1/* Functions to determine/estimate number of iterations of a loop.
2 Copyright (C) 2004-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it
7under the terms of the GNU General Public License as published by the
8Free Software Foundation; either version 3, or (at your option) any
9later version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT
12ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "rtl.h"
25#include "tree.h"
26#include "gimple.h"
27#include "tree-pass.h"
28#include "ssa.h"
29#include "gimple-pretty-print.h"
30#include "diagnostic-core.h"
31#include "stor-layout.h"
32#include "fold-const.h"
33#include "calls.h"
34#include "intl.h"
35#include "gimplify.h"
36#include "gimple-iterator.h"
37#include "tree-cfg.h"
38#include "tree-ssa-loop-ivopts.h"
39#include "tree-ssa-loop-niter.h"
40#include "tree-ssa-loop.h"
41#include "cfgloop.h"
42#include "tree-chrec.h"
43#include "tree-scalar-evolution.h"
44#include "tree-dfa.h"
45#include "internal-fn.h"
46#include "gimple-range.h"
47#include "sreal.h"
48
49
50/* The maximum number of dominator BBs we search for conditions
51 of loop header copies we use for simplifying a conditional
52 expression. */
53#define MAX_DOMINATORS_TO_WALK 8
54
55/*
56
57 Analysis of number of iterations of an affine exit test.
58
59*/
60
61/* Bounds on some value, BELOW <= X <= UP. */
62
63struct bounds
64{
65 mpz_t below, up;
66};
67
68/* Splits expression EXPR to a variable part VAR and constant OFFSET. */
69
70static void
71split_to_var_and_offset (tree expr, tree *var, mpz_t offset)
72{
73 tree type = TREE_TYPE (expr);
74 tree op0, op1;
75 bool negate = false;
76
77 *var = expr;
78 mpz_set_ui (offset, 0);
79
80 switch (TREE_CODE (expr))
81 {
82 case MINUS_EXPR:
83 negate = true;
84 /* Fallthru. */
85
86 case PLUS_EXPR:
87 case POINTER_PLUS_EXPR:
88 op0 = TREE_OPERAND (expr, 0);
89 op1 = TREE_OPERAND (expr, 1);
90
91 if (TREE_CODE (op1) != INTEGER_CST)
92 break;
93
94 *var = op0;
95 /* Always sign extend the offset. */
96 wi::to_mpz (wi::to_wide (t: op1), offset, SIGNED);
97 if (negate)
98 mpz_neg (gmp_w: offset, gmp_u: offset);
99 break;
100
101 case INTEGER_CST:
102 *var = build_int_cst_type (type, 0);
103 wi::to_mpz (wi::to_wide (t: expr), offset, TYPE_SIGN (type));
104 break;
105
106 default:
107 break;
108 }
109}
110
111/* From condition C0 CMP C1 derives information regarding the value range
112 of VAR, which is of TYPE. Results are stored in to BELOW and UP. */
113
114static void
115refine_value_range_using_guard (tree type, tree var,
116 tree c0, enum tree_code cmp, tree c1,
117 mpz_t below, mpz_t up)
118{
119 tree varc0, varc1, ctype;
120 mpz_t offc0, offc1;
121 mpz_t mint, maxt, minc1, maxc1;
122 bool no_wrap = nowrap_type_p (type);
123 bool c0_ok, c1_ok;
124 signop sgn = TYPE_SIGN (type);
125
126 switch (cmp)
127 {
128 case LT_EXPR:
129 case LE_EXPR:
130 case GT_EXPR:
131 case GE_EXPR:
132 STRIP_SIGN_NOPS (c0);
133 STRIP_SIGN_NOPS (c1);
134 ctype = TREE_TYPE (c0);
135 if (!useless_type_conversion_p (ctype, type))
136 return;
137
138 break;
139
140 case EQ_EXPR:
141 /* We could derive quite precise information from EQ_EXPR, however,
142 such a guard is unlikely to appear, so we do not bother with
143 handling it. */
144 return;
145
146 case NE_EXPR:
147 /* NE_EXPR comparisons do not contain much of useful information,
148 except for cases of comparing with bounds. */
149 if (TREE_CODE (c1) != INTEGER_CST
150 || !INTEGRAL_TYPE_P (type))
151 return;
152
153 /* Ensure that the condition speaks about an expression in the same
154 type as X and Y. */
155 ctype = TREE_TYPE (c0);
156 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
157 return;
158 c0 = fold_convert (type, c0);
159 c1 = fold_convert (type, c1);
160
161 if (operand_equal_p (var, c0, flags: 0))
162 {
163 /* Case of comparing VAR with its below/up bounds. */
164 auto_mpz valc1;
165 wi::to_mpz (wi::to_wide (t: c1), valc1, TYPE_SIGN (type));
166 if (mpz_cmp (valc1, below) == 0)
167 cmp = GT_EXPR;
168 if (mpz_cmp (valc1, up) == 0)
169 cmp = LT_EXPR;
170 }
171 else
172 {
173 /* Case of comparing with the bounds of the type. */
174 wide_int min = wi::min_value (type);
175 wide_int max = wi::max_value (type);
176
177 if (wi::to_wide (t: c1) == min)
178 cmp = GT_EXPR;
179 if (wi::to_wide (t: c1) == max)
180 cmp = LT_EXPR;
181 }
182
183 /* Quick return if no useful information. */
184 if (cmp == NE_EXPR)
185 return;
186
187 break;
188
189 default:
190 return;
191 }
192
193 mpz_init (offc0);
194 mpz_init (offc1);
195 split_to_var_and_offset (expr: expand_simple_operations (c0), var: &varc0, offset: offc0);
196 split_to_var_and_offset (expr: expand_simple_operations (c1), var: &varc1, offset: offc1);
197
198 /* We are only interested in comparisons of expressions based on VAR. */
199 if (operand_equal_p (var, varc1, flags: 0))
200 {
201 std::swap (a&: varc0, b&: varc1);
202 mpz_swap (offc0, offc1);
203 cmp = swap_tree_comparison (cmp);
204 }
205 else if (!operand_equal_p (var, varc0, flags: 0))
206 {
207 mpz_clear (offc0);
208 mpz_clear (offc1);
209 return;
210 }
211
212 mpz_init (mint);
213 mpz_init (maxt);
214 get_type_static_bounds (type, mint, maxt);
215 mpz_init (minc1);
216 mpz_init (maxc1);
217 Value_Range r (TREE_TYPE (varc1));
218 /* Setup range information for varc1. */
219 if (integer_zerop (varc1))
220 {
221 wi::to_mpz (0, minc1, TYPE_SIGN (type));
222 wi::to_mpz (0, maxc1, TYPE_SIGN (type));
223 }
224 else if (TREE_CODE (varc1) == SSA_NAME
225 && INTEGRAL_TYPE_P (type)
226 && get_range_query (cfun)->range_of_expr (r, expr: varc1)
227 && !r.undefined_p ()
228 && !r.varying_p ())
229 {
230 gcc_assert (wi::le_p (r.lower_bound (), r.upper_bound (), sgn));
231 wi::to_mpz (r.lower_bound (), minc1, sgn);
232 wi::to_mpz (r.upper_bound (), maxc1, sgn);
233 }
234 else
235 {
236 mpz_set (minc1, mint);
237 mpz_set (maxc1, maxt);
238 }
239
240 /* Compute valid range information for varc1 + offc1. Note nothing
241 useful can be derived if it overflows or underflows. Overflow or
242 underflow could happen when:
243
244 offc1 > 0 && varc1 + offc1 > MAX_VAL (type)
245 offc1 < 0 && varc1 + offc1 < MIN_VAL (type). */
246 mpz_add (minc1, minc1, offc1);
247 mpz_add (maxc1, maxc1, offc1);
248 c1_ok = (no_wrap
249 || mpz_sgn (offc1) == 0
250 || (mpz_sgn (offc1) < 0 && mpz_cmp (minc1, mint) >= 0)
251 || (mpz_sgn (offc1) > 0 && mpz_cmp (maxc1, maxt) <= 0));
252 if (!c1_ok)
253 goto end;
254
255 if (mpz_cmp (minc1, mint) < 0)
256 mpz_set (minc1, mint);
257 if (mpz_cmp (maxc1, maxt) > 0)
258 mpz_set (maxc1, maxt);
259
260 if (cmp == LT_EXPR)
261 {
262 cmp = LE_EXPR;
263 mpz_sub_ui (maxc1, maxc1, 1);
264 }
265 if (cmp == GT_EXPR)
266 {
267 cmp = GE_EXPR;
268 mpz_add_ui (minc1, minc1, 1);
269 }
270
271 /* Compute range information for varc0. If there is no overflow,
272 the condition implied that
273
274 (varc0) cmp (varc1 + offc1 - offc0)
275
276 We can possibly improve the upper bound of varc0 if cmp is LE_EXPR,
277 or the below bound if cmp is GE_EXPR.
278
279 To prove there is no overflow/underflow, we need to check below
280 four cases:
281 1) cmp == LE_EXPR && offc0 > 0
282
283 (varc0 + offc0) doesn't overflow
284 && (varc1 + offc1 - offc0) doesn't underflow
285
286 2) cmp == LE_EXPR && offc0 < 0
287
288 (varc0 + offc0) doesn't underflow
289 && (varc1 + offc1 - offc0) doesn't overfloe
290
291 In this case, (varc0 + offc0) will never underflow if we can
292 prove (varc1 + offc1 - offc0) doesn't overflow.
293
294 3) cmp == GE_EXPR && offc0 < 0
295
296 (varc0 + offc0) doesn't underflow
297 && (varc1 + offc1 - offc0) doesn't overflow
298
299 4) cmp == GE_EXPR && offc0 > 0
300
301 (varc0 + offc0) doesn't overflow
302 && (varc1 + offc1 - offc0) doesn't underflow
303
304 In this case, (varc0 + offc0) will never overflow if we can
305 prove (varc1 + offc1 - offc0) doesn't underflow.
306
307 Note we only handle case 2 and 4 in below code. */
308
309 mpz_sub (minc1, minc1, offc0);
310 mpz_sub (maxc1, maxc1, offc0);
311 c0_ok = (no_wrap
312 || mpz_sgn (offc0) == 0
313 || (cmp == LE_EXPR
314 && mpz_sgn (offc0) < 0 && mpz_cmp (maxc1, maxt) <= 0)
315 || (cmp == GE_EXPR
316 && mpz_sgn (offc0) > 0 && mpz_cmp (minc1, mint) >= 0));
317 if (!c0_ok)
318 goto end;
319
320 if (cmp == LE_EXPR)
321 {
322 if (mpz_cmp (up, maxc1) > 0)
323 mpz_set (up, maxc1);
324 }
325 else
326 {
327 if (mpz_cmp (below, minc1) < 0)
328 mpz_set (below, minc1);
329 }
330
331end:
332 mpz_clear (mint);
333 mpz_clear (maxt);
334 mpz_clear (minc1);
335 mpz_clear (maxc1);
336 mpz_clear (offc0);
337 mpz_clear (offc1);
338}
339
340/* Stores estimate on the minimum/maximum value of the expression VAR + OFF
341 in TYPE to MIN and MAX. */
342
343static void
344determine_value_range (class loop *loop, tree type, tree var, mpz_t off,
345 mpz_t min, mpz_t max)
346{
347 int cnt = 0;
348 mpz_t minm, maxm;
349 basic_block bb;
350 wide_int minv, maxv;
351 enum value_range_kind rtype = VR_VARYING;
352
353 /* If the expression is a constant, we know its value exactly. */
354 if (integer_zerop (var))
355 {
356 mpz_set (min, off);
357 mpz_set (max, off);
358 return;
359 }
360
361 get_type_static_bounds (type, min, max);
362
363 /* See if we have some range info from VRP. */
364 if (TREE_CODE (var) == SSA_NAME && INTEGRAL_TYPE_P (type))
365 {
366 edge e = loop_preheader_edge (loop);
367 signop sgn = TYPE_SIGN (type);
368 gphi_iterator gsi;
369
370 /* Either for VAR itself... */
371 Value_Range var_range (TREE_TYPE (var));
372 get_range_query (cfun)->range_of_expr (r&: var_range, expr: var);
373 if (var_range.varying_p () || var_range.undefined_p ())
374 rtype = VR_VARYING;
375 else
376 rtype = VR_RANGE;
377 if (!var_range.undefined_p ())
378 {
379 minv = var_range.lower_bound ();
380 maxv = var_range.upper_bound ();
381 }
382
383 /* Or for PHI results in loop->header where VAR is used as
384 PHI argument from the loop preheader edge. */
385 Value_Range phi_range (TREE_TYPE (var));
386 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
387 {
388 gphi *phi = gsi.phi ();
389 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var
390 && get_range_query (cfun)->range_of_expr (r&: phi_range,
391 expr: gimple_phi_result (gs: phi))
392 && !phi_range.varying_p ()
393 && !phi_range.undefined_p ())
394 {
395 if (rtype != VR_RANGE)
396 {
397 rtype = VR_RANGE;
398 minv = phi_range.lower_bound ();
399 maxv = phi_range.upper_bound ();
400 }
401 else
402 {
403 minv = wi::max (x: minv, y: phi_range.lower_bound (), sgn);
404 maxv = wi::min (x: maxv, y: phi_range.upper_bound (), sgn);
405 /* If the PHI result range are inconsistent with
406 the VAR range, give up on looking at the PHI
407 results. This can happen if VR_UNDEFINED is
408 involved. */
409 if (wi::gt_p (x: minv, y: maxv, sgn))
410 {
411 Value_Range vr (TREE_TYPE (var));
412 get_range_query (cfun)->range_of_expr (r&: vr, expr: var);
413 if (vr.varying_p () || vr.undefined_p ())
414 rtype = VR_VARYING;
415 else
416 rtype = VR_RANGE;
417 if (!vr.undefined_p ())
418 {
419 minv = vr.lower_bound ();
420 maxv = vr.upper_bound ();
421 }
422 break;
423 }
424 }
425 }
426 }
427 mpz_init (minm);
428 mpz_init (maxm);
429 if (rtype != VR_RANGE)
430 {
431 mpz_set (minm, min);
432 mpz_set (maxm, max);
433 }
434 else
435 {
436 gcc_assert (wi::le_p (minv, maxv, sgn));
437 wi::to_mpz (minv, minm, sgn);
438 wi::to_mpz (maxv, maxm, sgn);
439 }
440 /* Now walk the dominators of the loop header and use the entry
441 guards to refine the estimates. */
442 for (bb = loop->header;
443 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
444 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
445 {
446 edge e;
447 tree c0, c1;
448 enum tree_code cmp;
449
450 if (!single_pred_p (bb))
451 continue;
452 e = single_pred_edge (bb);
453
454 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
455 continue;
456
457 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
458 c0 = gimple_cond_lhs (gs: cond);
459 cmp = gimple_cond_code (gs: cond);
460 c1 = gimple_cond_rhs (gs: cond);
461
462 if (e->flags & EDGE_FALSE_VALUE)
463 cmp = invert_tree_comparison (cmp, false);
464
465 refine_value_range_using_guard (type, var, c0, cmp, c1, below: minm, up: maxm);
466 ++cnt;
467 }
468
469 mpz_add (minm, minm, off);
470 mpz_add (maxm, maxm, off);
471 /* If the computation may not wrap or off is zero, then this
472 is always fine. If off is negative and minv + off isn't
473 smaller than type's minimum, or off is positive and
474 maxv + off isn't bigger than type's maximum, use the more
475 precise range too. */
476 if (nowrap_type_p (type)
477 || mpz_sgn (off) == 0
478 || (mpz_sgn (off) < 0 && mpz_cmp (minm, min) >= 0)
479 || (mpz_sgn (off) > 0 && mpz_cmp (maxm, max) <= 0))
480 {
481 mpz_set (min, minm);
482 mpz_set (max, maxm);
483 mpz_clear (minm);
484 mpz_clear (maxm);
485 return;
486 }
487 mpz_clear (minm);
488 mpz_clear (maxm);
489 }
490
491 /* If the computation may wrap, we know nothing about the value, except for
492 the range of the type. */
493 if (!nowrap_type_p (type))
494 return;
495
496 /* Since the addition of OFF does not wrap, if OFF is positive, then we may
497 add it to MIN, otherwise to MAX. */
498 if (mpz_sgn (off) < 0)
499 mpz_add (max, max, off);
500 else
501 mpz_add (min, min, off);
502}
503
504/* Stores the bounds on the difference of the values of the expressions
505 (var + X) and (var + Y), computed in TYPE, to BNDS. */
506
507static void
508bound_difference_of_offsetted_base (tree type, mpz_t x, mpz_t y,
509 bounds *bnds)
510{
511 int rel = mpz_cmp (x, y);
512 bool may_wrap = !nowrap_type_p (type);
513
514 /* If X == Y, then the expressions are always equal.
515 If X > Y, there are the following possibilities:
516 a) neither of var + X and var + Y overflow or underflow, or both of
517 them do. Then their difference is X - Y.
518 b) var + X overflows, and var + Y does not. Then the values of the
519 expressions are var + X - M and var + Y, where M is the range of
520 the type, and their difference is X - Y - M.
521 c) var + Y underflows and var + X does not. Their difference again
522 is M - X + Y.
523 Therefore, if the arithmetics in type does not overflow, then the
524 bounds are (X - Y, X - Y), otherwise they are (X - Y - M, X - Y)
525 Similarly, if X < Y, the bounds are either (X - Y, X - Y) or
526 (X - Y, X - Y + M). */
527
528 if (rel == 0)
529 {
530 mpz_set_ui (bnds->below, 0);
531 mpz_set_ui (bnds->up, 0);
532 return;
533 }
534
535 auto_mpz m;
536 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), m, UNSIGNED);
537 mpz_add_ui (m, m, 1);
538 mpz_sub (bnds->up, x, y);
539 mpz_set (bnds->below, bnds->up);
540
541 if (may_wrap)
542 {
543 if (rel > 0)
544 mpz_sub (bnds->below, bnds->below, m);
545 else
546 mpz_add (bnds->up, bnds->up, m);
547 }
548}
549
550/* From condition C0 CMP C1 derives information regarding the
551 difference of values of VARX + OFFX and VARY + OFFY, computed in TYPE,
552 and stores it to BNDS. */
553
554static void
555refine_bounds_using_guard (tree type, tree varx, mpz_t offx,
556 tree vary, mpz_t offy,
557 tree c0, enum tree_code cmp, tree c1,
558 bounds *bnds)
559{
560 tree varc0, varc1, ctype;
561 mpz_t offc0, offc1, loffx, loffy, bnd;
562 bool lbound = false;
563 bool no_wrap = nowrap_type_p (type);
564 bool x_ok, y_ok;
565
566 switch (cmp)
567 {
568 case LT_EXPR:
569 case LE_EXPR:
570 case GT_EXPR:
571 case GE_EXPR:
572 STRIP_SIGN_NOPS (c0);
573 STRIP_SIGN_NOPS (c1);
574 ctype = TREE_TYPE (c0);
575 if (!useless_type_conversion_p (ctype, type))
576 return;
577
578 break;
579
580 case EQ_EXPR:
581 /* We could derive quite precise information from EQ_EXPR, however, such
582 a guard is unlikely to appear, so we do not bother with handling
583 it. */
584 return;
585
586 case NE_EXPR:
587 /* NE_EXPR comparisons do not contain much of useful information, except for
588 special case of comparing with the bounds of the type. */
589 if (TREE_CODE (c1) != INTEGER_CST
590 || !INTEGRAL_TYPE_P (type))
591 return;
592
593 /* Ensure that the condition speaks about an expression in the same type
594 as X and Y. */
595 ctype = TREE_TYPE (c0);
596 if (TYPE_PRECISION (ctype) != TYPE_PRECISION (type))
597 return;
598 c0 = fold_convert (type, c0);
599 c1 = fold_convert (type, c1);
600
601 if (TYPE_MIN_VALUE (type)
602 && operand_equal_p (c1, TYPE_MIN_VALUE (type), flags: 0))
603 {
604 cmp = GT_EXPR;
605 break;
606 }
607 if (TYPE_MAX_VALUE (type)
608 && operand_equal_p (c1, TYPE_MAX_VALUE (type), flags: 0))
609 {
610 cmp = LT_EXPR;
611 break;
612 }
613
614 return;
615 default:
616 return;
617 }
618
619 mpz_init (offc0);
620 mpz_init (offc1);
621 split_to_var_and_offset (expr: expand_simple_operations (c0), var: &varc0, offset: offc0);
622 split_to_var_and_offset (expr: expand_simple_operations (c1), var: &varc1, offset: offc1);
623
624 /* We are only interested in comparisons of expressions based on VARX and
625 VARY. TODO -- we might also be able to derive some bounds from
626 expressions containing just one of the variables. */
627
628 if (operand_equal_p (varx, varc1, flags: 0))
629 {
630 std::swap (a&: varc0, b&: varc1);
631 mpz_swap (offc0, offc1);
632 cmp = swap_tree_comparison (cmp);
633 }
634
635 if (!operand_equal_p (varx, varc0, flags: 0)
636 || !operand_equal_p (vary, varc1, flags: 0))
637 goto end;
638
639 mpz_init_set (loffx, offx);
640 mpz_init_set (loffy, offy);
641
642 if (cmp == GT_EXPR || cmp == GE_EXPR)
643 {
644 std::swap (a&: varx, b&: vary);
645 mpz_swap (offc0, offc1);
646 mpz_swap (loffx, loffy);
647 cmp = swap_tree_comparison (cmp);
648 lbound = true;
649 }
650
651 /* If there is no overflow, the condition implies that
652
653 (VARX + OFFX) cmp (VARY + OFFY) + (OFFX - OFFY + OFFC1 - OFFC0).
654
655 The overflows and underflows may complicate things a bit; each
656 overflow decreases the appropriate offset by M, and underflow
657 increases it by M. The above inequality would not necessarily be
658 true if
659
660 -- VARX + OFFX underflows and VARX + OFFC0 does not, or
661 VARX + OFFC0 overflows, but VARX + OFFX does not.
662 This may only happen if OFFX < OFFC0.
663 -- VARY + OFFY overflows and VARY + OFFC1 does not, or
664 VARY + OFFC1 underflows and VARY + OFFY does not.
665 This may only happen if OFFY > OFFC1. */
666
667 if (no_wrap)
668 {
669 x_ok = true;
670 y_ok = true;
671 }
672 else
673 {
674 x_ok = (integer_zerop (varx)
675 || mpz_cmp (loffx, offc0) >= 0);
676 y_ok = (integer_zerop (vary)
677 || mpz_cmp (loffy, offc1) <= 0);
678 }
679
680 if (x_ok && y_ok)
681 {
682 mpz_init (bnd);
683 mpz_sub (bnd, loffx, loffy);
684 mpz_add (bnd, bnd, offc1);
685 mpz_sub (bnd, bnd, offc0);
686
687 if (cmp == LT_EXPR)
688 mpz_sub_ui (bnd, bnd, 1);
689
690 if (lbound)
691 {
692 mpz_neg (gmp_w: bnd, gmp_u: bnd);
693 if (mpz_cmp (bnds->below, bnd) < 0)
694 mpz_set (bnds->below, bnd);
695 }
696 else
697 {
698 if (mpz_cmp (bnd, bnds->up) < 0)
699 mpz_set (bnds->up, bnd);
700 }
701 mpz_clear (bnd);
702 }
703
704 mpz_clear (loffx);
705 mpz_clear (loffy);
706end:
707 mpz_clear (offc0);
708 mpz_clear (offc1);
709}
710
711/* Stores the bounds on the value of the expression X - Y in LOOP to BNDS.
712 The subtraction is considered to be performed in arbitrary precision,
713 without overflows.
714
715 We do not attempt to be too clever regarding the value ranges of X and
716 Y; most of the time, they are just integers or ssa names offsetted by
717 integer. However, we try to use the information contained in the
718 comparisons before the loop (usually created by loop header copying). */
719
720static void
721bound_difference (class loop *loop, tree x, tree y, bounds *bnds)
722{
723 tree type = TREE_TYPE (x);
724 tree varx, vary;
725 mpz_t offx, offy;
726 int cnt = 0;
727 edge e;
728 basic_block bb;
729 tree c0, c1;
730 enum tree_code cmp;
731
732 /* Get rid of unnecessary casts, but preserve the value of
733 the expressions. */
734 STRIP_SIGN_NOPS (x);
735 STRIP_SIGN_NOPS (y);
736
737 mpz_init (bnds->below);
738 mpz_init (bnds->up);
739 mpz_init (offx);
740 mpz_init (offy);
741 split_to_var_and_offset (expr: x, var: &varx, offset: offx);
742 split_to_var_and_offset (expr: y, var: &vary, offset: offy);
743
744 if (!integer_zerop (varx)
745 && operand_equal_p (varx, vary, flags: 0))
746 {
747 /* Special case VARX == VARY -- we just need to compare the
748 offsets. The matters are a bit more complicated in the
749 case addition of offsets may wrap. */
750 bound_difference_of_offsetted_base (type, x: offx, y: offy, bnds);
751 }
752 else
753 {
754 /* Otherwise, use the value ranges to determine the initial
755 estimates on below and up. */
756 auto_mpz minx, maxx, miny, maxy;
757 determine_value_range (loop, type, var: varx, off: offx, min: minx, max: maxx);
758 determine_value_range (loop, type, var: vary, off: offy, min: miny, max: maxy);
759
760 mpz_sub (bnds->below, minx, maxy);
761 mpz_sub (bnds->up, maxx, miny);
762 }
763
764 /* If both X and Y are constants, we cannot get any more precise. */
765 if (integer_zerop (varx) && integer_zerop (vary))
766 goto end;
767
768 /* Now walk the dominators of the loop header and use the entry
769 guards to refine the estimates. */
770 for (bb = loop->header;
771 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
772 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
773 {
774 if (!single_pred_p (bb))
775 continue;
776 e = single_pred_edge (bb);
777
778 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
779 continue;
780
781 gcond *cond = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
782 c0 = gimple_cond_lhs (gs: cond);
783 cmp = gimple_cond_code (gs: cond);
784 c1 = gimple_cond_rhs (gs: cond);
785
786 if (e->flags & EDGE_FALSE_VALUE)
787 cmp = invert_tree_comparison (cmp, false);
788
789 refine_bounds_using_guard (type, varx, offx, vary, offy,
790 c0, cmp, c1, bnds);
791 ++cnt;
792 }
793
794end:
795 mpz_clear (offx);
796 mpz_clear (offy);
797}
798
799/* Update the bounds in BNDS that restrict the value of X to the bounds
800 that restrict the value of X + DELTA. X can be obtained as a
801 difference of two values in TYPE. */
802
803static void
804bounds_add (bounds *bnds, const widest_int &delta, tree type)
805{
806 mpz_t mdelta, max;
807
808 mpz_init (mdelta);
809 wi::to_mpz (delta, mdelta, SIGNED);
810
811 mpz_init (max);
812 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
813
814 mpz_add (bnds->up, bnds->up, mdelta);
815 mpz_add (bnds->below, bnds->below, mdelta);
816
817 if (mpz_cmp (bnds->up, max) > 0)
818 mpz_set (bnds->up, max);
819
820 mpz_neg (gmp_w: max, gmp_u: max);
821 if (mpz_cmp (bnds->below, max) < 0)
822 mpz_set (bnds->below, max);
823
824 mpz_clear (mdelta);
825 mpz_clear (max);
826}
827
828/* Update the bounds in BNDS that restrict the value of X to the bounds
829 that restrict the value of -X. */
830
831static void
832bounds_negate (bounds *bnds)
833{
834 mpz_t tmp;
835
836 mpz_init_set (tmp, bnds->up);
837 mpz_neg (gmp_w: bnds->up, gmp_u: bnds->below);
838 mpz_neg (gmp_w: bnds->below, gmp_u: tmp);
839 mpz_clear (tmp);
840}
841
842/* Returns inverse of X modulo 2^s, where MASK = 2^s-1. */
843
844static tree
845inverse (tree x, tree mask)
846{
847 tree type = TREE_TYPE (x);
848 tree rslt;
849 unsigned ctr = tree_floor_log2 (mask);
850
851 if (TYPE_PRECISION (type) <= HOST_BITS_PER_WIDE_INT)
852 {
853 unsigned HOST_WIDE_INT ix;
854 unsigned HOST_WIDE_INT imask;
855 unsigned HOST_WIDE_INT irslt = 1;
856
857 gcc_assert (cst_and_fits_in_hwi (x));
858 gcc_assert (cst_and_fits_in_hwi (mask));
859
860 ix = int_cst_value (x);
861 imask = int_cst_value (mask);
862
863 for (; ctr; ctr--)
864 {
865 irslt *= ix;
866 ix *= ix;
867 }
868 irslt &= imask;
869
870 rslt = build_int_cst_type (type, irslt);
871 }
872 else
873 {
874 rslt = build_int_cst (type, 1);
875 for (; ctr; ctr--)
876 {
877 rslt = int_const_binop (MULT_EXPR, rslt, x);
878 x = int_const_binop (MULT_EXPR, x, x);
879 }
880 rslt = int_const_binop (BIT_AND_EXPR, rslt, mask);
881 }
882
883 return rslt;
884}
885
886/* Derives the upper bound BND on the number of executions of loop with exit
887 condition S * i <> C. If NO_OVERFLOW is true, then the control variable of
888 the loop does not overflow. EXIT_MUST_BE_TAKEN is true if we are guaranteed
889 that the loop ends through this exit, i.e., the induction variable ever
890 reaches the value of C.
891
892 The value C is equal to final - base, where final and base are the final and
893 initial value of the actual induction variable in the analysed loop. BNDS
894 bounds the value of this difference when computed in signed type with
895 unbounded range, while the computation of C is performed in an unsigned
896 type with the range matching the range of the type of the induction variable.
897 In particular, BNDS.up contains an upper bound on C in the following cases:
898 -- if the iv must reach its final value without overflow, i.e., if
899 NO_OVERFLOW && EXIT_MUST_BE_TAKEN is true, or
900 -- if final >= base, which we know to hold when BNDS.below >= 0. */
901
902static void
903number_of_iterations_ne_max (mpz_t bnd, bool no_overflow, tree c, tree s,
904 bounds *bnds, bool exit_must_be_taken)
905{
906 widest_int max;
907 mpz_t d;
908 tree type = TREE_TYPE (c);
909 bool bnds_u_valid = ((no_overflow && exit_must_be_taken)
910 || mpz_sgn (bnds->below) >= 0);
911
912 if (integer_onep (s)
913 || (TREE_CODE (c) == INTEGER_CST
914 && TREE_CODE (s) == INTEGER_CST
915 && wi::mod_trunc (x: wi::to_wide (t: c), y: wi::to_wide (t: s),
916 TYPE_SIGN (type)) == 0)
917 || (TYPE_OVERFLOW_UNDEFINED (type)
918 && multiple_of_p (type, c, s)))
919 {
920 /* If C is an exact multiple of S, then its value will be reached before
921 the induction variable overflows (unless the loop is exited in some
922 other way before). Note that the actual induction variable in the
923 loop (which ranges from base to final instead of from 0 to C) may
924 overflow, in which case BNDS.up will not be giving a correct upper
925 bound on C; thus, BNDS_U_VALID had to be computed in advance. */
926 no_overflow = true;
927 exit_must_be_taken = true;
928 }
929
930 /* If the induction variable can overflow, the number of iterations is at
931 most the period of the control variable (or infinite, but in that case
932 the whole # of iterations analysis will fail). */
933 if (!no_overflow)
934 {
935 max = wi::mask <widest_int> (TYPE_PRECISION (type)
936 - wi::ctz (wi::to_wide (t: s)), negate_p: false);
937 wi::to_mpz (max, bnd, UNSIGNED);
938 return;
939 }
940
941 /* Now we know that the induction variable does not overflow, so the loop
942 iterates at most (range of type / S) times. */
943 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), bnd, UNSIGNED);
944
945 /* If the induction variable is guaranteed to reach the value of C before
946 overflow, ... */
947 if (exit_must_be_taken)
948 {
949 /* ... then we can strengthen this to C / S, and possibly we can use
950 the upper bound on C given by BNDS. */
951 if (TREE_CODE (c) == INTEGER_CST)
952 wi::to_mpz (wi::to_wide (t: c), bnd, UNSIGNED);
953 else if (bnds_u_valid)
954 mpz_set (bnd, bnds->up);
955 }
956
957 mpz_init (d);
958 wi::to_mpz (wi::to_wide (t: s), d, UNSIGNED);
959 mpz_fdiv_q (bnd, bnd, d);
960 mpz_clear (d);
961}
962
963/* Determines number of iterations of loop whose ending condition
964 is IV <> FINAL. TYPE is the type of the iv. The number of
965 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
966 we know that the exit must be taken eventually, i.e., that the IV
967 ever reaches the value FINAL (we derived this earlier, and possibly set
968 NITER->assumptions to make sure this is the case). BNDS contains the
969 bounds on the difference FINAL - IV->base. */
970
971static bool
972number_of_iterations_ne (class loop *loop, tree type, affine_iv *iv,
973 tree final, class tree_niter_desc *niter,
974 bool exit_must_be_taken, bounds *bnds)
975{
976 tree niter_type = unsigned_type_for (type);
977 tree s, c, d, bits, assumption, tmp, bound;
978
979 niter->control = *iv;
980 niter->bound = final;
981 niter->cmp = NE_EXPR;
982
983 /* Rearrange the terms so that we get inequality S * i <> C, with S
984 positive. Also cast everything to the unsigned type. If IV does
985 not overflow, BNDS bounds the value of C. Also, this is the
986 case if the computation |FINAL - IV->base| does not overflow, i.e.,
987 if BNDS->below in the result is nonnegative. */
988 if (tree_int_cst_sign_bit (iv->step))
989 {
990 s = fold_convert (niter_type,
991 fold_build1 (NEGATE_EXPR, type, iv->step));
992 c = fold_build2 (MINUS_EXPR, niter_type,
993 fold_convert (niter_type, iv->base),
994 fold_convert (niter_type, final));
995 bounds_negate (bnds);
996 }
997 else
998 {
999 s = fold_convert (niter_type, iv->step);
1000 c = fold_build2 (MINUS_EXPR, niter_type,
1001 fold_convert (niter_type, final),
1002 fold_convert (niter_type, iv->base));
1003 }
1004
1005 auto_mpz max;
1006 number_of_iterations_ne_max (bnd: max, no_overflow: iv->no_overflow, c, s, bnds,
1007 exit_must_be_taken);
1008 niter->max = widest_int::from (x: wi::from_mpz (niter_type, max, false),
1009 TYPE_SIGN (niter_type));
1010
1011 /* Compute no-overflow information for the control iv. This can be
1012 proven when below two conditions are satisfied:
1013
1014 1) IV evaluates toward FINAL at beginning, i.e:
1015 base <= FINAL ; step > 0
1016 base >= FINAL ; step < 0
1017
1018 2) |FINAL - base| is an exact multiple of step.
1019
1020 Unfortunately, it's hard to prove above conditions after pass loop-ch
1021 because loop with exit condition (IV != FINAL) usually will be guarded
1022 by initial-condition (IV.base - IV.step != FINAL). In this case, we
1023 can alternatively try to prove below conditions:
1024
1025 1') IV evaluates toward FINAL at beginning, i.e:
1026 new_base = base - step < FINAL ; step > 0
1027 && base - step doesn't underflow
1028 new_base = base - step > FINAL ; step < 0
1029 && base - step doesn't overflow
1030
1031 Please refer to PR34114 as an example of loop-ch's impact.
1032
1033 Note, for NE_EXPR, base equals to FINAL is a special case, in
1034 which the loop exits immediately, and the iv does not overflow.
1035
1036 Also note, we prove condition 2) by checking base and final seperately
1037 along with condition 1) or 1'). Since we ensure the difference
1038 computation of c does not wrap with cond below and the adjusted s
1039 will fit a signed type as well as an unsigned we can safely do
1040 this using the type of the IV if it is not pointer typed. */
1041 tree mtype = type;
1042 if (POINTER_TYPE_P (type))
1043 mtype = niter_type;
1044 if (!niter->control.no_overflow
1045 && (integer_onep (s)
1046 || (multiple_of_p (mtype, fold_convert (mtype, iv->base),
1047 fold_convert (mtype, s), false)
1048 && multiple_of_p (mtype, fold_convert (mtype, final),
1049 fold_convert (mtype, s), false))))
1050 {
1051 tree t, cond, relaxed_cond = boolean_false_node;
1052
1053 if (tree_int_cst_sign_bit (iv->step))
1054 {
1055 cond = fold_build2 (GE_EXPR, boolean_type_node, iv->base, final);
1056 if (TREE_CODE (type) == INTEGER_TYPE)
1057 {
1058 /* Only when base - step doesn't overflow. */
1059 t = TYPE_MAX_VALUE (type);
1060 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1061 t = fold_build2 (GE_EXPR, boolean_type_node, t, iv->base);
1062 if (integer_nonzerop (t))
1063 {
1064 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1065 relaxed_cond = fold_build2 (GT_EXPR, boolean_type_node, t,
1066 final);
1067 }
1068 }
1069 }
1070 else
1071 {
1072 cond = fold_build2 (LE_EXPR, boolean_type_node, iv->base, final);
1073 if (TREE_CODE (type) == INTEGER_TYPE)
1074 {
1075 /* Only when base - step doesn't underflow. */
1076 t = TYPE_MIN_VALUE (type);
1077 t = fold_build2 (PLUS_EXPR, type, t, iv->step);
1078 t = fold_build2 (LE_EXPR, boolean_type_node, t, iv->base);
1079 if (integer_nonzerop (t))
1080 {
1081 t = fold_build2 (MINUS_EXPR, type, iv->base, iv->step);
1082 relaxed_cond = fold_build2 (LT_EXPR, boolean_type_node, t,
1083 final);
1084 }
1085 }
1086 }
1087
1088 t = simplify_using_initial_conditions (loop, cond);
1089 if (!t || !integer_onep (t))
1090 t = simplify_using_initial_conditions (loop, relaxed_cond);
1091
1092 if (t && integer_onep (t))
1093 {
1094 niter->control.no_overflow = true;
1095 niter->niter = fold_build2 (EXACT_DIV_EXPR, niter_type, c, s);
1096 return true;
1097 }
1098 }
1099
1100 /* Let nsd (step, size of mode) = d. If d does not divide c, the loop
1101 is infinite. Otherwise, the number of iterations is
1102 (inverse(s/d) * (c/d)) mod (size of mode/d). */
1103 bits = num_ending_zeros (s);
1104 bound = build_low_bits_mask (niter_type,
1105 (TYPE_PRECISION (niter_type)
1106 - tree_to_uhwi (bits)));
1107
1108 d = fold_binary_to_constant (LSHIFT_EXPR, niter_type,
1109 build_int_cst (niter_type, 1), bits);
1110 s = fold_binary_to_constant (RSHIFT_EXPR, niter_type, s, bits);
1111
1112 if (!exit_must_be_taken)
1113 {
1114 /* If we cannot assume that the exit is taken eventually, record the
1115 assumptions for divisibility of c. */
1116 assumption = fold_build2 (FLOOR_MOD_EXPR, niter_type, c, d);
1117 assumption = fold_build2 (EQ_EXPR, boolean_type_node,
1118 assumption, build_int_cst (niter_type, 0));
1119 if (!integer_nonzerop (assumption))
1120 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1121 niter->assumptions, assumption);
1122 }
1123
1124 c = fold_build2 (EXACT_DIV_EXPR, niter_type, c, d);
1125 if (integer_onep (s))
1126 {
1127 niter->niter = c;
1128 }
1129 else
1130 {
1131 tmp = fold_build2 (MULT_EXPR, niter_type, c, inverse (s, bound));
1132 niter->niter = fold_build2 (BIT_AND_EXPR, niter_type, tmp, bound);
1133 }
1134 return true;
1135}
1136
1137/* Checks whether we can determine the final value of the control variable
1138 of the loop with ending condition IV0 < IV1 (computed in TYPE).
1139 DELTA is the difference IV1->base - IV0->base, STEP is the absolute value
1140 of the step. The assumptions necessary to ensure that the computation
1141 of the final value does not overflow are recorded in NITER. If we
1142 find the final value, we adjust DELTA and return TRUE. Otherwise
1143 we return false. BNDS bounds the value of IV1->base - IV0->base,
1144 and will be updated by the same amount as DELTA. EXIT_MUST_BE_TAKEN is
1145 true if we know that the exit must be taken eventually. */
1146
1147static bool
1148number_of_iterations_lt_to_ne (tree type, affine_iv *iv0, affine_iv *iv1,
1149 class tree_niter_desc *niter,
1150 tree *delta, tree step,
1151 bool exit_must_be_taken, bounds *bnds)
1152{
1153 tree niter_type = TREE_TYPE (step);
1154 tree mod = fold_build2 (FLOOR_MOD_EXPR, niter_type, *delta, step);
1155 tree tmod;
1156 tree assumption = boolean_true_node, bound, noloop;
1157 bool fv_comp_no_overflow;
1158 tree type1 = type;
1159 if (POINTER_TYPE_P (type))
1160 type1 = sizetype;
1161
1162 if (TREE_CODE (mod) != INTEGER_CST)
1163 return false;
1164 if (integer_nonzerop (mod))
1165 mod = fold_build2 (MINUS_EXPR, niter_type, step, mod);
1166 tmod = fold_convert (type1, mod);
1167
1168 auto_mpz mmod;
1169 wi::to_mpz (wi::to_wide (t: mod), mmod, UNSIGNED);
1170 mpz_neg (gmp_w: mmod, gmp_u: mmod);
1171
1172 /* If the induction variable does not overflow and the exit is taken,
1173 then the computation of the final value does not overflow. This is
1174 also obviously the case if the new final value is equal to the
1175 current one. Finally, we postulate this for pointer type variables,
1176 as the code cannot rely on the object to that the pointer points being
1177 placed at the end of the address space (and more pragmatically,
1178 TYPE_{MIN,MAX}_VALUE is not defined for pointers). */
1179 if (integer_zerop (mod) || POINTER_TYPE_P (type))
1180 fv_comp_no_overflow = true;
1181 else if (!exit_must_be_taken)
1182 fv_comp_no_overflow = false;
1183 else
1184 fv_comp_no_overflow =
1185 (iv0->no_overflow && integer_nonzerop (iv0->step))
1186 || (iv1->no_overflow && integer_nonzerop (iv1->step));
1187
1188 if (integer_nonzerop (iv0->step))
1189 {
1190 /* The final value of the iv is iv1->base + MOD, assuming that this
1191 computation does not overflow, and that
1192 iv0->base <= iv1->base + MOD. */
1193 if (!fv_comp_no_overflow)
1194 {
1195 bound = fold_build2 (MINUS_EXPR, type1,
1196 TYPE_MAX_VALUE (type1), tmod);
1197 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1198 iv1->base, bound);
1199 if (integer_zerop (assumption))
1200 return false;
1201 }
1202 if (mpz_cmp (mmod, bnds->below) < 0)
1203 noloop = boolean_false_node;
1204 else if (POINTER_TYPE_P (type))
1205 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1206 iv0->base,
1207 fold_build_pointer_plus (iv1->base, tmod));
1208 else
1209 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1210 iv0->base,
1211 fold_build2 (PLUS_EXPR, type1,
1212 iv1->base, tmod));
1213 }
1214 else
1215 {
1216 /* The final value of the iv is iv0->base - MOD, assuming that this
1217 computation does not overflow, and that
1218 iv0->base - MOD <= iv1->base. */
1219 if (!fv_comp_no_overflow)
1220 {
1221 bound = fold_build2 (PLUS_EXPR, type1,
1222 TYPE_MIN_VALUE (type1), tmod);
1223 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1224 iv0->base, bound);
1225 if (integer_zerop (assumption))
1226 return false;
1227 }
1228 if (mpz_cmp (mmod, bnds->below) < 0)
1229 noloop = boolean_false_node;
1230 else if (POINTER_TYPE_P (type))
1231 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1232 fold_build_pointer_plus (iv0->base,
1233 fold_build1 (NEGATE_EXPR,
1234 type1, tmod)),
1235 iv1->base);
1236 else
1237 noloop = fold_build2 (GT_EXPR, boolean_type_node,
1238 fold_build2 (MINUS_EXPR, type1,
1239 iv0->base, tmod),
1240 iv1->base);
1241 }
1242
1243 if (!integer_nonzerop (assumption))
1244 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1245 niter->assumptions,
1246 assumption);
1247 if (!integer_zerop (noloop))
1248 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1249 niter->may_be_zero,
1250 noloop);
1251 bounds_add (bnds, delta: wi::to_widest (t: mod), type);
1252 *delta = fold_build2 (PLUS_EXPR, niter_type, *delta, mod);
1253
1254 return true;
1255}
1256
1257/* Add assertions to NITER that ensure that the control variable of the loop
1258 with ending condition IV0 < IV1 does not overflow. Types of IV0 and IV1
1259 are TYPE. Returns false if we can prove that there is an overflow, true
1260 otherwise. STEP is the absolute value of the step. */
1261
1262static bool
1263assert_no_overflow_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1264 class tree_niter_desc *niter, tree step)
1265{
1266 tree bound, d, assumption, diff;
1267 tree niter_type = TREE_TYPE (step);
1268
1269 if (integer_nonzerop (iv0->step))
1270 {
1271 /* for (i = iv0->base; i < iv1->base; i += iv0->step) */
1272 if (iv0->no_overflow)
1273 return true;
1274
1275 /* If iv0->base is a constant, we can determine the last value before
1276 overflow precisely; otherwise we conservatively assume
1277 MAX - STEP + 1. */
1278
1279 if (TREE_CODE (iv0->base) == INTEGER_CST)
1280 {
1281 d = fold_build2 (MINUS_EXPR, niter_type,
1282 fold_convert (niter_type, TYPE_MAX_VALUE (type)),
1283 fold_convert (niter_type, iv0->base));
1284 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1285 }
1286 else
1287 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1288 build_int_cst (niter_type, 1));
1289 bound = fold_build2 (MINUS_EXPR, type,
1290 TYPE_MAX_VALUE (type), fold_convert (type, diff));
1291 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1292 iv1->base, bound);
1293 }
1294 else
1295 {
1296 /* for (i = iv1->base; i > iv0->base; i += iv1->step) */
1297 if (iv1->no_overflow)
1298 return true;
1299
1300 if (TREE_CODE (iv1->base) == INTEGER_CST)
1301 {
1302 d = fold_build2 (MINUS_EXPR, niter_type,
1303 fold_convert (niter_type, iv1->base),
1304 fold_convert (niter_type, TYPE_MIN_VALUE (type)));
1305 diff = fold_build2 (FLOOR_MOD_EXPR, niter_type, d, step);
1306 }
1307 else
1308 diff = fold_build2 (MINUS_EXPR, niter_type, step,
1309 build_int_cst (niter_type, 1));
1310 bound = fold_build2 (PLUS_EXPR, type,
1311 TYPE_MIN_VALUE (type), fold_convert (type, diff));
1312 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1313 iv0->base, bound);
1314 }
1315
1316 if (integer_zerop (assumption))
1317 return false;
1318 if (!integer_nonzerop (assumption))
1319 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1320 niter->assumptions, assumption);
1321
1322 iv0->no_overflow = true;
1323 iv1->no_overflow = true;
1324 return true;
1325}
1326
1327/* Add an assumption to NITER that a loop whose ending condition
1328 is IV0 < IV1 rolls. TYPE is the type of the control iv. BNDS
1329 bounds the value of IV1->base - IV0->base. */
1330
1331static void
1332assert_loop_rolls_lt (tree type, affine_iv *iv0, affine_iv *iv1,
1333 class tree_niter_desc *niter, bounds *bnds)
1334{
1335 tree assumption = boolean_true_node, bound, diff;
1336 tree mbz, mbzl, mbzr, type1;
1337 bool rolls_p, no_overflow_p;
1338 widest_int dstep;
1339 mpz_t mstep, max;
1340
1341 /* We are going to compute the number of iterations as
1342 (iv1->base - iv0->base + step - 1) / step, computed in the unsigned
1343 variant of TYPE. This formula only works if
1344
1345 -step + 1 <= (iv1->base - iv0->base) <= MAX - step + 1
1346
1347 (where MAX is the maximum value of the unsigned variant of TYPE, and
1348 the computations in this formula are performed in full precision,
1349 i.e., without overflows).
1350
1351 Usually, for loops with exit condition iv0->base + step * i < iv1->base,
1352 we have a condition of the form iv0->base - step < iv1->base before the loop,
1353 and for loops iv0->base < iv1->base - step * i the condition
1354 iv0->base < iv1->base + step, due to loop header copying, which enable us
1355 to prove the lower bound.
1356
1357 The upper bound is more complicated. Unless the expressions for initial
1358 and final value themselves contain enough information, we usually cannot
1359 derive it from the context. */
1360
1361 /* First check whether the answer does not follow from the bounds we gathered
1362 before. */
1363 if (integer_nonzerop (iv0->step))
1364 dstep = wi::to_widest (t: iv0->step);
1365 else
1366 {
1367 dstep = wi::sext (x: wi::to_widest (t: iv1->step), TYPE_PRECISION (type));
1368 dstep = -dstep;
1369 }
1370
1371 mpz_init (mstep);
1372 wi::to_mpz (dstep, mstep, UNSIGNED);
1373 mpz_neg (gmp_w: mstep, gmp_u: mstep);
1374 mpz_add_ui (mstep, mstep, 1);
1375
1376 rolls_p = mpz_cmp (mstep, bnds->below) <= 0;
1377
1378 mpz_init (max);
1379 wi::to_mpz (wi::minus_one (TYPE_PRECISION (type)), max, UNSIGNED);
1380 mpz_add (max, max, mstep);
1381 no_overflow_p = (mpz_cmp (bnds->up, max) <= 0
1382 /* For pointers, only values lying inside a single object
1383 can be compared or manipulated by pointer arithmetics.
1384 Gcc in general does not allow or handle objects larger
1385 than half of the address space, hence the upper bound
1386 is satisfied for pointers. */
1387 || POINTER_TYPE_P (type));
1388 mpz_clear (mstep);
1389 mpz_clear (max);
1390
1391 if (rolls_p && no_overflow_p)
1392 return;
1393
1394 type1 = type;
1395 if (POINTER_TYPE_P (type))
1396 type1 = sizetype;
1397
1398 /* Now the hard part; we must formulate the assumption(s) as expressions, and
1399 we must be careful not to introduce overflow. */
1400
1401 if (integer_nonzerop (iv0->step))
1402 {
1403 diff = fold_build2 (MINUS_EXPR, type1,
1404 iv0->step, build_int_cst (type1, 1));
1405
1406 /* We need to know that iv0->base >= MIN + iv0->step - 1. Since
1407 0 address never belongs to any object, we can assume this for
1408 pointers. */
1409 if (!POINTER_TYPE_P (type))
1410 {
1411 bound = fold_build2 (PLUS_EXPR, type1,
1412 TYPE_MIN_VALUE (type), diff);
1413 assumption = fold_build2 (GE_EXPR, boolean_type_node,
1414 iv0->base, bound);
1415 }
1416
1417 /* And then we can compute iv0->base - diff, and compare it with
1418 iv1->base. */
1419 mbzl = fold_build2 (MINUS_EXPR, type1,
1420 fold_convert (type1, iv0->base), diff);
1421 mbzr = fold_convert (type1, iv1->base);
1422 }
1423 else
1424 {
1425 diff = fold_build2 (PLUS_EXPR, type1,
1426 iv1->step, build_int_cst (type1, 1));
1427
1428 if (!POINTER_TYPE_P (type))
1429 {
1430 bound = fold_build2 (PLUS_EXPR, type1,
1431 TYPE_MAX_VALUE (type), diff);
1432 assumption = fold_build2 (LE_EXPR, boolean_type_node,
1433 iv1->base, bound);
1434 }
1435
1436 mbzl = fold_convert (type1, iv0->base);
1437 mbzr = fold_build2 (MINUS_EXPR, type1,
1438 fold_convert (type1, iv1->base), diff);
1439 }
1440
1441 if (!integer_nonzerop (assumption))
1442 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1443 niter->assumptions, assumption);
1444 if (!rolls_p)
1445 {
1446 mbz = fold_build2 (GT_EXPR, boolean_type_node, mbzl, mbzr);
1447 niter->may_be_zero = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1448 niter->may_be_zero, mbz);
1449 }
1450}
1451
1452/* Determines number of iterations of loop whose ending condition
1453 is IV0 < IV1 which likes: {base, -C} < n, or n < {base, C}.
1454 The number of iterations is stored to NITER. */
1455
1456static bool
1457number_of_iterations_until_wrap (class loop *loop, tree type, affine_iv *iv0,
1458 affine_iv *iv1, class tree_niter_desc *niter)
1459{
1460 tree niter_type = unsigned_type_for (type);
1461 tree step, num, assumptions, may_be_zero, span;
1462 wide_int high, low, max, min;
1463
1464 may_be_zero = fold_build2 (LE_EXPR, boolean_type_node, iv1->base, iv0->base);
1465 if (integer_onep (may_be_zero))
1466 return false;
1467
1468 int prec = TYPE_PRECISION (type);
1469 signop sgn = TYPE_SIGN (type);
1470 min = wi::min_value (prec, sgn);
1471 max = wi::max_value (prec, sgn);
1472
1473 /* n < {base, C}. */
1474 if (integer_zerop (iv0->step) && !tree_int_cst_sign_bit (iv1->step))
1475 {
1476 step = iv1->step;
1477 /* MIN + C - 1 <= n. */
1478 tree last = wide_int_to_tree (type, cst: min + wi::to_wide (t: step) - 1);
1479 assumptions = fold_build2 (LE_EXPR, boolean_type_node, last, iv0->base);
1480 if (integer_zerop (assumptions))
1481 return false;
1482
1483 num = fold_build2 (MINUS_EXPR, niter_type,
1484 wide_int_to_tree (niter_type, max),
1485 fold_convert (niter_type, iv1->base));
1486
1487 /* When base has the form iv + 1, if we know iv >= n, then iv + 1 < n
1488 only when iv + 1 overflows, i.e. when iv == TYPE_VALUE_MAX. */
1489 if (sgn == UNSIGNED
1490 && integer_onep (step)
1491 && TREE_CODE (iv1->base) == PLUS_EXPR
1492 && integer_onep (TREE_OPERAND (iv1->base, 1)))
1493 {
1494 tree cond = fold_build2 (GE_EXPR, boolean_type_node,
1495 TREE_OPERAND (iv1->base, 0), iv0->base);
1496 cond = simplify_using_initial_conditions (loop, cond);
1497 if (integer_onep (cond))
1498 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node,
1499 TREE_OPERAND (iv1->base, 0),
1500 TYPE_MAX_VALUE (type));
1501 }
1502
1503 high = max;
1504 if (TREE_CODE (iv1->base) == INTEGER_CST)
1505 low = wi::to_wide (t: iv1->base) - 1;
1506 else if (TREE_CODE (iv0->base) == INTEGER_CST)
1507 low = wi::to_wide (t: iv0->base);
1508 else
1509 low = min;
1510 }
1511 /* {base, -C} < n. */
1512 else if (tree_int_cst_sign_bit (iv0->step) && integer_zerop (iv1->step))
1513 {
1514 step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv0->step), iv0->step);
1515 /* MAX - C + 1 >= n. */
1516 tree last = wide_int_to_tree (type, cst: max - wi::to_wide (t: step) + 1);
1517 assumptions = fold_build2 (GE_EXPR, boolean_type_node, last, iv1->base);
1518 if (integer_zerop (assumptions))
1519 return false;
1520
1521 num = fold_build2 (MINUS_EXPR, niter_type,
1522 fold_convert (niter_type, iv0->base),
1523 wide_int_to_tree (niter_type, min));
1524 low = min;
1525 if (TREE_CODE (iv0->base) == INTEGER_CST)
1526 high = wi::to_wide (t: iv0->base) + 1;
1527 else if (TREE_CODE (iv1->base) == INTEGER_CST)
1528 high = wi::to_wide (t: iv1->base);
1529 else
1530 high = max;
1531 }
1532 else
1533 return false;
1534
1535 /* (delta + step - 1) / step */
1536 step = fold_convert (niter_type, step);
1537 num = fold_build2 (PLUS_EXPR, niter_type, num, step);
1538 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, num, step);
1539
1540 widest_int delta, s;
1541 delta = widest_int::from (x: high, sgn) - widest_int::from (x: low, sgn);
1542 s = wi::to_widest (t: step);
1543 delta = delta + s - 1;
1544 niter->max = wi::udiv_floor (x: delta, y: s);
1545
1546 niter->may_be_zero = may_be_zero;
1547
1548 if (!integer_nonzerop (assumptions))
1549 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1550 niter->assumptions, assumptions);
1551
1552 niter->control.no_overflow = false;
1553
1554 /* Update bound and exit condition as:
1555 bound = niter * STEP + (IVbase - STEP).
1556 { IVbase - STEP, +, STEP } != bound
1557 Here, biasing IVbase by 1 step makes 'bound' be the value before wrap.
1558 */
1559 tree base_type = TREE_TYPE (niter->control.base);
1560 if (POINTER_TYPE_P (base_type))
1561 {
1562 tree utype = unsigned_type_for (base_type);
1563 niter->control.base
1564 = fold_build2 (MINUS_EXPR, utype,
1565 fold_convert (utype, niter->control.base),
1566 fold_convert (utype, niter->control.step));
1567 niter->control.base = fold_convert (base_type, niter->control.base);
1568 }
1569 else
1570 niter->control.base
1571 = fold_build2 (MINUS_EXPR, base_type, niter->control.base,
1572 niter->control.step);
1573
1574 span = fold_build2 (MULT_EXPR, niter_type, niter->niter,
1575 fold_convert (niter_type, niter->control.step));
1576 niter->bound = fold_build2 (PLUS_EXPR, niter_type, span,
1577 fold_convert (niter_type, niter->control.base));
1578 niter->bound = fold_convert (type, niter->bound);
1579 niter->cmp = NE_EXPR;
1580
1581 return true;
1582}
1583
1584/* Determines number of iterations of loop whose ending condition
1585 is IV0 < IV1. TYPE is the type of the iv. The number of
1586 iterations is stored to NITER. BNDS bounds the difference
1587 IV1->base - IV0->base. EXIT_MUST_BE_TAKEN is true if we know
1588 that the exit must be taken eventually. */
1589
1590static bool
1591number_of_iterations_lt (class loop *loop, tree type, affine_iv *iv0,
1592 affine_iv *iv1, class tree_niter_desc *niter,
1593 bool exit_must_be_taken, bounds *bnds)
1594{
1595 tree niter_type = unsigned_type_for (type);
1596 tree delta, step, s;
1597 mpz_t mstep, tmp;
1598
1599 if (integer_nonzerop (iv0->step))
1600 {
1601 niter->control = *iv0;
1602 niter->cmp = LT_EXPR;
1603 niter->bound = iv1->base;
1604 }
1605 else
1606 {
1607 niter->control = *iv1;
1608 niter->cmp = GT_EXPR;
1609 niter->bound = iv0->base;
1610 }
1611
1612 /* {base, -C} < n, or n < {base, C} */
1613 if (tree_int_cst_sign_bit (iv0->step)
1614 || (!integer_zerop (iv1->step) && !tree_int_cst_sign_bit (iv1->step)))
1615 return number_of_iterations_until_wrap (loop, type, iv0, iv1, niter);
1616
1617 delta = fold_build2 (MINUS_EXPR, niter_type,
1618 fold_convert (niter_type, iv1->base),
1619 fold_convert (niter_type, iv0->base));
1620
1621 /* First handle the special case that the step is +-1. */
1622 if ((integer_onep (iv0->step) && integer_zerop (iv1->step))
1623 || (integer_all_onesp (iv1->step) && integer_zerop (iv0->step)))
1624 {
1625 /* for (i = iv0->base; i < iv1->base; i++)
1626
1627 or
1628
1629 for (i = iv1->base; i > iv0->base; i--).
1630
1631 In both cases # of iterations is iv1->base - iv0->base, assuming that
1632 iv1->base >= iv0->base.
1633
1634 First try to derive a lower bound on the value of
1635 iv1->base - iv0->base, computed in full precision. If the difference
1636 is nonnegative, we are done, otherwise we must record the
1637 condition. */
1638
1639 if (mpz_sgn (bnds->below) < 0)
1640 niter->may_be_zero = fold_build2 (LT_EXPR, boolean_type_node,
1641 iv1->base, iv0->base);
1642 niter->niter = delta;
1643 niter->max = widest_int::from (x: wi::from_mpz (niter_type, bnds->up, false),
1644 TYPE_SIGN (niter_type));
1645 niter->control.no_overflow = true;
1646 return true;
1647 }
1648
1649 if (integer_nonzerop (iv0->step))
1650 step = fold_convert (niter_type, iv0->step);
1651 else
1652 step = fold_convert (niter_type,
1653 fold_build1 (NEGATE_EXPR, type, iv1->step));
1654
1655 /* If we can determine the final value of the control iv exactly, we can
1656 transform the condition to != comparison. In particular, this will be
1657 the case if DELTA is constant. */
1658 if (number_of_iterations_lt_to_ne (type, iv0, iv1, niter, delta: &delta, step,
1659 exit_must_be_taken, bnds))
1660 {
1661 affine_iv zps;
1662
1663 zps.base = build_int_cst (niter_type, 0);
1664 zps.step = step;
1665 /* number_of_iterations_lt_to_ne will add assumptions that ensure that
1666 zps does not overflow. */
1667 zps.no_overflow = true;
1668
1669 return number_of_iterations_ne (loop, type, iv: &zps,
1670 final: delta, niter, exit_must_be_taken: true, bnds);
1671 }
1672
1673 /* Make sure that the control iv does not overflow. */
1674 if (!assert_no_overflow_lt (type, iv0, iv1, niter, step))
1675 return false;
1676
1677 /* We determine the number of iterations as (delta + step - 1) / step. For
1678 this to work, we must know that iv1->base >= iv0->base - step + 1,
1679 otherwise the loop does not roll. */
1680 assert_loop_rolls_lt (type, iv0, iv1, niter, bnds);
1681
1682 s = fold_build2 (MINUS_EXPR, niter_type,
1683 step, build_int_cst (niter_type, 1));
1684 delta = fold_build2 (PLUS_EXPR, niter_type, delta, s);
1685 niter->niter = fold_build2 (FLOOR_DIV_EXPR, niter_type, delta, step);
1686
1687 mpz_init (mstep);
1688 mpz_init (tmp);
1689 wi::to_mpz (wi::to_wide (t: step), mstep, UNSIGNED);
1690 mpz_add (tmp, bnds->up, mstep);
1691 mpz_sub_ui (tmp, tmp, 1);
1692 mpz_fdiv_q (tmp, tmp, mstep);
1693 niter->max = widest_int::from (x: wi::from_mpz (niter_type, tmp, false),
1694 TYPE_SIGN (niter_type));
1695 mpz_clear (mstep);
1696 mpz_clear (tmp);
1697
1698 return true;
1699}
1700
1701/* Determines number of iterations of loop whose ending condition
1702 is IV0 <= IV1. TYPE is the type of the iv. The number of
1703 iterations is stored to NITER. EXIT_MUST_BE_TAKEN is true if
1704 we know that this condition must eventually become false (we derived this
1705 earlier, and possibly set NITER->assumptions to make sure this
1706 is the case). BNDS bounds the difference IV1->base - IV0->base. */
1707
1708static bool
1709number_of_iterations_le (class loop *loop, tree type, affine_iv *iv0,
1710 affine_iv *iv1, class tree_niter_desc *niter,
1711 bool exit_must_be_taken, bounds *bnds)
1712{
1713 tree assumption;
1714 tree type1 = type;
1715 if (POINTER_TYPE_P (type))
1716 type1 = sizetype;
1717
1718 /* Say that IV0 is the control variable. Then IV0 <= IV1 iff
1719 IV0 < IV1 + 1, assuming that IV1 is not equal to the greatest
1720 value of the type. This we must know anyway, since if it is
1721 equal to this value, the loop rolls forever. We do not check
1722 this condition for pointer type ivs, as the code cannot rely on
1723 the object to that the pointer points being placed at the end of
1724 the address space (and more pragmatically, TYPE_{MIN,MAX}_VALUE is
1725 not defined for pointers). */
1726
1727 if (!exit_must_be_taken && !POINTER_TYPE_P (type))
1728 {
1729 if (integer_nonzerop (iv0->step))
1730 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1731 iv1->base, TYPE_MAX_VALUE (type));
1732 else
1733 assumption = fold_build2 (NE_EXPR, boolean_type_node,
1734 iv0->base, TYPE_MIN_VALUE (type));
1735
1736 if (integer_zerop (assumption))
1737 return false;
1738 if (!integer_nonzerop (assumption))
1739 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1740 niter->assumptions, assumption);
1741 }
1742
1743 if (integer_nonzerop (iv0->step))
1744 {
1745 if (POINTER_TYPE_P (type))
1746 iv1->base = fold_build_pointer_plus_hwi (iv1->base, 1);
1747 else
1748 iv1->base = fold_build2 (PLUS_EXPR, type1, iv1->base,
1749 build_int_cst (type1, 1));
1750 }
1751 else if (POINTER_TYPE_P (type))
1752 iv0->base = fold_build_pointer_plus_hwi (iv0->base, -1);
1753 else
1754 iv0->base = fold_build2 (MINUS_EXPR, type1,
1755 iv0->base, build_int_cst (type1, 1));
1756
1757 bounds_add (bnds, delta: 1, type: type1);
1758
1759 return number_of_iterations_lt (loop, type, iv0, iv1, niter, exit_must_be_taken,
1760 bnds);
1761}
1762
1763/* Dumps description of affine induction variable IV to FILE. */
1764
1765static void
1766dump_affine_iv (FILE *file, affine_iv *iv)
1767{
1768 if (!integer_zerop (iv->step))
1769 fprintf (stream: file, format: "[");
1770
1771 print_generic_expr (dump_file, iv->base, TDF_SLIM);
1772
1773 if (!integer_zerop (iv->step))
1774 {
1775 fprintf (stream: file, format: ", + , ");
1776 print_generic_expr (dump_file, iv->step, TDF_SLIM);
1777 fprintf (stream: file, format: "]%s", iv->no_overflow ? "(no_overflow)" : "");
1778 }
1779}
1780
1781/* Determine the number of iterations according to condition (for staying
1782 inside loop) which compares two induction variables using comparison
1783 operator CODE. The induction variable on left side of the comparison
1784 is IV0, the right-hand side is IV1. Both induction variables must have
1785 type TYPE, which must be an integer or pointer type. The steps of the
1786 ivs must be constants (or NULL_TREE, which is interpreted as constant zero).
1787
1788 LOOP is the loop whose number of iterations we are determining.
1789
1790 ONLY_EXIT is true if we are sure this is the only way the loop could be
1791 exited (including possibly non-returning function calls, exceptions, etc.)
1792 -- in this case we can use the information whether the control induction
1793 variables can overflow or not in a more efficient way.
1794
1795 if EVERY_ITERATION is true, we know the test is executed on every iteration.
1796
1797 The results (number of iterations and assumptions as described in
1798 comments at class tree_niter_desc in tree-ssa-loop.h) are stored to NITER.
1799 Returns false if it fails to determine number of iterations, true if it
1800 was determined (possibly with some assumptions). */
1801
1802static bool
1803number_of_iterations_cond (class loop *loop,
1804 tree type, affine_iv *iv0, enum tree_code code,
1805 affine_iv *iv1, class tree_niter_desc *niter,
1806 bool only_exit, bool every_iteration)
1807{
1808 bool exit_must_be_taken = false, ret;
1809 bounds bnds;
1810
1811 /* If the test is not executed every iteration, wrapping may make the test
1812 to pass again.
1813 TODO: the overflow case can be still used as unreliable estimate of upper
1814 bound. But we have no API to pass it down to number of iterations code
1815 and, at present, it will not use it anyway. */
1816 if (!every_iteration
1817 && (!iv0->no_overflow || !iv1->no_overflow
1818 || code == NE_EXPR || code == EQ_EXPR))
1819 return false;
1820
1821 /* The meaning of these assumptions is this:
1822 if !assumptions
1823 then the rest of information does not have to be valid
1824 if may_be_zero then the loop does not roll, even if
1825 niter != 0. */
1826 niter->assumptions = boolean_true_node;
1827 niter->may_be_zero = boolean_false_node;
1828 niter->niter = NULL_TREE;
1829 niter->max = 0;
1830 niter->bound = NULL_TREE;
1831 niter->cmp = ERROR_MARK;
1832
1833 /* Make < comparison from > ones, and for NE_EXPR comparisons, ensure that
1834 the control variable is on lhs. */
1835 if (code == GE_EXPR || code == GT_EXPR
1836 || (code == NE_EXPR && integer_zerop (iv0->step)))
1837 {
1838 std::swap (a&: iv0, b&: iv1);
1839 code = swap_tree_comparison (code);
1840 }
1841
1842 if (POINTER_TYPE_P (type))
1843 {
1844 /* Comparison of pointers is undefined unless both iv0 and iv1 point
1845 to the same object. If they do, the control variable cannot wrap
1846 (as wrap around the bounds of memory will never return a pointer
1847 that would be guaranteed to point to the same object, even if we
1848 avoid undefined behavior by casting to size_t and back). */
1849 iv0->no_overflow = true;
1850 iv1->no_overflow = true;
1851 }
1852
1853 /* If the control induction variable does not overflow and the only exit
1854 from the loop is the one that we analyze, we know it must be taken
1855 eventually. */
1856 if (only_exit)
1857 {
1858 if (!integer_zerop (iv0->step) && iv0->no_overflow)
1859 exit_must_be_taken = true;
1860 else if (!integer_zerop (iv1->step) && iv1->no_overflow)
1861 exit_must_be_taken = true;
1862 }
1863
1864 /* We can handle cases which neither of the sides of the comparison is
1865 invariant:
1866
1867 {iv0.base, iv0.step} cmp_code {iv1.base, iv1.step}
1868 as if:
1869 {iv0.base, iv0.step - iv1.step} cmp_code {iv1.base, 0}
1870
1871 provided that either below condition is satisfied:
1872
1873 a) the test is NE_EXPR;
1874 b) iv0 and iv1 do not overflow and iv0.step - iv1.step is of
1875 the same sign and of less or equal magnitude than iv0.step
1876
1877 This rarely occurs in practice, but it is simple enough to manage. */
1878 if (!integer_zerop (iv0->step) && !integer_zerop (iv1->step))
1879 {
1880 tree step_type = POINTER_TYPE_P (type) ? sizetype : type;
1881 tree step = fold_binary_to_constant (MINUS_EXPR, step_type,
1882 iv0->step, iv1->step);
1883
1884 /* For code other than NE_EXPR we have to ensure moving the evolution
1885 of IV1 to that of IV0 does not introduce overflow. */
1886 if (TREE_CODE (step) != INTEGER_CST
1887 || !iv0->no_overflow || !iv1->no_overflow)
1888 {
1889 if (code != NE_EXPR)
1890 return false;
1891 iv0->no_overflow = false;
1892 }
1893 /* If the new step of IV0 has changed sign or is of greater
1894 magnitude then we do not know whether IV0 does overflow
1895 and thus the transform is not valid for code other than NE_EXPR. */
1896 else if (tree_int_cst_sign_bit (step) != tree_int_cst_sign_bit (iv0->step)
1897 || wi::gtu_p (x: wi::abs (x: wi::to_widest (t: step)),
1898 y: wi::abs (x: wi::to_widest (t: iv0->step))))
1899 {
1900 if (POINTER_TYPE_P (type) && code != NE_EXPR)
1901 /* For relational pointer compares we have further guarantees
1902 that the pointers always point to the same object (or one
1903 after it) and that objects do not cross the zero page. So
1904 not only is the transform always valid for relational
1905 pointer compares, we also know the resulting IV does not
1906 overflow. */
1907 ;
1908 else if (code != NE_EXPR)
1909 return false;
1910 else
1911 iv0->no_overflow = false;
1912 }
1913
1914 iv0->step = step;
1915 iv1->step = build_int_cst (step_type, 0);
1916 iv1->no_overflow = true;
1917 }
1918
1919 /* If the result of the comparison is a constant, the loop is weird. More
1920 precise handling would be possible, but the situation is not common enough
1921 to waste time on it. */
1922 if (integer_zerop (iv0->step) && integer_zerop (iv1->step))
1923 return false;
1924
1925 /* If the loop exits immediately, there is nothing to do. */
1926 tree tem = fold_binary (code, boolean_type_node, iv0->base, iv1->base);
1927 if (tem && integer_zerop (tem))
1928 {
1929 if (!every_iteration)
1930 return false;
1931 niter->niter = build_int_cst (unsigned_type_for (type), 0);
1932 niter->max = 0;
1933 return true;
1934 }
1935
1936 /* OK, now we know we have a senseful loop. Handle several cases, depending
1937 on what comparison operator is used. */
1938 bound_difference (loop, x: iv1->base, y: iv0->base, bnds: &bnds);
1939
1940 if (dump_file && (dump_flags & TDF_DETAILS))
1941 {
1942 fprintf (stream: dump_file,
1943 format: "Analyzing # of iterations of loop %d\n", loop->num);
1944
1945 fprintf (stream: dump_file, format: " exit condition ");
1946 dump_affine_iv (file: dump_file, iv: iv0);
1947 fprintf (stream: dump_file, format: " %s ",
1948 code == NE_EXPR ? "!="
1949 : code == LT_EXPR ? "<"
1950 : "<=");
1951 dump_affine_iv (file: dump_file, iv: iv1);
1952 fprintf (stream: dump_file, format: "\n");
1953
1954 fprintf (stream: dump_file, format: " bounds on difference of bases: ");
1955 mpz_out_str (dump_file, 10, bnds.below);
1956 fprintf (stream: dump_file, format: " ... ");
1957 mpz_out_str (dump_file, 10, bnds.up);
1958 fprintf (stream: dump_file, format: "\n");
1959 }
1960
1961 switch (code)
1962 {
1963 case NE_EXPR:
1964 gcc_assert (integer_zerop (iv1->step));
1965 ret = number_of_iterations_ne (loop, type, iv: iv0, final: iv1->base, niter,
1966 exit_must_be_taken, bnds: &bnds);
1967 break;
1968
1969 case LT_EXPR:
1970 ret = number_of_iterations_lt (loop, type, iv0, iv1, niter,
1971 exit_must_be_taken, bnds: &bnds);
1972 break;
1973
1974 case LE_EXPR:
1975 ret = number_of_iterations_le (loop, type, iv0, iv1, niter,
1976 exit_must_be_taken, bnds: &bnds);
1977 break;
1978
1979 default:
1980 gcc_unreachable ();
1981 }
1982
1983 mpz_clear (bnds.up);
1984 mpz_clear (bnds.below);
1985
1986 if (dump_file && (dump_flags & TDF_DETAILS))
1987 {
1988 if (ret)
1989 {
1990 fprintf (stream: dump_file, format: " result:\n");
1991 if (!integer_nonzerop (niter->assumptions))
1992 {
1993 fprintf (stream: dump_file, format: " under assumptions ");
1994 print_generic_expr (dump_file, niter->assumptions, TDF_SLIM);
1995 fprintf (stream: dump_file, format: "\n");
1996 }
1997
1998 if (!integer_zerop (niter->may_be_zero))
1999 {
2000 fprintf (stream: dump_file, format: " zero if ");
2001 print_generic_expr (dump_file, niter->may_be_zero, TDF_SLIM);
2002 fprintf (stream: dump_file, format: "\n");
2003 }
2004
2005 fprintf (stream: dump_file, format: " # of iterations ");
2006 print_generic_expr (dump_file, niter->niter, TDF_SLIM);
2007 fprintf (stream: dump_file, format: ", bounded by ");
2008 print_decu (wi: niter->max, file: dump_file);
2009 fprintf (stream: dump_file, format: "\n");
2010 }
2011 else
2012 fprintf (stream: dump_file, format: " failed\n\n");
2013 }
2014 return ret;
2015}
2016
2017/* Return an expression that computes the popcount of src. */
2018
2019static tree
2020build_popcount_expr (tree src)
2021{
2022 tree fn;
2023 bool use_ifn = false;
2024 int prec = TYPE_PRECISION (TREE_TYPE (src));
2025 int i_prec = TYPE_PRECISION (integer_type_node);
2026 int li_prec = TYPE_PRECISION (long_integer_type_node);
2027 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2028
2029 tree utype = unsigned_type_for (TREE_TYPE (src));
2030 src = fold_convert (utype, src);
2031
2032 if (direct_internal_fn_supported_p (IFN_POPCOUNT, utype, OPTIMIZE_FOR_BOTH))
2033 use_ifn = true;
2034 else if (prec <= i_prec)
2035 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNT);
2036 else if (prec == li_prec)
2037 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNTL);
2038 else if (prec == lli_prec || prec == 2 * lli_prec)
2039 fn = builtin_decl_implicit (fncode: BUILT_IN_POPCOUNTLL);
2040 else
2041 return NULL_TREE;
2042
2043 tree call;
2044 if (use_ifn)
2045 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, IFN_POPCOUNT,
2046 integer_type_node, 1, src);
2047 else if (prec == 2 * lli_prec)
2048 {
2049 tree src1 = fold_convert (long_long_unsigned_type_node,
2050 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2051 unshare_expr (src),
2052 build_int_cst (integer_type_node,
2053 lli_prec)));
2054 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2055 tree call1 = build_call_expr (fn, 1, src1);
2056 tree call2 = build_call_expr (fn, 1, src2);
2057 call = fold_build2 (PLUS_EXPR, integer_type_node, call1, call2);
2058 }
2059 else
2060 {
2061 if (prec < i_prec)
2062 src = fold_convert (unsigned_type_node, src);
2063
2064 call = build_call_expr (fn, 1, src);
2065 }
2066
2067 return call;
2068}
2069
2070/* Utility function to check if OP is defined by a stmt
2071 that is a val - 1. */
2072
2073static bool
2074ssa_defined_by_minus_one_stmt_p (tree op, tree val)
2075{
2076 gimple *stmt;
2077 return (TREE_CODE (op) == SSA_NAME
2078 && (stmt = SSA_NAME_DEF_STMT (op))
2079 && is_gimple_assign (gs: stmt)
2080 && (gimple_assign_rhs_code (gs: stmt) == PLUS_EXPR)
2081 && val == gimple_assign_rhs1 (gs: stmt)
2082 && integer_minus_onep (gimple_assign_rhs2 (gs: stmt)));
2083}
2084
2085/* See comment below for number_of_iterations_bitcount.
2086 For popcount, we have:
2087
2088 modify:
2089 _1 = iv_1 + -1
2090 iv_2 = iv_1 & _1
2091
2092 test:
2093 if (iv != 0)
2094
2095 modification count:
2096 popcount (src)
2097
2098 */
2099
2100static bool
2101number_of_iterations_popcount (loop_p loop, edge exit,
2102 enum tree_code code,
2103 class tree_niter_desc *niter)
2104{
2105 bool modify_before_test = true;
2106 HOST_WIDE_INT max;
2107
2108 /* Check that condition for staying inside the loop is like
2109 if (iv != 0). */
2110 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2111 if (!cond_stmt
2112 || code != NE_EXPR
2113 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2114 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2115 return false;
2116
2117 tree iv_2 = gimple_cond_lhs (gs: cond_stmt);
2118 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2119
2120 /* If the test comes before the iv modification, then these will actually be
2121 iv_1 and a phi node. */
2122 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2123 && gimple_bb (g: iv_2_stmt) == loop->header
2124 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2125 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2126 loop_latch_edge (loop)->dest_idx))
2127 == SSA_NAME))
2128 {
2129 /* iv_2 is actually one of the inputs to the phi. */
2130 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2131 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2132 modify_before_test = false;
2133 }
2134
2135 /* Make sure iv_2_stmt is an and stmt (iv_2 = _1 & iv_1). */
2136 if (!is_gimple_assign (gs: iv_2_stmt)
2137 || gimple_assign_rhs_code (gs: iv_2_stmt) != BIT_AND_EXPR)
2138 return false;
2139
2140 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2141 tree _1 = gimple_assign_rhs2 (gs: iv_2_stmt);
2142
2143 /* Check that _1 is defined by (_1 = iv_1 + -1).
2144 Also make sure that _1 is the same in and_stmt and _1 defining stmt.
2145 Also canonicalize if _1 and _b11 are revrsed. */
2146 if (ssa_defined_by_minus_one_stmt_p (op: iv_1, val: _1))
2147 std::swap (a&: iv_1, b&: _1);
2148 else if (ssa_defined_by_minus_one_stmt_p (op: _1, val: iv_1))
2149 ;
2150 else
2151 return false;
2152
2153 /* Check the recurrence. */
2154 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2155 if (gimple_code (g: phi) != GIMPLE_PHI
2156 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2157 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2158 return false;
2159
2160 /* We found a match. */
2161 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2162 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2163
2164 /* Get the corresponding popcount builtin. */
2165 tree expr = build_popcount_expr (src);
2166
2167 if (!expr)
2168 return false;
2169
2170 max = src_precision;
2171
2172 tree may_be_zero = boolean_false_node;
2173
2174 if (modify_before_test)
2175 {
2176 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2177 integer_one_node);
2178 max = max - 1;
2179 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2180 build_zero_cst (TREE_TYPE (src)));
2181 }
2182
2183 expr = fold_convert (unsigned_type_node, expr);
2184
2185 niter->assumptions = boolean_true_node;
2186 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2187 niter->niter = simplify_using_initial_conditions(loop, expr);
2188
2189 if (TREE_CODE (niter->niter) == INTEGER_CST)
2190 niter->max = tree_to_uhwi (niter->niter);
2191 else
2192 niter->max = max;
2193
2194 niter->bound = NULL_TREE;
2195 niter->cmp = ERROR_MARK;
2196 return true;
2197}
2198
2199/* Return an expression that counts the leading/trailing zeroes of src.
2200
2201 If define_at_zero is true, then the built expression will be defined to
2202 return the precision of src when src == 0 (using either a conditional
2203 expression or a suitable internal function).
2204 Otherwise, we can elide the conditional expression and let src = 0 invoke
2205 undefined behaviour. */
2206
2207static tree
2208build_cltz_expr (tree src, bool leading, bool define_at_zero)
2209{
2210 tree fn;
2211 internal_fn ifn = leading ? IFN_CLZ : IFN_CTZ;
2212 bool use_ifn = false;
2213 int prec = TYPE_PRECISION (TREE_TYPE (src));
2214 int i_prec = TYPE_PRECISION (integer_type_node);
2215 int li_prec = TYPE_PRECISION (long_integer_type_node);
2216 int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
2217
2218 tree utype = unsigned_type_for (TREE_TYPE (src));
2219 src = fold_convert (utype, src);
2220
2221 if (direct_internal_fn_supported_p (ifn, utype, OPTIMIZE_FOR_BOTH))
2222 use_ifn = true;
2223 else if (prec <= i_prec)
2224 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZ)
2225 : builtin_decl_implicit (fncode: BUILT_IN_CTZ);
2226 else if (prec == li_prec)
2227 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZL)
2228 : builtin_decl_implicit (fncode: BUILT_IN_CTZL);
2229 else if (prec == lli_prec || prec == 2 * lli_prec)
2230 fn = leading ? builtin_decl_implicit (fncode: BUILT_IN_CLZLL)
2231 : builtin_decl_implicit (fncode: BUILT_IN_CTZLL);
2232 else
2233 return NULL_TREE;
2234
2235 tree call;
2236 if (use_ifn)
2237 {
2238 int val;
2239 int optab_defined_at_zero
2240 = (leading
2241 ? CLZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val)
2242 : CTZ_DEFINED_VALUE_AT_ZERO (SCALAR_INT_TYPE_MODE (utype), val));
2243 tree arg2 = NULL_TREE;
2244 if (define_at_zero && optab_defined_at_zero == 2 && val == prec)
2245 arg2 = build_int_cst (integer_type_node, val);
2246 call = build_call_expr_internal_loc (UNKNOWN_LOCATION, ifn,
2247 integer_type_node, arg2 ? 2 : 1,
2248 src, arg2);
2249 if (define_at_zero && arg2 == NULL_TREE)
2250 {
2251 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2252 build_zero_cst (TREE_TYPE (src)));
2253 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2254 build_int_cst (integer_type_node, prec));
2255 }
2256 }
2257 else if (prec == 2 * lli_prec)
2258 {
2259 tree src1 = fold_convert (long_long_unsigned_type_node,
2260 fold_build2 (RSHIFT_EXPR, TREE_TYPE (src),
2261 unshare_expr (src),
2262 build_int_cst (integer_type_node,
2263 lli_prec)));
2264 tree src2 = fold_convert (long_long_unsigned_type_node, src);
2265 /* We count the zeroes in src1, and add the number in src2 when src1
2266 is 0. */
2267 if (!leading)
2268 std::swap (a&: src1, b&: src2);
2269 tree call1 = build_call_expr (fn, 1, src1);
2270 tree call2 = build_call_expr (fn, 1, src2);
2271 if (define_at_zero)
2272 {
2273 tree is_zero2 = fold_build2 (NE_EXPR, boolean_type_node, src2,
2274 build_zero_cst (TREE_TYPE (src2)));
2275 call2 = fold_build3 (COND_EXPR, integer_type_node, is_zero2, call2,
2276 build_int_cst (integer_type_node, lli_prec));
2277 }
2278 tree is_zero1 = fold_build2 (NE_EXPR, boolean_type_node, src1,
2279 build_zero_cst (TREE_TYPE (src1)));
2280 call = fold_build3 (COND_EXPR, integer_type_node, is_zero1, call1,
2281 fold_build2 (PLUS_EXPR, integer_type_node, call2,
2282 build_int_cst (integer_type_node,
2283 lli_prec)));
2284 }
2285 else
2286 {
2287 if (prec < i_prec)
2288 src = fold_convert (unsigned_type_node, src);
2289
2290 call = build_call_expr (fn, 1, src);
2291 if (leading && prec < i_prec)
2292 call = fold_build2 (MINUS_EXPR, integer_type_node, call,
2293 build_int_cst (integer_type_node, i_prec - prec));
2294 if (define_at_zero)
2295 {
2296 tree is_zero = fold_build2 (NE_EXPR, boolean_type_node, src,
2297 build_zero_cst (TREE_TYPE (src)));
2298 call = fold_build3 (COND_EXPR, integer_type_node, is_zero, call,
2299 build_int_cst (integer_type_node, prec));
2300 }
2301 }
2302
2303 return call;
2304}
2305
2306/* See comment below for number_of_iterations_bitcount.
2307 For c[lt]z, we have:
2308
2309 modify:
2310 iv_2 = iv_1 << 1 OR iv_1 >> 1
2311
2312 test:
2313 if (iv & 1 << (prec-1)) OR (iv & 1)
2314
2315 modification count:
2316 src precision - c[lt]z (src)
2317
2318 */
2319
2320static bool
2321number_of_iterations_cltz (loop_p loop, edge exit,
2322 enum tree_code code,
2323 class tree_niter_desc *niter)
2324{
2325 bool modify_before_test = true;
2326 HOST_WIDE_INT max;
2327 int checked_bit;
2328 tree iv_2;
2329
2330 /* Check that condition for staying inside the loop is like
2331 if (iv == 0). */
2332 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2333 if (!cond_stmt
2334 || (code != EQ_EXPR && code != GE_EXPR)
2335 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2336 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2337 return false;
2338
2339 if (code == EQ_EXPR)
2340 {
2341 /* Make sure we check a bitwise and with a suitable constant */
2342 gimple *and_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond_stmt));
2343 if (!is_gimple_assign (gs: and_stmt)
2344 || gimple_assign_rhs_code (gs: and_stmt) != BIT_AND_EXPR
2345 || !integer_pow2p (gimple_assign_rhs2 (gs: and_stmt))
2346 || TREE_CODE (gimple_assign_rhs1 (and_stmt)) != SSA_NAME)
2347 return false;
2348
2349 checked_bit = tree_log2 (gimple_assign_rhs2 (gs: and_stmt));
2350
2351 iv_2 = gimple_assign_rhs1 (gs: and_stmt);
2352 }
2353 else
2354 {
2355 /* We have a GE_EXPR - a signed comparison with zero is equivalent to
2356 testing the leading bit, so check for this pattern too. */
2357
2358 iv_2 = gimple_cond_lhs (gs: cond_stmt);
2359 tree test_value_type = TREE_TYPE (iv_2);
2360
2361 if (TYPE_UNSIGNED (test_value_type))
2362 return false;
2363
2364 gimple *test_value_stmt = SSA_NAME_DEF_STMT (iv_2);
2365
2366 if (is_gimple_assign (gs: test_value_stmt)
2367 && gimple_assign_rhs_code (gs: test_value_stmt) == NOP_EXPR)
2368 {
2369 /* If the test value comes from a NOP_EXPR, then we need to unwrap
2370 this. We conservatively require that both types have the same
2371 precision. */
2372 iv_2 = gimple_assign_rhs1 (gs: test_value_stmt);
2373 tree rhs_type = TREE_TYPE (iv_2);
2374 if (TREE_CODE (iv_2) != SSA_NAME
2375 || TREE_CODE (rhs_type) != INTEGER_TYPE
2376 || (TYPE_PRECISION (rhs_type)
2377 != TYPE_PRECISION (test_value_type)))
2378 return false;
2379 }
2380
2381 checked_bit = TYPE_PRECISION (test_value_type) - 1;
2382 }
2383
2384 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2385
2386 /* If the test comes before the iv modification, then these will actually be
2387 iv_1 and a phi node. */
2388 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2389 && gimple_bb (g: iv_2_stmt) == loop->header
2390 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2391 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2392 loop_latch_edge (loop)->dest_idx))
2393 == SSA_NAME))
2394 {
2395 /* iv_2 is actually one of the inputs to the phi. */
2396 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2397 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2398 modify_before_test = false;
2399 }
2400
2401 /* Make sure iv_2_stmt is a logical shift by one stmt:
2402 iv_2 = iv_1 {<<|>>} 1 */
2403 if (!is_gimple_assign (gs: iv_2_stmt)
2404 || (gimple_assign_rhs_code (gs: iv_2_stmt) != LSHIFT_EXPR
2405 && (gimple_assign_rhs_code (gs: iv_2_stmt) != RSHIFT_EXPR
2406 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2407 || !integer_onep (gimple_assign_rhs2 (gs: iv_2_stmt)))
2408 return false;
2409
2410 bool left_shift = (gimple_assign_rhs_code (gs: iv_2_stmt) == LSHIFT_EXPR);
2411
2412 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2413
2414 /* Check the recurrence. */
2415 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2416 if (gimple_code (g: phi) != GIMPLE_PHI
2417 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2418 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2419 return false;
2420
2421 /* We found a match. */
2422 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2423 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2424
2425 /* Apply any needed preprocessing to src. */
2426 int num_ignored_bits;
2427 if (left_shift)
2428 num_ignored_bits = src_precision - checked_bit - 1;
2429 else
2430 num_ignored_bits = checked_bit;
2431
2432 if (modify_before_test)
2433 num_ignored_bits++;
2434
2435 if (num_ignored_bits != 0)
2436 src = fold_build2 (left_shift ? LSHIFT_EXPR : RSHIFT_EXPR,
2437 TREE_TYPE (src), src,
2438 build_int_cst (integer_type_node, num_ignored_bits));
2439
2440 /* Get the corresponding c[lt]z builtin. */
2441 tree expr = build_cltz_expr (src, leading: left_shift, define_at_zero: false);
2442
2443 if (!expr)
2444 return false;
2445
2446 max = src_precision - num_ignored_bits - 1;
2447
2448 expr = fold_convert (unsigned_type_node, expr);
2449
2450 tree assumptions = fold_build2 (NE_EXPR, boolean_type_node, src,
2451 build_zero_cst (TREE_TYPE (src)));
2452
2453 niter->assumptions = simplify_using_initial_conditions (loop, assumptions);
2454 niter->may_be_zero = boolean_false_node;
2455 niter->niter = simplify_using_initial_conditions (loop, expr);
2456
2457 if (TREE_CODE (niter->niter) == INTEGER_CST)
2458 niter->max = tree_to_uhwi (niter->niter);
2459 else
2460 niter->max = max;
2461
2462 niter->bound = NULL_TREE;
2463 niter->cmp = ERROR_MARK;
2464
2465 return true;
2466}
2467
2468/* See comment below for number_of_iterations_bitcount.
2469 For c[lt]z complement, we have:
2470
2471 modify:
2472 iv_2 = iv_1 >> 1 OR iv_1 << 1
2473
2474 test:
2475 if (iv != 0)
2476
2477 modification count:
2478 src precision - c[lt]z (src)
2479
2480 */
2481
2482static bool
2483number_of_iterations_cltz_complement (loop_p loop, edge exit,
2484 enum tree_code code,
2485 class tree_niter_desc *niter)
2486{
2487 bool modify_before_test = true;
2488 HOST_WIDE_INT max;
2489
2490 /* Check that condition for staying inside the loop is like
2491 if (iv != 0). */
2492 gcond *cond_stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
2493 if (!cond_stmt
2494 || code != NE_EXPR
2495 || !integer_zerop (gimple_cond_rhs (gs: cond_stmt))
2496 || TREE_CODE (gimple_cond_lhs (cond_stmt)) != SSA_NAME)
2497 return false;
2498
2499 tree iv_2 = gimple_cond_lhs (gs: cond_stmt);
2500 gimple *iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2501
2502 /* If the test comes before the iv modification, then these will actually be
2503 iv_1 and a phi node. */
2504 if (gimple_code (g: iv_2_stmt) == GIMPLE_PHI
2505 && gimple_bb (g: iv_2_stmt) == loop->header
2506 && gimple_phi_num_args (gs: iv_2_stmt) == 2
2507 && (TREE_CODE (gimple_phi_arg_def (iv_2_stmt,
2508 loop_latch_edge (loop)->dest_idx))
2509 == SSA_NAME))
2510 {
2511 /* iv_2 is actually one of the inputs to the phi. */
2512 iv_2 = gimple_phi_arg_def (gs: iv_2_stmt, index: loop_latch_edge (loop)->dest_idx);
2513 iv_2_stmt = SSA_NAME_DEF_STMT (iv_2);
2514 modify_before_test = false;
2515 }
2516
2517 /* Make sure iv_2_stmt is a logical shift by one stmt:
2518 iv_2 = iv_1 {>>|<<} 1 */
2519 if (!is_gimple_assign (gs: iv_2_stmt)
2520 || (gimple_assign_rhs_code (gs: iv_2_stmt) != LSHIFT_EXPR
2521 && (gimple_assign_rhs_code (gs: iv_2_stmt) != RSHIFT_EXPR
2522 || !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_lhs (iv_2_stmt)))))
2523 || !integer_onep (gimple_assign_rhs2 (gs: iv_2_stmt)))
2524 return false;
2525
2526 bool left_shift = (gimple_assign_rhs_code (gs: iv_2_stmt) == LSHIFT_EXPR);
2527
2528 tree iv_1 = gimple_assign_rhs1 (gs: iv_2_stmt);
2529
2530 /* Check the recurrence. */
2531 gimple *phi = SSA_NAME_DEF_STMT (iv_1);
2532 if (gimple_code (g: phi) != GIMPLE_PHI
2533 || (gimple_bb (g: phi) != loop_latch_edge (loop)->dest)
2534 || (iv_2 != gimple_phi_arg_def (gs: phi, index: loop_latch_edge (loop)->dest_idx)))
2535 return false;
2536
2537 /* We found a match. */
2538 tree src = gimple_phi_arg_def (gs: phi, index: loop_preheader_edge (loop)->dest_idx);
2539 int src_precision = TYPE_PRECISION (TREE_TYPE (src));
2540
2541 /* Get the corresponding c[lt]z builtin. */
2542 tree expr = build_cltz_expr (src, leading: !left_shift, define_at_zero: true);
2543
2544 if (!expr)
2545 return false;
2546
2547 expr = fold_build2 (MINUS_EXPR, integer_type_node,
2548 build_int_cst (integer_type_node, src_precision),
2549 expr);
2550
2551 max = src_precision;
2552
2553 tree may_be_zero = boolean_false_node;
2554
2555 if (modify_before_test)
2556 {
2557 expr = fold_build2 (MINUS_EXPR, integer_type_node, expr,
2558 integer_one_node);
2559 max = max - 1;
2560 may_be_zero = fold_build2 (EQ_EXPR, boolean_type_node, src,
2561 build_zero_cst (TREE_TYPE (src)));
2562 }
2563
2564 expr = fold_convert (unsigned_type_node, expr);
2565
2566 niter->assumptions = boolean_true_node;
2567 niter->may_be_zero = simplify_using_initial_conditions (loop, may_be_zero);
2568 niter->niter = simplify_using_initial_conditions (loop, expr);
2569
2570 if (TREE_CODE (niter->niter) == INTEGER_CST)
2571 niter->max = tree_to_uhwi (niter->niter);
2572 else
2573 niter->max = max;
2574
2575 niter->bound = NULL_TREE;
2576 niter->cmp = ERROR_MARK;
2577 return true;
2578}
2579
2580/* See if LOOP contains a bit counting idiom. The idiom consists of two parts:
2581 1. A modification to the induction variabler;.
2582 2. A test to determine whether or not to exit the loop.
2583
2584 These can come in either order - i.e.:
2585
2586 <bb 3>
2587 iv_1 = PHI <src(2), iv_2(4)>
2588 if (test (iv_1))
2589 goto <bb 4>
2590 else
2591 goto <bb 5>
2592
2593 <bb 4>
2594 iv_2 = modify (iv_1)
2595 goto <bb 3>
2596
2597 OR
2598
2599 <bb 3>
2600 iv_1 = PHI <src(2), iv_2(4)>
2601 iv_2 = modify (iv_1)
2602
2603 <bb 4>
2604 if (test (iv_2))
2605 goto <bb 3>
2606 else
2607 goto <bb 5>
2608
2609 The second form can be generated by copying the loop header out of the loop.
2610
2611 In the first case, the number of latch executions will be equal to the
2612 number of induction variable modifications required before the test fails.
2613
2614 In the second case (modify_before_test), if we assume that the number of
2615 modifications required before the test fails is nonzero, then the number of
2616 latch executions will be one less than this number.
2617
2618 If we recognise the pattern, then we update niter accordingly, and return
2619 true. */
2620
2621static bool
2622number_of_iterations_bitcount (loop_p loop, edge exit,
2623 enum tree_code code,
2624 class tree_niter_desc *niter)
2625{
2626 return (number_of_iterations_popcount (loop, exit, code, niter)
2627 || number_of_iterations_cltz (loop, exit, code, niter)
2628 || number_of_iterations_cltz_complement (loop, exit, code, niter));
2629}
2630
2631/* Substitute NEW_TREE for OLD in EXPR and fold the result.
2632 If VALUEIZE is non-NULL then OLD and NEW_TREE are ignored and instead
2633 all SSA names are replaced with the result of calling the VALUEIZE
2634 function with the SSA name as argument. */
2635
2636tree
2637simplify_replace_tree (tree expr, tree old, tree new_tree,
2638 tree (*valueize) (tree, void*), void *context,
2639 bool do_fold)
2640{
2641 unsigned i, n;
2642 tree ret = NULL_TREE, e, se;
2643
2644 if (!expr)
2645 return NULL_TREE;
2646
2647 /* Do not bother to replace constants. */
2648 if (CONSTANT_CLASS_P (expr))
2649 return expr;
2650
2651 if (valueize)
2652 {
2653 if (TREE_CODE (expr) == SSA_NAME)
2654 {
2655 new_tree = valueize (expr, context);
2656 if (new_tree != expr)
2657 return new_tree;
2658 }
2659 }
2660 else if (expr == old
2661 || operand_equal_p (expr, old, flags: 0))
2662 return unshare_expr (new_tree);
2663
2664 if (!EXPR_P (expr))
2665 return expr;
2666
2667 n = TREE_OPERAND_LENGTH (expr);
2668 for (i = 0; i < n; i++)
2669 {
2670 e = TREE_OPERAND (expr, i);
2671 se = simplify_replace_tree (expr: e, old, new_tree, valueize, context, do_fold);
2672 if (e == se)
2673 continue;
2674
2675 if (!ret)
2676 ret = copy_node (expr);
2677
2678 TREE_OPERAND (ret, i) = se;
2679 }
2680
2681 return (ret ? (do_fold ? fold (ret) : ret) : expr);
2682}
2683
2684/* Expand definitions of ssa names in EXPR as long as they are simple
2685 enough, and return the new expression. If STOP is specified, stop
2686 expanding if EXPR equals to it. */
2687
2688static tree
2689expand_simple_operations (tree expr, tree stop, hash_map<tree, tree> &cache)
2690{
2691 unsigned i, n;
2692 tree ret = NULL_TREE, e, ee, e1;
2693 enum tree_code code;
2694 gimple *stmt;
2695
2696 if (expr == NULL_TREE)
2697 return expr;
2698
2699 if (is_gimple_min_invariant (expr))
2700 return expr;
2701
2702 code = TREE_CODE (expr);
2703 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
2704 {
2705 n = TREE_OPERAND_LENGTH (expr);
2706 for (i = 0; i < n; i++)
2707 {
2708 e = TREE_OPERAND (expr, i);
2709 if (!e)
2710 continue;
2711 /* SCEV analysis feeds us with a proper expression
2712 graph matching the SSA graph. Avoid turning it
2713 into a tree here, thus handle tree sharing
2714 properly.
2715 ??? The SSA walk below still turns the SSA graph
2716 into a tree but until we find a testcase do not
2717 introduce additional tree sharing here. */
2718 bool existed_p;
2719 tree &cee = cache.get_or_insert (k: e, existed: &existed_p);
2720 if (existed_p)
2721 ee = cee;
2722 else
2723 {
2724 cee = e;
2725 ee = expand_simple_operations (expr: e, stop, cache);
2726 if (ee != e)
2727 *cache.get (k: e) = ee;
2728 }
2729 if (e == ee)
2730 continue;
2731
2732 if (!ret)
2733 ret = copy_node (expr);
2734
2735 TREE_OPERAND (ret, i) = ee;
2736 }
2737
2738 if (!ret)
2739 return expr;
2740
2741 fold_defer_overflow_warnings ();
2742 ret = fold (ret);
2743 fold_undefer_and_ignore_overflow_warnings ();
2744 return ret;
2745 }
2746
2747 /* Stop if it's not ssa name or the one we don't want to expand. */
2748 if (TREE_CODE (expr) != SSA_NAME || expr == stop)
2749 return expr;
2750
2751 stmt = SSA_NAME_DEF_STMT (expr);
2752 if (gimple_code (g: stmt) == GIMPLE_PHI)
2753 {
2754 basic_block src, dest;
2755
2756 if (gimple_phi_num_args (gs: stmt) != 1)
2757 return expr;
2758 e = PHI_ARG_DEF (stmt, 0);
2759
2760 /* Avoid propagating through loop exit phi nodes, which
2761 could break loop-closed SSA form restrictions. */
2762 dest = gimple_bb (g: stmt);
2763 src = single_pred (bb: dest);
2764 if (TREE_CODE (e) == SSA_NAME
2765 && src->loop_father != dest->loop_father)
2766 return expr;
2767
2768 return expand_simple_operations (expr: e, stop, cache);
2769 }
2770 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
2771 return expr;
2772
2773 /* Avoid expanding to expressions that contain SSA names that need
2774 to take part in abnormal coalescing. */
2775 ssa_op_iter iter;
2776 FOR_EACH_SSA_TREE_OPERAND (e, stmt, iter, SSA_OP_USE)
2777 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (e))
2778 return expr;
2779
2780 e = gimple_assign_rhs1 (gs: stmt);
2781 code = gimple_assign_rhs_code (gs: stmt);
2782 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2783 {
2784 if (is_gimple_min_invariant (e))
2785 return e;
2786
2787 if (code == SSA_NAME)
2788 return expand_simple_operations (expr: e, stop, cache);
2789 else if (code == ADDR_EXPR)
2790 {
2791 poly_int64 offset;
2792 tree base = get_addr_base_and_unit_offset (TREE_OPERAND (e, 0),
2793 &offset);
2794 if (base
2795 && TREE_CODE (base) == MEM_REF)
2796 {
2797 ee = expand_simple_operations (TREE_OPERAND (base, 0), stop,
2798 cache);
2799 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (expr), ee,
2800 wide_int_to_tree (sizetype,
2801 mem_ref_offset (base)
2802 + offset));
2803 }
2804 }
2805
2806 return expr;
2807 }
2808
2809 switch (code)
2810 {
2811 CASE_CONVERT:
2812 /* Casts are simple. */
2813 ee = expand_simple_operations (expr: e, stop, cache);
2814 return fold_build1 (code, TREE_TYPE (expr), ee);
2815
2816 case PLUS_EXPR:
2817 case MINUS_EXPR:
2818 case MULT_EXPR:
2819 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (expr))
2820 && TYPE_OVERFLOW_TRAPS (TREE_TYPE (expr)))
2821 return expr;
2822 /* Fallthru. */
2823 case POINTER_PLUS_EXPR:
2824 /* And increments and decrements by a constant are simple. */
2825 e1 = gimple_assign_rhs2 (gs: stmt);
2826 if (!is_gimple_min_invariant (e1))
2827 return expr;
2828
2829 ee = expand_simple_operations (expr: e, stop, cache);
2830 return fold_build2 (code, TREE_TYPE (expr), ee, e1);
2831
2832 default:
2833 return expr;
2834 }
2835}
2836
2837tree
2838expand_simple_operations (tree expr, tree stop)
2839{
2840 hash_map<tree, tree> cache;
2841 return expand_simple_operations (expr, stop, cache);
2842}
2843
2844/* Tries to simplify EXPR using the condition COND. Returns the simplified
2845 expression (or EXPR unchanged, if no simplification was possible). */
2846
2847static tree
2848tree_simplify_using_condition_1 (tree cond, tree expr)
2849{
2850 bool changed;
2851 tree e, e0, e1, e2, notcond;
2852 enum tree_code code = TREE_CODE (expr);
2853
2854 if (code == INTEGER_CST)
2855 return expr;
2856
2857 if (code == TRUTH_OR_EXPR
2858 || code == TRUTH_AND_EXPR
2859 || code == COND_EXPR)
2860 {
2861 changed = false;
2862
2863 e0 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 0));
2864 if (TREE_OPERAND (expr, 0) != e0)
2865 changed = true;
2866
2867 e1 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 1));
2868 if (TREE_OPERAND (expr, 1) != e1)
2869 changed = true;
2870
2871 if (code == COND_EXPR)
2872 {
2873 e2 = tree_simplify_using_condition_1 (cond, TREE_OPERAND (expr, 2));
2874 if (TREE_OPERAND (expr, 2) != e2)
2875 changed = true;
2876 }
2877 else
2878 e2 = NULL_TREE;
2879
2880 if (changed)
2881 {
2882 if (code == COND_EXPR)
2883 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
2884 else
2885 expr = fold_build2 (code, boolean_type_node, e0, e1);
2886 }
2887
2888 return expr;
2889 }
2890
2891 /* In case COND is equality, we may be able to simplify EXPR by copy/constant
2892 propagation, and vice versa. Fold does not handle this, since it is
2893 considered too expensive. */
2894 if (TREE_CODE (cond) == EQ_EXPR)
2895 {
2896 e0 = TREE_OPERAND (cond, 0);
2897 e1 = TREE_OPERAND (cond, 1);
2898
2899 /* We know that e0 == e1. Check whether we cannot simplify expr
2900 using this fact. */
2901 e = simplify_replace_tree (expr, old: e0, new_tree: e1);
2902 if (integer_zerop (e) || integer_nonzerop (e))
2903 return e;
2904
2905 e = simplify_replace_tree (expr, old: e1, new_tree: e0);
2906 if (integer_zerop (e) || integer_nonzerop (e))
2907 return e;
2908 }
2909 if (TREE_CODE (expr) == EQ_EXPR)
2910 {
2911 e0 = TREE_OPERAND (expr, 0);
2912 e1 = TREE_OPERAND (expr, 1);
2913
2914 /* If e0 == e1 (EXPR) implies !COND, then EXPR cannot be true. */
2915 e = simplify_replace_tree (expr: cond, old: e0, new_tree: e1);
2916 if (integer_zerop (e))
2917 return e;
2918 e = simplify_replace_tree (expr: cond, old: e1, new_tree: e0);
2919 if (integer_zerop (e))
2920 return e;
2921 }
2922 if (TREE_CODE (expr) == NE_EXPR)
2923 {
2924 e0 = TREE_OPERAND (expr, 0);
2925 e1 = TREE_OPERAND (expr, 1);
2926
2927 /* If e0 == e1 (!EXPR) implies !COND, then EXPR must be true. */
2928 e = simplify_replace_tree (expr: cond, old: e0, new_tree: e1);
2929 if (integer_zerop (e))
2930 return boolean_true_node;
2931 e = simplify_replace_tree (expr: cond, old: e1, new_tree: e0);
2932 if (integer_zerop (e))
2933 return boolean_true_node;
2934 }
2935
2936 /* Check whether COND ==> EXPR. */
2937 notcond = invert_truthvalue (cond);
2938 e = fold_binary (TRUTH_OR_EXPR, boolean_type_node, notcond, expr);
2939 if (e && integer_nonzerop (e))
2940 return e;
2941
2942 /* Check whether COND ==> not EXPR. */
2943 e = fold_binary (TRUTH_AND_EXPR, boolean_type_node, cond, expr);
2944 if (e && integer_zerop (e))
2945 return e;
2946
2947 return expr;
2948}
2949
2950/* Tries to simplify EXPR using the condition COND. Returns the simplified
2951 expression (or EXPR unchanged, if no simplification was possible).
2952 Wrapper around tree_simplify_using_condition_1 that ensures that chains
2953 of simple operations in definitions of ssa names in COND are expanded,
2954 so that things like casts or incrementing the value of the bound before
2955 the loop do not cause us to fail. */
2956
2957static tree
2958tree_simplify_using_condition (tree cond, tree expr)
2959{
2960 cond = expand_simple_operations (expr: cond);
2961
2962 return tree_simplify_using_condition_1 (cond, expr);
2963}
2964
2965/* Tries to simplify EXPR using the conditions on entry to LOOP.
2966 Returns the simplified expression (or EXPR unchanged, if no
2967 simplification was possible). */
2968
2969tree
2970simplify_using_initial_conditions (class loop *loop, tree expr)
2971{
2972 edge e;
2973 basic_block bb;
2974 tree cond, expanded, backup;
2975 int cnt = 0;
2976
2977 if (TREE_CODE (expr) == INTEGER_CST)
2978 return expr;
2979
2980 backup = expanded = expand_simple_operations (expr);
2981
2982 /* Limit walking the dominators to avoid quadraticness in
2983 the number of BBs times the number of loops in degenerate
2984 cases. */
2985 for (bb = loop->header;
2986 bb != ENTRY_BLOCK_PTR_FOR_FN (cfun) && cnt < MAX_DOMINATORS_TO_WALK;
2987 bb = get_immediate_dominator (CDI_DOMINATORS, bb))
2988 {
2989 if (!single_pred_p (bb))
2990 continue;
2991 e = single_pred_edge (bb);
2992
2993 if (!(e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
2994 continue;
2995
2996 gcond *stmt = as_a <gcond *> (p: *gsi_last_bb (bb: e->src));
2997 cond = fold_build2 (gimple_cond_code (stmt),
2998 boolean_type_node,
2999 gimple_cond_lhs (stmt),
3000 gimple_cond_rhs (stmt));
3001 if (e->flags & EDGE_FALSE_VALUE)
3002 cond = invert_truthvalue (cond);
3003 expanded = tree_simplify_using_condition (cond, expr: expanded);
3004 /* Break if EXPR is simplified to const values. */
3005 if (expanded
3006 && (integer_zerop (expanded) || integer_nonzerop (expanded)))
3007 return expanded;
3008
3009 ++cnt;
3010 }
3011
3012 /* Return the original expression if no simplification is done. */
3013 return operand_equal_p (backup, expanded, flags: 0) ? expr : expanded;
3014}
3015
3016/* Tries to simplify EXPR using the evolutions of the loop invariants
3017 in the superloops of LOOP. Returns the simplified expression
3018 (or EXPR unchanged, if no simplification was possible). */
3019
3020static tree
3021simplify_using_outer_evolutions (class loop *loop, tree expr)
3022{
3023 enum tree_code code = TREE_CODE (expr);
3024 bool changed;
3025 tree e, e0, e1, e2;
3026
3027 if (is_gimple_min_invariant (expr))
3028 return expr;
3029
3030 if (code == TRUTH_OR_EXPR
3031 || code == TRUTH_AND_EXPR
3032 || code == COND_EXPR)
3033 {
3034 changed = false;
3035
3036 e0 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 0));
3037 if (TREE_OPERAND (expr, 0) != e0)
3038 changed = true;
3039
3040 e1 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 1));
3041 if (TREE_OPERAND (expr, 1) != e1)
3042 changed = true;
3043
3044 if (code == COND_EXPR)
3045 {
3046 e2 = simplify_using_outer_evolutions (loop, TREE_OPERAND (expr, 2));
3047 if (TREE_OPERAND (expr, 2) != e2)
3048 changed = true;
3049 }
3050 else
3051 e2 = NULL_TREE;
3052
3053 if (changed)
3054 {
3055 if (code == COND_EXPR)
3056 expr = fold_build3 (code, boolean_type_node, e0, e1, e2);
3057 else
3058 expr = fold_build2 (code, boolean_type_node, e0, e1);
3059 }
3060
3061 return expr;
3062 }
3063
3064 e = instantiate_parameters (loop, chrec: expr);
3065 if (is_gimple_min_invariant (e))
3066 return e;
3067
3068 return expr;
3069}
3070
3071/* Returns true if EXIT is the only possible exit from LOOP. */
3072
3073bool
3074loop_only_exit_p (const class loop *loop, basic_block *body, const_edge exit)
3075{
3076 gimple_stmt_iterator bsi;
3077 unsigned i;
3078
3079 if (exit != single_exit (loop))
3080 return false;
3081
3082 for (i = 0; i < loop->num_nodes; i++)
3083 for (bsi = gsi_start_bb (bb: body[i]); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
3084 if (stmt_can_terminate_bb_p (gsi_stmt (i: bsi)))
3085 return false;
3086
3087 return true;
3088}
3089
3090/* Stores description of number of iterations of LOOP derived from
3091 EXIT (an exit edge of the LOOP) in NITER. Returns true if some useful
3092 information could be derived (and fields of NITER have meaning described
3093 in comments at class tree_niter_desc declaration), false otherwise.
3094 When EVERY_ITERATION is true, only tests that are known to be executed
3095 every iteration are considered (i.e. only test that alone bounds the loop).
3096 If AT_STMT is not NULL, this function stores LOOP's condition statement in
3097 it when returning true. */
3098
3099bool
3100number_of_iterations_exit_assumptions (class loop *loop, edge exit,
3101 class tree_niter_desc *niter,
3102 gcond **at_stmt, bool every_iteration,
3103 basic_block *body)
3104{
3105 tree type;
3106 tree op0, op1;
3107 enum tree_code code;
3108 affine_iv iv0, iv1;
3109 bool safe;
3110
3111 /* The condition at a fake exit (if it exists) does not control its
3112 execution. */
3113 if (exit->flags & EDGE_FAKE)
3114 return false;
3115
3116 /* Nothing to analyze if the loop is known to be infinite. */
3117 if (loop_constraint_set_p (loop, LOOP_C_INFINITE))
3118 return false;
3119
3120 safe = dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src);
3121
3122 if (every_iteration && !safe)
3123 return false;
3124
3125 niter->assumptions = boolean_false_node;
3126 niter->control.base = NULL_TREE;
3127 niter->control.step = NULL_TREE;
3128 niter->control.no_overflow = false;
3129 gcond *stmt = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
3130 if (!stmt)
3131 return false;
3132
3133 if (at_stmt)
3134 *at_stmt = stmt;
3135
3136 /* We want the condition for staying inside loop. */
3137 code = gimple_cond_code (gs: stmt);
3138 if (exit->flags & EDGE_TRUE_VALUE)
3139 code = invert_tree_comparison (code, false);
3140
3141 switch (code)
3142 {
3143 case GT_EXPR:
3144 case GE_EXPR:
3145 case LT_EXPR:
3146 case LE_EXPR:
3147 case NE_EXPR:
3148 break;
3149
3150 case EQ_EXPR:
3151 return number_of_iterations_cltz (loop, exit, code, niter);
3152
3153 default:
3154 return false;
3155 }
3156
3157 op0 = gimple_cond_lhs (gs: stmt);
3158 op1 = gimple_cond_rhs (gs: stmt);
3159 type = TREE_TYPE (op0);
3160
3161 if (TREE_CODE (type) != INTEGER_TYPE
3162 && !POINTER_TYPE_P (type))
3163 return false;
3164
3165 tree iv0_niters = NULL_TREE;
3166 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3167 op0, &iv0, safe ? &iv0_niters : NULL, false))
3168 return number_of_iterations_bitcount (loop, exit, code, niter);
3169 tree iv1_niters = NULL_TREE;
3170 if (!simple_iv_with_niters (loop, loop_containing_stmt (stmt),
3171 op1, &iv1, safe ? &iv1_niters : NULL, false))
3172 return false;
3173 /* Give up on complicated case. */
3174 if (iv0_niters && iv1_niters)
3175 return false;
3176
3177 /* We don't want to see undefined signed overflow warnings while
3178 computing the number of iterations. */
3179 fold_defer_overflow_warnings ();
3180
3181 iv0.base = expand_simple_operations (expr: iv0.base);
3182 iv1.base = expand_simple_operations (expr: iv1.base);
3183 bool body_from_caller = true;
3184 if (!body)
3185 {
3186 body = get_loop_body (loop);
3187 body_from_caller = false;
3188 }
3189 bool only_exit_p = loop_only_exit_p (loop, body, exit);
3190 if (!body_from_caller)
3191 free (ptr: body);
3192 if (!number_of_iterations_cond (loop, type, iv0: &iv0, code, iv1: &iv1, niter,
3193 only_exit: only_exit_p, every_iteration: safe))
3194 {
3195 fold_undefer_and_ignore_overflow_warnings ();
3196 return false;
3197 }
3198
3199 /* Incorporate additional assumption implied by control iv. */
3200 tree iv_niters = iv0_niters ? iv0_niters : iv1_niters;
3201 if (iv_niters)
3202 {
3203 tree assumption = fold_build2 (LE_EXPR, boolean_type_node, niter->niter,
3204 fold_convert (TREE_TYPE (niter->niter),
3205 iv_niters));
3206
3207 if (!integer_nonzerop (assumption))
3208 niter->assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
3209 niter->assumptions, assumption);
3210
3211 /* Refine upper bound if possible. */
3212 if (TREE_CODE (iv_niters) == INTEGER_CST
3213 && niter->max > wi::to_widest (t: iv_niters))
3214 niter->max = wi::to_widest (t: iv_niters);
3215 }
3216
3217 /* There is no assumptions if the loop is known to be finite. */
3218 if (!integer_zerop (niter->assumptions)
3219 && loop_constraint_set_p (loop, LOOP_C_FINITE))
3220 niter->assumptions = boolean_true_node;
3221
3222 if (optimize >= 3)
3223 {
3224 niter->assumptions = simplify_using_outer_evolutions (loop,
3225 expr: niter->assumptions);
3226 niter->may_be_zero = simplify_using_outer_evolutions (loop,
3227 expr: niter->may_be_zero);
3228 niter->niter = simplify_using_outer_evolutions (loop, expr: niter->niter);
3229 }
3230
3231 niter->assumptions
3232 = simplify_using_initial_conditions (loop,
3233 expr: niter->assumptions);
3234 niter->may_be_zero
3235 = simplify_using_initial_conditions (loop,
3236 expr: niter->may_be_zero);
3237
3238 fold_undefer_and_ignore_overflow_warnings ();
3239
3240 /* If NITER has simplified into a constant, update MAX. */
3241 if (TREE_CODE (niter->niter) == INTEGER_CST)
3242 niter->max = wi::to_widest (t: niter->niter);
3243
3244 return (!integer_zerop (niter->assumptions));
3245}
3246
3247/* Like number_of_iterations_exit_assumptions, but return TRUE only if
3248 the niter information holds unconditionally. */
3249
3250bool
3251number_of_iterations_exit (class loop *loop, edge exit,
3252 class tree_niter_desc *niter,
3253 bool warn, bool every_iteration,
3254 basic_block *body)
3255{
3256 gcond *stmt;
3257 if (!number_of_iterations_exit_assumptions (loop, exit, niter,
3258 at_stmt: &stmt, every_iteration, body))
3259 return false;
3260
3261 if (integer_nonzerop (niter->assumptions))
3262 return true;
3263
3264 if (warn && dump_enabled_p ())
3265 dump_printf_loc (MSG_MISSED_OPTIMIZATION, stmt,
3266 "missed loop optimization: niters analysis ends up "
3267 "with assumptions.\n");
3268
3269 return false;
3270}
3271
3272/* Try to determine the number of iterations of LOOP. If we succeed,
3273 expression giving number of iterations is returned and *EXIT is
3274 set to the edge from that the information is obtained. Otherwise
3275 chrec_dont_know is returned. */
3276
3277tree
3278find_loop_niter (class loop *loop, edge *exit)
3279{
3280 unsigned i;
3281 auto_vec<edge> exits = get_loop_exit_edges (loop);
3282 edge ex;
3283 tree niter = NULL_TREE, aniter;
3284 class tree_niter_desc desc;
3285
3286 *exit = NULL;
3287 FOR_EACH_VEC_ELT (exits, i, ex)
3288 {
3289 if (!number_of_iterations_exit (loop, exit: ex, niter: &desc, warn: false))
3290 continue;
3291
3292 if (integer_nonzerop (desc.may_be_zero))
3293 {
3294 /* We exit in the first iteration through this exit.
3295 We won't find anything better. */
3296 niter = build_int_cst (unsigned_type_node, 0);
3297 *exit = ex;
3298 break;
3299 }
3300
3301 if (!integer_zerop (desc.may_be_zero))
3302 continue;
3303
3304 aniter = desc.niter;
3305
3306 if (!niter)
3307 {
3308 /* Nothing recorded yet. */
3309 niter = aniter;
3310 *exit = ex;
3311 continue;
3312 }
3313
3314 /* Prefer constants, the lower the better. */
3315 if (TREE_CODE (aniter) != INTEGER_CST)
3316 continue;
3317
3318 if (TREE_CODE (niter) != INTEGER_CST)
3319 {
3320 niter = aniter;
3321 *exit = ex;
3322 continue;
3323 }
3324
3325 if (tree_int_cst_lt (t1: aniter, t2: niter))
3326 {
3327 niter = aniter;
3328 *exit = ex;
3329 continue;
3330 }
3331 }
3332
3333 return niter ? niter : chrec_dont_know;
3334}
3335
3336/* Return true if loop is known to have bounded number of iterations. */
3337
3338bool
3339finite_loop_p (class loop *loop)
3340{
3341 widest_int nit;
3342 int flags;
3343
3344 if (loop->finite_p)
3345 {
3346 unsigned i;
3347 auto_vec<edge> exits = get_loop_exit_edges (loop);
3348 edge ex;
3349
3350 /* If the loop has a normal exit, we can assume it will terminate. */
3351 FOR_EACH_VEC_ELT (exits, i, ex)
3352 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL | EDGE_FAKE)))
3353 {
3354 if (dump_file)
3355 fprintf (stream: dump_file, format: "Assume loop %i to be finite: it has an exit "
3356 "and -ffinite-loops is on or loop was "
3357 "previously finite.\n",
3358 loop->num);
3359 return true;
3360 }
3361 }
3362
3363 flags = flags_from_decl_or_type (current_function_decl);
3364 if ((flags & (ECF_CONST|ECF_PURE)) && !(flags & ECF_LOOPING_CONST_OR_PURE))
3365 {
3366 if (dump_file && (dump_flags & TDF_DETAILS))
3367 fprintf (stream: dump_file,
3368 format: "Found loop %i to be finite: it is within "
3369 "pure or const function.\n",
3370 loop->num);
3371 loop->finite_p = true;
3372 return true;
3373 }
3374
3375 if (loop->any_upper_bound
3376 /* Loop with no normal exit will not pass max_loop_iterations. */
3377 || (!loop->finite_p && max_loop_iterations (loop, &nit)))
3378 {
3379 if (dump_file && (dump_flags & TDF_DETAILS))
3380 fprintf (stream: dump_file, format: "Found loop %i to be finite: upper bound found.\n",
3381 loop->num);
3382 loop->finite_p = true;
3383 return true;
3384 }
3385
3386 return false;
3387}
3388
3389/*
3390
3391 Analysis of a number of iterations of a loop by a brute-force evaluation.
3392
3393*/
3394
3395/* Bound on the number of iterations we try to evaluate. */
3396
3397#define MAX_ITERATIONS_TO_TRACK \
3398 ((unsigned) param_max_iterations_to_track)
3399
3400/* Returns the loop phi node of LOOP such that ssa name X is derived from its
3401 result by a chain of operations such that all but exactly one of their
3402 operands are constants. */
3403
3404static gphi *
3405chain_of_csts_start (class loop *loop, tree x)
3406{
3407 gimple *stmt = SSA_NAME_DEF_STMT (x);
3408 tree use;
3409 basic_block bb = gimple_bb (g: stmt);
3410 enum tree_code code;
3411
3412 if (!bb
3413 || !flow_bb_inside_loop_p (loop, bb))
3414 return NULL;
3415
3416 if (gimple_code (g: stmt) == GIMPLE_PHI)
3417 {
3418 if (bb == loop->header)
3419 return as_a <gphi *> (p: stmt);
3420
3421 return NULL;
3422 }
3423
3424 if (gimple_code (g: stmt) != GIMPLE_ASSIGN
3425 || gimple_assign_rhs_class (gs: stmt) == GIMPLE_TERNARY_RHS)
3426 return NULL;
3427
3428 code = gimple_assign_rhs_code (gs: stmt);
3429 if (gimple_references_memory_p (stmt)
3430 || TREE_CODE_CLASS (code) == tcc_reference
3431 || (code == ADDR_EXPR
3432 && !is_gimple_min_invariant (gimple_assign_rhs1 (gs: stmt))))
3433 return NULL;
3434
3435 use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
3436 if (use == NULL_TREE)
3437 return NULL;
3438
3439 return chain_of_csts_start (loop, x: use);
3440}
3441
3442/* Determines whether the expression X is derived from a result of a phi node
3443 in header of LOOP such that
3444
3445 * the derivation of X consists only from operations with constants
3446 * the initial value of the phi node is constant
3447 * the value of the phi node in the next iteration can be derived from the
3448 value in the current iteration by a chain of operations with constants,
3449 or is also a constant
3450
3451 If such phi node exists, it is returned, otherwise NULL is returned. */
3452
3453static gphi *
3454get_base_for (class loop *loop, tree x)
3455{
3456 gphi *phi;
3457 tree init, next;
3458
3459 if (is_gimple_min_invariant (x))
3460 return NULL;
3461
3462 phi = chain_of_csts_start (loop, x);
3463 if (!phi)
3464 return NULL;
3465
3466 init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3467 next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3468
3469 if (!is_gimple_min_invariant (init))
3470 return NULL;
3471
3472 if (TREE_CODE (next) == SSA_NAME
3473 && chain_of_csts_start (loop, x: next) != phi)
3474 return NULL;
3475
3476 return phi;
3477}
3478
3479/* Given an expression X, then
3480
3481 * if X is NULL_TREE, we return the constant BASE.
3482 * if X is a constant, we return the constant X.
3483 * otherwise X is a SSA name, whose value in the considered loop is derived
3484 by a chain of operations with constant from a result of a phi node in
3485 the header of the loop. Then we return value of X when the value of the
3486 result of this phi node is given by the constant BASE. */
3487
3488static tree
3489get_val_for (tree x, tree base)
3490{
3491 gimple *stmt;
3492
3493 gcc_checking_assert (is_gimple_min_invariant (base));
3494
3495 if (!x)
3496 return base;
3497 else if (is_gimple_min_invariant (x))
3498 return x;
3499
3500 stmt = SSA_NAME_DEF_STMT (x);
3501 if (gimple_code (g: stmt) == GIMPLE_PHI)
3502 return base;
3503
3504 gcc_checking_assert (is_gimple_assign (stmt));
3505
3506 /* STMT must be either an assignment of a single SSA name or an
3507 expression involving an SSA name and a constant. Try to fold that
3508 expression using the value for the SSA name. */
3509 if (gimple_assign_ssa_name_copy_p (stmt))
3510 return get_val_for (x: gimple_assign_rhs1 (gs: stmt), base);
3511 else if (gimple_assign_rhs_class (gs: stmt) == GIMPLE_UNARY_RHS
3512 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
3513 return fold_build1 (gimple_assign_rhs_code (stmt),
3514 TREE_TYPE (gimple_assign_lhs (stmt)),
3515 get_val_for (gimple_assign_rhs1 (stmt), base));
3516 else if (gimple_assign_rhs_class (gs: stmt) == GIMPLE_BINARY_RHS)
3517 {
3518 tree rhs1 = gimple_assign_rhs1 (gs: stmt);
3519 tree rhs2 = gimple_assign_rhs2 (gs: stmt);
3520 if (TREE_CODE (rhs1) == SSA_NAME)
3521 rhs1 = get_val_for (x: rhs1, base);
3522 else if (TREE_CODE (rhs2) == SSA_NAME)
3523 rhs2 = get_val_for (x: rhs2, base);
3524 else
3525 gcc_unreachable ();
3526 return fold_build2 (gimple_assign_rhs_code (stmt),
3527 TREE_TYPE (gimple_assign_lhs (stmt)), rhs1, rhs2);
3528 }
3529 else
3530 gcc_unreachable ();
3531}
3532
3533
3534/* Tries to count the number of iterations of LOOP till it exits by EXIT
3535 by brute force -- i.e. by determining the value of the operands of the
3536 condition at EXIT in first few iterations of the loop (assuming that
3537 these values are constant) and determining the first one in that the
3538 condition is not satisfied. Returns the constant giving the number
3539 of the iterations of LOOP if successful, chrec_dont_know otherwise. */
3540
3541tree
3542loop_niter_by_eval (class loop *loop, edge exit)
3543{
3544 tree acnd;
3545 tree op[2], val[2], next[2], aval[2];
3546 gphi *phi;
3547 unsigned i, j;
3548 enum tree_code cmp;
3549
3550 gcond *cond = safe_dyn_cast <gcond *> (p: *gsi_last_bb (bb: exit->src));
3551 if (!cond)
3552 return chrec_dont_know;
3553
3554 cmp = gimple_cond_code (gs: cond);
3555 if (exit->flags & EDGE_TRUE_VALUE)
3556 cmp = invert_tree_comparison (cmp, false);
3557
3558 switch (cmp)
3559 {
3560 case EQ_EXPR:
3561 case NE_EXPR:
3562 case GT_EXPR:
3563 case GE_EXPR:
3564 case LT_EXPR:
3565 case LE_EXPR:
3566 op[0] = gimple_cond_lhs (gs: cond);
3567 op[1] = gimple_cond_rhs (gs: cond);
3568 break;
3569
3570 default:
3571 return chrec_dont_know;
3572 }
3573
3574 for (j = 0; j < 2; j++)
3575 {
3576 if (is_gimple_min_invariant (op[j]))
3577 {
3578 val[j] = op[j];
3579 next[j] = NULL_TREE;
3580 op[j] = NULL_TREE;
3581 }
3582 else
3583 {
3584 phi = get_base_for (loop, x: op[j]);
3585 if (!phi)
3586 return chrec_dont_know;
3587 val[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
3588 next[j] = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
3589 }
3590 }
3591
3592 /* Don't issue signed overflow warnings. */
3593 fold_defer_overflow_warnings ();
3594
3595 for (i = 0; i < MAX_ITERATIONS_TO_TRACK; i++)
3596 {
3597 for (j = 0; j < 2; j++)
3598 aval[j] = get_val_for (x: op[j], base: val[j]);
3599
3600 acnd = fold_binary (cmp, boolean_type_node, aval[0], aval[1]);
3601 if (acnd && integer_zerop (acnd))
3602 {
3603 fold_undefer_and_ignore_overflow_warnings ();
3604 if (dump_file && (dump_flags & TDF_DETAILS))
3605 fprintf (stream: dump_file,
3606 format: "Proved that loop %d iterates %d times using brute force.\n",
3607 loop->num, i);
3608 return build_int_cst (unsigned_type_node, i);
3609 }
3610
3611 for (j = 0; j < 2; j++)
3612 {
3613 aval[j] = val[j];
3614 val[j] = get_val_for (x: next[j], base: val[j]);
3615 if (!is_gimple_min_invariant (val[j]))
3616 {
3617 fold_undefer_and_ignore_overflow_warnings ();
3618 return chrec_dont_know;
3619 }
3620 }
3621
3622 /* If the next iteration would use the same base values
3623 as the current one, there is no point looping further,
3624 all following iterations will be the same as this one. */
3625 if (val[0] == aval[0] && val[1] == aval[1])
3626 break;
3627 }
3628
3629 fold_undefer_and_ignore_overflow_warnings ();
3630
3631 return chrec_dont_know;
3632}
3633
3634/* Finds the exit of the LOOP by that the loop exits after a constant
3635 number of iterations and stores the exit edge to *EXIT. The constant
3636 giving the number of iterations of LOOP is returned. The number of
3637 iterations is determined using loop_niter_by_eval (i.e. by brute force
3638 evaluation). If we are unable to find the exit for that loop_niter_by_eval
3639 determines the number of iterations, chrec_dont_know is returned. */
3640
3641tree
3642find_loop_niter_by_eval (class loop *loop, edge *exit)
3643{
3644 unsigned i;
3645 auto_vec<edge> exits = get_loop_exit_edges (loop);
3646 edge ex;
3647 tree niter = NULL_TREE, aniter;
3648
3649 *exit = NULL;
3650
3651 /* Loops with multiple exits are expensive to handle and less important. */
3652 if (!flag_expensive_optimizations
3653 && exits.length () > 1)
3654 return chrec_dont_know;
3655
3656 FOR_EACH_VEC_ELT (exits, i, ex)
3657 {
3658 if (!just_once_each_iteration_p (loop, ex->src))
3659 continue;
3660
3661 aniter = loop_niter_by_eval (loop, exit: ex);
3662 if (chrec_contains_undetermined (aniter))
3663 continue;
3664
3665 if (niter
3666 && !tree_int_cst_lt (t1: aniter, t2: niter))
3667 continue;
3668
3669 niter = aniter;
3670 *exit = ex;
3671 }
3672
3673 return niter ? niter : chrec_dont_know;
3674}
3675
3676/*
3677
3678 Analysis of upper bounds on number of iterations of a loop.
3679
3680*/
3681
3682static widest_int derive_constant_upper_bound_ops (tree, tree,
3683 enum tree_code, tree);
3684
3685/* Returns a constant upper bound on the value of the right-hand side of
3686 an assignment statement STMT. */
3687
3688static widest_int
3689derive_constant_upper_bound_assign (gimple *stmt)
3690{
3691 enum tree_code code = gimple_assign_rhs_code (gs: stmt);
3692 tree op0 = gimple_assign_rhs1 (gs: stmt);
3693 tree op1 = gimple_assign_rhs2 (gs: stmt);
3694
3695 return derive_constant_upper_bound_ops (TREE_TYPE (gimple_assign_lhs (stmt)),
3696 op0, code, op1);
3697}
3698
3699/* Returns a constant upper bound on the value of expression VAL. VAL
3700 is considered to be unsigned. If its type is signed, its value must
3701 be nonnegative. */
3702
3703static widest_int
3704derive_constant_upper_bound (tree val)
3705{
3706 enum tree_code code;
3707 tree op0, op1, op2;
3708
3709 extract_ops_from_tree (val, &code, &op0, &op1, &op2);
3710 return derive_constant_upper_bound_ops (TREE_TYPE (val), op0, code, op1);
3711}
3712
3713/* Returns a constant upper bound on the value of expression OP0 CODE OP1,
3714 whose type is TYPE. The expression is considered to be unsigned. If
3715 its type is signed, its value must be nonnegative. */
3716
3717static widest_int
3718derive_constant_upper_bound_ops (tree type, tree op0,
3719 enum tree_code code, tree op1)
3720{
3721 tree subtype, maxt;
3722 widest_int bnd, max, cst;
3723 gimple *stmt;
3724
3725 if (INTEGRAL_TYPE_P (type))
3726 maxt = TYPE_MAX_VALUE (type);
3727 else
3728 maxt = upper_bound_in_type (type, type);
3729
3730 max = wi::to_widest (t: maxt);
3731
3732 switch (code)
3733 {
3734 case INTEGER_CST:
3735 return wi::to_widest (t: op0);
3736
3737 CASE_CONVERT:
3738 subtype = TREE_TYPE (op0);
3739 if (!TYPE_UNSIGNED (subtype)
3740 /* If TYPE is also signed, the fact that VAL is nonnegative implies
3741 that OP0 is nonnegative. */
3742 && TYPE_UNSIGNED (type)
3743 && !tree_expr_nonnegative_p (op0))
3744 {
3745 /* If we cannot prove that the casted expression is nonnegative,
3746 we cannot establish more useful upper bound than the precision
3747 of the type gives us. */
3748 return max;
3749 }
3750
3751 /* We now know that op0 is an nonnegative value. Try deriving an upper
3752 bound for it. */
3753 bnd = derive_constant_upper_bound (val: op0);
3754
3755 /* If the bound does not fit in TYPE, max. value of TYPE could be
3756 attained. */
3757 if (wi::ltu_p (x: max, y: bnd))
3758 return max;
3759
3760 return bnd;
3761
3762 case PLUS_EXPR:
3763 case POINTER_PLUS_EXPR:
3764 case MINUS_EXPR:
3765 if (TREE_CODE (op1) != INTEGER_CST
3766 || !tree_expr_nonnegative_p (op0))
3767 return max;
3768
3769 /* Canonicalize to OP0 - CST. Consider CST to be signed, in order to
3770 choose the most logical way how to treat this constant regardless
3771 of the signedness of the type. */
3772 cst = wi::sext (x: wi::to_widest (t: op1), TYPE_PRECISION (type));
3773 if (code != MINUS_EXPR)
3774 cst = -cst;
3775
3776 bnd = derive_constant_upper_bound (val: op0);
3777
3778 if (wi::neg_p (x: cst))
3779 {
3780 cst = -cst;
3781 /* Avoid CST == 0x80000... */
3782 if (wi::neg_p (x: cst))
3783 return max;
3784
3785 /* OP0 + CST. We need to check that
3786 BND <= MAX (type) - CST. */
3787
3788 widest_int mmax = max - cst;
3789 if (wi::leu_p (x: bnd, y: mmax))
3790 return max;
3791
3792 return bnd + cst;
3793 }
3794 else
3795 {
3796 /* OP0 - CST, where CST >= 0.
3797
3798 If TYPE is signed, we have already verified that OP0 >= 0, and we
3799 know that the result is nonnegative. This implies that
3800 VAL <= BND - CST.
3801
3802 If TYPE is unsigned, we must additionally know that OP0 >= CST,
3803 otherwise the operation underflows.
3804 */
3805
3806 /* This should only happen if the type is unsigned; however, for
3807 buggy programs that use overflowing signed arithmetics even with
3808 -fno-wrapv, this condition may also be true for signed values. */
3809 if (wi::ltu_p (x: bnd, y: cst))
3810 return max;
3811
3812 if (TYPE_UNSIGNED (type))
3813 {
3814 tree tem = fold_binary (GE_EXPR, boolean_type_node, op0,
3815 wide_int_to_tree (type, cst));
3816 if (!tem || integer_nonzerop (tem))
3817 return max;
3818 }
3819
3820 bnd -= cst;
3821 }
3822
3823 return bnd;
3824
3825 case FLOOR_DIV_EXPR:
3826 case EXACT_DIV_EXPR:
3827 if (TREE_CODE (op1) != INTEGER_CST
3828 || tree_int_cst_sign_bit (op1))
3829 return max;
3830
3831 bnd = derive_constant_upper_bound (val: op0);
3832 return wi::udiv_floor (x: bnd, y: wi::to_widest (t: op1));
3833
3834 case BIT_AND_EXPR:
3835 if (TREE_CODE (op1) != INTEGER_CST
3836 || tree_int_cst_sign_bit (op1))
3837 return max;
3838 return wi::to_widest (t: op1);
3839
3840 case SSA_NAME:
3841 stmt = SSA_NAME_DEF_STMT (op0);
3842 if (gimple_code (g: stmt) != GIMPLE_ASSIGN
3843 || gimple_assign_lhs (gs: stmt) != op0)
3844 return max;
3845 return derive_constant_upper_bound_assign (stmt);
3846
3847 default:
3848 return max;
3849 }
3850}
3851
3852/* Emit a -Waggressive-loop-optimizations warning if needed. */
3853
3854static void
3855do_warn_aggressive_loop_optimizations (class loop *loop,
3856 widest_int i_bound, gimple *stmt)
3857{
3858 /* Don't warn if the loop doesn't have known constant bound. */
3859 if (!loop->nb_iterations
3860 || TREE_CODE (loop->nb_iterations) != INTEGER_CST
3861 || !warn_aggressive_loop_optimizations
3862 /* To avoid warning multiple times for the same loop,
3863 only start warning when we preserve loops. */
3864 || (cfun->curr_properties & PROP_loops) == 0
3865 /* Only warn once per loop. */
3866 || loop->warned_aggressive_loop_optimizations
3867 /* Only warn if undefined behavior gives us lower estimate than the
3868 known constant bound. */
3869 || wi::cmpu (x: i_bound, y: wi::to_widest (t: loop->nb_iterations)) >= 0
3870 /* And undefined behavior happens unconditionally. */
3871 || !dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: stmt)))
3872 return;
3873
3874 edge e = single_exit (loop);
3875 if (e == NULL)
3876 return;
3877
3878 gimple *estmt = last_nondebug_stmt (e->src);
3879 char buf[WIDE_INT_PRINT_BUFFER_SIZE], *p;
3880 unsigned len;
3881 if (print_dec_buf_size (wi: i_bound, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)),
3882 len: &len))
3883 p = XALLOCAVEC (char, len);
3884 else
3885 p = buf;
3886 print_dec (wi: i_bound, buf: p, TYPE_SIGN (TREE_TYPE (loop->nb_iterations)));
3887 auto_diagnostic_group d;
3888 if (warning_at (gimple_location (g: stmt), OPT_Waggressive_loop_optimizations,
3889 "iteration %s invokes undefined behavior", p))
3890 inform (gimple_location (g: estmt), "within this loop");
3891 loop->warned_aggressive_loop_optimizations = true;
3892}
3893
3894/* Records that AT_STMT is executed at most BOUND + 1 times in LOOP. IS_EXIT
3895 is true if the loop is exited immediately after STMT, and this exit
3896 is taken at last when the STMT is executed BOUND + 1 times.
3897 REALISTIC is true if BOUND is expected to be close to the real number
3898 of iterations. UPPER is true if we are sure the loop iterates at most
3899 BOUND times. I_BOUND is a widest_int upper estimate on BOUND. */
3900
3901static void
3902record_estimate (class loop *loop, tree bound, const widest_int &i_bound,
3903 gimple *at_stmt, bool is_exit, bool realistic, bool upper)
3904{
3905 widest_int delta;
3906
3907 if (dump_file && (dump_flags & TDF_DETAILS))
3908 {
3909 fprintf (stream: dump_file, format: "Statement %s", is_exit ? "(exit)" : "");
3910 print_gimple_stmt (dump_file, at_stmt, 0, TDF_SLIM);
3911 fprintf (stream: dump_file, format: " is %sexecuted at most ",
3912 upper ? "" : "probably ");
3913 print_generic_expr (dump_file, bound, TDF_SLIM);
3914 fprintf (stream: dump_file, format: " (bounded by ");
3915 print_decu (wi: i_bound, file: dump_file);
3916 fprintf (stream: dump_file, format: ") + 1 times in loop %d.\n", loop->num);
3917 }
3918
3919 /* If the I_BOUND is just an estimate of BOUND, it rarely is close to the
3920 real number of iterations. */
3921 if (TREE_CODE (bound) != INTEGER_CST)
3922 realistic = false;
3923 else
3924 gcc_checking_assert (i_bound == wi::to_widest (bound));
3925
3926 if (wi::min_precision (x: i_bound, sgn: SIGNED) > bound_wide_int ().get_precision ())
3927 return;
3928
3929 /* If we have a guaranteed upper bound, record it in the appropriate
3930 list, unless this is an !is_exit bound (i.e. undefined behavior in
3931 at_stmt) in a loop with known constant number of iterations. */
3932 if (upper
3933 && (is_exit
3934 || loop->nb_iterations == NULL_TREE
3935 || TREE_CODE (loop->nb_iterations) != INTEGER_CST))
3936 {
3937 class nb_iter_bound *elt = ggc_alloc<nb_iter_bound> ();
3938
3939 elt->bound = bound_wide_int::from (x: i_bound, sgn: SIGNED);
3940 elt->stmt = at_stmt;
3941 elt->is_exit = is_exit;
3942 elt->next = loop->bounds;
3943 loop->bounds = elt;
3944 }
3945
3946 /* If statement is executed on every path to the loop latch, we can directly
3947 infer the upper bound on the # of iterations of the loop. */
3948 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: at_stmt)))
3949 upper = false;
3950
3951 /* Update the number of iteration estimates according to the bound.
3952 If at_stmt is an exit then the loop latch is executed at most BOUND times,
3953 otherwise it can be executed BOUND + 1 times. We will lower the estimate
3954 later if such statement must be executed on last iteration */
3955 if (is_exit)
3956 delta = 0;
3957 else
3958 delta = 1;
3959 widest_int new_i_bound = i_bound + delta;
3960
3961 /* If an overflow occurred, ignore the result. */
3962 if (wi::ltu_p (x: new_i_bound, y: delta))
3963 return;
3964
3965 if (upper && !is_exit)
3966 do_warn_aggressive_loop_optimizations (loop, i_bound: new_i_bound, stmt: at_stmt);
3967 record_niter_bound (loop, new_i_bound, realistic, upper);
3968}
3969
3970/* Records the control iv analyzed in NITER for LOOP if the iv is valid
3971 and doesn't overflow. */
3972
3973static void
3974record_control_iv (class loop *loop, class tree_niter_desc *niter)
3975{
3976 struct control_iv *iv;
3977
3978 if (!niter->control.base || !niter->control.step)
3979 return;
3980
3981 if (!integer_onep (niter->assumptions) || !niter->control.no_overflow)
3982 return;
3983
3984 iv = ggc_alloc<control_iv> ();
3985 iv->base = niter->control.base;
3986 iv->step = niter->control.step;
3987 iv->next = loop->control_ivs;
3988 loop->control_ivs = iv;
3989
3990 return;
3991}
3992
3993/* This function returns TRUE if below conditions are satisfied:
3994 1) VAR is SSA variable.
3995 2) VAR is an IV:{base, step} in its defining loop.
3996 3) IV doesn't overflow.
3997 4) Both base and step are integer constants.
3998 5) Base is the MIN/MAX value depends on IS_MIN.
3999 Store value of base to INIT correspondingly. */
4000
4001static bool
4002get_cst_init_from_scev (tree var, wide_int *init, bool is_min)
4003{
4004 if (TREE_CODE (var) != SSA_NAME)
4005 return false;
4006
4007 gimple *def_stmt = SSA_NAME_DEF_STMT (var);
4008 class loop *loop = loop_containing_stmt (stmt: def_stmt);
4009
4010 if (loop == NULL)
4011 return false;
4012
4013 affine_iv iv;
4014 if (!simple_iv (loop, loop, var, &iv, false))
4015 return false;
4016
4017 if (!iv.no_overflow)
4018 return false;
4019
4020 if (TREE_CODE (iv.base) != INTEGER_CST || TREE_CODE (iv.step) != INTEGER_CST)
4021 return false;
4022
4023 if (is_min == tree_int_cst_sign_bit (iv.step))
4024 return false;
4025
4026 *init = wi::to_wide (t: iv.base);
4027 return true;
4028}
4029
4030/* Record the estimate on number of iterations of LOOP based on the fact that
4031 the induction variable BASE + STEP * i evaluated in STMT does not wrap and
4032 its values belong to the range <LOW, HIGH>. REALISTIC is true if the
4033 estimated number of iterations is expected to be close to the real one.
4034 UPPER is true if we are sure the induction variable does not wrap. */
4035
4036static void
4037record_nonwrapping_iv (class loop *loop, tree base, tree step, gimple *stmt,
4038 tree low, tree high, bool realistic, bool upper)
4039{
4040 tree niter_bound, extreme, delta;
4041 tree type = TREE_TYPE (base), unsigned_type;
4042 tree orig_base = base;
4043
4044 if (TREE_CODE (step) != INTEGER_CST || integer_zerop (step))
4045 return;
4046
4047 if (dump_file && (dump_flags & TDF_DETAILS))
4048 {
4049 fprintf (stream: dump_file, format: "Induction variable (");
4050 print_generic_expr (dump_file, TREE_TYPE (base), TDF_SLIM);
4051 fprintf (stream: dump_file, format: ") ");
4052 print_generic_expr (dump_file, base, TDF_SLIM);
4053 fprintf (stream: dump_file, format: " + ");
4054 print_generic_expr (dump_file, step, TDF_SLIM);
4055 fprintf (stream: dump_file, format: " * iteration does not wrap in statement ");
4056 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
4057 fprintf (stream: dump_file, format: " in loop %d.\n", loop->num);
4058 }
4059
4060 unsigned_type = unsigned_type_for (type);
4061 base = fold_convert (unsigned_type, base);
4062 step = fold_convert (unsigned_type, step);
4063
4064 if (tree_int_cst_sign_bit (step))
4065 {
4066 wide_int max;
4067 Value_Range base_range (TREE_TYPE (orig_base));
4068 if (get_range_query (cfun)->range_of_expr (r&: base_range, expr: orig_base)
4069 && !base_range.undefined_p ())
4070 max = base_range.upper_bound ();
4071 extreme = fold_convert (unsigned_type, low);
4072 if (TREE_CODE (orig_base) == SSA_NAME
4073 && TREE_CODE (high) == INTEGER_CST
4074 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4075 && ((!base_range.varying_p ()
4076 && !base_range.undefined_p ())
4077 || get_cst_init_from_scev (var: orig_base, init: &max, is_min: false))
4078 && wi::gts_p (x: wi::to_wide (t: high), y: max))
4079 base = wide_int_to_tree (type: unsigned_type, cst: max);
4080 else if (TREE_CODE (base) != INTEGER_CST
4081 && dominated_by_p (CDI_DOMINATORS,
4082 loop->latch, gimple_bb (g: stmt)))
4083 base = fold_convert (unsigned_type, high);
4084 delta = fold_build2 (MINUS_EXPR, unsigned_type, base, extreme);
4085 step = fold_build1 (NEGATE_EXPR, unsigned_type, step);
4086 }
4087 else
4088 {
4089 wide_int min;
4090 Value_Range base_range (TREE_TYPE (orig_base));
4091 if (get_range_query (cfun)->range_of_expr (r&: base_range, expr: orig_base)
4092 && !base_range.undefined_p ())
4093 min = base_range.lower_bound ();
4094 extreme = fold_convert (unsigned_type, high);
4095 if (TREE_CODE (orig_base) == SSA_NAME
4096 && TREE_CODE (low) == INTEGER_CST
4097 && INTEGRAL_TYPE_P (TREE_TYPE (orig_base))
4098 && ((!base_range.varying_p ()
4099 && !base_range.undefined_p ())
4100 || get_cst_init_from_scev (var: orig_base, init: &min, is_min: true))
4101 && wi::gts_p (x: min, y: wi::to_wide (t: low)))
4102 base = wide_int_to_tree (type: unsigned_type, cst: min);
4103 else if (TREE_CODE (base) != INTEGER_CST
4104 && dominated_by_p (CDI_DOMINATORS,
4105 loop->latch, gimple_bb (g: stmt)))
4106 base = fold_convert (unsigned_type, low);
4107 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, base);
4108 }
4109
4110 /* STMT is executed at most NITER_BOUND + 1 times, since otherwise the value
4111 would get out of the range. */
4112 niter_bound = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step);
4113 widest_int max = derive_constant_upper_bound (val: niter_bound);
4114 record_estimate (loop, bound: niter_bound, i_bound: max, at_stmt: stmt, is_exit: false, realistic, upper);
4115}
4116
4117/* Determine information about number of iterations a LOOP from the index
4118 IDX of a data reference accessed in STMT. RELIABLE is true if STMT is
4119 guaranteed to be executed in every iteration of LOOP. Callback for
4120 for_each_index. */
4121
4122struct ilb_data
4123{
4124 class loop *loop;
4125 gimple *stmt;
4126};
4127
4128static bool
4129idx_infer_loop_bounds (tree base, tree *idx, void *dta)
4130{
4131 struct ilb_data *data = (struct ilb_data *) dta;
4132 tree ev, init, step;
4133 tree low, high, type, next;
4134 bool sign, upper = true, has_flexible_size = false;
4135 class loop *loop = data->loop;
4136
4137 if (TREE_CODE (base) != ARRAY_REF)
4138 return true;
4139
4140 /* For arrays that might have flexible sizes, it is not guaranteed that they
4141 do not really extend over their declared size. */
4142 if (array_ref_flexible_size_p (base))
4143 {
4144 has_flexible_size = true;
4145 upper = false;
4146 }
4147
4148 class loop *dloop = loop_containing_stmt (stmt: data->stmt);
4149 if (!dloop)
4150 return true;
4151
4152 ev = analyze_scalar_evolution (dloop, *idx);
4153 ev = instantiate_parameters (loop, chrec: ev);
4154 init = initial_condition (ev);
4155 step = evolution_part_in_loop_num (ev, loop->num);
4156
4157 if (!init
4158 || !step
4159 || TREE_CODE (step) != INTEGER_CST
4160 || integer_zerop (step)
4161 || tree_contains_chrecs (init, NULL)
4162 || chrec_contains_symbols_defined_in_loop (init, loop->num))
4163 return true;
4164
4165 low = array_ref_low_bound (base);
4166 high = array_ref_up_bound (base);
4167
4168 /* The case of nonconstant bounds could be handled, but it would be
4169 complicated. */
4170 if (TREE_CODE (low) != INTEGER_CST
4171 || !high
4172 || TREE_CODE (high) != INTEGER_CST)
4173 return true;
4174 sign = tree_int_cst_sign_bit (step);
4175 type = TREE_TYPE (step);
4176
4177 /* The array that might have flexible size most likely extends
4178 beyond its bounds. */
4179 if (has_flexible_size
4180 && operand_equal_p (low, high, flags: 0))
4181 return true;
4182
4183 /* In case the relevant bound of the array does not fit in type, or
4184 it does, but bound + step (in type) still belongs into the range of the
4185 array, the index may wrap and still stay within the range of the array
4186 (consider e.g. if the array is indexed by the full range of
4187 unsigned char).
4188
4189 To make things simpler, we require both bounds to fit into type, although
4190 there are cases where this would not be strictly necessary. */
4191 if (!int_fits_type_p (high, type)
4192 || !int_fits_type_p (low, type))
4193 return true;
4194 low = fold_convert (type, low);
4195 high = fold_convert (type, high);
4196
4197 if (sign)
4198 next = fold_binary (PLUS_EXPR, type, low, step);
4199 else
4200 next = fold_binary (PLUS_EXPR, type, high, step);
4201
4202 if (tree_int_cst_compare (t1: low, t2: next) <= 0
4203 && tree_int_cst_compare (t1: next, t2: high) <= 0)
4204 return true;
4205
4206 /* If access is not executed on every iteration, we must ensure that overlow
4207 may not make the access valid later. */
4208 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, gimple_bb (g: data->stmt)))
4209 {
4210 if (scev_probably_wraps_p (NULL_TREE,
4211 initial_condition_in_loop_num (ev, loop->num),
4212 step, data->stmt, loop, true))
4213 upper = false;
4214 }
4215 else
4216 record_nonwrapping_chrec (ev);
4217
4218 record_nonwrapping_iv (loop, base: init, step, stmt: data->stmt, low, high, realistic: false, upper);
4219 return true;
4220}
4221
4222/* Determine information about number of iterations a LOOP from the bounds
4223 of arrays in the data reference REF accessed in STMT. RELIABLE is true if
4224 STMT is guaranteed to be executed in every iteration of LOOP.*/
4225
4226static void
4227infer_loop_bounds_from_ref (class loop *loop, gimple *stmt, tree ref)
4228{
4229 struct ilb_data data;
4230
4231 data.loop = loop;
4232 data.stmt = stmt;
4233 for_each_index (&ref, idx_infer_loop_bounds, &data);
4234}
4235
4236/* Determine information about number of iterations of a LOOP from the way
4237 arrays are used in STMT. RELIABLE is true if STMT is guaranteed to be
4238 executed in every iteration of LOOP. */
4239
4240static void
4241infer_loop_bounds_from_array (class loop *loop, gimple *stmt)
4242{
4243 if (is_gimple_assign (gs: stmt))
4244 {
4245 tree op0 = gimple_assign_lhs (gs: stmt);
4246 tree op1 = gimple_assign_rhs1 (gs: stmt);
4247
4248 /* For each memory access, analyze its access function
4249 and record a bound on the loop iteration domain. */
4250 if (REFERENCE_CLASS_P (op0))
4251 infer_loop_bounds_from_ref (loop, stmt, ref: op0);
4252
4253 if (REFERENCE_CLASS_P (op1))
4254 infer_loop_bounds_from_ref (loop, stmt, ref: op1);
4255 }
4256 else if (is_gimple_call (gs: stmt))
4257 {
4258 tree arg, lhs;
4259 unsigned i, n = gimple_call_num_args (gs: stmt);
4260
4261 lhs = gimple_call_lhs (gs: stmt);
4262 if (lhs && REFERENCE_CLASS_P (lhs))
4263 infer_loop_bounds_from_ref (loop, stmt, ref: lhs);
4264
4265 for (i = 0; i < n; i++)
4266 {
4267 arg = gimple_call_arg (gs: stmt, index: i);
4268 if (REFERENCE_CLASS_P (arg))
4269 infer_loop_bounds_from_ref (loop, stmt, ref: arg);
4270 }
4271 }
4272}
4273
4274/* Determine information about number of iterations of a LOOP from the fact
4275 that pointer arithmetics in STMT does not overflow. */
4276
4277static void
4278infer_loop_bounds_from_pointer_arith (class loop *loop, gimple *stmt)
4279{
4280 tree def, base, step, scev, type, low, high;
4281 tree var, ptr;
4282
4283 if (!is_gimple_assign (gs: stmt)
4284 || gimple_assign_rhs_code (gs: stmt) != POINTER_PLUS_EXPR)
4285 return;
4286
4287 def = gimple_assign_lhs (gs: stmt);
4288 if (TREE_CODE (def) != SSA_NAME)
4289 return;
4290
4291 type = TREE_TYPE (def);
4292 if (!nowrap_type_p (type))
4293 return;
4294
4295 ptr = gimple_assign_rhs1 (gs: stmt);
4296 if (!expr_invariant_in_loop_p (loop, ptr))
4297 return;
4298
4299 var = gimple_assign_rhs2 (gs: stmt);
4300 if (TYPE_PRECISION (type) != TYPE_PRECISION (TREE_TYPE (var)))
4301 return;
4302
4303 class loop *uloop = loop_containing_stmt (stmt);
4304 scev = instantiate_parameters (loop, chrec: analyze_scalar_evolution (uloop, def));
4305 if (chrec_contains_undetermined (scev))
4306 return;
4307
4308 base = initial_condition_in_loop_num (scev, loop->num);
4309 step = evolution_part_in_loop_num (scev, loop->num);
4310
4311 if (!base || !step
4312 || TREE_CODE (step) != INTEGER_CST
4313 || tree_contains_chrecs (base, NULL)
4314 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4315 return;
4316
4317 low = lower_bound_in_type (type, type);
4318 high = upper_bound_in_type (type, type);
4319
4320 /* In C, pointer arithmetic p + 1 cannot use a NULL pointer, and p - 1 cannot
4321 produce a NULL pointer. The contrary would mean NULL points to an object,
4322 while NULL is supposed to compare unequal with the address of all objects.
4323 Furthermore, p + 1 cannot produce a NULL pointer and p - 1 cannot use a
4324 NULL pointer since that would mean wrapping, which we assume here not to
4325 happen. So, we can exclude NULL from the valid range of pointer
4326 arithmetic. */
4327 if (flag_delete_null_pointer_checks && int_cst_value (low) == 0)
4328 low = build_int_cstu (TREE_TYPE (low), TYPE_ALIGN_UNIT (TREE_TYPE (type)));
4329
4330 record_nonwrapping_chrec (scev);
4331 record_nonwrapping_iv (loop, base, step, stmt, low, high, realistic: false, upper: true);
4332}
4333
4334/* Determine information about number of iterations of a LOOP from the fact
4335 that signed arithmetics in STMT does not overflow. */
4336
4337static void
4338infer_loop_bounds_from_signedness (class loop *loop, gimple *stmt)
4339{
4340 tree def, base, step, scev, type, low, high;
4341
4342 if (gimple_code (g: stmt) != GIMPLE_ASSIGN)
4343 return;
4344
4345 def = gimple_assign_lhs (gs: stmt);
4346
4347 if (TREE_CODE (def) != SSA_NAME)
4348 return;
4349
4350 type = TREE_TYPE (def);
4351 if (!INTEGRAL_TYPE_P (type)
4352 || !TYPE_OVERFLOW_UNDEFINED (type))
4353 return;
4354
4355 scev = instantiate_parameters (loop, chrec: analyze_scalar_evolution (loop, def));
4356 if (chrec_contains_undetermined (scev))
4357 return;
4358
4359 base = initial_condition_in_loop_num (scev, loop->num);
4360 step = evolution_part_in_loop_num (scev, loop->num);
4361
4362 if (!base || !step
4363 || TREE_CODE (step) != INTEGER_CST
4364 || tree_contains_chrecs (base, NULL)
4365 || chrec_contains_symbols_defined_in_loop (base, loop->num))
4366 return;
4367
4368 low = lower_bound_in_type (type, type);
4369 high = upper_bound_in_type (type, type);
4370 Value_Range r (TREE_TYPE (def));
4371 get_range_query (cfun)->range_of_expr (r, expr: def);
4372 if (!r.varying_p () && !r.undefined_p ())
4373 {
4374 low = wide_int_to_tree (type, cst: r.lower_bound ());
4375 high = wide_int_to_tree (type, cst: r.upper_bound ());
4376 }
4377
4378 record_nonwrapping_chrec (scev);
4379 record_nonwrapping_iv (loop, base, step, stmt, low, high, realistic: false, upper: true);
4380}
4381
4382/* The following analyzers are extracting informations on the bounds
4383 of LOOP from the following undefined behaviors:
4384
4385 - data references should not access elements over the statically
4386 allocated size,
4387
4388 - signed variables should not overflow when flag_wrapv is not set.
4389*/
4390
4391static void
4392infer_loop_bounds_from_undefined (class loop *loop, basic_block *bbs)
4393{
4394 unsigned i;
4395 gimple_stmt_iterator bsi;
4396 basic_block bb;
4397 bool reliable;
4398
4399 for (i = 0; i < loop->num_nodes; i++)
4400 {
4401 bb = bbs[i];
4402
4403 /* If BB is not executed in each iteration of the loop, we cannot
4404 use the operations in it to infer reliable upper bound on the
4405 # of iterations of the loop. However, we can use it as a guess.
4406 Reliable guesses come only from array bounds. */
4407 reliable = dominated_by_p (CDI_DOMINATORS, loop->latch, bb);
4408
4409 for (bsi = gsi_start_bb (bb); !gsi_end_p (i: bsi); gsi_next (i: &bsi))
4410 {
4411 gimple *stmt = gsi_stmt (i: bsi);
4412
4413 infer_loop_bounds_from_array (loop, stmt);
4414
4415 if (reliable)
4416 {
4417 infer_loop_bounds_from_signedness (loop, stmt);
4418 infer_loop_bounds_from_pointer_arith (loop, stmt);
4419 }
4420 }
4421
4422 }
4423}
4424
4425/* Compare wide ints, callback for qsort. */
4426
4427static int
4428wide_int_cmp (const void *p1, const void *p2)
4429{
4430 const bound_wide_int *d1 = (const bound_wide_int *) p1;
4431 const bound_wide_int *d2 = (const bound_wide_int *) p2;
4432 return wi::cmpu (x: *d1, y: *d2);
4433}
4434
4435/* Return index of BOUND in BOUNDS array sorted in increasing order.
4436 Lookup by binary search. */
4437
4438static int
4439bound_index (const vec<bound_wide_int> &bounds, const bound_wide_int &bound)
4440{
4441 unsigned int end = bounds.length ();
4442 unsigned int begin = 0;
4443
4444 /* Find a matching index by means of a binary search. */
4445 while (begin != end)
4446 {
4447 unsigned int middle = (begin + end) / 2;
4448 bound_wide_int index = bounds[middle];
4449
4450 if (index == bound)
4451 return middle;
4452 else if (wi::ltu_p (x: index, y: bound))
4453 begin = middle + 1;
4454 else
4455 end = middle;
4456 }
4457 gcc_unreachable ();
4458}
4459
4460/* We recorded loop bounds only for statements dominating loop latch (and thus
4461 executed each loop iteration). If there are any bounds on statements not
4462 dominating the loop latch we can improve the estimate by walking the loop
4463 body and seeing if every path from loop header to loop latch contains
4464 some bounded statement. */
4465
4466static void
4467discover_iteration_bound_by_body_walk (class loop *loop)
4468{
4469 class nb_iter_bound *elt;
4470 auto_vec<bound_wide_int> bounds;
4471 vec<vec<basic_block> > queues = vNULL;
4472 vec<basic_block> queue = vNULL;
4473 ptrdiff_t queue_index;
4474 ptrdiff_t latch_index = 0;
4475
4476 /* Discover what bounds may interest us. */
4477 for (elt = loop->bounds; elt; elt = elt->next)
4478 {
4479 bound_wide_int bound = elt->bound;
4480
4481 /* Exit terminates loop at given iteration, while non-exits produce undefined
4482 effect on the next iteration. */
4483 if (!elt->is_exit)
4484 {
4485 bound += 1;
4486 /* If an overflow occurred, ignore the result. */
4487 if (bound == 0)
4488 continue;
4489 }
4490
4491 if (!loop->any_upper_bound
4492 || wi::ltu_p (x: bound, y: loop->nb_iterations_upper_bound))
4493 bounds.safe_push (obj: bound);
4494 }
4495
4496 /* Exit early if there is nothing to do. */
4497 if (!bounds.exists ())
4498 return;
4499
4500 if (dump_file && (dump_flags & TDF_DETAILS))
4501 fprintf (stream: dump_file, format: " Trying to walk loop body to reduce the bound.\n");
4502
4503 /* Sort the bounds in decreasing order. */
4504 bounds.qsort (wide_int_cmp);
4505
4506 /* For every basic block record the lowest bound that is guaranteed to
4507 terminate the loop. */
4508
4509 hash_map<basic_block, ptrdiff_t> bb_bounds;
4510 for (elt = loop->bounds; elt; elt = elt->next)
4511 {
4512 bound_wide_int bound = elt->bound;
4513 if (!elt->is_exit)
4514 {
4515 bound += 1;
4516 /* If an overflow occurred, ignore the result. */
4517 if (bound == 0)
4518 continue;
4519 }
4520
4521 if (!loop->any_upper_bound
4522 || wi::ltu_p (x: bound, y: loop->nb_iterations_upper_bound))
4523 {
4524 ptrdiff_t index = bound_index (bounds, bound);
4525 ptrdiff_t *entry = bb_bounds.get (k: gimple_bb (g: elt->stmt));
4526 if (!entry)
4527 bb_bounds.put (k: gimple_bb (g: elt->stmt), v: index);
4528 else if ((ptrdiff_t)*entry > index)
4529 *entry = index;
4530 }
4531 }
4532
4533 hash_map<basic_block, ptrdiff_t> block_priority;
4534
4535 /* Perform shortest path discovery loop->header ... loop->latch.
4536
4537 The "distance" is given by the smallest loop bound of basic block
4538 present in the path and we look for path with largest smallest bound
4539 on it.
4540
4541 To avoid the need for fibonacci heap on double ints we simply compress
4542 double ints into indexes to BOUNDS array and then represent the queue
4543 as arrays of queues for every index.
4544 Index of BOUNDS.length() means that the execution of given BB has
4545 no bounds determined.
4546
4547 VISITED is a pointer map translating basic block into smallest index
4548 it was inserted into the priority queue with. */
4549 latch_index = -1;
4550
4551 /* Start walk in loop header with index set to infinite bound. */
4552 queue_index = bounds.length ();
4553 queues.safe_grow_cleared (len: queue_index + 1, exact: true);
4554 queue.safe_push (obj: loop->header);
4555 queues[queue_index] = queue;
4556 block_priority.put (k: loop->header, v: queue_index);
4557
4558 for (; queue_index >= 0; queue_index--)
4559 {
4560 if (latch_index < queue_index)
4561 {
4562 while (queues[queue_index].length ())
4563 {
4564 basic_block bb;
4565 ptrdiff_t bound_index = queue_index;
4566 edge e;
4567 edge_iterator ei;
4568
4569 queue = queues[queue_index];
4570 bb = queue.pop ();
4571
4572 /* OK, we later inserted the BB with lower priority, skip it. */
4573 if (*block_priority.get (k: bb) > queue_index)
4574 continue;
4575
4576 /* See if we can improve the bound. */
4577 ptrdiff_t *entry = bb_bounds.get (k: bb);
4578 if (entry && *entry < bound_index)
4579 bound_index = *entry;
4580
4581 /* Insert succesors into the queue, watch for latch edge
4582 and record greatest index we saw. */
4583 FOR_EACH_EDGE (e, ei, bb->succs)
4584 {
4585 bool insert = false;
4586
4587 if (loop_exit_edge_p (loop, e))
4588 continue;
4589
4590 if (e == loop_latch_edge (loop)
4591 && latch_index < bound_index)
4592 latch_index = bound_index;
4593 else if (!(entry = block_priority.get (k: e->dest)))
4594 {
4595 insert = true;
4596 block_priority.put (k: e->dest, v: bound_index);
4597 }
4598 else if (*entry < bound_index)
4599 {
4600 insert = true;
4601 *entry = bound_index;
4602 }
4603
4604 if (insert)
4605 queues[bound_index].safe_push (obj: e->dest);
4606 }
4607 }
4608 }
4609 queues[queue_index].release ();
4610 }
4611
4612 gcc_assert (latch_index >= 0);
4613 if ((unsigned)latch_index < bounds.length ())
4614 {
4615 if (dump_file && (dump_flags & TDF_DETAILS))
4616 {
4617 fprintf (stream: dump_file, format: "Found better loop bound ");
4618 print_decu (wi: bounds[latch_index], file: dump_file);
4619 fprintf (stream: dump_file, format: "\n");
4620 }
4621 record_niter_bound (loop, widest_int::from (x: bounds[latch_index],
4622 sgn: SIGNED), false, true);
4623 }
4624
4625 queues.release ();
4626}
4627
4628/* See if every path cross the loop goes through a statement that is known
4629 to not execute at the last iteration. In that case we can decrese iteration
4630 count by 1. */
4631
4632static void
4633maybe_lower_iteration_bound (class loop *loop)
4634{
4635 hash_set<gimple *> *not_executed_last_iteration = NULL;
4636 class nb_iter_bound *elt;
4637 bool found_exit = false;
4638 auto_vec<basic_block> queue;
4639 bitmap visited;
4640
4641 /* Collect all statements with interesting (i.e. lower than
4642 nb_iterations_upper_bound) bound on them.
4643
4644 TODO: Due to the way record_estimate choose estimates to store, the bounds
4645 will be always nb_iterations_upper_bound-1. We can change this to record
4646 also statements not dominating the loop latch and update the walk bellow
4647 to the shortest path algorithm. */
4648 for (elt = loop->bounds; elt; elt = elt->next)
4649 {
4650 if (!elt->is_exit
4651 && wi::ltu_p (x: elt->bound, y: loop->nb_iterations_upper_bound))
4652 {
4653 if (!not_executed_last_iteration)
4654 not_executed_last_iteration = new hash_set<gimple *>;
4655 not_executed_last_iteration->add (k: elt->stmt);
4656 }
4657 }
4658 if (!not_executed_last_iteration)
4659 return;
4660
4661 /* Start DFS walk in the loop header and see if we can reach the
4662 loop latch or any of the exits (including statements with side
4663 effects that may terminate the loop otherwise) without visiting
4664 any of the statements known to have undefined effect on the last
4665 iteration. */
4666 queue.safe_push (obj: loop->header);
4667 visited = BITMAP_ALLOC (NULL);
4668 bitmap_set_bit (visited, loop->header->index);
4669 found_exit = false;
4670
4671 do
4672 {
4673 basic_block bb = queue.pop ();
4674 gimple_stmt_iterator gsi;
4675 bool stmt_found = false;
4676
4677 /* Loop for possible exits and statements bounding the execution. */
4678 for (gsi = gsi_start_bb (bb); !gsi_end_p (i: gsi); gsi_next (i: &gsi))
4679 {
4680 gimple *stmt = gsi_stmt (i: gsi);
4681 if (not_executed_last_iteration->contains (k: stmt))
4682 {
4683 stmt_found = true;
4684 break;
4685 }
4686 if (gimple_has_side_effects (stmt))
4687 {
4688 found_exit = true;
4689 break;
4690 }
4691 }
4692 if (found_exit)
4693 break;
4694
4695 /* If no bounding statement is found, continue the walk. */
4696 if (!stmt_found)
4697 {
4698 edge e;
4699 edge_iterator ei;
4700
4701 FOR_EACH_EDGE (e, ei, bb->succs)
4702 {
4703 if (loop_exit_edge_p (loop, e)
4704 || e == loop_latch_edge (loop))
4705 {
4706 found_exit = true;
4707 break;
4708 }
4709 if (bitmap_set_bit (visited, e->dest->index))
4710 queue.safe_push (obj: e->dest);
4711 }
4712 }
4713 }
4714 while (queue.length () && !found_exit);
4715
4716 /* If every path through the loop reach bounding statement before exit,
4717 then we know the last iteration of the loop will have undefined effect
4718 and we can decrease number of iterations. */
4719
4720 if (!found_exit)
4721 {
4722 if (dump_file && (dump_flags & TDF_DETAILS))
4723 fprintf (stream: dump_file, format: "Reducing loop iteration estimate by 1; "
4724 "undefined statement must be executed at the last iteration.\n");
4725 record_niter_bound (loop, widest_int::from (x: loop->nb_iterations_upper_bound,
4726 sgn: SIGNED) - 1,
4727 false, true);
4728 }
4729
4730 BITMAP_FREE (visited);
4731 delete not_executed_last_iteration;
4732}
4733
4734/* Get expected upper bound for number of loop iterations for
4735 BUILT_IN_EXPECT_WITH_PROBABILITY for a condition COND. */
4736
4737static tree
4738get_upper_bound_based_on_builtin_expr_with_prob (gcond *cond)
4739{
4740 if (cond == NULL)
4741 return NULL_TREE;
4742
4743 tree lhs = gimple_cond_lhs (gs: cond);
4744 if (TREE_CODE (lhs) != SSA_NAME)
4745 return NULL_TREE;
4746
4747 gimple *stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
4748 gcall *def = dyn_cast<gcall *> (p: stmt);
4749 if (def == NULL)
4750 return NULL_TREE;
4751
4752 tree decl = gimple_call_fndecl (gs: def);
4753 if (!decl
4754 || !fndecl_built_in_p (node: decl, name1: BUILT_IN_EXPECT_WITH_PROBABILITY)
4755 || gimple_call_num_args (gs: stmt) != 3)
4756 return NULL_TREE;
4757
4758 tree c = gimple_call_arg (gs: def, index: 1);
4759 tree condt = TREE_TYPE (lhs);
4760 tree res = fold_build2 (gimple_cond_code (cond),
4761 condt, c,
4762 gimple_cond_rhs (cond));
4763 if (TREE_CODE (res) != INTEGER_CST)
4764 return NULL_TREE;
4765
4766
4767 tree prob = gimple_call_arg (gs: def, index: 2);
4768 tree t = TREE_TYPE (prob);
4769 tree one
4770 = build_real_from_int_cst (t,
4771 integer_one_node);
4772 if (integer_zerop (res))
4773 prob = fold_build2 (MINUS_EXPR, t, one, prob);
4774 tree r = fold_build2 (RDIV_EXPR, t, one, prob);
4775 if (TREE_CODE (r) != REAL_CST)
4776 return NULL_TREE;
4777
4778 HOST_WIDE_INT probi
4779 = real_to_integer (TREE_REAL_CST_PTR (r));
4780 return build_int_cst (condt, probi);
4781}
4782
4783/* Records estimates on numbers of iterations of LOOP. If USE_UNDEFINED_P
4784 is true also use estimates derived from undefined behavior. */
4785
4786void
4787estimate_numbers_of_iterations (class loop *loop)
4788{
4789 tree niter, type;
4790 unsigned i;
4791 class tree_niter_desc niter_desc;
4792 edge ex;
4793 widest_int bound;
4794 edge likely_exit;
4795
4796 /* Give up if we already have tried to compute an estimation. */
4797 if (loop->estimate_state != EST_NOT_COMPUTED)
4798 return;
4799
4800 if (dump_file && (dump_flags & TDF_DETAILS))
4801 fprintf (stream: dump_file, format: "Estimating # of iterations of loop %d\n", loop->num);
4802
4803 loop->estimate_state = EST_AVAILABLE;
4804
4805 sreal nit;
4806 bool reliable;
4807
4808 /* If we have a measured profile, use it to estimate the number of
4809 iterations. Normally this is recorded by branch_prob right after
4810 reading the profile. In case we however found a new loop, record the
4811 information here.
4812
4813 Explicitly check for profile status so we do not report
4814 wrong prediction hitrates for guessed loop iterations heuristics.
4815 Do not recompute already recorded bounds - we ought to be better on
4816 updating iteration bounds than updating profile in general and thus
4817 recomputing iteration bounds later in the compilation process will just
4818 introduce random roundoff errors. */
4819 if (!loop->any_estimate
4820 && expected_loop_iterations_by_profile (loop, ret: &nit, reliable: &reliable)
4821 && reliable)
4822 {
4823 bound = nit.to_nearest_int ();
4824 record_niter_bound (loop, bound, true, false);
4825 }
4826
4827 /* Ensure that loop->nb_iterations is computed if possible. If it turns out
4828 to be constant, we avoid undefined behavior implied bounds and instead
4829 diagnose those loops with -Waggressive-loop-optimizations. */
4830 number_of_latch_executions (loop);
4831
4832 basic_block *body = get_loop_body (loop);
4833 auto_vec<edge> exits = get_loop_exit_edges (loop, body);
4834 likely_exit = single_likely_exit (loop, exits);
4835 FOR_EACH_VEC_ELT (exits, i, ex)
4836 {
4837 if (ex == likely_exit)
4838 {
4839 gimple *stmt = *gsi_last_bb (bb: ex->src);
4840 if (stmt != NULL)
4841 {
4842 gcond *cond = dyn_cast<gcond *> (p: stmt);
4843 tree niter_bound
4844 = get_upper_bound_based_on_builtin_expr_with_prob (cond);
4845 if (niter_bound != NULL_TREE)
4846 {
4847 widest_int max = derive_constant_upper_bound (val: niter_bound);
4848 record_estimate (loop, bound: niter_bound, i_bound: max, at_stmt: cond,
4849 is_exit: true, realistic: true, upper: false);
4850 }
4851 }
4852 }
4853
4854 if (!number_of_iterations_exit (loop, exit: ex, niter: &niter_desc,
4855 warn: false, every_iteration: false, body))
4856 continue;
4857
4858 niter = niter_desc.niter;
4859 type = TREE_TYPE (niter);
4860 if (TREE_CODE (niter_desc.may_be_zero) != INTEGER_CST)
4861 niter = build3 (COND_EXPR, type, niter_desc.may_be_zero,
4862 build_int_cst (type, 0),
4863 niter);
4864 record_estimate (loop, bound: niter, i_bound: niter_desc.max,
4865 at_stmt: last_nondebug_stmt (ex->src),
4866 is_exit: true, realistic: ex == likely_exit, upper: true);
4867 record_control_iv (loop, niter: &niter_desc);
4868 }
4869
4870 if (flag_aggressive_loop_optimizations)
4871 infer_loop_bounds_from_undefined (loop, bbs: body);
4872 free (ptr: body);
4873
4874 discover_iteration_bound_by_body_walk (loop);
4875
4876 maybe_lower_iteration_bound (loop);
4877
4878 /* If we know the exact number of iterations of this loop, try to
4879 not break code with undefined behavior by not recording smaller
4880 maximum number of iterations. */
4881 if (loop->nb_iterations
4882 && TREE_CODE (loop->nb_iterations) == INTEGER_CST
4883 && (wi::min_precision (x: wi::to_widest (t: loop->nb_iterations), sgn: SIGNED)
4884 <= bound_wide_int ().get_precision ()))
4885 {
4886 loop->any_upper_bound = true;
4887 loop->nb_iterations_upper_bound
4888 = bound_wide_int::from (x: wi::to_widest (t: loop->nb_iterations), sgn: SIGNED);
4889 }
4890}
4891
4892/* Sets NIT to the estimated number of executions of the latch of the
4893 LOOP. If CONSERVATIVE is true, we must be sure that NIT is at least as
4894 large as the number of iterations. If we have no reliable estimate,
4895 the function returns false, otherwise returns true. */
4896
4897bool
4898estimated_loop_iterations (class loop *loop, widest_int *nit)
4899{
4900 /* When SCEV information is available, try to update loop iterations
4901 estimate. Otherwise just return whatever we recorded earlier. */
4902 if (scev_initialized_p ())
4903 estimate_numbers_of_iterations (loop);
4904
4905 return (get_estimated_loop_iterations (loop, nit));
4906}
4907
4908/* Similar to estimated_loop_iterations, but returns the estimate only
4909 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4910 on the number of iterations of LOOP could not be derived, returns -1. */
4911
4912HOST_WIDE_INT
4913estimated_loop_iterations_int (class loop *loop)
4914{
4915 widest_int nit;
4916 HOST_WIDE_INT hwi_nit;
4917
4918 if (!estimated_loop_iterations (loop, nit: &nit))
4919 return -1;
4920
4921 if (!wi::fits_shwi_p (x: nit))
4922 return -1;
4923 hwi_nit = nit.to_shwi ();
4924
4925 return hwi_nit < 0 ? -1 : hwi_nit;
4926}
4927
4928
4929/* Sets NIT to an upper bound for the maximum number of executions of the
4930 latch of the LOOP. If we have no reliable estimate, the function returns
4931 false, otherwise returns true. */
4932
4933bool
4934max_loop_iterations (class loop *loop, widest_int *nit)
4935{
4936 /* When SCEV information is available, try to update loop iterations
4937 estimate. Otherwise just return whatever we recorded earlier. */
4938 if (scev_initialized_p ())
4939 estimate_numbers_of_iterations (loop);
4940
4941 return get_max_loop_iterations (loop, nit);
4942}
4943
4944/* Similar to max_loop_iterations, but returns the estimate only
4945 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4946 on the number of iterations of LOOP could not be derived, returns -1. */
4947
4948HOST_WIDE_INT
4949max_loop_iterations_int (class loop *loop)
4950{
4951 widest_int nit;
4952 HOST_WIDE_INT hwi_nit;
4953
4954 if (!max_loop_iterations (loop, nit: &nit))
4955 return -1;
4956
4957 if (!wi::fits_shwi_p (x: nit))
4958 return -1;
4959 hwi_nit = nit.to_shwi ();
4960
4961 return hwi_nit < 0 ? -1 : hwi_nit;
4962}
4963
4964/* Sets NIT to an likely upper bound for the maximum number of executions of the
4965 latch of the LOOP. If we have no reliable estimate, the function returns
4966 false, otherwise returns true. */
4967
4968bool
4969likely_max_loop_iterations (class loop *loop, widest_int *nit)
4970{
4971 /* When SCEV information is available, try to update loop iterations
4972 estimate. Otherwise just return whatever we recorded earlier. */
4973 if (scev_initialized_p ())
4974 estimate_numbers_of_iterations (loop);
4975
4976 return get_likely_max_loop_iterations (loop, nit);
4977}
4978
4979/* Similar to max_loop_iterations, but returns the estimate only
4980 if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
4981 on the number of iterations of LOOP could not be derived, returns -1. */
4982
4983HOST_WIDE_INT
4984likely_max_loop_iterations_int (class loop *loop)
4985{
4986 widest_int nit;
4987 HOST_WIDE_INT hwi_nit;
4988
4989 if (!likely_max_loop_iterations (loop, nit: &nit))
4990 return -1;
4991
4992 if (!wi::fits_shwi_p (x: nit))
4993 return -1;
4994 hwi_nit = nit.to_shwi ();
4995
4996 return hwi_nit < 0 ? -1 : hwi_nit;
4997}
4998
4999/* Returns an estimate for the number of executions of statements
5000 in the LOOP. For statements before the loop exit, this exceeds
5001 the number of execution of the latch by one. */
5002
5003HOST_WIDE_INT
5004estimated_stmt_executions_int (class loop *loop)
5005{
5006 HOST_WIDE_INT nit = estimated_loop_iterations_int (loop);
5007 HOST_WIDE_INT snit;
5008
5009 if (nit == -1)
5010 return -1;
5011
5012 snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
5013
5014 /* If the computation overflows, return -1. */
5015 return snit < 0 ? -1 : snit;
5016}
5017
5018/* Sets NIT to the maximum number of executions of the latch of the
5019 LOOP, plus one. If we have no reliable estimate, the function returns
5020 false, otherwise returns true. */
5021
5022bool
5023max_stmt_executions (class loop *loop, widest_int *nit)
5024{
5025 widest_int nit_minus_one;
5026
5027 if (!max_loop_iterations (loop, nit))
5028 return false;
5029
5030 nit_minus_one = *nit;
5031
5032 *nit += 1;
5033
5034 return wi::gtu_p (x: *nit, y: nit_minus_one);
5035}
5036
5037/* Sets NIT to the estimated maximum number of executions of the latch of the
5038 LOOP, plus one. If we have no likely estimate, the function returns
5039 false, otherwise returns true. */
5040
5041bool
5042likely_max_stmt_executions (class loop *loop, widest_int *nit)
5043{
5044 widest_int nit_minus_one;
5045
5046 if (!likely_max_loop_iterations (loop, nit))
5047 return false;
5048
5049 nit_minus_one = *nit;
5050
5051 *nit += 1;
5052
5053 return wi::gtu_p (x: *nit, y: nit_minus_one);
5054}
5055
5056/* Sets NIT to the estimated number of executions of the latch of the
5057 LOOP, plus one. If we have no reliable estimate, the function returns
5058 false, otherwise returns true. */
5059
5060bool
5061estimated_stmt_executions (class loop *loop, widest_int *nit)
5062{
5063 widest_int nit_minus_one;
5064
5065 if (!estimated_loop_iterations (loop, nit))
5066 return false;
5067
5068 nit_minus_one = *nit;
5069
5070 *nit += 1;
5071
5072 return wi::gtu_p (x: *nit, y: nit_minus_one);
5073}
5074
5075/* Records estimates on numbers of iterations of loops. */
5076
5077void
5078estimate_numbers_of_iterations (function *fn)
5079{
5080 /* We don't want to issue signed overflow warnings while getting
5081 loop iteration estimates. */
5082 fold_defer_overflow_warnings ();
5083
5084 for (auto loop : loops_list (fn, 0))
5085 estimate_numbers_of_iterations (loop);
5086
5087 fold_undefer_and_ignore_overflow_warnings ();
5088}
5089
5090/* Returns true if statement S1 dominates statement S2. */
5091
5092bool
5093stmt_dominates_stmt_p (gimple *s1, gimple *s2)
5094{
5095 basic_block bb1 = gimple_bb (g: s1), bb2 = gimple_bb (g: s2);
5096
5097 if (!bb1
5098 || s1 == s2)
5099 return true;
5100
5101 if (bb1 == bb2)
5102 {
5103 gimple_stmt_iterator bsi;
5104
5105 if (gimple_code (g: s2) == GIMPLE_PHI)
5106 return false;
5107
5108 if (gimple_code (g: s1) == GIMPLE_PHI)
5109 return true;
5110
5111 for (bsi = gsi_start_bb (bb: bb1); gsi_stmt (i: bsi) != s2; gsi_next (i: &bsi))
5112 if (gsi_stmt (i: bsi) == s1)
5113 return true;
5114
5115 return false;
5116 }
5117
5118 return dominated_by_p (CDI_DOMINATORS, bb2, bb1);
5119}
5120
5121/* Returns true when we can prove that the number of executions of
5122 STMT in the loop is at most NITER, according to the bound on
5123 the number of executions of the statement NITER_BOUND->stmt recorded in
5124 NITER_BOUND and fact that NITER_BOUND->stmt dominate STMT.
5125
5126 ??? This code can become quite a CPU hog - we can have many bounds,
5127 and large basic block forcing stmt_dominates_stmt_p to be queried
5128 many times on a large basic blocks, so the whole thing is O(n^2)
5129 for scev_probably_wraps_p invocation (that can be done n times).
5130
5131 It would make more sense (and give better answers) to remember BB
5132 bounds computed by discover_iteration_bound_by_body_walk. */
5133
5134static bool
5135n_of_executions_at_most (gimple *stmt,
5136 class nb_iter_bound *niter_bound,
5137 tree niter)
5138{
5139 widest_int bound = widest_int::from (x: niter_bound->bound, sgn: SIGNED);
5140 tree nit_type = TREE_TYPE (niter), e;
5141 enum tree_code cmp;
5142
5143 gcc_assert (TYPE_UNSIGNED (nit_type));
5144
5145 /* If the bound does not even fit into NIT_TYPE, it cannot tell us that
5146 the number of iterations is small. */
5147 if (!wi::fits_to_tree_p (x: bound, type: nit_type))
5148 return false;
5149
5150 /* We know that NITER_BOUND->stmt is executed at most NITER_BOUND->bound + 1
5151 times. This means that:
5152
5153 -- if NITER_BOUND->is_exit is true, then everything after
5154 it at most NITER_BOUND->bound times.
5155
5156 -- If NITER_BOUND->is_exit is false, then if we can prove that when STMT
5157 is executed, then NITER_BOUND->stmt is executed as well in the same
5158 iteration then STMT is executed at most NITER_BOUND->bound + 1 times.
5159
5160 If we can determine that NITER_BOUND->stmt is always executed
5161 after STMT, then STMT is executed at most NITER_BOUND->bound + 2 times.
5162 We conclude that if both statements belong to the same
5163 basic block and STMT is before NITER_BOUND->stmt and there are no
5164 statements with side effects in between. */
5165
5166 if (niter_bound->is_exit)
5167 {
5168 if (stmt == niter_bound->stmt
5169 || !stmt_dominates_stmt_p (s1: niter_bound->stmt, s2: stmt))
5170 return false;
5171 cmp = GE_EXPR;
5172 }
5173 else
5174 {
5175 if (!stmt_dominates_stmt_p (s1: niter_bound->stmt, s2: stmt))
5176 {
5177 gimple_stmt_iterator bsi;
5178 if (gimple_bb (g: stmt) != gimple_bb (g: niter_bound->stmt)
5179 || gimple_code (g: stmt) == GIMPLE_PHI
5180 || gimple_code (g: niter_bound->stmt) == GIMPLE_PHI)
5181 return false;
5182
5183 /* By stmt_dominates_stmt_p we already know that STMT appears
5184 before NITER_BOUND->STMT. Still need to test that the loop
5185 cannot be terinated by a side effect in between. */
5186 for (bsi = gsi_for_stmt (stmt); gsi_stmt (i: bsi) != niter_bound->stmt;
5187 gsi_next (i: &bsi))
5188 if (gimple_has_side_effects (gsi_stmt (i: bsi)))
5189 return false;
5190 bound += 1;
5191 if (bound == 0
5192 || !wi::fits_to_tree_p (x: bound, type: nit_type))
5193 return false;
5194 }
5195 cmp = GT_EXPR;
5196 }
5197
5198 e = fold_binary (cmp, boolean_type_node,
5199 niter, wide_int_to_tree (nit_type, bound));
5200 return e && integer_nonzerop (e);
5201}
5202
5203/* Returns true if the arithmetics in TYPE can be assumed not to wrap. */
5204
5205bool
5206nowrap_type_p (tree type)
5207{
5208 if (ANY_INTEGRAL_TYPE_P (type)
5209 && TYPE_OVERFLOW_UNDEFINED (type))
5210 return true;
5211
5212 if (POINTER_TYPE_P (type))
5213 return true;
5214
5215 return false;
5216}
5217
5218/* Return true if we can prove LOOP is exited before evolution of induction
5219 variable {BASE, STEP} overflows with respect to its type bound. */
5220
5221static bool
5222loop_exits_before_overflow (tree base, tree step,
5223 gimple *at_stmt, class loop *loop)
5224{
5225 widest_int niter;
5226 struct control_iv *civ;
5227 class nb_iter_bound *bound;
5228 tree e, delta, step_abs, unsigned_base;
5229 tree type = TREE_TYPE (step);
5230 tree unsigned_type, valid_niter;
5231
5232 /* Don't issue signed overflow warnings. */
5233 fold_defer_overflow_warnings ();
5234
5235 /* Compute the number of iterations before we reach the bound of the
5236 type, and verify that the loop is exited before this occurs. */
5237 unsigned_type = unsigned_type_for (type);
5238 unsigned_base = fold_convert (unsigned_type, base);
5239
5240 if (tree_int_cst_sign_bit (step))
5241 {
5242 tree extreme = fold_convert (unsigned_type,
5243 lower_bound_in_type (type, type));
5244 delta = fold_build2 (MINUS_EXPR, unsigned_type, unsigned_base, extreme);
5245 step_abs = fold_build1 (NEGATE_EXPR, unsigned_type,
5246 fold_convert (unsigned_type, step));
5247 }
5248 else
5249 {
5250 tree extreme = fold_convert (unsigned_type,
5251 upper_bound_in_type (type, type));
5252 delta = fold_build2 (MINUS_EXPR, unsigned_type, extreme, unsigned_base);
5253 step_abs = fold_convert (unsigned_type, step);
5254 }
5255
5256 valid_niter = fold_build2 (FLOOR_DIV_EXPR, unsigned_type, delta, step_abs);
5257
5258 estimate_numbers_of_iterations (loop);
5259
5260 if (max_loop_iterations (loop, nit: &niter)
5261 && wi::fits_to_tree_p (x: niter, TREE_TYPE (valid_niter))
5262 && (e = fold_binary (GT_EXPR, boolean_type_node, valid_niter,
5263 wide_int_to_tree (TREE_TYPE (valid_niter),
5264 niter))) != NULL
5265 && integer_nonzerop (e))
5266 {
5267 fold_undefer_and_ignore_overflow_warnings ();
5268 return true;
5269 }
5270 if (at_stmt)
5271 for (bound = loop->bounds; bound; bound = bound->next)
5272 {
5273 if (n_of_executions_at_most (stmt: at_stmt, niter_bound: bound, niter: valid_niter))
5274 {
5275 fold_undefer_and_ignore_overflow_warnings ();
5276 return true;
5277 }
5278 }
5279 fold_undefer_and_ignore_overflow_warnings ();
5280
5281 /* Try to prove loop is exited before {base, step} overflows with the
5282 help of analyzed loop control IV. This is done only for IVs with
5283 constant step because otherwise we don't have the information. */
5284 if (TREE_CODE (step) == INTEGER_CST)
5285 {
5286 for (civ = loop->control_ivs; civ; civ = civ->next)
5287 {
5288 enum tree_code code;
5289 tree civ_type = TREE_TYPE (civ->step);
5290
5291 /* Have to consider type difference because operand_equal_p ignores
5292 that for constants. */
5293 if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (civ_type)
5294 || element_precision (type) != element_precision (civ_type))
5295 continue;
5296
5297 /* Only consider control IV with same step. */
5298 if (!operand_equal_p (step, civ->step, flags: 0))
5299 continue;
5300
5301 /* Done proving if this is a no-overflow control IV. */
5302 if (operand_equal_p (base, civ->base, flags: 0))
5303 return true;
5304
5305 /* Control IV is recorded after expanding simple operations,
5306 Here we expand base and compare it too. */
5307 tree expanded_base = expand_simple_operations (expr: base);
5308 if (operand_equal_p (expanded_base, civ->base, flags: 0))
5309 return true;
5310
5311 /* If this is a before stepping control IV, in other words, we have
5312
5313 {civ_base, step} = {base + step, step}
5314
5315 Because civ {base + step, step} doesn't overflow during loop
5316 iterations, {base, step} will not overflow if we can prove the
5317 operation "base + step" does not overflow. Specifically, we try
5318 to prove below conditions are satisfied:
5319
5320 base <= UPPER_BOUND (type) - step ;;step > 0
5321 base >= LOWER_BOUND (type) - step ;;step < 0
5322
5323 by proving the reverse conditions are false using loop's initial
5324 condition. */
5325 if (POINTER_TYPE_P (TREE_TYPE (base)))
5326 code = POINTER_PLUS_EXPR;
5327 else
5328 code = PLUS_EXPR;
5329
5330 tree stepped = fold_build2 (code, TREE_TYPE (base), base, step);
5331 tree expanded_stepped = fold_build2 (code, TREE_TYPE (base),
5332 expanded_base, step);
5333 if (operand_equal_p (stepped, civ->base, flags: 0)
5334 || operand_equal_p (expanded_stepped, civ->base, flags: 0))
5335 {
5336 tree extreme;
5337
5338 if (tree_int_cst_sign_bit (step))
5339 {
5340 code = LT_EXPR;
5341 extreme = lower_bound_in_type (type, type);
5342 }
5343 else
5344 {
5345 code = GT_EXPR;
5346 extreme = upper_bound_in_type (type, type);
5347 }
5348 extreme = fold_build2 (MINUS_EXPR, type, extreme, step);
5349 e = fold_build2 (code, boolean_type_node, base, extreme);
5350 e = simplify_using_initial_conditions (loop, expr: e);
5351 if (integer_zerop (e))
5352 return true;
5353 }
5354 }
5355 }
5356
5357 return false;
5358}
5359
5360/* VAR is scev variable whose evolution part is constant STEP, this function
5361 proves that VAR can't overflow by using value range info. If VAR's value
5362 range is [MIN, MAX], it can be proven by:
5363 MAX + step doesn't overflow ; if step > 0
5364 or
5365 MIN + step doesn't underflow ; if step < 0.
5366
5367 We can only do this if var is computed in every loop iteration, i.e, var's
5368 definition has to dominate loop latch. Consider below example:
5369
5370 {
5371 unsigned int i;
5372
5373 <bb 3>:
5374
5375 <bb 4>:
5376 # RANGE [0, 4294967294] NONZERO 65535
5377 # i_21 = PHI <0(3), i_18(9)>
5378 if (i_21 != 0)
5379 goto <bb 6>;
5380 else
5381 goto <bb 8>;
5382
5383 <bb 6>:
5384 # RANGE [0, 65533] NONZERO 65535
5385 _6 = i_21 + 4294967295;
5386 # RANGE [0, 65533] NONZERO 65535
5387 _7 = (long unsigned int) _6;
5388 # RANGE [0, 524264] NONZERO 524280
5389 _8 = _7 * 8;
5390 # PT = nonlocal escaped
5391 _9 = a_14 + _8;
5392 *_9 = 0;
5393
5394 <bb 8>:
5395 # RANGE [1, 65535] NONZERO 65535
5396 i_18 = i_21 + 1;
5397 if (i_18 >= 65535)
5398 goto <bb 10>;
5399 else
5400 goto <bb 9>;
5401
5402 <bb 9>:
5403 goto <bb 4>;
5404
5405 <bb 10>:
5406 return;
5407 }
5408
5409 VAR _6 doesn't overflow only with pre-condition (i_21 != 0), here we
5410 can't use _6 to prove no-overlfow for _7. In fact, var _7 takes value
5411 sequence (4294967295, 0, 1, ..., 65533) in loop life time, rather than
5412 (4294967295, 4294967296, ...). */
5413
5414static bool
5415scev_var_range_cant_overflow (tree var, tree step, class loop *loop)
5416{
5417 tree type;
5418 wide_int minv, maxv, diff, step_wi;
5419
5420 if (TREE_CODE (step) != INTEGER_CST || !INTEGRAL_TYPE_P (TREE_TYPE (var)))
5421 return false;
5422
5423 /* Check if VAR evaluates in every loop iteration. It's not the case
5424 if VAR is default definition or does not dominate loop's latch. */
5425 basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (var));
5426 if (!def_bb || !dominated_by_p (CDI_DOMINATORS, loop->latch, def_bb))
5427 return false;
5428
5429 Value_Range r (TREE_TYPE (var));
5430 get_range_query (cfun)->range_of_expr (r, expr: var);
5431 if (r.varying_p () || r.undefined_p ())
5432 return false;
5433
5434 /* VAR is a scev whose evolution part is STEP and value range info
5435 is [MIN, MAX], we can prove its no-overflowness by conditions:
5436
5437 type_MAX - MAX >= step ; if step > 0
5438 MIN - type_MIN >= |step| ; if step < 0.
5439
5440 Or VAR must take value outside of value range, which is not true. */
5441 step_wi = wi::to_wide (t: step);
5442 type = TREE_TYPE (var);
5443 if (tree_int_cst_sign_bit (step))
5444 {
5445 diff = r.lower_bound () - wi::to_wide (t: lower_bound_in_type (type, type));
5446 step_wi = - step_wi;
5447 }
5448 else
5449 diff = wi::to_wide (t: upper_bound_in_type (type, type)) - r.upper_bound ();
5450
5451 return (wi::geu_p (x: diff, y: step_wi));
5452}
5453
5454/* Return false only when the induction variable BASE + STEP * I is
5455 known to not overflow: i.e. when the number of iterations is small
5456 enough with respect to the step and initial condition in order to
5457 keep the evolution confined in TYPEs bounds. Return true when the
5458 iv is known to overflow or when the property is not computable.
5459
5460 USE_OVERFLOW_SEMANTICS is true if this function should assume that
5461 the rules for overflow of the given language apply (e.g., that signed
5462 arithmetics in C does not overflow).
5463
5464 If VAR is a ssa variable, this function also returns false if VAR can
5465 be proven not overflow with value range info. */
5466
5467bool
5468scev_probably_wraps_p (tree var, tree base, tree step,
5469 gimple *at_stmt, class loop *loop,
5470 bool use_overflow_semantics)
5471{
5472 /* FIXME: We really need something like
5473 http://gcc.gnu.org/ml/gcc-patches/2005-06/msg02025.html.
5474
5475 We used to test for the following situation that frequently appears
5476 during address arithmetics:
5477
5478 D.1621_13 = (long unsigned intD.4) D.1620_12;
5479 D.1622_14 = D.1621_13 * 8;
5480 D.1623_15 = (doubleD.29 *) D.1622_14;
5481
5482 And derived that the sequence corresponding to D_14
5483 can be proved to not wrap because it is used for computing a
5484 memory access; however, this is not really the case -- for example,
5485 if D_12 = (unsigned char) [254,+,1], then D_14 has values
5486 2032, 2040, 0, 8, ..., but the code is still legal. */
5487
5488 if (chrec_contains_undetermined (base)
5489 || chrec_contains_undetermined (step))
5490 return true;
5491
5492 if (integer_zerop (step))
5493 return false;
5494
5495 /* If we can use the fact that signed and pointer arithmetics does not
5496 wrap, we are done. */
5497 if (use_overflow_semantics && nowrap_type_p (TREE_TYPE (base)))
5498 return false;
5499
5500 /* To be able to use estimates on number of iterations of the loop,
5501 we must have an upper bound on the absolute value of the step. */
5502 if (TREE_CODE (step) != INTEGER_CST)
5503 return true;
5504
5505 /* Check if var can be proven not overflow with value range info. */
5506 if (var && TREE_CODE (var) == SSA_NAME
5507 && scev_var_range_cant_overflow (var, step, loop))
5508 return false;
5509
5510 if (loop_exits_before_overflow (base, step, at_stmt, loop))
5511 return false;
5512
5513 /* Check the nonwrapping flag, which may be set by niter analysis (e.g., the
5514 above loop exits before overflow). */
5515 if (var && nonwrapping_chrec_p (analyze_scalar_evolution (loop, var)))
5516 return false;
5517
5518 /* At this point we still don't have a proof that the iv does not
5519 overflow: give up. */
5520 return true;
5521}
5522
5523/* Frees the information on upper bounds on numbers of iterations of LOOP. */
5524
5525void
5526free_numbers_of_iterations_estimates (class loop *loop)
5527{
5528 struct control_iv *civ;
5529 class nb_iter_bound *bound;
5530
5531 loop->nb_iterations = NULL;
5532 loop->estimate_state = EST_NOT_COMPUTED;
5533 for (bound = loop->bounds; bound;)
5534 {
5535 class nb_iter_bound *next = bound->next;
5536 ggc_free (bound);
5537 bound = next;
5538 }
5539 loop->bounds = NULL;
5540
5541 for (civ = loop->control_ivs; civ;)
5542 {
5543 struct control_iv *next = civ->next;
5544 ggc_free (civ);
5545 civ = next;
5546 }
5547 loop->control_ivs = NULL;
5548}
5549
5550/* Frees the information on upper bounds on numbers of iterations of loops. */
5551
5552void
5553free_numbers_of_iterations_estimates (function *fn)
5554{
5555 for (auto loop : loops_list (fn, 0))
5556 free_numbers_of_iterations_estimates (loop);
5557}
5558
5559/* Substitute value VAL for ssa name NAME inside expressions held
5560 at LOOP. */
5561
5562void
5563substitute_in_loop_info (class loop *loop, tree name, tree val)
5564{
5565 loop->nb_iterations = simplify_replace_tree (expr: loop->nb_iterations, old: name, new_tree: val);
5566}
5567

source code of gcc/tree-ssa-loop-niter.cc