1/*
2 * Copyright © 2008-2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <linux/dma-fence-array.h>
29#include <linux/kthread.h>
30#include <linux/dma-resv.h>
31#include <linux/shmem_fs.h>
32#include <linux/slab.h>
33#include <linux/stop_machine.h>
34#include <linux/swap.h>
35#include <linux/pci.h>
36#include <linux/dma-buf.h>
37#include <linux/mman.h>
38
39#include <drm/drm_cache.h>
40#include <drm/drm_vma_manager.h>
41
42#include "display/intel_display.h"
43
44#include "gem/i915_gem_clflush.h"
45#include "gem/i915_gem_context.h"
46#include "gem/i915_gem_ioctls.h"
47#include "gem/i915_gem_mman.h"
48#include "gem/i915_gem_object_frontbuffer.h"
49#include "gem/i915_gem_pm.h"
50#include "gem/i915_gem_region.h"
51#include "gem/i915_gem_userptr.h"
52#include "gt/intel_engine_user.h"
53#include "gt/intel_gt.h"
54#include "gt/intel_gt_pm.h"
55#include "gt/intel_workarounds.h"
56
57#include "i915_drv.h"
58#include "i915_file_private.h"
59#include "i915_trace.h"
60#include "i915_vgpu.h"
61#include "intel_clock_gating.h"
62
63static int
64insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
65{
66 int err;
67
68 err = mutex_lock_interruptible(&ggtt->vm.mutex);
69 if (err)
70 return err;
71
72 memset(node, 0, sizeof(*node));
73 err = drm_mm_insert_node_in_range(mm: &ggtt->vm.mm, node,
74 size, alignment: 0, I915_COLOR_UNEVICTABLE,
75 start: 0, end: ggtt->mappable_end,
76 mode: DRM_MM_INSERT_LOW);
77
78 mutex_unlock(lock: &ggtt->vm.mutex);
79
80 return err;
81}
82
83static void
84remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
85{
86 mutex_lock(&ggtt->vm.mutex);
87 drm_mm_remove_node(node);
88 mutex_unlock(lock: &ggtt->vm.mutex);
89}
90
91int
92i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
93 struct drm_file *file)
94{
95 struct drm_i915_private *i915 = to_i915(dev);
96 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
97 struct drm_i915_gem_get_aperture *args = data;
98 struct i915_vma *vma;
99 u64 pinned;
100
101 if (mutex_lock_interruptible(&ggtt->vm.mutex))
102 return -EINTR;
103
104 pinned = ggtt->vm.reserved;
105 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
106 if (i915_vma_is_pinned(vma))
107 pinned += vma->node.size;
108
109 mutex_unlock(lock: &ggtt->vm.mutex);
110
111 args->aper_size = ggtt->vm.total;
112 args->aper_available_size = args->aper_size - pinned;
113
114 return 0;
115}
116
117int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
118 unsigned long flags)
119{
120 struct intel_runtime_pm *rpm = &to_i915(dev: obj->base.dev)->runtime_pm;
121 bool vm_trylock = !!(flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK);
122 LIST_HEAD(still_in_list);
123 intel_wakeref_t wakeref;
124 struct i915_vma *vma;
125 int ret;
126
127 assert_object_held(obj);
128
129 if (list_empty(head: &obj->vma.list))
130 return 0;
131
132 /*
133 * As some machines use ACPI to handle runtime-resume callbacks, and
134 * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
135 * as they are required by the shrinker. Ergo, we wake the device up
136 * first just in case.
137 */
138 wakeref = intel_runtime_pm_get(rpm);
139
140try_again:
141 ret = 0;
142 spin_lock(lock: &obj->vma.lock);
143 while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
144 struct i915_vma,
145 obj_link))) {
146 list_move_tail(list: &vma->obj_link, head: &still_in_list);
147 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
148 continue;
149
150 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
151 ret = -EBUSY;
152 break;
153 }
154
155 /*
156 * Requiring the vm destructor to take the object lock
157 * before destroying a vma would help us eliminate the
158 * i915_vm_tryget() here, AND thus also the barrier stuff
159 * at the end. That's an easy fix, but sleeping locks in
160 * a kthread should generally be avoided.
161 */
162 ret = -EAGAIN;
163 if (!i915_vm_tryget(vm: vma->vm))
164 break;
165
166 spin_unlock(lock: &obj->vma.lock);
167
168 /*
169 * Since i915_vma_parked() takes the object lock
170 * before vma destruction, it won't race us here,
171 * and destroy the vma from under us.
172 */
173
174 ret = -EBUSY;
175 if (flags & I915_GEM_OBJECT_UNBIND_ASYNC) {
176 assert_object_held(vma->obj);
177 ret = i915_vma_unbind_async(vma, trylock_vm: vm_trylock);
178 }
179
180 if (ret == -EBUSY && (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
181 !i915_vma_is_active(vma))) {
182 if (vm_trylock) {
183 if (mutex_trylock(lock: &vma->vm->mutex)) {
184 ret = __i915_vma_unbind(vma);
185 mutex_unlock(lock: &vma->vm->mutex);
186 }
187 } else {
188 ret = i915_vma_unbind(vma);
189 }
190 }
191
192 i915_vm_put(vm: vma->vm);
193 spin_lock(lock: &obj->vma.lock);
194 }
195 list_splice_init(list: &still_in_list, head: &obj->vma.list);
196 spin_unlock(lock: &obj->vma.lock);
197
198 if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
199 rcu_barrier(); /* flush the i915_vm_release() */
200 goto try_again;
201 }
202
203 intel_runtime_pm_put(rpm, wref: wakeref);
204
205 return ret;
206}
207
208static int
209shmem_pread(struct page *page, int offset, int len, char __user *user_data,
210 bool needs_clflush)
211{
212 char *vaddr;
213 int ret;
214
215 vaddr = kmap(page);
216
217 if (needs_clflush)
218 drm_clflush_virt_range(addr: vaddr + offset, length: len);
219
220 ret = __copy_to_user(to: user_data, from: vaddr + offset, n: len);
221
222 kunmap(page);
223
224 return ret ? -EFAULT : 0;
225}
226
227static int
228i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
229 struct drm_i915_gem_pread *args)
230{
231 unsigned int needs_clflush;
232 char __user *user_data;
233 unsigned long offset;
234 pgoff_t idx;
235 u64 remain;
236 int ret;
237
238 ret = i915_gem_object_lock_interruptible(obj, NULL);
239 if (ret)
240 return ret;
241
242 ret = i915_gem_object_pin_pages(obj);
243 if (ret)
244 goto err_unlock;
245
246 ret = i915_gem_object_prepare_read(obj, needs_clflush: &needs_clflush);
247 if (ret)
248 goto err_unpin;
249
250 i915_gem_object_finish_access(obj);
251 i915_gem_object_unlock(obj);
252
253 remain = args->size;
254 user_data = u64_to_user_ptr(args->data_ptr);
255 offset = offset_in_page(args->offset);
256 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
257 struct page *page = i915_gem_object_get_page(obj, idx);
258 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
259
260 ret = shmem_pread(page, offset, len: length, user_data,
261 needs_clflush);
262 if (ret)
263 break;
264
265 remain -= length;
266 user_data += length;
267 offset = 0;
268 }
269
270 i915_gem_object_unpin_pages(obj);
271 return ret;
272
273err_unpin:
274 i915_gem_object_unpin_pages(obj);
275err_unlock:
276 i915_gem_object_unlock(obj);
277 return ret;
278}
279
280static inline bool
281gtt_user_read(struct io_mapping *mapping,
282 loff_t base, int offset,
283 char __user *user_data, int length)
284{
285 void __iomem *vaddr;
286 unsigned long unwritten;
287
288 /* We can use the cpu mem copy function because this is X86. */
289 vaddr = io_mapping_map_atomic_wc(mapping, offset: base);
290 unwritten = __copy_to_user_inatomic(to: user_data,
291 from: (void __force *)vaddr + offset,
292 n: length);
293 io_mapping_unmap_atomic(vaddr);
294 if (unwritten) {
295 vaddr = io_mapping_map_wc(mapping, offset: base, PAGE_SIZE);
296 unwritten = copy_to_user(to: user_data,
297 from: (void __force *)vaddr + offset,
298 n: length);
299 io_mapping_unmap(vaddr);
300 }
301 return unwritten;
302}
303
304static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
305 struct drm_mm_node *node,
306 bool write)
307{
308 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
309 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
310 struct i915_vma *vma;
311 struct i915_gem_ww_ctx ww;
312 int ret;
313
314 i915_gem_ww_ctx_init(ctx: &ww, intr: true);
315retry:
316 vma = ERR_PTR(error: -ENODEV);
317 ret = i915_gem_object_lock(obj, ww: &ww);
318 if (ret)
319 goto err_ww;
320
321 ret = i915_gem_object_set_to_gtt_domain(obj, write);
322 if (ret)
323 goto err_ww;
324
325 if (!i915_gem_object_is_tiled(obj))
326 vma = i915_gem_object_ggtt_pin_ww(obj, ww: &ww, NULL, size: 0, alignment: 0,
327 PIN_MAPPABLE |
328 PIN_NONBLOCK /* NOWARN */ |
329 PIN_NOEVICT);
330 if (vma == ERR_PTR(error: -EDEADLK)) {
331 ret = -EDEADLK;
332 goto err_ww;
333 } else if (!IS_ERR(ptr: vma)) {
334 node->start = i915_ggtt_offset(vma);
335 node->flags = 0;
336 } else {
337 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
338 if (ret)
339 goto err_ww;
340 GEM_BUG_ON(!drm_mm_node_allocated(node));
341 vma = NULL;
342 }
343
344 ret = i915_gem_object_pin_pages(obj);
345 if (ret) {
346 if (drm_mm_node_allocated(node)) {
347 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
348 remove_mappable_node(ggtt, node);
349 } else {
350 i915_vma_unpin(vma);
351 }
352 }
353
354err_ww:
355 if (ret == -EDEADLK) {
356 ret = i915_gem_ww_ctx_backoff(ctx: &ww);
357 if (!ret)
358 goto retry;
359 }
360 i915_gem_ww_ctx_fini(ctx: &ww);
361
362 return ret ? ERR_PTR(error: ret) : vma;
363}
364
365static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
366 struct drm_mm_node *node,
367 struct i915_vma *vma)
368{
369 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
370 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
371
372 i915_gem_object_unpin_pages(obj);
373 if (drm_mm_node_allocated(node)) {
374 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
375 remove_mappable_node(ggtt, node);
376 } else {
377 i915_vma_unpin(vma);
378 }
379}
380
381static int
382i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
383 const struct drm_i915_gem_pread *args)
384{
385 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
386 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
387 unsigned long remain, offset;
388 intel_wakeref_t wakeref;
389 struct drm_mm_node node;
390 void __user *user_data;
391 struct i915_vma *vma;
392 int ret = 0;
393
394 if (overflows_type(args->size, remain) ||
395 overflows_type(args->offset, offset))
396 return -EINVAL;
397
398 wakeref = intel_runtime_pm_get(rpm: &i915->runtime_pm);
399
400 vma = i915_gem_gtt_prepare(obj, node: &node, write: false);
401 if (IS_ERR(ptr: vma)) {
402 ret = PTR_ERR(ptr: vma);
403 goto out_rpm;
404 }
405
406 user_data = u64_to_user_ptr(args->data_ptr);
407 remain = args->size;
408 offset = args->offset;
409
410 while (remain > 0) {
411 /* Operation in this page
412 *
413 * page_base = page offset within aperture
414 * page_offset = offset within page
415 * page_length = bytes to copy for this page
416 */
417 u32 page_base = node.start;
418 unsigned page_offset = offset_in_page(offset);
419 unsigned page_length = PAGE_SIZE - page_offset;
420 page_length = remain < page_length ? remain : page_length;
421 if (drm_mm_node_allocated(node: &node)) {
422 ggtt->vm.insert_page(&ggtt->vm,
423 i915_gem_object_get_dma_address(obj,
424 offset >> PAGE_SHIFT),
425 node.start,
426 i915_gem_get_pat_index(i915,
427 level: I915_CACHE_NONE), 0);
428 } else {
429 page_base += offset & PAGE_MASK;
430 }
431
432 if (gtt_user_read(mapping: &ggtt->iomap, base: page_base, offset: page_offset,
433 user_data, length: page_length)) {
434 ret = -EFAULT;
435 break;
436 }
437
438 remain -= page_length;
439 user_data += page_length;
440 offset += page_length;
441 }
442
443 i915_gem_gtt_cleanup(obj, node: &node, vma);
444out_rpm:
445 intel_runtime_pm_put(rpm: &i915->runtime_pm, wref: wakeref);
446 return ret;
447}
448
449/**
450 * i915_gem_pread_ioctl - Reads data from the object referenced by handle.
451 * @dev: drm device pointer
452 * @data: ioctl data blob
453 * @file: drm file pointer
454 *
455 * On error, the contents of *data are undefined.
456 */
457int
458i915_gem_pread_ioctl(struct drm_device *dev, void *data,
459 struct drm_file *file)
460{
461 struct drm_i915_private *i915 = to_i915(dev);
462 struct drm_i915_gem_pread *args = data;
463 struct drm_i915_gem_object *obj;
464 int ret;
465
466 /* PREAD is disallowed for all platforms after TGL-LP. This also
467 * covers all platforms with local memory.
468 */
469 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
470 return -EOPNOTSUPP;
471
472 if (args->size == 0)
473 return 0;
474
475 if (!access_ok(u64_to_user_ptr(args->data_ptr),
476 args->size))
477 return -EFAULT;
478
479 obj = i915_gem_object_lookup(file, handle: args->handle);
480 if (!obj)
481 return -ENOENT;
482
483 /* Bounds check source. */
484 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
485 ret = -EINVAL;
486 goto out;
487 }
488
489 trace_i915_gem_object_pread(obj, offset: args->offset, len: args->size);
490 ret = -ENODEV;
491 if (obj->ops->pread)
492 ret = obj->ops->pread(obj, args);
493 if (ret != -ENODEV)
494 goto out;
495
496 ret = i915_gem_object_wait(obj,
497 I915_WAIT_INTERRUPTIBLE,
498 MAX_SCHEDULE_TIMEOUT);
499 if (ret)
500 goto out;
501
502 ret = i915_gem_shmem_pread(obj, args);
503 if (ret == -EFAULT || ret == -ENODEV)
504 ret = i915_gem_gtt_pread(obj, args);
505
506out:
507 i915_gem_object_put(obj);
508 return ret;
509}
510
511/* This is the fast write path which cannot handle
512 * page faults in the source data
513 */
514
515static inline bool
516ggtt_write(struct io_mapping *mapping,
517 loff_t base, int offset,
518 char __user *user_data, int length)
519{
520 void __iomem *vaddr;
521 unsigned long unwritten;
522
523 /* We can use the cpu mem copy function because this is X86. */
524 vaddr = io_mapping_map_atomic_wc(mapping, offset: base);
525 unwritten = __copy_from_user_inatomic_nocache(dst: (void __force *)vaddr + offset,
526 src: user_data, size: length);
527 io_mapping_unmap_atomic(vaddr);
528 if (unwritten) {
529 vaddr = io_mapping_map_wc(mapping, offset: base, PAGE_SIZE);
530 unwritten = copy_from_user(to: (void __force *)vaddr + offset,
531 from: user_data, n: length);
532 io_mapping_unmap(vaddr);
533 }
534
535 return unwritten;
536}
537
538/**
539 * i915_gem_gtt_pwrite_fast - This is the fast pwrite path, where we copy the data directly from the
540 * user into the GTT, uncached.
541 * @obj: i915 GEM object
542 * @args: pwrite arguments structure
543 */
544static int
545i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
546 const struct drm_i915_gem_pwrite *args)
547{
548 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
549 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
550 struct intel_runtime_pm *rpm = &i915->runtime_pm;
551 unsigned long remain, offset;
552 intel_wakeref_t wakeref;
553 struct drm_mm_node node;
554 struct i915_vma *vma;
555 void __user *user_data;
556 int ret = 0;
557
558 if (overflows_type(args->size, remain) ||
559 overflows_type(args->offset, offset))
560 return -EINVAL;
561
562 if (i915_gem_object_has_struct_page(obj)) {
563 /*
564 * Avoid waking the device up if we can fallback, as
565 * waking/resuming is very slow (worst-case 10-100 ms
566 * depending on PCI sleeps and our own resume time).
567 * This easily dwarfs any performance advantage from
568 * using the cache bypass of indirect GGTT access.
569 */
570 wakeref = intel_runtime_pm_get_if_in_use(rpm);
571 if (!wakeref)
572 return -EFAULT;
573 } else {
574 /* No backing pages, no fallback, we must force GGTT access */
575 wakeref = intel_runtime_pm_get(rpm);
576 }
577
578 vma = i915_gem_gtt_prepare(obj, node: &node, write: true);
579 if (IS_ERR(ptr: vma)) {
580 ret = PTR_ERR(ptr: vma);
581 goto out_rpm;
582 }
583
584 i915_gem_object_invalidate_frontbuffer(obj, origin: ORIGIN_CPU);
585
586 user_data = u64_to_user_ptr(args->data_ptr);
587 offset = args->offset;
588 remain = args->size;
589 while (remain) {
590 /* Operation in this page
591 *
592 * page_base = page offset within aperture
593 * page_offset = offset within page
594 * page_length = bytes to copy for this page
595 */
596 u32 page_base = node.start;
597 unsigned int page_offset = offset_in_page(offset);
598 unsigned int page_length = PAGE_SIZE - page_offset;
599 page_length = remain < page_length ? remain : page_length;
600 if (drm_mm_node_allocated(node: &node)) {
601 /* flush the write before we modify the GGTT */
602 intel_gt_flush_ggtt_writes(gt: ggtt->vm.gt);
603 ggtt->vm.insert_page(&ggtt->vm,
604 i915_gem_object_get_dma_address(obj,
605 offset >> PAGE_SHIFT),
606 node.start,
607 i915_gem_get_pat_index(i915,
608 level: I915_CACHE_NONE), 0);
609 wmb(); /* flush modifications to the GGTT (insert_page) */
610 } else {
611 page_base += offset & PAGE_MASK;
612 }
613 /* If we get a fault while copying data, then (presumably) our
614 * source page isn't available. Return the error and we'll
615 * retry in the slow path.
616 * If the object is non-shmem backed, we retry again with the
617 * path that handles page fault.
618 */
619 if (ggtt_write(mapping: &ggtt->iomap, base: page_base, offset: page_offset,
620 user_data, length: page_length)) {
621 ret = -EFAULT;
622 break;
623 }
624
625 remain -= page_length;
626 user_data += page_length;
627 offset += page_length;
628 }
629
630 intel_gt_flush_ggtt_writes(gt: ggtt->vm.gt);
631 i915_gem_object_flush_frontbuffer(obj, origin: ORIGIN_CPU);
632
633 i915_gem_gtt_cleanup(obj, node: &node, vma);
634out_rpm:
635 intel_runtime_pm_put(rpm, wref: wakeref);
636 return ret;
637}
638
639/* Per-page copy function for the shmem pwrite fastpath.
640 * Flushes invalid cachelines before writing to the target if
641 * needs_clflush_before is set and flushes out any written cachelines after
642 * writing if needs_clflush is set.
643 */
644static int
645shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
646 bool needs_clflush_before,
647 bool needs_clflush_after)
648{
649 char *vaddr;
650 int ret;
651
652 vaddr = kmap(page);
653
654 if (needs_clflush_before)
655 drm_clflush_virt_range(addr: vaddr + offset, length: len);
656
657 ret = __copy_from_user(to: vaddr + offset, from: user_data, n: len);
658 if (!ret && needs_clflush_after)
659 drm_clflush_virt_range(addr: vaddr + offset, length: len);
660
661 kunmap(page);
662
663 return ret ? -EFAULT : 0;
664}
665
666static int
667i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
668 const struct drm_i915_gem_pwrite *args)
669{
670 unsigned int partial_cacheline_write;
671 unsigned int needs_clflush;
672 void __user *user_data;
673 unsigned long offset;
674 pgoff_t idx;
675 u64 remain;
676 int ret;
677
678 ret = i915_gem_object_lock_interruptible(obj, NULL);
679 if (ret)
680 return ret;
681
682 ret = i915_gem_object_pin_pages(obj);
683 if (ret)
684 goto err_unlock;
685
686 ret = i915_gem_object_prepare_write(obj, needs_clflush: &needs_clflush);
687 if (ret)
688 goto err_unpin;
689
690 i915_gem_object_finish_access(obj);
691 i915_gem_object_unlock(obj);
692
693 /* If we don't overwrite a cacheline completely we need to be
694 * careful to have up-to-date data by first clflushing. Don't
695 * overcomplicate things and flush the entire patch.
696 */
697 partial_cacheline_write = 0;
698 if (needs_clflush & CLFLUSH_BEFORE)
699 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
700
701 user_data = u64_to_user_ptr(args->data_ptr);
702 remain = args->size;
703 offset = offset_in_page(args->offset);
704 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
705 struct page *page = i915_gem_object_get_page(obj, idx);
706 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
707
708 ret = shmem_pwrite(page, offset, len: length, user_data,
709 needs_clflush_before: (offset | length) & partial_cacheline_write,
710 needs_clflush_after: needs_clflush & CLFLUSH_AFTER);
711 if (ret)
712 break;
713
714 remain -= length;
715 user_data += length;
716 offset = 0;
717 }
718
719 i915_gem_object_flush_frontbuffer(obj, origin: ORIGIN_CPU);
720
721 i915_gem_object_unpin_pages(obj);
722 return ret;
723
724err_unpin:
725 i915_gem_object_unpin_pages(obj);
726err_unlock:
727 i915_gem_object_unlock(obj);
728 return ret;
729}
730
731/**
732 * i915_gem_pwrite_ioctl - Writes data to the object referenced by handle.
733 * @dev: drm device
734 * @data: ioctl data blob
735 * @file: drm file
736 *
737 * On error, the contents of the buffer that were to be modified are undefined.
738 */
739int
740i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
741 struct drm_file *file)
742{
743 struct drm_i915_private *i915 = to_i915(dev);
744 struct drm_i915_gem_pwrite *args = data;
745 struct drm_i915_gem_object *obj;
746 int ret;
747
748 /* PWRITE is disallowed for all platforms after TGL-LP. This also
749 * covers all platforms with local memory.
750 */
751 if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
752 return -EOPNOTSUPP;
753
754 if (args->size == 0)
755 return 0;
756
757 if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
758 return -EFAULT;
759
760 obj = i915_gem_object_lookup(file, handle: args->handle);
761 if (!obj)
762 return -ENOENT;
763
764 /* Bounds check destination. */
765 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
766 ret = -EINVAL;
767 goto err;
768 }
769
770 /* Writes not allowed into this read-only object */
771 if (i915_gem_object_is_readonly(obj)) {
772 ret = -EINVAL;
773 goto err;
774 }
775
776 trace_i915_gem_object_pwrite(obj, offset: args->offset, len: args->size);
777
778 ret = -ENODEV;
779 if (obj->ops->pwrite)
780 ret = obj->ops->pwrite(obj, args);
781 if (ret != -ENODEV)
782 goto err;
783
784 ret = i915_gem_object_wait(obj,
785 I915_WAIT_INTERRUPTIBLE |
786 I915_WAIT_ALL,
787 MAX_SCHEDULE_TIMEOUT);
788 if (ret)
789 goto err;
790
791 ret = -EFAULT;
792 /* We can only do the GTT pwrite on untiled buffers, as otherwise
793 * it would end up going through the fenced access, and we'll get
794 * different detiling behavior between reading and writing.
795 * pread/pwrite currently are reading and writing from the CPU
796 * perspective, requiring manual detiling by the client.
797 */
798 if (!i915_gem_object_has_struct_page(obj) ||
799 i915_gem_cpu_write_needs_clflush(obj))
800 /* Note that the gtt paths might fail with non-page-backed user
801 * pointers (e.g. gtt mappings when moving data between
802 * textures). Fallback to the shmem path in that case.
803 */
804 ret = i915_gem_gtt_pwrite_fast(obj, args);
805
806 if (ret == -EFAULT || ret == -ENOSPC) {
807 if (i915_gem_object_has_struct_page(obj))
808 ret = i915_gem_shmem_pwrite(obj, args);
809 }
810
811err:
812 i915_gem_object_put(obj);
813 return ret;
814}
815
816/**
817 * i915_gem_sw_finish_ioctl - Called when user space has done writes to this buffer
818 * @dev: drm device
819 * @data: ioctl data blob
820 * @file: drm file
821 */
822int
823i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
824 struct drm_file *file)
825{
826 struct drm_i915_gem_sw_finish *args = data;
827 struct drm_i915_gem_object *obj;
828
829 obj = i915_gem_object_lookup(file, handle: args->handle);
830 if (!obj)
831 return -ENOENT;
832
833 /*
834 * Proxy objects are barred from CPU access, so there is no
835 * need to ban sw_finish as it is a nop.
836 */
837
838 /* Pinned buffers may be scanout, so flush the cache */
839 i915_gem_object_flush_if_display(obj);
840 i915_gem_object_put(obj);
841
842 return 0;
843}
844
845void i915_gem_runtime_suspend(struct drm_i915_private *i915)
846{
847 struct drm_i915_gem_object *obj, *on;
848 int i;
849
850 /*
851 * Only called during RPM suspend. All users of the userfault_list
852 * must be holding an RPM wakeref to ensure that this can not
853 * run concurrently with themselves (and use the struct_mutex for
854 * protection between themselves).
855 */
856
857 list_for_each_entry_safe(obj, on,
858 &to_gt(i915)->ggtt->userfault_list, userfault_link)
859 __i915_gem_object_release_mmap_gtt(obj);
860
861 list_for_each_entry_safe(obj, on,
862 &i915->runtime_pm.lmem_userfault_list, userfault_link)
863 i915_gem_object_runtime_pm_release_mmap_offset(obj);
864
865 /*
866 * The fence will be lost when the device powers down. If any were
867 * in use by hardware (i.e. they are pinned), we should not be powering
868 * down! All other fences will be reacquired by the user upon waking.
869 */
870 for (i = 0; i < to_gt(i915)->ggtt->num_fences; i++) {
871 struct i915_fence_reg *reg = &to_gt(i915)->ggtt->fence_regs[i];
872
873 /*
874 * Ideally we want to assert that the fence register is not
875 * live at this point (i.e. that no piece of code will be
876 * trying to write through fence + GTT, as that both violates
877 * our tracking of activity and associated locking/barriers,
878 * but also is illegal given that the hw is powered down).
879 *
880 * Previously we used reg->pin_count as a "liveness" indicator.
881 * That is not sufficient, and we need a more fine-grained
882 * tool if we want to have a sanity check here.
883 */
884
885 if (!reg->vma)
886 continue;
887
888 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
889 reg->dirty = true;
890 }
891}
892
893static void discard_ggtt_vma(struct i915_vma *vma)
894{
895 struct drm_i915_gem_object *obj = vma->obj;
896
897 spin_lock(lock: &obj->vma.lock);
898 if (!RB_EMPTY_NODE(&vma->obj_node)) {
899 rb_erase(&vma->obj_node, &obj->vma.tree);
900 RB_CLEAR_NODE(&vma->obj_node);
901 }
902 spin_unlock(lock: &obj->vma.lock);
903}
904
905struct i915_vma *
906i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
907 struct i915_gem_ww_ctx *ww,
908 const struct i915_gtt_view *view,
909 u64 size, u64 alignment, u64 flags)
910{
911 struct drm_i915_private *i915 = to_i915(dev: obj->base.dev);
912 struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
913 struct i915_vma *vma;
914 int ret;
915
916 GEM_WARN_ON(!ww);
917
918 if (flags & PIN_MAPPABLE &&
919 (!view || view->type == I915_GTT_VIEW_NORMAL)) {
920 /*
921 * If the required space is larger than the available
922 * aperture, we will not able to find a slot for the
923 * object and unbinding the object now will be in
924 * vain. Worse, doing so may cause us to ping-pong
925 * the object in and out of the Global GTT and
926 * waste a lot of cycles under the mutex.
927 */
928 if (obj->base.size > ggtt->mappable_end)
929 return ERR_PTR(error: -E2BIG);
930
931 /*
932 * If NONBLOCK is set the caller is optimistically
933 * trying to cache the full object within the mappable
934 * aperture, and *must* have a fallback in place for
935 * situations where we cannot bind the object. We
936 * can be a little more lax here and use the fallback
937 * more often to avoid costly migrations of ourselves
938 * and other objects within the aperture.
939 *
940 * Half-the-aperture is used as a simple heuristic.
941 * More interesting would to do search for a free
942 * block prior to making the commitment to unbind.
943 * That caters for the self-harm case, and with a
944 * little more heuristics (e.g. NOFAULT, NOEVICT)
945 * we could try to minimise harm to others.
946 */
947 if (flags & PIN_NONBLOCK &&
948 obj->base.size > ggtt->mappable_end / 2)
949 return ERR_PTR(error: -ENOSPC);
950 }
951
952new_vma:
953 vma = i915_vma_instance(obj, vm: &ggtt->vm, view);
954 if (IS_ERR(ptr: vma))
955 return vma;
956
957 if (i915_vma_misplaced(vma, size, alignment, flags)) {
958 if (flags & PIN_NONBLOCK) {
959 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
960 return ERR_PTR(error: -ENOSPC);
961
962 /*
963 * If this misplaced vma is too big (i.e, at-least
964 * half the size of aperture) or hasn't been pinned
965 * mappable before, we ignore the misplacement when
966 * PIN_NONBLOCK is set in order to avoid the ping-pong
967 * issue described above. In other words, we try to
968 * avoid the costly operation of unbinding this vma
969 * from the GGTT and rebinding it back because there
970 * may not be enough space for this vma in the aperture.
971 */
972 if (flags & PIN_MAPPABLE &&
973 (vma->fence_size > ggtt->mappable_end / 2 ||
974 !i915_vma_is_map_and_fenceable(vma)))
975 return ERR_PTR(error: -ENOSPC);
976 }
977
978 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
979 discard_ggtt_vma(vma);
980 goto new_vma;
981 }
982
983 ret = i915_vma_unbind(vma);
984 if (ret)
985 return ERR_PTR(error: ret);
986 }
987
988 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags: flags | PIN_GLOBAL);
989
990 if (ret)
991 return ERR_PTR(error: ret);
992
993 if (vma->fence && !i915_gem_object_is_tiled(obj)) {
994 mutex_lock(&ggtt->vm.mutex);
995 i915_vma_revoke_fence(vma);
996 mutex_unlock(lock: &ggtt->vm.mutex);
997 }
998
999 ret = i915_vma_wait_for_bind(vma);
1000 if (ret) {
1001 i915_vma_unpin(vma);
1002 return ERR_PTR(error: ret);
1003 }
1004
1005 return vma;
1006}
1007
1008struct i915_vma * __must_check
1009i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
1010 const struct i915_gtt_view *view,
1011 u64 size, u64 alignment, u64 flags)
1012{
1013 struct i915_gem_ww_ctx ww;
1014 struct i915_vma *ret;
1015 int err;
1016
1017 for_i915_gem_ww(&ww, err, true) {
1018 err = i915_gem_object_lock(obj, ww: &ww);
1019 if (err)
1020 continue;
1021
1022 ret = i915_gem_object_ggtt_pin_ww(obj, ww: &ww, view, size,
1023 alignment, flags);
1024 if (IS_ERR(ptr: ret))
1025 err = PTR_ERR(ptr: ret);
1026 }
1027
1028 return err ? ERR_PTR(error: err) : ret;
1029}
1030
1031int
1032i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
1033 struct drm_file *file_priv)
1034{
1035 struct drm_i915_private *i915 = to_i915(dev);
1036 struct drm_i915_gem_madvise *args = data;
1037 struct drm_i915_gem_object *obj;
1038 int err;
1039
1040 switch (args->madv) {
1041 case I915_MADV_DONTNEED:
1042 case I915_MADV_WILLNEED:
1043 break;
1044 default:
1045 return -EINVAL;
1046 }
1047
1048 obj = i915_gem_object_lookup(file: file_priv, handle: args->handle);
1049 if (!obj)
1050 return -ENOENT;
1051
1052 err = i915_gem_object_lock_interruptible(obj, NULL);
1053 if (err)
1054 goto out;
1055
1056 if (i915_gem_object_has_pages(obj) &&
1057 i915_gem_object_is_tiled(obj) &&
1058 i915->gem_quirks & GEM_QUIRK_PIN_SWIZZLED_PAGES) {
1059 if (obj->mm.madv == I915_MADV_WILLNEED) {
1060 GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1061 i915_gem_object_clear_tiling_quirk(obj);
1062 i915_gem_object_make_shrinkable(obj);
1063 }
1064 if (args->madv == I915_MADV_WILLNEED) {
1065 GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1066 i915_gem_object_make_unshrinkable(obj);
1067 i915_gem_object_set_tiling_quirk(obj);
1068 }
1069 }
1070
1071 if (obj->mm.madv != __I915_MADV_PURGED) {
1072 obj->mm.madv = args->madv;
1073 if (obj->ops->adjust_lru)
1074 obj->ops->adjust_lru(obj);
1075 }
1076
1077 if (i915_gem_object_has_pages(obj) ||
1078 i915_gem_object_has_self_managed_shrink_list(obj)) {
1079 unsigned long flags;
1080
1081 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1082 if (!list_empty(head: &obj->mm.link)) {
1083 struct list_head *list;
1084
1085 if (obj->mm.madv != I915_MADV_WILLNEED)
1086 list = &i915->mm.purge_list;
1087 else
1088 list = &i915->mm.shrink_list;
1089 list_move_tail(list: &obj->mm.link, head: list);
1090
1091 }
1092 spin_unlock_irqrestore(lock: &i915->mm.obj_lock, flags);
1093 }
1094
1095 /* if the object is no longer attached, discard its backing storage */
1096 if (obj->mm.madv == I915_MADV_DONTNEED &&
1097 !i915_gem_object_has_pages(obj))
1098 i915_gem_object_truncate(obj);
1099
1100 args->retained = obj->mm.madv != __I915_MADV_PURGED;
1101
1102 i915_gem_object_unlock(obj);
1103out:
1104 i915_gem_object_put(obj);
1105 return err;
1106}
1107
1108/*
1109 * A single pass should suffice to release all the freed objects (along most
1110 * call paths), but be a little more paranoid in that freeing the objects does
1111 * take a little amount of time, during which the rcu callbacks could have added
1112 * new objects into the freed list, and armed the work again.
1113 */
1114void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
1115{
1116 while (atomic_read(v: &i915->mm.free_count)) {
1117 flush_work(work: &i915->mm.free_work);
1118 drain_workqueue(wq: i915->bdev.wq);
1119 rcu_barrier();
1120 }
1121}
1122
1123/*
1124 * Similar to objects above (see i915_gem_drain_freed-objects), in general we
1125 * have workers that are armed by RCU and then rearm themselves in their
1126 * callbacks. To be paranoid, we need to drain the workqueue a second time after
1127 * waiting for the RCU grace period so that we catch work queued via RCU from
1128 * the first pass. As neither drain_workqueue() nor flush_workqueue() report a
1129 * result, we make an assumption that we only don't require more than 3 passes
1130 * to catch all _recursive_ RCU delayed work.
1131 */
1132void i915_gem_drain_workqueue(struct drm_i915_private *i915)
1133{
1134 int i;
1135
1136 for (i = 0; i < 3; i++) {
1137 flush_workqueue(i915->wq);
1138 rcu_barrier();
1139 i915_gem_drain_freed_objects(i915);
1140 }
1141
1142 drain_workqueue(wq: i915->wq);
1143}
1144
1145int i915_gem_init(struct drm_i915_private *dev_priv)
1146{
1147 struct intel_gt *gt;
1148 unsigned int i;
1149 int ret;
1150
1151 /*
1152 * In the proccess of replacing cache_level with pat_index a tricky
1153 * dependency is created on the definition of the enum i915_cache_level.
1154 * in case this enum is changed, PTE encode would be broken.
1155 * Add a WARNING here. And remove when we completely quit using this
1156 * enum
1157 */
1158 BUILD_BUG_ON(I915_CACHE_NONE != 0 ||
1159 I915_CACHE_LLC != 1 ||
1160 I915_CACHE_L3_LLC != 2 ||
1161 I915_CACHE_WT != 3 ||
1162 I915_MAX_CACHE_LEVEL != 4);
1163
1164 /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1165 if (intel_vgpu_active(i915: dev_priv) && !intel_vgpu_has_huge_gtt(i915: dev_priv))
1166 RUNTIME_INFO(dev_priv)->page_sizes = I915_GTT_PAGE_SIZE_4K;
1167
1168 ret = i915_gem_init_userptr(dev_priv);
1169 if (ret)
1170 return ret;
1171
1172 for_each_gt(gt, dev_priv, i) {
1173 intel_uc_fetch_firmwares(uc: &gt->uc);
1174 intel_wopcm_init(wopcm: &gt->wopcm);
1175 if (GRAPHICS_VER(dev_priv) >= 8)
1176 setup_private_pat(gt);
1177 }
1178
1179 ret = i915_init_ggtt(i915: dev_priv);
1180 if (ret) {
1181 GEM_BUG_ON(ret == -EIO);
1182 goto err_unlock;
1183 }
1184
1185 /*
1186 * Despite its name intel_clock_gating_init applies both display
1187 * clock gating workarounds; GT mmio workarounds and the occasional
1188 * GT power context workaround. Worse, sometimes it includes a context
1189 * register workaround which we need to apply before we record the
1190 * default HW state for all contexts.
1191 *
1192 * FIXME: break up the workarounds and apply them at the right time!
1193 */
1194 intel_clock_gating_init(i915: dev_priv);
1195
1196 for_each_gt(gt, dev_priv, i) {
1197 ret = intel_gt_init(gt);
1198 if (ret)
1199 goto err_unlock;
1200 }
1201
1202 /*
1203 * Register engines early to ensure the engine list is in its final
1204 * rb-tree form, lowering the amount of code that has to deal with
1205 * the intermediate llist state.
1206 */
1207 intel_engines_driver_register(i915: dev_priv);
1208
1209 return 0;
1210
1211 /*
1212 * Unwinding is complicated by that we want to handle -EIO to mean
1213 * disable GPU submission but keep KMS alive. We want to mark the
1214 * HW as irrevisibly wedged, but keep enough state around that the
1215 * driver doesn't explode during runtime.
1216 */
1217err_unlock:
1218 i915_gem_drain_workqueue(i915: dev_priv);
1219
1220 if (ret != -EIO) {
1221 for_each_gt(gt, dev_priv, i) {
1222 intel_gt_driver_remove(gt);
1223 intel_gt_driver_release(gt);
1224 intel_uc_cleanup_firmwares(uc: &gt->uc);
1225 }
1226 }
1227
1228 if (ret == -EIO) {
1229 /*
1230 * Allow engines or uC initialisation to fail by marking the GPU
1231 * as wedged. But we only want to do this when the GPU is angry,
1232 * for all other failure, such as an allocation failure, bail.
1233 */
1234 for_each_gt(gt, dev_priv, i) {
1235 if (!intel_gt_is_wedged(gt)) {
1236 i915_probe_error(dev_priv,
1237 "Failed to initialize GPU, declaring it wedged!\n");
1238 intel_gt_set_wedged(gt);
1239 }
1240 }
1241
1242 /* Minimal basic recovery for KMS */
1243 ret = i915_ggtt_enable_hw(i915: dev_priv);
1244 i915_ggtt_resume(ggtt: to_gt(i915: dev_priv)->ggtt);
1245 intel_clock_gating_init(i915: dev_priv);
1246 }
1247
1248 i915_gem_drain_freed_objects(i915: dev_priv);
1249
1250 return ret;
1251}
1252
1253void i915_gem_driver_register(struct drm_i915_private *i915)
1254{
1255 i915_gem_driver_register__shrinker(i915);
1256}
1257
1258void i915_gem_driver_unregister(struct drm_i915_private *i915)
1259{
1260 i915_gem_driver_unregister__shrinker(i915);
1261}
1262
1263void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1264{
1265 struct intel_gt *gt;
1266 unsigned int i;
1267
1268 i915_gem_suspend_late(i915: dev_priv);
1269 for_each_gt(gt, dev_priv, i)
1270 intel_gt_driver_remove(gt);
1271 dev_priv->uabi_engines = RB_ROOT;
1272
1273 /* Flush any outstanding unpin_work. */
1274 i915_gem_drain_workqueue(i915: dev_priv);
1275}
1276
1277void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1278{
1279 struct intel_gt *gt;
1280 unsigned int i;
1281
1282 for_each_gt(gt, dev_priv, i) {
1283 intel_gt_driver_release(gt);
1284 intel_uc_cleanup_firmwares(uc: &gt->uc);
1285 }
1286
1287 /* Flush any outstanding work, including i915_gem_context.release_work. */
1288 i915_gem_drain_workqueue(i915: dev_priv);
1289
1290 drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1291}
1292
1293static void i915_gem_init__mm(struct drm_i915_private *i915)
1294{
1295 spin_lock_init(&i915->mm.obj_lock);
1296
1297 init_llist_head(list: &i915->mm.free_list);
1298
1299 INIT_LIST_HEAD(list: &i915->mm.purge_list);
1300 INIT_LIST_HEAD(list: &i915->mm.shrink_list);
1301
1302 i915_gem_init__objects(i915);
1303}
1304
1305void i915_gem_init_early(struct drm_i915_private *dev_priv)
1306{
1307 i915_gem_init__mm(i915: dev_priv);
1308 i915_gem_init__contexts(i915: dev_priv);
1309
1310 spin_lock_init(&dev_priv->display.fb_tracking.lock);
1311}
1312
1313void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1314{
1315 i915_gem_drain_workqueue(i915: dev_priv);
1316 GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1317 GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1318 drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1319}
1320
1321int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1322{
1323 struct drm_i915_file_private *file_priv;
1324 struct i915_drm_client *client;
1325 int ret = -ENOMEM;
1326
1327 drm_dbg(&i915->drm, "\n");
1328
1329 file_priv = kzalloc(size: sizeof(*file_priv), GFP_KERNEL);
1330 if (!file_priv)
1331 goto err_alloc;
1332
1333 client = i915_drm_client_alloc();
1334 if (!client)
1335 goto err_client;
1336
1337 file->driver_priv = file_priv;
1338 file_priv->i915 = i915;
1339 file_priv->file = file;
1340 file_priv->client = client;
1341
1342 file_priv->bsd_engine = -1;
1343 file_priv->hang_timestamp = jiffies;
1344
1345 ret = i915_gem_context_open(i915, file);
1346 if (ret)
1347 goto err_context;
1348
1349 return 0;
1350
1351err_context:
1352 i915_drm_client_put(client);
1353err_client:
1354 kfree(objp: file_priv);
1355err_alloc:
1356 return ret;
1357}
1358
1359#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1360#include "selftests/mock_gem_device.c"
1361#include "selftests/i915_gem.c"
1362#endif
1363

source code of linux/drivers/gpu/drm/i915/i915_gem.c