1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef __KVM_X86_VMX_H
3#define __KVM_X86_VMX_H
4
5#include <linux/kvm_host.h>
6
7#include <asm/kvm.h>
8#include <asm/intel_pt.h>
9#include <asm/perf_event.h>
10
11#include "capabilities.h"
12#include "../kvm_cache_regs.h"
13#include "posted_intr.h"
14#include "vmcs.h"
15#include "vmx_ops.h"
16#include "../cpuid.h"
17#include "run_flags.h"
18#include "../mmu.h"
19
20#define MSR_TYPE_R 1
21#define MSR_TYPE_W 2
22#define MSR_TYPE_RW 3
23
24#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
25
26#ifdef CONFIG_X86_64
27#define MAX_NR_USER_RETURN_MSRS 7
28#else
29#define MAX_NR_USER_RETURN_MSRS 4
30#endif
31
32#define MAX_NR_LOADSTORE_MSRS 8
33
34struct vmx_msrs {
35 unsigned int nr;
36 struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS];
37};
38
39struct vmx_uret_msr {
40 bool load_into_hardware;
41 u64 data;
42 u64 mask;
43};
44
45enum segment_cache_field {
46 SEG_FIELD_SEL = 0,
47 SEG_FIELD_BASE = 1,
48 SEG_FIELD_LIMIT = 2,
49 SEG_FIELD_AR = 3,
50
51 SEG_FIELD_NR = 4
52};
53
54#define RTIT_ADDR_RANGE 4
55
56struct pt_ctx {
57 u64 ctl;
58 u64 status;
59 u64 output_base;
60 u64 output_mask;
61 u64 cr3_match;
62 u64 addr_a[RTIT_ADDR_RANGE];
63 u64 addr_b[RTIT_ADDR_RANGE];
64};
65
66struct pt_desc {
67 u64 ctl_bitmask;
68 u32 num_address_ranges;
69 u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
70 struct pt_ctx host;
71 struct pt_ctx guest;
72};
73
74union vmx_exit_reason {
75 struct {
76 u32 basic : 16;
77 u32 reserved16 : 1;
78 u32 reserved17 : 1;
79 u32 reserved18 : 1;
80 u32 reserved19 : 1;
81 u32 reserved20 : 1;
82 u32 reserved21 : 1;
83 u32 reserved22 : 1;
84 u32 reserved23 : 1;
85 u32 reserved24 : 1;
86 u32 reserved25 : 1;
87 u32 bus_lock_detected : 1;
88 u32 enclave_mode : 1;
89 u32 smi_pending_mtf : 1;
90 u32 smi_from_vmx_root : 1;
91 u32 reserved30 : 1;
92 u32 failed_vmentry : 1;
93 };
94 u32 full;
95};
96
97struct lbr_desc {
98 /* Basic info about guest LBR records. */
99 struct x86_pmu_lbr records;
100
101 /*
102 * Emulate LBR feature via passthrough LBR registers when the
103 * per-vcpu guest LBR event is scheduled on the current pcpu.
104 *
105 * The records may be inaccurate if the host reclaims the LBR.
106 */
107 struct perf_event *event;
108
109 /* True if LBRs are marked as not intercepted in the MSR bitmap */
110 bool msr_passthrough;
111};
112
113extern struct x86_pmu_lbr vmx_lbr_caps;
114
115/*
116 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
117 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
118 */
119struct nested_vmx {
120 /* Has the level1 guest done vmxon? */
121 bool vmxon;
122 gpa_t vmxon_ptr;
123 bool pml_full;
124
125 /* The guest-physical address of the current VMCS L1 keeps for L2 */
126 gpa_t current_vmptr;
127 /*
128 * Cache of the guest's VMCS, existing outside of guest memory.
129 * Loaded from guest memory during VMPTRLD. Flushed to guest
130 * memory during VMCLEAR and VMPTRLD.
131 */
132 struct vmcs12 *cached_vmcs12;
133 /*
134 * Cache of the guest's shadow VMCS, existing outside of guest
135 * memory. Loaded from guest memory during VM entry. Flushed
136 * to guest memory during VM exit.
137 */
138 struct vmcs12 *cached_shadow_vmcs12;
139
140 /*
141 * GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
142 */
143 struct gfn_to_hva_cache shadow_vmcs12_cache;
144
145 /*
146 * GPA to HVA cache for VMCS12
147 */
148 struct gfn_to_hva_cache vmcs12_cache;
149
150 /*
151 * Indicates if the shadow vmcs or enlightened vmcs must be updated
152 * with the data held by struct vmcs12.
153 */
154 bool need_vmcs12_to_shadow_sync;
155 bool dirty_vmcs12;
156
157 /*
158 * Indicates whether MSR bitmap for L2 needs to be rebuilt due to
159 * changes in MSR bitmap for L1 or switching to a different L2. Note,
160 * this flag can only be used reliably in conjunction with a paravirt L1
161 * which informs L0 whether any changes to MSR bitmap for L2 were done
162 * on its side.
163 */
164 bool force_msr_bitmap_recalc;
165
166 /*
167 * Indicates lazily loaded guest state has not yet been decached from
168 * vmcs02.
169 */
170 bool need_sync_vmcs02_to_vmcs12_rare;
171
172 /*
173 * vmcs02 has been initialized, i.e. state that is constant for
174 * vmcs02 has been written to the backing VMCS. Initialization
175 * is delayed until L1 actually attempts to run a nested VM.
176 */
177 bool vmcs02_initialized;
178
179 bool change_vmcs01_virtual_apic_mode;
180 bool reload_vmcs01_apic_access_page;
181 bool update_vmcs01_cpu_dirty_logging;
182 bool update_vmcs01_apicv_status;
183
184 /*
185 * Enlightened VMCS has been enabled. It does not mean that L1 has to
186 * use it. However, VMX features available to L1 will be limited based
187 * on what the enlightened VMCS supports.
188 */
189 bool enlightened_vmcs_enabled;
190
191 /* L2 must run next, and mustn't decide to exit to L1. */
192 bool nested_run_pending;
193
194 /* Pending MTF VM-exit into L1. */
195 bool mtf_pending;
196
197 struct loaded_vmcs vmcs02;
198
199 /*
200 * Guest pages referred to in the vmcs02 with host-physical
201 * pointers, so we must keep them pinned while L2 runs.
202 */
203 struct kvm_host_map apic_access_page_map;
204 struct kvm_host_map virtual_apic_map;
205 struct kvm_host_map pi_desc_map;
206
207 struct kvm_host_map msr_bitmap_map;
208
209 struct pi_desc *pi_desc;
210 bool pi_pending;
211 u16 posted_intr_nv;
212
213 struct hrtimer preemption_timer;
214 u64 preemption_timer_deadline;
215 bool has_preemption_timer_deadline;
216 bool preemption_timer_expired;
217
218 /*
219 * Used to snapshot MSRs that are conditionally loaded on VM-Enter in
220 * order to propagate the guest's pre-VM-Enter value into vmcs02. For
221 * emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
222 * For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
223 * userspace restores MSRs before nested state. If userspace restores
224 * MSRs after nested state, the snapshot holds garbage, but KVM can't
225 * detect that, and the garbage value in vmcs02 will be overwritten by
226 * MSR restoration in any case.
227 */
228 u64 pre_vmenter_debugctl;
229 u64 pre_vmenter_bndcfgs;
230
231 /* to migrate it to L1 if L2 writes to L1's CR8 directly */
232 int l1_tpr_threshold;
233
234 u16 vpid02;
235 u16 last_vpid;
236
237 struct nested_vmx_msrs msrs;
238
239 /* SMM related state */
240 struct {
241 /* in VMX operation on SMM entry? */
242 bool vmxon;
243 /* in guest mode on SMM entry? */
244 bool guest_mode;
245 } smm;
246
247#ifdef CONFIG_KVM_HYPERV
248 gpa_t hv_evmcs_vmptr;
249 struct kvm_host_map hv_evmcs_map;
250 struct hv_enlightened_vmcs *hv_evmcs;
251#endif
252};
253
254struct vcpu_vmx {
255 struct kvm_vcpu vcpu;
256 u8 fail;
257 u8 x2apic_msr_bitmap_mode;
258
259 /*
260 * If true, host state has been stored in vmx->loaded_vmcs for
261 * the CPU registers that only need to be switched when transitioning
262 * to/from the kernel, and the registers have been loaded with guest
263 * values. If false, host state is loaded in the CPU registers
264 * and vmx->loaded_vmcs->host_state is invalid.
265 */
266 bool guest_state_loaded;
267
268 unsigned long exit_qualification;
269 u32 exit_intr_info;
270 u32 idt_vectoring_info;
271 ulong rflags;
272
273 /*
274 * User return MSRs are always emulated when enabled in the guest, but
275 * only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
276 * of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
277 * be loaded into hardware if those conditions aren't met.
278 */
279 struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
280 bool guest_uret_msrs_loaded;
281#ifdef CONFIG_X86_64
282 u64 msr_host_kernel_gs_base;
283 u64 msr_guest_kernel_gs_base;
284#endif
285
286 u64 spec_ctrl;
287 u32 msr_ia32_umwait_control;
288
289 /*
290 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
291 * non-nested (L1) guest, it always points to vmcs01. For a nested
292 * guest (L2), it points to a different VMCS.
293 */
294 struct loaded_vmcs vmcs01;
295 struct loaded_vmcs *loaded_vmcs;
296
297 struct msr_autoload {
298 struct vmx_msrs guest;
299 struct vmx_msrs host;
300 } msr_autoload;
301
302 struct msr_autostore {
303 struct vmx_msrs guest;
304 } msr_autostore;
305
306 struct {
307 int vm86_active;
308 ulong save_rflags;
309 struct kvm_segment segs[8];
310 } rmode;
311 struct {
312 u32 bitmask; /* 4 bits per segment (1 bit per field) */
313 struct kvm_save_segment {
314 u16 selector;
315 unsigned long base;
316 u32 limit;
317 u32 ar;
318 } seg[8];
319 } segment_cache;
320 int vpid;
321 bool emulation_required;
322
323 union vmx_exit_reason exit_reason;
324
325 /* Posted interrupt descriptor */
326 struct pi_desc pi_desc;
327
328 /* Used if this vCPU is waiting for PI notification wakeup. */
329 struct list_head pi_wakeup_list;
330
331 /* Support for a guest hypervisor (nested VMX) */
332 struct nested_vmx nested;
333
334 /* Dynamic PLE window. */
335 unsigned int ple_window;
336 bool ple_window_dirty;
337
338 /* Support for PML */
339#define PML_ENTITY_NUM 512
340 struct page *pml_pg;
341
342 /* apic deadline value in host tsc */
343 u64 hv_deadline_tsc;
344
345 unsigned long host_debugctlmsr;
346
347 /*
348 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
349 * msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
350 * in msr_ia32_feature_control_valid_bits.
351 */
352 u64 msr_ia32_feature_control;
353 u64 msr_ia32_feature_control_valid_bits;
354 /* SGX Launch Control public key hash */
355 u64 msr_ia32_sgxlepubkeyhash[4];
356 u64 msr_ia32_mcu_opt_ctrl;
357 bool disable_fb_clear;
358
359 struct pt_desc pt_desc;
360 struct lbr_desc lbr_desc;
361
362 /* Save desired MSR intercept (read: pass-through) state */
363#define MAX_POSSIBLE_PASSTHROUGH_MSRS 16
364 struct {
365 DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
366 DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
367 } shadow_msr_intercept;
368};
369
370struct kvm_vmx {
371 struct kvm kvm;
372
373 unsigned int tss_addr;
374 bool ept_identity_pagetable_done;
375 gpa_t ept_identity_map_addr;
376 /* Posted Interrupt Descriptor (PID) table for IPI virtualization */
377 u64 *pid_table;
378};
379
380void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
381 struct loaded_vmcs *buddy);
382int allocate_vpid(void);
383void free_vpid(int vpid);
384void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
385void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
386void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
387 unsigned long fs_base, unsigned long gs_base);
388int vmx_get_cpl(struct kvm_vcpu *vcpu);
389bool vmx_emulation_required(struct kvm_vcpu *vcpu);
390unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
391void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
392u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
393void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
394int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
395void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
396void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
397void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
398void ept_save_pdptrs(struct kvm_vcpu *vcpu);
399void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
400void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
401u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
402
403bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
404void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
405bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
406bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
407bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
408void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
409void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
410struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
411void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
412void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
413void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
414unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
415bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
416 unsigned int flags);
417int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
418void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
419
420void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
421void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
422
423u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
424u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
425
426gva_t vmx_get_untagged_addr(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
427
428static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
429 int type, bool value)
430{
431 if (value)
432 vmx_enable_intercept_for_msr(vcpu, msr, type);
433 else
434 vmx_disable_intercept_for_msr(vcpu, msr, type);
435}
436
437void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
438
439/*
440 * Note, early Intel manuals have the write-low and read-high bitmap offsets
441 * the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and
442 * 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and
443 * 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and
444 * 0xc00-0xfff for writes. MSRs not covered by either of the ranges always
445 * VM-Exit.
446 */
447#define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \
448static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \
449 u32 msr) \
450{ \
451 int f = sizeof(unsigned long); \
452 \
453 if (msr <= 0x1fff) \
454 return bitop##_bit(msr, bitmap + base / f); \
455 else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \
456 return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
457 return (rtype)true; \
458}
459#define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
460 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \
461 __BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
462
463BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
464BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
465BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
466
467static inline u8 vmx_get_rvi(void)
468{
469 return vmcs_read16(field: GUEST_INTR_STATUS) & 0xff;
470}
471
472#define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
473 (VM_ENTRY_LOAD_DEBUG_CONTROLS)
474#ifdef CONFIG_X86_64
475 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
476 (__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \
477 VM_ENTRY_IA32E_MODE)
478#else
479 #define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
480 __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
481#endif
482#define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \
483 (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \
484 VM_ENTRY_LOAD_IA32_PAT | \
485 VM_ENTRY_LOAD_IA32_EFER | \
486 VM_ENTRY_LOAD_BNDCFGS | \
487 VM_ENTRY_PT_CONCEAL_PIP | \
488 VM_ENTRY_LOAD_IA32_RTIT_CTL)
489
490#define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
491 (VM_EXIT_SAVE_DEBUG_CONTROLS | \
492 VM_EXIT_ACK_INTR_ON_EXIT)
493#ifdef CONFIG_X86_64
494 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
495 (__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \
496 VM_EXIT_HOST_ADDR_SPACE_SIZE)
497#else
498 #define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
499 __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
500#endif
501#define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \
502 (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \
503 VM_EXIT_SAVE_IA32_PAT | \
504 VM_EXIT_LOAD_IA32_PAT | \
505 VM_EXIT_SAVE_IA32_EFER | \
506 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \
507 VM_EXIT_LOAD_IA32_EFER | \
508 VM_EXIT_CLEAR_BNDCFGS | \
509 VM_EXIT_PT_CONCEAL_PIP | \
510 VM_EXIT_CLEAR_IA32_RTIT_CTL)
511
512#define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \
513 (PIN_BASED_EXT_INTR_MASK | \
514 PIN_BASED_NMI_EXITING)
515#define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \
516 (PIN_BASED_VIRTUAL_NMIS | \
517 PIN_BASED_POSTED_INTR | \
518 PIN_BASED_VMX_PREEMPTION_TIMER)
519
520#define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
521 (CPU_BASED_HLT_EXITING | \
522 CPU_BASED_CR3_LOAD_EXITING | \
523 CPU_BASED_CR3_STORE_EXITING | \
524 CPU_BASED_UNCOND_IO_EXITING | \
525 CPU_BASED_MOV_DR_EXITING | \
526 CPU_BASED_USE_TSC_OFFSETTING | \
527 CPU_BASED_MWAIT_EXITING | \
528 CPU_BASED_MONITOR_EXITING | \
529 CPU_BASED_INVLPG_EXITING | \
530 CPU_BASED_RDPMC_EXITING | \
531 CPU_BASED_INTR_WINDOW_EXITING)
532
533#ifdef CONFIG_X86_64
534 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
535 (__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \
536 CPU_BASED_CR8_LOAD_EXITING | \
537 CPU_BASED_CR8_STORE_EXITING)
538#else
539 #define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
540 __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
541#endif
542
543#define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \
544 (CPU_BASED_RDTSC_EXITING | \
545 CPU_BASED_TPR_SHADOW | \
546 CPU_BASED_USE_IO_BITMAPS | \
547 CPU_BASED_MONITOR_TRAP_FLAG | \
548 CPU_BASED_USE_MSR_BITMAPS | \
549 CPU_BASED_NMI_WINDOW_EXITING | \
550 CPU_BASED_PAUSE_EXITING | \
551 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \
552 CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
553
554#define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
555#define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \
556 (SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
557 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \
558 SECONDARY_EXEC_WBINVD_EXITING | \
559 SECONDARY_EXEC_ENABLE_VPID | \
560 SECONDARY_EXEC_ENABLE_EPT | \
561 SECONDARY_EXEC_UNRESTRICTED_GUEST | \
562 SECONDARY_EXEC_PAUSE_LOOP_EXITING | \
563 SECONDARY_EXEC_DESC | \
564 SECONDARY_EXEC_ENABLE_RDTSCP | \
565 SECONDARY_EXEC_ENABLE_INVPCID | \
566 SECONDARY_EXEC_APIC_REGISTER_VIRT | \
567 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
568 SECONDARY_EXEC_SHADOW_VMCS | \
569 SECONDARY_EXEC_ENABLE_XSAVES | \
570 SECONDARY_EXEC_RDSEED_EXITING | \
571 SECONDARY_EXEC_RDRAND_EXITING | \
572 SECONDARY_EXEC_ENABLE_PML | \
573 SECONDARY_EXEC_TSC_SCALING | \
574 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \
575 SECONDARY_EXEC_PT_USE_GPA | \
576 SECONDARY_EXEC_PT_CONCEAL_VMX | \
577 SECONDARY_EXEC_ENABLE_VMFUNC | \
578 SECONDARY_EXEC_BUS_LOCK_DETECTION | \
579 SECONDARY_EXEC_NOTIFY_VM_EXITING | \
580 SECONDARY_EXEC_ENCLS_EXITING)
581
582#define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
583#define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \
584 (TERTIARY_EXEC_IPI_VIRT)
585
586#define BUILD_CONTROLS_SHADOW(lname, uname, bits) \
587static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \
588{ \
589 if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
590 vmcs_write##bits(uname, val); \
591 vmx->loaded_vmcs->controls_shadow.lname = val; \
592 } \
593} \
594static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \
595{ \
596 return vmcs->controls_shadow.lname; \
597} \
598static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \
599{ \
600 return __##lname##_controls_get(vmx->loaded_vmcs); \
601} \
602static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \
603{ \
604 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
605 lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
606} \
607static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
608{ \
609 BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
610 lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
611}
612BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
613BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
614BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
615BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
616BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
617BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
618
619/*
620 * VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
621 * cache on demand. Other registers not listed here are synced to
622 * the cache immediately after VM-Exit.
623 */
624#define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \
625 (1 << VCPU_REGS_RSP) | \
626 (1 << VCPU_EXREG_RFLAGS) | \
627 (1 << VCPU_EXREG_PDPTR) | \
628 (1 << VCPU_EXREG_SEGMENTS) | \
629 (1 << VCPU_EXREG_CR0) | \
630 (1 << VCPU_EXREG_CR3) | \
631 (1 << VCPU_EXREG_CR4) | \
632 (1 << VCPU_EXREG_EXIT_INFO_1) | \
633 (1 << VCPU_EXREG_EXIT_INFO_2))
634
635static inline unsigned long vmx_l1_guest_owned_cr0_bits(void)
636{
637 unsigned long bits = KVM_POSSIBLE_CR0_GUEST_BITS;
638
639 /*
640 * CR0.WP needs to be intercepted when KVM is shadowing legacy paging
641 * in order to construct shadow PTEs with the correct protections.
642 * Note! CR0.WP technically can be passed through to the guest if
643 * paging is disabled, but checking CR0.PG would generate a cyclical
644 * dependency of sorts due to forcing the caller to ensure CR0 holds
645 * the correct value prior to determining which CR0 bits can be owned
646 * by L1. Keep it simple and limit the optimization to EPT.
647 */
648 if (!enable_ept)
649 bits &= ~X86_CR0_WP;
650 return bits;
651}
652
653static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
654{
655 return container_of(kvm, struct kvm_vmx, kvm);
656}
657
658static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
659{
660 return container_of(vcpu, struct vcpu_vmx, vcpu);
661}
662
663static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
664{
665 return &to_vmx(vcpu)->lbr_desc;
666}
667
668static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
669{
670 return &vcpu_to_lbr_desc(vcpu)->records;
671}
672
673static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
674{
675 return !!vcpu_to_lbr_records(vcpu)->nr;
676}
677
678void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
679int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
680void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
681
682static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
683{
684 struct vcpu_vmx *vmx = to_vmx(vcpu);
685
686 if (!kvm_register_test_and_mark_available(vcpu, reg: VCPU_EXREG_EXIT_INFO_1))
687 vmx->exit_qualification = vmcs_readl(field: EXIT_QUALIFICATION);
688
689 return vmx->exit_qualification;
690}
691
692static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
693{
694 struct vcpu_vmx *vmx = to_vmx(vcpu);
695
696 if (!kvm_register_test_and_mark_available(vcpu, reg: VCPU_EXREG_EXIT_INFO_2))
697 vmx->exit_intr_info = vmcs_read32(field: VM_EXIT_INTR_INFO);
698
699 return vmx->exit_intr_info;
700}
701
702struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
703void free_vmcs(struct vmcs *vmcs);
704int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
705void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
706void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
707
708static inline struct vmcs *alloc_vmcs(bool shadow)
709{
710 return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
711 GFP_KERNEL_ACCOUNT);
712}
713
714static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
715{
716 return secondary_exec_controls_get(vmx) &
717 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
718}
719
720static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
721{
722 if (!enable_ept)
723 return true;
724
725 return allow_smaller_maxphyaddr &&
726 cpuid_maxphyaddr(vcpu) < kvm_get_shadow_phys_bits();
727}
728
729static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
730{
731 return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
732 (secondary_exec_controls_get(vmx: to_vmx(vcpu)) &
733 SECONDARY_EXEC_UNRESTRICTED_GUEST));
734}
735
736bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
737static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
738{
739 return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
740}
741
742void dump_vmcs(struct kvm_vcpu *vcpu);
743
744static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
745{
746 return (vmx_instr_info >> 28) & 0xf;
747}
748
749static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
750{
751 return lapic_in_kernel(vcpu) && enable_ipiv;
752}
753
754#endif /* __KVM_X86_VMX_H */
755

source code of linux/arch/x86/kvm/vmx/vmx.h