1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
16 */
17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19#include "irq.h"
20#include "ioapic.h"
21#include "mmu.h"
22#include "mmu_internal.h"
23#include "tdp_mmu.h"
24#include "x86.h"
25#include "kvm_cache_regs.h"
26#include "smm.h"
27#include "kvm_emulate.h"
28#include "page_track.h"
29#include "cpuid.h"
30#include "spte.h"
31
32#include <linux/kvm_host.h>
33#include <linux/types.h>
34#include <linux/string.h>
35#include <linux/mm.h>
36#include <linux/highmem.h>
37#include <linux/moduleparam.h>
38#include <linux/export.h>
39#include <linux/swap.h>
40#include <linux/hugetlb.h>
41#include <linux/compiler.h>
42#include <linux/srcu.h>
43#include <linux/slab.h>
44#include <linux/sched/signal.h>
45#include <linux/uaccess.h>
46#include <linux/hash.h>
47#include <linux/kern_levels.h>
48#include <linux/kstrtox.h>
49#include <linux/kthread.h>
50#include <linux/wordpart.h>
51
52#include <asm/page.h>
53#include <asm/memtype.h>
54#include <asm/cmpxchg.h>
55#include <asm/io.h>
56#include <asm/set_memory.h>
57#include <asm/spec-ctrl.h>
58#include <asm/vmx.h>
59
60#include "trace.h"
61
62static bool nx_hugepage_mitigation_hard_disabled;
63
64int __read_mostly nx_huge_pages = -1;
65static uint __read_mostly nx_huge_pages_recovery_period_ms;
66#ifdef CONFIG_PREEMPT_RT
67/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
68static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
69#else
70static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
71#endif
72
73static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp);
74static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
75static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp);
76
77static const struct kernel_param_ops nx_huge_pages_ops = {
78 .set = set_nx_huge_pages,
79 .get = get_nx_huge_pages,
80};
81
82static const struct kernel_param_ops nx_huge_pages_recovery_param_ops = {
83 .set = set_nx_huge_pages_recovery_param,
84 .get = param_get_uint,
85};
86
87module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
88__MODULE_PARM_TYPE(nx_huge_pages, "bool");
89module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_param_ops,
90 &nx_huge_pages_recovery_ratio, 0644);
91__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
92module_param_cb(nx_huge_pages_recovery_period_ms, &nx_huge_pages_recovery_param_ops,
93 &nx_huge_pages_recovery_period_ms, 0644);
94__MODULE_PARM_TYPE(nx_huge_pages_recovery_period_ms, "uint");
95
96static bool __read_mostly force_flush_and_sync_on_reuse;
97module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
98
99/*
100 * When setting this variable to true it enables Two-Dimensional-Paging
101 * where the hardware walks 2 page tables:
102 * 1. the guest-virtual to guest-physical
103 * 2. while doing 1. it walks guest-physical to host-physical
104 * If the hardware supports that we don't need to do shadow paging.
105 */
106bool tdp_enabled = false;
107
108static bool __ro_after_init tdp_mmu_allowed;
109
110#ifdef CONFIG_X86_64
111bool __read_mostly tdp_mmu_enabled = true;
112module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0444);
113#endif
114
115static int max_huge_page_level __read_mostly;
116static int tdp_root_level __read_mostly;
117static int max_tdp_level __read_mostly;
118
119#define PTE_PREFETCH_NUM 8
120
121#include <trace/events/kvm.h>
122
123/* make pte_list_desc fit well in cache lines */
124#define PTE_LIST_EXT 14
125
126/*
127 * struct pte_list_desc is the core data structure used to implement a custom
128 * list for tracking a set of related SPTEs, e.g. all the SPTEs that map a
129 * given GFN when used in the context of rmaps. Using a custom list allows KVM
130 * to optimize for the common case where many GFNs will have at most a handful
131 * of SPTEs pointing at them, i.e. allows packing multiple SPTEs into a small
132 * memory footprint, which in turn improves runtime performance by exploiting
133 * cache locality.
134 *
135 * A list is comprised of one or more pte_list_desc objects (descriptors).
136 * Each individual descriptor stores up to PTE_LIST_EXT SPTEs. If a descriptor
137 * is full and a new SPTEs needs to be added, a new descriptor is allocated and
138 * becomes the head of the list. This means that by definitions, all tail
139 * descriptors are full.
140 *
141 * Note, the meta data fields are deliberately placed at the start of the
142 * structure to optimize the cacheline layout; accessing the descriptor will
143 * touch only a single cacheline so long as @spte_count<=6 (or if only the
144 * descriptors metadata is accessed).
145 */
146struct pte_list_desc {
147 struct pte_list_desc *more;
148 /* The number of PTEs stored in _this_ descriptor. */
149 u32 spte_count;
150 /* The number of PTEs stored in all tails of this descriptor. */
151 u32 tail_count;
152 u64 *sptes[PTE_LIST_EXT];
153};
154
155struct kvm_shadow_walk_iterator {
156 u64 addr;
157 hpa_t shadow_addr;
158 u64 *sptep;
159 int level;
160 unsigned index;
161};
162
163#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
164 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
165 (_root), (_addr)); \
166 shadow_walk_okay(&(_walker)); \
167 shadow_walk_next(&(_walker)))
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
180static struct kmem_cache *pte_list_desc_cache;
181struct kmem_cache *mmu_page_header_cache;
182static struct percpu_counter kvm_total_used_mmu_pages;
183
184static void mmu_spte_set(u64 *sptep, u64 spte);
185
186struct kvm_mmu_role_regs {
187 const unsigned long cr0;
188 const unsigned long cr4;
189 const u64 efer;
190};
191
192#define CREATE_TRACE_POINTS
193#include "mmutrace.h"
194
195/*
196 * Yes, lot's of underscores. They're a hint that you probably shouldn't be
197 * reading from the role_regs. Once the root_role is constructed, it becomes
198 * the single source of truth for the MMU's state.
199 */
200#define BUILD_MMU_ROLE_REGS_ACCESSOR(reg, name, flag) \
201static inline bool __maybe_unused \
202____is_##reg##_##name(const struct kvm_mmu_role_regs *regs) \
203{ \
204 return !!(regs->reg & flag); \
205}
206BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, pg, X86_CR0_PG);
207BUILD_MMU_ROLE_REGS_ACCESSOR(cr0, wp, X86_CR0_WP);
208BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pse, X86_CR4_PSE);
209BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pae, X86_CR4_PAE);
210BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smep, X86_CR4_SMEP);
211BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, smap, X86_CR4_SMAP);
212BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, pke, X86_CR4_PKE);
213BUILD_MMU_ROLE_REGS_ACCESSOR(cr4, la57, X86_CR4_LA57);
214BUILD_MMU_ROLE_REGS_ACCESSOR(efer, nx, EFER_NX);
215BUILD_MMU_ROLE_REGS_ACCESSOR(efer, lma, EFER_LMA);
216
217/*
218 * The MMU itself (with a valid role) is the single source of truth for the
219 * MMU. Do not use the regs used to build the MMU/role, nor the vCPU. The
220 * regs don't account for dependencies, e.g. clearing CR4 bits if CR0.PG=1,
221 * and the vCPU may be incorrect/irrelevant.
222 */
223#define BUILD_MMU_ROLE_ACCESSOR(base_or_ext, reg, name) \
224static inline bool __maybe_unused is_##reg##_##name(struct kvm_mmu *mmu) \
225{ \
226 return !!(mmu->cpu_role. base_or_ext . reg##_##name); \
227}
228BUILD_MMU_ROLE_ACCESSOR(base, cr0, wp);
229BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pse);
230BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smep);
231BUILD_MMU_ROLE_ACCESSOR(ext, cr4, smap);
232BUILD_MMU_ROLE_ACCESSOR(ext, cr4, pke);
233BUILD_MMU_ROLE_ACCESSOR(ext, cr4, la57);
234BUILD_MMU_ROLE_ACCESSOR(base, efer, nx);
235BUILD_MMU_ROLE_ACCESSOR(ext, efer, lma);
236
237static inline bool is_cr0_pg(struct kvm_mmu *mmu)
238{
239 return mmu->cpu_role.base.level > 0;
240}
241
242static inline bool is_cr4_pae(struct kvm_mmu *mmu)
243{
244 return !mmu->cpu_role.base.has_4_byte_gpte;
245}
246
247static struct kvm_mmu_role_regs vcpu_to_role_regs(struct kvm_vcpu *vcpu)
248{
249 struct kvm_mmu_role_regs regs = {
250 .cr0 = kvm_read_cr0_bits(vcpu, KVM_MMU_CR0_ROLE_BITS),
251 .cr4 = kvm_read_cr4_bits(vcpu, KVM_MMU_CR4_ROLE_BITS),
252 .efer = vcpu->arch.efer,
253 };
254
255 return regs;
256}
257
258static unsigned long get_guest_cr3(struct kvm_vcpu *vcpu)
259{
260 return kvm_read_cr3(vcpu);
261}
262
263static inline unsigned long kvm_mmu_get_guest_pgd(struct kvm_vcpu *vcpu,
264 struct kvm_mmu *mmu)
265{
266 if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && mmu->get_guest_pgd == get_guest_cr3)
267 return kvm_read_cr3(vcpu);
268
269 return mmu->get_guest_pgd(vcpu);
270}
271
272static inline bool kvm_available_flush_remote_tlbs_range(void)
273{
274#if IS_ENABLED(CONFIG_HYPERV)
275 return kvm_x86_ops.flush_remote_tlbs_range;
276#else
277 return false;
278#endif
279}
280
281static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index);
282
283/* Flush the range of guest memory mapped by the given SPTE. */
284static void kvm_flush_remote_tlbs_sptep(struct kvm *kvm, u64 *sptep)
285{
286 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
287 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index: spte_index(sptep));
288
289 kvm_flush_remote_tlbs_gfn(kvm, gfn, level: sp->role.level);
290}
291
292static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
293 unsigned int access)
294{
295 u64 spte = make_mmio_spte(vcpu, gfn, access);
296
297 trace_mark_mmio_spte(sptep, gfn, spte);
298 mmu_spte_set(sptep, spte);
299}
300
301static gfn_t get_mmio_spte_gfn(u64 spte)
302{
303 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
304
305 gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
306 & shadow_nonpresent_or_rsvd_mask;
307
308 return gpa >> PAGE_SHIFT;
309}
310
311static unsigned get_mmio_spte_access(u64 spte)
312{
313 return spte & shadow_mmio_access_mask;
314}
315
316static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
317{
318 u64 kvm_gen, spte_gen, gen;
319
320 gen = kvm_vcpu_memslots(vcpu)->generation;
321 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
322 return false;
323
324 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
325 spte_gen = get_mmio_spte_generation(spte);
326
327 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
328 return likely(kvm_gen == spte_gen);
329}
330
331static int is_cpuid_PSE36(void)
332{
333 return 1;
334}
335
336#ifdef CONFIG_X86_64
337static void __set_spte(u64 *sptep, u64 spte)
338{
339 WRITE_ONCE(*sptep, spte);
340}
341
342static void __update_clear_spte_fast(u64 *sptep, u64 spte)
343{
344 WRITE_ONCE(*sptep, spte);
345}
346
347static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
348{
349 return xchg(sptep, spte);
350}
351
352static u64 __get_spte_lockless(u64 *sptep)
353{
354 return READ_ONCE(*sptep);
355}
356#else
357union split_spte {
358 struct {
359 u32 spte_low;
360 u32 spte_high;
361 };
362 u64 spte;
363};
364
365static void count_spte_clear(u64 *sptep, u64 spte)
366{
367 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
368
369 if (is_shadow_present_pte(spte))
370 return;
371
372 /* Ensure the spte is completely set before we increase the count */
373 smp_wmb();
374 sp->clear_spte_count++;
375}
376
377static void __set_spte(u64 *sptep, u64 spte)
378{
379 union split_spte *ssptep, sspte;
380
381 ssptep = (union split_spte *)sptep;
382 sspte = (union split_spte)spte;
383
384 ssptep->spte_high = sspte.spte_high;
385
386 /*
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
390 */
391 smp_wmb();
392
393 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
394}
395
396static void __update_clear_spte_fast(u64 *sptep, u64 spte)
397{
398 union split_spte *ssptep, sspte;
399
400 ssptep = (union split_spte *)sptep;
401 sspte = (union split_spte)spte;
402
403 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
404
405 /*
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
408 */
409 smp_wmb();
410
411 ssptep->spte_high = sspte.spte_high;
412 count_spte_clear(sptep, spte);
413}
414
415static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
416{
417 union split_spte *ssptep, sspte, orig;
418
419 ssptep = (union split_spte *)sptep;
420 sspte = (union split_spte)spte;
421
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
424 orig.spte_high = ssptep->spte_high;
425 ssptep->spte_high = sspte.spte_high;
426 count_spte_clear(sptep, spte);
427
428 return orig.spte;
429}
430
431/*
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte (mm/gup.c).
434 *
435 * An spte tlb flush may be pending, because kvm_set_pte_rmap
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
438 *
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
443 *
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
448 */
449static u64 __get_spte_lockless(u64 *sptep)
450{
451 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
452 union split_spte spte, *orig = (union split_spte *)sptep;
453 int count;
454
455retry:
456 count = sp->clear_spte_count;
457 smp_rmb();
458
459 spte.spte_low = orig->spte_low;
460 smp_rmb();
461
462 spte.spte_high = orig->spte_high;
463 smp_rmb();
464
465 if (unlikely(spte.spte_low != orig->spte_low ||
466 count != sp->clear_spte_count))
467 goto retry;
468
469 return spte.spte;
470}
471#endif
472
473/* Rules for using mmu_spte_set:
474 * Set the sptep from nonpresent to present.
475 * Note: the sptep being assigned *must* be either not present
476 * or in a state where the hardware will not attempt to update
477 * the spte.
478 */
479static void mmu_spte_set(u64 *sptep, u64 new_spte)
480{
481 WARN_ON_ONCE(is_shadow_present_pte(*sptep));
482 __set_spte(sptep, spte: new_spte);
483}
484
485/*
486 * Update the SPTE (excluding the PFN), but do not track changes in its
487 * accessed/dirty status.
488 */
489static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
490{
491 u64 old_spte = *sptep;
492
493 WARN_ON_ONCE(!is_shadow_present_pte(new_spte));
494 check_spte_writable_invariants(spte: new_spte);
495
496 if (!is_shadow_present_pte(pte: old_spte)) {
497 mmu_spte_set(sptep, new_spte);
498 return old_spte;
499 }
500
501 if (!spte_has_volatile_bits(spte: old_spte))
502 __update_clear_spte_fast(sptep, spte: new_spte);
503 else
504 old_spte = __update_clear_spte_slow(sptep, spte: new_spte);
505
506 WARN_ON_ONCE(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
507
508 return old_spte;
509}
510
511/* Rules for using mmu_spte_update:
512 * Update the state bits, it means the mapped pfn is not changed.
513 *
514 * Whenever an MMU-writable SPTE is overwritten with a read-only SPTE, remote
515 * TLBs must be flushed. Otherwise rmap_write_protect will find a read-only
516 * spte, even though the writable spte might be cached on a CPU's TLB.
517 *
518 * Returns true if the TLB needs to be flushed
519 */
520static bool mmu_spte_update(u64 *sptep, u64 new_spte)
521{
522 bool flush = false;
523 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
524
525 if (!is_shadow_present_pte(pte: old_spte))
526 return false;
527
528 /*
529 * For the spte updated out of mmu-lock is safe, since
530 * we always atomically update it, see the comments in
531 * spte_has_volatile_bits().
532 */
533 if (is_mmu_writable_spte(spte: old_spte) &&
534 !is_writable_pte(pte: new_spte))
535 flush = true;
536
537 /*
538 * Flush TLB when accessed/dirty states are changed in the page tables,
539 * to guarantee consistency between TLB and page tables.
540 */
541
542 if (is_accessed_spte(spte: old_spte) && !is_accessed_spte(spte: new_spte)) {
543 flush = true;
544 kvm_set_pfn_accessed(pfn: spte_to_pfn(pte: old_spte));
545 }
546
547 if (is_dirty_spte(spte: old_spte) && !is_dirty_spte(spte: new_spte)) {
548 flush = true;
549 kvm_set_pfn_dirty(pfn: spte_to_pfn(pte: old_spte));
550 }
551
552 return flush;
553}
554
555/*
556 * Rules for using mmu_spte_clear_track_bits:
557 * It sets the sptep from present to nonpresent, and track the
558 * state bits, it is used to clear the last level sptep.
559 * Returns the old PTE.
560 */
561static u64 mmu_spte_clear_track_bits(struct kvm *kvm, u64 *sptep)
562{
563 kvm_pfn_t pfn;
564 u64 old_spte = *sptep;
565 int level = sptep_to_sp(sptep)->role.level;
566 struct page *page;
567
568 if (!is_shadow_present_pte(pte: old_spte) ||
569 !spte_has_volatile_bits(spte: old_spte))
570 __update_clear_spte_fast(sptep, spte: 0ull);
571 else
572 old_spte = __update_clear_spte_slow(sptep, spte: 0ull);
573
574 if (!is_shadow_present_pte(pte: old_spte))
575 return old_spte;
576
577 kvm_update_page_stats(kvm, level, -1);
578
579 pfn = spte_to_pfn(pte: old_spte);
580
581 /*
582 * KVM doesn't hold a reference to any pages mapped into the guest, and
583 * instead uses the mmu_notifier to ensure that KVM unmaps any pages
584 * before they are reclaimed. Sanity check that, if the pfn is backed
585 * by a refcounted page, the refcount is elevated.
586 */
587 page = kvm_pfn_to_refcounted_page(pfn);
588 WARN_ON_ONCE(page && !page_count(page));
589
590 if (is_accessed_spte(spte: old_spte))
591 kvm_set_pfn_accessed(pfn);
592
593 if (is_dirty_spte(spte: old_spte))
594 kvm_set_pfn_dirty(pfn);
595
596 return old_spte;
597}
598
599/*
600 * Rules for using mmu_spte_clear_no_track:
601 * Directly clear spte without caring the state bits of sptep,
602 * it is used to set the upper level spte.
603 */
604static void mmu_spte_clear_no_track(u64 *sptep)
605{
606 __update_clear_spte_fast(sptep, spte: 0ull);
607}
608
609static u64 mmu_spte_get_lockless(u64 *sptep)
610{
611 return __get_spte_lockless(sptep);
612}
613
614/* Returns the Accessed status of the PTE and resets it at the same time. */
615static bool mmu_spte_age(u64 *sptep)
616{
617 u64 spte = mmu_spte_get_lockless(sptep);
618
619 if (!is_accessed_spte(spte))
620 return false;
621
622 if (spte_ad_enabled(spte)) {
623 clear_bit(nr: (ffs(shadow_accessed_mask) - 1),
624 addr: (unsigned long *)sptep);
625 } else {
626 /*
627 * Capture the dirty status of the page, so that it doesn't get
628 * lost when the SPTE is marked for access tracking.
629 */
630 if (is_writable_pte(pte: spte))
631 kvm_set_pfn_dirty(pfn: spte_to_pfn(pte: spte));
632
633 spte = mark_spte_for_access_track(spte);
634 mmu_spte_update_no_track(sptep, new_spte: spte);
635 }
636
637 return true;
638}
639
640static inline bool is_tdp_mmu_active(struct kvm_vcpu *vcpu)
641{
642 return tdp_mmu_enabled && vcpu->arch.mmu->root_role.direct;
643}
644
645static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
646{
647 if (is_tdp_mmu_active(vcpu)) {
648 kvm_tdp_mmu_walk_lockless_begin();
649 } else {
650 /*
651 * Prevent page table teardown by making any free-er wait during
652 * kvm_flush_remote_tlbs() IPI to all active vcpus.
653 */
654 local_irq_disable();
655
656 /*
657 * Make sure a following spte read is not reordered ahead of the write
658 * to vcpu->mode.
659 */
660 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
661 }
662}
663
664static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
665{
666 if (is_tdp_mmu_active(vcpu)) {
667 kvm_tdp_mmu_walk_lockless_end();
668 } else {
669 /*
670 * Make sure the write to vcpu->mode is not reordered in front of
671 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
672 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
673 */
674 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
675 local_irq_enable();
676 }
677}
678
679static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
680{
681 int r;
682
683 /* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
684 r = kvm_mmu_topup_memory_cache(mc: &vcpu->arch.mmu_pte_list_desc_cache,
685 min: 1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
686 if (r)
687 return r;
688 r = kvm_mmu_topup_memory_cache(mc: &vcpu->arch.mmu_shadow_page_cache,
689 PT64_ROOT_MAX_LEVEL);
690 if (r)
691 return r;
692 if (maybe_indirect) {
693 r = kvm_mmu_topup_memory_cache(mc: &vcpu->arch.mmu_shadowed_info_cache,
694 PT64_ROOT_MAX_LEVEL);
695 if (r)
696 return r;
697 }
698 return kvm_mmu_topup_memory_cache(mc: &vcpu->arch.mmu_page_header_cache,
699 PT64_ROOT_MAX_LEVEL);
700}
701
702static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
703{
704 kvm_mmu_free_memory_cache(mc: &vcpu->arch.mmu_pte_list_desc_cache);
705 kvm_mmu_free_memory_cache(mc: &vcpu->arch.mmu_shadow_page_cache);
706 kvm_mmu_free_memory_cache(mc: &vcpu->arch.mmu_shadowed_info_cache);
707 kvm_mmu_free_memory_cache(mc: &vcpu->arch.mmu_page_header_cache);
708}
709
710static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
711{
712 kmem_cache_free(s: pte_list_desc_cache, objp: pte_list_desc);
713}
714
715static bool sp_has_gptes(struct kvm_mmu_page *sp);
716
717static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
718{
719 if (sp->role.passthrough)
720 return sp->gfn;
721
722 if (!sp->role.direct)
723 return sp->shadowed_translation[index] >> PAGE_SHIFT;
724
725 return sp->gfn + (index << ((sp->role.level - 1) * SPTE_LEVEL_BITS));
726}
727
728/*
729 * For leaf SPTEs, fetch the *guest* access permissions being shadowed. Note
730 * that the SPTE itself may have a more constrained access permissions that
731 * what the guest enforces. For example, a guest may create an executable
732 * huge PTE but KVM may disallow execution to mitigate iTLB multihit.
733 */
734static u32 kvm_mmu_page_get_access(struct kvm_mmu_page *sp, int index)
735{
736 if (sp_has_gptes(sp))
737 return sp->shadowed_translation[index] & ACC_ALL;
738
739 /*
740 * For direct MMUs (e.g. TDP or non-paging guests) or passthrough SPs,
741 * KVM is not shadowing any guest page tables, so the "guest access
742 * permissions" are just ACC_ALL.
743 *
744 * For direct SPs in indirect MMUs (shadow paging), i.e. when KVM
745 * is shadowing a guest huge page with small pages, the guest access
746 * permissions being shadowed are the access permissions of the huge
747 * page.
748 *
749 * In both cases, sp->role.access contains the correct access bits.
750 */
751 return sp->role.access;
752}
753
754static void kvm_mmu_page_set_translation(struct kvm_mmu_page *sp, int index,
755 gfn_t gfn, unsigned int access)
756{
757 if (sp_has_gptes(sp)) {
758 sp->shadowed_translation[index] = (gfn << PAGE_SHIFT) | access;
759 return;
760 }
761
762 WARN_ONCE(access != kvm_mmu_page_get_access(sp, index),
763 "access mismatch under %s page %llx (expected %u, got %u)\n",
764 sp->role.passthrough ? "passthrough" : "direct",
765 sp->gfn, kvm_mmu_page_get_access(sp, index), access);
766
767 WARN_ONCE(gfn != kvm_mmu_page_get_gfn(sp, index),
768 "gfn mismatch under %s page %llx (expected %llx, got %llx)\n",
769 sp->role.passthrough ? "passthrough" : "direct",
770 sp->gfn, kvm_mmu_page_get_gfn(sp, index), gfn);
771}
772
773static void kvm_mmu_page_set_access(struct kvm_mmu_page *sp, int index,
774 unsigned int access)
775{
776 gfn_t gfn = kvm_mmu_page_get_gfn(sp, index);
777
778 kvm_mmu_page_set_translation(sp, index, gfn, access);
779}
780
781/*
782 * Return the pointer to the large page information for a given gfn,
783 * handling slots that are not large page aligned.
784 */
785static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
786 const struct kvm_memory_slot *slot, int level)
787{
788 unsigned long idx;
789
790 idx = gfn_to_index(gfn, slot->base_gfn, level);
791 return &slot->arch.lpage_info[level - 2][idx];
792}
793
794/*
795 * The most significant bit in disallow_lpage tracks whether or not memory
796 * attributes are mixed, i.e. not identical for all gfns at the current level.
797 * The lower order bits are used to refcount other cases where a hugepage is
798 * disallowed, e.g. if KVM has shadow a page table at the gfn.
799 */
800#define KVM_LPAGE_MIXED_FLAG BIT(31)
801
802static void update_gfn_disallow_lpage_count(const struct kvm_memory_slot *slot,
803 gfn_t gfn, int count)
804{
805 struct kvm_lpage_info *linfo;
806 int old, i;
807
808 for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
809 linfo = lpage_info_slot(gfn, slot, level: i);
810
811 old = linfo->disallow_lpage;
812 linfo->disallow_lpage += count;
813 WARN_ON_ONCE((old ^ linfo->disallow_lpage) & KVM_LPAGE_MIXED_FLAG);
814 }
815}
816
817void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
818{
819 update_gfn_disallow_lpage_count(slot, gfn, count: 1);
820}
821
822void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn)
823{
824 update_gfn_disallow_lpage_count(slot, gfn, count: -1);
825}
826
827static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
828{
829 struct kvm_memslots *slots;
830 struct kvm_memory_slot *slot;
831 gfn_t gfn;
832
833 kvm->arch.indirect_shadow_pages++;
834 gfn = sp->gfn;
835 slots = kvm_memslots_for_spte_role(kvm, sp->role);
836 slot = __gfn_to_memslot(slots, gfn);
837
838 /* the non-leaf shadow pages are keeping readonly. */
839 if (sp->role.level > PG_LEVEL_4K)
840 return __kvm_write_track_add_gfn(kvm, slot, gfn);
841
842 kvm_mmu_gfn_disallow_lpage(slot, gfn);
843
844 if (kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn, min_level: PG_LEVEL_4K))
845 kvm_flush_remote_tlbs_gfn(kvm, gfn, level: PG_LEVEL_4K);
846}
847
848void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
849{
850 /*
851 * If it's possible to replace the shadow page with an NX huge page,
852 * i.e. if the shadow page is the only thing currently preventing KVM
853 * from using a huge page, add the shadow page to the list of "to be
854 * zapped for NX recovery" pages. Note, the shadow page can already be
855 * on the list if KVM is reusing an existing shadow page, i.e. if KVM
856 * links a shadow page at multiple points.
857 */
858 if (!list_empty(head: &sp->possible_nx_huge_page_link))
859 return;
860
861 ++kvm->stat.nx_lpage_splits;
862 list_add_tail(new: &sp->possible_nx_huge_page_link,
863 head: &kvm->arch.possible_nx_huge_pages);
864}
865
866static void account_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp,
867 bool nx_huge_page_possible)
868{
869 sp->nx_huge_page_disallowed = true;
870
871 if (nx_huge_page_possible)
872 track_possible_nx_huge_page(kvm, sp);
873}
874
875static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
876{
877 struct kvm_memslots *slots;
878 struct kvm_memory_slot *slot;
879 gfn_t gfn;
880
881 kvm->arch.indirect_shadow_pages--;
882 gfn = sp->gfn;
883 slots = kvm_memslots_for_spte_role(kvm, sp->role);
884 slot = __gfn_to_memslot(slots, gfn);
885 if (sp->role.level > PG_LEVEL_4K)
886 return __kvm_write_track_remove_gfn(kvm, slot, gfn);
887
888 kvm_mmu_gfn_allow_lpage(slot, gfn);
889}
890
891void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
892{
893 if (list_empty(head: &sp->possible_nx_huge_page_link))
894 return;
895
896 --kvm->stat.nx_lpage_splits;
897 list_del_init(entry: &sp->possible_nx_huge_page_link);
898}
899
900static void unaccount_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp)
901{
902 sp->nx_huge_page_disallowed = false;
903
904 untrack_possible_nx_huge_page(kvm, sp);
905}
906
907static struct kvm_memory_slot *gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu,
908 gfn_t gfn,
909 bool no_dirty_log)
910{
911 struct kvm_memory_slot *slot;
912
913 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
914 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
915 return NULL;
916 if (no_dirty_log && kvm_slot_dirty_track_enabled(slot))
917 return NULL;
918
919 return slot;
920}
921
922/*
923 * About rmap_head encoding:
924 *
925 * If the bit zero of rmap_head->val is clear, then it points to the only spte
926 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
927 * pte_list_desc containing more mappings.
928 */
929
930/*
931 * Returns the number of pointers in the rmap chain, not counting the new one.
932 */
933static int pte_list_add(struct kvm_mmu_memory_cache *cache, u64 *spte,
934 struct kvm_rmap_head *rmap_head)
935{
936 struct pte_list_desc *desc;
937 int count = 0;
938
939 if (!rmap_head->val) {
940 rmap_head->val = (unsigned long)spte;
941 } else if (!(rmap_head->val & 1)) {
942 desc = kvm_mmu_memory_cache_alloc(mc: cache);
943 desc->sptes[0] = (u64 *)rmap_head->val;
944 desc->sptes[1] = spte;
945 desc->spte_count = 2;
946 desc->tail_count = 0;
947 rmap_head->val = (unsigned long)desc | 1;
948 ++count;
949 } else {
950 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
951 count = desc->tail_count + desc->spte_count;
952
953 /*
954 * If the previous head is full, allocate a new head descriptor
955 * as tail descriptors are always kept full.
956 */
957 if (desc->spte_count == PTE_LIST_EXT) {
958 desc = kvm_mmu_memory_cache_alloc(mc: cache);
959 desc->more = (struct pte_list_desc *)(rmap_head->val & ~1ul);
960 desc->spte_count = 0;
961 desc->tail_count = count;
962 rmap_head->val = (unsigned long)desc | 1;
963 }
964 desc->sptes[desc->spte_count++] = spte;
965 }
966 return count;
967}
968
969static void pte_list_desc_remove_entry(struct kvm *kvm,
970 struct kvm_rmap_head *rmap_head,
971 struct pte_list_desc *desc, int i)
972{
973 struct pte_list_desc *head_desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
974 int j = head_desc->spte_count - 1;
975
976 /*
977 * The head descriptor should never be empty. A new head is added only
978 * when adding an entry and the previous head is full, and heads are
979 * removed (this flow) when they become empty.
980 */
981 KVM_BUG_ON_DATA_CORRUPTION(j < 0, kvm);
982
983 /*
984 * Replace the to-be-freed SPTE with the last valid entry from the head
985 * descriptor to ensure that tail descriptors are full at all times.
986 * Note, this also means that tail_count is stable for each descriptor.
987 */
988 desc->sptes[i] = head_desc->sptes[j];
989 head_desc->sptes[j] = NULL;
990 head_desc->spte_count--;
991 if (head_desc->spte_count)
992 return;
993
994 /*
995 * The head descriptor is empty. If there are no tail descriptors,
996 * nullify the rmap head to mark the list as empty, else point the rmap
997 * head at the next descriptor, i.e. the new head.
998 */
999 if (!head_desc->more)
1000 rmap_head->val = 0;
1001 else
1002 rmap_head->val = (unsigned long)head_desc->more | 1;
1003 mmu_free_pte_list_desc(pte_list_desc: head_desc);
1004}
1005
1006static void pte_list_remove(struct kvm *kvm, u64 *spte,
1007 struct kvm_rmap_head *rmap_head)
1008{
1009 struct pte_list_desc *desc;
1010 int i;
1011
1012 if (KVM_BUG_ON_DATA_CORRUPTION(!rmap_head->val, kvm))
1013 return;
1014
1015 if (!(rmap_head->val & 1)) {
1016 if (KVM_BUG_ON_DATA_CORRUPTION((u64 *)rmap_head->val != spte, kvm))
1017 return;
1018
1019 rmap_head->val = 0;
1020 } else {
1021 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1022 while (desc) {
1023 for (i = 0; i < desc->spte_count; ++i) {
1024 if (desc->sptes[i] == spte) {
1025 pte_list_desc_remove_entry(kvm, rmap_head,
1026 desc, i);
1027 return;
1028 }
1029 }
1030 desc = desc->more;
1031 }
1032
1033 KVM_BUG_ON_DATA_CORRUPTION(true, kvm);
1034 }
1035}
1036
1037static void kvm_zap_one_rmap_spte(struct kvm *kvm,
1038 struct kvm_rmap_head *rmap_head, u64 *sptep)
1039{
1040 mmu_spte_clear_track_bits(kvm, sptep);
1041 pte_list_remove(kvm, spte: sptep, rmap_head);
1042}
1043
1044/* Return true if at least one SPTE was zapped, false otherwise */
1045static bool kvm_zap_all_rmap_sptes(struct kvm *kvm,
1046 struct kvm_rmap_head *rmap_head)
1047{
1048 struct pte_list_desc *desc, *next;
1049 int i;
1050
1051 if (!rmap_head->val)
1052 return false;
1053
1054 if (!(rmap_head->val & 1)) {
1055 mmu_spte_clear_track_bits(kvm, sptep: (u64 *)rmap_head->val);
1056 goto out;
1057 }
1058
1059 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1060
1061 for (; desc; desc = next) {
1062 for (i = 0; i < desc->spte_count; i++)
1063 mmu_spte_clear_track_bits(kvm, sptep: desc->sptes[i]);
1064 next = desc->more;
1065 mmu_free_pte_list_desc(pte_list_desc: desc);
1066 }
1067out:
1068 /* rmap_head is meaningless now, remember to reset it */
1069 rmap_head->val = 0;
1070 return true;
1071}
1072
1073unsigned int pte_list_count(struct kvm_rmap_head *rmap_head)
1074{
1075 struct pte_list_desc *desc;
1076
1077 if (!rmap_head->val)
1078 return 0;
1079 else if (!(rmap_head->val & 1))
1080 return 1;
1081
1082 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1083 return desc->tail_count + desc->spte_count;
1084}
1085
1086static struct kvm_rmap_head *gfn_to_rmap(gfn_t gfn, int level,
1087 const struct kvm_memory_slot *slot)
1088{
1089 unsigned long idx;
1090
1091 idx = gfn_to_index(gfn, slot->base_gfn, level);
1092 return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
1093}
1094
1095static void rmap_remove(struct kvm *kvm, u64 *spte)
1096{
1097 struct kvm_memslots *slots;
1098 struct kvm_memory_slot *slot;
1099 struct kvm_mmu_page *sp;
1100 gfn_t gfn;
1101 struct kvm_rmap_head *rmap_head;
1102
1103 sp = sptep_to_sp(sptep: spte);
1104 gfn = kvm_mmu_page_get_gfn(sp, index: spte_index(sptep: spte));
1105
1106 /*
1107 * Unlike rmap_add, rmap_remove does not run in the context of a vCPU
1108 * so we have to determine which memslots to use based on context
1109 * information in sp->role.
1110 */
1111 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1112
1113 slot = __gfn_to_memslot(slots, gfn);
1114 rmap_head = gfn_to_rmap(gfn, level: sp->role.level, slot);
1115
1116 pte_list_remove(kvm, spte, rmap_head);
1117}
1118
1119/*
1120 * Used by the following functions to iterate through the sptes linked by a
1121 * rmap. All fields are private and not assumed to be used outside.
1122 */
1123struct rmap_iterator {
1124 /* private fields */
1125 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1126 int pos; /* index of the sptep */
1127};
1128
1129/*
1130 * Iteration must be started by this function. This should also be used after
1131 * removing/dropping sptes from the rmap link because in such cases the
1132 * information in the iterator may not be valid.
1133 *
1134 * Returns sptep if found, NULL otherwise.
1135 */
1136static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1137 struct rmap_iterator *iter)
1138{
1139 u64 *sptep;
1140
1141 if (!rmap_head->val)
1142 return NULL;
1143
1144 if (!(rmap_head->val & 1)) {
1145 iter->desc = NULL;
1146 sptep = (u64 *)rmap_head->val;
1147 goto out;
1148 }
1149
1150 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1151 iter->pos = 0;
1152 sptep = iter->desc->sptes[iter->pos];
1153out:
1154 BUG_ON(!is_shadow_present_pte(*sptep));
1155 return sptep;
1156}
1157
1158/*
1159 * Must be used with a valid iterator: e.g. after rmap_get_first().
1160 *
1161 * Returns sptep if found, NULL otherwise.
1162 */
1163static u64 *rmap_get_next(struct rmap_iterator *iter)
1164{
1165 u64 *sptep;
1166
1167 if (iter->desc) {
1168 if (iter->pos < PTE_LIST_EXT - 1) {
1169 ++iter->pos;
1170 sptep = iter->desc->sptes[iter->pos];
1171 if (sptep)
1172 goto out;
1173 }
1174
1175 iter->desc = iter->desc->more;
1176
1177 if (iter->desc) {
1178 iter->pos = 0;
1179 /* desc->sptes[0] cannot be NULL */
1180 sptep = iter->desc->sptes[iter->pos];
1181 goto out;
1182 }
1183 }
1184
1185 return NULL;
1186out:
1187 BUG_ON(!is_shadow_present_pte(*sptep));
1188 return sptep;
1189}
1190
1191#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1192 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1193 _spte_; _spte_ = rmap_get_next(_iter_))
1194
1195static void drop_spte(struct kvm *kvm, u64 *sptep)
1196{
1197 u64 old_spte = mmu_spte_clear_track_bits(kvm, sptep);
1198
1199 if (is_shadow_present_pte(pte: old_spte))
1200 rmap_remove(kvm, spte: sptep);
1201}
1202
1203static void drop_large_spte(struct kvm *kvm, u64 *sptep, bool flush)
1204{
1205 struct kvm_mmu_page *sp;
1206
1207 sp = sptep_to_sp(sptep);
1208 WARN_ON_ONCE(sp->role.level == PG_LEVEL_4K);
1209
1210 drop_spte(kvm, sptep);
1211
1212 if (flush)
1213 kvm_flush_remote_tlbs_sptep(kvm, sptep);
1214}
1215
1216/*
1217 * Write-protect on the specified @sptep, @pt_protect indicates whether
1218 * spte write-protection is caused by protecting shadow page table.
1219 *
1220 * Note: write protection is difference between dirty logging and spte
1221 * protection:
1222 * - for dirty logging, the spte can be set to writable at anytime if
1223 * its dirty bitmap is properly set.
1224 * - for spte protection, the spte can be writable only after unsync-ing
1225 * shadow page.
1226 *
1227 * Return true if tlb need be flushed.
1228 */
1229static bool spte_write_protect(u64 *sptep, bool pt_protect)
1230{
1231 u64 spte = *sptep;
1232
1233 if (!is_writable_pte(pte: spte) &&
1234 !(pt_protect && is_mmu_writable_spte(spte)))
1235 return false;
1236
1237 if (pt_protect)
1238 spte &= ~shadow_mmu_writable_mask;
1239 spte = spte & ~PT_WRITABLE_MASK;
1240
1241 return mmu_spte_update(sptep, new_spte: spte);
1242}
1243
1244static bool rmap_write_protect(struct kvm_rmap_head *rmap_head,
1245 bool pt_protect)
1246{
1247 u64 *sptep;
1248 struct rmap_iterator iter;
1249 bool flush = false;
1250
1251 for_each_rmap_spte(rmap_head, &iter, sptep)
1252 flush |= spte_write_protect(sptep, pt_protect);
1253
1254 return flush;
1255}
1256
1257static bool spte_clear_dirty(u64 *sptep)
1258{
1259 u64 spte = *sptep;
1260
1261 KVM_MMU_WARN_ON(!spte_ad_enabled(spte));
1262 spte &= ~shadow_dirty_mask;
1263 return mmu_spte_update(sptep, new_spte: spte);
1264}
1265
1266static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1267{
1268 bool was_writable = test_and_clear_bit(nr: PT_WRITABLE_SHIFT,
1269 addr: (unsigned long *)sptep);
1270 if (was_writable && !spte_ad_enabled(spte: *sptep))
1271 kvm_set_pfn_dirty(pfn: spte_to_pfn(pte: *sptep));
1272
1273 return was_writable;
1274}
1275
1276/*
1277 * Gets the GFN ready for another round of dirty logging by clearing the
1278 * - D bit on ad-enabled SPTEs, and
1279 * - W bit on ad-disabled SPTEs.
1280 * Returns true iff any D or W bits were cleared.
1281 */
1282static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1283 const struct kvm_memory_slot *slot)
1284{
1285 u64 *sptep;
1286 struct rmap_iterator iter;
1287 bool flush = false;
1288
1289 for_each_rmap_spte(rmap_head, &iter, sptep)
1290 if (spte_ad_need_write_protect(spte: *sptep))
1291 flush |= spte_wrprot_for_clear_dirty(sptep);
1292 else
1293 flush |= spte_clear_dirty(sptep);
1294
1295 return flush;
1296}
1297
1298/**
1299 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1300 * @kvm: kvm instance
1301 * @slot: slot to protect
1302 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1303 * @mask: indicates which pages we should protect
1304 *
1305 * Used when we do not need to care about huge page mappings.
1306 */
1307static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1308 struct kvm_memory_slot *slot,
1309 gfn_t gfn_offset, unsigned long mask)
1310{
1311 struct kvm_rmap_head *rmap_head;
1312
1313 if (tdp_mmu_enabled)
1314 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1315 gfn: slot->base_gfn + gfn_offset, mask, wrprot: true);
1316
1317 if (!kvm_memslots_have_rmaps(kvm))
1318 return;
1319
1320 while (mask) {
1321 rmap_head = gfn_to_rmap(gfn: slot->base_gfn + gfn_offset + __ffs(mask),
1322 level: PG_LEVEL_4K, slot);
1323 rmap_write_protect(rmap_head, pt_protect: false);
1324
1325 /* clear the first set bit */
1326 mask &= mask - 1;
1327 }
1328}
1329
1330/**
1331 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1332 * protect the page if the D-bit isn't supported.
1333 * @kvm: kvm instance
1334 * @slot: slot to clear D-bit
1335 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1336 * @mask: indicates which pages we should clear D-bit
1337 *
1338 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1339 */
1340static void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1341 struct kvm_memory_slot *slot,
1342 gfn_t gfn_offset, unsigned long mask)
1343{
1344 struct kvm_rmap_head *rmap_head;
1345
1346 if (tdp_mmu_enabled)
1347 kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1348 gfn: slot->base_gfn + gfn_offset, mask, wrprot: false);
1349
1350 if (!kvm_memslots_have_rmaps(kvm))
1351 return;
1352
1353 while (mask) {
1354 rmap_head = gfn_to_rmap(gfn: slot->base_gfn + gfn_offset + __ffs(mask),
1355 level: PG_LEVEL_4K, slot);
1356 __rmap_clear_dirty(kvm, rmap_head, slot);
1357
1358 /* clear the first set bit */
1359 mask &= mask - 1;
1360 }
1361}
1362
1363/**
1364 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1365 * PT level pages.
1366 *
1367 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1368 * enable dirty logging for them.
1369 *
1370 * We need to care about huge page mappings: e.g. during dirty logging we may
1371 * have such mappings.
1372 */
1373void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1374 struct kvm_memory_slot *slot,
1375 gfn_t gfn_offset, unsigned long mask)
1376{
1377 /*
1378 * Huge pages are NOT write protected when we start dirty logging in
1379 * initially-all-set mode; must write protect them here so that they
1380 * are split to 4K on the first write.
1381 *
1382 * The gfn_offset is guaranteed to be aligned to 64, but the base_gfn
1383 * of memslot has no such restriction, so the range can cross two large
1384 * pages.
1385 */
1386 if (kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1387 gfn_t start = slot->base_gfn + gfn_offset + __ffs(mask);
1388 gfn_t end = slot->base_gfn + gfn_offset + __fls(word: mask);
1389
1390 if (READ_ONCE(eager_page_split))
1391 kvm_mmu_try_split_huge_pages(kvm, memslot: slot, start, end: end + 1, target_level: PG_LEVEL_4K);
1392
1393 kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn: start, min_level: PG_LEVEL_2M);
1394
1395 /* Cross two large pages? */
1396 if (ALIGN(start << PAGE_SHIFT, PMD_SIZE) !=
1397 ALIGN(end << PAGE_SHIFT, PMD_SIZE))
1398 kvm_mmu_slot_gfn_write_protect(kvm, slot, gfn: end,
1399 min_level: PG_LEVEL_2M);
1400 }
1401
1402 /* Now handle 4K PTEs. */
1403 if (kvm_x86_ops.cpu_dirty_log_size)
1404 kvm_mmu_clear_dirty_pt_masked(kvm, slot, gfn_offset, mask);
1405 else
1406 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1407}
1408
1409int kvm_cpu_dirty_log_size(void)
1410{
1411 return kvm_x86_ops.cpu_dirty_log_size;
1412}
1413
1414bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1415 struct kvm_memory_slot *slot, u64 gfn,
1416 int min_level)
1417{
1418 struct kvm_rmap_head *rmap_head;
1419 int i;
1420 bool write_protected = false;
1421
1422 if (kvm_memslots_have_rmaps(kvm)) {
1423 for (i = min_level; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1424 rmap_head = gfn_to_rmap(gfn, level: i, slot);
1425 write_protected |= rmap_write_protect(rmap_head, pt_protect: true);
1426 }
1427 }
1428
1429 if (tdp_mmu_enabled)
1430 write_protected |=
1431 kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn, min_level);
1432
1433 return write_protected;
1434}
1435
1436static bool kvm_vcpu_write_protect_gfn(struct kvm_vcpu *vcpu, u64 gfn)
1437{
1438 struct kvm_memory_slot *slot;
1439
1440 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1441 return kvm_mmu_slot_gfn_write_protect(kvm: vcpu->kvm, slot, gfn, min_level: PG_LEVEL_4K);
1442}
1443
1444static bool __kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1445 const struct kvm_memory_slot *slot)
1446{
1447 return kvm_zap_all_rmap_sptes(kvm, rmap_head);
1448}
1449
1450static bool kvm_zap_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1451 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1452 pte_t unused)
1453{
1454 return __kvm_zap_rmap(kvm, rmap_head, slot);
1455}
1456
1457static bool kvm_set_pte_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1458 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1459 pte_t pte)
1460{
1461 u64 *sptep;
1462 struct rmap_iterator iter;
1463 bool need_flush = false;
1464 u64 new_spte;
1465 kvm_pfn_t new_pfn;
1466
1467 WARN_ON_ONCE(pte_huge(pte));
1468 new_pfn = pte_pfn(pte);
1469
1470restart:
1471 for_each_rmap_spte(rmap_head, &iter, sptep) {
1472 need_flush = true;
1473
1474 if (pte_write(pte)) {
1475 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
1476 goto restart;
1477 } else {
1478 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1479 old_spte: *sptep, new_pfn);
1480
1481 mmu_spte_clear_track_bits(kvm, sptep);
1482 mmu_spte_set(sptep, new_spte);
1483 }
1484 }
1485
1486 if (need_flush && kvm_available_flush_remote_tlbs_range()) {
1487 kvm_flush_remote_tlbs_gfn(kvm, gfn, level);
1488 return false;
1489 }
1490
1491 return need_flush;
1492}
1493
1494struct slot_rmap_walk_iterator {
1495 /* input fields. */
1496 const struct kvm_memory_slot *slot;
1497 gfn_t start_gfn;
1498 gfn_t end_gfn;
1499 int start_level;
1500 int end_level;
1501
1502 /* output fields. */
1503 gfn_t gfn;
1504 struct kvm_rmap_head *rmap;
1505 int level;
1506
1507 /* private field. */
1508 struct kvm_rmap_head *end_rmap;
1509};
1510
1511static void rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator,
1512 int level)
1513{
1514 iterator->level = level;
1515 iterator->gfn = iterator->start_gfn;
1516 iterator->rmap = gfn_to_rmap(gfn: iterator->gfn, level, slot: iterator->slot);
1517 iterator->end_rmap = gfn_to_rmap(gfn: iterator->end_gfn, level, slot: iterator->slot);
1518}
1519
1520static void slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1521 const struct kvm_memory_slot *slot,
1522 int start_level, int end_level,
1523 gfn_t start_gfn, gfn_t end_gfn)
1524{
1525 iterator->slot = slot;
1526 iterator->start_level = start_level;
1527 iterator->end_level = end_level;
1528 iterator->start_gfn = start_gfn;
1529 iterator->end_gfn = end_gfn;
1530
1531 rmap_walk_init_level(iterator, level: iterator->start_level);
1532}
1533
1534static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1535{
1536 return !!iterator->rmap;
1537}
1538
1539static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1540{
1541 while (++iterator->rmap <= iterator->end_rmap) {
1542 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1543
1544 if (iterator->rmap->val)
1545 return;
1546 }
1547
1548 if (++iterator->level > iterator->end_level) {
1549 iterator->rmap = NULL;
1550 return;
1551 }
1552
1553 rmap_walk_init_level(iterator, level: iterator->level);
1554}
1555
1556#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1557 _start_gfn, _end_gfn, _iter_) \
1558 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1559 _end_level_, _start_gfn, _end_gfn); \
1560 slot_rmap_walk_okay(_iter_); \
1561 slot_rmap_walk_next(_iter_))
1562
1563typedef bool (*rmap_handler_t)(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1564 struct kvm_memory_slot *slot, gfn_t gfn,
1565 int level, pte_t pte);
1566
1567static __always_inline bool kvm_handle_gfn_range(struct kvm *kvm,
1568 struct kvm_gfn_range *range,
1569 rmap_handler_t handler)
1570{
1571 struct slot_rmap_walk_iterator iterator;
1572 bool ret = false;
1573
1574 for_each_slot_rmap_range(range->slot, PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
1575 range->start, range->end - 1, &iterator)
1576 ret |= handler(kvm, iterator.rmap, range->slot, iterator.gfn,
1577 iterator.level, range->arg.pte);
1578
1579 return ret;
1580}
1581
1582bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1583{
1584 bool flush = false;
1585
1586 if (kvm_memslots_have_rmaps(kvm))
1587 flush = kvm_handle_gfn_range(kvm, range, handler: kvm_zap_rmap);
1588
1589 if (tdp_mmu_enabled)
1590 flush = kvm_tdp_mmu_unmap_gfn_range(kvm, range, flush);
1591
1592 if (kvm_x86_ops.set_apic_access_page_addr &&
1593 range->slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT)
1594 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
1595
1596 return flush;
1597}
1598
1599bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1600{
1601 bool flush = false;
1602
1603 if (kvm_memslots_have_rmaps(kvm))
1604 flush = kvm_handle_gfn_range(kvm, range, handler: kvm_set_pte_rmap);
1605
1606 if (tdp_mmu_enabled)
1607 flush |= kvm_tdp_mmu_set_spte_gfn(kvm, range);
1608
1609 return flush;
1610}
1611
1612static bool kvm_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1613 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1614 pte_t unused)
1615{
1616 u64 *sptep;
1617 struct rmap_iterator iter;
1618 int young = 0;
1619
1620 for_each_rmap_spte(rmap_head, &iter, sptep)
1621 young |= mmu_spte_age(sptep);
1622
1623 return young;
1624}
1625
1626static bool kvm_test_age_rmap(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1627 struct kvm_memory_slot *slot, gfn_t gfn,
1628 int level, pte_t unused)
1629{
1630 u64 *sptep;
1631 struct rmap_iterator iter;
1632
1633 for_each_rmap_spte(rmap_head, &iter, sptep)
1634 if (is_accessed_spte(spte: *sptep))
1635 return true;
1636 return false;
1637}
1638
1639#define RMAP_RECYCLE_THRESHOLD 1000
1640
1641static void __rmap_add(struct kvm *kvm,
1642 struct kvm_mmu_memory_cache *cache,
1643 const struct kvm_memory_slot *slot,
1644 u64 *spte, gfn_t gfn, unsigned int access)
1645{
1646 struct kvm_mmu_page *sp;
1647 struct kvm_rmap_head *rmap_head;
1648 int rmap_count;
1649
1650 sp = sptep_to_sp(sptep: spte);
1651 kvm_mmu_page_set_translation(sp, index: spte_index(sptep: spte), gfn, access);
1652 kvm_update_page_stats(kvm, sp->role.level, 1);
1653
1654 rmap_head = gfn_to_rmap(gfn, level: sp->role.level, slot);
1655 rmap_count = pte_list_add(cache, spte, rmap_head);
1656
1657 if (rmap_count > kvm->stat.max_mmu_rmap_size)
1658 kvm->stat.max_mmu_rmap_size = rmap_count;
1659 if (rmap_count > RMAP_RECYCLE_THRESHOLD) {
1660 kvm_zap_all_rmap_sptes(kvm, rmap_head);
1661 kvm_flush_remote_tlbs_gfn(kvm, gfn, level: sp->role.level);
1662 }
1663}
1664
1665static void rmap_add(struct kvm_vcpu *vcpu, const struct kvm_memory_slot *slot,
1666 u64 *spte, gfn_t gfn, unsigned int access)
1667{
1668 struct kvm_mmu_memory_cache *cache = &vcpu->arch.mmu_pte_list_desc_cache;
1669
1670 __rmap_add(kvm: vcpu->kvm, cache, slot, spte, gfn, access);
1671}
1672
1673bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1674{
1675 bool young = false;
1676
1677 if (kvm_memslots_have_rmaps(kvm))
1678 young = kvm_handle_gfn_range(kvm, range, handler: kvm_age_rmap);
1679
1680 if (tdp_mmu_enabled)
1681 young |= kvm_tdp_mmu_age_gfn_range(kvm, range);
1682
1683 return young;
1684}
1685
1686bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1687{
1688 bool young = false;
1689
1690 if (kvm_memslots_have_rmaps(kvm))
1691 young = kvm_handle_gfn_range(kvm, range, handler: kvm_test_age_rmap);
1692
1693 if (tdp_mmu_enabled)
1694 young |= kvm_tdp_mmu_test_age_gfn(kvm, range);
1695
1696 return young;
1697}
1698
1699static void kvm_mmu_check_sptes_at_free(struct kvm_mmu_page *sp)
1700{
1701#ifdef CONFIG_KVM_PROVE_MMU
1702 int i;
1703
1704 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1705 if (KVM_MMU_WARN_ON(is_shadow_present_pte(sp->spt[i])))
1706 pr_err_ratelimited("SPTE %llx (@ %p) for gfn %llx shadow-present at free",
1707 sp->spt[i], &sp->spt[i],
1708 kvm_mmu_page_get_gfn(sp, i));
1709 }
1710#endif
1711}
1712
1713/*
1714 * This value is the sum of all of the kvm instances's
1715 * kvm->arch.n_used_mmu_pages values. We need a global,
1716 * aggregate version in order to make the slab shrinker
1717 * faster
1718 */
1719static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, long nr)
1720{
1721 kvm->arch.n_used_mmu_pages += nr;
1722 percpu_counter_add(fbc: &kvm_total_used_mmu_pages, amount: nr);
1723}
1724
1725static void kvm_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1726{
1727 kvm_mod_used_mmu_pages(kvm, nr: +1);
1728 kvm_account_pgtable_pages(virt: (void *)sp->spt, nr: +1);
1729}
1730
1731static void kvm_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1732{
1733 kvm_mod_used_mmu_pages(kvm, nr: -1);
1734 kvm_account_pgtable_pages(virt: (void *)sp->spt, nr: -1);
1735}
1736
1737static void kvm_mmu_free_shadow_page(struct kvm_mmu_page *sp)
1738{
1739 kvm_mmu_check_sptes_at_free(sp);
1740
1741 hlist_del(n: &sp->hash_link);
1742 list_del(entry: &sp->link);
1743 free_page((unsigned long)sp->spt);
1744 if (!sp->role.direct)
1745 free_page((unsigned long)sp->shadowed_translation);
1746 kmem_cache_free(s: mmu_page_header_cache, objp: sp);
1747}
1748
1749static unsigned kvm_page_table_hashfn(gfn_t gfn)
1750{
1751 return hash_64(val: gfn, KVM_MMU_HASH_SHIFT);
1752}
1753
1754static void mmu_page_add_parent_pte(struct kvm_mmu_memory_cache *cache,
1755 struct kvm_mmu_page *sp, u64 *parent_pte)
1756{
1757 if (!parent_pte)
1758 return;
1759
1760 pte_list_add(cache, spte: parent_pte, rmap_head: &sp->parent_ptes);
1761}
1762
1763static void mmu_page_remove_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1764 u64 *parent_pte)
1765{
1766 pte_list_remove(kvm, spte: parent_pte, rmap_head: &sp->parent_ptes);
1767}
1768
1769static void drop_parent_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1770 u64 *parent_pte)
1771{
1772 mmu_page_remove_parent_pte(kvm, sp, parent_pte);
1773 mmu_spte_clear_no_track(sptep: parent_pte);
1774}
1775
1776static void mark_unsync(u64 *spte);
1777static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1778{
1779 u64 *sptep;
1780 struct rmap_iterator iter;
1781
1782 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1783 mark_unsync(spte: sptep);
1784 }
1785}
1786
1787static void mark_unsync(u64 *spte)
1788{
1789 struct kvm_mmu_page *sp;
1790
1791 sp = sptep_to_sp(sptep: spte);
1792 if (__test_and_set_bit(spte_index(spte), sp->unsync_child_bitmap))
1793 return;
1794 if (sp->unsync_children++)
1795 return;
1796 kvm_mmu_mark_parents_unsync(sp);
1797}
1798
1799#define KVM_PAGE_ARRAY_NR 16
1800
1801struct kvm_mmu_pages {
1802 struct mmu_page_and_offset {
1803 struct kvm_mmu_page *sp;
1804 unsigned int idx;
1805 } page[KVM_PAGE_ARRAY_NR];
1806 unsigned int nr;
1807};
1808
1809static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1810 int idx)
1811{
1812 int i;
1813
1814 if (sp->unsync)
1815 for (i=0; i < pvec->nr; i++)
1816 if (pvec->page[i].sp == sp)
1817 return 0;
1818
1819 pvec->page[pvec->nr].sp = sp;
1820 pvec->page[pvec->nr].idx = idx;
1821 pvec->nr++;
1822 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1823}
1824
1825static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1826{
1827 --sp->unsync_children;
1828 WARN_ON_ONCE((int)sp->unsync_children < 0);
1829 __clear_bit(idx, sp->unsync_child_bitmap);
1830}
1831
1832static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1833 struct kvm_mmu_pages *pvec)
1834{
1835 int i, ret, nr_unsync_leaf = 0;
1836
1837 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1838 struct kvm_mmu_page *child;
1839 u64 ent = sp->spt[i];
1840
1841 if (!is_shadow_present_pte(pte: ent) || is_large_pte(pte: ent)) {
1842 clear_unsync_child_bit(sp, idx: i);
1843 continue;
1844 }
1845
1846 child = spte_to_child_sp(spte: ent);
1847
1848 if (child->unsync_children) {
1849 if (mmu_pages_add(pvec, sp: child, idx: i))
1850 return -ENOSPC;
1851
1852 ret = __mmu_unsync_walk(sp: child, pvec);
1853 if (!ret) {
1854 clear_unsync_child_bit(sp, idx: i);
1855 continue;
1856 } else if (ret > 0) {
1857 nr_unsync_leaf += ret;
1858 } else
1859 return ret;
1860 } else if (child->unsync) {
1861 nr_unsync_leaf++;
1862 if (mmu_pages_add(pvec, sp: child, idx: i))
1863 return -ENOSPC;
1864 } else
1865 clear_unsync_child_bit(sp, idx: i);
1866 }
1867
1868 return nr_unsync_leaf;
1869}
1870
1871#define INVALID_INDEX (-1)
1872
1873static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1874 struct kvm_mmu_pages *pvec)
1875{
1876 pvec->nr = 0;
1877 if (!sp->unsync_children)
1878 return 0;
1879
1880 mmu_pages_add(pvec, sp, INVALID_INDEX);
1881 return __mmu_unsync_walk(sp, pvec);
1882}
1883
1884static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1885{
1886 WARN_ON_ONCE(!sp->unsync);
1887 trace_kvm_mmu_sync_page(sp);
1888 sp->unsync = 0;
1889 --kvm->stat.mmu_unsync;
1890}
1891
1892static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1893 struct list_head *invalid_list);
1894static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1895 struct list_head *invalid_list);
1896
1897static bool sp_has_gptes(struct kvm_mmu_page *sp)
1898{
1899 if (sp->role.direct)
1900 return false;
1901
1902 if (sp->role.passthrough)
1903 return false;
1904
1905 return true;
1906}
1907
1908#define for_each_valid_sp(_kvm, _sp, _list) \
1909 hlist_for_each_entry(_sp, _list, hash_link) \
1910 if (is_obsolete_sp((_kvm), (_sp))) { \
1911 } else
1912
1913#define for_each_gfn_valid_sp_with_gptes(_kvm, _sp, _gfn) \
1914 for_each_valid_sp(_kvm, _sp, \
1915 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)]) \
1916 if ((_sp)->gfn != (_gfn) || !sp_has_gptes(_sp)) {} else
1917
1918static bool kvm_sync_page_check(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1919{
1920 union kvm_mmu_page_role root_role = vcpu->arch.mmu->root_role;
1921
1922 /*
1923 * Ignore various flags when verifying that it's safe to sync a shadow
1924 * page using the current MMU context.
1925 *
1926 * - level: not part of the overall MMU role and will never match as the MMU's
1927 * level tracks the root level
1928 * - access: updated based on the new guest PTE
1929 * - quadrant: not part of the overall MMU role (similar to level)
1930 */
1931 const union kvm_mmu_page_role sync_role_ign = {
1932 .level = 0xf,
1933 .access = 0x7,
1934 .quadrant = 0x3,
1935 .passthrough = 0x1,
1936 };
1937
1938 /*
1939 * Direct pages can never be unsync, and KVM should never attempt to
1940 * sync a shadow page for a different MMU context, e.g. if the role
1941 * differs then the memslot lookup (SMM vs. non-SMM) will be bogus, the
1942 * reserved bits checks will be wrong, etc...
1943 */
1944 if (WARN_ON_ONCE(sp->role.direct || !vcpu->arch.mmu->sync_spte ||
1945 (sp->role.word ^ root_role.word) & ~sync_role_ign.word))
1946 return false;
1947
1948 return true;
1949}
1950
1951static int kvm_sync_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, int i)
1952{
1953 if (!sp->spt[i])
1954 return 0;
1955
1956 return vcpu->arch.mmu->sync_spte(vcpu, sp, i);
1957}
1958
1959static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
1960{
1961 int flush = 0;
1962 int i;
1963
1964 if (!kvm_sync_page_check(vcpu, sp))
1965 return -1;
1966
1967 for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
1968 int ret = kvm_sync_spte(vcpu, sp, i);
1969
1970 if (ret < -1)
1971 return -1;
1972 flush |= ret;
1973 }
1974
1975 /*
1976 * Note, any flush is purely for KVM's correctness, e.g. when dropping
1977 * an existing SPTE or clearing W/A/D bits to ensure an mmu_notifier
1978 * unmap or dirty logging event doesn't fail to flush. The guest is
1979 * responsible for flushing the TLB to ensure any changes in protection
1980 * bits are recognized, i.e. until the guest flushes or page faults on
1981 * a relevant address, KVM is architecturally allowed to let vCPUs use
1982 * cached translations with the old protection bits.
1983 */
1984 return flush;
1985}
1986
1987static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1988 struct list_head *invalid_list)
1989{
1990 int ret = __kvm_sync_page(vcpu, sp);
1991
1992 if (ret < 0)
1993 kvm_mmu_prepare_zap_page(kvm: vcpu->kvm, sp, invalid_list);
1994 return ret;
1995}
1996
1997static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1998 struct list_head *invalid_list,
1999 bool remote_flush)
2000{
2001 if (!remote_flush && list_empty(head: invalid_list))
2002 return false;
2003
2004 if (!list_empty(head: invalid_list))
2005 kvm_mmu_commit_zap_page(kvm, invalid_list);
2006 else
2007 kvm_flush_remote_tlbs(kvm);
2008 return true;
2009}
2010
2011static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2012{
2013 if (sp->role.invalid)
2014 return true;
2015
2016 /* TDP MMU pages do not use the MMU generation. */
2017 return !is_tdp_mmu_page(sp) &&
2018 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2019}
2020
2021struct mmu_page_path {
2022 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2023 unsigned int idx[PT64_ROOT_MAX_LEVEL];
2024};
2025
2026#define for_each_sp(pvec, sp, parents, i) \
2027 for (i = mmu_pages_first(&pvec, &parents); \
2028 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2029 i = mmu_pages_next(&pvec, &parents, i))
2030
2031static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2032 struct mmu_page_path *parents,
2033 int i)
2034{
2035 int n;
2036
2037 for (n = i+1; n < pvec->nr; n++) {
2038 struct kvm_mmu_page *sp = pvec->page[n].sp;
2039 unsigned idx = pvec->page[n].idx;
2040 int level = sp->role.level;
2041
2042 parents->idx[level-1] = idx;
2043 if (level == PG_LEVEL_4K)
2044 break;
2045
2046 parents->parent[level-2] = sp;
2047 }
2048
2049 return n;
2050}
2051
2052static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2053 struct mmu_page_path *parents)
2054{
2055 struct kvm_mmu_page *sp;
2056 int level;
2057
2058 if (pvec->nr == 0)
2059 return 0;
2060
2061 WARN_ON_ONCE(pvec->page[0].idx != INVALID_INDEX);
2062
2063 sp = pvec->page[0].sp;
2064 level = sp->role.level;
2065 WARN_ON_ONCE(level == PG_LEVEL_4K);
2066
2067 parents->parent[level-2] = sp;
2068
2069 /* Also set up a sentinel. Further entries in pvec are all
2070 * children of sp, so this element is never overwritten.
2071 */
2072 parents->parent[level-1] = NULL;
2073 return mmu_pages_next(pvec, parents, i: 0);
2074}
2075
2076static void mmu_pages_clear_parents(struct mmu_page_path *parents)
2077{
2078 struct kvm_mmu_page *sp;
2079 unsigned int level = 0;
2080
2081 do {
2082 unsigned int idx = parents->idx[level];
2083 sp = parents->parent[level];
2084 if (!sp)
2085 return;
2086
2087 WARN_ON_ONCE(idx == INVALID_INDEX);
2088 clear_unsync_child_bit(sp, idx);
2089 level++;
2090 } while (!sp->unsync_children);
2091}
2092
2093static int mmu_sync_children(struct kvm_vcpu *vcpu,
2094 struct kvm_mmu_page *parent, bool can_yield)
2095{
2096 int i;
2097 struct kvm_mmu_page *sp;
2098 struct mmu_page_path parents;
2099 struct kvm_mmu_pages pages;
2100 LIST_HEAD(invalid_list);
2101 bool flush = false;
2102
2103 while (mmu_unsync_walk(sp: parent, pvec: &pages)) {
2104 bool protected = false;
2105
2106 for_each_sp(pages, sp, parents, i)
2107 protected |= kvm_vcpu_write_protect_gfn(vcpu, gfn: sp->gfn);
2108
2109 if (protected) {
2110 kvm_mmu_remote_flush_or_zap(kvm: vcpu->kvm, invalid_list: &invalid_list, remote_flush: true);
2111 flush = false;
2112 }
2113
2114 for_each_sp(pages, sp, parents, i) {
2115 kvm_unlink_unsync_page(kvm: vcpu->kvm, sp);
2116 flush |= kvm_sync_page(vcpu, sp, invalid_list: &invalid_list) > 0;
2117 mmu_pages_clear_parents(parents: &parents);
2118 }
2119 if (need_resched() || rwlock_needbreak(lock: &vcpu->kvm->mmu_lock)) {
2120 kvm_mmu_remote_flush_or_zap(kvm: vcpu->kvm, invalid_list: &invalid_list, remote_flush: flush);
2121 if (!can_yield) {
2122 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2123 return -EINTR;
2124 }
2125
2126 cond_resched_rwlock_write(&vcpu->kvm->mmu_lock);
2127 flush = false;
2128 }
2129 }
2130
2131 kvm_mmu_remote_flush_or_zap(kvm: vcpu->kvm, invalid_list: &invalid_list, remote_flush: flush);
2132 return 0;
2133}
2134
2135static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2136{
2137 atomic_set(v: &sp->write_flooding_count, i: 0);
2138}
2139
2140static void clear_sp_write_flooding_count(u64 *spte)
2141{
2142 __clear_sp_write_flooding_count(sp: sptep_to_sp(sptep: spte));
2143}
2144
2145/*
2146 * The vCPU is required when finding indirect shadow pages; the shadow
2147 * page may already exist and syncing it needs the vCPU pointer in
2148 * order to read guest page tables. Direct shadow pages are never
2149 * unsync, thus @vcpu can be NULL if @role.direct is true.
2150 */
2151static struct kvm_mmu_page *kvm_mmu_find_shadow_page(struct kvm *kvm,
2152 struct kvm_vcpu *vcpu,
2153 gfn_t gfn,
2154 struct hlist_head *sp_list,
2155 union kvm_mmu_page_role role)
2156{
2157 struct kvm_mmu_page *sp;
2158 int ret;
2159 int collisions = 0;
2160 LIST_HEAD(invalid_list);
2161
2162 for_each_valid_sp(kvm, sp, sp_list) {
2163 if (sp->gfn != gfn) {
2164 collisions++;
2165 continue;
2166 }
2167
2168 if (sp->role.word != role.word) {
2169 /*
2170 * If the guest is creating an upper-level page, zap
2171 * unsync pages for the same gfn. While it's possible
2172 * the guest is using recursive page tables, in all
2173 * likelihood the guest has stopped using the unsync
2174 * page and is installing a completely unrelated page.
2175 * Unsync pages must not be left as is, because the new
2176 * upper-level page will be write-protected.
2177 */
2178 if (role.level > PG_LEVEL_4K && sp->unsync)
2179 kvm_mmu_prepare_zap_page(kvm, sp,
2180 invalid_list: &invalid_list);
2181 continue;
2182 }
2183
2184 /* unsync and write-flooding only apply to indirect SPs. */
2185 if (sp->role.direct)
2186 goto out;
2187
2188 if (sp->unsync) {
2189 if (KVM_BUG_ON(!vcpu, kvm))
2190 break;
2191
2192 /*
2193 * The page is good, but is stale. kvm_sync_page does
2194 * get the latest guest state, but (unlike mmu_unsync_children)
2195 * it doesn't write-protect the page or mark it synchronized!
2196 * This way the validity of the mapping is ensured, but the
2197 * overhead of write protection is not incurred until the
2198 * guest invalidates the TLB mapping. This allows multiple
2199 * SPs for a single gfn to be unsync.
2200 *
2201 * If the sync fails, the page is zapped. If so, break
2202 * in order to rebuild it.
2203 */
2204 ret = kvm_sync_page(vcpu, sp, invalid_list: &invalid_list);
2205 if (ret < 0)
2206 break;
2207
2208 WARN_ON_ONCE(!list_empty(&invalid_list));
2209 if (ret > 0)
2210 kvm_flush_remote_tlbs(kvm);
2211 }
2212
2213 __clear_sp_write_flooding_count(sp);
2214
2215 goto out;
2216 }
2217
2218 sp = NULL;
2219 ++kvm->stat.mmu_cache_miss;
2220
2221out:
2222 kvm_mmu_commit_zap_page(kvm, invalid_list: &invalid_list);
2223
2224 if (collisions > kvm->stat.max_mmu_page_hash_collisions)
2225 kvm->stat.max_mmu_page_hash_collisions = collisions;
2226 return sp;
2227}
2228
2229/* Caches used when allocating a new shadow page. */
2230struct shadow_page_caches {
2231 struct kvm_mmu_memory_cache *page_header_cache;
2232 struct kvm_mmu_memory_cache *shadow_page_cache;
2233 struct kvm_mmu_memory_cache *shadowed_info_cache;
2234};
2235
2236static struct kvm_mmu_page *kvm_mmu_alloc_shadow_page(struct kvm *kvm,
2237 struct shadow_page_caches *caches,
2238 gfn_t gfn,
2239 struct hlist_head *sp_list,
2240 union kvm_mmu_page_role role)
2241{
2242 struct kvm_mmu_page *sp;
2243
2244 sp = kvm_mmu_memory_cache_alloc(mc: caches->page_header_cache);
2245 sp->spt = kvm_mmu_memory_cache_alloc(mc: caches->shadow_page_cache);
2246 if (!role.direct)
2247 sp->shadowed_translation = kvm_mmu_memory_cache_alloc(mc: caches->shadowed_info_cache);
2248
2249 set_page_private(virt_to_page(sp->spt), private: (unsigned long)sp);
2250
2251 INIT_LIST_HEAD(list: &sp->possible_nx_huge_page_link);
2252
2253 /*
2254 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2255 * depends on valid pages being added to the head of the list. See
2256 * comments in kvm_zap_obsolete_pages().
2257 */
2258 sp->mmu_valid_gen = kvm->arch.mmu_valid_gen;
2259 list_add(new: &sp->link, head: &kvm->arch.active_mmu_pages);
2260 kvm_account_mmu_page(kvm, sp);
2261
2262 sp->gfn = gfn;
2263 sp->role = role;
2264 hlist_add_head(n: &sp->hash_link, h: sp_list);
2265 if (sp_has_gptes(sp))
2266 account_shadowed(kvm, sp);
2267
2268 return sp;
2269}
2270
2271/* Note, @vcpu may be NULL if @role.direct is true; see kvm_mmu_find_shadow_page. */
2272static struct kvm_mmu_page *__kvm_mmu_get_shadow_page(struct kvm *kvm,
2273 struct kvm_vcpu *vcpu,
2274 struct shadow_page_caches *caches,
2275 gfn_t gfn,
2276 union kvm_mmu_page_role role)
2277{
2278 struct hlist_head *sp_list;
2279 struct kvm_mmu_page *sp;
2280 bool created = false;
2281
2282 sp_list = &kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2283
2284 sp = kvm_mmu_find_shadow_page(kvm, vcpu, gfn, sp_list, role);
2285 if (!sp) {
2286 created = true;
2287 sp = kvm_mmu_alloc_shadow_page(kvm, caches, gfn, sp_list, role);
2288 }
2289
2290 trace_kvm_mmu_get_page(sp, created);
2291 return sp;
2292}
2293
2294static struct kvm_mmu_page *kvm_mmu_get_shadow_page(struct kvm_vcpu *vcpu,
2295 gfn_t gfn,
2296 union kvm_mmu_page_role role)
2297{
2298 struct shadow_page_caches caches = {
2299 .page_header_cache = &vcpu->arch.mmu_page_header_cache,
2300 .shadow_page_cache = &vcpu->arch.mmu_shadow_page_cache,
2301 .shadowed_info_cache = &vcpu->arch.mmu_shadowed_info_cache,
2302 };
2303
2304 return __kvm_mmu_get_shadow_page(kvm: vcpu->kvm, vcpu, caches: &caches, gfn, role);
2305}
2306
2307static union kvm_mmu_page_role kvm_mmu_child_role(u64 *sptep, bool direct,
2308 unsigned int access)
2309{
2310 struct kvm_mmu_page *parent_sp = sptep_to_sp(sptep);
2311 union kvm_mmu_page_role role;
2312
2313 role = parent_sp->role;
2314 role.level--;
2315 role.access = access;
2316 role.direct = direct;
2317 role.passthrough = 0;
2318
2319 /*
2320 * If the guest has 4-byte PTEs then that means it's using 32-bit,
2321 * 2-level, non-PAE paging. KVM shadows such guests with PAE paging
2322 * (i.e. 8-byte PTEs). The difference in PTE size means that KVM must
2323 * shadow each guest page table with multiple shadow page tables, which
2324 * requires extra bookkeeping in the role.
2325 *
2326 * Specifically, to shadow the guest's page directory (which covers a
2327 * 4GiB address space), KVM uses 4 PAE page directories, each mapping
2328 * 1GiB of the address space. @role.quadrant encodes which quarter of
2329 * the address space each maps.
2330 *
2331 * To shadow the guest's page tables (which each map a 4MiB region), KVM
2332 * uses 2 PAE page tables, each mapping a 2MiB region. For these,
2333 * @role.quadrant encodes which half of the region they map.
2334 *
2335 * Concretely, a 4-byte PDE consumes bits 31:22, while an 8-byte PDE
2336 * consumes bits 29:21. To consume bits 31:30, KVM's uses 4 shadow
2337 * PDPTEs; those 4 PAE page directories are pre-allocated and their
2338 * quadrant is assigned in mmu_alloc_root(). A 4-byte PTE consumes
2339 * bits 21:12, while an 8-byte PTE consumes bits 20:12. To consume
2340 * bit 21 in the PTE (the child here), KVM propagates that bit to the
2341 * quadrant, i.e. sets quadrant to '0' or '1'. The parent 8-byte PDE
2342 * covers bit 21 (see above), thus the quadrant is calculated from the
2343 * _least_ significant bit of the PDE index.
2344 */
2345 if (role.has_4_byte_gpte) {
2346 WARN_ON_ONCE(role.level != PG_LEVEL_4K);
2347 role.quadrant = spte_index(sptep) & 1;
2348 }
2349
2350 return role;
2351}
2352
2353static struct kvm_mmu_page *kvm_mmu_get_child_sp(struct kvm_vcpu *vcpu,
2354 u64 *sptep, gfn_t gfn,
2355 bool direct, unsigned int access)
2356{
2357 union kvm_mmu_page_role role;
2358
2359 if (is_shadow_present_pte(pte: *sptep) && !is_large_pte(pte: *sptep))
2360 return ERR_PTR(error: -EEXIST);
2361
2362 role = kvm_mmu_child_role(sptep, direct, access);
2363 return kvm_mmu_get_shadow_page(vcpu, gfn, role);
2364}
2365
2366static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2367 struct kvm_vcpu *vcpu, hpa_t root,
2368 u64 addr)
2369{
2370 iterator->addr = addr;
2371 iterator->shadow_addr = root;
2372 iterator->level = vcpu->arch.mmu->root_role.level;
2373
2374 if (iterator->level >= PT64_ROOT_4LEVEL &&
2375 vcpu->arch.mmu->cpu_role.base.level < PT64_ROOT_4LEVEL &&
2376 !vcpu->arch.mmu->root_role.direct)
2377 iterator->level = PT32E_ROOT_LEVEL;
2378
2379 if (iterator->level == PT32E_ROOT_LEVEL) {
2380 /*
2381 * prev_root is currently only used for 64-bit hosts. So only
2382 * the active root_hpa is valid here.
2383 */
2384 BUG_ON(root != vcpu->arch.mmu->root.hpa);
2385
2386 iterator->shadow_addr
2387 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2388 iterator->shadow_addr &= SPTE_BASE_ADDR_MASK;
2389 --iterator->level;
2390 if (!iterator->shadow_addr)
2391 iterator->level = 0;
2392 }
2393}
2394
2395static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2396 struct kvm_vcpu *vcpu, u64 addr)
2397{
2398 shadow_walk_init_using_root(iterator, vcpu, root: vcpu->arch.mmu->root.hpa,
2399 addr);
2400}
2401
2402static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2403{
2404 if (iterator->level < PG_LEVEL_4K)
2405 return false;
2406
2407 iterator->index = SPTE_INDEX(iterator->addr, iterator->level);
2408 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2409 return true;
2410}
2411
2412static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2413 u64 spte)
2414{
2415 if (!is_shadow_present_pte(pte: spte) || is_last_spte(pte: spte, level: iterator->level)) {
2416 iterator->level = 0;
2417 return;
2418 }
2419
2420 iterator->shadow_addr = spte & SPTE_BASE_ADDR_MASK;
2421 --iterator->level;
2422}
2423
2424static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2425{
2426 __shadow_walk_next(iterator, spte: *iterator->sptep);
2427}
2428
2429static void __link_shadow_page(struct kvm *kvm,
2430 struct kvm_mmu_memory_cache *cache, u64 *sptep,
2431 struct kvm_mmu_page *sp, bool flush)
2432{
2433 u64 spte;
2434
2435 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2436
2437 /*
2438 * If an SPTE is present already, it must be a leaf and therefore
2439 * a large one. Drop it, and flush the TLB if needed, before
2440 * installing sp.
2441 */
2442 if (is_shadow_present_pte(pte: *sptep))
2443 drop_large_spte(kvm, sptep, flush);
2444
2445 spte = make_nonleaf_spte(child_pt: sp->spt, ad_disabled: sp_ad_disabled(sp));
2446
2447 mmu_spte_set(sptep, new_spte: spte);
2448
2449 mmu_page_add_parent_pte(cache, sp, parent_pte: sptep);
2450
2451 /*
2452 * The non-direct sub-pagetable must be updated before linking. For
2453 * L1 sp, the pagetable is updated via kvm_sync_page() in
2454 * kvm_mmu_find_shadow_page() without write-protecting the gfn,
2455 * so sp->unsync can be true or false. For higher level non-direct
2456 * sp, the pagetable is updated/synced via mmu_sync_children() in
2457 * FNAME(fetch)(), so sp->unsync_children can only be false.
2458 * WARN_ON_ONCE() if anything happens unexpectedly.
2459 */
2460 if (WARN_ON_ONCE(sp->unsync_children) || sp->unsync)
2461 mark_unsync(spte: sptep);
2462}
2463
2464static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2465 struct kvm_mmu_page *sp)
2466{
2467 __link_shadow_page(kvm: vcpu->kvm, cache: &vcpu->arch.mmu_pte_list_desc_cache, sptep, sp, flush: true);
2468}
2469
2470static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2471 unsigned direct_access)
2472{
2473 if (is_shadow_present_pte(pte: *sptep) && !is_large_pte(pte: *sptep)) {
2474 struct kvm_mmu_page *child;
2475
2476 /*
2477 * For the direct sp, if the guest pte's dirty bit
2478 * changed form clean to dirty, it will corrupt the
2479 * sp's access: allow writable in the read-only sp,
2480 * so we should update the spte at this point to get
2481 * a new sp with the correct access.
2482 */
2483 child = spte_to_child_sp(spte: *sptep);
2484 if (child->role.access == direct_access)
2485 return;
2486
2487 drop_parent_pte(kvm: vcpu->kvm, sp: child, parent_pte: sptep);
2488 kvm_flush_remote_tlbs_sptep(kvm: vcpu->kvm, sptep);
2489 }
2490}
2491
2492/* Returns the number of zapped non-leaf child shadow pages. */
2493static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2494 u64 *spte, struct list_head *invalid_list)
2495{
2496 u64 pte;
2497 struct kvm_mmu_page *child;
2498
2499 pte = *spte;
2500 if (is_shadow_present_pte(pte)) {
2501 if (is_last_spte(pte, level: sp->role.level)) {
2502 drop_spte(kvm, sptep: spte);
2503 } else {
2504 child = spte_to_child_sp(spte: pte);
2505 drop_parent_pte(kvm, sp: child, parent_pte: spte);
2506
2507 /*
2508 * Recursively zap nested TDP SPs, parentless SPs are
2509 * unlikely to be used again in the near future. This
2510 * avoids retaining a large number of stale nested SPs.
2511 */
2512 if (tdp_enabled && invalid_list &&
2513 child->role.guest_mode && !child->parent_ptes.val)
2514 return kvm_mmu_prepare_zap_page(kvm, sp: child,
2515 invalid_list);
2516 }
2517 } else if (is_mmio_spte(spte: pte)) {
2518 mmu_spte_clear_no_track(sptep: spte);
2519 }
2520 return 0;
2521}
2522
2523static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2524 struct kvm_mmu_page *sp,
2525 struct list_head *invalid_list)
2526{
2527 int zapped = 0;
2528 unsigned i;
2529
2530 for (i = 0; i < SPTE_ENT_PER_PAGE; ++i)
2531 zapped += mmu_page_zap_pte(kvm, sp, spte: sp->spt + i, invalid_list);
2532
2533 return zapped;
2534}
2535
2536static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2537{
2538 u64 *sptep;
2539 struct rmap_iterator iter;
2540
2541 while ((sptep = rmap_get_first(rmap_head: &sp->parent_ptes, iter: &iter)))
2542 drop_parent_pte(kvm, sp, parent_pte: sptep);
2543}
2544
2545static int mmu_zap_unsync_children(struct kvm *kvm,
2546 struct kvm_mmu_page *parent,
2547 struct list_head *invalid_list)
2548{
2549 int i, zapped = 0;
2550 struct mmu_page_path parents;
2551 struct kvm_mmu_pages pages;
2552
2553 if (parent->role.level == PG_LEVEL_4K)
2554 return 0;
2555
2556 while (mmu_unsync_walk(sp: parent, pvec: &pages)) {
2557 struct kvm_mmu_page *sp;
2558
2559 for_each_sp(pages, sp, parents, i) {
2560 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2561 mmu_pages_clear_parents(parents: &parents);
2562 zapped++;
2563 }
2564 }
2565
2566 return zapped;
2567}
2568
2569static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2570 struct kvm_mmu_page *sp,
2571 struct list_head *invalid_list,
2572 int *nr_zapped)
2573{
2574 bool list_unstable, zapped_root = false;
2575
2576 lockdep_assert_held_write(&kvm->mmu_lock);
2577 trace_kvm_mmu_prepare_zap_page(sp);
2578 ++kvm->stat.mmu_shadow_zapped;
2579 *nr_zapped = mmu_zap_unsync_children(kvm, parent: sp, invalid_list);
2580 *nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2581 kvm_mmu_unlink_parents(kvm, sp);
2582
2583 /* Zapping children means active_mmu_pages has become unstable. */
2584 list_unstable = *nr_zapped;
2585
2586 if (!sp->role.invalid && sp_has_gptes(sp))
2587 unaccount_shadowed(kvm, sp);
2588
2589 if (sp->unsync)
2590 kvm_unlink_unsync_page(kvm, sp);
2591 if (!sp->root_count) {
2592 /* Count self */
2593 (*nr_zapped)++;
2594
2595 /*
2596 * Already invalid pages (previously active roots) are not on
2597 * the active page list. See list_del() in the "else" case of
2598 * !sp->root_count.
2599 */
2600 if (sp->role.invalid)
2601 list_add(new: &sp->link, head: invalid_list);
2602 else
2603 list_move(list: &sp->link, head: invalid_list);
2604 kvm_unaccount_mmu_page(kvm, sp);
2605 } else {
2606 /*
2607 * Remove the active root from the active page list, the root
2608 * will be explicitly freed when the root_count hits zero.
2609 */
2610 list_del(entry: &sp->link);
2611
2612 /*
2613 * Obsolete pages cannot be used on any vCPUs, see the comment
2614 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2615 * treats invalid shadow pages as being obsolete.
2616 */
2617 zapped_root = !is_obsolete_sp(kvm, sp);
2618 }
2619
2620 if (sp->nx_huge_page_disallowed)
2621 unaccount_nx_huge_page(kvm, sp);
2622
2623 sp->role.invalid = 1;
2624
2625 /*
2626 * Make the request to free obsolete roots after marking the root
2627 * invalid, otherwise other vCPUs may not see it as invalid.
2628 */
2629 if (zapped_root)
2630 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
2631 return list_unstable;
2632}
2633
2634static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2635 struct list_head *invalid_list)
2636{
2637 int nr_zapped;
2638
2639 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, nr_zapped: &nr_zapped);
2640 return nr_zapped;
2641}
2642
2643static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2644 struct list_head *invalid_list)
2645{
2646 struct kvm_mmu_page *sp, *nsp;
2647
2648 if (list_empty(head: invalid_list))
2649 return;
2650
2651 /*
2652 * We need to make sure everyone sees our modifications to
2653 * the page tables and see changes to vcpu->mode here. The barrier
2654 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2655 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2656 *
2657 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2658 * guest mode and/or lockless shadow page table walks.
2659 */
2660 kvm_flush_remote_tlbs(kvm);
2661
2662 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2663 WARN_ON_ONCE(!sp->role.invalid || sp->root_count);
2664 kvm_mmu_free_shadow_page(sp);
2665 }
2666}
2667
2668static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2669 unsigned long nr_to_zap)
2670{
2671 unsigned long total_zapped = 0;
2672 struct kvm_mmu_page *sp, *tmp;
2673 LIST_HEAD(invalid_list);
2674 bool unstable;
2675 int nr_zapped;
2676
2677 if (list_empty(head: &kvm->arch.active_mmu_pages))
2678 return 0;
2679
2680restart:
2681 list_for_each_entry_safe_reverse(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2682 /*
2683 * Don't zap active root pages, the page itself can't be freed
2684 * and zapping it will just force vCPUs to realloc and reload.
2685 */
2686 if (sp->root_count)
2687 continue;
2688
2689 unstable = __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list: &invalid_list,
2690 nr_zapped: &nr_zapped);
2691 total_zapped += nr_zapped;
2692 if (total_zapped >= nr_to_zap)
2693 break;
2694
2695 if (unstable)
2696 goto restart;
2697 }
2698
2699 kvm_mmu_commit_zap_page(kvm, invalid_list: &invalid_list);
2700
2701 kvm->stat.mmu_recycled += total_zapped;
2702 return total_zapped;
2703}
2704
2705static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2706{
2707 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2708 return kvm->arch.n_max_mmu_pages -
2709 kvm->arch.n_used_mmu_pages;
2710
2711 return 0;
2712}
2713
2714static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2715{
2716 unsigned long avail = kvm_mmu_available_pages(kvm: vcpu->kvm);
2717
2718 if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2719 return 0;
2720
2721 kvm_mmu_zap_oldest_mmu_pages(kvm: vcpu->kvm, KVM_REFILL_PAGES - avail);
2722
2723 /*
2724 * Note, this check is intentionally soft, it only guarantees that one
2725 * page is available, while the caller may end up allocating as many as
2726 * four pages, e.g. for PAE roots or for 5-level paging. Temporarily
2727 * exceeding the (arbitrary by default) limit will not harm the host,
2728 * being too aggressive may unnecessarily kill the guest, and getting an
2729 * exact count is far more trouble than it's worth, especially in the
2730 * page fault paths.
2731 */
2732 if (!kvm_mmu_available_pages(kvm: vcpu->kvm))
2733 return -ENOSPC;
2734 return 0;
2735}
2736
2737/*
2738 * Changing the number of mmu pages allocated to the vm
2739 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2740 */
2741void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2742{
2743 write_lock(&kvm->mmu_lock);
2744
2745 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2746 kvm_mmu_zap_oldest_mmu_pages(kvm, nr_to_zap: kvm->arch.n_used_mmu_pages -
2747 goal_nr_mmu_pages);
2748
2749 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2750 }
2751
2752 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2753
2754 write_unlock(&kvm->mmu_lock);
2755}
2756
2757int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2758{
2759 struct kvm_mmu_page *sp;
2760 LIST_HEAD(invalid_list);
2761 int r;
2762
2763 r = 0;
2764 write_lock(&kvm->mmu_lock);
2765 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2766 r = 1;
2767 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list: &invalid_list);
2768 }
2769 kvm_mmu_commit_zap_page(kvm, invalid_list: &invalid_list);
2770 write_unlock(&kvm->mmu_lock);
2771
2772 return r;
2773}
2774
2775static int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
2776{
2777 gpa_t gpa;
2778 int r;
2779
2780 if (vcpu->arch.mmu->root_role.direct)
2781 return 0;
2782
2783 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
2784
2785 r = kvm_mmu_unprotect_page(kvm: vcpu->kvm, gfn: gpa >> PAGE_SHIFT);
2786
2787 return r;
2788}
2789
2790static void kvm_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2791{
2792 trace_kvm_mmu_unsync_page(sp);
2793 ++kvm->stat.mmu_unsync;
2794 sp->unsync = 1;
2795
2796 kvm_mmu_mark_parents_unsync(sp);
2797}
2798
2799/*
2800 * Attempt to unsync any shadow pages that can be reached by the specified gfn,
2801 * KVM is creating a writable mapping for said gfn. Returns 0 if all pages
2802 * were marked unsync (or if there is no shadow page), -EPERM if the SPTE must
2803 * be write-protected.
2804 */
2805int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
2806 gfn_t gfn, bool can_unsync, bool prefetch)
2807{
2808 struct kvm_mmu_page *sp;
2809 bool locked = false;
2810
2811 /*
2812 * Force write-protection if the page is being tracked. Note, the page
2813 * track machinery is used to write-protect upper-level shadow pages,
2814 * i.e. this guards the role.level == 4K assertion below!
2815 */
2816 if (kvm_gfn_is_write_tracked(kvm, slot, gfn))
2817 return -EPERM;
2818
2819 /*
2820 * The page is not write-tracked, mark existing shadow pages unsync
2821 * unless KVM is synchronizing an unsync SP (can_unsync = false). In
2822 * that case, KVM must complete emulation of the guest TLB flush before
2823 * allowing shadow pages to become unsync (writable by the guest).
2824 */
2825 for_each_gfn_valid_sp_with_gptes(kvm, sp, gfn) {
2826 if (!can_unsync)
2827 return -EPERM;
2828
2829 if (sp->unsync)
2830 continue;
2831
2832 if (prefetch)
2833 return -EEXIST;
2834
2835 /*
2836 * TDP MMU page faults require an additional spinlock as they
2837 * run with mmu_lock held for read, not write, and the unsync
2838 * logic is not thread safe. Take the spinklock regardless of
2839 * the MMU type to avoid extra conditionals/parameters, there's
2840 * no meaningful penalty if mmu_lock is held for write.
2841 */
2842 if (!locked) {
2843 locked = true;
2844 spin_lock(lock: &kvm->arch.mmu_unsync_pages_lock);
2845
2846 /*
2847 * Recheck after taking the spinlock, a different vCPU
2848 * may have since marked the page unsync. A false
2849 * negative on the unprotected check above is not
2850 * possible as clearing sp->unsync _must_ hold mmu_lock
2851 * for write, i.e. unsync cannot transition from 1->0
2852 * while this CPU holds mmu_lock for read (or write).
2853 */
2854 if (READ_ONCE(sp->unsync))
2855 continue;
2856 }
2857
2858 WARN_ON_ONCE(sp->role.level != PG_LEVEL_4K);
2859 kvm_unsync_page(kvm, sp);
2860 }
2861 if (locked)
2862 spin_unlock(lock: &kvm->arch.mmu_unsync_pages_lock);
2863
2864 /*
2865 * We need to ensure that the marking of unsync pages is visible
2866 * before the SPTE is updated to allow writes because
2867 * kvm_mmu_sync_roots() checks the unsync flags without holding
2868 * the MMU lock and so can race with this. If the SPTE was updated
2869 * before the page had been marked as unsync-ed, something like the
2870 * following could happen:
2871 *
2872 * CPU 1 CPU 2
2873 * ---------------------------------------------------------------------
2874 * 1.2 Host updates SPTE
2875 * to be writable
2876 * 2.1 Guest writes a GPTE for GVA X.
2877 * (GPTE being in the guest page table shadowed
2878 * by the SP from CPU 1.)
2879 * This reads SPTE during the page table walk.
2880 * Since SPTE.W is read as 1, there is no
2881 * fault.
2882 *
2883 * 2.2 Guest issues TLB flush.
2884 * That causes a VM Exit.
2885 *
2886 * 2.3 Walking of unsync pages sees sp->unsync is
2887 * false and skips the page.
2888 *
2889 * 2.4 Guest accesses GVA X.
2890 * Since the mapping in the SP was not updated,
2891 * so the old mapping for GVA X incorrectly
2892 * gets used.
2893 * 1.1 Host marks SP
2894 * as unsync
2895 * (sp->unsync = true)
2896 *
2897 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2898 * the situation in 2.4 does not arise. It pairs with the read barrier
2899 * in is_unsync_root(), placed between 2.1's load of SPTE.W and 2.3.
2900 */
2901 smp_wmb();
2902
2903 return 0;
2904}
2905
2906static int mmu_set_spte(struct kvm_vcpu *vcpu, struct kvm_memory_slot *slot,
2907 u64 *sptep, unsigned int pte_access, gfn_t gfn,
2908 kvm_pfn_t pfn, struct kvm_page_fault *fault)
2909{
2910 struct kvm_mmu_page *sp = sptep_to_sp(sptep);
2911 int level = sp->role.level;
2912 int was_rmapped = 0;
2913 int ret = RET_PF_FIXED;
2914 bool flush = false;
2915 bool wrprot;
2916 u64 spte;
2917
2918 /* Prefetching always gets a writable pfn. */
2919 bool host_writable = !fault || fault->map_writable;
2920 bool prefetch = !fault || fault->prefetch;
2921 bool write_fault = fault && fault->write;
2922
2923 if (unlikely(is_noslot_pfn(pfn))) {
2924 vcpu->stat.pf_mmio_spte_created++;
2925 mark_mmio_spte(vcpu, sptep, gfn, access: pte_access);
2926 return RET_PF_EMULATE;
2927 }
2928
2929 if (is_shadow_present_pte(pte: *sptep)) {
2930 /*
2931 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2932 * the parent of the now unreachable PTE.
2933 */
2934 if (level > PG_LEVEL_4K && !is_large_pte(pte: *sptep)) {
2935 struct kvm_mmu_page *child;
2936 u64 pte = *sptep;
2937
2938 child = spte_to_child_sp(spte: pte);
2939 drop_parent_pte(kvm: vcpu->kvm, sp: child, parent_pte: sptep);
2940 flush = true;
2941 } else if (pfn != spte_to_pfn(pte: *sptep)) {
2942 drop_spte(kvm: vcpu->kvm, sptep);
2943 flush = true;
2944 } else
2945 was_rmapped = 1;
2946 }
2947
2948 wrprot = make_spte(vcpu, sp, slot, pte_access, gfn, pfn, old_spte: *sptep, prefetch,
2949 can_unsync: true, host_writable, new_spte: &spte);
2950
2951 if (*sptep == spte) {
2952 ret = RET_PF_SPURIOUS;
2953 } else {
2954 flush |= mmu_spte_update(sptep, new_spte: spte);
2955 trace_kvm_mmu_set_spte(level, gfn, sptep);
2956 }
2957
2958 if (wrprot) {
2959 if (write_fault)
2960 ret = RET_PF_EMULATE;
2961 }
2962
2963 if (flush)
2964 kvm_flush_remote_tlbs_gfn(kvm: vcpu->kvm, gfn, level);
2965
2966 if (!was_rmapped) {
2967 WARN_ON_ONCE(ret == RET_PF_SPURIOUS);
2968 rmap_add(vcpu, slot, spte: sptep, gfn, access: pte_access);
2969 } else {
2970 /* Already rmapped but the pte_access bits may have changed. */
2971 kvm_mmu_page_set_access(sp, index: spte_index(sptep), access: pte_access);
2972 }
2973
2974 return ret;
2975}
2976
2977static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2978 struct kvm_mmu_page *sp,
2979 u64 *start, u64 *end)
2980{
2981 struct page *pages[PTE_PREFETCH_NUM];
2982 struct kvm_memory_slot *slot;
2983 unsigned int access = sp->role.access;
2984 int i, ret;
2985 gfn_t gfn;
2986
2987 gfn = kvm_mmu_page_get_gfn(sp, index: spte_index(sptep: start));
2988 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log: access & ACC_WRITE_MASK);
2989 if (!slot)
2990 return -1;
2991
2992 ret = gfn_to_page_many_atomic(slot, gfn, pages, nr_pages: end - start);
2993 if (ret <= 0)
2994 return -1;
2995
2996 for (i = 0; i < ret; i++, gfn++, start++) {
2997 mmu_set_spte(vcpu, slot, sptep: start, pte_access: access, gfn,
2998 page_to_pfn(pages[i]), NULL);
2999 put_page(page: pages[i]);
3000 }
3001
3002 return 0;
3003}
3004
3005static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3006 struct kvm_mmu_page *sp, u64 *sptep)
3007{
3008 u64 *spte, *start = NULL;
3009 int i;
3010
3011 WARN_ON_ONCE(!sp->role.direct);
3012
3013 i = spte_index(sptep) & ~(PTE_PREFETCH_NUM - 1);
3014 spte = sp->spt + i;
3015
3016 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
3017 if (is_shadow_present_pte(pte: *spte) || spte == sptep) {
3018 if (!start)
3019 continue;
3020 if (direct_pte_prefetch_many(vcpu, sp, start, end: spte) < 0)
3021 return;
3022 start = NULL;
3023 } else if (!start)
3024 start = spte;
3025 }
3026 if (start)
3027 direct_pte_prefetch_many(vcpu, sp, start, end: spte);
3028}
3029
3030static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3031{
3032 struct kvm_mmu_page *sp;
3033
3034 sp = sptep_to_sp(sptep);
3035
3036 /*
3037 * Without accessed bits, there's no way to distinguish between
3038 * actually accessed translations and prefetched, so disable pte
3039 * prefetch if accessed bits aren't available.
3040 */
3041 if (sp_ad_disabled(sp))
3042 return;
3043
3044 if (sp->role.level > PG_LEVEL_4K)
3045 return;
3046
3047 /*
3048 * If addresses are being invalidated, skip prefetching to avoid
3049 * accidentally prefetching those addresses.
3050 */
3051 if (unlikely(vcpu->kvm->mmu_invalidate_in_progress))
3052 return;
3053
3054 __direct_pte_prefetch(vcpu, sp, sptep);
3055}
3056
3057/*
3058 * Lookup the mapping level for @gfn in the current mm.
3059 *
3060 * WARNING! Use of host_pfn_mapping_level() requires the caller and the end
3061 * consumer to be tied into KVM's handlers for MMU notifier events!
3062 *
3063 * There are several ways to safely use this helper:
3064 *
3065 * - Check mmu_invalidate_retry_gfn() after grabbing the mapping level, before
3066 * consuming it. In this case, mmu_lock doesn't need to be held during the
3067 * lookup, but it does need to be held while checking the MMU notifier.
3068 *
3069 * - Hold mmu_lock AND ensure there is no in-progress MMU notifier invalidation
3070 * event for the hva. This can be done by explicit checking the MMU notifier
3071 * or by ensuring that KVM already has a valid mapping that covers the hva.
3072 *
3073 * - Do not use the result to install new mappings, e.g. use the host mapping
3074 * level only to decide whether or not to zap an entry. In this case, it's
3075 * not required to hold mmu_lock (though it's highly likely the caller will
3076 * want to hold mmu_lock anyways, e.g. to modify SPTEs).
3077 *
3078 * Note! The lookup can still race with modifications to host page tables, but
3079 * the above "rules" ensure KVM will not _consume_ the result of the walk if a
3080 * race with the primary MMU occurs.
3081 */
3082static int host_pfn_mapping_level(struct kvm *kvm, gfn_t gfn,
3083 const struct kvm_memory_slot *slot)
3084{
3085 int level = PG_LEVEL_4K;
3086 unsigned long hva;
3087 unsigned long flags;
3088 pgd_t pgd;
3089 p4d_t p4d;
3090 pud_t pud;
3091 pmd_t pmd;
3092
3093 /*
3094 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3095 * is not solely for performance, it's also necessary to avoid the
3096 * "writable" check in __gfn_to_hva_many(), which will always fail on
3097 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3098 * page fault steps have already verified the guest isn't writing a
3099 * read-only memslot.
3100 */
3101 hva = __gfn_to_hva_memslot(slot, gfn);
3102
3103 /*
3104 * Disable IRQs to prevent concurrent tear down of host page tables,
3105 * e.g. if the primary MMU promotes a P*D to a huge page and then frees
3106 * the original page table.
3107 */
3108 local_irq_save(flags);
3109
3110 /*
3111 * Read each entry once. As above, a non-leaf entry can be promoted to
3112 * a huge page _during_ this walk. Re-reading the entry could send the
3113 * walk into the weeks, e.g. p*d_leaf() returns false (sees the old
3114 * value) and then p*d_offset() walks into the target huge page instead
3115 * of the old page table (sees the new value).
3116 */
3117 pgd = READ_ONCE(*pgd_offset(kvm->mm, hva));
3118 if (pgd_none(pgd))
3119 goto out;
3120
3121 p4d = READ_ONCE(*p4d_offset(&pgd, hva));
3122 if (p4d_none(p4d) || !p4d_present(p4d))
3123 goto out;
3124
3125 pud = READ_ONCE(*pud_offset(&p4d, hva));
3126 if (pud_none(pud) || !pud_present(pud))
3127 goto out;
3128
3129 if (pud_leaf(pud)) {
3130 level = PG_LEVEL_1G;
3131 goto out;
3132 }
3133
3134 pmd = READ_ONCE(*pmd_offset(&pud, hva));
3135 if (pmd_none(pmd) || !pmd_present(pmd))
3136 goto out;
3137
3138 if (pmd_leaf(pte: pmd))
3139 level = PG_LEVEL_2M;
3140
3141out:
3142 local_irq_restore(flags);
3143 return level;
3144}
3145
3146static int __kvm_mmu_max_mapping_level(struct kvm *kvm,
3147 const struct kvm_memory_slot *slot,
3148 gfn_t gfn, int max_level, bool is_private)
3149{
3150 struct kvm_lpage_info *linfo;
3151 int host_level;
3152
3153 max_level = min(max_level, max_huge_page_level);
3154 for ( ; max_level > PG_LEVEL_4K; max_level--) {
3155 linfo = lpage_info_slot(gfn, slot, level: max_level);
3156 if (!linfo->disallow_lpage)
3157 break;
3158 }
3159
3160 if (is_private)
3161 return max_level;
3162
3163 if (max_level == PG_LEVEL_4K)
3164 return PG_LEVEL_4K;
3165
3166 host_level = host_pfn_mapping_level(kvm, gfn, slot);
3167 return min(host_level, max_level);
3168}
3169
3170int kvm_mmu_max_mapping_level(struct kvm *kvm,
3171 const struct kvm_memory_slot *slot, gfn_t gfn,
3172 int max_level)
3173{
3174 bool is_private = kvm_slot_can_be_private(slot) &&
3175 kvm_mem_is_private(kvm, gfn);
3176
3177 return __kvm_mmu_max_mapping_level(kvm, slot, gfn, max_level, is_private);
3178}
3179
3180void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3181{
3182 struct kvm_memory_slot *slot = fault->slot;
3183 kvm_pfn_t mask;
3184
3185 fault->huge_page_disallowed = fault->exec && fault->nx_huge_page_workaround_enabled;
3186
3187 if (unlikely(fault->max_level == PG_LEVEL_4K))
3188 return;
3189
3190 if (is_error_noslot_pfn(pfn: fault->pfn))
3191 return;
3192
3193 if (kvm_slot_dirty_track_enabled(slot))
3194 return;
3195
3196 /*
3197 * Enforce the iTLB multihit workaround after capturing the requested
3198 * level, which will be used to do precise, accurate accounting.
3199 */
3200 fault->req_level = __kvm_mmu_max_mapping_level(kvm: vcpu->kvm, slot,
3201 gfn: fault->gfn, max_level: fault->max_level,
3202 is_private: fault->is_private);
3203 if (fault->req_level == PG_LEVEL_4K || fault->huge_page_disallowed)
3204 return;
3205
3206 /*
3207 * mmu_invalidate_retry() was successful and mmu_lock is held, so
3208 * the pmd can't be split from under us.
3209 */
3210 fault->goal_level = fault->req_level;
3211 mask = KVM_PAGES_PER_HPAGE(fault->goal_level) - 1;
3212 VM_BUG_ON((fault->gfn & mask) != (fault->pfn & mask));
3213 fault->pfn &= ~mask;
3214}
3215
3216void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level)
3217{
3218 if (cur_level > PG_LEVEL_4K &&
3219 cur_level == fault->goal_level &&
3220 is_shadow_present_pte(pte: spte) &&
3221 !is_large_pte(pte: spte) &&
3222 spte_to_child_sp(spte)->nx_huge_page_disallowed) {
3223 /*
3224 * A small SPTE exists for this pfn, but FNAME(fetch),
3225 * direct_map(), or kvm_tdp_mmu_map() would like to create a
3226 * large PTE instead: just force them to go down another level,
3227 * patching back for them into pfn the next 9 bits of the
3228 * address.
3229 */
3230 u64 page_mask = KVM_PAGES_PER_HPAGE(cur_level) -
3231 KVM_PAGES_PER_HPAGE(cur_level - 1);
3232 fault->pfn |= fault->gfn & page_mask;
3233 fault->goal_level--;
3234 }
3235}
3236
3237static int direct_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3238{
3239 struct kvm_shadow_walk_iterator it;
3240 struct kvm_mmu_page *sp;
3241 int ret;
3242 gfn_t base_gfn = fault->gfn;
3243
3244 kvm_mmu_hugepage_adjust(vcpu, fault);
3245
3246 trace_kvm_mmu_spte_requested(fault);
3247 for_each_shadow_entry(vcpu, fault->addr, it) {
3248 /*
3249 * We cannot overwrite existing page tables with an NX
3250 * large page, as the leaf could be executable.
3251 */
3252 if (fault->nx_huge_page_workaround_enabled)
3253 disallowed_hugepage_adjust(fault, spte: *it.sptep, cur_level: it.level);
3254
3255 base_gfn = gfn_round_for_level(gfn: fault->gfn, level: it.level);
3256 if (it.level == fault->goal_level)
3257 break;
3258
3259 sp = kvm_mmu_get_child_sp(vcpu, it.sptep, base_gfn, true, ACC_ALL);
3260 if (sp == ERR_PTR(error: -EEXIST))
3261 continue;
3262
3263 link_shadow_page(vcpu, sptep: it.sptep, sp);
3264 if (fault->huge_page_disallowed)
3265 account_nx_huge_page(kvm: vcpu->kvm, sp,
3266 nx_huge_page_possible: fault->req_level >= it.level);
3267 }
3268
3269 if (WARN_ON_ONCE(it.level != fault->goal_level))
3270 return -EFAULT;
3271
3272 ret = mmu_set_spte(vcpu, fault->slot, it.sptep, ACC_ALL,
3273 base_gfn, fault->pfn, fault);
3274 if (ret == RET_PF_SPURIOUS)
3275 return ret;
3276
3277 direct_pte_prefetch(vcpu, sptep: it.sptep);
3278 return ret;
3279}
3280
3281static void kvm_send_hwpoison_signal(struct kvm_memory_slot *slot, gfn_t gfn)
3282{
3283 unsigned long hva = gfn_to_hva_memslot(slot, gfn);
3284
3285 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva, PAGE_SHIFT, current);
3286}
3287
3288static int kvm_handle_error_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3289{
3290 if (is_sigpending_pfn(pfn: fault->pfn)) {
3291 kvm_handle_signal_exit(vcpu);
3292 return -EINTR;
3293 }
3294
3295 /*
3296 * Do not cache the mmio info caused by writing the readonly gfn
3297 * into the spte otherwise read access on readonly gfn also can
3298 * caused mmio page fault and treat it as mmio access.
3299 */
3300 if (fault->pfn == KVM_PFN_ERR_RO_FAULT)
3301 return RET_PF_EMULATE;
3302
3303 if (fault->pfn == KVM_PFN_ERR_HWPOISON) {
3304 kvm_send_hwpoison_signal(slot: fault->slot, gfn: fault->gfn);
3305 return RET_PF_RETRY;
3306 }
3307
3308 return -EFAULT;
3309}
3310
3311static int kvm_handle_noslot_fault(struct kvm_vcpu *vcpu,
3312 struct kvm_page_fault *fault,
3313 unsigned int access)
3314{
3315 gva_t gva = fault->is_tdp ? 0 : fault->addr;
3316
3317 vcpu_cache_mmio_info(vcpu, gva, fault->gfn,
3318 access & shadow_mmio_access_mask);
3319
3320 /*
3321 * If MMIO caching is disabled, emulate immediately without
3322 * touching the shadow page tables as attempting to install an
3323 * MMIO SPTE will just be an expensive nop.
3324 */
3325 if (unlikely(!enable_mmio_caching))
3326 return RET_PF_EMULATE;
3327
3328 /*
3329 * Do not create an MMIO SPTE for a gfn greater than host.MAXPHYADDR,
3330 * any guest that generates such gfns is running nested and is being
3331 * tricked by L0 userspace (you can observe gfn > L1.MAXPHYADDR if and
3332 * only if L1's MAXPHYADDR is inaccurate with respect to the
3333 * hardware's).
3334 */
3335 if (unlikely(fault->gfn > kvm_mmu_max_gfn()))
3336 return RET_PF_EMULATE;
3337
3338 return RET_PF_CONTINUE;
3339}
3340
3341static bool page_fault_can_be_fast(struct kvm_page_fault *fault)
3342{
3343 /*
3344 * Page faults with reserved bits set, i.e. faults on MMIO SPTEs, only
3345 * reach the common page fault handler if the SPTE has an invalid MMIO
3346 * generation number. Refreshing the MMIO generation needs to go down
3347 * the slow path. Note, EPT Misconfigs do NOT set the PRESENT flag!
3348 */
3349 if (fault->rsvd)
3350 return false;
3351
3352 /*
3353 * #PF can be fast if:
3354 *
3355 * 1. The shadow page table entry is not present and A/D bits are
3356 * disabled _by KVM_, which could mean that the fault is potentially
3357 * caused by access tracking (if enabled). If A/D bits are enabled
3358 * by KVM, but disabled by L1 for L2, KVM is forced to disable A/D
3359 * bits for L2 and employ access tracking, but the fast page fault
3360 * mechanism only supports direct MMUs.
3361 * 2. The shadow page table entry is present, the access is a write,
3362 * and no reserved bits are set (MMIO SPTEs cannot be "fixed"), i.e.
3363 * the fault was caused by a write-protection violation. If the
3364 * SPTE is MMU-writable (determined later), the fault can be fixed
3365 * by setting the Writable bit, which can be done out of mmu_lock.
3366 */
3367 if (!fault->present)
3368 return !kvm_ad_enabled();
3369
3370 /*
3371 * Note, instruction fetches and writes are mutually exclusive, ignore
3372 * the "exec" flag.
3373 */
3374 return fault->write;
3375}
3376
3377/*
3378 * Returns true if the SPTE was fixed successfully. Otherwise,
3379 * someone else modified the SPTE from its original value.
3380 */
3381static bool fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu,
3382 struct kvm_page_fault *fault,
3383 u64 *sptep, u64 old_spte, u64 new_spte)
3384{
3385 /*
3386 * Theoretically we could also set dirty bit (and flush TLB) here in
3387 * order to eliminate unnecessary PML logging. See comments in
3388 * set_spte. But fast_page_fault is very unlikely to happen with PML
3389 * enabled, so we do not do this. This might result in the same GPA
3390 * to be logged in PML buffer again when the write really happens, and
3391 * eventually to be called by mark_page_dirty twice. But it's also no
3392 * harm. This also avoids the TLB flush needed after setting dirty bit
3393 * so non-PML cases won't be impacted.
3394 *
3395 * Compare with set_spte where instead shadow_dirty_mask is set.
3396 */
3397 if (!try_cmpxchg64(sptep, &old_spte, new_spte))
3398 return false;
3399
3400 if (is_writable_pte(pte: new_spte) && !is_writable_pte(pte: old_spte))
3401 mark_page_dirty_in_slot(kvm: vcpu->kvm, memslot: fault->slot, gfn: fault->gfn);
3402
3403 return true;
3404}
3405
3406static bool is_access_allowed(struct kvm_page_fault *fault, u64 spte)
3407{
3408 if (fault->exec)
3409 return is_executable_pte(spte);
3410
3411 if (fault->write)
3412 return is_writable_pte(pte: spte);
3413
3414 /* Fault was on Read access */
3415 return spte & PT_PRESENT_MASK;
3416}
3417
3418/*
3419 * Returns the last level spte pointer of the shadow page walk for the given
3420 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
3421 * walk could be performed, returns NULL and *spte does not contain valid data.
3422 *
3423 * Contract:
3424 * - Must be called between walk_shadow_page_lockless_{begin,end}.
3425 * - The returned sptep must not be used after walk_shadow_page_lockless_end.
3426 */
3427static u64 *fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, gpa_t gpa, u64 *spte)
3428{
3429 struct kvm_shadow_walk_iterator iterator;
3430 u64 old_spte;
3431 u64 *sptep = NULL;
3432
3433 for_each_shadow_entry_lockless(vcpu, gpa, iterator, old_spte) {
3434 sptep = iterator.sptep;
3435 *spte = old_spte;
3436 }
3437
3438 return sptep;
3439}
3440
3441/*
3442 * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3443 */
3444static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
3445{
3446 struct kvm_mmu_page *sp;
3447 int ret = RET_PF_INVALID;
3448 u64 spte;
3449 u64 *sptep;
3450 uint retry_count = 0;
3451
3452 if (!page_fault_can_be_fast(fault))
3453 return ret;
3454
3455 walk_shadow_page_lockless_begin(vcpu);
3456
3457 do {
3458 u64 new_spte;
3459
3460 if (tdp_mmu_enabled)
3461 sptep = kvm_tdp_mmu_fast_pf_get_last_sptep(vcpu, addr: fault->addr, spte: &spte);
3462 else
3463 sptep = fast_pf_get_last_sptep(vcpu, gpa: fault->addr, spte: &spte);
3464
3465 /*
3466 * It's entirely possible for the mapping to have been zapped
3467 * by a different task, but the root page should always be
3468 * available as the vCPU holds a reference to its root(s).
3469 */
3470 if (WARN_ON_ONCE(!sptep))
3471 spte = REMOVED_SPTE;
3472
3473 if (!is_shadow_present_pte(pte: spte))
3474 break;
3475
3476 sp = sptep_to_sp(sptep);
3477 if (!is_last_spte(pte: spte, level: sp->role.level))
3478 break;
3479
3480 /*
3481 * Check whether the memory access that caused the fault would
3482 * still cause it if it were to be performed right now. If not,
3483 * then this is a spurious fault caused by TLB lazily flushed,
3484 * or some other CPU has already fixed the PTE after the
3485 * current CPU took the fault.
3486 *
3487 * Need not check the access of upper level table entries since
3488 * they are always ACC_ALL.
3489 */
3490 if (is_access_allowed(fault, spte)) {
3491 ret = RET_PF_SPURIOUS;
3492 break;
3493 }
3494
3495 new_spte = spte;
3496
3497 /*
3498 * KVM only supports fixing page faults outside of MMU lock for
3499 * direct MMUs, nested MMUs are always indirect, and KVM always
3500 * uses A/D bits for non-nested MMUs. Thus, if A/D bits are
3501 * enabled, the SPTE can't be an access-tracked SPTE.
3502 */
3503 if (unlikely(!kvm_ad_enabled()) && is_access_track_spte(spte))
3504 new_spte = restore_acc_track_spte(spte: new_spte);
3505
3506 /*
3507 * To keep things simple, only SPTEs that are MMU-writable can
3508 * be made fully writable outside of mmu_lock, e.g. only SPTEs
3509 * that were write-protected for dirty-logging or access
3510 * tracking are handled here. Don't bother checking if the
3511 * SPTE is writable to prioritize running with A/D bits enabled.
3512 * The is_access_allowed() check above handles the common case
3513 * of the fault being spurious, and the SPTE is known to be
3514 * shadow-present, i.e. except for access tracking restoration
3515 * making the new SPTE writable, the check is wasteful.
3516 */
3517 if (fault->write && is_mmu_writable_spte(spte)) {
3518 new_spte |= PT_WRITABLE_MASK;
3519
3520 /*
3521 * Do not fix write-permission on the large spte when
3522 * dirty logging is enabled. Since we only dirty the
3523 * first page into the dirty-bitmap in
3524 * fast_pf_fix_direct_spte(), other pages are missed
3525 * if its slot has dirty logging enabled.
3526 *
3527 * Instead, we let the slow page fault path create a
3528 * normal spte to fix the access.
3529 */
3530 if (sp->role.level > PG_LEVEL_4K &&
3531 kvm_slot_dirty_track_enabled(slot: fault->slot))
3532 break;
3533 }
3534
3535 /* Verify that the fault can be handled in the fast path */
3536 if (new_spte == spte ||
3537 !is_access_allowed(fault, spte: new_spte))
3538 break;
3539
3540 /*
3541 * Currently, fast page fault only works for direct mapping
3542 * since the gfn is not stable for indirect shadow page. See
3543 * Documentation/virt/kvm/locking.rst to get more detail.
3544 */
3545 if (fast_pf_fix_direct_spte(vcpu, fault, sptep, old_spte: spte, new_spte)) {
3546 ret = RET_PF_FIXED;
3547 break;
3548 }
3549
3550 if (++retry_count > 4) {
3551 pr_warn_once("Fast #PF retrying more than 4 times.\n");
3552 break;
3553 }
3554
3555 } while (true);
3556
3557 trace_fast_page_fault(vcpu, fault, sptep, old_spte: spte, ret);
3558 walk_shadow_page_lockless_end(vcpu);
3559
3560 if (ret != RET_PF_INVALID)
3561 vcpu->stat.pf_fast++;
3562
3563 return ret;
3564}
3565
3566static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3567 struct list_head *invalid_list)
3568{
3569 struct kvm_mmu_page *sp;
3570
3571 if (!VALID_PAGE(*root_hpa))
3572 return;
3573
3574 sp = root_to_sp(root: *root_hpa);
3575 if (WARN_ON_ONCE(!sp))
3576 return;
3577
3578 if (is_tdp_mmu_page(sp)) {
3579 lockdep_assert_held_read(&kvm->mmu_lock);
3580 kvm_tdp_mmu_put_root(kvm, root: sp);
3581 } else {
3582 lockdep_assert_held_write(&kvm->mmu_lock);
3583 if (!--sp->root_count && sp->role.invalid)
3584 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3585 }
3586
3587 *root_hpa = INVALID_PAGE;
3588}
3589
3590/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
3591void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
3592 ulong roots_to_free)
3593{
3594 bool is_tdp_mmu = tdp_mmu_enabled && mmu->root_role.direct;
3595 int i;
3596 LIST_HEAD(invalid_list);
3597 bool free_active_root;
3598
3599 WARN_ON_ONCE(roots_to_free & ~KVM_MMU_ROOTS_ALL);
3600
3601 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3602
3603 /* Before acquiring the MMU lock, see if we need to do any real work. */
3604 free_active_root = (roots_to_free & KVM_MMU_ROOT_CURRENT)
3605 && VALID_PAGE(mmu->root.hpa);
3606
3607 if (!free_active_root) {
3608 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3609 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3610 VALID_PAGE(mmu->prev_roots[i].hpa))
3611 break;
3612
3613 if (i == KVM_MMU_NUM_PREV_ROOTS)
3614 return;
3615 }
3616
3617 if (is_tdp_mmu)
3618 read_lock(&kvm->mmu_lock);
3619 else
3620 write_lock(&kvm->mmu_lock);
3621
3622 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3623 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3624 mmu_free_root_page(kvm, root_hpa: &mmu->prev_roots[i].hpa,
3625 invalid_list: &invalid_list);
3626
3627 if (free_active_root) {
3628 if (kvm_mmu_is_dummy_root(shadow_page: mmu->root.hpa)) {
3629 /* Nothing to cleanup for dummy roots. */
3630 } else if (root_to_sp(root: mmu->root.hpa)) {
3631 mmu_free_root_page(kvm, root_hpa: &mmu->root.hpa, invalid_list: &invalid_list);
3632 } else if (mmu->pae_root) {
3633 for (i = 0; i < 4; ++i) {
3634 if (!IS_VALID_PAE_ROOT(mmu->pae_root[i]))
3635 continue;
3636
3637 mmu_free_root_page(kvm, root_hpa: &mmu->pae_root[i],
3638 invalid_list: &invalid_list);
3639 mmu->pae_root[i] = INVALID_PAE_ROOT;
3640 }
3641 }
3642 mmu->root.hpa = INVALID_PAGE;
3643 mmu->root.pgd = 0;
3644 }
3645
3646 if (is_tdp_mmu) {
3647 read_unlock(&kvm->mmu_lock);
3648 WARN_ON_ONCE(!list_empty(&invalid_list));
3649 } else {
3650 kvm_mmu_commit_zap_page(kvm, invalid_list: &invalid_list);
3651 write_unlock(&kvm->mmu_lock);
3652 }
3653}
3654EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3655
3656void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu)
3657{
3658 unsigned long roots_to_free = 0;
3659 struct kvm_mmu_page *sp;
3660 hpa_t root_hpa;
3661 int i;
3662
3663 /*
3664 * This should not be called while L2 is active, L2 can't invalidate
3665 * _only_ its own roots, e.g. INVVPID unconditionally exits.
3666 */
3667 WARN_ON_ONCE(mmu->root_role.guest_mode);
3668
3669 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3670 root_hpa = mmu->prev_roots[i].hpa;
3671 if (!VALID_PAGE(root_hpa))
3672 continue;
3673
3674 sp = root_to_sp(root: root_hpa);
3675 if (!sp || sp->role.guest_mode)
3676 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
3677 }
3678
3679 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
3680}
3681EXPORT_SYMBOL_GPL(kvm_mmu_free_guest_mode_roots);
3682
3683static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, int quadrant,
3684 u8 level)
3685{
3686 union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
3687 struct kvm_mmu_page *sp;
3688
3689 role.level = level;
3690 role.quadrant = quadrant;
3691
3692 WARN_ON_ONCE(quadrant && !role.has_4_byte_gpte);
3693 WARN_ON_ONCE(role.direct && role.has_4_byte_gpte);
3694
3695 sp = kvm_mmu_get_shadow_page(vcpu, gfn, role);
3696 ++sp->root_count;
3697
3698 return __pa(sp->spt);
3699}
3700
3701static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3702{
3703 struct kvm_mmu *mmu = vcpu->arch.mmu;
3704 u8 shadow_root_level = mmu->root_role.level;
3705 hpa_t root;
3706 unsigned i;
3707 int r;
3708
3709 if (tdp_mmu_enabled)
3710 return kvm_tdp_mmu_alloc_root(vcpu);
3711
3712 write_lock(&vcpu->kvm->mmu_lock);
3713 r = make_mmu_pages_available(vcpu);
3714 if (r < 0)
3715 goto out_unlock;
3716
3717 if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3718 root = mmu_alloc_root(vcpu, gfn: 0, quadrant: 0, level: shadow_root_level);
3719 mmu->root.hpa = root;
3720 } else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3721 if (WARN_ON_ONCE(!mmu->pae_root)) {
3722 r = -EIO;
3723 goto out_unlock;
3724 }
3725
3726 for (i = 0; i < 4; ++i) {
3727 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3728
3729 root = mmu_alloc_root(vcpu, gfn: i << (30 - PAGE_SHIFT), quadrant: 0,
3730 level: PT32_ROOT_LEVEL);
3731 mmu->pae_root[i] = root | PT_PRESENT_MASK |
3732 shadow_me_value;
3733 }
3734 mmu->root.hpa = __pa(mmu->pae_root);
3735 } else {
3736 WARN_ONCE(1, "Bad TDP root level = %d\n", shadow_root_level);
3737 r = -EIO;
3738 goto out_unlock;
3739 }
3740
3741 /* root.pgd is ignored for direct MMUs. */
3742 mmu->root.pgd = 0;
3743out_unlock:
3744 write_unlock(&vcpu->kvm->mmu_lock);
3745 return r;
3746}
3747
3748static int mmu_first_shadow_root_alloc(struct kvm *kvm)
3749{
3750 struct kvm_memslots *slots;
3751 struct kvm_memory_slot *slot;
3752 int r = 0, i, bkt;
3753
3754 /*
3755 * Check if this is the first shadow root being allocated before
3756 * taking the lock.
3757 */
3758 if (kvm_shadow_root_allocated(kvm))
3759 return 0;
3760
3761 mutex_lock(&kvm->slots_arch_lock);
3762
3763 /* Recheck, under the lock, whether this is the first shadow root. */
3764 if (kvm_shadow_root_allocated(kvm))
3765 goto out_unlock;
3766
3767 /*
3768 * Check if anything actually needs to be allocated, e.g. all metadata
3769 * will be allocated upfront if TDP is disabled.
3770 */
3771 if (kvm_memslots_have_rmaps(kvm) &&
3772 kvm_page_track_write_tracking_enabled(kvm))
3773 goto out_success;
3774
3775 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
3776 slots = __kvm_memslots(kvm, as_id: i);
3777 kvm_for_each_memslot(slot, bkt, slots) {
3778 /*
3779 * Both of these functions are no-ops if the target is
3780 * already allocated, so unconditionally calling both
3781 * is safe. Intentionally do NOT free allocations on
3782 * failure to avoid having to track which allocations
3783 * were made now versus when the memslot was created.
3784 * The metadata is guaranteed to be freed when the slot
3785 * is freed, and will be kept/used if userspace retries
3786 * KVM_RUN instead of killing the VM.
3787 */
3788 r = memslot_rmap_alloc(slot, npages: slot->npages);
3789 if (r)
3790 goto out_unlock;
3791 r = kvm_page_track_write_tracking_alloc(slot);
3792 if (r)
3793 goto out_unlock;
3794 }
3795 }
3796
3797 /*
3798 * Ensure that shadow_root_allocated becomes true strictly after
3799 * all the related pointers are set.
3800 */
3801out_success:
3802 smp_store_release(&kvm->arch.shadow_root_allocated, true);
3803
3804out_unlock:
3805 mutex_unlock(lock: &kvm->slots_arch_lock);
3806 return r;
3807}
3808
3809static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3810{
3811 struct kvm_mmu *mmu = vcpu->arch.mmu;
3812 u64 pdptrs[4], pm_mask;
3813 gfn_t root_gfn, root_pgd;
3814 int quadrant, i, r;
3815 hpa_t root;
3816
3817 root_pgd = kvm_mmu_get_guest_pgd(vcpu, mmu);
3818 root_gfn = (root_pgd & __PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
3819
3820 if (!kvm_vcpu_is_visible_gfn(vcpu, gfn: root_gfn)) {
3821 mmu->root.hpa = kvm_mmu_get_dummy_root();
3822 return 0;
3823 }
3824
3825 /*
3826 * On SVM, reading PDPTRs might access guest memory, which might fault
3827 * and thus might sleep. Grab the PDPTRs before acquiring mmu_lock.
3828 */
3829 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3830 for (i = 0; i < 4; ++i) {
3831 pdptrs[i] = mmu->get_pdptr(vcpu, i);
3832 if (!(pdptrs[i] & PT_PRESENT_MASK))
3833 continue;
3834
3835 if (!kvm_vcpu_is_visible_gfn(vcpu, gfn: pdptrs[i] >> PAGE_SHIFT))
3836 pdptrs[i] = 0;
3837 }
3838 }
3839
3840 r = mmu_first_shadow_root_alloc(kvm: vcpu->kvm);
3841 if (r)
3842 return r;
3843
3844 write_lock(&vcpu->kvm->mmu_lock);
3845 r = make_mmu_pages_available(vcpu);
3846 if (r < 0)
3847 goto out_unlock;
3848
3849 /*
3850 * Do we shadow a long mode page table? If so we need to
3851 * write-protect the guests page table root.
3852 */
3853 if (mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
3854 root = mmu_alloc_root(vcpu, gfn: root_gfn, quadrant: 0,
3855 level: mmu->root_role.level);
3856 mmu->root.hpa = root;
3857 goto set_root_pgd;
3858 }
3859
3860 if (WARN_ON_ONCE(!mmu->pae_root)) {
3861 r = -EIO;
3862 goto out_unlock;
3863 }
3864
3865 /*
3866 * We shadow a 32 bit page table. This may be a legacy 2-level
3867 * or a PAE 3-level page table. In either case we need to be aware that
3868 * the shadow page table may be a PAE or a long mode page table.
3869 */
3870 pm_mask = PT_PRESENT_MASK | shadow_me_value;
3871 if (mmu->root_role.level >= PT64_ROOT_4LEVEL) {
3872 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3873
3874 if (WARN_ON_ONCE(!mmu->pml4_root)) {
3875 r = -EIO;
3876 goto out_unlock;
3877 }
3878 mmu->pml4_root[0] = __pa(mmu->pae_root) | pm_mask;
3879
3880 if (mmu->root_role.level == PT64_ROOT_5LEVEL) {
3881 if (WARN_ON_ONCE(!mmu->pml5_root)) {
3882 r = -EIO;
3883 goto out_unlock;
3884 }
3885 mmu->pml5_root[0] = __pa(mmu->pml4_root) | pm_mask;
3886 }
3887 }
3888
3889 for (i = 0; i < 4; ++i) {
3890 WARN_ON_ONCE(IS_VALID_PAE_ROOT(mmu->pae_root[i]));
3891
3892 if (mmu->cpu_role.base.level == PT32E_ROOT_LEVEL) {
3893 if (!(pdptrs[i] & PT_PRESENT_MASK)) {
3894 mmu->pae_root[i] = INVALID_PAE_ROOT;
3895 continue;
3896 }
3897 root_gfn = pdptrs[i] >> PAGE_SHIFT;
3898 }
3899
3900 /*
3901 * If shadowing 32-bit non-PAE page tables, each PAE page
3902 * directory maps one quarter of the guest's non-PAE page
3903 * directory. Othwerise each PAE page direct shadows one guest
3904 * PAE page directory so that quadrant should be 0.
3905 */
3906 quadrant = (mmu->cpu_role.base.level == PT32_ROOT_LEVEL) ? i : 0;
3907
3908 root = mmu_alloc_root(vcpu, root_gfn, quadrant, PT32_ROOT_LEVEL);
3909 mmu->pae_root[i] = root | pm_mask;
3910 }
3911
3912 if (mmu->root_role.level == PT64_ROOT_5LEVEL)
3913 mmu->root.hpa = __pa(mmu->pml5_root);
3914 else if (mmu->root_role.level == PT64_ROOT_4LEVEL)
3915 mmu->root.hpa = __pa(mmu->pml4_root);
3916 else
3917 mmu->root.hpa = __pa(mmu->pae_root);
3918
3919set_root_pgd:
3920 mmu->root.pgd = root_pgd;
3921out_unlock:
3922 write_unlock(&vcpu->kvm->mmu_lock);
3923
3924 return r;
3925}
3926
3927static int mmu_alloc_special_roots(struct kvm_vcpu *vcpu)
3928{
3929 struct kvm_mmu *mmu = vcpu->arch.mmu;
3930 bool need_pml5 = mmu->root_role.level > PT64_ROOT_4LEVEL;
3931 u64 *pml5_root = NULL;
3932 u64 *pml4_root = NULL;
3933 u64 *pae_root;
3934
3935 /*
3936 * When shadowing 32-bit or PAE NPT with 64-bit NPT, the PML4 and PDP
3937 * tables are allocated and initialized at root creation as there is no
3938 * equivalent level in the guest's NPT to shadow. Allocate the tables
3939 * on demand, as running a 32-bit L1 VMM on 64-bit KVM is very rare.
3940 */
3941 if (mmu->root_role.direct ||
3942 mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL ||
3943 mmu->root_role.level < PT64_ROOT_4LEVEL)
3944 return 0;
3945
3946 /*
3947 * NPT, the only paging mode that uses this horror, uses a fixed number
3948 * of levels for the shadow page tables, e.g. all MMUs are 4-level or
3949 * all MMus are 5-level. Thus, this can safely require that pml5_root
3950 * is allocated if the other roots are valid and pml5 is needed, as any
3951 * prior MMU would also have required pml5.
3952 */
3953 if (mmu->pae_root && mmu->pml4_root && (!need_pml5 || mmu->pml5_root))
3954 return 0;
3955
3956 /*
3957 * The special roots should always be allocated in concert. Yell and
3958 * bail if KVM ends up in a state where only one of the roots is valid.
3959 */
3960 if (WARN_ON_ONCE(!tdp_enabled || mmu->pae_root || mmu->pml4_root ||
3961 (need_pml5 && mmu->pml5_root)))
3962 return -EIO;
3963
3964 /*
3965 * Unlike 32-bit NPT, the PDP table doesn't need to be in low mem, and
3966 * doesn't need to be decrypted.
3967 */
3968 pae_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3969 if (!pae_root)
3970 return -ENOMEM;
3971
3972#ifdef CONFIG_X86_64
3973 pml4_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3974 if (!pml4_root)
3975 goto err_pml4;
3976
3977 if (need_pml5) {
3978 pml5_root = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3979 if (!pml5_root)
3980 goto err_pml5;
3981 }
3982#endif
3983
3984 mmu->pae_root = pae_root;
3985 mmu->pml4_root = pml4_root;
3986 mmu->pml5_root = pml5_root;
3987
3988 return 0;
3989
3990#ifdef CONFIG_X86_64
3991err_pml5:
3992 free_page((unsigned long)pml4_root);
3993err_pml4:
3994 free_page((unsigned long)pae_root);
3995 return -ENOMEM;
3996#endif
3997}
3998
3999static bool is_unsync_root(hpa_t root)
4000{
4001 struct kvm_mmu_page *sp;
4002
4003 if (!VALID_PAGE(root) || kvm_mmu_is_dummy_root(shadow_page: root))
4004 return false;
4005
4006 /*
4007 * The read barrier orders the CPU's read of SPTE.W during the page table
4008 * walk before the reads of sp->unsync/sp->unsync_children here.
4009 *
4010 * Even if another CPU was marking the SP as unsync-ed simultaneously,
4011 * any guest page table changes are not guaranteed to be visible anyway
4012 * until this VCPU issues a TLB flush strictly after those changes are
4013 * made. We only need to ensure that the other CPU sets these flags
4014 * before any actual changes to the page tables are made. The comments
4015 * in mmu_try_to_unsync_pages() describe what could go wrong if this
4016 * requirement isn't satisfied.
4017 */
4018 smp_rmb();
4019 sp = root_to_sp(root);
4020
4021 /*
4022 * PAE roots (somewhat arbitrarily) aren't backed by shadow pages, the
4023 * PDPTEs for a given PAE root need to be synchronized individually.
4024 */
4025 if (WARN_ON_ONCE(!sp))
4026 return false;
4027
4028 if (sp->unsync || sp->unsync_children)
4029 return true;
4030
4031 return false;
4032}
4033
4034void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
4035{
4036 int i;
4037 struct kvm_mmu_page *sp;
4038
4039 if (vcpu->arch.mmu->root_role.direct)
4040 return;
4041
4042 if (!VALID_PAGE(vcpu->arch.mmu->root.hpa))
4043 return;
4044
4045 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4046
4047 if (vcpu->arch.mmu->cpu_role.base.level >= PT64_ROOT_4LEVEL) {
4048 hpa_t root = vcpu->arch.mmu->root.hpa;
4049
4050 if (!is_unsync_root(root))
4051 return;
4052
4053 sp = root_to_sp(root);
4054
4055 write_lock(&vcpu->kvm->mmu_lock);
4056 mmu_sync_children(vcpu, parent: sp, can_yield: true);
4057 write_unlock(&vcpu->kvm->mmu_lock);
4058 return;
4059 }
4060
4061 write_lock(&vcpu->kvm->mmu_lock);
4062
4063 for (i = 0; i < 4; ++i) {
4064 hpa_t root = vcpu->arch.mmu->pae_root[i];
4065
4066 if (IS_VALID_PAE_ROOT(root)) {
4067 sp = spte_to_child_sp(spte: root);
4068 mmu_sync_children(vcpu, parent: sp, can_yield: true);
4069 }
4070 }
4071
4072 write_unlock(&vcpu->kvm->mmu_lock);
4073}
4074
4075void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu)
4076{
4077 unsigned long roots_to_free = 0;
4078 int i;
4079
4080 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4081 if (is_unsync_root(root: vcpu->arch.mmu->prev_roots[i].hpa))
4082 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
4083
4084 /* sync prev_roots by simply freeing them */
4085 kvm_mmu_free_roots(vcpu->kvm, vcpu->arch.mmu, roots_to_free);
4086}
4087
4088static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4089 gpa_t vaddr, u64 access,
4090 struct x86_exception *exception)
4091{
4092 if (exception)
4093 exception->error_code = 0;
4094 return kvm_translate_gpa(vcpu, mmu, vaddr, access, exception);
4095}
4096
4097static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4098{
4099 /*
4100 * A nested guest cannot use the MMIO cache if it is using nested
4101 * page tables, because cr2 is a nGPA while the cache stores GPAs.
4102 */
4103 if (mmu_is_nested(vcpu))
4104 return false;
4105
4106 if (direct)
4107 return vcpu_match_mmio_gpa(vcpu, addr);
4108
4109 return vcpu_match_mmio_gva(vcpu, addr);
4110}
4111
4112/*
4113 * Return the level of the lowest level SPTE added to sptes.
4114 * That SPTE may be non-present.
4115 *
4116 * Must be called between walk_shadow_page_lockless_{begin,end}.
4117 */
4118static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes, int *root_level)
4119{
4120 struct kvm_shadow_walk_iterator iterator;
4121 int leaf = -1;
4122 u64 spte;
4123
4124 for (shadow_walk_init(iterator: &iterator, vcpu, addr),
4125 *root_level = iterator.level;
4126 shadow_walk_okay(iterator: &iterator);
4127 __shadow_walk_next(iterator: &iterator, spte)) {
4128 leaf = iterator.level;
4129 spte = mmu_spte_get_lockless(sptep: iterator.sptep);
4130
4131 sptes[leaf] = spte;
4132 }
4133
4134 return leaf;
4135}
4136
4137/* return true if reserved bit(s) are detected on a valid, non-MMIO SPTE. */
4138static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
4139{
4140 u64 sptes[PT64_ROOT_MAX_LEVEL + 1];
4141 struct rsvd_bits_validate *rsvd_check;
4142 int root, leaf, level;
4143 bool reserved = false;
4144
4145 walk_shadow_page_lockless_begin(vcpu);
4146
4147 if (is_tdp_mmu_active(vcpu))
4148 leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes, root_level: &root);
4149 else
4150 leaf = get_walk(vcpu, addr, sptes, root_level: &root);
4151
4152 walk_shadow_page_lockless_end(vcpu);
4153
4154 if (unlikely(leaf < 0)) {
4155 *sptep = 0ull;
4156 return reserved;
4157 }
4158
4159 *sptep = sptes[leaf];
4160
4161 /*
4162 * Skip reserved bits checks on the terminal leaf if it's not a valid
4163 * SPTE. Note, this also (intentionally) skips MMIO SPTEs, which, by
4164 * design, always have reserved bits set. The purpose of the checks is
4165 * to detect reserved bits on non-MMIO SPTEs. i.e. buggy SPTEs.
4166 */
4167 if (!is_shadow_present_pte(pte: sptes[leaf]))
4168 leaf++;
4169
4170 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
4171
4172 for (level = root; level >= leaf; level--)
4173 reserved |= is_rsvd_spte(rsvd_check, spte: sptes[level], level);
4174
4175 if (reserved) {
4176 pr_err("%s: reserved bits set on MMU-present spte, addr 0x%llx, hierarchy:\n",
4177 __func__, addr);
4178 for (level = root; level >= leaf; level--)
4179 pr_err("------ spte = 0x%llx level = %d, rsvd bits = 0x%llx",
4180 sptes[level], level,
4181 get_rsvd_bits(rsvd_check, sptes[level], level));
4182 }
4183
4184 return reserved;
4185}
4186
4187static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
4188{
4189 u64 spte;
4190 bool reserved;
4191
4192 if (mmio_info_in_cache(vcpu, addr, direct))
4193 return RET_PF_EMULATE;
4194
4195 reserved = get_mmio_spte(vcpu, addr, sptep: &spte);
4196 if (WARN_ON_ONCE(reserved))
4197 return -EINVAL;
4198
4199 if (is_mmio_spte(spte)) {
4200 gfn_t gfn = get_mmio_spte_gfn(spte);
4201 unsigned int access = get_mmio_spte_access(spte);
4202
4203 if (!check_mmio_spte(vcpu, spte))
4204 return RET_PF_INVALID;
4205
4206 if (direct)
4207 addr = 0;
4208
4209 trace_handle_mmio_page_fault(addr, gfn, access);
4210 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
4211 return RET_PF_EMULATE;
4212 }
4213
4214 /*
4215 * If the page table is zapped by other cpus, let CPU fault again on
4216 * the address.
4217 */
4218 return RET_PF_RETRY;
4219}
4220
4221static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4222 struct kvm_page_fault *fault)
4223{
4224 if (unlikely(fault->rsvd))
4225 return false;
4226
4227 if (!fault->present || !fault->write)
4228 return false;
4229
4230 /*
4231 * guest is writing the page which is write tracked which can
4232 * not be fixed by page fault handler.
4233 */
4234 if (kvm_gfn_is_write_tracked(kvm: vcpu->kvm, slot: fault->slot, gfn: fault->gfn))
4235 return true;
4236
4237 return false;
4238}
4239
4240static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4241{
4242 struct kvm_shadow_walk_iterator iterator;
4243 u64 spte;
4244
4245 walk_shadow_page_lockless_begin(vcpu);
4246 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
4247 clear_sp_write_flooding_count(spte: iterator.sptep);
4248 walk_shadow_page_lockless_end(vcpu);
4249}
4250
4251static u32 alloc_apf_token(struct kvm_vcpu *vcpu)
4252{
4253 /* make sure the token value is not 0 */
4254 u32 id = vcpu->arch.apf.id;
4255
4256 if (id << 12 == 0)
4257 vcpu->arch.apf.id = 1;
4258
4259 return (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
4260}
4261
4262static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4263 gfn_t gfn)
4264{
4265 struct kvm_arch_async_pf arch;
4266
4267 arch.token = alloc_apf_token(vcpu);
4268 arch.gfn = gfn;
4269 arch.direct_map = vcpu->arch.mmu->root_role.direct;
4270 arch.cr3 = kvm_mmu_get_guest_pgd(vcpu, mmu: vcpu->arch.mmu);
4271
4272 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4273 hva: kvm_vcpu_gfn_to_hva(vcpu, gfn), arch: &arch);
4274}
4275
4276void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
4277{
4278 int r;
4279
4280 if ((vcpu->arch.mmu->root_role.direct != work->arch.direct_map) ||
4281 work->wakeup_all)
4282 return;
4283
4284 r = kvm_mmu_reload(vcpu);
4285 if (unlikely(r))
4286 return;
4287
4288 if (!vcpu->arch.mmu->root_role.direct &&
4289 work->arch.cr3 != kvm_mmu_get_guest_pgd(vcpu, mmu: vcpu->arch.mmu))
4290 return;
4291
4292 kvm_mmu_do_page_fault(vcpu, cr2_or_gpa: work->cr2_or_gpa, err: 0, prefetch: true, NULL);
4293}
4294
4295static inline u8 kvm_max_level_for_order(int order)
4296{
4297 BUILD_BUG_ON(KVM_MAX_HUGEPAGE_LEVEL > PG_LEVEL_1G);
4298
4299 KVM_MMU_WARN_ON(order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G) &&
4300 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M) &&
4301 order != KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K));
4302
4303 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_1G))
4304 return PG_LEVEL_1G;
4305
4306 if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
4307 return PG_LEVEL_2M;
4308
4309 return PG_LEVEL_4K;
4310}
4311
4312static void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
4313 struct kvm_page_fault *fault)
4314{
4315 kvm_prepare_memory_fault_exit(vcpu, gpa: fault->gfn << PAGE_SHIFT,
4316 PAGE_SIZE, is_write: fault->write, is_exec: fault->exec,
4317 is_private: fault->is_private);
4318}
4319
4320static int kvm_faultin_pfn_private(struct kvm_vcpu *vcpu,
4321 struct kvm_page_fault *fault)
4322{
4323 int max_order, r;
4324
4325 if (!kvm_slot_can_be_private(slot: fault->slot)) {
4326 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4327 return -EFAULT;
4328 }
4329
4330 r = kvm_gmem_get_pfn(kvm: vcpu->kvm, slot: fault->slot, gfn: fault->gfn, pfn: &fault->pfn,
4331 max_order: &max_order);
4332 if (r) {
4333 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4334 return r;
4335 }
4336
4337 fault->max_level = min(kvm_max_level_for_order(max_order),
4338 fault->max_level);
4339 fault->map_writable = !(fault->slot->flags & KVM_MEM_READONLY);
4340
4341 return RET_PF_CONTINUE;
4342}
4343
4344static int __kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4345{
4346 struct kvm_memory_slot *slot = fault->slot;
4347 bool async;
4348
4349 /*
4350 * Retry the page fault if the gfn hit a memslot that is being deleted
4351 * or moved. This ensures any existing SPTEs for the old memslot will
4352 * be zapped before KVM inserts a new MMIO SPTE for the gfn.
4353 */
4354 if (slot && (slot->flags & KVM_MEMSLOT_INVALID))
4355 return RET_PF_RETRY;
4356
4357 if (!kvm_is_visible_memslot(memslot: slot)) {
4358 /* Don't expose private memslots to L2. */
4359 if (is_guest_mode(vcpu)) {
4360 fault->slot = NULL;
4361 fault->pfn = KVM_PFN_NOSLOT;
4362 fault->map_writable = false;
4363 return RET_PF_CONTINUE;
4364 }
4365 /*
4366 * If the APIC access page exists but is disabled, go directly
4367 * to emulation without caching the MMIO access or creating a
4368 * MMIO SPTE. That way the cache doesn't need to be purged
4369 * when the AVIC is re-enabled.
4370 */
4371 if (slot && slot->id == APIC_ACCESS_PAGE_PRIVATE_MEMSLOT &&
4372 !kvm_apicv_activated(kvm: vcpu->kvm))
4373 return RET_PF_EMULATE;
4374 }
4375
4376 if (fault->is_private != kvm_mem_is_private(kvm: vcpu->kvm, gfn: fault->gfn)) {
4377 kvm_mmu_prepare_memory_fault_exit(vcpu, fault);
4378 return -EFAULT;
4379 }
4380
4381 if (fault->is_private)
4382 return kvm_faultin_pfn_private(vcpu, fault);
4383
4384 async = false;
4385 fault->pfn = __gfn_to_pfn_memslot(slot, gfn: fault->gfn, atomic: false, interruptible: false, async: &async,
4386 write_fault: fault->write, writable: &fault->map_writable,
4387 hva: &fault->hva);
4388 if (!async)
4389 return RET_PF_CONTINUE; /* *pfn has correct page already */
4390
4391 if (!fault->prefetch && kvm_can_do_async_pf(vcpu)) {
4392 trace_kvm_try_async_get_page(gva: fault->addr, gfn: fault->gfn);
4393 if (kvm_find_async_pf_gfn(vcpu, gfn: fault->gfn)) {
4394 trace_kvm_async_pf_repeated_fault(gva: fault->addr, gfn: fault->gfn);
4395 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4396 return RET_PF_RETRY;
4397 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa: fault->addr, gfn: fault->gfn)) {
4398 return RET_PF_RETRY;
4399 }
4400 }
4401
4402 /*
4403 * Allow gup to bail on pending non-fatal signals when it's also allowed
4404 * to wait for IO. Note, gup always bails if it is unable to quickly
4405 * get a page and a fatal signal, i.e. SIGKILL, is pending.
4406 */
4407 fault->pfn = __gfn_to_pfn_memslot(slot, gfn: fault->gfn, atomic: false, interruptible: true, NULL,
4408 write_fault: fault->write, writable: &fault->map_writable,
4409 hva: &fault->hva);
4410 return RET_PF_CONTINUE;
4411}
4412
4413static int kvm_faultin_pfn(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault,
4414 unsigned int access)
4415{
4416 int ret;
4417
4418 fault->mmu_seq = vcpu->kvm->mmu_invalidate_seq;
4419 smp_rmb();
4420
4421 /*
4422 * Check for a relevant mmu_notifier invalidation event before getting
4423 * the pfn from the primary MMU, and before acquiring mmu_lock.
4424 *
4425 * For mmu_lock, if there is an in-progress invalidation and the kernel
4426 * allows preemption, the invalidation task may drop mmu_lock and yield
4427 * in response to mmu_lock being contended, which is *very* counter-
4428 * productive as this vCPU can't actually make forward progress until
4429 * the invalidation completes.
4430 *
4431 * Retrying now can also avoid unnessary lock contention in the primary
4432 * MMU, as the primary MMU doesn't necessarily hold a single lock for
4433 * the duration of the invalidation, i.e. faulting in a conflicting pfn
4434 * can cause the invalidation to take longer by holding locks that are
4435 * needed to complete the invalidation.
4436 *
4437 * Do the pre-check even for non-preemtible kernels, i.e. even if KVM
4438 * will never yield mmu_lock in response to contention, as this vCPU is
4439 * *guaranteed* to need to retry, i.e. waiting until mmu_lock is held
4440 * to detect retry guarantees the worst case latency for the vCPU.
4441 */
4442 if (fault->slot &&
4443 mmu_invalidate_retry_gfn_unsafe(kvm: vcpu->kvm, mmu_seq: fault->mmu_seq, gfn: fault->gfn))
4444 return RET_PF_RETRY;
4445
4446 ret = __kvm_faultin_pfn(vcpu, fault);
4447 if (ret != RET_PF_CONTINUE)
4448 return ret;
4449
4450 if (unlikely(is_error_pfn(fault->pfn)))
4451 return kvm_handle_error_pfn(vcpu, fault);
4452
4453 if (unlikely(!fault->slot))
4454 return kvm_handle_noslot_fault(vcpu, fault, access);
4455
4456 /*
4457 * Check again for a relevant mmu_notifier invalidation event purely to
4458 * avoid contending mmu_lock. Most invalidations will be detected by
4459 * the previous check, but checking is extremely cheap relative to the
4460 * overall cost of failing to detect the invalidation until after
4461 * mmu_lock is acquired.
4462 */
4463 if (mmu_invalidate_retry_gfn_unsafe(kvm: vcpu->kvm, mmu_seq: fault->mmu_seq, gfn: fault->gfn)) {
4464 kvm_release_pfn_clean(pfn: fault->pfn);
4465 return RET_PF_RETRY;
4466 }
4467
4468 return RET_PF_CONTINUE;
4469}
4470
4471/*
4472 * Returns true if the page fault is stale and needs to be retried, i.e. if the
4473 * root was invalidated by a memslot update or a relevant mmu_notifier fired.
4474 */
4475static bool is_page_fault_stale(struct kvm_vcpu *vcpu,
4476 struct kvm_page_fault *fault)
4477{
4478 struct kvm_mmu_page *sp = root_to_sp(root: vcpu->arch.mmu->root.hpa);
4479
4480 /* Special roots, e.g. pae_root, are not backed by shadow pages. */
4481 if (sp && is_obsolete_sp(kvm: vcpu->kvm, sp))
4482 return true;
4483
4484 /*
4485 * Roots without an associated shadow page are considered invalid if
4486 * there is a pending request to free obsolete roots. The request is
4487 * only a hint that the current root _may_ be obsolete and needs to be
4488 * reloaded, e.g. if the guest frees a PGD that KVM is tracking as a
4489 * previous root, then __kvm_mmu_prepare_zap_page() signals all vCPUs
4490 * to reload even if no vCPU is actively using the root.
4491 */
4492 if (!sp && kvm_test_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
4493 return true;
4494
4495 /*
4496 * Check for a relevant mmu_notifier invalidation event one last time
4497 * now that mmu_lock is held, as the "unsafe" checks performed without
4498 * holding mmu_lock can get false negatives.
4499 */
4500 return fault->slot &&
4501 mmu_invalidate_retry_gfn(kvm: vcpu->kvm, mmu_seq: fault->mmu_seq, gfn: fault->gfn);
4502}
4503
4504static int direct_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4505{
4506 int r;
4507
4508 /* Dummy roots are used only for shadowing bad guest roots. */
4509 if (WARN_ON_ONCE(kvm_mmu_is_dummy_root(vcpu->arch.mmu->root.hpa)))
4510 return RET_PF_RETRY;
4511
4512 if (page_fault_handle_page_track(vcpu, fault))
4513 return RET_PF_EMULATE;
4514
4515 r = fast_page_fault(vcpu, fault);
4516 if (r != RET_PF_INVALID)
4517 return r;
4518
4519 r = mmu_topup_memory_caches(vcpu, maybe_indirect: false);
4520 if (r)
4521 return r;
4522
4523 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4524 if (r != RET_PF_CONTINUE)
4525 return r;
4526
4527 r = RET_PF_RETRY;
4528 write_lock(&vcpu->kvm->mmu_lock);
4529
4530 if (is_page_fault_stale(vcpu, fault))
4531 goto out_unlock;
4532
4533 r = make_mmu_pages_available(vcpu);
4534 if (r)
4535 goto out_unlock;
4536
4537 r = direct_map(vcpu, fault);
4538
4539out_unlock:
4540 write_unlock(&vcpu->kvm->mmu_lock);
4541 kvm_release_pfn_clean(pfn: fault->pfn);
4542 return r;
4543}
4544
4545static int nonpaging_page_fault(struct kvm_vcpu *vcpu,
4546 struct kvm_page_fault *fault)
4547{
4548 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4549 fault->max_level = PG_LEVEL_2M;
4550 return direct_page_fault(vcpu, fault);
4551}
4552
4553int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
4554 u64 fault_address, char *insn, int insn_len)
4555{
4556 int r = 1;
4557 u32 flags = vcpu->arch.apf.host_apf_flags;
4558
4559#ifndef CONFIG_X86_64
4560 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4561 if (WARN_ON_ONCE(fault_address >> 32))
4562 return -EFAULT;
4563#endif
4564
4565 vcpu->arch.l1tf_flush_l1d = true;
4566 if (!flags) {
4567 trace_kvm_page_fault(vcpu, fault_address, error_code);
4568
4569 if (kvm_event_needs_reinjection(vcpu))
4570 kvm_mmu_unprotect_page_virt(vcpu, gva: fault_address);
4571 r = kvm_mmu_page_fault(vcpu, cr2_or_gpa: fault_address, error_code, insn,
4572 insn_len);
4573 } else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
4574 vcpu->arch.apf.host_apf_flags = 0;
4575 local_irq_disable();
4576 kvm_async_pf_task_wait_schedule(token: fault_address);
4577 local_irq_enable();
4578 } else {
4579 WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
4580 }
4581
4582 return r;
4583}
4584EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4585
4586#ifdef CONFIG_X86_64
4587static int kvm_tdp_mmu_page_fault(struct kvm_vcpu *vcpu,
4588 struct kvm_page_fault *fault)
4589{
4590 int r;
4591
4592 if (page_fault_handle_page_track(vcpu, fault))
4593 return RET_PF_EMULATE;
4594
4595 r = fast_page_fault(vcpu, fault);
4596 if (r != RET_PF_INVALID)
4597 return r;
4598
4599 r = mmu_topup_memory_caches(vcpu, maybe_indirect: false);
4600 if (r)
4601 return r;
4602
4603 r = kvm_faultin_pfn(vcpu, fault, ACC_ALL);
4604 if (r != RET_PF_CONTINUE)
4605 return r;
4606
4607 r = RET_PF_RETRY;
4608 read_lock(&vcpu->kvm->mmu_lock);
4609
4610 if (is_page_fault_stale(vcpu, fault))
4611 goto out_unlock;
4612
4613 r = kvm_tdp_mmu_map(vcpu, fault);
4614
4615out_unlock:
4616 read_unlock(&vcpu->kvm->mmu_lock);
4617 kvm_release_pfn_clean(pfn: fault->pfn);
4618 return r;
4619}
4620#endif
4621
4622bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma)
4623{
4624 /*
4625 * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the
4626 * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is
4627 * to honor the memtype from the guest's MTRRs so that guest accesses
4628 * to memory that is DMA'd aren't cached against the guest's wishes.
4629 *
4630 * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs,
4631 * e.g. KVM will force UC memtype for host MMIO.
4632 */
4633 return vm_has_noncoherent_dma && shadow_memtype_mask;
4634}
4635
4636int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
4637{
4638 /*
4639 * If the guest's MTRRs may be used to compute the "real" memtype,
4640 * restrict the mapping level to ensure KVM uses a consistent memtype
4641 * across the entire mapping.
4642 */
4643 if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) {
4644 for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) {
4645 int page_num = KVM_PAGES_PER_HPAGE(fault->max_level);
4646 gfn_t base = gfn_round_for_level(gfn: fault->gfn,
4647 level: fault->max_level);
4648
4649 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4650 break;
4651 }
4652 }
4653
4654#ifdef CONFIG_X86_64
4655 if (tdp_mmu_enabled)
4656 return kvm_tdp_mmu_page_fault(vcpu, fault);
4657#endif
4658
4659 return direct_page_fault(vcpu, fault);
4660}
4661
4662static void nonpaging_init_context(struct kvm_mmu *context)
4663{
4664 context->page_fault = nonpaging_page_fault;
4665 context->gva_to_gpa = nonpaging_gva_to_gpa;
4666 context->sync_spte = NULL;
4667}
4668
4669static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
4670 union kvm_mmu_page_role role)
4671{
4672 struct kvm_mmu_page *sp;
4673
4674 if (!VALID_PAGE(root->hpa))
4675 return false;
4676
4677 if (!role.direct && pgd != root->pgd)
4678 return false;
4679
4680 sp = root_to_sp(root: root->hpa);
4681 if (WARN_ON_ONCE(!sp))
4682 return false;
4683
4684 return role.word == sp->role.word;
4685}
4686
4687/*
4688 * Find out if a previously cached root matching the new pgd/role is available,
4689 * and insert the current root as the MRU in the cache.
4690 * If a matching root is found, it is assigned to kvm_mmu->root and
4691 * true is returned.
4692 * If no match is found, kvm_mmu->root is left invalid, the LRU root is
4693 * evicted to make room for the current root, and false is returned.
4694 */
4695static bool cached_root_find_and_keep_current(struct kvm *kvm, struct kvm_mmu *mmu,
4696 gpa_t new_pgd,
4697 union kvm_mmu_page_role new_role)
4698{
4699 uint i;
4700
4701 if (is_root_usable(root: &mmu->root, pgd: new_pgd, role: new_role))
4702 return true;
4703
4704 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4705 /*
4706 * The swaps end up rotating the cache like this:
4707 * C 0 1 2 3 (on entry to the function)
4708 * 0 C 1 2 3
4709 * 1 C 0 2 3
4710 * 2 C 0 1 3
4711 * 3 C 0 1 2 (on exit from the loop)
4712 */
4713 swap(mmu->root, mmu->prev_roots[i]);
4714 if (is_root_usable(root: &mmu->root, pgd: new_pgd, role: new_role))
4715 return true;
4716 }
4717
4718 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4719 return false;
4720}
4721
4722/*
4723 * Find out if a previously cached root matching the new pgd/role is available.
4724 * On entry, mmu->root is invalid.
4725 * If a matching root is found, it is assigned to kvm_mmu->root, the LRU entry
4726 * of the cache becomes invalid, and true is returned.
4727 * If no match is found, kvm_mmu->root is left invalid and false is returned.
4728 */
4729static bool cached_root_find_without_current(struct kvm *kvm, struct kvm_mmu *mmu,
4730 gpa_t new_pgd,
4731 union kvm_mmu_page_role new_role)
4732{
4733 uint i;
4734
4735 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4736 if (is_root_usable(root: &mmu->prev_roots[i], pgd: new_pgd, role: new_role))
4737 goto hit;
4738
4739 return false;
4740
4741hit:
4742 swap(mmu->root, mmu->prev_roots[i]);
4743 /* Bubble up the remaining roots. */
4744 for (; i < KVM_MMU_NUM_PREV_ROOTS - 1; i++)
4745 mmu->prev_roots[i] = mmu->prev_roots[i + 1];
4746 mmu->prev_roots[i].hpa = INVALID_PAGE;
4747 return true;
4748}
4749
4750static bool fast_pgd_switch(struct kvm *kvm, struct kvm_mmu *mmu,
4751 gpa_t new_pgd, union kvm_mmu_page_role new_role)
4752{
4753 /*
4754 * Limit reuse to 64-bit hosts+VMs without "special" roots in order to
4755 * avoid having to deal with PDPTEs and other complexities.
4756 */
4757 if (VALID_PAGE(mmu->root.hpa) && !root_to_sp(root: mmu->root.hpa))
4758 kvm_mmu_free_roots(kvm, mmu, KVM_MMU_ROOT_CURRENT);
4759
4760 if (VALID_PAGE(mmu->root.hpa))
4761 return cached_root_find_and_keep_current(kvm, mmu, new_pgd, new_role);
4762 else
4763 return cached_root_find_without_current(kvm, mmu, new_pgd, new_role);
4764}
4765
4766void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd)
4767{
4768 struct kvm_mmu *mmu = vcpu->arch.mmu;
4769 union kvm_mmu_page_role new_role = mmu->root_role;
4770
4771 /*
4772 * Return immediately if no usable root was found, kvm_mmu_reload()
4773 * will establish a valid root prior to the next VM-Enter.
4774 */
4775 if (!fast_pgd_switch(kvm: vcpu->kvm, mmu, new_pgd, new_role))
4776 return;
4777
4778 /*
4779 * It's possible that the cached previous root page is obsolete because
4780 * of a change in the MMU generation number. However, changing the
4781 * generation number is accompanied by KVM_REQ_MMU_FREE_OBSOLETE_ROOTS,
4782 * which will free the root set here and allocate a new one.
4783 */
4784 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
4785
4786 if (force_flush_and_sync_on_reuse) {
4787 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
4788 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
4789 }
4790
4791 /*
4792 * The last MMIO access's GVA and GPA are cached in the VCPU. When
4793 * switching to a new CR3, that GVA->GPA mapping may no longer be
4794 * valid. So clear any cached MMIO info even when we don't need to sync
4795 * the shadow page tables.
4796 */
4797 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
4798
4799 /*
4800 * If this is a direct root page, it doesn't have a write flooding
4801 * count. Otherwise, clear the write flooding count.
4802 */
4803 if (!new_role.direct) {
4804 struct kvm_mmu_page *sp = root_to_sp(root: vcpu->arch.mmu->root.hpa);
4805
4806 if (!WARN_ON_ONCE(!sp))
4807 __clear_sp_write_flooding_count(sp);
4808 }
4809}
4810EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
4811
4812static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
4813 unsigned int access)
4814{
4815 if (unlikely(is_mmio_spte(*sptep))) {
4816 if (gfn != get_mmio_spte_gfn(spte: *sptep)) {
4817 mmu_spte_clear_no_track(sptep);
4818 return true;
4819 }
4820
4821 mark_mmio_spte(vcpu, sptep, gfn, access);
4822 return true;
4823 }
4824
4825 return false;
4826}
4827
4828#define PTTYPE_EPT 18 /* arbitrary */
4829#define PTTYPE PTTYPE_EPT
4830#include "paging_tmpl.h"
4831#undef PTTYPE
4832
4833#define PTTYPE 64
4834#include "paging_tmpl.h"
4835#undef PTTYPE
4836
4837#define PTTYPE 32
4838#include "paging_tmpl.h"
4839#undef PTTYPE
4840
4841static void __reset_rsvds_bits_mask(struct rsvd_bits_validate *rsvd_check,
4842 u64 pa_bits_rsvd, int level, bool nx,
4843 bool gbpages, bool pse, bool amd)
4844{
4845 u64 gbpages_bit_rsvd = 0;
4846 u64 nonleaf_bit8_rsvd = 0;
4847 u64 high_bits_rsvd;
4848
4849 rsvd_check->bad_mt_xwr = 0;
4850
4851 if (!gbpages)
4852 gbpages_bit_rsvd = rsvd_bits(7, 7);
4853
4854 if (level == PT32E_ROOT_LEVEL)
4855 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 62);
4856 else
4857 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4858
4859 /* Note, NX doesn't exist in PDPTEs, this is handled below. */
4860 if (!nx)
4861 high_bits_rsvd |= rsvd_bits(63, 63);
4862
4863 /*
4864 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4865 * leaf entries) on AMD CPUs only.
4866 */
4867 if (amd)
4868 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4869
4870 switch (level) {
4871 case PT32_ROOT_LEVEL:
4872 /* no rsvd bits for 2 level 4K page table entries */
4873 rsvd_check->rsvd_bits_mask[0][1] = 0;
4874 rsvd_check->rsvd_bits_mask[0][0] = 0;
4875 rsvd_check->rsvd_bits_mask[1][0] =
4876 rsvd_check->rsvd_bits_mask[0][0];
4877
4878 if (!pse) {
4879 rsvd_check->rsvd_bits_mask[1][1] = 0;
4880 break;
4881 }
4882
4883 if (is_cpuid_PSE36())
4884 /* 36bits PSE 4MB page */
4885 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4886 else
4887 /* 32 bits PSE 4MB page */
4888 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4889 break;
4890 case PT32E_ROOT_LEVEL:
4891 rsvd_check->rsvd_bits_mask[0][2] = rsvd_bits(63, 63) |
4892 high_bits_rsvd |
4893 rsvd_bits(5, 8) |
4894 rsvd_bits(1, 2); /* PDPTE */
4895 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd; /* PDE */
4896 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd; /* PTE */
4897 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4898 rsvd_bits(13, 20); /* large page */
4899 rsvd_check->rsvd_bits_mask[1][0] =
4900 rsvd_check->rsvd_bits_mask[0][0];
4901 break;
4902 case PT64_ROOT_5LEVEL:
4903 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd |
4904 nonleaf_bit8_rsvd |
4905 rsvd_bits(7, 7);
4906 rsvd_check->rsvd_bits_mask[1][4] =
4907 rsvd_check->rsvd_bits_mask[0][4];
4908 fallthrough;
4909 case PT64_ROOT_4LEVEL:
4910 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd |
4911 nonleaf_bit8_rsvd |
4912 rsvd_bits(7, 7);
4913 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd |
4914 gbpages_bit_rsvd;
4915 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd;
4916 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4917 rsvd_check->rsvd_bits_mask[1][3] =
4918 rsvd_check->rsvd_bits_mask[0][3];
4919 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd |
4920 gbpages_bit_rsvd |
4921 rsvd_bits(13, 29);
4922 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd |
4923 rsvd_bits(13, 20); /* large page */
4924 rsvd_check->rsvd_bits_mask[1][0] =
4925 rsvd_check->rsvd_bits_mask[0][0];
4926 break;
4927 }
4928}
4929
4930static void reset_guest_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4931 struct kvm_mmu *context)
4932{
4933 __reset_rsvds_bits_mask(rsvd_check: &context->guest_rsvd_check,
4934 pa_bits_rsvd: vcpu->arch.reserved_gpa_bits,
4935 level: context->cpu_role.base.level, nx: is_efer_nx(mmu: context),
4936 gbpages: guest_can_use(vcpu, X86_FEATURE_GBPAGES),
4937 pse: is_cr4_pse(mmu: context),
4938 amd: guest_cpuid_is_amd_compatible(vcpu));
4939}
4940
4941static void __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4942 u64 pa_bits_rsvd, bool execonly,
4943 int huge_page_level)
4944{
4945 u64 high_bits_rsvd = pa_bits_rsvd & rsvd_bits(0, 51);
4946 u64 large_1g_rsvd = 0, large_2m_rsvd = 0;
4947 u64 bad_mt_xwr;
4948
4949 if (huge_page_level < PG_LEVEL_1G)
4950 large_1g_rsvd = rsvd_bits(7, 7);
4951 if (huge_page_level < PG_LEVEL_2M)
4952 large_2m_rsvd = rsvd_bits(7, 7);
4953
4954 rsvd_check->rsvd_bits_mask[0][4] = high_bits_rsvd | rsvd_bits(3, 7);
4955 rsvd_check->rsvd_bits_mask[0][3] = high_bits_rsvd | rsvd_bits(3, 7);
4956 rsvd_check->rsvd_bits_mask[0][2] = high_bits_rsvd | rsvd_bits(3, 6) | large_1g_rsvd;
4957 rsvd_check->rsvd_bits_mask[0][1] = high_bits_rsvd | rsvd_bits(3, 6) | large_2m_rsvd;
4958 rsvd_check->rsvd_bits_mask[0][0] = high_bits_rsvd;
4959
4960 /* large page */
4961 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4962 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4963 rsvd_check->rsvd_bits_mask[1][2] = high_bits_rsvd | rsvd_bits(12, 29) | large_1g_rsvd;
4964 rsvd_check->rsvd_bits_mask[1][1] = high_bits_rsvd | rsvd_bits(12, 20) | large_2m_rsvd;
4965 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4966
4967 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4968 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4969 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4970 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4971 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4972 if (!execonly) {
4973 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4974 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4975 }
4976 rsvd_check->bad_mt_xwr = bad_mt_xwr;
4977}
4978
4979static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4980 struct kvm_mmu *context, bool execonly, int huge_page_level)
4981{
4982 __reset_rsvds_bits_mask_ept(rsvd_check: &context->guest_rsvd_check,
4983 pa_bits_rsvd: vcpu->arch.reserved_gpa_bits, execonly,
4984 huge_page_level);
4985}
4986
4987static inline u64 reserved_hpa_bits(void)
4988{
4989 return rsvd_bits(shadow_phys_bits, 63);
4990}
4991
4992/*
4993 * the page table on host is the shadow page table for the page
4994 * table in guest or amd nested guest, its mmu features completely
4995 * follow the features in guest.
4996 */
4997static void reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4998 struct kvm_mmu *context)
4999{
5000 /* @amd adds a check on bit of SPTEs, which KVM shouldn't use anyways. */
5001 bool is_amd = true;
5002 /* KVM doesn't use 2-level page tables for the shadow MMU. */
5003 bool is_pse = false;
5004 struct rsvd_bits_validate *shadow_zero_check;
5005 int i;
5006
5007 WARN_ON_ONCE(context->root_role.level < PT32E_ROOT_LEVEL);
5008
5009 shadow_zero_check = &context->shadow_zero_check;
5010 __reset_rsvds_bits_mask(rsvd_check: shadow_zero_check, pa_bits_rsvd: reserved_hpa_bits(),
5011 level: context->root_role.level,
5012 nx: context->root_role.efer_nx,
5013 gbpages: guest_can_use(vcpu, X86_FEATURE_GBPAGES),
5014 pse: is_pse, amd: is_amd);
5015
5016 if (!shadow_me_mask)
5017 return;
5018
5019 for (i = context->root_role.level; --i >= 0;) {
5020 /*
5021 * So far shadow_me_value is a constant during KVM's life
5022 * time. Bits in shadow_me_value are allowed to be set.
5023 * Bits in shadow_me_mask but not in shadow_me_value are
5024 * not allowed to be set.
5025 */
5026 shadow_zero_check->rsvd_bits_mask[0][i] |= shadow_me_mask;
5027 shadow_zero_check->rsvd_bits_mask[1][i] |= shadow_me_mask;
5028 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_value;
5029 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_value;
5030 }
5031
5032}
5033
5034static inline bool boot_cpu_is_amd(void)
5035{
5036 WARN_ON_ONCE(!tdp_enabled);
5037 return shadow_x_mask == 0;
5038}
5039
5040/*
5041 * the direct page table on host, use as much mmu features as
5042 * possible, however, kvm currently does not do execution-protection.
5043 */
5044static void reset_tdp_shadow_zero_bits_mask(struct kvm_mmu *context)
5045{
5046 struct rsvd_bits_validate *shadow_zero_check;
5047 int i;
5048
5049 shadow_zero_check = &context->shadow_zero_check;
5050
5051 if (boot_cpu_is_amd())
5052 __reset_rsvds_bits_mask(rsvd_check: shadow_zero_check, pa_bits_rsvd: reserved_hpa_bits(),
5053 level: context->root_role.level, nx: true,
5054 boot_cpu_has(X86_FEATURE_GBPAGES),
5055 pse: false, amd: true);
5056 else
5057 __reset_rsvds_bits_mask_ept(rsvd_check: shadow_zero_check,
5058 pa_bits_rsvd: reserved_hpa_bits(), execonly: false,
5059 huge_page_level: max_huge_page_level);
5060
5061 if (!shadow_me_mask)
5062 return;
5063
5064 for (i = context->root_role.level; --i >= 0;) {
5065 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
5066 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
5067 }
5068}
5069
5070/*
5071 * as the comments in reset_shadow_zero_bits_mask() except it
5072 * is the shadow page table for intel nested guest.
5073 */
5074static void
5075reset_ept_shadow_zero_bits_mask(struct kvm_mmu *context, bool execonly)
5076{
5077 __reset_rsvds_bits_mask_ept(rsvd_check: &context->shadow_zero_check,
5078 pa_bits_rsvd: reserved_hpa_bits(), execonly,
5079 huge_page_level: max_huge_page_level);
5080}
5081
5082#define BYTE_MASK(access) \
5083 ((1 & (access) ? 2 : 0) | \
5084 (2 & (access) ? 4 : 0) | \
5085 (3 & (access) ? 8 : 0) | \
5086 (4 & (access) ? 16 : 0) | \
5087 (5 & (access) ? 32 : 0) | \
5088 (6 & (access) ? 64 : 0) | \
5089 (7 & (access) ? 128 : 0))
5090
5091
5092static void update_permission_bitmask(struct kvm_mmu *mmu, bool ept)
5093{
5094 unsigned byte;
5095
5096 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
5097 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
5098 const u8 u = BYTE_MASK(ACC_USER_MASK);
5099
5100 bool cr4_smep = is_cr4_smep(mmu);
5101 bool cr4_smap = is_cr4_smap(mmu);
5102 bool cr0_wp = is_cr0_wp(mmu);
5103 bool efer_nx = is_efer_nx(mmu);
5104
5105 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
5106 unsigned pfec = byte << 1;
5107
5108 /*
5109 * Each "*f" variable has a 1 bit for each UWX value
5110 * that causes a fault with the given PFEC.
5111 */
5112
5113 /* Faults from writes to non-writable pages */
5114 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
5115 /* Faults from user mode accesses to supervisor pages */
5116 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
5117 /* Faults from fetches of non-executable pages*/
5118 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
5119 /* Faults from kernel mode fetches of user pages */
5120 u8 smepf = 0;
5121 /* Faults from kernel mode accesses of user pages */
5122 u8 smapf = 0;
5123
5124 if (!ept) {
5125 /* Faults from kernel mode accesses to user pages */
5126 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
5127
5128 /* Not really needed: !nx will cause pte.nx to fault */
5129 if (!efer_nx)
5130 ff = 0;
5131
5132 /* Allow supervisor writes if !cr0.wp */
5133 if (!cr0_wp)
5134 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
5135
5136 /* Disallow supervisor fetches of user code if cr4.smep */
5137 if (cr4_smep)
5138 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
5139
5140 /*
5141 * SMAP:kernel-mode data accesses from user-mode
5142 * mappings should fault. A fault is considered
5143 * as a SMAP violation if all of the following
5144 * conditions are true:
5145 * - X86_CR4_SMAP is set in CR4
5146 * - A user page is accessed
5147 * - The access is not a fetch
5148 * - The access is supervisor mode
5149 * - If implicit supervisor access or X86_EFLAGS_AC is clear
5150 *
5151 * Here, we cover the first four conditions.
5152 * The fifth is computed dynamically in permission_fault();
5153 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
5154 * *not* subject to SMAP restrictions.
5155 */
5156 if (cr4_smap)
5157 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
5158 }
5159
5160 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
5161 }
5162}
5163
5164/*
5165* PKU is an additional mechanism by which the paging controls access to
5166* user-mode addresses based on the value in the PKRU register. Protection
5167* key violations are reported through a bit in the page fault error code.
5168* Unlike other bits of the error code, the PK bit is not known at the
5169* call site of e.g. gva_to_gpa; it must be computed directly in
5170* permission_fault based on two bits of PKRU, on some machine state (CR4,
5171* CR0, EFER, CPL), and on other bits of the error code and the page tables.
5172*
5173* In particular the following conditions come from the error code, the
5174* page tables and the machine state:
5175* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
5176* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
5177* - PK is always zero if U=0 in the page tables
5178* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
5179*
5180* The PKRU bitmask caches the result of these four conditions. The error
5181* code (minus the P bit) and the page table's U bit form an index into the
5182* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
5183* with the two bits of the PKRU register corresponding to the protection key.
5184* For the first three conditions above the bits will be 00, thus masking
5185* away both AD and WD. For all reads or if the last condition holds, WD
5186* only will be masked away.
5187*/
5188static void update_pkru_bitmask(struct kvm_mmu *mmu)
5189{
5190 unsigned bit;
5191 bool wp;
5192
5193 mmu->pkru_mask = 0;
5194
5195 if (!is_cr4_pke(mmu))
5196 return;
5197
5198 wp = is_cr0_wp(mmu);
5199
5200 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
5201 unsigned pfec, pkey_bits;
5202 bool check_pkey, check_write, ff, uf, wf, pte_user;
5203
5204 pfec = bit << 1;
5205 ff = pfec & PFERR_FETCH_MASK;
5206 uf = pfec & PFERR_USER_MASK;
5207 wf = pfec & PFERR_WRITE_MASK;
5208
5209 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
5210 pte_user = pfec & PFERR_RSVD_MASK;
5211
5212 /*
5213 * Only need to check the access which is not an
5214 * instruction fetch and is to a user page.
5215 */
5216 check_pkey = (!ff && pte_user);
5217 /*
5218 * write access is controlled by PKRU if it is a
5219 * user access or CR0.WP = 1.
5220 */
5221 check_write = check_pkey && wf && (uf || wp);
5222
5223 /* PKRU.AD stops both read and write access. */
5224 pkey_bits = !!check_pkey;
5225 /* PKRU.WD stops write access. */
5226 pkey_bits |= (!!check_write) << 1;
5227
5228 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
5229 }
5230}
5231
5232static void reset_guest_paging_metadata(struct kvm_vcpu *vcpu,
5233 struct kvm_mmu *mmu)
5234{
5235 if (!is_cr0_pg(mmu))
5236 return;
5237
5238 reset_guest_rsvds_bits_mask(vcpu, context: mmu);
5239 update_permission_bitmask(mmu, ept: false);
5240 update_pkru_bitmask(mmu);
5241}
5242
5243static void paging64_init_context(struct kvm_mmu *context)
5244{
5245 context->page_fault = paging64_page_fault;
5246 context->gva_to_gpa = paging64_gva_to_gpa;
5247 context->sync_spte = paging64_sync_spte;
5248}
5249
5250static void paging32_init_context(struct kvm_mmu *context)
5251{
5252 context->page_fault = paging32_page_fault;
5253 context->gva_to_gpa = paging32_gva_to_gpa;
5254 context->sync_spte = paging32_sync_spte;
5255}
5256
5257static union kvm_cpu_role kvm_calc_cpu_role(struct kvm_vcpu *vcpu,
5258 const struct kvm_mmu_role_regs *regs)
5259{
5260 union kvm_cpu_role role = {0};
5261
5262 role.base.access = ACC_ALL;
5263 role.base.smm = is_smm(vcpu);
5264 role.base.guest_mode = is_guest_mode(vcpu);
5265 role.ext.valid = 1;
5266
5267 if (!____is_cr0_pg(regs)) {
5268 role.base.direct = 1;
5269 return role;
5270 }
5271
5272 role.base.efer_nx = ____is_efer_nx(regs);
5273 role.base.cr0_wp = ____is_cr0_wp(regs);
5274 role.base.smep_andnot_wp = ____is_cr4_smep(regs) && !____is_cr0_wp(regs);
5275 role.base.smap_andnot_wp = ____is_cr4_smap(regs) && !____is_cr0_wp(regs);
5276 role.base.has_4_byte_gpte = !____is_cr4_pae(regs);
5277
5278 if (____is_efer_lma(regs))
5279 role.base.level = ____is_cr4_la57(regs) ? PT64_ROOT_5LEVEL
5280 : PT64_ROOT_4LEVEL;
5281 else if (____is_cr4_pae(regs))
5282 role.base.level = PT32E_ROOT_LEVEL;
5283 else
5284 role.base.level = PT32_ROOT_LEVEL;
5285
5286 role.ext.cr4_smep = ____is_cr4_smep(regs);
5287 role.ext.cr4_smap = ____is_cr4_smap(regs);
5288 role.ext.cr4_pse = ____is_cr4_pse(regs);
5289
5290 /* PKEY and LA57 are active iff long mode is active. */
5291 role.ext.cr4_pke = ____is_efer_lma(regs) && ____is_cr4_pke(regs);
5292 role.ext.cr4_la57 = ____is_efer_lma(regs) && ____is_cr4_la57(regs);
5293 role.ext.efer_lma = ____is_efer_lma(regs);
5294 return role;
5295}
5296
5297void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
5298 struct kvm_mmu *mmu)
5299{
5300 const bool cr0_wp = kvm_is_cr0_bit_set(vcpu, X86_CR0_WP);
5301
5302 BUILD_BUG_ON((KVM_MMU_CR0_ROLE_BITS & KVM_POSSIBLE_CR0_GUEST_BITS) != X86_CR0_WP);
5303 BUILD_BUG_ON((KVM_MMU_CR4_ROLE_BITS & KVM_POSSIBLE_CR4_GUEST_BITS));
5304
5305 if (is_cr0_wp(mmu) == cr0_wp)
5306 return;
5307
5308 mmu->cpu_role.base.cr0_wp = cr0_wp;
5309 reset_guest_paging_metadata(vcpu, mmu);
5310}
5311
5312static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
5313{
5314 /* tdp_root_level is architecture forced level, use it if nonzero */
5315 if (tdp_root_level)
5316 return tdp_root_level;
5317
5318 /* Use 5-level TDP if and only if it's useful/necessary. */
5319 if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
5320 return 4;
5321
5322 return max_tdp_level;
5323}
5324
5325static union kvm_mmu_page_role
5326kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu,
5327 union kvm_cpu_role cpu_role)
5328{
5329 union kvm_mmu_page_role role = {0};
5330
5331 role.access = ACC_ALL;
5332 role.cr0_wp = true;
5333 role.efer_nx = true;
5334 role.smm = cpu_role.base.smm;
5335 role.guest_mode = cpu_role.base.guest_mode;
5336 role.ad_disabled = !kvm_ad_enabled();
5337 role.level = kvm_mmu_get_tdp_level(vcpu);
5338 role.direct = true;
5339 role.has_4_byte_gpte = false;
5340
5341 return role;
5342}
5343
5344static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu,
5345 union kvm_cpu_role cpu_role)
5346{
5347 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5348 union kvm_mmu_page_role root_role = kvm_calc_tdp_mmu_root_page_role(vcpu, cpu_role);
5349
5350 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5351 root_role.word == context->root_role.word)
5352 return;
5353
5354 context->cpu_role.as_u64 = cpu_role.as_u64;
5355 context->root_role.word = root_role.word;
5356 context->page_fault = kvm_tdp_page_fault;
5357 context->sync_spte = NULL;
5358 context->get_guest_pgd = get_guest_cr3;
5359 context->get_pdptr = kvm_pdptr_read;
5360 context->inject_page_fault = kvm_inject_page_fault;
5361
5362 if (!is_cr0_pg(mmu: context))
5363 context->gva_to_gpa = nonpaging_gva_to_gpa;
5364 else if (is_cr4_pae(mmu: context))
5365 context->gva_to_gpa = paging64_gva_to_gpa;
5366 else
5367 context->gva_to_gpa = paging32_gva_to_gpa;
5368
5369 reset_guest_paging_metadata(vcpu, mmu: context);
5370 reset_tdp_shadow_zero_bits_mask(context);
5371}
5372
5373static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
5374 union kvm_cpu_role cpu_role,
5375 union kvm_mmu_page_role root_role)
5376{
5377 if (cpu_role.as_u64 == context->cpu_role.as_u64 &&
5378 root_role.word == context->root_role.word)
5379 return;
5380
5381 context->cpu_role.as_u64 = cpu_role.as_u64;
5382 context->root_role.word = root_role.word;
5383
5384 if (!is_cr0_pg(mmu: context))
5385 nonpaging_init_context(context);
5386 else if (is_cr4_pae(mmu: context))
5387 paging64_init_context(context);
5388 else
5389 paging32_init_context(context);
5390
5391 reset_guest_paging_metadata(vcpu, mmu: context);
5392 reset_shadow_zero_bits_mask(vcpu, context);
5393}
5394
5395static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu,
5396 union kvm_cpu_role cpu_role)
5397{
5398 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5399 union kvm_mmu_page_role root_role;
5400
5401 root_role = cpu_role.base;
5402
5403 /* KVM uses PAE paging whenever the guest isn't using 64-bit paging. */
5404 root_role.level = max_t(u32, root_role.level, PT32E_ROOT_LEVEL);
5405
5406 /*
5407 * KVM forces EFER.NX=1 when TDP is disabled, reflect it in the MMU role.
5408 * KVM uses NX when TDP is disabled to handle a variety of scenarios,
5409 * notably for huge SPTEs if iTLB multi-hit mitigation is enabled and
5410 * to generate correct permissions for CR0.WP=0/CR4.SMEP=1/EFER.NX=0.
5411 * The iTLB multi-hit workaround can be toggled at any time, so assume
5412 * NX can be used by any non-nested shadow MMU to avoid having to reset
5413 * MMU contexts.
5414 */
5415 root_role.efer_nx = true;
5416
5417 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5418}
5419
5420void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
5421 unsigned long cr4, u64 efer, gpa_t nested_cr3)
5422{
5423 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5424 struct kvm_mmu_role_regs regs = {
5425 .cr0 = cr0,
5426 .cr4 = cr4 & ~X86_CR4_PKE,
5427 .efer = efer,
5428 };
5429 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, regs: &regs);
5430 union kvm_mmu_page_role root_role;
5431
5432 /* NPT requires CR0.PG=1. */
5433 WARN_ON_ONCE(cpu_role.base.direct);
5434
5435 root_role = cpu_role.base;
5436 root_role.level = kvm_mmu_get_tdp_level(vcpu);
5437 if (root_role.level == PT64_ROOT_5LEVEL &&
5438 cpu_role.base.level == PT64_ROOT_4LEVEL)
5439 root_role.passthrough = 1;
5440
5441 shadow_mmu_init_context(vcpu, context, cpu_role, root_role);
5442 kvm_mmu_new_pgd(vcpu, nested_cr3);
5443}
5444EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
5445
5446static union kvm_cpu_role
5447kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
5448 bool execonly, u8 level)
5449{
5450 union kvm_cpu_role role = {0};
5451
5452 /*
5453 * KVM does not support SMM transfer monitors, and consequently does not
5454 * support the "entry to SMM" control either. role.base.smm is always 0.
5455 */
5456 WARN_ON_ONCE(is_smm(vcpu));
5457 role.base.level = level;
5458 role.base.has_4_byte_gpte = false;
5459 role.base.direct = false;
5460 role.base.ad_disabled = !accessed_dirty;
5461 role.base.guest_mode = true;
5462 role.base.access = ACC_ALL;
5463
5464 role.ext.word = 0;
5465 role.ext.execonly = execonly;
5466 role.ext.valid = 1;
5467
5468 return role;
5469}
5470
5471void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
5472 int huge_page_level, bool accessed_dirty,
5473 gpa_t new_eptp)
5474{
5475 struct kvm_mmu *context = &vcpu->arch.guest_mmu;
5476 u8 level = vmx_eptp_page_walk_level(eptp: new_eptp);
5477 union kvm_cpu_role new_mode =
5478 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
5479 execonly, level);
5480
5481 if (new_mode.as_u64 != context->cpu_role.as_u64) {
5482 /* EPT, and thus nested EPT, does not consume CR0, CR4, nor EFER. */
5483 context->cpu_role.as_u64 = new_mode.as_u64;
5484 context->root_role.word = new_mode.base.word;
5485
5486 context->page_fault = ept_page_fault;
5487 context->gva_to_gpa = ept_gva_to_gpa;
5488 context->sync_spte = ept_sync_spte;
5489
5490 update_permission_bitmask(mmu: context, ept: true);
5491 context->pkru_mask = 0;
5492 reset_rsvds_bits_mask_ept(vcpu, context, execonly, huge_page_level);
5493 reset_ept_shadow_zero_bits_mask(context, execonly);
5494 }
5495
5496 kvm_mmu_new_pgd(vcpu, new_eptp);
5497}
5498EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5499
5500static void init_kvm_softmmu(struct kvm_vcpu *vcpu,
5501 union kvm_cpu_role cpu_role)
5502{
5503 struct kvm_mmu *context = &vcpu->arch.root_mmu;
5504
5505 kvm_init_shadow_mmu(vcpu, cpu_role);
5506
5507 context->get_guest_pgd = get_guest_cr3;
5508 context->get_pdptr = kvm_pdptr_read;
5509 context->inject_page_fault = kvm_inject_page_fault;
5510}
5511
5512static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu,
5513 union kvm_cpu_role new_mode)
5514{
5515 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5516
5517 if (new_mode.as_u64 == g_context->cpu_role.as_u64)
5518 return;
5519
5520 g_context->cpu_role.as_u64 = new_mode.as_u64;
5521 g_context->get_guest_pgd = get_guest_cr3;
5522 g_context->get_pdptr = kvm_pdptr_read;
5523 g_context->inject_page_fault = kvm_inject_page_fault;
5524
5525 /*
5526 * L2 page tables are never shadowed, so there is no need to sync
5527 * SPTEs.
5528 */
5529 g_context->sync_spte = NULL;
5530
5531 /*
5532 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
5533 * L1's nested page tables (e.g. EPT12). The nested translation
5534 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5535 * L2's page tables as the first level of translation and L1's
5536 * nested page tables as the second level of translation. Basically
5537 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
5538 */
5539 if (!is_paging(vcpu))
5540 g_context->gva_to_gpa = nonpaging_gva_to_gpa;
5541 else if (is_long_mode(vcpu))
5542 g_context->gva_to_gpa = paging64_gva_to_gpa;
5543 else if (is_pae(vcpu))
5544 g_context->gva_to_gpa = paging64_gva_to_gpa;
5545 else
5546 g_context->gva_to_gpa = paging32_gva_to_gpa;
5547
5548 reset_guest_paging_metadata(vcpu, mmu: g_context);
5549}
5550
5551void kvm_init_mmu(struct kvm_vcpu *vcpu)
5552{
5553 struct kvm_mmu_role_regs regs = vcpu_to_role_regs(vcpu);
5554 union kvm_cpu_role cpu_role = kvm_calc_cpu_role(vcpu, regs: &regs);
5555
5556 if (mmu_is_nested(vcpu))
5557 init_kvm_nested_mmu(vcpu, new_mode: cpu_role);
5558 else if (tdp_enabled)
5559 init_kvm_tdp_mmu(vcpu, cpu_role);
5560 else
5561 init_kvm_softmmu(vcpu, cpu_role);
5562}
5563EXPORT_SYMBOL_GPL(kvm_init_mmu);
5564
5565void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu)
5566{
5567 /*
5568 * Invalidate all MMU roles to force them to reinitialize as CPUID
5569 * information is factored into reserved bit calculations.
5570 *
5571 * Correctly handling multiple vCPU models with respect to paging and
5572 * physical address properties) in a single VM would require tracking
5573 * all relevant CPUID information in kvm_mmu_page_role. That is very
5574 * undesirable as it would increase the memory requirements for
5575 * gfn_write_track (see struct kvm_mmu_page_role comments). For now
5576 * that problem is swept under the rug; KVM's CPUID API is horrific and
5577 * it's all but impossible to solve it without introducing a new API.
5578 */
5579 vcpu->arch.root_mmu.root_role.invalid = 1;
5580 vcpu->arch.guest_mmu.root_role.invalid = 1;
5581 vcpu->arch.nested_mmu.root_role.invalid = 1;
5582 vcpu->arch.root_mmu.cpu_role.ext.valid = 0;
5583 vcpu->arch.guest_mmu.cpu_role.ext.valid = 0;
5584 vcpu->arch.nested_mmu.cpu_role.ext.valid = 0;
5585 kvm_mmu_reset_context(vcpu);
5586
5587 /*
5588 * Changing guest CPUID after KVM_RUN is forbidden, see the comment in
5589 * kvm_arch_vcpu_ioctl().
5590 */
5591 KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm);
5592}
5593
5594void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
5595{
5596 kvm_mmu_unload(vcpu);
5597 kvm_init_mmu(vcpu);
5598}
5599EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
5600
5601int kvm_mmu_load(struct kvm_vcpu *vcpu)
5602{
5603 int r;
5604
5605 r = mmu_topup_memory_caches(vcpu, maybe_indirect: !vcpu->arch.mmu->root_role.direct);
5606 if (r)
5607 goto out;
5608 r = mmu_alloc_special_roots(vcpu);
5609 if (r)
5610 goto out;
5611 if (vcpu->arch.mmu->root_role.direct)
5612 r = mmu_alloc_direct_roots(vcpu);
5613 else
5614 r = mmu_alloc_shadow_roots(vcpu);
5615 if (r)
5616 goto out;
5617
5618 kvm_mmu_sync_roots(vcpu);
5619
5620 kvm_mmu_load_pgd(vcpu);
5621
5622 /*
5623 * Flush any TLB entries for the new root, the provenance of the root
5624 * is unknown. Even if KVM ensures there are no stale TLB entries
5625 * for a freed root, in theory another hypervisor could have left
5626 * stale entries. Flushing on alloc also allows KVM to skip the TLB
5627 * flush when freeing a root (see kvm_tdp_mmu_put_root()).
5628 */
5629 static_call(kvm_x86_flush_tlb_current)(vcpu);
5630out:
5631 return r;
5632}
5633
5634void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5635{
5636 struct kvm *kvm = vcpu->kvm;
5637
5638 kvm_mmu_free_roots(kvm, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5639 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.root_mmu.root.hpa));
5640 kvm_mmu_free_roots(kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5641 WARN_ON_ONCE(VALID_PAGE(vcpu->arch.guest_mmu.root.hpa));
5642 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
5643}
5644
5645static bool is_obsolete_root(struct kvm *kvm, hpa_t root_hpa)
5646{
5647 struct kvm_mmu_page *sp;
5648
5649 if (!VALID_PAGE(root_hpa))
5650 return false;
5651
5652 /*
5653 * When freeing obsolete roots, treat roots as obsolete if they don't
5654 * have an associated shadow page, as it's impossible to determine if
5655 * such roots are fresh or stale. This does mean KVM will get false
5656 * positives and free roots that don't strictly need to be freed, but
5657 * such false positives are relatively rare:
5658 *
5659 * (a) only PAE paging and nested NPT have roots without shadow pages
5660 * (or any shadow paging flavor with a dummy root, see note below)
5661 * (b) remote reloads due to a memslot update obsoletes _all_ roots
5662 * (c) KVM doesn't track previous roots for PAE paging, and the guest
5663 * is unlikely to zap an in-use PGD.
5664 *
5665 * Note! Dummy roots are unique in that they are obsoleted by memslot
5666 * _creation_! See also FNAME(fetch).
5667 */
5668 sp = root_to_sp(root: root_hpa);
5669 return !sp || is_obsolete_sp(kvm, sp);
5670}
5671
5672static void __kvm_mmu_free_obsolete_roots(struct kvm *kvm, struct kvm_mmu *mmu)
5673{
5674 unsigned long roots_to_free = 0;
5675 int i;
5676
5677 if (is_obsolete_root(kvm, root_hpa: mmu->root.hpa))
5678 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5679
5680 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5681 if (is_obsolete_root(kvm, root_hpa: mmu->prev_roots[i].hpa))
5682 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5683 }
5684
5685 if (roots_to_free)
5686 kvm_mmu_free_roots(kvm, mmu, roots_to_free);
5687}
5688
5689void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu)
5690{
5691 __kvm_mmu_free_obsolete_roots(kvm: vcpu->kvm, mmu: &vcpu->arch.root_mmu);
5692 __kvm_mmu_free_obsolete_roots(kvm: vcpu->kvm, mmu: &vcpu->arch.guest_mmu);
5693}
5694
5695static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
5696 int *bytes)
5697{
5698 u64 gentry = 0;
5699 int r;
5700
5701 /*
5702 * Assume that the pte write on a page table of the same type
5703 * as the current vcpu paging mode since we update the sptes only
5704 * when they have the same mode.
5705 */
5706 if (is_pae(vcpu) && *bytes == 4) {
5707 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
5708 *gpa &= ~(gpa_t)7;
5709 *bytes = 8;
5710 }
5711
5712 if (*bytes == 4 || *bytes == 8) {
5713 r = kvm_vcpu_read_guest_atomic(vcpu, gpa: *gpa, data: &gentry, len: *bytes);
5714 if (r)
5715 gentry = 0;
5716 }
5717
5718 return gentry;
5719}
5720
5721/*
5722 * If we're seeing too many writes to a page, it may no longer be a page table,
5723 * or we may be forking, in which case it is better to unmap the page.
5724 */
5725static bool detect_write_flooding(struct kvm_mmu_page *sp)
5726{
5727 /*
5728 * Skip write-flooding detected for the sp whose level is 1, because
5729 * it can become unsync, then the guest page is not write-protected.
5730 */
5731 if (sp->role.level == PG_LEVEL_4K)
5732 return false;
5733
5734 atomic_inc(v: &sp->write_flooding_count);
5735 return atomic_read(v: &sp->write_flooding_count) >= 3;
5736}
5737
5738/*
5739 * Misaligned accesses are too much trouble to fix up; also, they usually
5740 * indicate a page is not used as a page table.
5741 */
5742static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5743 int bytes)
5744{
5745 unsigned offset, pte_size, misaligned;
5746
5747 offset = offset_in_page(gpa);
5748 pte_size = sp->role.has_4_byte_gpte ? 4 : 8;
5749
5750 /*
5751 * Sometimes, the OS only writes the last one bytes to update status
5752 * bits, for example, in linux, andb instruction is used in clear_bit().
5753 */
5754 if (!(offset & (pte_size - 1)) && bytes == 1)
5755 return false;
5756
5757 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5758 misaligned |= bytes < 4;
5759
5760 return misaligned;
5761}
5762
5763static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5764{
5765 unsigned page_offset, quadrant;
5766 u64 *spte;
5767 int level;
5768
5769 page_offset = offset_in_page(gpa);
5770 level = sp->role.level;
5771 *nspte = 1;
5772 if (sp->role.has_4_byte_gpte) {
5773 page_offset <<= 1; /* 32->64 */
5774 /*
5775 * A 32-bit pde maps 4MB while the shadow pdes map
5776 * only 2MB. So we need to double the offset again
5777 * and zap two pdes instead of one.
5778 */
5779 if (level == PT32_ROOT_LEVEL) {
5780 page_offset &= ~7; /* kill rounding error */
5781 page_offset <<= 1;
5782 *nspte = 2;
5783 }
5784 quadrant = page_offset >> PAGE_SHIFT;
5785 page_offset &= ~PAGE_MASK;
5786 if (quadrant != sp->role.quadrant)
5787 return NULL;
5788 }
5789
5790 spte = &sp->spt[page_offset / sizeof(*spte)];
5791 return spte;
5792}
5793
5794void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
5795 int bytes)
5796{
5797 gfn_t gfn = gpa >> PAGE_SHIFT;
5798 struct kvm_mmu_page *sp;
5799 LIST_HEAD(invalid_list);
5800 u64 entry, gentry, *spte;
5801 int npte;
5802 bool flush = false;
5803
5804 /*
5805 * If we don't have indirect shadow pages, it means no page is
5806 * write-protected, so we can exit simply.
5807 */
5808 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
5809 return;
5810
5811 write_lock(&vcpu->kvm->mmu_lock);
5812
5813 gentry = mmu_pte_write_fetch_gpte(vcpu, gpa: &gpa, bytes: &bytes);
5814
5815 ++vcpu->kvm->stat.mmu_pte_write;
5816
5817 for_each_gfn_valid_sp_with_gptes(vcpu->kvm, sp, gfn) {
5818 if (detect_write_misaligned(sp, gpa, bytes) ||
5819 detect_write_flooding(sp)) {
5820 kvm_mmu_prepare_zap_page(kvm: vcpu->kvm, sp, invalid_list: &invalid_list);
5821 ++vcpu->kvm->stat.mmu_flooded;
5822 continue;
5823 }
5824
5825 spte = get_written_sptes(sp, gpa, nspte: &npte);
5826 if (!spte)
5827 continue;
5828
5829 while (npte--) {
5830 entry = *spte;
5831 mmu_page_zap_pte(kvm: vcpu->kvm, sp, spte, NULL);
5832 if (gentry && sp->role.level != PG_LEVEL_4K)
5833 ++vcpu->kvm->stat.mmu_pde_zapped;
5834 if (is_shadow_present_pte(pte: entry))
5835 flush = true;
5836 ++spte;
5837 }
5838 }
5839 kvm_mmu_remote_flush_or_zap(kvm: vcpu->kvm, invalid_list: &invalid_list, remote_flush: flush);
5840 write_unlock(&vcpu->kvm->mmu_lock);
5841}
5842
5843int noinline kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5844 void *insn, int insn_len)
5845{
5846 int r, emulation_type = EMULTYPE_PF;
5847 bool direct = vcpu->arch.mmu->root_role.direct;
5848
5849 /*
5850 * IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP
5851 * checks when emulating instructions that triggers implicit access.
5852 * WARN if hardware generates a fault with an error code that collides
5853 * with the KVM-defined value. Clear the flag and continue on, i.e.
5854 * don't terminate the VM, as KVM can't possibly be relying on a flag
5855 * that KVM doesn't know about.
5856 */
5857 if (WARN_ON_ONCE(error_code & PFERR_IMPLICIT_ACCESS))
5858 error_code &= ~PFERR_IMPLICIT_ACCESS;
5859
5860 if (WARN_ON_ONCE(!VALID_PAGE(vcpu->arch.mmu->root.hpa)))
5861 return RET_PF_RETRY;
5862
5863 r = RET_PF_INVALID;
5864 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5865 r = handle_mmio_page_fault(vcpu, addr: cr2_or_gpa, direct);
5866 if (r == RET_PF_EMULATE)
5867 goto emulate;
5868 }
5869
5870 if (r == RET_PF_INVALID) {
5871 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5872 lower_32_bits(error_code), prefetch: false,
5873 emulation_type: &emulation_type);
5874 if (KVM_BUG_ON(r == RET_PF_INVALID, vcpu->kvm))
5875 return -EIO;
5876 }
5877
5878 if (r < 0)
5879 return r;
5880 if (r != RET_PF_EMULATE)
5881 return 1;
5882
5883 /*
5884 * Before emulating the instruction, check if the error code
5885 * was due to a RO violation while translating the guest page.
5886 * This can occur when using nested virtualization with nested
5887 * paging in both guests. If true, we simply unprotect the page
5888 * and resume the guest.
5889 */
5890 if (vcpu->arch.mmu->root_role.direct &&
5891 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5892 kvm_mmu_unprotect_page(kvm: vcpu->kvm, gfn: gpa_to_gfn(gpa: cr2_or_gpa));
5893 return 1;
5894 }
5895
5896 /*
5897 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5898 * optimistically try to just unprotect the page and let the processor
5899 * re-execute the instruction that caused the page fault. Do not allow
5900 * retrying MMIO emulation, as it's not only pointless but could also
5901 * cause us to enter an infinite loop because the processor will keep
5902 * faulting on the non-existent MMIO address. Retrying an instruction
5903 * from a nested guest is also pointless and dangerous as we are only
5904 * explicitly shadowing L1's page tables, i.e. unprotecting something
5905 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5906 */
5907 if (!mmio_info_in_cache(vcpu, addr: cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5908 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5909emulate:
5910 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5911 insn_len);
5912}
5913EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5914
5915static void __kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5916 u64 addr, hpa_t root_hpa)
5917{
5918 struct kvm_shadow_walk_iterator iterator;
5919
5920 vcpu_clear_mmio_info(vcpu, addr);
5921
5922 /*
5923 * Walking and synchronizing SPTEs both assume they are operating in
5924 * the context of the current MMU, and would need to be reworked if
5925 * this is ever used to sync the guest_mmu, e.g. to emulate INVEPT.
5926 */
5927 if (WARN_ON_ONCE(mmu != vcpu->arch.mmu))
5928 return;
5929
5930 if (!VALID_PAGE(root_hpa))
5931 return;
5932
5933 write_lock(&vcpu->kvm->mmu_lock);
5934 for_each_shadow_entry_using_root(vcpu, root_hpa, addr, iterator) {
5935 struct kvm_mmu_page *sp = sptep_to_sp(sptep: iterator.sptep);
5936
5937 if (sp->unsync) {
5938 int ret = kvm_sync_spte(vcpu, sp, i: iterator.index);
5939
5940 if (ret < 0)
5941 mmu_page_zap_pte(kvm: vcpu->kvm, sp, spte: iterator.sptep, NULL);
5942 if (ret)
5943 kvm_flush_remote_tlbs_sptep(kvm: vcpu->kvm, sptep: iterator.sptep);
5944 }
5945
5946 if (!sp->unsync_children)
5947 break;
5948 }
5949 write_unlock(&vcpu->kvm->mmu_lock);
5950}
5951
5952void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5953 u64 addr, unsigned long roots)
5954{
5955 int i;
5956
5957 WARN_ON_ONCE(roots & ~KVM_MMU_ROOTS_ALL);
5958
5959 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5960 if (mmu != &vcpu->arch.guest_mmu) {
5961 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5962 if (is_noncanonical_address(addr, vcpu))
5963 return;
5964
5965 static_call(kvm_x86_flush_tlb_gva)(vcpu, addr);
5966 }
5967
5968 if (!mmu->sync_spte)
5969 return;
5970
5971 if (roots & KVM_MMU_ROOT_CURRENT)
5972 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, root_hpa: mmu->root.hpa);
5973
5974 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5975 if (roots & KVM_MMU_ROOT_PREVIOUS(i))
5976 __kvm_mmu_invalidate_addr(vcpu, mmu, addr, root_hpa: mmu->prev_roots[i].hpa);
5977 }
5978}
5979EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_addr);
5980
5981void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5982{
5983 /*
5984 * INVLPG is required to invalidate any global mappings for the VA,
5985 * irrespective of PCID. Blindly sync all roots as it would take
5986 * roughly the same amount of work/time to determine whether any of the
5987 * previous roots have a global mapping.
5988 *
5989 * Mappings not reachable via the current or previous cached roots will
5990 * be synced when switching to that new cr3, so nothing needs to be
5991 * done here for them.
5992 */
5993 kvm_mmu_invalidate_addr(vcpu, vcpu->arch.walk_mmu, gva, KVM_MMU_ROOTS_ALL);
5994 ++vcpu->stat.invlpg;
5995}
5996EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5997
5998
5999void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
6000{
6001 struct kvm_mmu *mmu = vcpu->arch.mmu;
6002 unsigned long roots = 0;
6003 uint i;
6004
6005 if (pcid == kvm_get_active_pcid(vcpu))
6006 roots |= KVM_MMU_ROOT_CURRENT;
6007
6008 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
6009 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
6010 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd))
6011 roots |= KVM_MMU_ROOT_PREVIOUS(i);
6012 }
6013
6014 if (roots)
6015 kvm_mmu_invalidate_addr(vcpu, mmu, gva, roots);
6016 ++vcpu->stat.invlpg;
6017
6018 /*
6019 * Mappings not reachable via the current cr3 or the prev_roots will be
6020 * synced when switching to that cr3, so nothing needs to be done here
6021 * for them.
6022 */
6023}
6024
6025void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
6026 int tdp_max_root_level, int tdp_huge_page_level)
6027{
6028 tdp_enabled = enable_tdp;
6029 tdp_root_level = tdp_forced_root_level;
6030 max_tdp_level = tdp_max_root_level;
6031
6032#ifdef CONFIG_X86_64
6033 tdp_mmu_enabled = tdp_mmu_allowed && tdp_enabled;
6034#endif
6035 /*
6036 * max_huge_page_level reflects KVM's MMU capabilities irrespective
6037 * of kernel support, e.g. KVM may be capable of using 1GB pages when
6038 * the kernel is not. But, KVM never creates a page size greater than
6039 * what is used by the kernel for any given HVA, i.e. the kernel's
6040 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
6041 */
6042 if (tdp_enabled)
6043 max_huge_page_level = tdp_huge_page_level;
6044 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
6045 max_huge_page_level = PG_LEVEL_1G;
6046 else
6047 max_huge_page_level = PG_LEVEL_2M;
6048}
6049EXPORT_SYMBOL_GPL(kvm_configure_mmu);
6050
6051/* The return value indicates if tlb flush on all vcpus is needed. */
6052typedef bool (*slot_rmaps_handler) (struct kvm *kvm,
6053 struct kvm_rmap_head *rmap_head,
6054 const struct kvm_memory_slot *slot);
6055
6056static __always_inline bool __walk_slot_rmaps(struct kvm *kvm,
6057 const struct kvm_memory_slot *slot,
6058 slot_rmaps_handler fn,
6059 int start_level, int end_level,
6060 gfn_t start_gfn, gfn_t end_gfn,
6061 bool flush_on_yield, bool flush)
6062{
6063 struct slot_rmap_walk_iterator iterator;
6064
6065 lockdep_assert_held_write(&kvm->mmu_lock);
6066
6067 for_each_slot_rmap_range(slot, start_level, end_level, start_gfn,
6068 end_gfn, &iterator) {
6069 if (iterator.rmap)
6070 flush |= fn(kvm, iterator.rmap, slot);
6071
6072 if (need_resched() || rwlock_needbreak(lock: &kvm->mmu_lock)) {
6073 if (flush && flush_on_yield) {
6074 kvm_flush_remote_tlbs_range(kvm, gfn: start_gfn,
6075 nr_pages: iterator.gfn - start_gfn + 1);
6076 flush = false;
6077 }
6078 cond_resched_rwlock_write(&kvm->mmu_lock);
6079 }
6080 }
6081
6082 return flush;
6083}
6084
6085static __always_inline bool walk_slot_rmaps(struct kvm *kvm,
6086 const struct kvm_memory_slot *slot,
6087 slot_rmaps_handler fn,
6088 int start_level, int end_level,
6089 bool flush_on_yield)
6090{
6091 return __walk_slot_rmaps(kvm, slot, fn, start_level, end_level,
6092 start_gfn: slot->base_gfn, end_gfn: slot->base_gfn + slot->npages - 1,
6093 flush_on_yield, flush: false);
6094}
6095
6096static __always_inline bool walk_slot_rmaps_4k(struct kvm *kvm,
6097 const struct kvm_memory_slot *slot,
6098 slot_rmaps_handler fn,
6099 bool flush_on_yield)
6100{
6101 return walk_slot_rmaps(kvm, slot, fn, start_level: PG_LEVEL_4K, end_level: PG_LEVEL_4K, flush_on_yield);
6102}
6103
6104static void free_mmu_pages(struct kvm_mmu *mmu)
6105{
6106 if (!tdp_enabled && mmu->pae_root)
6107 set_memory_encrypted(addr: (unsigned long)mmu->pae_root, numpages: 1);
6108 free_page((unsigned long)mmu->pae_root);
6109 free_page((unsigned long)mmu->pml4_root);
6110 free_page((unsigned long)mmu->pml5_root);
6111}
6112
6113static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6114{
6115 struct page *page;
6116 int i;
6117
6118 mmu->root.hpa = INVALID_PAGE;
6119 mmu->root.pgd = 0;
6120 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
6121 mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6122
6123 /* vcpu->arch.guest_mmu isn't used when !tdp_enabled. */
6124 if (!tdp_enabled && mmu == &vcpu->arch.guest_mmu)
6125 return 0;
6126
6127 /*
6128 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
6129 * while the PDP table is a per-vCPU construct that's allocated at MMU
6130 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
6131 * x86_64. Therefore we need to allocate the PDP table in the first
6132 * 4GB of memory, which happens to fit the DMA32 zone. TDP paging
6133 * generally doesn't use PAE paging and can skip allocating the PDP
6134 * table. The main exception, handled here, is SVM's 32-bit NPT. The
6135 * other exception is for shadowing L1's 32-bit or PAE NPT on 64-bit
6136 * KVM; that horror is handled on-demand by mmu_alloc_special_roots().
6137 */
6138 if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
6139 return 0;
6140
6141 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
6142 if (!page)
6143 return -ENOMEM;
6144
6145 mmu->pae_root = page_address(page);
6146
6147 /*
6148 * CR3 is only 32 bits when PAE paging is used, thus it's impossible to
6149 * get the CPU to treat the PDPTEs as encrypted. Decrypt the page so
6150 * that KVM's writes and the CPU's reads get along. Note, this is
6151 * only necessary when using shadow paging, as 64-bit NPT can get at
6152 * the C-bit even when shadowing 32-bit NPT, and SME isn't supported
6153 * by 32-bit kernels (when KVM itself uses 32-bit NPT).
6154 */
6155 if (!tdp_enabled)
6156 set_memory_decrypted(addr: (unsigned long)mmu->pae_root, numpages: 1);
6157 else
6158 WARN_ON_ONCE(shadow_me_value);
6159
6160 for (i = 0; i < 4; ++i)
6161 mmu->pae_root[i] = INVALID_PAE_ROOT;
6162
6163 return 0;
6164}
6165
6166int kvm_mmu_create(struct kvm_vcpu *vcpu)
6167{
6168 int ret;
6169
6170 vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
6171 vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
6172
6173 vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
6174 vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
6175
6176 vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
6177
6178 vcpu->arch.mmu = &vcpu->arch.root_mmu;
6179 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6180
6181 ret = __kvm_mmu_create(vcpu, mmu: &vcpu->arch.guest_mmu);
6182 if (ret)
6183 return ret;
6184
6185 ret = __kvm_mmu_create(vcpu, mmu: &vcpu->arch.root_mmu);
6186 if (ret)
6187 goto fail_allocate_root;
6188
6189 return ret;
6190 fail_allocate_root:
6191 free_mmu_pages(mmu: &vcpu->arch.guest_mmu);
6192 return ret;
6193}
6194
6195#define BATCH_ZAP_PAGES 10
6196static void kvm_zap_obsolete_pages(struct kvm *kvm)
6197{
6198 struct kvm_mmu_page *sp, *node;
6199 int nr_zapped, batch = 0;
6200 bool unstable;
6201
6202restart:
6203 list_for_each_entry_safe_reverse(sp, node,
6204 &kvm->arch.active_mmu_pages, link) {
6205 /*
6206 * No obsolete valid page exists before a newly created page
6207 * since active_mmu_pages is a FIFO list.
6208 */
6209 if (!is_obsolete_sp(kvm, sp))
6210 break;
6211
6212 /*
6213 * Invalid pages should never land back on the list of active
6214 * pages. Skip the bogus page, otherwise we'll get stuck in an
6215 * infinite loop if the page gets put back on the list (again).
6216 */
6217 if (WARN_ON_ONCE(sp->role.invalid))
6218 continue;
6219
6220 /*
6221 * No need to flush the TLB since we're only zapping shadow
6222 * pages with an obsolete generation number and all vCPUS have
6223 * loaded a new root, i.e. the shadow pages being zapped cannot
6224 * be in active use by the guest.
6225 */
6226 if (batch >= BATCH_ZAP_PAGES &&
6227 cond_resched_rwlock_write(&kvm->mmu_lock)) {
6228 batch = 0;
6229 goto restart;
6230 }
6231
6232 unstable = __kvm_mmu_prepare_zap_page(kvm, sp,
6233 invalid_list: &kvm->arch.zapped_obsolete_pages, nr_zapped: &nr_zapped);
6234 batch += nr_zapped;
6235
6236 if (unstable)
6237 goto restart;
6238 }
6239
6240 /*
6241 * Kick all vCPUs (via remote TLB flush) before freeing the page tables
6242 * to ensure KVM is not in the middle of a lockless shadow page table
6243 * walk, which may reference the pages. The remote TLB flush itself is
6244 * not required and is simply a convenient way to kick vCPUs as needed.
6245 * KVM performs a local TLB flush when allocating a new root (see
6246 * kvm_mmu_load()), and the reload in the caller ensure no vCPUs are
6247 * running with an obsolete MMU.
6248 */
6249 kvm_mmu_commit_zap_page(kvm, invalid_list: &kvm->arch.zapped_obsolete_pages);
6250}
6251
6252/*
6253 * Fast invalidate all shadow pages and use lock-break technique
6254 * to zap obsolete pages.
6255 *
6256 * It's required when memslot is being deleted or VM is being
6257 * destroyed, in these cases, we should ensure that KVM MMU does
6258 * not use any resource of the being-deleted slot or all slots
6259 * after calling the function.
6260 */
6261static void kvm_mmu_zap_all_fast(struct kvm *kvm)
6262{
6263 lockdep_assert_held(&kvm->slots_lock);
6264
6265 write_lock(&kvm->mmu_lock);
6266 trace_kvm_mmu_zap_all_fast(kvm);
6267
6268 /*
6269 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
6270 * held for the entire duration of zapping obsolete pages, it's
6271 * impossible for there to be multiple invalid generations associated
6272 * with *valid* shadow pages at any given time, i.e. there is exactly
6273 * one valid generation and (at most) one invalid generation.
6274 */
6275 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
6276
6277 /*
6278 * In order to ensure all vCPUs drop their soon-to-be invalid roots,
6279 * invalidating TDP MMU roots must be done while holding mmu_lock for
6280 * write and in the same critical section as making the reload request,
6281 * e.g. before kvm_zap_obsolete_pages() could drop mmu_lock and yield.
6282 */
6283 if (tdp_mmu_enabled)
6284 kvm_tdp_mmu_invalidate_all_roots(kvm);
6285
6286 /*
6287 * Notify all vcpus to reload its shadow page table and flush TLB.
6288 * Then all vcpus will switch to new shadow page table with the new
6289 * mmu_valid_gen.
6290 *
6291 * Note: we need to do this under the protection of mmu_lock,
6292 * otherwise, vcpu would purge shadow page but miss tlb flush.
6293 */
6294 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_FREE_OBSOLETE_ROOTS);
6295
6296 kvm_zap_obsolete_pages(kvm);
6297
6298 write_unlock(&kvm->mmu_lock);
6299
6300 /*
6301 * Zap the invalidated TDP MMU roots, all SPTEs must be dropped before
6302 * returning to the caller, e.g. if the zap is in response to a memslot
6303 * deletion, mmu_notifier callbacks will be unable to reach the SPTEs
6304 * associated with the deleted memslot once the update completes, and
6305 * Deferring the zap until the final reference to the root is put would
6306 * lead to use-after-free.
6307 */
6308 if (tdp_mmu_enabled)
6309 kvm_tdp_mmu_zap_invalidated_roots(kvm);
6310}
6311
6312static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
6313{
6314 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
6315}
6316
6317void kvm_mmu_init_vm(struct kvm *kvm)
6318{
6319 INIT_LIST_HEAD(list: &kvm->arch.active_mmu_pages);
6320 INIT_LIST_HEAD(list: &kvm->arch.zapped_obsolete_pages);
6321 INIT_LIST_HEAD(list: &kvm->arch.possible_nx_huge_pages);
6322 spin_lock_init(&kvm->arch.mmu_unsync_pages_lock);
6323
6324 if (tdp_mmu_enabled)
6325 kvm_mmu_init_tdp_mmu(kvm);
6326
6327 kvm->arch.split_page_header_cache.kmem_cache = mmu_page_header_cache;
6328 kvm->arch.split_page_header_cache.gfp_zero = __GFP_ZERO;
6329
6330 kvm->arch.split_shadow_page_cache.gfp_zero = __GFP_ZERO;
6331
6332 kvm->arch.split_desc_cache.kmem_cache = pte_list_desc_cache;
6333 kvm->arch.split_desc_cache.gfp_zero = __GFP_ZERO;
6334}
6335
6336static void mmu_free_vm_memory_caches(struct kvm *kvm)
6337{
6338 kvm_mmu_free_memory_cache(mc: &kvm->arch.split_desc_cache);
6339 kvm_mmu_free_memory_cache(mc: &kvm->arch.split_page_header_cache);
6340 kvm_mmu_free_memory_cache(mc: &kvm->arch.split_shadow_page_cache);
6341}
6342
6343void kvm_mmu_uninit_vm(struct kvm *kvm)
6344{
6345 if (tdp_mmu_enabled)
6346 kvm_mmu_uninit_tdp_mmu(kvm);
6347
6348 mmu_free_vm_memory_caches(kvm);
6349}
6350
6351static bool kvm_rmap_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6352{
6353 const struct kvm_memory_slot *memslot;
6354 struct kvm_memslots *slots;
6355 struct kvm_memslot_iter iter;
6356 bool flush = false;
6357 gfn_t start, end;
6358 int i;
6359
6360 if (!kvm_memslots_have_rmaps(kvm))
6361 return flush;
6362
6363 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
6364 slots = __kvm_memslots(kvm, as_id: i);
6365
6366 kvm_for_each_memslot_in_gfn_range(&iter, slots, gfn_start, gfn_end) {
6367 memslot = iter.slot;
6368 start = max(gfn_start, memslot->base_gfn);
6369 end = min(gfn_end, memslot->base_gfn + memslot->npages);
6370 if (WARN_ON_ONCE(start >= end))
6371 continue;
6372
6373 flush = __walk_slot_rmaps(kvm, slot: memslot, fn: __kvm_zap_rmap,
6374 start_level: PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL,
6375 start_gfn: start, end_gfn: end - 1, flush_on_yield: true, flush);
6376 }
6377 }
6378
6379 return flush;
6380}
6381
6382/*
6383 * Invalidate (zap) SPTEs that cover GFNs from gfn_start and up to gfn_end
6384 * (not including it)
6385 */
6386void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
6387{
6388 bool flush;
6389
6390 if (WARN_ON_ONCE(gfn_end <= gfn_start))
6391 return;
6392
6393 write_lock(&kvm->mmu_lock);
6394
6395 kvm_mmu_invalidate_begin(kvm);
6396
6397 kvm_mmu_invalidate_range_add(kvm, start: gfn_start, end: gfn_end);
6398
6399 flush = kvm_rmap_zap_gfn_range(kvm, gfn_start, gfn_end);
6400
6401 if (tdp_mmu_enabled)
6402 flush = kvm_tdp_mmu_zap_leafs(kvm, start: gfn_start, end: gfn_end, flush);
6403
6404 if (flush)
6405 kvm_flush_remote_tlbs_range(kvm, gfn: gfn_start, nr_pages: gfn_end - gfn_start);
6406
6407 kvm_mmu_invalidate_end(kvm);
6408
6409 write_unlock(&kvm->mmu_lock);
6410}
6411
6412static bool slot_rmap_write_protect(struct kvm *kvm,
6413 struct kvm_rmap_head *rmap_head,
6414 const struct kvm_memory_slot *slot)
6415{
6416 return rmap_write_protect(rmap_head, pt_protect: false);
6417}
6418
6419void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
6420 const struct kvm_memory_slot *memslot,
6421 int start_level)
6422{
6423 if (kvm_memslots_have_rmaps(kvm)) {
6424 write_lock(&kvm->mmu_lock);
6425 walk_slot_rmaps(kvm, slot: memslot, fn: slot_rmap_write_protect,
6426 start_level, KVM_MAX_HUGEPAGE_LEVEL, flush_on_yield: false);
6427 write_unlock(&kvm->mmu_lock);
6428 }
6429
6430 if (tdp_mmu_enabled) {
6431 read_lock(&kvm->mmu_lock);
6432 kvm_tdp_mmu_wrprot_slot(kvm, slot: memslot, min_level: start_level);
6433 read_unlock(&kvm->mmu_lock);
6434 }
6435}
6436
6437static inline bool need_topup(struct kvm_mmu_memory_cache *cache, int min)
6438{
6439 return kvm_mmu_memory_cache_nr_free_objects(mc: cache) < min;
6440}
6441
6442static bool need_topup_split_caches_or_resched(struct kvm *kvm)
6443{
6444 if (need_resched() || rwlock_needbreak(lock: &kvm->mmu_lock))
6445 return true;
6446
6447 /*
6448 * In the worst case, SPLIT_DESC_CACHE_MIN_NR_OBJECTS descriptors are needed
6449 * to split a single huge page. Calculating how many are actually needed
6450 * is possible but not worth the complexity.
6451 */
6452 return need_topup(cache: &kvm->arch.split_desc_cache, SPLIT_DESC_CACHE_MIN_NR_OBJECTS) ||
6453 need_topup(cache: &kvm->arch.split_page_header_cache, min: 1) ||
6454 need_topup(cache: &kvm->arch.split_shadow_page_cache, min: 1);
6455}
6456
6457static int topup_split_caches(struct kvm *kvm)
6458{
6459 /*
6460 * Allocating rmap list entries when splitting huge pages for nested
6461 * MMUs is uncommon as KVM needs to use a list if and only if there is
6462 * more than one rmap entry for a gfn, i.e. requires an L1 gfn to be
6463 * aliased by multiple L2 gfns and/or from multiple nested roots with
6464 * different roles. Aliasing gfns when using TDP is atypical for VMMs;
6465 * a few gfns are often aliased during boot, e.g. when remapping BIOS,
6466 * but aliasing rarely occurs post-boot or for many gfns. If there is
6467 * only one rmap entry, rmap->val points directly at that one entry and
6468 * doesn't need to allocate a list. Buffer the cache by the default
6469 * capacity so that KVM doesn't have to drop mmu_lock to topup if KVM
6470 * encounters an aliased gfn or two.
6471 */
6472 const int capacity = SPLIT_DESC_CACHE_MIN_NR_OBJECTS +
6473 KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE;
6474 int r;
6475
6476 lockdep_assert_held(&kvm->slots_lock);
6477
6478 r = __kvm_mmu_topup_memory_cache(mc: &kvm->arch.split_desc_cache, capacity,
6479 SPLIT_DESC_CACHE_MIN_NR_OBJECTS);
6480 if (r)
6481 return r;
6482
6483 r = kvm_mmu_topup_memory_cache(mc: &kvm->arch.split_page_header_cache, min: 1);
6484 if (r)
6485 return r;
6486
6487 return kvm_mmu_topup_memory_cache(mc: &kvm->arch.split_shadow_page_cache, min: 1);
6488}
6489
6490static struct kvm_mmu_page *shadow_mmu_get_sp_for_split(struct kvm *kvm, u64 *huge_sptep)
6491{
6492 struct kvm_mmu_page *huge_sp = sptep_to_sp(sptep: huge_sptep);
6493 struct shadow_page_caches caches = {};
6494 union kvm_mmu_page_role role;
6495 unsigned int access;
6496 gfn_t gfn;
6497
6498 gfn = kvm_mmu_page_get_gfn(sp: huge_sp, index: spte_index(sptep: huge_sptep));
6499 access = kvm_mmu_page_get_access(sp: huge_sp, index: spte_index(sptep: huge_sptep));
6500
6501 /*
6502 * Note, huge page splitting always uses direct shadow pages, regardless
6503 * of whether the huge page itself is mapped by a direct or indirect
6504 * shadow page, since the huge page region itself is being directly
6505 * mapped with smaller pages.
6506 */
6507 role = kvm_mmu_child_role(sptep: huge_sptep, /*direct=*/true, access);
6508
6509 /* Direct SPs do not require a shadowed_info_cache. */
6510 caches.page_header_cache = &kvm->arch.split_page_header_cache;
6511 caches.shadow_page_cache = &kvm->arch.split_shadow_page_cache;
6512
6513 /* Safe to pass NULL for vCPU since requesting a direct SP. */
6514 return __kvm_mmu_get_shadow_page(kvm, NULL, caches: &caches, gfn, role);
6515}
6516
6517static void shadow_mmu_split_huge_page(struct kvm *kvm,
6518 const struct kvm_memory_slot *slot,
6519 u64 *huge_sptep)
6520
6521{
6522 struct kvm_mmu_memory_cache *cache = &kvm->arch.split_desc_cache;
6523 u64 huge_spte = READ_ONCE(*huge_sptep);
6524 struct kvm_mmu_page *sp;
6525 bool flush = false;
6526 u64 *sptep, spte;
6527 gfn_t gfn;
6528 int index;
6529
6530 sp = shadow_mmu_get_sp_for_split(kvm, huge_sptep);
6531
6532 for (index = 0; index < SPTE_ENT_PER_PAGE; index++) {
6533 sptep = &sp->spt[index];
6534 gfn = kvm_mmu_page_get_gfn(sp, index);
6535
6536 /*
6537 * The SP may already have populated SPTEs, e.g. if this huge
6538 * page is aliased by multiple sptes with the same access
6539 * permissions. These entries are guaranteed to map the same
6540 * gfn-to-pfn translation since the SP is direct, so no need to
6541 * modify them.
6542 *
6543 * However, if a given SPTE points to a lower level page table,
6544 * that lower level page table may only be partially populated.
6545 * Installing such SPTEs would effectively unmap a potion of the
6546 * huge page. Unmapping guest memory always requires a TLB flush
6547 * since a subsequent operation on the unmapped regions would
6548 * fail to detect the need to flush.
6549 */
6550 if (is_shadow_present_pte(pte: *sptep)) {
6551 flush |= !is_last_spte(pte: *sptep, level: sp->role.level);
6552 continue;
6553 }
6554
6555 spte = make_huge_page_split_spte(kvm, huge_spte, role: sp->role, index);
6556 mmu_spte_set(sptep, new_spte: spte);
6557 __rmap_add(kvm, cache, slot, spte: sptep, gfn, access: sp->role.access);
6558 }
6559
6560 __link_shadow_page(kvm, cache, sptep: huge_sptep, sp, flush);
6561}
6562
6563static int shadow_mmu_try_split_huge_page(struct kvm *kvm,
6564 const struct kvm_memory_slot *slot,
6565 u64 *huge_sptep)
6566{
6567 struct kvm_mmu_page *huge_sp = sptep_to_sp(sptep: huge_sptep);
6568 int level, r = 0;
6569 gfn_t gfn;
6570 u64 spte;
6571
6572 /* Grab information for the tracepoint before dropping the MMU lock. */
6573 gfn = kvm_mmu_page_get_gfn(sp: huge_sp, index: spte_index(sptep: huge_sptep));
6574 level = huge_sp->role.level;
6575 spte = *huge_sptep;
6576
6577 if (kvm_mmu_available_pages(kvm) <= KVM_MIN_FREE_MMU_PAGES) {
6578 r = -ENOSPC;
6579 goto out;
6580 }
6581
6582 if (need_topup_split_caches_or_resched(kvm)) {
6583 write_unlock(&kvm->mmu_lock);
6584 cond_resched();
6585 /*
6586 * If the topup succeeds, return -EAGAIN to indicate that the
6587 * rmap iterator should be restarted because the MMU lock was
6588 * dropped.
6589 */
6590 r = topup_split_caches(kvm) ?: -EAGAIN;
6591 write_lock(&kvm->mmu_lock);
6592 goto out;
6593 }
6594
6595 shadow_mmu_split_huge_page(kvm, slot, huge_sptep);
6596
6597out:
6598 trace_kvm_mmu_split_huge_page(gfn, spte, level, errno: r);
6599 return r;
6600}
6601
6602static bool shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6603 struct kvm_rmap_head *rmap_head,
6604 const struct kvm_memory_slot *slot)
6605{
6606 struct rmap_iterator iter;
6607 struct kvm_mmu_page *sp;
6608 u64 *huge_sptep;
6609 int r;
6610
6611restart:
6612 for_each_rmap_spte(rmap_head, &iter, huge_sptep) {
6613 sp = sptep_to_sp(sptep: huge_sptep);
6614
6615 /* TDP MMU is enabled, so rmap only contains nested MMU SPs. */
6616 if (WARN_ON_ONCE(!sp->role.guest_mode))
6617 continue;
6618
6619 /* The rmaps should never contain non-leaf SPTEs. */
6620 if (WARN_ON_ONCE(!is_large_pte(*huge_sptep)))
6621 continue;
6622
6623 /* SPs with level >PG_LEVEL_4K should never by unsync. */
6624 if (WARN_ON_ONCE(sp->unsync))
6625 continue;
6626
6627 /* Don't bother splitting huge pages on invalid SPs. */
6628 if (sp->role.invalid)
6629 continue;
6630
6631 r = shadow_mmu_try_split_huge_page(kvm, slot, huge_sptep);
6632
6633 /*
6634 * The split succeeded or needs to be retried because the MMU
6635 * lock was dropped. Either way, restart the iterator to get it
6636 * back into a consistent state.
6637 */
6638 if (!r || r == -EAGAIN)
6639 goto restart;
6640
6641 /* The split failed and shouldn't be retried (e.g. -ENOMEM). */
6642 break;
6643 }
6644
6645 return false;
6646}
6647
6648static void kvm_shadow_mmu_try_split_huge_pages(struct kvm *kvm,
6649 const struct kvm_memory_slot *slot,
6650 gfn_t start, gfn_t end,
6651 int target_level)
6652{
6653 int level;
6654
6655 /*
6656 * Split huge pages starting with KVM_MAX_HUGEPAGE_LEVEL and working
6657 * down to the target level. This ensures pages are recursively split
6658 * all the way to the target level. There's no need to split pages
6659 * already at the target level.
6660 */
6661 for (level = KVM_MAX_HUGEPAGE_LEVEL; level > target_level; level--)
6662 __walk_slot_rmaps(kvm, slot, fn: shadow_mmu_try_split_huge_pages,
6663 start_level: level, end_level: level, start_gfn: start, end_gfn: end - 1, flush_on_yield: true, flush: false);
6664}
6665
6666/* Must be called with the mmu_lock held in write-mode. */
6667void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
6668 const struct kvm_memory_slot *memslot,
6669 u64 start, u64 end,
6670 int target_level)
6671{
6672 if (!tdp_mmu_enabled)
6673 return;
6674
6675 if (kvm_memslots_have_rmaps(kvm))
6676 kvm_shadow_mmu_try_split_huge_pages(kvm, slot: memslot, start, end, target_level);
6677
6678 kvm_tdp_mmu_try_split_huge_pages(kvm, slot: memslot, start, end, target_level, shared: false);
6679
6680 /*
6681 * A TLB flush is unnecessary at this point for the same reasons as in
6682 * kvm_mmu_slot_try_split_huge_pages().
6683 */
6684}
6685
6686void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
6687 const struct kvm_memory_slot *memslot,
6688 int target_level)
6689{
6690 u64 start = memslot->base_gfn;
6691 u64 end = start + memslot->npages;
6692
6693 if (!tdp_mmu_enabled)
6694 return;
6695
6696 if (kvm_memslots_have_rmaps(kvm)) {
6697 write_lock(&kvm->mmu_lock);
6698 kvm_shadow_mmu_try_split_huge_pages(kvm, slot: memslot, start, end, target_level);
6699 write_unlock(&kvm->mmu_lock);
6700 }
6701
6702 read_lock(&kvm->mmu_lock);
6703 kvm_tdp_mmu_try_split_huge_pages(kvm, slot: memslot, start, end, target_level, shared: true);
6704 read_unlock(&kvm->mmu_lock);
6705
6706 /*
6707 * No TLB flush is necessary here. KVM will flush TLBs after
6708 * write-protecting and/or clearing dirty on the newly split SPTEs to
6709 * ensure that guest writes are reflected in the dirty log before the
6710 * ioctl to enable dirty logging on this memslot completes. Since the
6711 * split SPTEs retain the write and dirty bits of the huge SPTE, it is
6712 * safe for KVM to decide if a TLB flush is necessary based on the split
6713 * SPTEs.
6714 */
6715}
6716
6717static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
6718 struct kvm_rmap_head *rmap_head,
6719 const struct kvm_memory_slot *slot)
6720{
6721 u64 *sptep;
6722 struct rmap_iterator iter;
6723 int need_tlb_flush = 0;
6724 struct kvm_mmu_page *sp;
6725
6726restart:
6727 for_each_rmap_spte(rmap_head, &iter, sptep) {
6728 sp = sptep_to_sp(sptep);
6729
6730 /*
6731 * We cannot do huge page mapping for indirect shadow pages,
6732 * which are found on the last rmap (level = 1) when not using
6733 * tdp; such shadow pages are synced with the page table in
6734 * the guest, and the guest page table is using 4K page size
6735 * mapping if the indirect sp has level = 1.
6736 */
6737 if (sp->role.direct &&
6738 sp->role.level < kvm_mmu_max_mapping_level(kvm, slot, gfn: sp->gfn,
6739 max_level: PG_LEVEL_NUM)) {
6740 kvm_zap_one_rmap_spte(kvm, rmap_head, sptep);
6741
6742 if (kvm_available_flush_remote_tlbs_range())
6743 kvm_flush_remote_tlbs_sptep(kvm, sptep);
6744 else
6745 need_tlb_flush = 1;
6746
6747 goto restart;
6748 }
6749 }
6750
6751 return need_tlb_flush;
6752}
6753
6754static void kvm_rmap_zap_collapsible_sptes(struct kvm *kvm,
6755 const struct kvm_memory_slot *slot)
6756{
6757 /*
6758 * Note, use KVM_MAX_HUGEPAGE_LEVEL - 1 since there's no need to zap
6759 * pages that are already mapped at the maximum hugepage level.
6760 */
6761 if (walk_slot_rmaps(kvm, slot, fn: kvm_mmu_zap_collapsible_spte,
6762 start_level: PG_LEVEL_4K, KVM_MAX_HUGEPAGE_LEVEL - 1, flush_on_yield: true))
6763 kvm_flush_remote_tlbs_memslot(kvm, memslot: slot);
6764}
6765
6766void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
6767 const struct kvm_memory_slot *slot)
6768{
6769 if (kvm_memslots_have_rmaps(kvm)) {
6770 write_lock(&kvm->mmu_lock);
6771 kvm_rmap_zap_collapsible_sptes(kvm, slot);
6772 write_unlock(&kvm->mmu_lock);
6773 }
6774
6775 if (tdp_mmu_enabled) {
6776 read_lock(&kvm->mmu_lock);
6777 kvm_tdp_mmu_zap_collapsible_sptes(kvm, slot);
6778 read_unlock(&kvm->mmu_lock);
6779 }
6780}
6781
6782void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
6783 const struct kvm_memory_slot *memslot)
6784{
6785 if (kvm_memslots_have_rmaps(kvm)) {
6786 write_lock(&kvm->mmu_lock);
6787 /*
6788 * Clear dirty bits only on 4k SPTEs since the legacy MMU only
6789 * support dirty logging at a 4k granularity.
6790 */
6791 walk_slot_rmaps_4k(kvm, slot: memslot, fn: __rmap_clear_dirty, flush_on_yield: false);
6792 write_unlock(&kvm->mmu_lock);
6793 }
6794
6795 if (tdp_mmu_enabled) {
6796 read_lock(&kvm->mmu_lock);
6797 kvm_tdp_mmu_clear_dirty_slot(kvm, slot: memslot);
6798 read_unlock(&kvm->mmu_lock);
6799 }
6800
6801 /*
6802 * The caller will flush the TLBs after this function returns.
6803 *
6804 * It's also safe to flush TLBs out of mmu lock here as currently this
6805 * function is only used for dirty logging, in which case flushing TLB
6806 * out of mmu lock also guarantees no dirty pages will be lost in
6807 * dirty_bitmap.
6808 */
6809}
6810
6811static void kvm_mmu_zap_all(struct kvm *kvm)
6812{
6813 struct kvm_mmu_page *sp, *node;
6814 LIST_HEAD(invalid_list);
6815 int ign;
6816
6817 write_lock(&kvm->mmu_lock);
6818restart:
6819 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
6820 if (WARN_ON_ONCE(sp->role.invalid))
6821 continue;
6822 if (__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list: &invalid_list, nr_zapped: &ign))
6823 goto restart;
6824 if (cond_resched_rwlock_write(&kvm->mmu_lock))
6825 goto restart;
6826 }
6827
6828 kvm_mmu_commit_zap_page(kvm, invalid_list: &invalid_list);
6829
6830 if (tdp_mmu_enabled)
6831 kvm_tdp_mmu_zap_all(kvm);
6832
6833 write_unlock(&kvm->mmu_lock);
6834}
6835
6836void kvm_arch_flush_shadow_all(struct kvm *kvm)
6837{
6838 kvm_mmu_zap_all(kvm);
6839}
6840
6841void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
6842 struct kvm_memory_slot *slot)
6843{
6844 kvm_mmu_zap_all_fast(kvm);
6845}
6846
6847void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
6848{
6849 WARN_ON_ONCE(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
6850
6851 gen &= MMIO_SPTE_GEN_MASK;
6852
6853 /*
6854 * Generation numbers are incremented in multiples of the number of
6855 * address spaces in order to provide unique generations across all
6856 * address spaces. Strip what is effectively the address space
6857 * modifier prior to checking for a wrap of the MMIO generation so
6858 * that a wrap in any address space is detected.
6859 */
6860 gen &= ~((u64)kvm_arch_nr_memslot_as_ids(kvm) - 1);
6861
6862 /*
6863 * The very rare case: if the MMIO generation number has wrapped,
6864 * zap all shadow pages.
6865 */
6866 if (unlikely(gen == 0)) {
6867 kvm_debug_ratelimited("zapping shadow pages for mmio generation wraparound\n");
6868 kvm_mmu_zap_all_fast(kvm);
6869 }
6870}
6871
6872static unsigned long mmu_shrink_scan(struct shrinker *shrink,
6873 struct shrink_control *sc)
6874{
6875 struct kvm *kvm;
6876 int nr_to_scan = sc->nr_to_scan;
6877 unsigned long freed = 0;
6878
6879 mutex_lock(&kvm_lock);
6880
6881 list_for_each_entry(kvm, &vm_list, vm_list) {
6882 int idx;
6883 LIST_HEAD(invalid_list);
6884
6885 /*
6886 * Never scan more than sc->nr_to_scan VM instances.
6887 * Will not hit this condition practically since we do not try
6888 * to shrink more than one VM and it is very unlikely to see
6889 * !n_used_mmu_pages so many times.
6890 */
6891 if (!nr_to_scan--)
6892 break;
6893 /*
6894 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6895 * here. We may skip a VM instance errorneosly, but we do not
6896 * want to shrink a VM that only started to populate its MMU
6897 * anyway.
6898 */
6899 if (!kvm->arch.n_used_mmu_pages &&
6900 !kvm_has_zapped_obsolete_pages(kvm))
6901 continue;
6902
6903 idx = srcu_read_lock(ssp: &kvm->srcu);
6904 write_lock(&kvm->mmu_lock);
6905
6906 if (kvm_has_zapped_obsolete_pages(kvm)) {
6907 kvm_mmu_commit_zap_page(kvm,
6908 invalid_list: &kvm->arch.zapped_obsolete_pages);
6909 goto unlock;
6910 }
6911
6912 freed = kvm_mmu_zap_oldest_mmu_pages(kvm, nr_to_zap: sc->nr_to_scan);
6913
6914unlock:
6915 write_unlock(&kvm->mmu_lock);
6916 srcu_read_unlock(ssp: &kvm->srcu, idx);
6917
6918 /*
6919 * unfair on small ones
6920 * per-vm shrinkers cry out
6921 * sadness comes quickly
6922 */
6923 list_move_tail(list: &kvm->vm_list, head: &vm_list);
6924 break;
6925 }
6926
6927 mutex_unlock(lock: &kvm_lock);
6928 return freed;
6929}
6930
6931static unsigned long mmu_shrink_count(struct shrinker *shrink,
6932 struct shrink_control *sc)
6933{
6934 return percpu_counter_read_positive(fbc: &kvm_total_used_mmu_pages);
6935}
6936
6937static struct shrinker *mmu_shrinker;
6938
6939static void mmu_destroy_caches(void)
6940{
6941 kmem_cache_destroy(s: pte_list_desc_cache);
6942 kmem_cache_destroy(s: mmu_page_header_cache);
6943}
6944
6945static int get_nx_huge_pages(char *buffer, const struct kernel_param *kp)
6946{
6947 if (nx_hugepage_mitigation_hard_disabled)
6948 return sysfs_emit(buf: buffer, fmt: "never\n");
6949
6950 return param_get_bool(buffer, kp);
6951}
6952
6953static bool get_nx_auto_mode(void)
6954{
6955 /* Return true when CPU has the bug, and mitigations are ON */
6956 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6957}
6958
6959static void __set_nx_huge_pages(bool val)
6960{
6961 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6962}
6963
6964static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6965{
6966 bool old_val = nx_huge_pages;
6967 bool new_val;
6968
6969 if (nx_hugepage_mitigation_hard_disabled)
6970 return -EPERM;
6971
6972 /* In "auto" mode deploy workaround only if CPU has the bug. */
6973 if (sysfs_streq(s1: val, s2: "off")) {
6974 new_val = 0;
6975 } else if (sysfs_streq(s1: val, s2: "force")) {
6976 new_val = 1;
6977 } else if (sysfs_streq(s1: val, s2: "auto")) {
6978 new_val = get_nx_auto_mode();
6979 } else if (sysfs_streq(s1: val, s2: "never")) {
6980 new_val = 0;
6981
6982 mutex_lock(&kvm_lock);
6983 if (!list_empty(head: &vm_list)) {
6984 mutex_unlock(lock: &kvm_lock);
6985 return -EBUSY;
6986 }
6987 nx_hugepage_mitigation_hard_disabled = true;
6988 mutex_unlock(lock: &kvm_lock);
6989 } else if (kstrtobool(s: val, res: &new_val) < 0) {
6990 return -EINVAL;
6991 }
6992
6993 __set_nx_huge_pages(val: new_val);
6994
6995 if (new_val != old_val) {
6996 struct kvm *kvm;
6997
6998 mutex_lock(&kvm_lock);
6999
7000 list_for_each_entry(kvm, &vm_list, vm_list) {
7001 mutex_lock(&kvm->slots_lock);
7002 kvm_mmu_zap_all_fast(kvm);
7003 mutex_unlock(lock: &kvm->slots_lock);
7004
7005 wake_up_process(tsk: kvm->arch.nx_huge_page_recovery_thread);
7006 }
7007 mutex_unlock(lock: &kvm_lock);
7008 }
7009
7010 return 0;
7011}
7012
7013/*
7014 * nx_huge_pages needs to be resolved to true/false when kvm.ko is loaded, as
7015 * its default value of -1 is technically undefined behavior for a boolean.
7016 * Forward the module init call to SPTE code so that it too can handle module
7017 * params that need to be resolved/snapshot.
7018 */
7019void __init kvm_mmu_x86_module_init(void)
7020{
7021 if (nx_huge_pages == -1)
7022 __set_nx_huge_pages(val: get_nx_auto_mode());
7023
7024 /*
7025 * Snapshot userspace's desire to enable the TDP MMU. Whether or not the
7026 * TDP MMU is actually enabled is determined in kvm_configure_mmu()
7027 * when the vendor module is loaded.
7028 */
7029 tdp_mmu_allowed = tdp_mmu_enabled;
7030
7031 kvm_mmu_spte_module_init();
7032}
7033
7034/*
7035 * The bulk of the MMU initialization is deferred until the vendor module is
7036 * loaded as many of the masks/values may be modified by VMX or SVM, i.e. need
7037 * to be reset when a potentially different vendor module is loaded.
7038 */
7039int kvm_mmu_vendor_module_init(void)
7040{
7041 int ret = -ENOMEM;
7042
7043 /*
7044 * MMU roles use union aliasing which is, generally speaking, an
7045 * undefined behavior. However, we supposedly know how compilers behave
7046 * and the current status quo is unlikely to change. Guardians below are
7047 * supposed to let us know if the assumption becomes false.
7048 */
7049 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
7050 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
7051 BUILD_BUG_ON(sizeof(union kvm_cpu_role) != sizeof(u64));
7052
7053 kvm_mmu_reset_all_pte_masks();
7054
7055 pte_list_desc_cache = KMEM_CACHE(pte_list_desc, SLAB_ACCOUNT);
7056 if (!pte_list_desc_cache)
7057 goto out;
7058
7059 mmu_page_header_cache = kmem_cache_create(name: "kvm_mmu_page_header",
7060 size: sizeof(struct kvm_mmu_page),
7061 align: 0, SLAB_ACCOUNT, NULL);
7062 if (!mmu_page_header_cache)
7063 goto out;
7064
7065 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
7066 goto out;
7067
7068 mmu_shrinker = shrinker_alloc(flags: 0, fmt: "x86-mmu");
7069 if (!mmu_shrinker)
7070 goto out_shrinker;
7071
7072 mmu_shrinker->count_objects = mmu_shrink_count;
7073 mmu_shrinker->scan_objects = mmu_shrink_scan;
7074 mmu_shrinker->seeks = DEFAULT_SEEKS * 10;
7075
7076 shrinker_register(shrinker: mmu_shrinker);
7077
7078 return 0;
7079
7080out_shrinker:
7081 percpu_counter_destroy(fbc: &kvm_total_used_mmu_pages);
7082out:
7083 mmu_destroy_caches();
7084 return ret;
7085}
7086
7087void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
7088{
7089 kvm_mmu_unload(vcpu);
7090 free_mmu_pages(mmu: &vcpu->arch.root_mmu);
7091 free_mmu_pages(mmu: &vcpu->arch.guest_mmu);
7092 mmu_free_memory_caches(vcpu);
7093}
7094
7095void kvm_mmu_vendor_module_exit(void)
7096{
7097 mmu_destroy_caches();
7098 percpu_counter_destroy(fbc: &kvm_total_used_mmu_pages);
7099 shrinker_free(shrinker: mmu_shrinker);
7100}
7101
7102/*
7103 * Calculate the effective recovery period, accounting for '0' meaning "let KVM
7104 * select a halving time of 1 hour". Returns true if recovery is enabled.
7105 */
7106static bool calc_nx_huge_pages_recovery_period(uint *period)
7107{
7108 /*
7109 * Use READ_ONCE to get the params, this may be called outside of the
7110 * param setters, e.g. by the kthread to compute its next timeout.
7111 */
7112 bool enabled = READ_ONCE(nx_huge_pages);
7113 uint ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7114
7115 if (!enabled || !ratio)
7116 return false;
7117
7118 *period = READ_ONCE(nx_huge_pages_recovery_period_ms);
7119 if (!*period) {
7120 /* Make sure the period is not less than one second. */
7121 ratio = min(ratio, 3600u);
7122 *period = 60 * 60 * 1000 / ratio;
7123 }
7124 return true;
7125}
7126
7127static int set_nx_huge_pages_recovery_param(const char *val, const struct kernel_param *kp)
7128{
7129 bool was_recovery_enabled, is_recovery_enabled;
7130 uint old_period, new_period;
7131 int err;
7132
7133 if (nx_hugepage_mitigation_hard_disabled)
7134 return -EPERM;
7135
7136 was_recovery_enabled = calc_nx_huge_pages_recovery_period(period: &old_period);
7137
7138 err = param_set_uint(val, kp);
7139 if (err)
7140 return err;
7141
7142 is_recovery_enabled = calc_nx_huge_pages_recovery_period(period: &new_period);
7143
7144 if (is_recovery_enabled &&
7145 (!was_recovery_enabled || old_period > new_period)) {
7146 struct kvm *kvm;
7147
7148 mutex_lock(&kvm_lock);
7149
7150 list_for_each_entry(kvm, &vm_list, vm_list)
7151 wake_up_process(tsk: kvm->arch.nx_huge_page_recovery_thread);
7152
7153 mutex_unlock(lock: &kvm_lock);
7154 }
7155
7156 return err;
7157}
7158
7159static void kvm_recover_nx_huge_pages(struct kvm *kvm)
7160{
7161 unsigned long nx_lpage_splits = kvm->stat.nx_lpage_splits;
7162 struct kvm_memory_slot *slot;
7163 int rcu_idx;
7164 struct kvm_mmu_page *sp;
7165 unsigned int ratio;
7166 LIST_HEAD(invalid_list);
7167 bool flush = false;
7168 ulong to_zap;
7169
7170 rcu_idx = srcu_read_lock(ssp: &kvm->srcu);
7171 write_lock(&kvm->mmu_lock);
7172
7173 /*
7174 * Zapping TDP MMU shadow pages, including the remote TLB flush, must
7175 * be done under RCU protection, because the pages are freed via RCU
7176 * callback.
7177 */
7178 rcu_read_lock();
7179
7180 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
7181 to_zap = ratio ? DIV_ROUND_UP(nx_lpage_splits, ratio) : 0;
7182 for ( ; to_zap; --to_zap) {
7183 if (list_empty(head: &kvm->arch.possible_nx_huge_pages))
7184 break;
7185
7186 /*
7187 * We use a separate list instead of just using active_mmu_pages
7188 * because the number of shadow pages that be replaced with an
7189 * NX huge page is expected to be relatively small compared to
7190 * the total number of shadow pages. And because the TDP MMU
7191 * doesn't use active_mmu_pages.
7192 */
7193 sp = list_first_entry(&kvm->arch.possible_nx_huge_pages,
7194 struct kvm_mmu_page,
7195 possible_nx_huge_page_link);
7196 WARN_ON_ONCE(!sp->nx_huge_page_disallowed);
7197 WARN_ON_ONCE(!sp->role.direct);
7198
7199 /*
7200 * Unaccount and do not attempt to recover any NX Huge Pages
7201 * that are being dirty tracked, as they would just be faulted
7202 * back in as 4KiB pages. The NX Huge Pages in this slot will be
7203 * recovered, along with all the other huge pages in the slot,
7204 * when dirty logging is disabled.
7205 *
7206 * Since gfn_to_memslot() is relatively expensive, it helps to
7207 * skip it if it the test cannot possibly return true. On the
7208 * other hand, if any memslot has logging enabled, chances are
7209 * good that all of them do, in which case unaccount_nx_huge_page()
7210 * is much cheaper than zapping the page.
7211 *
7212 * If a memslot update is in progress, reading an incorrect value
7213 * of kvm->nr_memslots_dirty_logging is not a problem: if it is
7214 * becoming zero, gfn_to_memslot() will be done unnecessarily; if
7215 * it is becoming nonzero, the page will be zapped unnecessarily.
7216 * Either way, this only affects efficiency in racy situations,
7217 * and not correctness.
7218 */
7219 slot = NULL;
7220 if (atomic_read(v: &kvm->nr_memslots_dirty_logging)) {
7221 struct kvm_memslots *slots;
7222
7223 slots = kvm_memslots_for_spte_role(kvm, sp->role);
7224 slot = __gfn_to_memslot(slots, gfn: sp->gfn);
7225 WARN_ON_ONCE(!slot);
7226 }
7227
7228 if (slot && kvm_slot_dirty_track_enabled(slot))
7229 unaccount_nx_huge_page(kvm, sp);
7230 else if (is_tdp_mmu_page(sp))
7231 flush |= kvm_tdp_mmu_zap_sp(kvm, sp);
7232 else
7233 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list: &invalid_list);
7234 WARN_ON_ONCE(sp->nx_huge_page_disallowed);
7235
7236 if (need_resched() || rwlock_needbreak(lock: &kvm->mmu_lock)) {
7237 kvm_mmu_remote_flush_or_zap(kvm, invalid_list: &invalid_list, remote_flush: flush);
7238 rcu_read_unlock();
7239
7240 cond_resched_rwlock_write(&kvm->mmu_lock);
7241 flush = false;
7242
7243 rcu_read_lock();
7244 }
7245 }
7246 kvm_mmu_remote_flush_or_zap(kvm, invalid_list: &invalid_list, remote_flush: flush);
7247
7248 rcu_read_unlock();
7249
7250 write_unlock(&kvm->mmu_lock);
7251 srcu_read_unlock(ssp: &kvm->srcu, idx: rcu_idx);
7252}
7253
7254static long get_nx_huge_page_recovery_timeout(u64 start_time)
7255{
7256 bool enabled;
7257 uint period;
7258
7259 enabled = calc_nx_huge_pages_recovery_period(period: &period);
7260
7261 return enabled ? start_time + msecs_to_jiffies(m: period) - get_jiffies_64()
7262 : MAX_SCHEDULE_TIMEOUT;
7263}
7264
7265static int kvm_nx_huge_page_recovery_worker(struct kvm *kvm, uintptr_t data)
7266{
7267 u64 start_time;
7268 long remaining_time;
7269
7270 while (true) {
7271 start_time = get_jiffies_64();
7272 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7273
7274 set_current_state(TASK_INTERRUPTIBLE);
7275 while (!kthread_should_stop() && remaining_time > 0) {
7276 schedule_timeout(timeout: remaining_time);
7277 remaining_time = get_nx_huge_page_recovery_timeout(start_time);
7278 set_current_state(TASK_INTERRUPTIBLE);
7279 }
7280
7281 set_current_state(TASK_RUNNING);
7282
7283 if (kthread_should_stop())
7284 return 0;
7285
7286 kvm_recover_nx_huge_pages(kvm);
7287 }
7288}
7289
7290int kvm_mmu_post_init_vm(struct kvm *kvm)
7291{
7292 int err;
7293
7294 if (nx_hugepage_mitigation_hard_disabled)
7295 return 0;
7296
7297 err = kvm_vm_create_worker_thread(kvm, thread_fn: kvm_nx_huge_page_recovery_worker, data: 0,
7298 name: "kvm-nx-lpage-recovery",
7299 thread_ptr: &kvm->arch.nx_huge_page_recovery_thread);
7300 if (!err)
7301 kthread_unpark(k: kvm->arch.nx_huge_page_recovery_thread);
7302
7303 return err;
7304}
7305
7306void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
7307{
7308 if (kvm->arch.nx_huge_page_recovery_thread)
7309 kthread_stop(k: kvm->arch.nx_huge_page_recovery_thread);
7310}
7311
7312#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
7313bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
7314 struct kvm_gfn_range *range)
7315{
7316 /*
7317 * Zap SPTEs even if the slot can't be mapped PRIVATE. KVM x86 only
7318 * supports KVM_MEMORY_ATTRIBUTE_PRIVATE, and so it *seems* like KVM
7319 * can simply ignore such slots. But if userspace is making memory
7320 * PRIVATE, then KVM must prevent the guest from accessing the memory
7321 * as shared. And if userspace is making memory SHARED and this point
7322 * is reached, then at least one page within the range was previously
7323 * PRIVATE, i.e. the slot's possible hugepage ranges are changing.
7324 * Zapping SPTEs in this case ensures KVM will reassess whether or not
7325 * a hugepage can be used for affected ranges.
7326 */
7327 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7328 return false;
7329
7330 return kvm_unmap_gfn_range(kvm, range);
7331}
7332
7333static bool hugepage_test_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7334 int level)
7335{
7336 return lpage_info_slot(gfn, slot, level)->disallow_lpage & KVM_LPAGE_MIXED_FLAG;
7337}
7338
7339static void hugepage_clear_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7340 int level)
7341{
7342 lpage_info_slot(gfn, slot, level)->disallow_lpage &= ~KVM_LPAGE_MIXED_FLAG;
7343}
7344
7345static void hugepage_set_mixed(struct kvm_memory_slot *slot, gfn_t gfn,
7346 int level)
7347{
7348 lpage_info_slot(gfn, slot, level)->disallow_lpage |= KVM_LPAGE_MIXED_FLAG;
7349}
7350
7351static bool hugepage_has_attrs(struct kvm *kvm, struct kvm_memory_slot *slot,
7352 gfn_t gfn, int level, unsigned long attrs)
7353{
7354 const unsigned long start = gfn;
7355 const unsigned long end = start + KVM_PAGES_PER_HPAGE(level);
7356
7357 if (level == PG_LEVEL_2M)
7358 return kvm_range_has_memory_attributes(kvm, start, end, attrs);
7359
7360 for (gfn = start; gfn < end; gfn += KVM_PAGES_PER_HPAGE(level - 1)) {
7361 if (hugepage_test_mixed(slot, gfn, level: level - 1) ||
7362 attrs != kvm_get_memory_attributes(kvm, gfn))
7363 return false;
7364 }
7365 return true;
7366}
7367
7368bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
7369 struct kvm_gfn_range *range)
7370{
7371 unsigned long attrs = range->arg.attributes;
7372 struct kvm_memory_slot *slot = range->slot;
7373 int level;
7374
7375 lockdep_assert_held_write(&kvm->mmu_lock);
7376 lockdep_assert_held(&kvm->slots_lock);
7377
7378 /*
7379 * Calculate which ranges can be mapped with hugepages even if the slot
7380 * can't map memory PRIVATE. KVM mustn't create a SHARED hugepage over
7381 * a range that has PRIVATE GFNs, and conversely converting a range to
7382 * SHARED may now allow hugepages.
7383 */
7384 if (WARN_ON_ONCE(!kvm_arch_has_private_mem(kvm)))
7385 return false;
7386
7387 /*
7388 * The sequence matters here: upper levels consume the result of lower
7389 * level's scanning.
7390 */
7391 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7392 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7393 gfn_t gfn = gfn_round_for_level(gfn: range->start, level);
7394
7395 /* Process the head page if it straddles the range. */
7396 if (gfn != range->start || gfn + nr_pages > range->end) {
7397 /*
7398 * Skip mixed tracking if the aligned gfn isn't covered
7399 * by the memslot, KVM can't use a hugepage due to the
7400 * misaligned address regardless of memory attributes.
7401 */
7402 if (gfn >= slot->base_gfn &&
7403 gfn + nr_pages <= slot->base_gfn + slot->npages) {
7404 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7405 hugepage_clear_mixed(slot, gfn, level);
7406 else
7407 hugepage_set_mixed(slot, gfn, level);
7408 }
7409 gfn += nr_pages;
7410 }
7411
7412 /*
7413 * Pages entirely covered by the range are guaranteed to have
7414 * only the attributes which were just set.
7415 */
7416 for ( ; gfn + nr_pages <= range->end; gfn += nr_pages)
7417 hugepage_clear_mixed(slot, gfn, level);
7418
7419 /*
7420 * Process the last tail page if it straddles the range and is
7421 * contained by the memslot. Like the head page, KVM can't
7422 * create a hugepage if the slot size is misaligned.
7423 */
7424 if (gfn < range->end &&
7425 (gfn + nr_pages) <= (slot->base_gfn + slot->npages)) {
7426 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7427 hugepage_clear_mixed(slot, gfn, level);
7428 else
7429 hugepage_set_mixed(slot, gfn, level);
7430 }
7431 }
7432 return false;
7433}
7434
7435void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
7436 struct kvm_memory_slot *slot)
7437{
7438 int level;
7439
7440 if (!kvm_arch_has_private_mem(kvm))
7441 return;
7442
7443 for (level = PG_LEVEL_2M; level <= KVM_MAX_HUGEPAGE_LEVEL; level++) {
7444 /*
7445 * Don't bother tracking mixed attributes for pages that can't
7446 * be huge due to alignment, i.e. process only pages that are
7447 * entirely contained by the memslot.
7448 */
7449 gfn_t end = gfn_round_for_level(gfn: slot->base_gfn + slot->npages, level);
7450 gfn_t start = gfn_round_for_level(gfn: slot->base_gfn, level);
7451 gfn_t nr_pages = KVM_PAGES_PER_HPAGE(level);
7452 gfn_t gfn;
7453
7454 if (start < slot->base_gfn)
7455 start += nr_pages;
7456
7457 /*
7458 * Unlike setting attributes, every potential hugepage needs to
7459 * be manually checked as the attributes may already be mixed.
7460 */
7461 for (gfn = start; gfn < end; gfn += nr_pages) {
7462 unsigned long attrs = kvm_get_memory_attributes(kvm, gfn);
7463
7464 if (hugepage_has_attrs(kvm, slot, gfn, level, attrs))
7465 hugepage_clear_mixed(slot, gfn, level);
7466 else
7467 hugepage_set_mixed(slot, gfn, level);
7468 }
7469 }
7470}
7471#endif
7472

source code of linux/arch/x86/kvm/mmu/mmu.c