1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2020 Cornelis Networks, Inc.
4 * Copyright(c) 2015-2020 Intel Corporation.
5 */
6
7#include <linux/poll.h>
8#include <linux/cdev.h>
9#include <linux/vmalloc.h>
10#include <linux/io.h>
11#include <linux/sched/mm.h>
12#include <linux/bitmap.h>
13
14#include <rdma/ib.h>
15
16#include "hfi.h"
17#include "pio.h"
18#include "device.h"
19#include "common.h"
20#include "trace.h"
21#include "mmu_rb.h"
22#include "user_sdma.h"
23#include "user_exp_rcv.h"
24#include "aspm.h"
25
26#undef pr_fmt
27#define pr_fmt(fmt) DRIVER_NAME ": " fmt
28
29#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
30
31/*
32 * File operation functions
33 */
34static int hfi1_file_open(struct inode *inode, struct file *fp);
35static int hfi1_file_close(struct inode *inode, struct file *fp);
36static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
37static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
38static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
39
40static u64 kvirt_to_phys(void *addr);
41static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
42static void init_subctxts(struct hfi1_ctxtdata *uctxt,
43 const struct hfi1_user_info *uinfo);
44static int init_user_ctxt(struct hfi1_filedata *fd,
45 struct hfi1_ctxtdata *uctxt);
46static void user_init(struct hfi1_ctxtdata *uctxt);
47static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
48static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
49static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
50 u32 len);
51static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
52 u32 len);
53static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
54 u32 len);
55static int setup_base_ctxt(struct hfi1_filedata *fd,
56 struct hfi1_ctxtdata *uctxt);
57static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
58
59static int find_sub_ctxt(struct hfi1_filedata *fd,
60 const struct hfi1_user_info *uinfo);
61static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
62 struct hfi1_user_info *uinfo,
63 struct hfi1_ctxtdata **cd);
64static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
65static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
66static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
67static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
68 unsigned long arg);
69static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
70static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
71static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
72 unsigned long arg);
73static vm_fault_t vma_fault(struct vm_fault *vmf);
74static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
75 unsigned long arg);
76
77static const struct file_operations hfi1_file_ops = {
78 .owner = THIS_MODULE,
79 .write_iter = hfi1_write_iter,
80 .open = hfi1_file_open,
81 .release = hfi1_file_close,
82 .unlocked_ioctl = hfi1_file_ioctl,
83 .poll = hfi1_poll,
84 .mmap = hfi1_file_mmap,
85 .llseek = noop_llseek,
86};
87
88static const struct vm_operations_struct vm_ops = {
89 .fault = vma_fault,
90};
91
92/*
93 * Types of memories mapped into user processes' space
94 */
95enum mmap_types {
96 PIO_BUFS = 1,
97 PIO_BUFS_SOP,
98 PIO_CRED,
99 RCV_HDRQ,
100 RCV_EGRBUF,
101 UREGS,
102 EVENTS,
103 STATUS,
104 RTAIL,
105 SUBCTXT_UREGS,
106 SUBCTXT_RCV_HDRQ,
107 SUBCTXT_EGRBUF,
108 SDMA_COMP
109};
110
111/*
112 * Masks and offsets defining the mmap tokens
113 */
114#define HFI1_MMAP_OFFSET_MASK 0xfffULL
115#define HFI1_MMAP_OFFSET_SHIFT 0
116#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
117#define HFI1_MMAP_SUBCTXT_SHIFT 12
118#define HFI1_MMAP_CTXT_MASK 0xffULL
119#define HFI1_MMAP_CTXT_SHIFT 16
120#define HFI1_MMAP_TYPE_MASK 0xfULL
121#define HFI1_MMAP_TYPE_SHIFT 24
122#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
123#define HFI1_MMAP_MAGIC_SHIFT 32
124
125#define HFI1_MMAP_MAGIC 0xdabbad00
126
127#define HFI1_MMAP_TOKEN_SET(field, val) \
128 (((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
129#define HFI1_MMAP_TOKEN_GET(field, token) \
130 (((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
131#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
132 (HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
133 HFI1_MMAP_TOKEN_SET(TYPE, type) | \
134 HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
135 HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
136 HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
137
138#define dbg(fmt, ...) \
139 pr_info(fmt, ##__VA_ARGS__)
140
141static inline int is_valid_mmap(u64 token)
142{
143 return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
144}
145
146static int hfi1_file_open(struct inode *inode, struct file *fp)
147{
148 struct hfi1_filedata *fd;
149 struct hfi1_devdata *dd = container_of(inode->i_cdev,
150 struct hfi1_devdata,
151 user_cdev);
152
153 if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
154 return -EINVAL;
155
156 if (!refcount_inc_not_zero(r: &dd->user_refcount))
157 return -ENXIO;
158
159 /* The real work is performed later in assign_ctxt() */
160
161 fd = kzalloc(size: sizeof(*fd), GFP_KERNEL);
162
163 if (!fd || init_srcu_struct(&fd->pq_srcu))
164 goto nomem;
165 spin_lock_init(&fd->pq_rcu_lock);
166 spin_lock_init(&fd->tid_lock);
167 spin_lock_init(&fd->invalid_lock);
168 fd->rec_cpu_num = -1; /* no cpu affinity by default */
169 fd->dd = dd;
170 fp->private_data = fd;
171 return 0;
172nomem:
173 kfree(objp: fd);
174 fp->private_data = NULL;
175 if (refcount_dec_and_test(r: &dd->user_refcount))
176 complete(&dd->user_comp);
177 return -ENOMEM;
178}
179
180static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
181 unsigned long arg)
182{
183 struct hfi1_filedata *fd = fp->private_data;
184 struct hfi1_ctxtdata *uctxt = fd->uctxt;
185 int ret = 0;
186 int uval = 0;
187
188 hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
189 if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
190 cmd != HFI1_IOCTL_GET_VERS &&
191 !uctxt)
192 return -EINVAL;
193
194 switch (cmd) {
195 case HFI1_IOCTL_ASSIGN_CTXT:
196 ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
197 break;
198
199 case HFI1_IOCTL_CTXT_INFO:
200 ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
201 break;
202
203 case HFI1_IOCTL_USER_INFO:
204 ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
205 break;
206
207 case HFI1_IOCTL_CREDIT_UPD:
208 if (uctxt)
209 sc_return_credits(sc: uctxt->sc);
210 break;
211
212 case HFI1_IOCTL_TID_UPDATE:
213 ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
214 break;
215
216 case HFI1_IOCTL_TID_FREE:
217 ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
218 break;
219
220 case HFI1_IOCTL_TID_INVAL_READ:
221 ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
222 break;
223
224 case HFI1_IOCTL_RECV_CTRL:
225 ret = manage_rcvq(uctxt, subctxt: fd->subctxt, arg);
226 break;
227
228 case HFI1_IOCTL_POLL_TYPE:
229 if (get_user(uval, (int __user *)arg))
230 return -EFAULT;
231 uctxt->poll_type = (typeof(uctxt->poll_type))uval;
232 break;
233
234 case HFI1_IOCTL_ACK_EVENT:
235 ret = user_event_ack(uctxt, subctxt: fd->subctxt, arg);
236 break;
237
238 case HFI1_IOCTL_SET_PKEY:
239 ret = set_ctxt_pkey(uctxt, arg);
240 break;
241
242 case HFI1_IOCTL_CTXT_RESET:
243 ret = ctxt_reset(uctxt);
244 break;
245
246 case HFI1_IOCTL_GET_VERS:
247 uval = HFI1_USER_SWVERSION;
248 if (put_user(uval, (int __user *)arg))
249 return -EFAULT;
250 break;
251
252 default:
253 return -EINVAL;
254 }
255
256 return ret;
257}
258
259static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
260{
261 struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
262 struct hfi1_user_sdma_pkt_q *pq;
263 struct hfi1_user_sdma_comp_q *cq = fd->cq;
264 int done = 0, reqs = 0;
265 unsigned long dim = from->nr_segs;
266 int idx;
267
268 if (!HFI1_CAP_IS_KSET(SDMA))
269 return -EINVAL;
270 if (!user_backed_iter(i: from))
271 return -EINVAL;
272 idx = srcu_read_lock(ssp: &fd->pq_srcu);
273 pq = srcu_dereference(fd->pq, &fd->pq_srcu);
274 if (!cq || !pq) {
275 srcu_read_unlock(ssp: &fd->pq_srcu, idx);
276 return -EIO;
277 }
278
279 trace_hfi1_sdma_request(dd: fd->dd, ctxt: fd->uctxt->ctxt, subctxt: fd->subctxt, dim);
280
281 if (atomic_read(v: &pq->n_reqs) == pq->n_max_reqs) {
282 srcu_read_unlock(ssp: &fd->pq_srcu, idx);
283 return -ENOSPC;
284 }
285
286 while (dim) {
287 const struct iovec *iov = iter_iov(iter: from);
288 int ret;
289 unsigned long count = 0;
290
291 ret = hfi1_user_sdma_process_request(
292 fd, iovec: (struct iovec *)(iov + done),
293 dim, count: &count);
294 if (ret) {
295 reqs = ret;
296 break;
297 }
298 dim -= count;
299 done += count;
300 reqs++;
301 }
302
303 srcu_read_unlock(ssp: &fd->pq_srcu, idx);
304 return reqs;
305}
306
307static inline void mmap_cdbg(u16 ctxt, u8 subctxt, u8 type, u8 mapio, u8 vmf,
308 u64 memaddr, void *memvirt, dma_addr_t memdma,
309 ssize_t memlen, struct vm_area_struct *vma)
310{
311 hfi1_cdbg(PROC,
312 "%u:%u type:%u io/vf/dma:%d/%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx",
313 ctxt, subctxt, type, mapio, vmf, !!memdma,
314 memaddr ?: (u64)memvirt, memlen,
315 vma->vm_end - vma->vm_start, vma->vm_flags);
316}
317
318static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
319{
320 struct hfi1_filedata *fd = fp->private_data;
321 struct hfi1_ctxtdata *uctxt = fd->uctxt;
322 struct hfi1_devdata *dd;
323 unsigned long flags;
324 u64 token = vma->vm_pgoff << PAGE_SHIFT,
325 memaddr = 0;
326 void *memvirt = NULL;
327 dma_addr_t memdma = 0;
328 u8 subctxt, mapio = 0, vmf = 0, type;
329 ssize_t memlen = 0;
330 int ret = 0;
331 u16 ctxt;
332
333 if (!is_valid_mmap(token) || !uctxt ||
334 !(vma->vm_flags & VM_SHARED)) {
335 ret = -EINVAL;
336 goto done;
337 }
338 dd = uctxt->dd;
339 ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
340 subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
341 type = HFI1_MMAP_TOKEN_GET(TYPE, token);
342 if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
343 ret = -EINVAL;
344 goto done;
345 }
346
347 /*
348 * vm_pgoff is used as a buffer selector cookie. Always mmap from
349 * the beginning.
350 */
351 vma->vm_pgoff = 0;
352 flags = vma->vm_flags;
353
354 switch (type) {
355 case PIO_BUFS:
356 case PIO_BUFS_SOP:
357 memaddr = ((dd->physaddr + TXE_PIO_SEND) +
358 /* chip pio base */
359 (uctxt->sc->hw_context * BIT(16))) +
360 /* 64K PIO space / ctxt */
361 (type == PIO_BUFS_SOP ?
362 (TXE_PIO_SIZE / 2) : 0); /* sop? */
363 /*
364 * Map only the amount allocated to the context, not the
365 * entire available context's PIO space.
366 */
367 memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
368 flags &= ~VM_MAYREAD;
369 flags |= VM_DONTCOPY | VM_DONTEXPAND;
370 vma->vm_page_prot = pgprot_writecombine(prot: vma->vm_page_prot);
371 mapio = 1;
372 break;
373 case PIO_CRED: {
374 u64 cr_page_offset;
375 if (flags & VM_WRITE) {
376 ret = -EPERM;
377 goto done;
378 }
379 /*
380 * The credit return location for this context could be on the
381 * second or third page allocated for credit returns (if number
382 * of enabled contexts > 64 and 128 respectively).
383 */
384 cr_page_offset = ((u64)uctxt->sc->hw_free -
385 (u64)dd->cr_base[uctxt->numa_id].va) &
386 PAGE_MASK;
387 memvirt = dd->cr_base[uctxt->numa_id].va + cr_page_offset;
388 memdma = dd->cr_base[uctxt->numa_id].dma + cr_page_offset;
389 memlen = PAGE_SIZE;
390 flags &= ~VM_MAYWRITE;
391 flags |= VM_DONTCOPY | VM_DONTEXPAND;
392 /*
393 * The driver has already allocated memory for credit
394 * returns and programmed it into the chip. Has that
395 * memory been flagged as non-cached?
396 */
397 /* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
398 break;
399 }
400 case RCV_HDRQ:
401 memlen = rcvhdrq_size(rcd: uctxt);
402 memvirt = uctxt->rcvhdrq;
403 memdma = uctxt->rcvhdrq_dma;
404 break;
405 case RCV_EGRBUF: {
406 unsigned long vm_start_save;
407 unsigned long vm_end_save;
408 int i;
409 /*
410 * The RcvEgr buffer need to be handled differently
411 * as multiple non-contiguous pages need to be mapped
412 * into the user process.
413 */
414 memlen = uctxt->egrbufs.size;
415 if ((vma->vm_end - vma->vm_start) != memlen) {
416 dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
417 (vma->vm_end - vma->vm_start), memlen);
418 ret = -EINVAL;
419 goto done;
420 }
421 if (vma->vm_flags & VM_WRITE) {
422 ret = -EPERM;
423 goto done;
424 }
425 vm_flags_clear(vma, VM_MAYWRITE);
426 /*
427 * Mmap multiple separate allocations into a single vma. From
428 * here, dma_mmap_coherent() calls dma_direct_mmap(), which
429 * requires the mmap to exactly fill the vma starting at
430 * vma_start. Adjust the vma start and end for each eager
431 * buffer segment mapped. Restore the originals when done.
432 */
433 vm_start_save = vma->vm_start;
434 vm_end_save = vma->vm_end;
435 vma->vm_end = vma->vm_start;
436 for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
437 memlen = uctxt->egrbufs.buffers[i].len;
438 memvirt = uctxt->egrbufs.buffers[i].addr;
439 memdma = uctxt->egrbufs.buffers[i].dma;
440 vma->vm_end += memlen;
441 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr,
442 memvirt, memdma, memlen, vma);
443 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
444 memvirt, memdma, memlen);
445 if (ret < 0) {
446 vma->vm_start = vm_start_save;
447 vma->vm_end = vm_end_save;
448 goto done;
449 }
450 vma->vm_start += memlen;
451 }
452 vma->vm_start = vm_start_save;
453 vma->vm_end = vm_end_save;
454 ret = 0;
455 goto done;
456 }
457 case UREGS:
458 /*
459 * Map only the page that contains this context's user
460 * registers.
461 */
462 memaddr = (unsigned long)
463 (dd->physaddr + RXE_PER_CONTEXT_USER)
464 + (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
465 /*
466 * TidFlow table is on the same page as the rest of the
467 * user registers.
468 */
469 memlen = PAGE_SIZE;
470 flags |= VM_DONTCOPY | VM_DONTEXPAND;
471 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
472 mapio = 1;
473 break;
474 case EVENTS:
475 /*
476 * Use the page where this context's flags are. User level
477 * knows where it's own bitmap is within the page.
478 */
479 memaddr = (unsigned long)
480 (dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
481 memlen = PAGE_SIZE;
482 /*
483 * v3.7 removes VM_RESERVED but the effect is kept by
484 * using VM_IO.
485 */
486 flags |= VM_IO | VM_DONTEXPAND;
487 vmf = 1;
488 break;
489 case STATUS:
490 if (flags & VM_WRITE) {
491 ret = -EPERM;
492 goto done;
493 }
494 memaddr = kvirt_to_phys(addr: (void *)dd->status);
495 memlen = PAGE_SIZE;
496 flags |= VM_IO | VM_DONTEXPAND;
497 break;
498 case RTAIL:
499 if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
500 /*
501 * If the memory allocation failed, the context alloc
502 * also would have failed, so we would never get here
503 */
504 ret = -EINVAL;
505 goto done;
506 }
507 if ((flags & VM_WRITE) || !hfi1_rcvhdrtail_kvaddr(rcd: uctxt)) {
508 ret = -EPERM;
509 goto done;
510 }
511 memlen = PAGE_SIZE;
512 memvirt = (void *)hfi1_rcvhdrtail_kvaddr(rcd: uctxt);
513 memdma = uctxt->rcvhdrqtailaddr_dma;
514 flags &= ~VM_MAYWRITE;
515 break;
516 case SUBCTXT_UREGS:
517 memaddr = (u64)uctxt->subctxt_uregbase;
518 memlen = PAGE_SIZE;
519 flags |= VM_IO | VM_DONTEXPAND;
520 vmf = 1;
521 break;
522 case SUBCTXT_RCV_HDRQ:
523 memaddr = (u64)uctxt->subctxt_rcvhdr_base;
524 memlen = rcvhdrq_size(rcd: uctxt) * uctxt->subctxt_cnt;
525 flags |= VM_IO | VM_DONTEXPAND;
526 vmf = 1;
527 break;
528 case SUBCTXT_EGRBUF:
529 memaddr = (u64)uctxt->subctxt_rcvegrbuf;
530 memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
531 flags |= VM_IO | VM_DONTEXPAND;
532 flags &= ~VM_MAYWRITE;
533 vmf = 1;
534 break;
535 case SDMA_COMP: {
536 struct hfi1_user_sdma_comp_q *cq = fd->cq;
537
538 if (!cq) {
539 ret = -EFAULT;
540 goto done;
541 }
542 memaddr = (u64)cq->comps;
543 memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
544 flags |= VM_IO | VM_DONTEXPAND;
545 vmf = 1;
546 break;
547 }
548 default:
549 ret = -EINVAL;
550 break;
551 }
552
553 if ((vma->vm_end - vma->vm_start) != memlen) {
554 hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
555 uctxt->ctxt, fd->subctxt,
556 (vma->vm_end - vma->vm_start), memlen);
557 ret = -EINVAL;
558 goto done;
559 }
560
561 vm_flags_reset(vma, flags);
562 mmap_cdbg(ctxt, subctxt, type, mapio, vmf, memaddr, memvirt, memdma,
563 memlen, vma);
564 if (vmf) {
565 vma->vm_pgoff = PFN_DOWN(memaddr);
566 vma->vm_ops = &vm_ops;
567 ret = 0;
568 } else if (memdma) {
569 ret = dma_mmap_coherent(&dd->pcidev->dev, vma,
570 memvirt, memdma, memlen);
571 } else if (mapio) {
572 ret = io_remap_pfn_range(vma, addr: vma->vm_start,
573 PFN_DOWN(memaddr),
574 size: memlen,
575 prot: vma->vm_page_prot);
576 } else if (memvirt) {
577 ret = remap_pfn_range(vma, addr: vma->vm_start,
578 PFN_DOWN(__pa(memvirt)),
579 size: memlen,
580 vma->vm_page_prot);
581 } else {
582 ret = remap_pfn_range(vma, addr: vma->vm_start,
583 PFN_DOWN(memaddr),
584 size: memlen,
585 vma->vm_page_prot);
586 }
587done:
588 return ret;
589}
590
591/*
592 * Local (non-chip) user memory is not mapped right away but as it is
593 * accessed by the user-level code.
594 */
595static vm_fault_t vma_fault(struct vm_fault *vmf)
596{
597 struct page *page;
598
599 page = vmalloc_to_page(addr: (void *)(vmf->pgoff << PAGE_SHIFT));
600 if (!page)
601 return VM_FAULT_SIGBUS;
602
603 get_page(page);
604 vmf->page = page;
605
606 return 0;
607}
608
609static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
610{
611 struct hfi1_ctxtdata *uctxt;
612 __poll_t pollflag;
613
614 uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
615 if (!uctxt)
616 pollflag = EPOLLERR;
617 else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
618 pollflag = poll_urgent(fp, pt);
619 else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
620 pollflag = poll_next(fp, pt);
621 else /* invalid */
622 pollflag = EPOLLERR;
623
624 return pollflag;
625}
626
627static int hfi1_file_close(struct inode *inode, struct file *fp)
628{
629 struct hfi1_filedata *fdata = fp->private_data;
630 struct hfi1_ctxtdata *uctxt = fdata->uctxt;
631 struct hfi1_devdata *dd = container_of(inode->i_cdev,
632 struct hfi1_devdata,
633 user_cdev);
634 unsigned long flags, *ev;
635
636 fp->private_data = NULL;
637
638 if (!uctxt)
639 goto done;
640
641 hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
642
643 flush_wc();
644 /* drain user sdma queue */
645 hfi1_user_sdma_free_queues(fd: fdata, uctxt);
646
647 /* release the cpu */
648 hfi1_put_proc_affinity(cpu: fdata->rec_cpu_num);
649
650 /* clean up rcv side */
651 hfi1_user_exp_rcv_free(fd: fdata);
652
653 /*
654 * fdata->uctxt is used in the above cleanup. It is not ready to be
655 * removed until here.
656 */
657 fdata->uctxt = NULL;
658 hfi1_rcd_put(rcd: uctxt);
659
660 /*
661 * Clear any left over, unhandled events so the next process that
662 * gets this context doesn't get confused.
663 */
664 ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
665 *ev = 0;
666
667 spin_lock_irqsave(&dd->uctxt_lock, flags);
668 __clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
669 if (!bitmap_empty(src: uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
670 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
671 goto done;
672 }
673 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
674
675 /*
676 * Disable receive context and interrupt available, reset all
677 * RcvCtxtCtrl bits to default values.
678 */
679 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
680 HFI1_RCVCTRL_TIDFLOW_DIS |
681 HFI1_RCVCTRL_INTRAVAIL_DIS |
682 HFI1_RCVCTRL_TAILUPD_DIS |
683 HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
684 HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
685 HFI1_RCVCTRL_NO_EGR_DROP_DIS |
686 HFI1_RCVCTRL_URGENT_DIS, rcd: uctxt);
687 /* Clear the context's J_KEY */
688 hfi1_clear_ctxt_jkey(dd, ctxt: uctxt);
689 /*
690 * If a send context is allocated, reset context integrity
691 * checks to default and disable the send context.
692 */
693 if (uctxt->sc) {
694 sc_disable(sc: uctxt->sc);
695 set_pio_integrity(uctxt->sc);
696 }
697
698 hfi1_free_ctxt_rcv_groups(rcd: uctxt);
699 hfi1_clear_ctxt_pkey(dd, ctxt: uctxt);
700
701 uctxt->event_flags = 0;
702
703 deallocate_ctxt(uctxt);
704done:
705
706 if (refcount_dec_and_test(r: &dd->user_refcount))
707 complete(&dd->user_comp);
708
709 cleanup_srcu_struct(ssp: &fdata->pq_srcu);
710 kfree(objp: fdata);
711 return 0;
712}
713
714/*
715 * Convert kernel *virtual* addresses to physical addresses.
716 * This is used to vmalloc'ed addresses.
717 */
718static u64 kvirt_to_phys(void *addr)
719{
720 struct page *page;
721 u64 paddr = 0;
722
723 page = vmalloc_to_page(addr);
724 if (page)
725 paddr = page_to_pfn(page) << PAGE_SHIFT;
726
727 return paddr;
728}
729
730/**
731 * complete_subctxt - complete sub-context info
732 * @fd: valid filedata pointer
733 *
734 * Sub-context info can only be set up after the base context
735 * has been completed. This is indicated by the clearing of the
736 * HFI1_CTXT_BASE_UINIT bit.
737 *
738 * Wait for the bit to be cleared, and then complete the subcontext
739 * initialization.
740 *
741 */
742static int complete_subctxt(struct hfi1_filedata *fd)
743{
744 int ret;
745 unsigned long flags;
746
747 /*
748 * sub-context info can only be set up after the base context
749 * has been completed.
750 */
751 ret = wait_event_interruptible(
752 fd->uctxt->wait,
753 !test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
754
755 if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
756 ret = -ENOMEM;
757
758 /* Finish the sub-context init */
759 if (!ret) {
760 fd->rec_cpu_num = hfi1_get_proc_affinity(node: fd->uctxt->numa_id);
761 ret = init_user_ctxt(fd, uctxt: fd->uctxt);
762 }
763
764 if (ret) {
765 spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
766 __clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
767 spin_unlock_irqrestore(lock: &fd->dd->uctxt_lock, flags);
768 hfi1_rcd_put(rcd: fd->uctxt);
769 fd->uctxt = NULL;
770 }
771
772 return ret;
773}
774
775static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
776{
777 int ret;
778 unsigned int swmajor;
779 struct hfi1_ctxtdata *uctxt = NULL;
780 struct hfi1_user_info uinfo;
781
782 if (fd->uctxt)
783 return -EINVAL;
784
785 if (sizeof(uinfo) != len)
786 return -EINVAL;
787
788 if (copy_from_user(to: &uinfo, from: (void __user *)arg, n: sizeof(uinfo)))
789 return -EFAULT;
790
791 swmajor = uinfo.userversion >> 16;
792 if (swmajor != HFI1_USER_SWMAJOR)
793 return -ENODEV;
794
795 if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
796 return -EINVAL;
797
798 /*
799 * Acquire the mutex to protect against multiple creations of what
800 * could be a shared base context.
801 */
802 mutex_lock(&hfi1_mutex);
803 /*
804 * Get a sub context if available (fd->uctxt will be set).
805 * ret < 0 error, 0 no context, 1 sub-context found
806 */
807 ret = find_sub_ctxt(fd, uinfo: &uinfo);
808
809 /*
810 * Allocate a base context if context sharing is not required or a
811 * sub context wasn't found.
812 */
813 if (!ret)
814 ret = allocate_ctxt(fd, dd: fd->dd, uinfo: &uinfo, cd: &uctxt);
815
816 mutex_unlock(lock: &hfi1_mutex);
817
818 /* Depending on the context type, finish the appropriate init */
819 switch (ret) {
820 case 0:
821 ret = setup_base_ctxt(fd, uctxt);
822 if (ret)
823 deallocate_ctxt(uctxt);
824 break;
825 case 1:
826 ret = complete_subctxt(fd);
827 break;
828 default:
829 break;
830 }
831
832 return ret;
833}
834
835/**
836 * match_ctxt - match context
837 * @fd: valid filedata pointer
838 * @uinfo: user info to compare base context with
839 * @uctxt: context to compare uinfo to.
840 *
841 * Compare the given context with the given information to see if it
842 * can be used for a sub context.
843 */
844static int match_ctxt(struct hfi1_filedata *fd,
845 const struct hfi1_user_info *uinfo,
846 struct hfi1_ctxtdata *uctxt)
847{
848 struct hfi1_devdata *dd = fd->dd;
849 unsigned long flags;
850 u16 subctxt;
851
852 /* Skip dynamically allocated kernel contexts */
853 if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
854 return 0;
855
856 /* Skip ctxt if it doesn't match the requested one */
857 if (memcmp(p: uctxt->uuid, q: uinfo->uuid, size: sizeof(uctxt->uuid)) ||
858 uctxt->jkey != generate_jkey(current_uid()) ||
859 uctxt->subctxt_id != uinfo->subctxt_id ||
860 uctxt->subctxt_cnt != uinfo->subctxt_cnt)
861 return 0;
862
863 /* Verify the sharing process matches the base */
864 if (uctxt->userversion != uinfo->userversion)
865 return -EINVAL;
866
867 /* Find an unused sub context */
868 spin_lock_irqsave(&dd->uctxt_lock, flags);
869 if (bitmap_empty(src: uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
870 /* context is being closed, do not use */
871 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
872 return 0;
873 }
874
875 subctxt = find_first_zero_bit(addr: uctxt->in_use_ctxts,
876 HFI1_MAX_SHARED_CTXTS);
877 if (subctxt >= uctxt->subctxt_cnt) {
878 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
879 return -EBUSY;
880 }
881
882 fd->subctxt = subctxt;
883 __set_bit(fd->subctxt, uctxt->in_use_ctxts);
884 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
885
886 fd->uctxt = uctxt;
887 hfi1_rcd_get(rcd: uctxt);
888
889 return 1;
890}
891
892/**
893 * find_sub_ctxt - fund sub-context
894 * @fd: valid filedata pointer
895 * @uinfo: matching info to use to find a possible context to share.
896 *
897 * The hfi1_mutex must be held when this function is called. It is
898 * necessary to ensure serialized creation of shared contexts.
899 *
900 * Return:
901 * 0 No sub-context found
902 * 1 Subcontext found and allocated
903 * errno EINVAL (incorrect parameters)
904 * EBUSY (all sub contexts in use)
905 */
906static int find_sub_ctxt(struct hfi1_filedata *fd,
907 const struct hfi1_user_info *uinfo)
908{
909 struct hfi1_ctxtdata *uctxt;
910 struct hfi1_devdata *dd = fd->dd;
911 u16 i;
912 int ret;
913
914 if (!uinfo->subctxt_cnt)
915 return 0;
916
917 for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
918 uctxt = hfi1_rcd_get_by_index(dd, ctxt: i);
919 if (uctxt) {
920 ret = match_ctxt(fd, uinfo, uctxt);
921 hfi1_rcd_put(rcd: uctxt);
922 /* value of != 0 will return */
923 if (ret)
924 return ret;
925 }
926 }
927
928 return 0;
929}
930
931static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
932 struct hfi1_user_info *uinfo,
933 struct hfi1_ctxtdata **rcd)
934{
935 struct hfi1_ctxtdata *uctxt;
936 int ret, numa;
937
938 if (dd->flags & HFI1_FROZEN) {
939 /*
940 * Pick an error that is unique from all other errors
941 * that are returned so the user process knows that
942 * it tried to allocate while the SPC was frozen. It
943 * it should be able to retry with success in a short
944 * while.
945 */
946 return -EIO;
947 }
948
949 if (!dd->freectxts)
950 return -EBUSY;
951
952 /*
953 * If we don't have a NUMA node requested, preference is towards
954 * device NUMA node.
955 */
956 fd->rec_cpu_num = hfi1_get_proc_affinity(node: dd->node);
957 if (fd->rec_cpu_num != -1)
958 numa = cpu_to_node(cpu: fd->rec_cpu_num);
959 else
960 numa = numa_node_id();
961 ret = hfi1_create_ctxtdata(ppd: dd->pport, numa, rcd: &uctxt);
962 if (ret < 0) {
963 dd_dev_err(dd, "user ctxtdata allocation failed\n");
964 return ret;
965 }
966 hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
967 uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
968 uctxt->numa_id);
969
970 /*
971 * Allocate and enable a PIO send context.
972 */
973 uctxt->sc = sc_alloc(dd, SC_USER, hdrqentsize: uctxt->rcvhdrqentsize, numa: dd->node);
974 if (!uctxt->sc) {
975 ret = -ENOMEM;
976 goto ctxdata_free;
977 }
978 hfi1_cdbg(PROC, "allocated send context %u(%u)", uctxt->sc->sw_index,
979 uctxt->sc->hw_context);
980 ret = sc_enable(sc: uctxt->sc);
981 if (ret)
982 goto ctxdata_free;
983
984 /*
985 * Setup sub context information if the user-level has requested
986 * sub contexts.
987 * This has to be done here so the rest of the sub-contexts find the
988 * proper base context.
989 * NOTE: _set_bit() can be used here because the context creation is
990 * protected by the mutex (rather than the spin_lock), and will be the
991 * very first instance of this context.
992 */
993 __set_bit(0, uctxt->in_use_ctxts);
994 if (uinfo->subctxt_cnt)
995 init_subctxts(uctxt, uinfo);
996 uctxt->userversion = uinfo->userversion;
997 uctxt->flags = hfi1_cap_mask; /* save current flag state */
998 init_waitqueue_head(&uctxt->wait);
999 strscpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
1000 memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
1001 uctxt->jkey = generate_jkey(current_uid());
1002 hfi1_stats.sps_ctxts++;
1003 /*
1004 * Disable ASPM when there are open user/PSM contexts to avoid
1005 * issues with ASPM L1 exit latency
1006 */
1007 if (dd->freectxts-- == dd->num_user_contexts)
1008 aspm_disable_all(dd);
1009
1010 *rcd = uctxt;
1011
1012 return 0;
1013
1014ctxdata_free:
1015 hfi1_free_ctxt(rcd: uctxt);
1016 return ret;
1017}
1018
1019static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
1020{
1021 mutex_lock(&hfi1_mutex);
1022 hfi1_stats.sps_ctxts--;
1023 if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
1024 aspm_enable_all(dd: uctxt->dd);
1025 mutex_unlock(lock: &hfi1_mutex);
1026
1027 hfi1_free_ctxt(rcd: uctxt);
1028}
1029
1030static void init_subctxts(struct hfi1_ctxtdata *uctxt,
1031 const struct hfi1_user_info *uinfo)
1032{
1033 uctxt->subctxt_cnt = uinfo->subctxt_cnt;
1034 uctxt->subctxt_id = uinfo->subctxt_id;
1035 set_bit(HFI1_CTXT_BASE_UNINIT, addr: &uctxt->event_flags);
1036}
1037
1038static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
1039{
1040 int ret = 0;
1041 u16 num_subctxts = uctxt->subctxt_cnt;
1042
1043 uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
1044 if (!uctxt->subctxt_uregbase)
1045 return -ENOMEM;
1046
1047 /* We can take the size of the RcvHdr Queue from the master */
1048 uctxt->subctxt_rcvhdr_base = vmalloc_user(size: rcvhdrq_size(rcd: uctxt) *
1049 num_subctxts);
1050 if (!uctxt->subctxt_rcvhdr_base) {
1051 ret = -ENOMEM;
1052 goto bail_ureg;
1053 }
1054
1055 uctxt->subctxt_rcvegrbuf = vmalloc_user(size: uctxt->egrbufs.size *
1056 num_subctxts);
1057 if (!uctxt->subctxt_rcvegrbuf) {
1058 ret = -ENOMEM;
1059 goto bail_rhdr;
1060 }
1061
1062 return 0;
1063
1064bail_rhdr:
1065 vfree(addr: uctxt->subctxt_rcvhdr_base);
1066 uctxt->subctxt_rcvhdr_base = NULL;
1067bail_ureg:
1068 vfree(addr: uctxt->subctxt_uregbase);
1069 uctxt->subctxt_uregbase = NULL;
1070
1071 return ret;
1072}
1073
1074static void user_init(struct hfi1_ctxtdata *uctxt)
1075{
1076 unsigned int rcvctrl_ops = 0;
1077
1078 /* initialize poll variables... */
1079 uctxt->urgent = 0;
1080 uctxt->urgent_poll = 0;
1081
1082 /*
1083 * Now enable the ctxt for receive.
1084 * For chips that are set to DMA the tail register to memory
1085 * when they change (and when the update bit transitions from
1086 * 0 to 1. So for those chips, we turn it off and then back on.
1087 * This will (very briefly) affect any other open ctxts, but the
1088 * duration is very short, and therefore isn't an issue. We
1089 * explicitly set the in-memory tail copy to 0 beforehand, so we
1090 * don't have to wait to be sure the DMA update has happened
1091 * (chip resets head/tail to 0 on transition to enable).
1092 */
1093 if (hfi1_rcvhdrtail_kvaddr(rcd: uctxt))
1094 clear_rcvhdrtail(rcd: uctxt);
1095
1096 /* Setup J_KEY before enabling the context */
1097 hfi1_set_ctxt_jkey(dd: uctxt->dd, rcd: uctxt, jkey: uctxt->jkey);
1098
1099 rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
1100 rcvctrl_ops |= HFI1_RCVCTRL_URGENT_ENB;
1101 if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
1102 rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
1103 /*
1104 * Ignore the bit in the flags for now until proper
1105 * support for multiple packet per rcv array entry is
1106 * added.
1107 */
1108 if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
1109 rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
1110 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
1111 rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
1112 if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
1113 rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
1114 /*
1115 * The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
1116 * We can't rely on the correct value to be set from prior
1117 * uses of the chip or ctxt. Therefore, add the rcvctrl op
1118 * for both cases.
1119 */
1120 if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
1121 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
1122 else
1123 rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
1124 hfi1_rcvctrl(dd: uctxt->dd, op: rcvctrl_ops, rcd: uctxt);
1125}
1126
1127static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1128{
1129 struct hfi1_ctxt_info cinfo;
1130 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1131
1132 if (sizeof(cinfo) != len)
1133 return -EINVAL;
1134
1135 memset(&cinfo, 0, sizeof(cinfo));
1136 cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
1137 HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
1138 HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
1139 HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
1140 /* adjust flag if this fd is not able to cache */
1141 if (!fd->use_mn)
1142 cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
1143
1144 cinfo.num_active = hfi1_count_active_units();
1145 cinfo.unit = uctxt->dd->unit;
1146 cinfo.ctxt = uctxt->ctxt;
1147 cinfo.subctxt = fd->subctxt;
1148 cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
1149 uctxt->dd->rcv_entries.group_size) +
1150 uctxt->expected_count;
1151 cinfo.credits = uctxt->sc->credits;
1152 cinfo.numa_node = uctxt->numa_id;
1153 cinfo.rec_cpu = fd->rec_cpu_num;
1154 cinfo.send_ctxt = uctxt->sc->hw_context;
1155
1156 cinfo.egrtids = uctxt->egrbufs.alloced;
1157 cinfo.rcvhdrq_cnt = get_hdrq_cnt(rcd: uctxt);
1158 cinfo.rcvhdrq_entsize = get_hdrqentsize(rcd: uctxt) << 2;
1159 cinfo.sdma_ring_size = fd->cq->nentries;
1160 cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
1161
1162 trace_hfi1_ctxt_info(dd: uctxt->dd, ctxt: uctxt->ctxt, subctxt: fd->subctxt, cinfo: &cinfo);
1163 if (copy_to_user(to: (void __user *)arg, from: &cinfo, n: len))
1164 return -EFAULT;
1165
1166 return 0;
1167}
1168
1169static int init_user_ctxt(struct hfi1_filedata *fd,
1170 struct hfi1_ctxtdata *uctxt)
1171{
1172 int ret;
1173
1174 ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
1175 if (ret)
1176 return ret;
1177
1178 ret = hfi1_user_exp_rcv_init(fd, uctxt);
1179 if (ret)
1180 hfi1_user_sdma_free_queues(fd, uctxt);
1181
1182 return ret;
1183}
1184
1185static int setup_base_ctxt(struct hfi1_filedata *fd,
1186 struct hfi1_ctxtdata *uctxt)
1187{
1188 struct hfi1_devdata *dd = uctxt->dd;
1189 int ret = 0;
1190
1191 hfi1_init_ctxt(sc: uctxt->sc);
1192
1193 /* Now allocate the RcvHdr queue and eager buffers. */
1194 ret = hfi1_create_rcvhdrq(dd, rcd: uctxt);
1195 if (ret)
1196 goto done;
1197
1198 ret = hfi1_setup_eagerbufs(rcd: uctxt);
1199 if (ret)
1200 goto done;
1201
1202 /* If sub-contexts are enabled, do the appropriate setup */
1203 if (uctxt->subctxt_cnt)
1204 ret = setup_subctxt(uctxt);
1205 if (ret)
1206 goto done;
1207
1208 ret = hfi1_alloc_ctxt_rcv_groups(rcd: uctxt);
1209 if (ret)
1210 goto done;
1211
1212 ret = init_user_ctxt(fd, uctxt);
1213 if (ret) {
1214 hfi1_free_ctxt_rcv_groups(rcd: uctxt);
1215 goto done;
1216 }
1217
1218 user_init(uctxt);
1219
1220 /* Now that the context is set up, the fd can get a reference. */
1221 fd->uctxt = uctxt;
1222 hfi1_rcd_get(rcd: uctxt);
1223
1224done:
1225 if (uctxt->subctxt_cnt) {
1226 /*
1227 * On error, set the failed bit so sub-contexts will clean up
1228 * correctly.
1229 */
1230 if (ret)
1231 set_bit(HFI1_CTXT_BASE_FAILED, addr: &uctxt->event_flags);
1232
1233 /*
1234 * Base context is done (successfully or not), notify anybody
1235 * using a sub-context that is waiting for this completion.
1236 */
1237 clear_bit(HFI1_CTXT_BASE_UNINIT, addr: &uctxt->event_flags);
1238 wake_up(&uctxt->wait);
1239 }
1240
1241 return ret;
1242}
1243
1244static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
1245{
1246 struct hfi1_base_info binfo;
1247 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1248 struct hfi1_devdata *dd = uctxt->dd;
1249 unsigned offset;
1250
1251 trace_hfi1_uctxtdata(dd: uctxt->dd, uctxt, subctxt: fd->subctxt);
1252
1253 if (sizeof(binfo) != len)
1254 return -EINVAL;
1255
1256 memset(&binfo, 0, sizeof(binfo));
1257 binfo.hw_version = dd->revision;
1258 binfo.sw_version = HFI1_USER_SWVERSION;
1259 binfo.bthqp = RVT_KDETH_QP_PREFIX;
1260 binfo.jkey = uctxt->jkey;
1261 /*
1262 * If more than 64 contexts are enabled the allocated credit
1263 * return will span two or three contiguous pages. Since we only
1264 * map the page containing the context's credit return address,
1265 * we need to calculate the offset in the proper page.
1266 */
1267 offset = ((u64)uctxt->sc->hw_free -
1268 (u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
1269 binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
1270 fd->subctxt, offset);
1271 binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
1272 fd->subctxt,
1273 uctxt->sc->base_addr);
1274 binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
1275 uctxt->ctxt,
1276 fd->subctxt,
1277 uctxt->sc->base_addr);
1278 binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
1279 fd->subctxt,
1280 uctxt->rcvhdrq);
1281 binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
1282 fd->subctxt,
1283 uctxt->egrbufs.rcvtids[0].dma);
1284 binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
1285 fd->subctxt, 0);
1286 /*
1287 * user regs are at
1288 * (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
1289 */
1290 binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
1291 fd->subctxt, 0);
1292 offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
1293 sizeof(*dd->events));
1294 binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
1295 fd->subctxt,
1296 offset);
1297 binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
1298 fd->subctxt,
1299 dd->status);
1300 if (HFI1_CAP_IS_USET(DMA_RTAIL))
1301 binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
1302 fd->subctxt, 0);
1303 if (uctxt->subctxt_cnt) {
1304 binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
1305 uctxt->ctxt,
1306 fd->subctxt, 0);
1307 binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
1308 uctxt->ctxt,
1309 fd->subctxt, 0);
1310 binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
1311 uctxt->ctxt,
1312 fd->subctxt, 0);
1313 }
1314
1315 if (copy_to_user(to: (void __user *)arg, from: &binfo, n: len))
1316 return -EFAULT;
1317
1318 return 0;
1319}
1320
1321/**
1322 * user_exp_rcv_setup - Set up the given tid rcv list
1323 * @fd: file data of the current driver instance
1324 * @arg: ioctl argumnent for user space information
1325 * @len: length of data structure associated with ioctl command
1326 *
1327 * Wrapper to validate ioctl information before doing _rcv_setup.
1328 *
1329 */
1330static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
1331 u32 len)
1332{
1333 int ret;
1334 unsigned long addr;
1335 struct hfi1_tid_info tinfo;
1336
1337 if (sizeof(tinfo) != len)
1338 return -EINVAL;
1339
1340 if (copy_from_user(to: &tinfo, from: (void __user *)arg, n: (sizeof(tinfo))))
1341 return -EFAULT;
1342
1343 ret = hfi1_user_exp_rcv_setup(fd, tinfo: &tinfo);
1344 if (!ret) {
1345 /*
1346 * Copy the number of tidlist entries we used
1347 * and the length of the buffer we registered.
1348 */
1349 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1350 if (copy_to_user(to: (void __user *)addr, from: &tinfo.tidcnt,
1351 n: sizeof(tinfo.tidcnt)))
1352 ret = -EFAULT;
1353
1354 addr = arg + offsetof(struct hfi1_tid_info, length);
1355 if (!ret && copy_to_user(to: (void __user *)addr, from: &tinfo.length,
1356 n: sizeof(tinfo.length)))
1357 ret = -EFAULT;
1358
1359 if (ret)
1360 hfi1_user_exp_rcv_invalid(fd, tinfo: &tinfo);
1361 }
1362
1363 return ret;
1364}
1365
1366/**
1367 * user_exp_rcv_clear - Clear the given tid rcv list
1368 * @fd: file data of the current driver instance
1369 * @arg: ioctl argumnent for user space information
1370 * @len: length of data structure associated with ioctl command
1371 *
1372 * The hfi1_user_exp_rcv_clear() can be called from the error path. Because
1373 * of this, we need to use this wrapper to copy the user space information
1374 * before doing the clear.
1375 */
1376static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
1377 u32 len)
1378{
1379 int ret;
1380 unsigned long addr;
1381 struct hfi1_tid_info tinfo;
1382
1383 if (sizeof(tinfo) != len)
1384 return -EINVAL;
1385
1386 if (copy_from_user(to: &tinfo, from: (void __user *)arg, n: (sizeof(tinfo))))
1387 return -EFAULT;
1388
1389 ret = hfi1_user_exp_rcv_clear(fd, tinfo: &tinfo);
1390 if (!ret) {
1391 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1392 if (copy_to_user(to: (void __user *)addr, from: &tinfo.tidcnt,
1393 n: sizeof(tinfo.tidcnt)))
1394 return -EFAULT;
1395 }
1396
1397 return ret;
1398}
1399
1400/**
1401 * user_exp_rcv_invalid - Invalidate the given tid rcv list
1402 * @fd: file data of the current driver instance
1403 * @arg: ioctl argumnent for user space information
1404 * @len: length of data structure associated with ioctl command
1405 *
1406 * Wrapper to validate ioctl information before doing _rcv_invalid.
1407 *
1408 */
1409static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
1410 u32 len)
1411{
1412 int ret;
1413 unsigned long addr;
1414 struct hfi1_tid_info tinfo;
1415
1416 if (sizeof(tinfo) != len)
1417 return -EINVAL;
1418
1419 if (!fd->invalid_tids)
1420 return -EINVAL;
1421
1422 if (copy_from_user(to: &tinfo, from: (void __user *)arg, n: (sizeof(tinfo))))
1423 return -EFAULT;
1424
1425 ret = hfi1_user_exp_rcv_invalid(fd, tinfo: &tinfo);
1426 if (ret)
1427 return ret;
1428
1429 addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
1430 if (copy_to_user(to: (void __user *)addr, from: &tinfo.tidcnt,
1431 n: sizeof(tinfo.tidcnt)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435}
1436
1437static __poll_t poll_urgent(struct file *fp,
1438 struct poll_table_struct *pt)
1439{
1440 struct hfi1_filedata *fd = fp->private_data;
1441 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1442 struct hfi1_devdata *dd = uctxt->dd;
1443 __poll_t pollflag;
1444
1445 poll_wait(filp: fp, wait_address: &uctxt->wait, p: pt);
1446
1447 spin_lock_irq(lock: &dd->uctxt_lock);
1448 if (uctxt->urgent != uctxt->urgent_poll) {
1449 pollflag = EPOLLIN | EPOLLRDNORM;
1450 uctxt->urgent_poll = uctxt->urgent;
1451 } else {
1452 pollflag = 0;
1453 set_bit(HFI1_CTXT_WAITING_URG, addr: &uctxt->event_flags);
1454 }
1455 spin_unlock_irq(lock: &dd->uctxt_lock);
1456
1457 return pollflag;
1458}
1459
1460static __poll_t poll_next(struct file *fp,
1461 struct poll_table_struct *pt)
1462{
1463 struct hfi1_filedata *fd = fp->private_data;
1464 struct hfi1_ctxtdata *uctxt = fd->uctxt;
1465 struct hfi1_devdata *dd = uctxt->dd;
1466 __poll_t pollflag;
1467
1468 poll_wait(filp: fp, wait_address: &uctxt->wait, p: pt);
1469
1470 spin_lock_irq(lock: &dd->uctxt_lock);
1471 if (hdrqempty(rcd: uctxt)) {
1472 set_bit(HFI1_CTXT_WAITING_RCV, addr: &uctxt->event_flags);
1473 hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, rcd: uctxt);
1474 pollflag = 0;
1475 } else {
1476 pollflag = EPOLLIN | EPOLLRDNORM;
1477 }
1478 spin_unlock_irq(lock: &dd->uctxt_lock);
1479
1480 return pollflag;
1481}
1482
1483/*
1484 * Find all user contexts in use, and set the specified bit in their
1485 * event mask.
1486 * See also find_ctxt() for a similar use, that is specific to send buffers.
1487 */
1488int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
1489{
1490 struct hfi1_ctxtdata *uctxt;
1491 struct hfi1_devdata *dd = ppd->dd;
1492 u16 ctxt;
1493
1494 if (!dd->events)
1495 return -EINVAL;
1496
1497 for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
1498 ctxt++) {
1499 uctxt = hfi1_rcd_get_by_index(dd, ctxt);
1500 if (uctxt) {
1501 unsigned long *evs;
1502 int i;
1503 /*
1504 * subctxt_cnt is 0 if not shared, so do base
1505 * separately, first, then remaining subctxt, if any
1506 */
1507 evs = dd->events + uctxt_offset(uctxt);
1508 set_bit(nr: evtbit, addr: evs);
1509 for (i = 1; i < uctxt->subctxt_cnt; i++)
1510 set_bit(nr: evtbit, addr: evs + i);
1511 hfi1_rcd_put(rcd: uctxt);
1512 }
1513 }
1514
1515 return 0;
1516}
1517
1518/**
1519 * manage_rcvq - manage a context's receive queue
1520 * @uctxt: the context
1521 * @subctxt: the sub-context
1522 * @arg: start/stop action to carry out
1523 *
1524 * start_stop == 0 disables receive on the context, for use in queue
1525 * overflow conditions. start_stop==1 re-enables, to be used to
1526 * re-init the software copy of the head register
1527 */
1528static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1529 unsigned long arg)
1530{
1531 struct hfi1_devdata *dd = uctxt->dd;
1532 unsigned int rcvctrl_op;
1533 int start_stop;
1534
1535 if (subctxt)
1536 return 0;
1537
1538 if (get_user(start_stop, (int __user *)arg))
1539 return -EFAULT;
1540
1541 /* atomically clear receive enable ctxt. */
1542 if (start_stop) {
1543 /*
1544 * On enable, force in-memory copy of the tail register to
1545 * 0, so that protocol code doesn't have to worry about
1546 * whether or not the chip has yet updated the in-memory
1547 * copy or not on return from the system call. The chip
1548 * always resets it's tail register back to 0 on a
1549 * transition from disabled to enabled.
1550 */
1551 if (hfi1_rcvhdrtail_kvaddr(rcd: uctxt))
1552 clear_rcvhdrtail(rcd: uctxt);
1553 rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
1554 } else {
1555 rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
1556 }
1557 hfi1_rcvctrl(dd, op: rcvctrl_op, rcd: uctxt);
1558 /* always; new head should be equal to new tail; see above */
1559
1560 return 0;
1561}
1562
1563/*
1564 * clear the event notifier events for this context.
1565 * User process then performs actions appropriate to bit having been
1566 * set, if desired, and checks again in future.
1567 */
1568static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
1569 unsigned long arg)
1570{
1571 int i;
1572 struct hfi1_devdata *dd = uctxt->dd;
1573 unsigned long *evs;
1574 unsigned long events;
1575
1576 if (!dd->events)
1577 return 0;
1578
1579 if (get_user(events, (unsigned long __user *)arg))
1580 return -EFAULT;
1581
1582 evs = dd->events + uctxt_offset(uctxt) + subctxt;
1583
1584 for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
1585 if (!test_bit(i, &events))
1586 continue;
1587 clear_bit(nr: i, addr: evs);
1588 }
1589 return 0;
1590}
1591
1592static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
1593{
1594 int i;
1595 struct hfi1_pportdata *ppd = uctxt->ppd;
1596 struct hfi1_devdata *dd = uctxt->dd;
1597 u16 pkey;
1598
1599 if (!HFI1_CAP_IS_USET(PKEY_CHECK))
1600 return -EPERM;
1601
1602 if (get_user(pkey, (u16 __user *)arg))
1603 return -EFAULT;
1604
1605 if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
1606 return -EINVAL;
1607
1608 for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
1609 if (pkey == ppd->pkeys[i])
1610 return hfi1_set_ctxt_pkey(dd, ctxt: uctxt, pkey);
1611
1612 return -ENOENT;
1613}
1614
1615/**
1616 * ctxt_reset - Reset the user context
1617 * @uctxt: valid user context
1618 */
1619static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
1620{
1621 struct send_context *sc;
1622 struct hfi1_devdata *dd;
1623 int ret = 0;
1624
1625 if (!uctxt || !uctxt->dd || !uctxt->sc)
1626 return -EINVAL;
1627
1628 /*
1629 * There is no protection here. User level has to guarantee that
1630 * no one will be writing to the send context while it is being
1631 * re-initialized. If user level breaks that guarantee, it will
1632 * break it's own context and no one else's.
1633 */
1634 dd = uctxt->dd;
1635 sc = uctxt->sc;
1636
1637 /*
1638 * Wait until the interrupt handler has marked the context as
1639 * halted or frozen. Report error if we time out.
1640 */
1641 wait_event_interruptible_timeout(
1642 sc->halt_wait, (sc->flags & SCF_HALTED),
1643 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1644 if (!(sc->flags & SCF_HALTED))
1645 return -ENOLCK;
1646
1647 /*
1648 * If the send context was halted due to a Freeze, wait until the
1649 * device has been "unfrozen" before resetting the context.
1650 */
1651 if (sc->flags & SCF_FROZEN) {
1652 wait_event_interruptible_timeout(
1653 dd->event_queue,
1654 !(READ_ONCE(dd->flags) & HFI1_FROZEN),
1655 msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
1656 if (dd->flags & HFI1_FROZEN)
1657 return -ENOLCK;
1658
1659 if (dd->flags & HFI1_FORCED_FREEZE)
1660 /*
1661 * Don't allow context reset if we are into
1662 * forced freeze
1663 */
1664 return -ENODEV;
1665
1666 sc_disable(sc);
1667 ret = sc_enable(sc);
1668 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, rcd: uctxt);
1669 } else {
1670 ret = sc_restart(sc);
1671 }
1672 if (!ret)
1673 sc_return_credits(sc);
1674
1675 return ret;
1676}
1677
1678static void user_remove(struct hfi1_devdata *dd)
1679{
1680
1681 hfi1_cdev_cleanup(cdev: &dd->user_cdev, devp: &dd->user_device);
1682}
1683
1684static int user_add(struct hfi1_devdata *dd)
1685{
1686 char name[10];
1687 int ret;
1688
1689 snprintf(buf: name, size: sizeof(name), fmt: "%s_%d", class_name(), dd->unit);
1690 ret = hfi1_cdev_init(minor: dd->unit, name, fops: &hfi1_file_ops,
1691 cdev: &dd->user_cdev, devp: &dd->user_device,
1692 user_accessible: true, parent: &dd->verbs_dev.rdi.ibdev.dev.kobj);
1693 if (ret)
1694 user_remove(dd);
1695
1696 return ret;
1697}
1698
1699/*
1700 * Create per-unit files in /dev
1701 */
1702int hfi1_device_create(struct hfi1_devdata *dd)
1703{
1704 return user_add(dd);
1705}
1706
1707/*
1708 * Remove per-unit files in /dev
1709 * void, core kernel returns no errors for this stuff
1710 */
1711void hfi1_device_remove(struct hfi1_devdata *dd)
1712{
1713 user_remove(dd);
1714}
1715

source code of linux/drivers/infiniband/hw/hfi1/file_ops.c