (p: x);
4644 while (insn)
4645 {
4646 rtx_insn *next = NEXT_INSN (insn);
4647 add_insn_before (insn, before, bb);
4648 last = insn;
4649 insn = next;
4650 }
4651 break;
4652
4653#ifdef ENABLE_RTL_CHECKING
4654 case SEQUENCE:
4655 gcc_unreachable ();
4656 break;
4657#endif
4658
4659 default:
4660 last = (*make_raw) (x);
4661 add_insn_before (insn: last, before, bb);
4662 break;
4663 }
4664
4665 return last;
4666}
4667
4668/* Make X be output before the instruction BEFORE. */
4669
4670rtx_insn *
4671emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
4672{
4673 return emit_pattern_before_noloc (x, before, last: before, bb, make_raw: make_insn_raw);
4674}
4675
4676/* Make an instruction with body X and code JUMP_INSN
4677 and output it before the instruction BEFORE. */
4678
4679rtx_jump_insn *
4680emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4681{
4682 return as_a <rtx_jump_insn *> (
4683 p: emit_pattern_before_noloc (x, before, NULL, NULL,
4684 make_raw: make_jump_insn_raw));
4685}
4686
4687/* Make an instruction with body X and code CALL_INSN
4688 and output it before the instruction BEFORE. */
4689
4690rtx_insn *
4691emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4692{
4693 return emit_pattern_before_noloc (x, before, NULL, NULL,
4694 make_raw: make_call_insn_raw);
4695}
4696
4697/* Make an instruction with body X and code DEBUG_INSN
4698 and output it before the instruction BEFORE. */
4699
4700rtx_insn *
4701emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4702{
4703 return emit_pattern_before_noloc (x, before, NULL, NULL,
4704 make_raw: make_debug_insn_raw);
4705}
4706
4707/* Make an insn of code BARRIER
4708 and output it before the insn BEFORE. */
4709
4710rtx_barrier *
4711emit_barrier_before (rtx_insn *before)
4712{
4713 rtx_barrier *insn = as_a <rtx_barrier *> (p: rtx_alloc (BARRIER));
4714
4715 INSN_UID (insn) = cur_insn_uid++;
4716
4717 add_insn_before (insn, before, NULL);
4718 return insn;
4719}
4720
4721/* Emit the label LABEL before the insn BEFORE. */
4722
4723rtx_code_label *
4724emit_label_before (rtx_code_label *label, rtx_insn *before)
4725{
4726 gcc_checking_assert (INSN_UID (label) == 0);
4727 INSN_UID (insn: label) = cur_insn_uid++;
4728 add_insn_before (insn: label, before, NULL);
4729 return label;
4730}
4731
4732/* Helper for emit_insn_after, handles lists of instructions
4733 efficiently. */
4734
4735static rtx_insn *
4736emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4737{
4738 rtx_insn *last;
4739 rtx_insn *after_after;
4740 if (!bb && !BARRIER_P (after))
4741 bb = BLOCK_FOR_INSN (insn: after);
4742
4743 if (bb)
4744 {
4745 df_set_bb_dirty (bb);
4746 for (last = first; NEXT_INSN (insn: last); last = NEXT_INSN (insn: last))
4747 if (!BARRIER_P (last))
4748 {
4749 set_block_for_insn (insn: last, bb);
4750 df_insn_rescan (last);
4751 }
4752 if (!BARRIER_P (last))
4753 {
4754 set_block_for_insn (insn: last, bb);
4755 df_insn_rescan (last);
4756 }
4757 if (BB_END (bb) == after)
4758 BB_END (bb) = last;
4759 }
4760 else
4761 for (last = first; NEXT_INSN (insn: last); last = NEXT_INSN (insn: last))
4762 continue;
4763
4764 after_after = NEXT_INSN (insn: after);
4765
4766 SET_NEXT_INSN (after) = first;
4767 SET_PREV_INSN (first) = after;
4768 SET_NEXT_INSN (last) = after_after;
4769 if (after_after)
4770 SET_PREV_INSN (after_after) = last;
4771
4772 if (after == get_last_insn ())
4773 set_last_insn (last);
4774
4775 return last;
4776}
4777
4778static rtx_insn *
4779emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4780 rtx_insn *(*make_raw)(rtx))
4781{
4782 rtx_insn *last = after;
4783
4784 gcc_assert (after);
4785
4786 if (x == NULL_RTX)
4787 return last;
4788
4789 switch (GET_CODE (x))
4790 {
4791 case DEBUG_INSN:
4792 case INSN:
4793 case JUMP_INSN:
4794 case CALL_INSN:
4795 case CODE_LABEL:
4796 case BARRIER:
4797 case NOTE:
4798 last = emit_insn_after_1 (first: as_a <rtx_insn *> (p: x), after, bb);
4799 break;
4800
4801#ifdef ENABLE_RTL_CHECKING
4802 case SEQUENCE:
4803 gcc_unreachable ();
4804 break;
4805#endif
4806
4807 default:
4808 last = (*make_raw) (x);
4809 add_insn_after (insn: last, after, bb);
4810 break;
4811 }
4812
4813 return last;
4814}
4815
4816/* Make X be output after the insn AFTER and set the BB of insn. If
4817 BB is NULL, an attempt is made to infer the BB from AFTER. */
4818
4819rtx_insn *
4820emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4821{
4822 return emit_pattern_after_noloc (x, after, bb, make_raw: make_insn_raw);
4823}
4824
4825
4826/* Make an insn of code JUMP_INSN with body X
4827 and output it after the insn AFTER. */
4828
4829rtx_jump_insn *
4830emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4831{
4832 return as_a <rtx_jump_insn *> (
4833 p: emit_pattern_after_noloc (x, after, NULL, make_raw: make_jump_insn_raw));
4834}
4835
4836/* Make an instruction with body X and code CALL_INSN
4837 and output it after the instruction AFTER. */
4838
4839rtx_insn *
4840emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4841{
4842 return emit_pattern_after_noloc (x, after, NULL, make_raw: make_call_insn_raw);
4843}
4844
4845/* Make an instruction with body X and code CALL_INSN
4846 and output it after the instruction AFTER. */
4847
4848rtx_insn *
4849emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4850{
4851 return emit_pattern_after_noloc (x, after, NULL, make_raw: make_debug_insn_raw);
4852}
4853
4854/* Make an insn of code BARRIER
4855 and output it after the insn AFTER. */
4856
4857rtx_barrier *
4858emit_barrier_after (rtx_insn *after)
4859{
4860 rtx_barrier *insn = as_a <rtx_barrier *> (p: rtx_alloc (BARRIER));
4861
4862 INSN_UID (insn) = cur_insn_uid++;
4863
4864 add_insn_after (insn, after, NULL);
4865 return insn;
4866}
4867
4868/* Emit the label LABEL after the insn AFTER. */
4869
4870rtx_insn *
4871emit_label_after (rtx_insn *label, rtx_insn *after)
4872{
4873 gcc_checking_assert (INSN_UID (label) == 0);
4874 INSN_UID (insn: label) = cur_insn_uid++;
4875 add_insn_after (insn: label, after, NULL);
4876 return label;
4877}
4878
4879/* Notes require a bit of special handling: Some notes need to have their
4880 BLOCK_FOR_INSN set, others should never have it set, and some should
4881 have it set or clear depending on the context. */
4882
4883/* Return true iff a note of kind SUBTYPE should be emitted with routines
4884 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4885 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4886
4887static bool
4888note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4889{
4890 switch (subtype)
4891 {
4892 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4893 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4894 return true;
4895
4896 /* Notes for var tracking and EH region markers can appear between or
4897 inside basic blocks. If the caller is emitting on the basic block
4898 boundary, do not set BLOCK_FOR_INSN on the new note. */
4899 case NOTE_INSN_VAR_LOCATION:
4900 case NOTE_INSN_EH_REGION_BEG:
4901 case NOTE_INSN_EH_REGION_END:
4902 return on_bb_boundary_p;
4903
4904 /* Otherwise, BLOCK_FOR_INSN must be set. */
4905 default:
4906 return false;
4907 }
4908}
4909
4910/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4911
4912rtx_note *
4913emit_note_after (enum insn_note subtype, rtx_insn *after)
4914{
4915 rtx_note *note = make_note_raw (subtype);
4916 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (insn: after);
4917 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4918
4919 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4920 add_insn_after_nobb (insn: note, after);
4921 else
4922 add_insn_after (insn: note, after, bb);
4923 return note;
4924}
4925
4926/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4927
4928rtx_note *
4929emit_note_before (enum insn_note subtype, rtx_insn *before)
4930{
4931 rtx_note *note = make_note_raw (subtype);
4932 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (insn: before);
4933 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4934
4935 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4936 add_insn_before_nobb (insn: note, before);
4937 else
4938 add_insn_before (insn: note, before, bb);
4939 return note;
4940}
4941
4942/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4943 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4944
4945static rtx_insn *
4946emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4947 rtx_insn *(*make_raw) (rtx))
4948{
4949 rtx_insn *last = emit_pattern_after_noloc (x: pattern, after, NULL, make_raw);
4950
4951 if (pattern == NULL_RTX || !loc)
4952 return last;
4953
4954 after = NEXT_INSN (insn: after);
4955 while (1)
4956 {
4957 if (active_insn_p (insn: after)
4958 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4959 && !INSN_LOCATION (insn: after))
4960 INSN_LOCATION (insn: after) = loc;
4961 if (after == last)
4962 break;
4963 after = NEXT_INSN (insn: after);
4964 }
4965 return last;
4966}
4967
4968/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4969 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4970 any DEBUG_INSNs. */
4971
4972static rtx_insn *
4973emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4974 rtx_insn *(*make_raw) (rtx))
4975{
4976 rtx_insn *prev = after;
4977
4978 if (skip_debug_insns)
4979 while (DEBUG_INSN_P (prev))
4980 prev = PREV_INSN (insn: prev);
4981
4982 if (INSN_P (prev))
4983 return emit_pattern_after_setloc (pattern, after, loc: INSN_LOCATION (insn: prev),
4984 make_raw);
4985 else
4986 return emit_pattern_after_noloc (x: pattern, after, NULL, make_raw);
4987}
4988
4989/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4990rtx_insn *
4991emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4992{
4993 return emit_pattern_after_setloc (pattern, after, loc, make_raw: make_insn_raw);
4994}
4995
4996/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4997rtx_insn *
4998emit_insn_after (rtx pattern, rtx_insn *after)
4999{
5000 return emit_pattern_after (pattern, after, skip_debug_insns: true, make_raw: make_insn_raw);
5001}
5002
5003/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
5004rtx_jump_insn *
5005emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
5006{
5007 return as_a <rtx_jump_insn *> (
5008 p: emit_pattern_after_setloc (pattern, after, loc, make_raw: make_jump_insn_raw));
5009}
5010
5011/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
5012rtx_jump_insn *
5013emit_jump_insn_after (rtx pattern, rtx_insn *after)
5014{
5015 return as_a <rtx_jump_insn *> (
5016 p: emit_pattern_after (pattern, after, skip_debug_insns: true, make_raw: make_jump_insn_raw));
5017}
5018
5019/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
5020rtx_insn *
5021emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
5022{
5023 return emit_pattern_after_setloc (pattern, after, loc, make_raw: make_call_insn_raw);
5024}
5025
5026/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
5027rtx_insn *
5028emit_call_insn_after (rtx pattern, rtx_insn *after)
5029{
5030 return emit_pattern_after (pattern, after, skip_debug_insns: true, make_raw: make_call_insn_raw);
5031}
5032
5033/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
5034rtx_insn *
5035emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
5036{
5037 return emit_pattern_after_setloc (pattern, after, loc, make_raw: make_debug_insn_raw);
5038}
5039
5040/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
5041rtx_insn *
5042emit_debug_insn_after (rtx pattern, rtx_insn *after)
5043{
5044 return emit_pattern_after (pattern, after, skip_debug_insns: false, make_raw: make_debug_insn_raw);
5045}
5046
5047/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
5048 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
5049 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
5050 CALL_INSN, etc. */
5051
5052static rtx_insn *
5053emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
5054 bool insnp, rtx_insn *(*make_raw) (rtx))
5055{
5056 rtx_insn *first = PREV_INSN (insn: before);
5057 rtx_insn *last = emit_pattern_before_noloc (x: pattern, before,
5058 last: insnp ? before : NULL,
5059 NULL, make_raw);
5060
5061 if (pattern == NULL_RTX || !loc)
5062 return last;
5063
5064 if (!first)
5065 first = get_insns ();
5066 else
5067 first = NEXT_INSN (insn: first);
5068 while (1)
5069 {
5070 if (active_insn_p (insn: first)
5071 && !JUMP_TABLE_DATA_P (first) /* FIXME */
5072 && !INSN_LOCATION (insn: first))
5073 INSN_LOCATION (insn: first) = loc;
5074 if (first == last)
5075 break;
5076 first = NEXT_INSN (insn: first);
5077 }
5078 return last;
5079}
5080
5081/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
5082 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
5083 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
5084 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
5085
5086static rtx_insn *
5087emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
5088 bool insnp, rtx_insn *(*make_raw) (rtx))
5089{
5090 rtx_insn *next = before;
5091
5092 if (skip_debug_insns)
5093 while (DEBUG_INSN_P (next))
5094 next = PREV_INSN (insn: next);
5095
5096 if (INSN_P (next))
5097 return emit_pattern_before_setloc (pattern, before, loc: INSN_LOCATION (insn: next),
5098 insnp, make_raw);
5099 else
5100 return emit_pattern_before_noloc (x: pattern, before,
5101 last: insnp ? before : NULL,
5102 NULL, make_raw);
5103}
5104
5105/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5106rtx_insn *
5107emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5108{
5109 return emit_pattern_before_setloc (pattern, before, loc, insnp: true,
5110 make_raw: make_insn_raw);
5111}
5112
5113/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5114rtx_insn *
5115emit_insn_before (rtx pattern, rtx_insn *before)
5116{
5117 return emit_pattern_before (pattern, before, skip_debug_insns: true, insnp: true, make_raw: make_insn_raw);
5118}
5119
5120/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5121rtx_jump_insn *
5122emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5123{
5124 return as_a <rtx_jump_insn *> (
5125 p: emit_pattern_before_setloc (pattern, before, loc, insnp: false,
5126 make_raw: make_jump_insn_raw));
5127}
5128
5129/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5130rtx_jump_insn *
5131emit_jump_insn_before (rtx pattern, rtx_insn *before)
5132{
5133 return as_a <rtx_jump_insn *> (
5134 p: emit_pattern_before (pattern, before, skip_debug_insns: true, insnp: false,
5135 make_raw: make_jump_insn_raw));
5136}
5137
5138/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5139rtx_insn *
5140emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5141{
5142 return emit_pattern_before_setloc (pattern, before, loc, insnp: false,
5143 make_raw: make_call_insn_raw);
5144}
5145
5146/* Like emit_call_insn_before_noloc,
5147 but set insn_location according to BEFORE. */
5148rtx_insn *
5149emit_call_insn_before (rtx pattern, rtx_insn *before)
5150{
5151 return emit_pattern_before (pattern, before, skip_debug_insns: true, insnp: false,
5152 make_raw: make_call_insn_raw);
5153}
5154
5155/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5156rtx_insn *
5157emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
5158{
5159 return emit_pattern_before_setloc (pattern, before, loc, insnp: false,
5160 make_raw: make_debug_insn_raw);
5161}
5162
5163/* Like emit_debug_insn_before_noloc,
5164 but set insn_location according to BEFORE. */
5165rtx_insn *
5166emit_debug_insn_before (rtx pattern, rtx_insn *before)
5167{
5168 return emit_pattern_before (pattern, before, skip_debug_insns: false, insnp: false,
5169 make_raw: make_debug_insn_raw);
5170}
5171
5172/* Take X and emit it at the end of the doubly-linked
5173 INSN list.
5174
5175 Returns the last insn emitted. */
5176
5177rtx_insn *
5178emit_insn (rtx x)
5179{
5180 rtx_insn *last = get_last_insn ();
5181 rtx_insn *insn;
5182
5183 if (x == NULL_RTX)
5184 return last;
5185
5186 switch (GET_CODE (x))
5187 {
5188 case DEBUG_INSN:
5189 case INSN:
5190 case JUMP_INSN:
5191 case CALL_INSN:
5192 case CODE_LABEL:
5193 case BARRIER:
5194 case NOTE:
5195 insn = as_a <rtx_insn *> (p: x);
5196 while (insn)
5197 {
5198 rtx_insn *next = NEXT_INSN (insn);
5199 add_insn (insn);
5200 last = insn;
5201 insn = next;
5202 }
5203 break;
5204
5205#ifdef ENABLE_RTL_CHECKING
5206 case JUMP_TABLE_DATA:
5207 case SEQUENCE:
5208 gcc_unreachable ();
5209 break;
5210#endif
5211
5212 default:
5213 last = make_insn_raw (pattern: x);
5214 add_insn (insn: last);
5215 break;
5216 }
5217
5218 return last;
5219}
5220
5221/* Make an insn of code DEBUG_INSN with pattern X
5222 and add it to the end of the doubly-linked list. */
5223
5224rtx_insn *
5225emit_debug_insn (rtx x)
5226{
5227 rtx_insn *last = get_last_insn ();
5228 rtx_insn *insn;
5229
5230 if (x == NULL_RTX)
5231 return last;
5232
5233 switch (GET_CODE (x))
5234 {
5235 case DEBUG_INSN:
5236 case INSN:
5237 case JUMP_INSN:
5238 case CALL_INSN:
5239 case CODE_LABEL:
5240 case BARRIER:
5241 case NOTE:
5242 insn = as_a <rtx_insn *> (p: x);
5243 while (insn)
5244 {
5245 rtx_insn *next = NEXT_INSN (insn);
5246 add_insn (insn);
5247 last = insn;
5248 insn = next;
5249 }
5250 break;
5251
5252#ifdef ENABLE_RTL_CHECKING
5253 case JUMP_TABLE_DATA:
5254 case SEQUENCE:
5255 gcc_unreachable ();
5256 break;
5257#endif
5258
5259 default:
5260 last = make_debug_insn_raw (pattern: x);
5261 add_insn (insn: last);
5262 break;
5263 }
5264
5265 return last;
5266}
5267
5268/* Make an insn of code JUMP_INSN with pattern X
5269 and add it to the end of the doubly-linked list. */
5270
5271rtx_insn *
5272emit_jump_insn (rtx x)
5273{
5274 rtx_insn *last = NULL;
5275 rtx_insn *insn;
5276
5277 switch (GET_CODE (x))
5278 {
5279 case DEBUG_INSN:
5280 case INSN:
5281 case JUMP_INSN:
5282 case CALL_INSN:
5283 case CODE_LABEL:
5284 case BARRIER:
5285 case NOTE:
5286 insn = as_a <rtx_insn *> (p: x);
5287 while (insn)
5288 {
5289 rtx_insn *next = NEXT_INSN (insn);
5290 add_insn (insn);
5291 last = insn;
5292 insn = next;
5293 }
5294 break;
5295
5296#ifdef ENABLE_RTL_CHECKING
5297 case JUMP_TABLE_DATA:
5298 case SEQUENCE:
5299 gcc_unreachable ();
5300 break;
5301#endif
5302
5303 default:
5304 last = make_jump_insn_raw (pattern: x);
5305 add_insn (insn: last);
5306 break;
5307 }
5308
5309 return last;
5310}
5311
5312/* Make an insn of code JUMP_INSN with pattern X,
5313 add a REG_BR_PROB note that indicates very likely probability,
5314 and add it to the end of the doubly-linked list. */
5315
5316rtx_insn *
5317emit_likely_jump_insn (rtx x)
5318{
5319 rtx_insn *jump = emit_jump_insn (x);
5320 add_reg_br_prob_note (jump, profile_probability::very_likely ());
5321 return jump;
5322}
5323
5324/* Make an insn of code JUMP_INSN with pattern X,
5325 add a REG_BR_PROB note that indicates very unlikely probability,
5326 and add it to the end of the doubly-linked list. */
5327
5328rtx_insn *
5329emit_unlikely_jump_insn (rtx x)
5330{
5331 rtx_insn *jump = emit_jump_insn (x);
5332 add_reg_br_prob_note (jump, profile_probability::very_unlikely ());
5333 return jump;
5334}
5335
5336/* Make an insn of code CALL_INSN with pattern X
5337 and add it to the end of the doubly-linked list. */
5338
5339rtx_insn *
5340emit_call_insn (rtx x)
5341{
5342 rtx_insn *insn;
5343
5344 switch (GET_CODE (x))
5345 {
5346 case DEBUG_INSN:
5347 case INSN:
5348 case JUMP_INSN:
5349 case CALL_INSN:
5350 case CODE_LABEL:
5351 case BARRIER:
5352 case NOTE:
5353 insn = emit_insn (x);
5354 break;
5355
5356#ifdef ENABLE_RTL_CHECKING
5357 case SEQUENCE:
5358 case JUMP_TABLE_DATA:
5359 gcc_unreachable ();
5360 break;
5361#endif
5362
5363 default:
5364 insn = make_call_insn_raw (pattern: x);
5365 add_insn (insn);
5366 break;
5367 }
5368
5369 return insn;
5370}
5371
5372/* Add the label LABEL to the end of the doubly-linked list. */
5373
5374rtx_code_label *
5375emit_label (rtx uncast_label)
5376{
5377 rtx_code_label *label = as_a <rtx_code_label *> (p: uncast_label);
5378
5379 gcc_checking_assert (INSN_UID (label) == 0);
5380 INSN_UID (insn: label) = cur_insn_uid++;
5381 add_insn (insn: label);
5382 return label;
5383}
5384
5385/* Make an insn of code JUMP_TABLE_DATA
5386 and add it to the end of the doubly-linked list. */
5387
5388rtx_jump_table_data *
5389emit_jump_table_data (rtx table)
5390{
5391 rtx_jump_table_data *jump_table_data =
5392 as_a <rtx_jump_table_data *> (p: rtx_alloc (JUMP_TABLE_DATA));
5393 INSN_UID (insn: jump_table_data) = cur_insn_uid++;
5394 PATTERN (insn: jump_table_data) = table;
5395 BLOCK_FOR_INSN (insn: jump_table_data) = NULL;
5396 add_insn (insn: jump_table_data);
5397 return jump_table_data;
5398}
5399
5400/* Make an insn of code BARRIER
5401 and add it to the end of the doubly-linked list. */
5402
5403rtx_barrier *
5404emit_barrier (void)
5405{
5406 rtx_barrier *barrier = as_a <rtx_barrier *> (p: rtx_alloc (BARRIER));
5407 INSN_UID (insn: barrier) = cur_insn_uid++;
5408 add_insn (insn: barrier);
5409 return barrier;
5410}
5411
5412/* Emit a copy of note ORIG. */
5413
5414rtx_note *
5415emit_note_copy (rtx_note *orig)
5416{
5417 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5418 rtx_note *note = make_note_raw (subtype: kind);
5419 NOTE_DATA (note) = NOTE_DATA (orig);
5420 add_insn (insn: note);
5421 return note;
5422}
5423
5424/* Make an insn of code NOTE or type NOTE_NO
5425 and add it to the end of the doubly-linked list. */
5426
5427rtx_note *
5428emit_note (enum insn_note kind)
5429{
5430 rtx_note *note = make_note_raw (subtype: kind);
5431 add_insn (insn: note);
5432 return note;
5433}
5434
5435/* Emit a clobber of lvalue X. */
5436
5437rtx_insn *
5438emit_clobber (rtx x)
5439{
5440 /* CONCATs should not appear in the insn stream. */
5441 if (GET_CODE (x) == CONCAT)
5442 {
5443 emit_clobber (XEXP (x, 0));
5444 return emit_clobber (XEXP (x, 1));
5445 }
5446 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5447}
5448
5449/* Return a sequence of insns to clobber lvalue X. */
5450
5451rtx_insn *
5452gen_clobber (rtx x)
5453{
5454 rtx_insn *seq;
5455
5456 start_sequence ();
5457 emit_clobber (x);
5458 seq = get_insns ();
5459 end_sequence ();
5460 return seq;
5461}
5462
5463/* Emit a use of rvalue X. */
5464
5465rtx_insn *
5466emit_use (rtx x)
5467{
5468 /* CONCATs should not appear in the insn stream. */
5469 if (GET_CODE (x) == CONCAT)
5470 {
5471 emit_use (XEXP (x, 0));
5472 return emit_use (XEXP (x, 1));
5473 }
5474 return emit_insn (gen_rtx_USE (VOIDmode, x));
5475}
5476
5477/* Return a sequence of insns to use rvalue X. */
5478
5479rtx_insn *
5480gen_use (rtx x)
5481{
5482 rtx_insn *seq;
5483
5484 start_sequence ();
5485 emit_use (x);
5486 seq = get_insns ();
5487 end_sequence ();
5488 return seq;
5489}
5490
5491/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5492 Return the set in INSN that such notes describe, or NULL if the notes
5493 have no meaning for INSN. */
5494
5495rtx
5496set_for_reg_notes (rtx insn)
5497{
5498 rtx pat, reg;
5499
5500 if (!INSN_P (insn))
5501 return NULL_RTX;
5502
5503 pat = PATTERN (insn);
5504 if (GET_CODE (pat) == PARALLEL)
5505 {
5506 /* We do not use single_set because that ignores SETs of unused
5507 registers. REG_EQUAL and REG_EQUIV notes really do require the
5508 PARALLEL to have a single SET. */
5509 if (multiple_sets (insn))
5510 return NULL_RTX;
5511 pat = XVECEXP (pat, 0, 0);
5512 }
5513
5514 if (GET_CODE (pat) != SET)
5515 return NULL_RTX;
5516
5517 reg = SET_DEST (pat);
5518
5519 /* Notes apply to the contents of a STRICT_LOW_PART. */
5520 if (GET_CODE (reg) == STRICT_LOW_PART
5521 || GET_CODE (reg) == ZERO_EXTRACT)
5522 reg = XEXP (reg, 0);
5523
5524 /* Check that we have a register. */
5525 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5526 return NULL_RTX;
5527
5528 return pat;
5529}
5530
5531/* Place a note of KIND on insn INSN with DATUM as the datum. If a
5532 note of this type already exists, remove it first. */
5533
5534rtx
5535set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
5536{
5537 rtx note = find_reg_note (insn, kind, NULL_RTX);
5538
5539 switch (kind)
5540 {
5541 case REG_EQUAL:
5542 case REG_EQUIV:
5543 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5544 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
5545 return NULL_RTX;
5546
5547 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5548 It serves no useful purpose and breaks eliminate_regs. */
5549 if (GET_CODE (datum) == ASM_OPERANDS)
5550 return NULL_RTX;
5551
5552 /* Notes with side effects are dangerous. Even if the side-effect
5553 initially mirrors one in PATTERN (INSN), later optimizations
5554 might alter the way that the final register value is calculated
5555 and so move or alter the side-effect in some way. The note would
5556 then no longer be a valid substitution for SET_SRC. */
5557 if (side_effects_p (datum))
5558 return NULL_RTX;
5559 break;
5560
5561 default:
5562 break;
5563 }
5564
5565 if (note)
5566 XEXP (note, 0) = datum;
5567 else
5568 {
5569 add_reg_note (insn, kind, datum);
5570 note = REG_NOTES (insn);
5571 }
5572
5573 switch (kind)
5574 {
5575 case REG_EQUAL:
5576 case REG_EQUIV:
5577 df_notes_rescan (as_a <rtx_insn *> (p: insn));
5578 break;
5579 default:
5580 break;
5581 }
5582
5583 return note;
5584}
5585
5586/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5587rtx
5588set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5589{
5590 rtx set = set_for_reg_notes (insn);
5591
5592 if (set && SET_DEST (set) == dst)
5593 return set_unique_reg_note (insn, kind, datum);
5594 return NULL_RTX;
5595}
5596
5597/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5598 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5599 is true.
5600
5601 If X is a label, it is simply added into the insn chain. */
5602
5603rtx_insn *
5604emit (rtx x, bool allow_barrier_p)
5605{
5606 enum rtx_code code = classify_insn (x);
5607
5608 switch (code)
5609 {
5610 case CODE_LABEL:
5611 return emit_label (uncast_label: x);
5612 case INSN:
5613 return emit_insn (x);
5614 case JUMP_INSN:
5615 {
5616 rtx_insn *insn = emit_jump_insn (x);
5617 if (allow_barrier_p
5618 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5619 return emit_barrier ();
5620 return insn;
5621 }
5622 case CALL_INSN:
5623 return emit_call_insn (x);
5624 case DEBUG_INSN:
5625 return emit_debug_insn (x);
5626 default:
5627 gcc_unreachable ();
5628 }
5629}
5630
5631/* Space for free sequence stack entries. */
5632static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
5633
5634/* Begin emitting insns to a sequence. If this sequence will contain
5635 something that might cause the compiler to pop arguments to function
5636 calls (because those pops have previously been deferred; see
5637 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5638 before calling this function. That will ensure that the deferred
5639 pops are not accidentally emitted in the middle of this sequence. */
5640
5641void
5642start_sequence (void)
5643{
5644 struct sequence_stack *tem;
5645
5646 if (free_sequence_stack != NULL)
5647 {
5648 tem = free_sequence_stack;
5649 free_sequence_stack = tem->next;
5650 }
5651 else
5652 tem = ggc_alloc<sequence_stack> ();
5653
5654 tem->next = get_current_sequence ()->next;
5655 tem->first = get_insns ();
5656 tem->last = get_last_insn ();
5657 get_current_sequence ()->next = tem;
5658
5659 set_first_insn (0);
5660 set_last_insn (0);
5661}
5662
5663/* Set up the insn chain starting with FIRST as the current sequence,
5664 saving the previously current one. See the documentation for
5665 start_sequence for more information about how to use this function. */
5666
5667void
5668push_to_sequence (rtx_insn *first)
5669{
5670 rtx_insn *last;
5671
5672 start_sequence ();
5673
5674 for (last = first; last && NEXT_INSN (insn: last); last = NEXT_INSN (insn: last))
5675 ;
5676
5677 set_first_insn (first);
5678 set_last_insn (last);
5679}
5680
5681/* Like push_to_sequence, but take the last insn as an argument to avoid
5682 looping through the list. */
5683
5684void
5685push_to_sequence2 (rtx_insn *first, rtx_insn *last)
5686{
5687 start_sequence ();
5688
5689 set_first_insn (first);
5690 set_last_insn (last);
5691}
5692
5693/* Set up the outer-level insn chain
5694 as the current sequence, saving the previously current one. */
5695
5696void
5697push_topmost_sequence (void)
5698{
5699 struct sequence_stack *top;
5700
5701 start_sequence ();
5702
5703 top = get_topmost_sequence ();
5704 set_first_insn (top->first);
5705 set_last_insn (top->last);
5706}
5707
5708/* After emitting to the outer-level insn chain, update the outer-level
5709 insn chain, and restore the previous saved state. */
5710
5711void
5712pop_topmost_sequence (void)
5713{
5714 struct sequence_stack *top;
5715
5716 top = get_topmost_sequence ();
5717 top->first = get_insns ();
5718 top->last = get_last_insn ();
5719
5720 end_sequence ();
5721}
5722
5723/* After emitting to a sequence, restore previous saved state.
5724
5725 To get the contents of the sequence just made, you must call
5726 `get_insns' *before* calling here.
5727
5728 If the compiler might have deferred popping arguments while
5729 generating this sequence, and this sequence will not be immediately
5730 inserted into the instruction stream, use do_pending_stack_adjust
5731 before calling get_insns. That will ensure that the deferred
5732 pops are inserted into this sequence, and not into some random
5733 location in the instruction stream. See INHIBIT_DEFER_POP for more
5734 information about deferred popping of arguments. */
5735
5736void
5737end_sequence (void)
5738{
5739 struct sequence_stack *tem = get_current_sequence ()->next;
5740
5741 set_first_insn (tem->first);
5742 set_last_insn (tem->last);
5743 get_current_sequence ()->next = tem->next;
5744
5745 memset (s: tem, c: 0, n: sizeof (*tem));
5746 tem->next = free_sequence_stack;
5747 free_sequence_stack = tem;
5748}
5749
5750/* Return true if currently emitting into a sequence. */
5751
5752bool
5753in_sequence_p (void)
5754{
5755 return get_current_sequence ()->next != 0;
5756}
5757
5758/* Put the various virtual registers into REGNO_REG_RTX. */
5759
5760static void
5761init_virtual_regs (void)
5762{
5763 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5764 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5765 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5766 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5767 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5768 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5769 = virtual_preferred_stack_boundary_rtx;
5770}
5771
5772
5773/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5774static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5775static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5776static int copy_insn_n_scratches;
5777
5778/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5779 copied an ASM_OPERANDS.
5780 In that case, it is the original input-operand vector. */
5781static rtvec orig_asm_operands_vector;
5782
5783/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5784 copied an ASM_OPERANDS.
5785 In that case, it is the copied input-operand vector. */
5786static rtvec copy_asm_operands_vector;
5787
5788/* Likewise for the constraints vector. */
5789static rtvec orig_asm_constraints_vector;
5790static rtvec copy_asm_constraints_vector;
5791
5792/* Recursively create a new copy of an rtx for copy_insn.
5793 This function differs from copy_rtx in that it handles SCRATCHes and
5794 ASM_OPERANDs properly.
5795 Normally, this function is not used directly; use copy_insn as front end.
5796 However, you could first copy an insn pattern with copy_insn and then use
5797 this function afterwards to properly copy any REG_NOTEs containing
5798 SCRATCHes. */
5799
5800rtx
5801copy_insn_1 (rtx orig)
5802{
5803 rtx copy;
5804 int i, j;
5805 RTX_CODE code;
5806 const char *format_ptr;
5807
5808 if (orig == NULL)
5809 return NULL;
5810
5811 code = GET_CODE (orig);
5812
5813 switch (code)
5814 {
5815 case REG:
5816 case DEBUG_EXPR:
5817 CASE_CONST_ANY:
5818 case SYMBOL_REF:
5819 case CODE_LABEL:
5820 case PC:
5821 case RETURN:
5822 case SIMPLE_RETURN:
5823 return orig;
5824 case CLOBBER:
5825 /* Share clobbers of hard registers, but do not share pseudo reg
5826 clobbers or clobbers of hard registers that originated as pseudos.
5827 This is needed to allow safe register renaming. */
5828 if (REG_P (XEXP (orig, 0))
5829 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5830 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
5831 return orig;
5832 break;
5833
5834 case SCRATCH:
5835 for (i = 0; i < copy_insn_n_scratches; i++)
5836 if (copy_insn_scratch_in[i] == orig)
5837 return copy_insn_scratch_out[i];
5838 break;
5839
5840 case CONST:
5841 if (shared_const_p (orig))
5842 return orig;
5843 break;
5844
5845 /* A MEM with a constant address is not sharable. The problem is that
5846 the constant address may need to be reloaded. If the mem is shared,
5847 then reloading one copy of this mem will cause all copies to appear
5848 to have been reloaded. */
5849
5850 default:
5851 break;
5852 }
5853
5854 /* Copy the various flags, fields, and other information. We assume
5855 that all fields need copying, and then clear the fields that should
5856 not be copied. That is the sensible default behavior, and forces
5857 us to explicitly document why we are *not* copying a flag. */
5858 copy = shallow_copy_rtx (orig);
5859
5860 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5861 if (INSN_P (orig))
5862 {
5863 RTX_FLAG (copy, jump) = 0;
5864 RTX_FLAG (copy, call) = 0;
5865 RTX_FLAG (copy, frame_related) = 0;
5866 }
5867
5868 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5869
5870 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5871 switch (*format_ptr++)
5872 {
5873 case 'e':
5874 if (XEXP (orig, i) != NULL)
5875 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5876 break;
5877
5878 case 'E':
5879 case 'V':
5880 if (XVEC (orig, i) == orig_asm_constraints_vector)
5881 XVEC (copy, i) = copy_asm_constraints_vector;
5882 else if (XVEC (orig, i) == orig_asm_operands_vector)
5883 XVEC (copy, i) = copy_asm_operands_vector;
5884 else if (XVEC (orig, i) != NULL)
5885 {
5886 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5887 for (j = 0; j < XVECLEN (copy, i); j++)
5888 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5889 }
5890 break;
5891
5892 case 't':
5893 case 'w':
5894 case 'i':
5895 case 'p':
5896 case 's':
5897 case 'S':
5898 case 'u':
5899 case '0':
5900 /* These are left unchanged. */
5901 break;
5902
5903 default:
5904 gcc_unreachable ();
5905 }
5906
5907 if (code == SCRATCH)
5908 {
5909 i = copy_insn_n_scratches++;
5910 gcc_assert (i < MAX_RECOG_OPERANDS);
5911 copy_insn_scratch_in[i] = orig;
5912 copy_insn_scratch_out[i] = copy;
5913 }
5914 else if (code == ASM_OPERANDS)
5915 {
5916 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5917 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5918 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5919 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
5920 }
5921
5922 return copy;
5923}
5924
5925/* Create a new copy of an rtx.
5926 This function differs from copy_rtx in that it handles SCRATCHes and
5927 ASM_OPERANDs properly.
5928 INSN doesn't really have to be a full INSN; it could be just the
5929 pattern. */
5930rtx
5931copy_insn (rtx insn)
5932{
5933 copy_insn_n_scratches = 0;
5934 orig_asm_operands_vector = 0;
5935 orig_asm_constraints_vector = 0;
5936 copy_asm_operands_vector = 0;
5937 copy_asm_constraints_vector = 0;
5938 return copy_insn_1 (orig: insn);
5939}
5940
5941/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5942 on that assumption that INSN itself remains in its original place. */
5943
5944rtx_insn *
5945copy_delay_slot_insn (rtx_insn *insn)
5946{
5947 /* Copy INSN with its rtx_code, all its notes, location etc. */
5948 insn = as_a <rtx_insn *> (p: copy_rtx (insn));
5949 INSN_UID (insn) = cur_insn_uid++;
5950 return insn;
5951}
5952
5953/* Initialize data structures and variables in this file
5954 before generating rtl for each function. */
5955
5956void
5957init_emit (void)
5958{
5959 set_first_insn (NULL);
5960 set_last_insn (NULL);
5961 if (param_min_nondebug_insn_uid)
5962 cur_insn_uid = param_min_nondebug_insn_uid;
5963 else
5964 cur_insn_uid = 1;
5965 cur_debug_insn_uid = 1;
5966 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5967 first_label_num = label_num;
5968 get_current_sequence ()->next = NULL;
5969
5970 /* Init the tables that describe all the pseudo regs. */
5971
5972 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
5973
5974 crtl->emit.regno_pointer_align
5975 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
5976
5977 regno_reg_rtx
5978 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
5979
5980 /* Put copies of all the hard registers into regno_reg_rtx. */
5981 memcpy (dest: regno_reg_rtx,
5982 initial_regno_reg_rtx,
5983 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5984
5985 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5986 init_virtual_regs ();
5987
5988 /* Indicate that the virtual registers and stack locations are
5989 all pointers. */
5990 REG_POINTER (stack_pointer_rtx) = 1;
5991 REG_POINTER (frame_pointer_rtx) = 1;
5992 REG_POINTER (hard_frame_pointer_rtx) = 1;
5993 REG_POINTER (arg_pointer_rtx) = 1;
5994
5995 REG_POINTER (virtual_incoming_args_rtx) = 1;
5996 REG_POINTER (virtual_stack_vars_rtx) = 1;
5997 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5998 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5999 REG_POINTER (virtual_cfa_rtx) = 1;
6000
6001#ifdef STACK_BOUNDARY
6002 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
6003 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
6004 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
6005 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
6006
6007 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
6008 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
6009 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
6010 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
6011
6012 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
6013#endif
6014
6015#ifdef INIT_EXPANDERS
6016 INIT_EXPANDERS;
6017#endif
6018}
6019
6020/* Return the value of element I of CONST_VECTOR X as a wide_int. */
6021
6022wide_int
6023const_vector_int_elt (const_rtx x, unsigned int i)
6024{
6025 /* First handle elements that are directly encoded. */
6026 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
6027 if (i < (unsigned int) XVECLEN (x, 0))
6028 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
6029
6030 /* Identify the pattern that contains element I and work out the index of
6031 the last encoded element for that pattern. */
6032 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
6033 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
6034 unsigned int count = i / npatterns;
6035 unsigned int pattern = i % npatterns;
6036 unsigned int final_i = encoded_nelts - npatterns + pattern;
6037
6038 /* If there are no steps, the final encoded value is the right one. */
6039 if (!CONST_VECTOR_STEPPED_P (x))
6040 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
6041
6042 /* Otherwise work out the value from the last two encoded elements. */
6043 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
6044 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
6045 wide_int diff = wi::sub (x: rtx_mode_t (v2, elt_mode),
6046 y: rtx_mode_t (v1, elt_mode));
6047 return wi::add (x: rtx_mode_t (v2, elt_mode), y: (count - 2) * diff);
6048}
6049
6050/* Return the value of element I of CONST_VECTOR X. */
6051
6052rtx
6053const_vector_elt (const_rtx x, unsigned int i)
6054{
6055 /* First handle elements that are directly encoded. */
6056 if (i < (unsigned int) XVECLEN (x, 0))
6057 return CONST_VECTOR_ENCODED_ELT (x, i);
6058
6059 /* If there are no steps, the final encoded value is the right one. */
6060 if (!CONST_VECTOR_STEPPED_P (x))
6061 {
6062 /* Identify the pattern that contains element I and work out the index of
6063 the last encoded element for that pattern. */
6064 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
6065 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
6066 unsigned int pattern = i % npatterns;
6067 unsigned int final_i = encoded_nelts - npatterns + pattern;
6068 return CONST_VECTOR_ENCODED_ELT (x, final_i);
6069 }
6070
6071 /* Otherwise work out the value from the last two encoded elements. */
6072 return immed_wide_int_const (c: const_vector_int_elt (x, i),
6073 GET_MODE_INNER (GET_MODE (x)));
6074}
6075
6076/* Return true if X is a valid element for a CONST_VECTOR of the given
6077 mode. */
6078
6079bool
6080valid_for_const_vector_p (machine_mode, rtx x)
6081{
6082 return (CONST_SCALAR_INT_P (x)
6083 || CONST_POLY_INT_P (x)
6084 || CONST_DOUBLE_AS_FLOAT_P (x)
6085 || CONST_FIXED_P (x));
6086}
6087
6088/* Generate a vector constant of mode MODE in which every element has
6089 value ELT. */
6090
6091rtx
6092gen_const_vec_duplicate (machine_mode mode, rtx elt)
6093{
6094 rtx_vector_builder builder (mode, 1, 1);
6095 builder.quick_push (obj: elt);
6096 return builder.build ();
6097}
6098
6099/* Return a vector rtx of mode MODE in which every element has value X.
6100 The result will be a constant if X is constant. */
6101
6102rtx
6103gen_vec_duplicate (machine_mode mode, rtx x)
6104{
6105 if (valid_for_const_vector_p (mode, x))
6106 return gen_const_vec_duplicate (mode, elt: x);
6107 return gen_rtx_VEC_DUPLICATE (mode, x);
6108}
6109
6110/* A subroutine of const_vec_series_p that handles the case in which:
6111
6112 (GET_CODE (X) == CONST_VECTOR
6113 && CONST_VECTOR_NPATTERNS (X) == 1
6114 && !CONST_VECTOR_DUPLICATE_P (X))
6115
6116 is known to hold. */
6117
6118bool
6119const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
6120{
6121 /* Stepped sequences are only defined for integers, to avoid specifying
6122 rounding behavior. */
6123 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
6124 return false;
6125
6126 /* A non-duplicated vector with two elements can always be seen as a
6127 series with a nonzero step. Longer vectors must have a stepped
6128 encoding. */
6129 if (maybe_ne (CONST_VECTOR_NUNITS (x), b: 2)
6130 && !CONST_VECTOR_STEPPED_P (x))
6131 return false;
6132
6133 /* Calculate the step between the first and second elements. */
6134 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6135 rtx base = CONST_VECTOR_ELT (x, 0);
6136 rtx step = simplify_binary_operation (code: MINUS, mode: inner,
6137 CONST_VECTOR_ENCODED_ELT (x, 1), op1: base);
6138 if (rtx_equal_p (step, CONST0_RTX (inner)))
6139 return false;
6140
6141 /* If we have a stepped encoding, check that the step between the
6142 second and third elements is the same as STEP. */
6143 if (CONST_VECTOR_STEPPED_P (x))
6144 {
6145 rtx diff = simplify_binary_operation (code: MINUS, mode: inner,
6146 CONST_VECTOR_ENCODED_ELT (x, 2),
6147 CONST_VECTOR_ENCODED_ELT (x, 1));
6148 if (!rtx_equal_p (step, diff))
6149 return false;
6150 }
6151
6152 *base_out = base;
6153 *step_out = step;
6154 return true;
6155}
6156
6157/* Generate a vector constant of mode MODE in which element I has
6158 the value BASE + I * STEP. */
6159
6160rtx
6161gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6162{
6163 gcc_assert (valid_for_const_vector_p (mode, base)
6164 && valid_for_const_vector_p (mode, step));
6165
6166 rtx_vector_builder builder (mode, 1, 3);
6167 builder.quick_push (obj: base);
6168 for (int i = 1; i < 3; ++i)
6169 builder.quick_push (obj: simplify_gen_binary (code: PLUS, GET_MODE_INNER (mode),
6170 op0: builder[i - 1], op1: step));
6171 return builder.build ();
6172}
6173
6174/* Generate a vector of mode MODE in which element I has the value
6175 BASE + I * STEP. The result will be a constant if BASE and STEP
6176 are both constants. */
6177
6178rtx
6179gen_vec_series (machine_mode mode, rtx base, rtx step)
6180{
6181 if (step == const0_rtx)
6182 return gen_vec_duplicate (mode, x: base);
6183 if (valid_for_const_vector_p (mode, x: base)
6184 && valid_for_const_vector_p (mode, x: step))
6185 return gen_const_vec_series (mode, base, step);
6186 return gen_rtx_VEC_SERIES (mode, base, step);
6187}
6188
6189/* Generate a new vector constant for mode MODE and constant value
6190 CONSTANT. */
6191
6192static rtx
6193gen_const_vector (machine_mode mode, int constant)
6194{
6195 machine_mode inner = GET_MODE_INNER (mode);
6196
6197 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6198
6199 rtx el = const_tiny_rtx[constant][(int) inner];
6200 gcc_assert (el);
6201
6202 return gen_const_vec_duplicate (mode, elt: el);
6203}
6204
6205/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6206 all elements are zero, and the one vector when all elements are one. */
6207rtx
6208gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
6209{
6210 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6211
6212 /* If the values are all the same, check to see if we can use one of the
6213 standard constant vectors. */
6214 if (rtvec_all_equal_p (v))
6215 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6216
6217 unsigned int nunits = GET_NUM_ELEM (v);
6218 rtx_vector_builder builder (mode, nunits, 1);
6219 for (unsigned int i = 0; i < nunits; ++i)
6220 builder.quick_push (RTVEC_ELT (v, i));
6221 return builder.build (v);
6222}
6223
6224/* Initialise global register information required by all functions. */
6225
6226void
6227init_emit_regs (void)
6228{
6229 int i;
6230 machine_mode mode;
6231 mem_attrs *attrs;
6232
6233 /* Reset register attributes */
6234 reg_attrs_htab->empty ();
6235
6236 /* We need reg_raw_mode, so initialize the modes now. */
6237 init_reg_modes_target ();
6238
6239 /* Assign register numbers to the globally defined register rtx. */
6240 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6241 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6242 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6243 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6244 virtual_incoming_args_rtx =
6245 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6246 virtual_stack_vars_rtx =
6247 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6248 virtual_stack_dynamic_rtx =
6249 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6250 virtual_outgoing_args_rtx =
6251 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6252 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
6253 virtual_preferred_stack_boundary_rtx =
6254 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6255
6256 /* Initialize RTL for commonly used hard registers. These are
6257 copied into regno_reg_rtx as we begin to compile each function. */
6258 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6259 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], regno: i);
6260
6261#ifdef RETURN_ADDRESS_POINTER_REGNUM
6262 return_address_pointer_rtx
6263 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6264#endif
6265
6266 pic_offset_table_rtx = NULL_RTX;
6267 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6268 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
6269
6270 /* Process stack-limiting command-line options. */
6271 if (opt_fstack_limit_symbol_arg != NULL)
6272 stack_limit_rtx
6273 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6274 if (opt_fstack_limit_register_no >= 0)
6275 stack_limit_rtx = gen_rtx_REG (Pmode, regno: opt_fstack_limit_register_no);
6276
6277 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6278 {
6279 mode = (machine_mode) i;
6280 attrs = ggc_cleared_alloc<mem_attrs> ();
6281 attrs->align = BITS_PER_UNIT;
6282 attrs->addrspace = ADDR_SPACE_GENERIC;
6283 if (mode != BLKmode && mode != VOIDmode)
6284 {
6285 attrs->size_known_p = true;
6286 attrs->size = GET_MODE_SIZE (mode);
6287 if (STRICT_ALIGNMENT)
6288 attrs->align = GET_MODE_ALIGNMENT (mode);
6289 }
6290 mode_mem_attrs[i] = attrs;
6291 }
6292
6293 split_branch_probability = profile_probability::uninitialized ();
6294}
6295
6296/* Initialize global machine_mode variables. */
6297
6298void
6299init_derived_machine_modes (void)
6300{
6301 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6302 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
6303 {
6304 scalar_int_mode mode = mode_iter.require ();
6305
6306 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
6307 && !opt_byte_mode.exists ())
6308 opt_byte_mode = mode;
6309
6310 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
6311 && !opt_word_mode.exists ())
6312 opt_word_mode = mode;
6313 }
6314
6315 byte_mode = opt_byte_mode.require ();
6316 word_mode = opt_word_mode.require ();
6317 ptr_mode = as_a <scalar_int_mode>
6318 (m: mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
6319}
6320
6321/* Create some permanent unique rtl objects shared between all functions. */
6322
6323void
6324init_emit_once (void)
6325{
6326 int i;
6327 machine_mode mode;
6328 scalar_float_mode double_mode;
6329 opt_scalar_mode smode_iter;
6330
6331 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6332 CONST_FIXED, and memory attribute hash tables. */
6333 const_int_htab = hash_table<const_int_hasher>::create_ggc (n: 37);
6334
6335#if TARGET_SUPPORTS_WIDE_INT
6336 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (n: 37);
6337#endif
6338 const_double_htab = hash_table<const_double_hasher>::create_ggc (n: 37);
6339
6340 if (NUM_POLY_INT_COEFFS > 1)
6341 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (n: 37);
6342
6343 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (n: 37);
6344
6345 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (n: 37);
6346
6347#ifdef INIT_EXPANDERS
6348 /* This is to initialize {init|mark|free}_machine_status before the first
6349 call to push_function_context_to. This is needed by the Chill front
6350 end which calls push_function_context_to before the first call to
6351 init_function_start. */
6352 INIT_EXPANDERS;
6353#endif
6354
6355 /* Create the unique rtx's for certain rtx codes and operand values. */
6356
6357 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6358 tries to use these variables. */
6359 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
6360 const_int_rtx[i + MAX_SAVED_CONST_INT] =
6361 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
6362
6363 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6364 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
6365 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
6366 else
6367 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
6368
6369 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
6370
6371 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6372 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6373 real_from_integer (&dconst2, double_mode, 2, SIGNED);
6374
6375 dconstm0 = dconst0;
6376 dconstm0.sign = 1;
6377
6378 dconstm1 = dconst1;
6379 dconstm1.sign = 1;
6380
6381 dconsthalf = dconst1;
6382 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
6383
6384 real_inf (&dconstinf);
6385 real_inf (&dconstninf, sign: true);
6386
6387 for (i = 0; i < 3; i++)
6388 {
6389 const REAL_VALUE_TYPE *const r =
6390 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6391
6392 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
6393 const_tiny_rtx[i][(int) mode] =
6394 const_double_from_real_value (value: *r, mode);
6395
6396 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
6397 const_tiny_rtx[i][(int) mode] =
6398 const_double_from_real_value (value: *r, mode);
6399
6400 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
6401
6402 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6403 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6404
6405 for (mode = MIN_MODE_PARTIAL_INT;
6406 mode <= MAX_MODE_PARTIAL_INT;
6407 mode = (machine_mode)((int)(mode) + 1))
6408 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
6409 }
6410
6411 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6412
6413 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
6414 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6415
6416 /* For BImode, 1 and -1 are unsigned and signed interpretations
6417 of the same value. */
6418 for (mode = MIN_MODE_BOOL;
6419 mode <= MAX_MODE_BOOL;
6420 mode = (machine_mode)((int)(mode) + 1))
6421 {
6422 const_tiny_rtx[0][(int) mode] = const0_rtx;
6423 if (mode == BImode)
6424 {
6425 const_tiny_rtx[1][(int) mode] = const_true_rtx;
6426 const_tiny_rtx[3][(int) mode] = const_true_rtx;
6427 }
6428 else
6429 {
6430 const_tiny_rtx[1][(int) mode] = const1_rtx;
6431 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6432 }
6433 }
6434
6435 for (mode = MIN_MODE_PARTIAL_INT;
6436 mode <= MAX_MODE_PARTIAL_INT;
6437 mode = (machine_mode)((int)(mode) + 1))
6438 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6439
6440 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
6441 {
6442 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6443 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6444 }
6445
6446 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6447 {
6448 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6449 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6450 }
6451
6452 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6453 {
6454 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6455 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, constant: 3);
6456 if (GET_MODE_INNER (mode) == BImode)
6457 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6458 interpretations of the same value. */
6459 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6460 else
6461 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, constant: 1);
6462 }
6463
6464 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6465 {
6466 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6467 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, constant: 1);
6468 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, constant: 3);
6469 }
6470
6471 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6472 {
6473 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6474 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, constant: 1);
6475 }
6476
6477 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
6478 {
6479 scalar_mode smode = smode_iter.require ();
6480 FCONST0 (smode).data.high = 0;
6481 FCONST0 (smode).data.low = 0;
6482 FCONST0 (smode).mode = smode;
6483 const_tiny_rtx[0][(int) smode]
6484 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6485 }
6486
6487 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
6488 {
6489 scalar_mode smode = smode_iter.require ();
6490 FCONST0 (smode).data.high = 0;
6491 FCONST0 (smode).data.low = 0;
6492 FCONST0 (smode).mode = smode;
6493 const_tiny_rtx[0][(int) smode]
6494 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6495 }
6496
6497 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
6498 {
6499 scalar_mode smode = smode_iter.require ();
6500 FCONST0 (smode).data.high = 0;
6501 FCONST0 (smode).data.low = 0;
6502 FCONST0 (smode).mode = smode;
6503 const_tiny_rtx[0][(int) smode]
6504 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6505
6506 /* We store the value 1. */
6507 FCONST1 (smode).data.high = 0;
6508 FCONST1 (smode).data.low = 0;
6509 FCONST1 (smode).mode = smode;
6510 FCONST1 (smode).data
6511 = double_int_one.lshift (GET_MODE_FBIT (smode),
6512 HOST_BITS_PER_DOUBLE_INT,
6513 SIGNED_FIXED_POINT_MODE_P (smode));
6514 const_tiny_rtx[1][(int) smode]
6515 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6516 }
6517
6518 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
6519 {
6520 scalar_mode smode = smode_iter.require ();
6521 FCONST0 (smode).data.high = 0;
6522 FCONST0 (smode).data.low = 0;
6523 FCONST0 (smode).mode = smode;
6524 const_tiny_rtx[0][(int) smode]
6525 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
6526
6527 /* We store the value 1. */
6528 FCONST1 (smode).data.high = 0;
6529 FCONST1 (smode).data.low = 0;
6530 FCONST1 (smode).mode = smode;
6531 FCONST1 (smode).data
6532 = double_int_one.lshift (GET_MODE_FBIT (smode),
6533 HOST_BITS_PER_DOUBLE_INT,
6534 SIGNED_FIXED_POINT_MODE_P (smode));
6535 const_tiny_rtx[1][(int) smode]
6536 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
6537 }
6538
6539 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
6540 {
6541 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6542 }
6543
6544 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
6545 {
6546 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6547 }
6548
6549 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
6550 {
6551 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6552 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, constant: 1);
6553 }
6554
6555 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
6556 {
6557 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, constant: 0);
6558 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, constant: 1);
6559 }
6560
6561 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6562 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6563 const_tiny_rtx[0][i] = const0_rtx;
6564
6565 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6566 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6567 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6568 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6569 /*prev_insn=*/NULL,
6570 /*next_insn=*/NULL,
6571 /*bb=*/NULL,
6572 /*pattern=*/NULL_RTX,
6573 /*location=*/-1,
6574 code: CODE_FOR_nothing,
6575 /*reg_notes=*/NULL_RTX);
6576}
6577
6578/* Produce exact duplicate of insn INSN after AFTER.
6579 Care updating of libcall regions if present. */
6580
6581rtx_insn *
6582emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
6583{
6584 rtx_insn *new_rtx;
6585 rtx link;
6586
6587 switch (GET_CODE (insn))
6588 {
6589 case INSN:
6590 new_rtx = emit_insn_after (pattern: copy_insn (insn: PATTERN (insn)), after);
6591 break;
6592
6593 case JUMP_INSN:
6594 new_rtx = emit_jump_insn_after (pattern: copy_insn (insn: PATTERN (insn)), after);
6595 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
6596 break;
6597
6598 case DEBUG_INSN:
6599 new_rtx = emit_debug_insn_after (pattern: copy_insn (insn: PATTERN (insn)), after);
6600 break;
6601
6602 case CALL_INSN:
6603 new_rtx = emit_call_insn_after (pattern: copy_insn (insn: PATTERN (insn)), after);
6604 if (CALL_INSN_FUNCTION_USAGE (insn))
6605 CALL_INSN_FUNCTION_USAGE (new_rtx)
6606 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
6607 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6608 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6609 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
6610 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
6611 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
6612 break;
6613
6614 default:
6615 gcc_unreachable ();
6616 }
6617
6618 /* Update LABEL_NUSES. */
6619 if (NONDEBUG_INSN_P (insn))
6620 mark_jump_label (PATTERN (insn: new_rtx), new_rtx, 0);
6621
6622 INSN_LOCATION (insn: new_rtx) = INSN_LOCATION (insn);
6623
6624 /* If the old insn is frame related, then so is the new one. This is
6625 primarily needed for IA-64 unwind info which marks epilogue insns,
6626 which may be duplicated by the basic block reordering code. */
6627 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
6628
6629 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6630 rtx *ptail = &REG_NOTES (new_rtx);
6631 while (*ptail != NULL_RTX)
6632 ptail = &XEXP (*ptail, 1);
6633
6634 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6635 will make them. REG_LABEL_TARGETs are created there too, but are
6636 supposed to be sticky, so we copy them. */
6637 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
6638 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
6639 {
6640 *ptail = duplicate_reg_note (link);
6641 ptail = &XEXP (*ptail, 1);
6642 }
6643
6644 INSN_CODE (new_rtx) = INSN_CODE (insn);
6645 return new_rtx;
6646}
6647
6648static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6649rtx
6650gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
6651{
6652 if (hard_reg_clobbers[mode][regno])
6653 return hard_reg_clobbers[mode][regno];
6654 else
6655 return (hard_reg_clobbers[mode][regno] =
6656 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6657}
6658
6659location_t prologue_location;
6660location_t epilogue_location;
6661
6662/* Hold current location information and last location information, so the
6663 datastructures are built lazily only when some instructions in given
6664 place are needed. */
6665static location_t curr_location;
6666
6667/* Allocate insn location datastructure. */
6668void
6669insn_locations_init (void)
6670{
6671 prologue_location = epilogue_location = 0;
6672 curr_location = UNKNOWN_LOCATION;
6673}
6674
6675/* At the end of emit stage, clear current location. */
6676void
6677insn_locations_finalize (void)
6678{
6679 epilogue_location = curr_location;
6680 curr_location = UNKNOWN_LOCATION;
6681}
6682
6683/* Set current location. */
6684void
6685set_curr_insn_location (location_t location)
6686{
6687 curr_location = location;
6688}
6689
6690/* Get current location. */
6691location_t
6692curr_insn_location (void)
6693{
6694 return curr_location;
6695}
6696
6697/* Set the location of the insn chain starting at INSN to LOC. */
6698void
6699set_insn_locations (rtx_insn *insn, location_t loc)
6700{
6701 while (insn)
6702 {
6703 if (INSN_P (insn))
6704 INSN_LOCATION (insn) = loc;
6705 insn = NEXT_INSN (insn);
6706 }
6707}
6708
6709/* Return lexical scope block insn belongs to. */
6710tree
6711insn_scope (const rtx_insn *insn)
6712{
6713 return LOCATION_BLOCK (INSN_LOCATION (insn));
6714}
6715
6716/* Return line number of the statement that produced this insn. */
6717int
6718insn_line (const rtx_insn *insn)
6719{
6720 return LOCATION_LINE (INSN_LOCATION (insn));
6721}
6722
6723/* Return source file of the statement that produced this insn. */
6724const char *
6725insn_file (const rtx_insn *insn)
6726{
6727 return LOCATION_FILE (INSN_LOCATION (insn));
6728}
6729
6730/* Return expanded location of the statement that produced this insn. */
6731expanded_location
6732insn_location (const rtx_insn *insn)
6733{
6734 return expand_location (INSN_LOCATION (insn));
6735}
6736
6737/* Return true if memory model MODEL requires a pre-operation (release-style)
6738 barrier or a post-operation (acquire-style) barrier. While not universal,
6739 this function matches behavior of several targets. */
6740
6741bool
6742need_atomic_barrier_p (enum memmodel model, bool pre)
6743{
6744 switch (model & MEMMODEL_BASE_MASK)
6745 {
6746 case MEMMODEL_RELAXED:
6747 case MEMMODEL_CONSUME:
6748 return false;
6749 case MEMMODEL_RELEASE:
6750 return pre;
6751 case MEMMODEL_ACQUIRE:
6752 return !pre;
6753 case MEMMODEL_ACQ_REL:
6754 case MEMMODEL_SEQ_CST:
6755 return true;
6756 default:
6757 gcc_unreachable ();
6758 }
6759}
6760
6761/* Return a constant shift amount for shifting a value of mode MODE
6762 by VALUE bits. */
6763
6764rtx
6765gen_int_shift_amount (machine_mode, poly_int64 value)
6766{
6767 /* Use a 64-bit mode, to avoid any truncation.
6768
6769 ??? Perhaps this should be automatically derived from the .md files
6770 instead, or perhaps have a target hook. */
6771 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6772 ? DImode
6773 : int_mode_for_size (size: 64, limit: 0).require ());
6774 return gen_int_mode (c: value, mode: shift_mode);
6775}
6776
6777/* Initialize fields of rtl_data related to stack alignment. */
6778
6779void
6780rtl_data::init_stack_alignment ()
6781{
6782 stack_alignment_needed = STACK_BOUNDARY;
6783 max_used_stack_slot_alignment = STACK_BOUNDARY;
6784 stack_alignment_estimated = 0;
6785 preferred_stack_boundary = STACK_BOUNDARY;
6786}
6787
6788
6789#include "gt-emit-rtl.h"
6790

source code of gcc/emit-rtl.cc