1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * xsave/xrstor support.
4 *
5 * Author: Suresh Siddha <suresh.b.siddha@intel.com>
6 */
7#include <linux/bitops.h>
8#include <linux/compat.h>
9#include <linux/cpu.h>
10#include <linux/mman.h>
11#include <linux/nospec.h>
12#include <linux/pkeys.h>
13#include <linux/seq_file.h>
14#include <linux/proc_fs.h>
15#include <linux/vmalloc.h>
16
17#include <asm/fpu/api.h>
18#include <asm/fpu/regset.h>
19#include <asm/fpu/signal.h>
20#include <asm/fpu/xcr.h>
21
22#include <asm/tlbflush.h>
23#include <asm/prctl.h>
24#include <asm/elf.h>
25
26#include "context.h"
27#include "internal.h"
28#include "legacy.h"
29#include "xstate.h"
30
31#define for_each_extended_xfeature(bit, mask) \
32 (bit) = FIRST_EXTENDED_XFEATURE; \
33 for_each_set_bit_from(bit, (unsigned long *)&(mask), 8 * sizeof(mask))
34
35/*
36 * Although we spell it out in here, the Processor Trace
37 * xfeature is completely unused. We use other mechanisms
38 * to save/restore PT state in Linux.
39 */
40static const char *xfeature_names[] =
41{
42 "x87 floating point registers",
43 "SSE registers",
44 "AVX registers",
45 "MPX bounds registers",
46 "MPX CSR",
47 "AVX-512 opmask",
48 "AVX-512 Hi256",
49 "AVX-512 ZMM_Hi256",
50 "Processor Trace (unused)",
51 "Protection Keys User registers",
52 "PASID state",
53 "Control-flow User registers",
54 "Control-flow Kernel registers (unused)",
55 "unknown xstate feature",
56 "unknown xstate feature",
57 "unknown xstate feature",
58 "unknown xstate feature",
59 "AMX Tile config",
60 "AMX Tile data",
61 "unknown xstate feature",
62};
63
64static unsigned short xsave_cpuid_features[] __initdata = {
65 [XFEATURE_FP] = X86_FEATURE_FPU,
66 [XFEATURE_SSE] = X86_FEATURE_XMM,
67 [XFEATURE_YMM] = X86_FEATURE_AVX,
68 [XFEATURE_BNDREGS] = X86_FEATURE_MPX,
69 [XFEATURE_BNDCSR] = X86_FEATURE_MPX,
70 [XFEATURE_OPMASK] = X86_FEATURE_AVX512F,
71 [XFEATURE_ZMM_Hi256] = X86_FEATURE_AVX512F,
72 [XFEATURE_Hi16_ZMM] = X86_FEATURE_AVX512F,
73 [XFEATURE_PT_UNIMPLEMENTED_SO_FAR] = X86_FEATURE_INTEL_PT,
74 [XFEATURE_PKRU] = X86_FEATURE_OSPKE,
75 [XFEATURE_PASID] = X86_FEATURE_ENQCMD,
76 [XFEATURE_CET_USER] = X86_FEATURE_SHSTK,
77 [XFEATURE_XTILE_CFG] = X86_FEATURE_AMX_TILE,
78 [XFEATURE_XTILE_DATA] = X86_FEATURE_AMX_TILE,
79};
80
81static unsigned int xstate_offsets[XFEATURE_MAX] __ro_after_init =
82 { [ 0 ... XFEATURE_MAX - 1] = -1};
83static unsigned int xstate_sizes[XFEATURE_MAX] __ro_after_init =
84 { [ 0 ... XFEATURE_MAX - 1] = -1};
85static unsigned int xstate_flags[XFEATURE_MAX] __ro_after_init;
86
87#define XSTATE_FLAG_SUPERVISOR BIT(0)
88#define XSTATE_FLAG_ALIGNED64 BIT(1)
89
90/*
91 * Return whether the system supports a given xfeature.
92 *
93 * Also return the name of the (most advanced) feature that the caller requested:
94 */
95int cpu_has_xfeatures(u64 xfeatures_needed, const char **feature_name)
96{
97 u64 xfeatures_missing = xfeatures_needed & ~fpu_kernel_cfg.max_features;
98
99 if (unlikely(feature_name)) {
100 long xfeature_idx, max_idx;
101 u64 xfeatures_print;
102 /*
103 * So we use FLS here to be able to print the most advanced
104 * feature that was requested but is missing. So if a driver
105 * asks about "XFEATURE_MASK_SSE | XFEATURE_MASK_YMM" we'll print the
106 * missing AVX feature - this is the most informative message
107 * to users:
108 */
109 if (xfeatures_missing)
110 xfeatures_print = xfeatures_missing;
111 else
112 xfeatures_print = xfeatures_needed;
113
114 xfeature_idx = fls64(x: xfeatures_print)-1;
115 max_idx = ARRAY_SIZE(xfeature_names)-1;
116 xfeature_idx = min(xfeature_idx, max_idx);
117
118 *feature_name = xfeature_names[xfeature_idx];
119 }
120
121 if (xfeatures_missing)
122 return 0;
123
124 return 1;
125}
126EXPORT_SYMBOL_GPL(cpu_has_xfeatures);
127
128static bool xfeature_is_aligned64(int xfeature_nr)
129{
130 return xstate_flags[xfeature_nr] & XSTATE_FLAG_ALIGNED64;
131}
132
133static bool xfeature_is_supervisor(int xfeature_nr)
134{
135 return xstate_flags[xfeature_nr] & XSTATE_FLAG_SUPERVISOR;
136}
137
138static unsigned int xfeature_get_offset(u64 xcomp_bv, int xfeature)
139{
140 unsigned int offs, i;
141
142 /*
143 * Non-compacted format and legacy features use the cached fixed
144 * offsets.
145 */
146 if (!cpu_feature_enabled(X86_FEATURE_XCOMPACTED) ||
147 xfeature <= XFEATURE_SSE)
148 return xstate_offsets[xfeature];
149
150 /*
151 * Compacted format offsets depend on the actual content of the
152 * compacted xsave area which is determined by the xcomp_bv header
153 * field.
154 */
155 offs = FXSAVE_SIZE + XSAVE_HDR_SIZE;
156 for_each_extended_xfeature(i, xcomp_bv) {
157 if (xfeature_is_aligned64(xfeature_nr: i))
158 offs = ALIGN(offs, 64);
159 if (i == xfeature)
160 break;
161 offs += xstate_sizes[i];
162 }
163 return offs;
164}
165
166/*
167 * Enable the extended processor state save/restore feature.
168 * Called once per CPU onlining.
169 */
170void fpu__init_cpu_xstate(void)
171{
172 if (!boot_cpu_has(X86_FEATURE_XSAVE) || !fpu_kernel_cfg.max_features)
173 return;
174
175 cr4_set_bits(X86_CR4_OSXSAVE);
176
177 /*
178 * Must happen after CR4 setup and before xsetbv() to allow KVM
179 * lazy passthrough. Write independent of the dynamic state static
180 * key as that does not work on the boot CPU. This also ensures
181 * that any stale state is wiped out from XFD. Reset the per CPU
182 * xfd cache too.
183 */
184 if (cpu_feature_enabled(X86_FEATURE_XFD))
185 xfd_set_state(xfd: init_fpstate.xfd);
186
187 /*
188 * XCR_XFEATURE_ENABLED_MASK (aka. XCR0) sets user features
189 * managed by XSAVE{C, OPT, S} and XRSTOR{S}. Only XSAVE user
190 * states can be set here.
191 */
192 xsetbv(XCR_XFEATURE_ENABLED_MASK, value: fpu_user_cfg.max_features);
193
194 /*
195 * MSR_IA32_XSS sets supervisor states managed by XSAVES.
196 */
197 if (boot_cpu_has(X86_FEATURE_XSAVES)) {
198 wrmsrl(MSR_IA32_XSS, val: xfeatures_mask_supervisor() |
199 xfeatures_mask_independent());
200 }
201}
202
203static bool xfeature_enabled(enum xfeature xfeature)
204{
205 return fpu_kernel_cfg.max_features & BIT_ULL(xfeature);
206}
207
208/*
209 * Record the offsets and sizes of various xstates contained
210 * in the XSAVE state memory layout.
211 */
212static void __init setup_xstate_cache(void)
213{
214 u32 eax, ebx, ecx, edx, i;
215 /* start at the beginning of the "extended state" */
216 unsigned int last_good_offset = offsetof(struct xregs_state,
217 extended_state_area);
218 /*
219 * The FP xstates and SSE xstates are legacy states. They are always
220 * in the fixed offsets in the xsave area in either compacted form
221 * or standard form.
222 */
223 xstate_offsets[XFEATURE_FP] = 0;
224 xstate_sizes[XFEATURE_FP] = offsetof(struct fxregs_state,
225 xmm_space);
226
227 xstate_offsets[XFEATURE_SSE] = xstate_sizes[XFEATURE_FP];
228 xstate_sizes[XFEATURE_SSE] = sizeof_field(struct fxregs_state,
229 xmm_space);
230
231 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
232 cpuid_count(XSTATE_CPUID, count: i, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
233
234 xstate_sizes[i] = eax;
235 xstate_flags[i] = ecx;
236
237 /*
238 * If an xfeature is supervisor state, the offset in EBX is
239 * invalid, leave it to -1.
240 */
241 if (xfeature_is_supervisor(xfeature_nr: i))
242 continue;
243
244 xstate_offsets[i] = ebx;
245
246 /*
247 * In our xstate size checks, we assume that the highest-numbered
248 * xstate feature has the highest offset in the buffer. Ensure
249 * it does.
250 */
251 WARN_ONCE(last_good_offset > xstate_offsets[i],
252 "x86/fpu: misordered xstate at %d\n", last_good_offset);
253
254 last_good_offset = xstate_offsets[i];
255 }
256}
257
258static void __init print_xstate_feature(u64 xstate_mask)
259{
260 const char *feature_name;
261
262 if (cpu_has_xfeatures(xstate_mask, &feature_name))
263 pr_info("x86/fpu: Supporting XSAVE feature 0x%03Lx: '%s'\n", xstate_mask, feature_name);
264}
265
266/*
267 * Print out all the supported xstate features:
268 */
269static void __init print_xstate_features(void)
270{
271 print_xstate_feature(XFEATURE_MASK_FP);
272 print_xstate_feature(XFEATURE_MASK_SSE);
273 print_xstate_feature(XFEATURE_MASK_YMM);
274 print_xstate_feature(XFEATURE_MASK_BNDREGS);
275 print_xstate_feature(XFEATURE_MASK_BNDCSR);
276 print_xstate_feature(XFEATURE_MASK_OPMASK);
277 print_xstate_feature(XFEATURE_MASK_ZMM_Hi256);
278 print_xstate_feature(XFEATURE_MASK_Hi16_ZMM);
279 print_xstate_feature(XFEATURE_MASK_PKRU);
280 print_xstate_feature(XFEATURE_MASK_PASID);
281 print_xstate_feature(XFEATURE_MASK_CET_USER);
282 print_xstate_feature(XFEATURE_MASK_XTILE_CFG);
283 print_xstate_feature(XFEATURE_MASK_XTILE_DATA);
284}
285
286/*
287 * This check is important because it is easy to get XSTATE_*
288 * confused with XSTATE_BIT_*.
289 */
290#define CHECK_XFEATURE(nr) do { \
291 WARN_ON(nr < FIRST_EXTENDED_XFEATURE); \
292 WARN_ON(nr >= XFEATURE_MAX); \
293} while (0)
294
295/*
296 * Print out xstate component offsets and sizes
297 */
298static void __init print_xstate_offset_size(void)
299{
300 int i;
301
302 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
303 pr_info("x86/fpu: xstate_offset[%d]: %4d, xstate_sizes[%d]: %4d\n",
304 i, xfeature_get_offset(fpu_kernel_cfg.max_features, i),
305 i, xstate_sizes[i]);
306 }
307}
308
309/*
310 * This function is called only during boot time when x86 caps are not set
311 * up and alternative can not be used yet.
312 */
313static __init void os_xrstor_booting(struct xregs_state *xstate)
314{
315 u64 mask = fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSTATE;
316 u32 lmask = mask;
317 u32 hmask = mask >> 32;
318 int err;
319
320 if (cpu_feature_enabled(X86_FEATURE_XSAVES))
321 XSTATE_OP(XRSTORS, xstate, lmask, hmask, err);
322 else
323 XSTATE_OP(XRSTOR, xstate, lmask, hmask, err);
324
325 /*
326 * We should never fault when copying from a kernel buffer, and the FPU
327 * state we set at boot time should be valid.
328 */
329 WARN_ON_FPU(err);
330}
331
332/*
333 * All supported features have either init state all zeros or are
334 * handled in setup_init_fpu() individually. This is an explicit
335 * feature list and does not use XFEATURE_MASK*SUPPORTED to catch
336 * newly added supported features at build time and make people
337 * actually look at the init state for the new feature.
338 */
339#define XFEATURES_INIT_FPSTATE_HANDLED \
340 (XFEATURE_MASK_FP | \
341 XFEATURE_MASK_SSE | \
342 XFEATURE_MASK_YMM | \
343 XFEATURE_MASK_OPMASK | \
344 XFEATURE_MASK_ZMM_Hi256 | \
345 XFEATURE_MASK_Hi16_ZMM | \
346 XFEATURE_MASK_PKRU | \
347 XFEATURE_MASK_BNDREGS | \
348 XFEATURE_MASK_BNDCSR | \
349 XFEATURE_MASK_PASID | \
350 XFEATURE_MASK_CET_USER | \
351 XFEATURE_MASK_XTILE)
352
353/*
354 * setup the xstate image representing the init state
355 */
356static void __init setup_init_fpu_buf(void)
357{
358 BUILD_BUG_ON((XFEATURE_MASK_USER_SUPPORTED |
359 XFEATURE_MASK_SUPERVISOR_SUPPORTED) !=
360 XFEATURES_INIT_FPSTATE_HANDLED);
361
362 if (!boot_cpu_has(X86_FEATURE_XSAVE))
363 return;
364
365 print_xstate_features();
366
367 xstate_init_xcomp_bv(xsave: &init_fpstate.regs.xsave, mask: init_fpstate.xfeatures);
368
369 /*
370 * Init all the features state with header.xfeatures being 0x0
371 */
372 os_xrstor_booting(xstate: &init_fpstate.regs.xsave);
373
374 /*
375 * All components are now in init state. Read the state back so
376 * that init_fpstate contains all non-zero init state. This only
377 * works with XSAVE, but not with XSAVEOPT and XSAVEC/S because
378 * those use the init optimization which skips writing data for
379 * components in init state.
380 *
381 * XSAVE could be used, but that would require to reshuffle the
382 * data when XSAVEC/S is available because XSAVEC/S uses xstate
383 * compaction. But doing so is a pointless exercise because most
384 * components have an all zeros init state except for the legacy
385 * ones (FP and SSE). Those can be saved with FXSAVE into the
386 * legacy area. Adding new features requires to ensure that init
387 * state is all zeroes or if not to add the necessary handling
388 * here.
389 */
390 fxsave(fx: &init_fpstate.regs.fxsave);
391}
392
393int xfeature_size(int xfeature_nr)
394{
395 u32 eax, ebx, ecx, edx;
396
397 CHECK_XFEATURE(xfeature_nr);
398 cpuid_count(XSTATE_CPUID, count: xfeature_nr, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
399 return eax;
400}
401
402/* Validate an xstate header supplied by userspace (ptrace or sigreturn) */
403static int validate_user_xstate_header(const struct xstate_header *hdr,
404 struct fpstate *fpstate)
405{
406 /* No unknown or supervisor features may be set */
407 if (hdr->xfeatures & ~fpstate->user_xfeatures)
408 return -EINVAL;
409
410 /* Userspace must use the uncompacted format */
411 if (hdr->xcomp_bv)
412 return -EINVAL;
413
414 /*
415 * If 'reserved' is shrunken to add a new field, make sure to validate
416 * that new field here!
417 */
418 BUILD_BUG_ON(sizeof(hdr->reserved) != 48);
419
420 /* No reserved bits may be set */
421 if (memchr_inv(p: hdr->reserved, c: 0, size: sizeof(hdr->reserved)))
422 return -EINVAL;
423
424 return 0;
425}
426
427static void __init __xstate_dump_leaves(void)
428{
429 int i;
430 u32 eax, ebx, ecx, edx;
431 static int should_dump = 1;
432
433 if (!should_dump)
434 return;
435 should_dump = 0;
436 /*
437 * Dump out a few leaves past the ones that we support
438 * just in case there are some goodies up there
439 */
440 for (i = 0; i < XFEATURE_MAX + 10; i++) {
441 cpuid_count(XSTATE_CPUID, count: i, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
442 pr_warn("CPUID[%02x, %02x]: eax=%08x ebx=%08x ecx=%08x edx=%08x\n",
443 XSTATE_CPUID, i, eax, ebx, ecx, edx);
444 }
445}
446
447#define XSTATE_WARN_ON(x, fmt, ...) do { \
448 if (WARN_ONCE(x, "XSAVE consistency problem: " fmt, ##__VA_ARGS__)) { \
449 __xstate_dump_leaves(); \
450 } \
451} while (0)
452
453#define XCHECK_SZ(sz, nr, __struct) ({ \
454 if (WARN_ONCE(sz != sizeof(__struct), \
455 "[%s]: struct is %zu bytes, cpu state %d bytes\n", \
456 xfeature_names[nr], sizeof(__struct), sz)) { \
457 __xstate_dump_leaves(); \
458 } \
459 true; \
460})
461
462
463/**
464 * check_xtile_data_against_struct - Check tile data state size.
465 *
466 * Calculate the state size by multiplying the single tile size which is
467 * recorded in a C struct, and the number of tiles that the CPU informs.
468 * Compare the provided size with the calculation.
469 *
470 * @size: The tile data state size
471 *
472 * Returns: 0 on success, -EINVAL on mismatch.
473 */
474static int __init check_xtile_data_against_struct(int size)
475{
476 u32 max_palid, palid, state_size;
477 u32 eax, ebx, ecx, edx;
478 u16 max_tile;
479
480 /*
481 * Check the maximum palette id:
482 * eax: the highest numbered palette subleaf.
483 */
484 cpuid_count(TILE_CPUID, count: 0, eax: &max_palid, ebx: &ebx, ecx: &ecx, edx: &edx);
485
486 /*
487 * Cross-check each tile size and find the maximum number of
488 * supported tiles.
489 */
490 for (palid = 1, max_tile = 0; palid <= max_palid; palid++) {
491 u16 tile_size, max;
492
493 /*
494 * Check the tile size info:
495 * eax[31:16]: bytes per title
496 * ebx[31:16]: the max names (or max number of tiles)
497 */
498 cpuid_count(TILE_CPUID, count: palid, eax: &eax, ebx: &ebx, ecx: &edx, edx: &edx);
499 tile_size = eax >> 16;
500 max = ebx >> 16;
501
502 if (tile_size != sizeof(struct xtile_data)) {
503 pr_err("%s: struct is %zu bytes, cpu xtile %d bytes\n",
504 __stringify(XFEATURE_XTILE_DATA),
505 sizeof(struct xtile_data), tile_size);
506 __xstate_dump_leaves();
507 return -EINVAL;
508 }
509
510 if (max > max_tile)
511 max_tile = max;
512 }
513
514 state_size = sizeof(struct xtile_data) * max_tile;
515 if (size != state_size) {
516 pr_err("%s: calculated size is %u bytes, cpu state %d bytes\n",
517 __stringify(XFEATURE_XTILE_DATA), state_size, size);
518 __xstate_dump_leaves();
519 return -EINVAL;
520 }
521 return 0;
522}
523
524/*
525 * We have a C struct for each 'xstate'. We need to ensure
526 * that our software representation matches what the CPU
527 * tells us about the state's size.
528 */
529static bool __init check_xstate_against_struct(int nr)
530{
531 /*
532 * Ask the CPU for the size of the state.
533 */
534 int sz = xfeature_size(xfeature_nr: nr);
535
536 /*
537 * Match each CPU state with the corresponding software
538 * structure.
539 */
540 switch (nr) {
541 case XFEATURE_YMM: return XCHECK_SZ(sz, nr, struct ymmh_struct);
542 case XFEATURE_BNDREGS: return XCHECK_SZ(sz, nr, struct mpx_bndreg_state);
543 case XFEATURE_BNDCSR: return XCHECK_SZ(sz, nr, struct mpx_bndcsr_state);
544 case XFEATURE_OPMASK: return XCHECK_SZ(sz, nr, struct avx_512_opmask_state);
545 case XFEATURE_ZMM_Hi256: return XCHECK_SZ(sz, nr, struct avx_512_zmm_uppers_state);
546 case XFEATURE_Hi16_ZMM: return XCHECK_SZ(sz, nr, struct avx_512_hi16_state);
547 case XFEATURE_PKRU: return XCHECK_SZ(sz, nr, struct pkru_state);
548 case XFEATURE_PASID: return XCHECK_SZ(sz, nr, struct ia32_pasid_state);
549 case XFEATURE_XTILE_CFG: return XCHECK_SZ(sz, nr, struct xtile_cfg);
550 case XFEATURE_CET_USER: return XCHECK_SZ(sz, nr, struct cet_user_state);
551 case XFEATURE_XTILE_DATA: check_xtile_data_against_struct(size: sz); return true;
552 default:
553 XSTATE_WARN_ON(1, "No structure for xstate: %d\n", nr);
554 return false;
555 }
556
557 return true;
558}
559
560static unsigned int xstate_calculate_size(u64 xfeatures, bool compacted)
561{
562 unsigned int topmost = fls64(x: xfeatures) - 1;
563 unsigned int offset = xstate_offsets[topmost];
564
565 if (topmost <= XFEATURE_SSE)
566 return sizeof(struct xregs_state);
567
568 if (compacted)
569 offset = xfeature_get_offset(xcomp_bv: xfeatures, xfeature: topmost);
570 return offset + xstate_sizes[topmost];
571}
572
573/*
574 * This essentially double-checks what the cpu told us about
575 * how large the XSAVE buffer needs to be. We are recalculating
576 * it to be safe.
577 *
578 * Independent XSAVE features allocate their own buffers and are not
579 * covered by these checks. Only the size of the buffer for task->fpu
580 * is checked here.
581 */
582static bool __init paranoid_xstate_size_valid(unsigned int kernel_size)
583{
584 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
585 bool xsaves = cpu_feature_enabled(X86_FEATURE_XSAVES);
586 unsigned int size = FXSAVE_SIZE + XSAVE_HDR_SIZE;
587 int i;
588
589 for_each_extended_xfeature(i, fpu_kernel_cfg.max_features) {
590 if (!check_xstate_against_struct(nr: i))
591 return false;
592 /*
593 * Supervisor state components can be managed only by
594 * XSAVES.
595 */
596 if (!xsaves && xfeature_is_supervisor(xfeature_nr: i)) {
597 XSTATE_WARN_ON(1, "Got supervisor feature %d, but XSAVES not advertised\n", i);
598 return false;
599 }
600 }
601 size = xstate_calculate_size(xfeatures: fpu_kernel_cfg.max_features, compacted);
602 XSTATE_WARN_ON(size != kernel_size,
603 "size %u != kernel_size %u\n", size, kernel_size);
604 return size == kernel_size;
605}
606
607/*
608 * Get total size of enabled xstates in XCR0 | IA32_XSS.
609 *
610 * Note the SDM's wording here. "sub-function 0" only enumerates
611 * the size of the *user* states. If we use it to size a buffer
612 * that we use 'XSAVES' on, we could potentially overflow the
613 * buffer because 'XSAVES' saves system states too.
614 *
615 * This also takes compaction into account. So this works for
616 * XSAVEC as well.
617 */
618static unsigned int __init get_compacted_size(void)
619{
620 unsigned int eax, ebx, ecx, edx;
621 /*
622 * - CPUID function 0DH, sub-function 1:
623 * EBX enumerates the size (in bytes) required by
624 * the XSAVES instruction for an XSAVE area
625 * containing all the state components
626 * corresponding to bits currently set in
627 * XCR0 | IA32_XSS.
628 *
629 * When XSAVES is not available but XSAVEC is (virt), then there
630 * are no supervisor states, but XSAVEC still uses compacted
631 * format.
632 */
633 cpuid_count(XSTATE_CPUID, count: 1, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
634 return ebx;
635}
636
637/*
638 * Get the total size of the enabled xstates without the independent supervisor
639 * features.
640 */
641static unsigned int __init get_xsave_compacted_size(void)
642{
643 u64 mask = xfeatures_mask_independent();
644 unsigned int size;
645
646 if (!mask)
647 return get_compacted_size();
648
649 /* Disable independent features. */
650 wrmsrl(MSR_IA32_XSS, val: xfeatures_mask_supervisor());
651
652 /*
653 * Ask the hardware what size is required of the buffer.
654 * This is the size required for the task->fpu buffer.
655 */
656 size = get_compacted_size();
657
658 /* Re-enable independent features so XSAVES will work on them again. */
659 wrmsrl(MSR_IA32_XSS, val: xfeatures_mask_supervisor() | mask);
660
661 return size;
662}
663
664static unsigned int __init get_xsave_size_user(void)
665{
666 unsigned int eax, ebx, ecx, edx;
667 /*
668 * - CPUID function 0DH, sub-function 0:
669 * EBX enumerates the size (in bytes) required by
670 * the XSAVE instruction for an XSAVE area
671 * containing all the *user* state components
672 * corresponding to bits currently set in XCR0.
673 */
674 cpuid_count(XSTATE_CPUID, count: 0, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
675 return ebx;
676}
677
678static int __init init_xstate_size(void)
679{
680 /* Recompute the context size for enabled features: */
681 unsigned int user_size, kernel_size, kernel_default_size;
682 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
683
684 /* Uncompacted user space size */
685 user_size = get_xsave_size_user();
686
687 /*
688 * XSAVES kernel size includes supervisor states and uses compacted
689 * format. XSAVEC uses compacted format, but does not save
690 * supervisor states.
691 *
692 * XSAVE[OPT] do not support supervisor states so kernel and user
693 * size is identical.
694 */
695 if (compacted)
696 kernel_size = get_xsave_compacted_size();
697 else
698 kernel_size = user_size;
699
700 kernel_default_size =
701 xstate_calculate_size(xfeatures: fpu_kernel_cfg.default_features, compacted);
702
703 if (!paranoid_xstate_size_valid(kernel_size))
704 return -EINVAL;
705
706 fpu_kernel_cfg.max_size = kernel_size;
707 fpu_user_cfg.max_size = user_size;
708
709 fpu_kernel_cfg.default_size = kernel_default_size;
710 fpu_user_cfg.default_size =
711 xstate_calculate_size(xfeatures: fpu_user_cfg.default_features, compacted: false);
712
713 return 0;
714}
715
716/*
717 * We enabled the XSAVE hardware, but something went wrong and
718 * we can not use it. Disable it.
719 */
720static void __init fpu__init_disable_system_xstate(unsigned int legacy_size)
721{
722 fpu_kernel_cfg.max_features = 0;
723 cr4_clear_bits(X86_CR4_OSXSAVE);
724 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
725
726 /* Restore the legacy size.*/
727 fpu_kernel_cfg.max_size = legacy_size;
728 fpu_kernel_cfg.default_size = legacy_size;
729 fpu_user_cfg.max_size = legacy_size;
730 fpu_user_cfg.default_size = legacy_size;
731
732 /*
733 * Prevent enabling the static branch which enables writes to the
734 * XFD MSR.
735 */
736 init_fpstate.xfd = 0;
737
738 fpstate_reset(fpu: &current->thread.fpu);
739}
740
741/*
742 * Enable and initialize the xsave feature.
743 * Called once per system bootup.
744 */
745void __init fpu__init_system_xstate(unsigned int legacy_size)
746{
747 unsigned int eax, ebx, ecx, edx;
748 u64 xfeatures;
749 int err;
750 int i;
751
752 if (!boot_cpu_has(X86_FEATURE_FPU)) {
753 pr_info("x86/fpu: No FPU detected\n");
754 return;
755 }
756
757 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
758 pr_info("x86/fpu: x87 FPU will use %s\n",
759 boot_cpu_has(X86_FEATURE_FXSR) ? "FXSAVE" : "FSAVE");
760 return;
761 }
762
763 if (boot_cpu_data.cpuid_level < XSTATE_CPUID) {
764 WARN_ON_FPU(1);
765 return;
766 }
767
768 /*
769 * Find user xstates supported by the processor.
770 */
771 cpuid_count(XSTATE_CPUID, count: 0, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
772 fpu_kernel_cfg.max_features = eax + ((u64)edx << 32);
773
774 /*
775 * Find supervisor xstates supported by the processor.
776 */
777 cpuid_count(XSTATE_CPUID, count: 1, eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
778 fpu_kernel_cfg.max_features |= ecx + ((u64)edx << 32);
779
780 if ((fpu_kernel_cfg.max_features & XFEATURE_MASK_FPSSE) != XFEATURE_MASK_FPSSE) {
781 /*
782 * This indicates that something really unexpected happened
783 * with the enumeration. Disable XSAVE and try to continue
784 * booting without it. This is too early to BUG().
785 */
786 pr_err("x86/fpu: FP/SSE not present amongst the CPU's xstate features: 0x%llx.\n",
787 fpu_kernel_cfg.max_features);
788 goto out_disable;
789 }
790
791 /*
792 * Clear XSAVE features that are disabled in the normal CPUID.
793 */
794 for (i = 0; i < ARRAY_SIZE(xsave_cpuid_features); i++) {
795 unsigned short cid = xsave_cpuid_features[i];
796
797 /* Careful: X86_FEATURE_FPU is 0! */
798 if ((i != XFEATURE_FP && !cid) || !boot_cpu_has(cid))
799 fpu_kernel_cfg.max_features &= ~BIT_ULL(i);
800 }
801
802 if (!cpu_feature_enabled(X86_FEATURE_XFD))
803 fpu_kernel_cfg.max_features &= ~XFEATURE_MASK_USER_DYNAMIC;
804
805 if (!cpu_feature_enabled(X86_FEATURE_XSAVES))
806 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
807 else
808 fpu_kernel_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED |
809 XFEATURE_MASK_SUPERVISOR_SUPPORTED;
810
811 fpu_user_cfg.max_features = fpu_kernel_cfg.max_features;
812 fpu_user_cfg.max_features &= XFEATURE_MASK_USER_SUPPORTED;
813
814 /* Clean out dynamic features from default */
815 fpu_kernel_cfg.default_features = fpu_kernel_cfg.max_features;
816 fpu_kernel_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
817
818 fpu_user_cfg.default_features = fpu_user_cfg.max_features;
819 fpu_user_cfg.default_features &= ~XFEATURE_MASK_USER_DYNAMIC;
820
821 /* Store it for paranoia check at the end */
822 xfeatures = fpu_kernel_cfg.max_features;
823
824 /*
825 * Initialize the default XFD state in initfp_state and enable the
826 * dynamic sizing mechanism if dynamic states are available. The
827 * static key cannot be enabled here because this runs before
828 * jump_label_init(). This is delayed to an initcall.
829 */
830 init_fpstate.xfd = fpu_user_cfg.max_features & XFEATURE_MASK_USER_DYNAMIC;
831
832 /* Set up compaction feature bit */
833 if (cpu_feature_enabled(X86_FEATURE_XSAVEC) ||
834 cpu_feature_enabled(X86_FEATURE_XSAVES))
835 setup_force_cpu_cap(X86_FEATURE_XCOMPACTED);
836
837 /* Enable xstate instructions to be able to continue with initialization: */
838 fpu__init_cpu_xstate();
839
840 /* Cache size, offset and flags for initialization */
841 setup_xstate_cache();
842
843 err = init_xstate_size();
844 if (err)
845 goto out_disable;
846
847 /* Reset the state for the current task */
848 fpstate_reset(fpu: &current->thread.fpu);
849
850 /*
851 * Update info used for ptrace frames; use standard-format size and no
852 * supervisor xstates:
853 */
854 update_regset_xstate_info(size: fpu_user_cfg.max_size,
855 xstate_mask: fpu_user_cfg.max_features);
856
857 /*
858 * init_fpstate excludes dynamic states as they are large but init
859 * state is zero.
860 */
861 init_fpstate.size = fpu_kernel_cfg.default_size;
862 init_fpstate.xfeatures = fpu_kernel_cfg.default_features;
863
864 if (init_fpstate.size > sizeof(init_fpstate.regs)) {
865 pr_warn("x86/fpu: init_fpstate buffer too small (%zu < %d), disabling XSAVE\n",
866 sizeof(init_fpstate.regs), init_fpstate.size);
867 goto out_disable;
868 }
869
870 setup_init_fpu_buf();
871
872 /*
873 * Paranoia check whether something in the setup modified the
874 * xfeatures mask.
875 */
876 if (xfeatures != fpu_kernel_cfg.max_features) {
877 pr_err("x86/fpu: xfeatures modified from 0x%016llx to 0x%016llx during init, disabling XSAVE\n",
878 xfeatures, fpu_kernel_cfg.max_features);
879 goto out_disable;
880 }
881
882 /*
883 * CPU capabilities initialization runs before FPU init. So
884 * X86_FEATURE_OSXSAVE is not set. Now that XSAVE is completely
885 * functional, set the feature bit so depending code works.
886 */
887 setup_force_cpu_cap(X86_FEATURE_OSXSAVE);
888
889 print_xstate_offset_size();
890 pr_info("x86/fpu: Enabled xstate features 0x%llx, context size is %d bytes, using '%s' format.\n",
891 fpu_kernel_cfg.max_features,
892 fpu_kernel_cfg.max_size,
893 boot_cpu_has(X86_FEATURE_XCOMPACTED) ? "compacted" : "standard");
894 return;
895
896out_disable:
897 /* something went wrong, try to boot without any XSAVE support */
898 fpu__init_disable_system_xstate(legacy_size);
899}
900
901/*
902 * Restore minimal FPU state after suspend:
903 */
904void fpu__resume_cpu(void)
905{
906 /*
907 * Restore XCR0 on xsave capable CPUs:
908 */
909 if (cpu_feature_enabled(X86_FEATURE_XSAVE))
910 xsetbv(XCR_XFEATURE_ENABLED_MASK, value: fpu_user_cfg.max_features);
911
912 /*
913 * Restore IA32_XSS. The same CPUID bit enumerates support
914 * of XSAVES and MSR_IA32_XSS.
915 */
916 if (cpu_feature_enabled(X86_FEATURE_XSAVES)) {
917 wrmsrl(MSR_IA32_XSS, val: xfeatures_mask_supervisor() |
918 xfeatures_mask_independent());
919 }
920
921 if (fpu_state_size_dynamic())
922 wrmsrl(MSR_IA32_XFD, current->thread.fpu.fpstate->xfd);
923}
924
925/*
926 * Given an xstate feature nr, calculate where in the xsave
927 * buffer the state is. Callers should ensure that the buffer
928 * is valid.
929 */
930static void *__raw_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
931{
932 u64 xcomp_bv = xsave->header.xcomp_bv;
933
934 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
935 return NULL;
936
937 if (cpu_feature_enabled(X86_FEATURE_XCOMPACTED)) {
938 if (WARN_ON_ONCE(!(xcomp_bv & BIT_ULL(xfeature_nr))))
939 return NULL;
940 }
941
942 return (void *)xsave + xfeature_get_offset(xcomp_bv, xfeature: xfeature_nr);
943}
944
945/*
946 * Given the xsave area and a state inside, this function returns the
947 * address of the state.
948 *
949 * This is the API that is called to get xstate address in either
950 * standard format or compacted format of xsave area.
951 *
952 * Note that if there is no data for the field in the xsave buffer
953 * this will return NULL.
954 *
955 * Inputs:
956 * xstate: the thread's storage area for all FPU data
957 * xfeature_nr: state which is defined in xsave.h (e.g. XFEATURE_FP,
958 * XFEATURE_SSE, etc...)
959 * Output:
960 * address of the state in the xsave area, or NULL if the
961 * field is not present in the xsave buffer.
962 */
963void *get_xsave_addr(struct xregs_state *xsave, int xfeature_nr)
964{
965 /*
966 * Do we even *have* xsave state?
967 */
968 if (!boot_cpu_has(X86_FEATURE_XSAVE))
969 return NULL;
970
971 /*
972 * We should not ever be requesting features that we
973 * have not enabled.
974 */
975 if (WARN_ON_ONCE(!xfeature_enabled(xfeature_nr)))
976 return NULL;
977
978 /*
979 * This assumes the last 'xsave*' instruction to
980 * have requested that 'xfeature_nr' be saved.
981 * If it did not, we might be seeing and old value
982 * of the field in the buffer.
983 *
984 * This can happen because the last 'xsave' did not
985 * request that this feature be saved (unlikely)
986 * or because the "init optimization" caused it
987 * to not be saved.
988 */
989 if (!(xsave->header.xfeatures & BIT_ULL(xfeature_nr)))
990 return NULL;
991
992 return __raw_xsave_addr(xsave, xfeature_nr);
993}
994
995#ifdef CONFIG_ARCH_HAS_PKEYS
996
997/*
998 * This will go out and modify PKRU register to set the access
999 * rights for @pkey to @init_val.
1000 */
1001int arch_set_user_pkey_access(struct task_struct *tsk, int pkey,
1002 unsigned long init_val)
1003{
1004 u32 old_pkru, new_pkru_bits = 0;
1005 int pkey_shift;
1006
1007 /*
1008 * This check implies XSAVE support. OSPKE only gets
1009 * set if we enable XSAVE and we enable PKU in XCR0.
1010 */
1011 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
1012 return -EINVAL;
1013
1014 /*
1015 * This code should only be called with valid 'pkey'
1016 * values originating from in-kernel users. Complain
1017 * if a bad value is observed.
1018 */
1019 if (WARN_ON_ONCE(pkey >= arch_max_pkey()))
1020 return -EINVAL;
1021
1022 /* Set the bits we need in PKRU: */
1023 if (init_val & PKEY_DISABLE_ACCESS)
1024 new_pkru_bits |= PKRU_AD_BIT;
1025 if (init_val & PKEY_DISABLE_WRITE)
1026 new_pkru_bits |= PKRU_WD_BIT;
1027
1028 /* Shift the bits in to the correct place in PKRU for pkey: */
1029 pkey_shift = pkey * PKRU_BITS_PER_PKEY;
1030 new_pkru_bits <<= pkey_shift;
1031
1032 /* Get old PKRU and mask off any old bits in place: */
1033 old_pkru = read_pkru();
1034 old_pkru &= ~((PKRU_AD_BIT|PKRU_WD_BIT) << pkey_shift);
1035
1036 /* Write old part along with new part: */
1037 write_pkru(pkru: old_pkru | new_pkru_bits);
1038
1039 return 0;
1040}
1041#endif /* ! CONFIG_ARCH_HAS_PKEYS */
1042
1043static void copy_feature(bool from_xstate, struct membuf *to, void *xstate,
1044 void *init_xstate, unsigned int size)
1045{
1046 membuf_write(s: to, v: from_xstate ? xstate : init_xstate, size);
1047}
1048
1049/**
1050 * __copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1051 * @to: membuf descriptor
1052 * @fpstate: The fpstate buffer from which to copy
1053 * @xfeatures: The mask of xfeatures to save (XSAVE mode only)
1054 * @pkru_val: The PKRU value to store in the PKRU component
1055 * @copy_mode: The requested copy mode
1056 *
1057 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1058 * format, i.e. from the kernel internal hardware dependent storage format
1059 * to the requested @mode. UABI XSTATE is always uncompacted!
1060 *
1061 * It supports partial copy but @to.pos always starts from zero.
1062 */
1063void __copy_xstate_to_uabi_buf(struct membuf to, struct fpstate *fpstate,
1064 u64 xfeatures, u32 pkru_val,
1065 enum xstate_copy_mode copy_mode)
1066{
1067 const unsigned int off_mxcsr = offsetof(struct fxregs_state, mxcsr);
1068 struct xregs_state *xinit = &init_fpstate.regs.xsave;
1069 struct xregs_state *xsave = &fpstate->regs.xsave;
1070 struct xstate_header header;
1071 unsigned int zerofrom;
1072 u64 mask;
1073 int i;
1074
1075 memset(&header, 0, sizeof(header));
1076 header.xfeatures = xsave->header.xfeatures;
1077
1078 /* Mask out the feature bits depending on copy mode */
1079 switch (copy_mode) {
1080 case XSTATE_COPY_FP:
1081 header.xfeatures &= XFEATURE_MASK_FP;
1082 break;
1083
1084 case XSTATE_COPY_FX:
1085 header.xfeatures &= XFEATURE_MASK_FP | XFEATURE_MASK_SSE;
1086 break;
1087
1088 case XSTATE_COPY_XSAVE:
1089 header.xfeatures &= fpstate->user_xfeatures & xfeatures;
1090 break;
1091 }
1092
1093 /* Copy FP state up to MXCSR */
1094 copy_feature(from_xstate: header.xfeatures & XFEATURE_MASK_FP, to: &to, xstate: &xsave->i387,
1095 init_xstate: &xinit->i387, size: off_mxcsr);
1096
1097 /* Copy MXCSR when SSE or YMM are set in the feature mask */
1098 copy_feature(from_xstate: header.xfeatures & (XFEATURE_MASK_SSE | XFEATURE_MASK_YMM),
1099 to: &to, xstate: &xsave->i387.mxcsr, init_xstate: &xinit->i387.mxcsr,
1100 MXCSR_AND_FLAGS_SIZE);
1101
1102 /* Copy the remaining FP state */
1103 copy_feature(from_xstate: header.xfeatures & XFEATURE_MASK_FP,
1104 to: &to, xstate: &xsave->i387.st_space, init_xstate: &xinit->i387.st_space,
1105 size: sizeof(xsave->i387.st_space));
1106
1107 /* Copy the SSE state - shared with YMM, but independently managed */
1108 copy_feature(from_xstate: header.xfeatures & XFEATURE_MASK_SSE,
1109 to: &to, xstate: &xsave->i387.xmm_space, init_xstate: &xinit->i387.xmm_space,
1110 size: sizeof(xsave->i387.xmm_space));
1111
1112 if (copy_mode != XSTATE_COPY_XSAVE)
1113 goto out;
1114
1115 /* Zero the padding area */
1116 membuf_zero(s: &to, size: sizeof(xsave->i387.padding));
1117
1118 /* Copy xsave->i387.sw_reserved */
1119 membuf_write(s: &to, v: xstate_fx_sw_bytes, size: sizeof(xsave->i387.sw_reserved));
1120
1121 /* Copy the user space relevant state of @xsave->header */
1122 membuf_write(s: &to, v: &header, size: sizeof(header));
1123
1124 zerofrom = offsetof(struct xregs_state, extended_state_area);
1125
1126 /*
1127 * This 'mask' indicates which states to copy from fpstate.
1128 * Those extended states that are not present in fpstate are
1129 * either disabled or initialized:
1130 *
1131 * In non-compacted format, disabled features still occupy
1132 * state space but there is no state to copy from in the
1133 * compacted init_fpstate. The gap tracking will zero these
1134 * states.
1135 *
1136 * The extended features have an all zeroes init state. Thus,
1137 * remove them from 'mask' to zero those features in the user
1138 * buffer instead of retrieving them from init_fpstate.
1139 */
1140 mask = header.xfeatures;
1141
1142 for_each_extended_xfeature(i, mask) {
1143 /*
1144 * If there was a feature or alignment gap, zero the space
1145 * in the destination buffer.
1146 */
1147 if (zerofrom < xstate_offsets[i])
1148 membuf_zero(s: &to, size: xstate_offsets[i] - zerofrom);
1149
1150 if (i == XFEATURE_PKRU) {
1151 struct pkru_state pkru = {0};
1152 /*
1153 * PKRU is not necessarily up to date in the
1154 * XSAVE buffer. Use the provided value.
1155 */
1156 pkru.pkru = pkru_val;
1157 membuf_write(s: &to, v: &pkru, size: sizeof(pkru));
1158 } else {
1159 membuf_write(s: &to,
1160 v: __raw_xsave_addr(xsave, xfeature_nr: i),
1161 size: xstate_sizes[i]);
1162 }
1163 /*
1164 * Keep track of the last copied state in the non-compacted
1165 * target buffer for gap zeroing.
1166 */
1167 zerofrom = xstate_offsets[i] + xstate_sizes[i];
1168 }
1169
1170out:
1171 if (to.left)
1172 membuf_zero(s: &to, size: to.left);
1173}
1174
1175/**
1176 * copy_xstate_to_uabi_buf - Copy kernel saved xstate to a UABI buffer
1177 * @to: membuf descriptor
1178 * @tsk: The task from which to copy the saved xstate
1179 * @copy_mode: The requested copy mode
1180 *
1181 * Converts from kernel XSAVE or XSAVES compacted format to UABI conforming
1182 * format, i.e. from the kernel internal hardware dependent storage format
1183 * to the requested @mode. UABI XSTATE is always uncompacted!
1184 *
1185 * It supports partial copy but @to.pos always starts from zero.
1186 */
1187void copy_xstate_to_uabi_buf(struct membuf to, struct task_struct *tsk,
1188 enum xstate_copy_mode copy_mode)
1189{
1190 __copy_xstate_to_uabi_buf(to, fpstate: tsk->thread.fpu.fpstate,
1191 xfeatures: tsk->thread.fpu.fpstate->user_xfeatures,
1192 pkru_val: tsk->thread.pkru, copy_mode);
1193}
1194
1195static int copy_from_buffer(void *dst, unsigned int offset, unsigned int size,
1196 const void *kbuf, const void __user *ubuf)
1197{
1198 if (kbuf) {
1199 memcpy(dst, kbuf + offset, size);
1200 } else {
1201 if (copy_from_user(to: dst, from: ubuf + offset, n: size))
1202 return -EFAULT;
1203 }
1204 return 0;
1205}
1206
1207
1208/**
1209 * copy_uabi_to_xstate - Copy a UABI format buffer to the kernel xstate
1210 * @fpstate: The fpstate buffer to copy to
1211 * @kbuf: The UABI format buffer, if it comes from the kernel
1212 * @ubuf: The UABI format buffer, if it comes from userspace
1213 * @pkru: The location to write the PKRU value to
1214 *
1215 * Converts from the UABI format into the kernel internal hardware
1216 * dependent format.
1217 *
1218 * This function ultimately has three different callers with distinct PKRU
1219 * behavior.
1220 * 1. When called from sigreturn the PKRU register will be restored from
1221 * @fpstate via an XRSTOR. Correctly copying the UABI format buffer to
1222 * @fpstate is sufficient to cover this case, but the caller will also
1223 * pass a pointer to the thread_struct's pkru field in @pkru and updating
1224 * it is harmless.
1225 * 2. When called from ptrace the PKRU register will be restored from the
1226 * thread_struct's pkru field. A pointer to that is passed in @pkru.
1227 * The kernel will restore it manually, so the XRSTOR behavior that resets
1228 * the PKRU register to the hardware init value (0) if the corresponding
1229 * xfeatures bit is not set is emulated here.
1230 * 3. When called from KVM the PKRU register will be restored from the vcpu's
1231 * pkru field. A pointer to that is passed in @pkru. KVM hasn't used
1232 * XRSTOR and hasn't had the PKRU resetting behavior described above. To
1233 * preserve that KVM behavior, it passes NULL for @pkru if the xfeatures
1234 * bit is not set.
1235 */
1236static int copy_uabi_to_xstate(struct fpstate *fpstate, const void *kbuf,
1237 const void __user *ubuf, u32 *pkru)
1238{
1239 struct xregs_state *xsave = &fpstate->regs.xsave;
1240 unsigned int offset, size;
1241 struct xstate_header hdr;
1242 u64 mask;
1243 int i;
1244
1245 offset = offsetof(struct xregs_state, header);
1246 if (copy_from_buffer(dst: &hdr, offset, size: sizeof(hdr), kbuf, ubuf))
1247 return -EFAULT;
1248
1249 if (validate_user_xstate_header(hdr: &hdr, fpstate))
1250 return -EINVAL;
1251
1252 /* Validate MXCSR when any of the related features is in use */
1253 mask = XFEATURE_MASK_FP | XFEATURE_MASK_SSE | XFEATURE_MASK_YMM;
1254 if (hdr.xfeatures & mask) {
1255 u32 mxcsr[2];
1256
1257 offset = offsetof(struct fxregs_state, mxcsr);
1258 if (copy_from_buffer(dst: mxcsr, offset, size: sizeof(mxcsr), kbuf, ubuf))
1259 return -EFAULT;
1260
1261 /* Reserved bits in MXCSR must be zero. */
1262 if (mxcsr[0] & ~mxcsr_feature_mask)
1263 return -EINVAL;
1264
1265 /* SSE and YMM require MXCSR even when FP is not in use. */
1266 if (!(hdr.xfeatures & XFEATURE_MASK_FP)) {
1267 xsave->i387.mxcsr = mxcsr[0];
1268 xsave->i387.mxcsr_mask = mxcsr[1];
1269 }
1270 }
1271
1272 for (i = 0; i < XFEATURE_MAX; i++) {
1273 mask = BIT_ULL(i);
1274
1275 if (hdr.xfeatures & mask) {
1276 void *dst = __raw_xsave_addr(xsave, xfeature_nr: i);
1277
1278 offset = xstate_offsets[i];
1279 size = xstate_sizes[i];
1280
1281 if (copy_from_buffer(dst, offset, size, kbuf, ubuf))
1282 return -EFAULT;
1283 }
1284 }
1285
1286 if (hdr.xfeatures & XFEATURE_MASK_PKRU) {
1287 struct pkru_state *xpkru;
1288
1289 xpkru = __raw_xsave_addr(xsave, xfeature_nr: XFEATURE_PKRU);
1290 *pkru = xpkru->pkru;
1291 } else {
1292 /*
1293 * KVM may pass NULL here to indicate that it does not need
1294 * PKRU updated.
1295 */
1296 if (pkru)
1297 *pkru = 0;
1298 }
1299
1300 /*
1301 * The state that came in from userspace was user-state only.
1302 * Mask all the user states out of 'xfeatures':
1303 */
1304 xsave->header.xfeatures &= XFEATURE_MASK_SUPERVISOR_ALL;
1305
1306 /*
1307 * Add back in the features that came in from userspace:
1308 */
1309 xsave->header.xfeatures |= hdr.xfeatures;
1310
1311 return 0;
1312}
1313
1314/*
1315 * Convert from a ptrace standard-format kernel buffer to kernel XSAVE[S]
1316 * format and copy to the target thread. Used by ptrace and KVM.
1317 */
1318int copy_uabi_from_kernel_to_xstate(struct fpstate *fpstate, const void *kbuf, u32 *pkru)
1319{
1320 return copy_uabi_to_xstate(fpstate, kbuf, NULL, pkru);
1321}
1322
1323/*
1324 * Convert from a sigreturn standard-format user-space buffer to kernel
1325 * XSAVE[S] format and copy to the target thread. This is called from the
1326 * sigreturn() and rt_sigreturn() system calls.
1327 */
1328int copy_sigframe_from_user_to_xstate(struct task_struct *tsk,
1329 const void __user *ubuf)
1330{
1331 return copy_uabi_to_xstate(fpstate: tsk->thread.fpu.fpstate, NULL, ubuf, pkru: &tsk->thread.pkru);
1332}
1333
1334static bool validate_independent_components(u64 mask)
1335{
1336 u64 xchk;
1337
1338 if (WARN_ON_FPU(!cpu_feature_enabled(X86_FEATURE_XSAVES)))
1339 return false;
1340
1341 xchk = ~xfeatures_mask_independent();
1342
1343 if (WARN_ON_ONCE(!mask || mask & xchk))
1344 return false;
1345
1346 return true;
1347}
1348
1349/**
1350 * xsaves - Save selected components to a kernel xstate buffer
1351 * @xstate: Pointer to the buffer
1352 * @mask: Feature mask to select the components to save
1353 *
1354 * The @xstate buffer must be 64 byte aligned and correctly initialized as
1355 * XSAVES does not write the full xstate header. Before first use the
1356 * buffer should be zeroed otherwise a consecutive XRSTORS from that buffer
1357 * can #GP.
1358 *
1359 * The feature mask must be a subset of the independent features.
1360 */
1361void xsaves(struct xregs_state *xstate, u64 mask)
1362{
1363 int err;
1364
1365 if (!validate_independent_components(mask))
1366 return;
1367
1368 XSTATE_OP(XSAVES, xstate, (u32)mask, (u32)(mask >> 32), err);
1369 WARN_ON_ONCE(err);
1370}
1371
1372/**
1373 * xrstors - Restore selected components from a kernel xstate buffer
1374 * @xstate: Pointer to the buffer
1375 * @mask: Feature mask to select the components to restore
1376 *
1377 * The @xstate buffer must be 64 byte aligned and correctly initialized
1378 * otherwise XRSTORS from that buffer can #GP.
1379 *
1380 * Proper usage is to restore the state which was saved with
1381 * xsaves() into @xstate.
1382 *
1383 * The feature mask must be a subset of the independent features.
1384 */
1385void xrstors(struct xregs_state *xstate, u64 mask)
1386{
1387 int err;
1388
1389 if (!validate_independent_components(mask))
1390 return;
1391
1392 XSTATE_OP(XRSTORS, xstate, (u32)mask, (u32)(mask >> 32), err);
1393 WARN_ON_ONCE(err);
1394}
1395
1396#if IS_ENABLED(CONFIG_KVM)
1397void fpstate_clear_xstate_component(struct fpstate *fps, unsigned int xfeature)
1398{
1399 void *addr = get_xsave_addr(xsave: &fps->regs.xsave, xfeature_nr: xfeature);
1400
1401 if (addr)
1402 memset(addr, 0, xstate_sizes[xfeature]);
1403}
1404EXPORT_SYMBOL_GPL(fpstate_clear_xstate_component);
1405#endif
1406
1407#ifdef CONFIG_X86_64
1408
1409#ifdef CONFIG_X86_DEBUG_FPU
1410/*
1411 * Ensure that a subsequent XSAVE* or XRSTOR* instruction with RFBM=@mask
1412 * can safely operate on the @fpstate buffer.
1413 */
1414static bool xstate_op_valid(struct fpstate *fpstate, u64 mask, bool rstor)
1415{
1416 u64 xfd = __this_cpu_read(xfd_state);
1417
1418 if (fpstate->xfd == xfd)
1419 return true;
1420
1421 /*
1422 * The XFD MSR does not match fpstate->xfd. That's invalid when
1423 * the passed in fpstate is current's fpstate.
1424 */
1425 if (fpstate->xfd == current->thread.fpu.fpstate->xfd)
1426 return false;
1427
1428 /*
1429 * XRSTOR(S) from init_fpstate are always correct as it will just
1430 * bring all components into init state and not read from the
1431 * buffer. XSAVE(S) raises #PF after init.
1432 */
1433 if (fpstate == &init_fpstate)
1434 return rstor;
1435
1436 /*
1437 * XSAVE(S): clone(), fpu_swap_kvm_fpu()
1438 * XRSTORS(S): fpu_swap_kvm_fpu()
1439 */
1440
1441 /*
1442 * No XSAVE/XRSTOR instructions (except XSAVE itself) touch
1443 * the buffer area for XFD-disabled state components.
1444 */
1445 mask &= ~xfd;
1446
1447 /*
1448 * Remove features which are valid in fpstate. They
1449 * have space allocated in fpstate.
1450 */
1451 mask &= ~fpstate->xfeatures;
1452
1453 /*
1454 * Any remaining state components in 'mask' might be written
1455 * by XSAVE/XRSTOR. Fail validation it found.
1456 */
1457 return !mask;
1458}
1459
1460void xfd_validate_state(struct fpstate *fpstate, u64 mask, bool rstor)
1461{
1462 WARN_ON_ONCE(!xstate_op_valid(fpstate, mask, rstor));
1463}
1464#endif /* CONFIG_X86_DEBUG_FPU */
1465
1466static int __init xfd_update_static_branch(void)
1467{
1468 /*
1469 * If init_fpstate.xfd has bits set then dynamic features are
1470 * available and the dynamic sizing must be enabled.
1471 */
1472 if (init_fpstate.xfd)
1473 static_branch_enable(&__fpu_state_size_dynamic);
1474 return 0;
1475}
1476arch_initcall(xfd_update_static_branch)
1477
1478void fpstate_free(struct fpu *fpu)
1479{
1480 if (fpu->fpstate && fpu->fpstate != &fpu->__fpstate)
1481 vfree(addr: fpu->fpstate);
1482}
1483
1484/**
1485 * fpstate_realloc - Reallocate struct fpstate for the requested new features
1486 *
1487 * @xfeatures: A bitmap of xstate features which extend the enabled features
1488 * of that task
1489 * @ksize: The required size for the kernel buffer
1490 * @usize: The required size for user space buffers
1491 * @guest_fpu: Pointer to a guest FPU container. NULL for host allocations
1492 *
1493 * Note vs. vmalloc(): If the task with a vzalloc()-allocated buffer
1494 * terminates quickly, vfree()-induced IPIs may be a concern, but tasks
1495 * with large states are likely to live longer.
1496 *
1497 * Returns: 0 on success, -ENOMEM on allocation error.
1498 */
1499static int fpstate_realloc(u64 xfeatures, unsigned int ksize,
1500 unsigned int usize, struct fpu_guest *guest_fpu)
1501{
1502 struct fpu *fpu = &current->thread.fpu;
1503 struct fpstate *curfps, *newfps = NULL;
1504 unsigned int fpsize;
1505 bool in_use;
1506
1507 fpsize = ksize + ALIGN(offsetof(struct fpstate, regs), 64);
1508
1509 newfps = vzalloc(size: fpsize);
1510 if (!newfps)
1511 return -ENOMEM;
1512 newfps->size = ksize;
1513 newfps->user_size = usize;
1514 newfps->is_valloc = true;
1515
1516 /*
1517 * When a guest FPU is supplied, use @guest_fpu->fpstate
1518 * as reference independent whether it is in use or not.
1519 */
1520 curfps = guest_fpu ? guest_fpu->fpstate : fpu->fpstate;
1521
1522 /* Determine whether @curfps is the active fpstate */
1523 in_use = fpu->fpstate == curfps;
1524
1525 if (guest_fpu) {
1526 newfps->is_guest = true;
1527 newfps->is_confidential = curfps->is_confidential;
1528 newfps->in_use = curfps->in_use;
1529 guest_fpu->xfeatures |= xfeatures;
1530 guest_fpu->uabi_size = usize;
1531 }
1532
1533 fpregs_lock();
1534 /*
1535 * If @curfps is in use, ensure that the current state is in the
1536 * registers before swapping fpstate as that might invalidate it
1537 * due to layout changes.
1538 */
1539 if (in_use && test_thread_flag(TIF_NEED_FPU_LOAD))
1540 fpregs_restore_userregs();
1541
1542 newfps->xfeatures = curfps->xfeatures | xfeatures;
1543 newfps->user_xfeatures = curfps->user_xfeatures | xfeatures;
1544 newfps->xfd = curfps->xfd & ~xfeatures;
1545
1546 /* Do the final updates within the locked region */
1547 xstate_init_xcomp_bv(xsave: &newfps->regs.xsave, mask: newfps->xfeatures);
1548
1549 if (guest_fpu) {
1550 guest_fpu->fpstate = newfps;
1551 /* If curfps is active, update the FPU fpstate pointer */
1552 if (in_use)
1553 fpu->fpstate = newfps;
1554 } else {
1555 fpu->fpstate = newfps;
1556 }
1557
1558 if (in_use)
1559 xfd_update_state(fpstate: fpu->fpstate);
1560 fpregs_unlock();
1561
1562 /* Only free valloc'ed state */
1563 if (curfps && curfps->is_valloc)
1564 vfree(addr: curfps);
1565
1566 return 0;
1567}
1568
1569static int validate_sigaltstack(unsigned int usize)
1570{
1571 struct task_struct *thread, *leader = current->group_leader;
1572 unsigned long framesize = get_sigframe_size();
1573
1574 lockdep_assert_held(&current->sighand->siglock);
1575
1576 /* get_sigframe_size() is based on fpu_user_cfg.max_size */
1577 framesize -= fpu_user_cfg.max_size;
1578 framesize += usize;
1579 for_each_thread(leader, thread) {
1580 if (thread->sas_ss_size && thread->sas_ss_size < framesize)
1581 return -ENOSPC;
1582 }
1583 return 0;
1584}
1585
1586static int __xstate_request_perm(u64 permitted, u64 requested, bool guest)
1587{
1588 /*
1589 * This deliberately does not exclude !XSAVES as we still might
1590 * decide to optionally context switch XCR0 or talk the silicon
1591 * vendors into extending XFD for the pre AMX states, especially
1592 * AVX512.
1593 */
1594 bool compacted = cpu_feature_enabled(X86_FEATURE_XCOMPACTED);
1595 struct fpu *fpu = &current->group_leader->thread.fpu;
1596 struct fpu_state_perm *perm;
1597 unsigned int ksize, usize;
1598 u64 mask;
1599 int ret = 0;
1600
1601 /* Check whether fully enabled */
1602 if ((permitted & requested) == requested)
1603 return 0;
1604
1605 /* Calculate the resulting kernel state size */
1606 mask = permitted | requested;
1607 /* Take supervisor states into account on the host */
1608 if (!guest)
1609 mask |= xfeatures_mask_supervisor();
1610 ksize = xstate_calculate_size(xfeatures: mask, compacted);
1611
1612 /* Calculate the resulting user state size */
1613 mask &= XFEATURE_MASK_USER_SUPPORTED;
1614 usize = xstate_calculate_size(xfeatures: mask, compacted: false);
1615
1616 if (!guest) {
1617 ret = validate_sigaltstack(usize);
1618 if (ret)
1619 return ret;
1620 }
1621
1622 perm = guest ? &fpu->guest_perm : &fpu->perm;
1623 /* Pairs with the READ_ONCE() in xstate_get_group_perm() */
1624 WRITE_ONCE(perm->__state_perm, mask);
1625 /* Protected by sighand lock */
1626 perm->__state_size = ksize;
1627 perm->__user_state_size = usize;
1628 return ret;
1629}
1630
1631/*
1632 * Permissions array to map facilities with more than one component
1633 */
1634static const u64 xstate_prctl_req[XFEATURE_MAX] = {
1635 [XFEATURE_XTILE_DATA] = XFEATURE_MASK_XTILE_DATA,
1636};
1637
1638static int xstate_request_perm(unsigned long idx, bool guest)
1639{
1640 u64 permitted, requested;
1641 int ret;
1642
1643 if (idx >= XFEATURE_MAX)
1644 return -EINVAL;
1645
1646 /*
1647 * Look up the facility mask which can require more than
1648 * one xstate component.
1649 */
1650 idx = array_index_nospec(idx, ARRAY_SIZE(xstate_prctl_req));
1651 requested = xstate_prctl_req[idx];
1652 if (!requested)
1653 return -EOPNOTSUPP;
1654
1655 if ((fpu_user_cfg.max_features & requested) != requested)
1656 return -EOPNOTSUPP;
1657
1658 /* Lockless quick check */
1659 permitted = xstate_get_group_perm(guest);
1660 if ((permitted & requested) == requested)
1661 return 0;
1662
1663 /* Protect against concurrent modifications */
1664 spin_lock_irq(lock: &current->sighand->siglock);
1665 permitted = xstate_get_group_perm(guest);
1666
1667 /* First vCPU allocation locks the permissions. */
1668 if (guest && (permitted & FPU_GUEST_PERM_LOCKED))
1669 ret = -EBUSY;
1670 else
1671 ret = __xstate_request_perm(permitted, requested, guest);
1672 spin_unlock_irq(lock: &current->sighand->siglock);
1673 return ret;
1674}
1675
1676int __xfd_enable_feature(u64 xfd_err, struct fpu_guest *guest_fpu)
1677{
1678 u64 xfd_event = xfd_err & XFEATURE_MASK_USER_DYNAMIC;
1679 struct fpu_state_perm *perm;
1680 unsigned int ksize, usize;
1681 struct fpu *fpu;
1682
1683 if (!xfd_event) {
1684 if (!guest_fpu)
1685 pr_err_once("XFD: Invalid xfd error: %016llx\n", xfd_err);
1686 return 0;
1687 }
1688
1689 /* Protect against concurrent modifications */
1690 spin_lock_irq(lock: &current->sighand->siglock);
1691
1692 /* If not permitted let it die */
1693 if ((xstate_get_group_perm(guest: !!guest_fpu) & xfd_event) != xfd_event) {
1694 spin_unlock_irq(lock: &current->sighand->siglock);
1695 return -EPERM;
1696 }
1697
1698 fpu = &current->group_leader->thread.fpu;
1699 perm = guest_fpu ? &fpu->guest_perm : &fpu->perm;
1700 ksize = perm->__state_size;
1701 usize = perm->__user_state_size;
1702
1703 /*
1704 * The feature is permitted. State size is sufficient. Dropping
1705 * the lock is safe here even if more features are added from
1706 * another task, the retrieved buffer sizes are valid for the
1707 * currently requested feature(s).
1708 */
1709 spin_unlock_irq(lock: &current->sighand->siglock);
1710
1711 /*
1712 * Try to allocate a new fpstate. If that fails there is no way
1713 * out.
1714 */
1715 if (fpstate_realloc(xfeatures: xfd_event, ksize, usize, guest_fpu))
1716 return -EFAULT;
1717 return 0;
1718}
1719
1720int xfd_enable_feature(u64 xfd_err)
1721{
1722 return __xfd_enable_feature(xfd_err, NULL);
1723}
1724
1725#else /* CONFIG_X86_64 */
1726static inline int xstate_request_perm(unsigned long idx, bool guest)
1727{
1728 return -EPERM;
1729}
1730#endif /* !CONFIG_X86_64 */
1731
1732u64 xstate_get_guest_group_perm(void)
1733{
1734 return xstate_get_group_perm(guest: true);
1735}
1736EXPORT_SYMBOL_GPL(xstate_get_guest_group_perm);
1737
1738/**
1739 * fpu_xstate_prctl - xstate permission operations
1740 * @option: A subfunction of arch_prctl()
1741 * @arg2: option argument
1742 * Return: 0 if successful; otherwise, an error code
1743 *
1744 * Option arguments:
1745 *
1746 * ARCH_GET_XCOMP_SUPP: Pointer to user space u64 to store the info
1747 * ARCH_GET_XCOMP_PERM: Pointer to user space u64 to store the info
1748 * ARCH_REQ_XCOMP_PERM: Facility number requested
1749 *
1750 * For facilities which require more than one XSTATE component, the request
1751 * must be the highest state component number related to that facility,
1752 * e.g. for AMX which requires XFEATURE_XTILE_CFG(17) and
1753 * XFEATURE_XTILE_DATA(18) this would be XFEATURE_XTILE_DATA(18).
1754 */
1755long fpu_xstate_prctl(int option, unsigned long arg2)
1756{
1757 u64 __user *uptr = (u64 __user *)arg2;
1758 u64 permitted, supported;
1759 unsigned long idx = arg2;
1760 bool guest = false;
1761
1762 switch (option) {
1763 case ARCH_GET_XCOMP_SUPP:
1764 supported = fpu_user_cfg.max_features | fpu_user_cfg.legacy_features;
1765 return put_user(supported, uptr);
1766
1767 case ARCH_GET_XCOMP_PERM:
1768 /*
1769 * Lockless snapshot as it can also change right after the
1770 * dropping the lock.
1771 */
1772 permitted = xstate_get_host_group_perm();
1773 permitted &= XFEATURE_MASK_USER_SUPPORTED;
1774 return put_user(permitted, uptr);
1775
1776 case ARCH_GET_XCOMP_GUEST_PERM:
1777 permitted = xstate_get_guest_group_perm();
1778 permitted &= XFEATURE_MASK_USER_SUPPORTED;
1779 return put_user(permitted, uptr);
1780
1781 case ARCH_REQ_XCOMP_GUEST_PERM:
1782 guest = true;
1783 fallthrough;
1784
1785 case ARCH_REQ_XCOMP_PERM:
1786 if (!IS_ENABLED(CONFIG_X86_64))
1787 return -EOPNOTSUPP;
1788
1789 return xstate_request_perm(idx, guest);
1790
1791 default:
1792 return -EINVAL;
1793 }
1794}
1795
1796#ifdef CONFIG_PROC_PID_ARCH_STATUS
1797/*
1798 * Report the amount of time elapsed in millisecond since last AVX512
1799 * use in the task.
1800 */
1801static void avx512_status(struct seq_file *m, struct task_struct *task)
1802{
1803 unsigned long timestamp = READ_ONCE(task->thread.fpu.avx512_timestamp);
1804 long delta;
1805
1806 if (!timestamp) {
1807 /*
1808 * Report -1 if no AVX512 usage
1809 */
1810 delta = -1;
1811 } else {
1812 delta = (long)(jiffies - timestamp);
1813 /*
1814 * Cap to LONG_MAX if time difference > LONG_MAX
1815 */
1816 if (delta < 0)
1817 delta = LONG_MAX;
1818 delta = jiffies_to_msecs(j: delta);
1819 }
1820
1821 seq_put_decimal_ll(m, delimiter: "AVX512_elapsed_ms:\t", num: delta);
1822 seq_putc(m, c: '\n');
1823}
1824
1825/*
1826 * Report architecture specific information
1827 */
1828int proc_pid_arch_status(struct seq_file *m, struct pid_namespace *ns,
1829 struct pid *pid, struct task_struct *task)
1830{
1831 /*
1832 * Report AVX512 state if the processor and build option supported.
1833 */
1834 if (cpu_feature_enabled(X86_FEATURE_AVX512F))
1835 avx512_status(m, task);
1836
1837 return 0;
1838}
1839#endif /* CONFIG_PROC_PID_ARCH_STATUS */
1840

source code of linux/arch/x86/kernel/fpu/xstate.c