1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/bitops.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/netdevice.h>
13#include <linux/ipv6.h>
14#include <linux/slab.h>
15#include <net/checksum.h>
16#include <net/ip6_checksum.h>
17#include <net/pkt_sched.h>
18#include <net/pkt_cls.h>
19#include <linux/net_tstamp.h>
20#include <linux/mii.h>
21#include <linux/ethtool.h>
22#include <linux/if.h>
23#include <linux/if_vlan.h>
24#include <linux/pci.h>
25#include <linux/delay.h>
26#include <linux/interrupt.h>
27#include <linux/ip.h>
28#include <linux/tcp.h>
29#include <linux/sctp.h>
30#include <linux/if_ether.h>
31#include <linux/prefetch.h>
32#include <linux/bpf.h>
33#include <linux/bpf_trace.h>
34#include <linux/pm_runtime.h>
35#include <linux/etherdevice.h>
36#ifdef CONFIG_IGB_DCA
37#include <linux/dca.h>
38#endif
39#include <linux/i2c.h>
40#include "igb.h"
41
42enum queue_mode {
43 QUEUE_MODE_STRICT_PRIORITY,
44 QUEUE_MODE_STREAM_RESERVATION,
45};
46
47enum tx_queue_prio {
48 TX_QUEUE_PRIO_HIGH,
49 TX_QUEUE_PRIO_LOW,
50};
51
52char igb_driver_name[] = "igb";
53static const char igb_driver_string[] =
54 "Intel(R) Gigabit Ethernet Network Driver";
55static const char igb_copyright[] =
56 "Copyright (c) 2007-2014 Intel Corporation.";
57
58static const struct e1000_info *igb_info_tbl[] = {
59 [board_82575] = &e1000_82575_info,
60};
61
62static const struct pci_device_id igb_pci_tbl[] = {
63 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
64 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
65 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
66 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
67 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
68 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
98 /* required last entry */
99 {0, }
100};
101
102MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
103
104static int igb_setup_all_tx_resources(struct igb_adapter *);
105static int igb_setup_all_rx_resources(struct igb_adapter *);
106static void igb_free_all_tx_resources(struct igb_adapter *);
107static void igb_free_all_rx_resources(struct igb_adapter *);
108static void igb_setup_mrqc(struct igb_adapter *);
109static int igb_probe(struct pci_dev *, const struct pci_device_id *);
110static void igb_remove(struct pci_dev *pdev);
111static void igb_init_queue_configuration(struct igb_adapter *adapter);
112static int igb_sw_init(struct igb_adapter *);
113int igb_open(struct net_device *);
114int igb_close(struct net_device *);
115static void igb_configure(struct igb_adapter *);
116static void igb_configure_tx(struct igb_adapter *);
117static void igb_configure_rx(struct igb_adapter *);
118static void igb_clean_all_tx_rings(struct igb_adapter *);
119static void igb_clean_all_rx_rings(struct igb_adapter *);
120static void igb_clean_tx_ring(struct igb_ring *);
121static void igb_clean_rx_ring(struct igb_ring *);
122static void igb_set_rx_mode(struct net_device *);
123static void igb_update_phy_info(struct timer_list *);
124static void igb_watchdog(struct timer_list *);
125static void igb_watchdog_task(struct work_struct *);
126static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
127static void igb_get_stats64(struct net_device *dev,
128 struct rtnl_link_stats64 *stats);
129static int igb_change_mtu(struct net_device *, int);
130static int igb_set_mac(struct net_device *, void *);
131static void igb_set_uta(struct igb_adapter *adapter, bool set);
132static irqreturn_t igb_intr(int irq, void *);
133static irqreturn_t igb_intr_msi(int irq, void *);
134static irqreturn_t igb_msix_other(int irq, void *);
135static irqreturn_t igb_msix_ring(int irq, void *);
136#ifdef CONFIG_IGB_DCA
137static void igb_update_dca(struct igb_q_vector *);
138static void igb_setup_dca(struct igb_adapter *);
139#endif /* CONFIG_IGB_DCA */
140static int igb_poll(struct napi_struct *, int);
141static bool igb_clean_tx_irq(struct igb_q_vector *, int);
142static int igb_clean_rx_irq(struct igb_q_vector *, int);
143static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
144static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
145static void igb_reset_task(struct work_struct *);
146static void igb_vlan_mode(struct net_device *netdev,
147 netdev_features_t features);
148static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
149static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
150static void igb_restore_vlan(struct igb_adapter *);
151static void igb_rar_set_index(struct igb_adapter *, u32);
152static void igb_ping_all_vfs(struct igb_adapter *);
153static void igb_msg_task(struct igb_adapter *);
154static void igb_vmm_control(struct igb_adapter *);
155static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
156static void igb_flush_mac_table(struct igb_adapter *);
157static int igb_available_rars(struct igb_adapter *, u8);
158static void igb_set_default_mac_filter(struct igb_adapter *);
159static int igb_uc_sync(struct net_device *, const unsigned char *);
160static int igb_uc_unsync(struct net_device *, const unsigned char *);
161static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
162static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
163static int igb_ndo_set_vf_vlan(struct net_device *netdev,
164 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
165static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
166static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
167 bool setting);
168static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
169 bool setting);
170static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
171 struct ifla_vf_info *ivi);
172static void igb_check_vf_rate_limit(struct igb_adapter *);
173static void igb_nfc_filter_exit(struct igb_adapter *adapter);
174static void igb_nfc_filter_restore(struct igb_adapter *adapter);
175
176#ifdef CONFIG_PCI_IOV
177static int igb_vf_configure(struct igb_adapter *adapter, int vf);
178static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
179#endif
180
181static int igb_suspend(struct device *);
182static int igb_resume(struct device *);
183static int igb_runtime_suspend(struct device *dev);
184static int igb_runtime_resume(struct device *dev);
185static int igb_runtime_idle(struct device *dev);
186#ifdef CONFIG_PM
187static const struct dev_pm_ops igb_pm_ops = {
188 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
189 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
190 igb_runtime_idle)
191};
192#endif
193static void igb_shutdown(struct pci_dev *);
194static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
195#ifdef CONFIG_IGB_DCA
196static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
197static struct notifier_block dca_notifier = {
198 .notifier_call = igb_notify_dca,
199 .next = NULL,
200 .priority = 0
201};
202#endif
203#ifdef CONFIG_PCI_IOV
204static unsigned int max_vfs;
205module_param(max_vfs, uint, 0444);
206MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
207#endif /* CONFIG_PCI_IOV */
208
209static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
210 pci_channel_state_t);
211static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
212static void igb_io_resume(struct pci_dev *);
213
214static const struct pci_error_handlers igb_err_handler = {
215 .error_detected = igb_io_error_detected,
216 .slot_reset = igb_io_slot_reset,
217 .resume = igb_io_resume,
218};
219
220static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
221
222static struct pci_driver igb_driver = {
223 .name = igb_driver_name,
224 .id_table = igb_pci_tbl,
225 .probe = igb_probe,
226 .remove = igb_remove,
227#ifdef CONFIG_PM
228 .driver.pm = &igb_pm_ops,
229#endif
230 .shutdown = igb_shutdown,
231 .sriov_configure = igb_pci_sriov_configure,
232 .err_handler = &igb_err_handler
233};
234
235MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
236MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
237MODULE_LICENSE("GPL v2");
238
239#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
240static int debug = -1;
241module_param(debug, int, 0);
242MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
243
244struct igb_reg_info {
245 u32 ofs;
246 char *name;
247};
248
249static const struct igb_reg_info igb_reg_info_tbl[] = {
250
251 /* General Registers */
252 {E1000_CTRL, "CTRL"},
253 {E1000_STATUS, "STATUS"},
254 {E1000_CTRL_EXT, "CTRL_EXT"},
255
256 /* Interrupt Registers */
257 {E1000_ICR, "ICR"},
258
259 /* RX Registers */
260 {E1000_RCTL, "RCTL"},
261 {E1000_RDLEN(0), "RDLEN"},
262 {E1000_RDH(0), "RDH"},
263 {E1000_RDT(0), "RDT"},
264 {E1000_RXDCTL(0), "RXDCTL"},
265 {E1000_RDBAL(0), "RDBAL"},
266 {E1000_RDBAH(0), "RDBAH"},
267
268 /* TX Registers */
269 {E1000_TCTL, "TCTL"},
270 {E1000_TDBAL(0), "TDBAL"},
271 {E1000_TDBAH(0), "TDBAH"},
272 {E1000_TDLEN(0), "TDLEN"},
273 {E1000_TDH(0), "TDH"},
274 {E1000_TDT(0), "TDT"},
275 {E1000_TXDCTL(0), "TXDCTL"},
276 {E1000_TDFH, "TDFH"},
277 {E1000_TDFT, "TDFT"},
278 {E1000_TDFHS, "TDFHS"},
279 {E1000_TDFPC, "TDFPC"},
280
281 /* List Terminator */
282 {}
283};
284
285/* igb_regdump - register printout routine */
286static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
287{
288 int n = 0;
289 char rname[16];
290 u32 regs[8];
291
292 switch (reginfo->ofs) {
293 case E1000_RDLEN(0):
294 for (n = 0; n < 4; n++)
295 regs[n] = rd32(E1000_RDLEN(n));
296 break;
297 case E1000_RDH(0):
298 for (n = 0; n < 4; n++)
299 regs[n] = rd32(E1000_RDH(n));
300 break;
301 case E1000_RDT(0):
302 for (n = 0; n < 4; n++)
303 regs[n] = rd32(E1000_RDT(n));
304 break;
305 case E1000_RXDCTL(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RXDCTL(n));
308 break;
309 case E1000_RDBAL(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDBAL(n));
312 break;
313 case E1000_RDBAH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDBAH(n));
316 break;
317 case E1000_TDBAL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_TDBAL(n));
320 break;
321 case E1000_TDBAH(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_TDBAH(n));
324 break;
325 case E1000_TDLEN(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_TDLEN(n));
328 break;
329 case E1000_TDH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_TDH(n));
332 break;
333 case E1000_TDT(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDT(n));
336 break;
337 case E1000_TXDCTL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TXDCTL(n));
340 break;
341 default:
342 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
343 return;
344 }
345
346 snprintf(buf: rname, size: 16, fmt: "%s%s", reginfo->name, "[0-3]");
347 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
348 regs[2], regs[3]);
349}
350
351/* igb_dump - Print registers, Tx-rings and Rx-rings */
352static void igb_dump(struct igb_adapter *adapter)
353{
354 struct net_device *netdev = adapter->netdev;
355 struct e1000_hw *hw = &adapter->hw;
356 struct igb_reg_info *reginfo;
357 struct igb_ring *tx_ring;
358 union e1000_adv_tx_desc *tx_desc;
359 struct my_u0 { __le64 a; __le64 b; } *u0;
360 struct igb_ring *rx_ring;
361 union e1000_adv_rx_desc *rx_desc;
362 u32 staterr;
363 u16 i, n;
364
365 if (!netif_msg_hw(adapter))
366 return;
367
368 /* Print netdevice Info */
369 if (netdev) {
370 dev_info(&adapter->pdev->dev, "Net device Info\n");
371 pr_info("Device Name state trans_start\n");
372 pr_info("%-15s %016lX %016lX\n", netdev->name,
373 netdev->state, dev_trans_start(netdev));
374 }
375
376 /* Print Registers */
377 dev_info(&adapter->pdev->dev, "Register Dump\n");
378 pr_info(" Register Name Value\n");
379 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
380 reginfo->name; reginfo++) {
381 igb_regdump(hw, reginfo);
382 }
383
384 /* Print TX Ring Summary */
385 if (!netdev || !netif_running(dev: netdev))
386 goto exit;
387
388 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
389 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
390 for (n = 0; n < adapter->num_tx_queues; n++) {
391 struct igb_tx_buffer *buffer_info;
392 tx_ring = adapter->tx_ring[n];
393 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
394 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
395 n, tx_ring->next_to_use, tx_ring->next_to_clean,
396 (u64)dma_unmap_addr(buffer_info, dma),
397 dma_unmap_len(buffer_info, len),
398 buffer_info->next_to_watch,
399 (u64)buffer_info->time_stamp);
400 }
401
402 /* Print TX Rings */
403 if (!netif_msg_tx_done(adapter))
404 goto rx_ring_summary;
405
406 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
407
408 /* Transmit Descriptor Formats
409 *
410 * Advanced Transmit Descriptor
411 * +--------------------------------------------------------------+
412 * 0 | Buffer Address [63:0] |
413 * +--------------------------------------------------------------+
414 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
415 * +--------------------------------------------------------------+
416 * 63 46 45 40 39 38 36 35 32 31 24 15 0
417 */
418
419 for (n = 0; n < adapter->num_tx_queues; n++) {
420 tx_ring = adapter->tx_ring[n];
421 pr_info("------------------------------------\n");
422 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
423 pr_info("------------------------------------\n");
424 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
425
426 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
427 const char *next_desc;
428 struct igb_tx_buffer *buffer_info;
429 tx_desc = IGB_TX_DESC(tx_ring, i);
430 buffer_info = &tx_ring->tx_buffer_info[i];
431 u0 = (struct my_u0 *)tx_desc;
432 if (i == tx_ring->next_to_use &&
433 i == tx_ring->next_to_clean)
434 next_desc = " NTC/U";
435 else if (i == tx_ring->next_to_use)
436 next_desc = " NTU";
437 else if (i == tx_ring->next_to_clean)
438 next_desc = " NTC";
439 else
440 next_desc = "";
441
442 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
443 i, le64_to_cpu(u0->a),
444 le64_to_cpu(u0->b),
445 (u64)dma_unmap_addr(buffer_info, dma),
446 dma_unmap_len(buffer_info, len),
447 buffer_info->next_to_watch,
448 (u64)buffer_info->time_stamp,
449 buffer_info->skb, next_desc);
450
451 if (netif_msg_pktdata(adapter) && buffer_info->skb)
452 print_hex_dump(KERN_INFO, prefix_str: "",
453 prefix_type: DUMP_PREFIX_ADDRESS,
454 rowsize: 16, groupsize: 1, buf: buffer_info->skb->data,
455 dma_unmap_len(buffer_info, len),
456 ascii: true);
457 }
458 }
459
460 /* Print RX Rings Summary */
461rx_ring_summary:
462 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
463 pr_info("Queue [NTU] [NTC]\n");
464 for (n = 0; n < adapter->num_rx_queues; n++) {
465 rx_ring = adapter->rx_ring[n];
466 pr_info(" %5d %5X %5X\n",
467 n, rx_ring->next_to_use, rx_ring->next_to_clean);
468 }
469
470 /* Print RX Rings */
471 if (!netif_msg_rx_status(adapter))
472 goto exit;
473
474 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
475
476 /* Advanced Receive Descriptor (Read) Format
477 * 63 1 0
478 * +-----------------------------------------------------+
479 * 0 | Packet Buffer Address [63:1] |A0/NSE|
480 * +----------------------------------------------+------+
481 * 8 | Header Buffer Address [63:1] | DD |
482 * +-----------------------------------------------------+
483 *
484 *
485 * Advanced Receive Descriptor (Write-Back) Format
486 *
487 * 63 48 47 32 31 30 21 20 17 16 4 3 0
488 * +------------------------------------------------------+
489 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
490 * | Checksum Ident | | | | Type | Type |
491 * +------------------------------------------------------+
492 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
493 * +------------------------------------------------------+
494 * 63 48 47 32 31 20 19 0
495 */
496
497 for (n = 0; n < adapter->num_rx_queues; n++) {
498 rx_ring = adapter->rx_ring[n];
499 pr_info("------------------------------------\n");
500 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
501 pr_info("------------------------------------\n");
502 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
503 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
504
505 for (i = 0; i < rx_ring->count; i++) {
506 const char *next_desc;
507 struct igb_rx_buffer *buffer_info;
508 buffer_info = &rx_ring->rx_buffer_info[i];
509 rx_desc = IGB_RX_DESC(rx_ring, i);
510 u0 = (struct my_u0 *)rx_desc;
511 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
512
513 if (i == rx_ring->next_to_use)
514 next_desc = " NTU";
515 else if (i == rx_ring->next_to_clean)
516 next_desc = " NTC";
517 else
518 next_desc = "";
519
520 if (staterr & E1000_RXD_STAT_DD) {
521 /* Descriptor Done */
522 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
523 "RWB", i,
524 le64_to_cpu(u0->a),
525 le64_to_cpu(u0->b),
526 next_desc);
527 } else {
528 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
529 "R ", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 (u64)buffer_info->dma,
533 next_desc);
534
535 if (netif_msg_pktdata(adapter) &&
536 buffer_info->dma && buffer_info->page) {
537 print_hex_dump(KERN_INFO, prefix_str: "",
538 prefix_type: DUMP_PREFIX_ADDRESS,
539 rowsize: 16, groupsize: 1,
540 page_address(buffer_info->page) +
541 buffer_info->page_offset,
542 len: igb_rx_bufsz(ring: rx_ring), ascii: true);
543 }
544 }
545 }
546 }
547
548exit:
549 return;
550}
551
552/**
553 * igb_get_i2c_data - Reads the I2C SDA data bit
554 * @data: opaque pointer to adapter struct
555 *
556 * Returns the I2C data bit value
557 **/
558static int igb_get_i2c_data(void *data)
559{
560 struct igb_adapter *adapter = (struct igb_adapter *)data;
561 struct e1000_hw *hw = &adapter->hw;
562 s32 i2cctl = rd32(E1000_I2CPARAMS);
563
564 return !!(i2cctl & E1000_I2C_DATA_IN);
565}
566
567/**
568 * igb_set_i2c_data - Sets the I2C data bit
569 * @data: pointer to hardware structure
570 * @state: I2C data value (0 or 1) to set
571 *
572 * Sets the I2C data bit
573 **/
574static void igb_set_i2c_data(void *data, int state)
575{
576 struct igb_adapter *adapter = (struct igb_adapter *)data;
577 struct e1000_hw *hw = &adapter->hw;
578 s32 i2cctl = rd32(E1000_I2CPARAMS);
579
580 if (state) {
581 i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
582 } else {
583 i2cctl &= ~E1000_I2C_DATA_OE_N;
584 i2cctl &= ~E1000_I2C_DATA_OUT;
585 }
586
587 wr32(E1000_I2CPARAMS, i2cctl);
588 wrfl();
589}
590
591/**
592 * igb_set_i2c_clk - Sets the I2C SCL clock
593 * @data: pointer to hardware structure
594 * @state: state to set clock
595 *
596 * Sets the I2C clock line to state
597 **/
598static void igb_set_i2c_clk(void *data, int state)
599{
600 struct igb_adapter *adapter = (struct igb_adapter *)data;
601 struct e1000_hw *hw = &adapter->hw;
602 s32 i2cctl = rd32(E1000_I2CPARAMS);
603
604 if (state) {
605 i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
606 } else {
607 i2cctl &= ~E1000_I2C_CLK_OUT;
608 i2cctl &= ~E1000_I2C_CLK_OE_N;
609 }
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612}
613
614/**
615 * igb_get_i2c_clk - Gets the I2C SCL clock state
616 * @data: pointer to hardware structure
617 *
618 * Gets the I2C clock state
619 **/
620static int igb_get_i2c_clk(void *data)
621{
622 struct igb_adapter *adapter = (struct igb_adapter *)data;
623 struct e1000_hw *hw = &adapter->hw;
624 s32 i2cctl = rd32(E1000_I2CPARAMS);
625
626 return !!(i2cctl & E1000_I2C_CLK_IN);
627}
628
629static const struct i2c_algo_bit_data igb_i2c_algo = {
630 .setsda = igb_set_i2c_data,
631 .setscl = igb_set_i2c_clk,
632 .getsda = igb_get_i2c_data,
633 .getscl = igb_get_i2c_clk,
634 .udelay = 5,
635 .timeout = 20,
636};
637
638/**
639 * igb_get_hw_dev - return device
640 * @hw: pointer to hardware structure
641 *
642 * used by hardware layer to print debugging information
643 **/
644struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
645{
646 struct igb_adapter *adapter = hw->back;
647 return adapter->netdev;
648}
649
650/**
651 * igb_init_module - Driver Registration Routine
652 *
653 * igb_init_module is the first routine called when the driver is
654 * loaded. All it does is register with the PCI subsystem.
655 **/
656static int __init igb_init_module(void)
657{
658 int ret;
659
660 pr_info("%s\n", igb_driver_string);
661 pr_info("%s\n", igb_copyright);
662
663#ifdef CONFIG_IGB_DCA
664 dca_register_notify(nb: &dca_notifier);
665#endif
666 ret = pci_register_driver(&igb_driver);
667 return ret;
668}
669
670module_init(igb_init_module);
671
672/**
673 * igb_exit_module - Driver Exit Cleanup Routine
674 *
675 * igb_exit_module is called just before the driver is removed
676 * from memory.
677 **/
678static void __exit igb_exit_module(void)
679{
680#ifdef CONFIG_IGB_DCA
681 dca_unregister_notify(nb: &dca_notifier);
682#endif
683 pci_unregister_driver(dev: &igb_driver);
684}
685
686module_exit(igb_exit_module);
687
688#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
689/**
690 * igb_cache_ring_register - Descriptor ring to register mapping
691 * @adapter: board private structure to initialize
692 *
693 * Once we know the feature-set enabled for the device, we'll cache
694 * the register offset the descriptor ring is assigned to.
695 **/
696static void igb_cache_ring_register(struct igb_adapter *adapter)
697{
698 int i = 0, j = 0;
699 u32 rbase_offset = adapter->vfs_allocated_count;
700
701 switch (adapter->hw.mac.type) {
702 case e1000_82576:
703 /* The queues are allocated for virtualization such that VF 0
704 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
705 * In order to avoid collision we start at the first free queue
706 * and continue consuming queues in the same sequence
707 */
708 if (adapter->vfs_allocated_count) {
709 for (; i < adapter->rss_queues; i++)
710 adapter->rx_ring[i]->reg_idx = rbase_offset +
711 Q_IDX_82576(i);
712 }
713 fallthrough;
714 case e1000_82575:
715 case e1000_82580:
716 case e1000_i350:
717 case e1000_i354:
718 case e1000_i210:
719 case e1000_i211:
720 default:
721 for (; i < adapter->num_rx_queues; i++)
722 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
723 for (; j < adapter->num_tx_queues; j++)
724 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
725 break;
726 }
727}
728
729u32 igb_rd32(struct e1000_hw *hw, u32 reg)
730{
731 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
732 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
733 u32 value = 0;
734
735 if (E1000_REMOVED(hw_addr))
736 return ~value;
737
738 value = readl(addr: &hw_addr[reg]);
739
740 /* reads should not return all F's */
741 if (!(~value) && (!reg || !(~readl(addr: hw_addr)))) {
742 struct net_device *netdev = igb->netdev;
743 hw->hw_addr = NULL;
744 netdev_err(dev: netdev, format: "PCIe link lost\n");
745 WARN(pci_device_is_present(igb->pdev),
746 "igb: Failed to read reg 0x%x!\n", reg);
747 }
748
749 return value;
750}
751
752/**
753 * igb_write_ivar - configure ivar for given MSI-X vector
754 * @hw: pointer to the HW structure
755 * @msix_vector: vector number we are allocating to a given ring
756 * @index: row index of IVAR register to write within IVAR table
757 * @offset: column offset of in IVAR, should be multiple of 8
758 *
759 * This function is intended to handle the writing of the IVAR register
760 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
761 * each containing an cause allocation for an Rx and Tx ring, and a
762 * variable number of rows depending on the number of queues supported.
763 **/
764static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
765 int index, int offset)
766{
767 u32 ivar = array_rd32(E1000_IVAR0, index);
768
769 /* clear any bits that are currently set */
770 ivar &= ~((u32)0xFF << offset);
771
772 /* write vector and valid bit */
773 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
774
775 array_wr32(E1000_IVAR0, index, ivar);
776}
777
778#define IGB_N0_QUEUE -1
779static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
780{
781 struct igb_adapter *adapter = q_vector->adapter;
782 struct e1000_hw *hw = &adapter->hw;
783 int rx_queue = IGB_N0_QUEUE;
784 int tx_queue = IGB_N0_QUEUE;
785 u32 msixbm = 0;
786
787 if (q_vector->rx.ring)
788 rx_queue = q_vector->rx.ring->reg_idx;
789 if (q_vector->tx.ring)
790 tx_queue = q_vector->tx.ring->reg_idx;
791
792 switch (hw->mac.type) {
793 case e1000_82575:
794 /* The 82575 assigns vectors using a bitmask, which matches the
795 * bitmask for the EICR/EIMS/EIMC registers. To assign one
796 * or more queues to a vector, we write the appropriate bits
797 * into the MSIXBM register for that vector.
798 */
799 if (rx_queue > IGB_N0_QUEUE)
800 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
801 if (tx_queue > IGB_N0_QUEUE)
802 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
803 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
804 msixbm |= E1000_EIMS_OTHER;
805 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
806 q_vector->eims_value = msixbm;
807 break;
808 case e1000_82576:
809 /* 82576 uses a table that essentially consists of 2 columns
810 * with 8 rows. The ordering is column-major so we use the
811 * lower 3 bits as the row index, and the 4th bit as the
812 * column offset.
813 */
814 if (rx_queue > IGB_N0_QUEUE)
815 igb_write_ivar(hw, msix_vector,
816 index: rx_queue & 0x7,
817 offset: (rx_queue & 0x8) << 1);
818 if (tx_queue > IGB_N0_QUEUE)
819 igb_write_ivar(hw, msix_vector,
820 index: tx_queue & 0x7,
821 offset: ((tx_queue & 0x8) << 1) + 8);
822 q_vector->eims_value = BIT(msix_vector);
823 break;
824 case e1000_82580:
825 case e1000_i350:
826 case e1000_i354:
827 case e1000_i210:
828 case e1000_i211:
829 /* On 82580 and newer adapters the scheme is similar to 82576
830 * however instead of ordering column-major we have things
831 * ordered row-major. So we traverse the table by using
832 * bit 0 as the column offset, and the remaining bits as the
833 * row index.
834 */
835 if (rx_queue > IGB_N0_QUEUE)
836 igb_write_ivar(hw, msix_vector,
837 index: rx_queue >> 1,
838 offset: (rx_queue & 0x1) << 4);
839 if (tx_queue > IGB_N0_QUEUE)
840 igb_write_ivar(hw, msix_vector,
841 index: tx_queue >> 1,
842 offset: ((tx_queue & 0x1) << 4) + 8);
843 q_vector->eims_value = BIT(msix_vector);
844 break;
845 default:
846 BUG();
847 break;
848 }
849
850 /* add q_vector eims value to global eims_enable_mask */
851 adapter->eims_enable_mask |= q_vector->eims_value;
852
853 /* configure q_vector to set itr on first interrupt */
854 q_vector->set_itr = 1;
855}
856
857/**
858 * igb_configure_msix - Configure MSI-X hardware
859 * @adapter: board private structure to initialize
860 *
861 * igb_configure_msix sets up the hardware to properly
862 * generate MSI-X interrupts.
863 **/
864static void igb_configure_msix(struct igb_adapter *adapter)
865{
866 u32 tmp;
867 int i, vector = 0;
868 struct e1000_hw *hw = &adapter->hw;
869
870 adapter->eims_enable_mask = 0;
871
872 /* set vector for other causes, i.e. link changes */
873 switch (hw->mac.type) {
874 case e1000_82575:
875 tmp = rd32(E1000_CTRL_EXT);
876 /* enable MSI-X PBA support*/
877 tmp |= E1000_CTRL_EXT_PBA_CLR;
878
879 /* Auto-Mask interrupts upon ICR read. */
880 tmp |= E1000_CTRL_EXT_EIAME;
881 tmp |= E1000_CTRL_EXT_IRCA;
882
883 wr32(E1000_CTRL_EXT, tmp);
884
885 /* enable msix_other interrupt */
886 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
887 adapter->eims_other = E1000_EIMS_OTHER;
888
889 break;
890
891 case e1000_82576:
892 case e1000_82580:
893 case e1000_i350:
894 case e1000_i354:
895 case e1000_i210:
896 case e1000_i211:
897 /* Turn on MSI-X capability first, or our settings
898 * won't stick. And it will take days to debug.
899 */
900 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
901 E1000_GPIE_PBA | E1000_GPIE_EIAME |
902 E1000_GPIE_NSICR);
903
904 /* enable msix_other interrupt */
905 adapter->eims_other = BIT(vector);
906 tmp = (vector++ | E1000_IVAR_VALID) << 8;
907
908 wr32(E1000_IVAR_MISC, tmp);
909 break;
910 default:
911 /* do nothing, since nothing else supports MSI-X */
912 break;
913 } /* switch (hw->mac.type) */
914
915 adapter->eims_enable_mask |= adapter->eims_other;
916
917 for (i = 0; i < adapter->num_q_vectors; i++)
918 igb_assign_vector(q_vector: adapter->q_vector[i], msix_vector: vector++);
919
920 wrfl();
921}
922
923/**
924 * igb_request_msix - Initialize MSI-X interrupts
925 * @adapter: board private structure to initialize
926 *
927 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
928 * kernel.
929 **/
930static int igb_request_msix(struct igb_adapter *adapter)
931{
932 unsigned int num_q_vectors = adapter->num_q_vectors;
933 struct net_device *netdev = adapter->netdev;
934 int i, err = 0, vector = 0, free_vector = 0;
935
936 err = request_irq(irq: adapter->msix_entries[vector].vector,
937 handler: igb_msix_other, flags: 0, name: netdev->name, dev: adapter);
938 if (err)
939 goto err_out;
940
941 if (num_q_vectors > MAX_Q_VECTORS) {
942 num_q_vectors = MAX_Q_VECTORS;
943 dev_warn(&adapter->pdev->dev,
944 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
945 adapter->num_q_vectors, MAX_Q_VECTORS);
946 }
947 for (i = 0; i < num_q_vectors; i++) {
948 struct igb_q_vector *q_vector = adapter->q_vector[i];
949
950 vector++;
951
952 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
953
954 if (q_vector->rx.ring && q_vector->tx.ring)
955 sprintf(buf: q_vector->name, fmt: "%s-TxRx-%u", netdev->name,
956 q_vector->rx.ring->queue_index);
957 else if (q_vector->tx.ring)
958 sprintf(buf: q_vector->name, fmt: "%s-tx-%u", netdev->name,
959 q_vector->tx.ring->queue_index);
960 else if (q_vector->rx.ring)
961 sprintf(buf: q_vector->name, fmt: "%s-rx-%u", netdev->name,
962 q_vector->rx.ring->queue_index);
963 else
964 sprintf(buf: q_vector->name, fmt: "%s-unused", netdev->name);
965
966 err = request_irq(irq: adapter->msix_entries[vector].vector,
967 handler: igb_msix_ring, flags: 0, name: q_vector->name,
968 dev: q_vector);
969 if (err)
970 goto err_free;
971 }
972
973 igb_configure_msix(adapter);
974 return 0;
975
976err_free:
977 /* free already assigned IRQs */
978 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
979
980 vector--;
981 for (i = 0; i < vector; i++) {
982 free_irq(adapter->msix_entries[free_vector++].vector,
983 adapter->q_vector[i]);
984 }
985err_out:
986 return err;
987}
988
989/**
990 * igb_free_q_vector - Free memory allocated for specific interrupt vector
991 * @adapter: board private structure to initialize
992 * @v_idx: Index of vector to be freed
993 *
994 * This function frees the memory allocated to the q_vector.
995 **/
996static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
997{
998 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
999
1000 adapter->q_vector[v_idx] = NULL;
1001
1002 /* igb_get_stats64() might access the rings on this vector,
1003 * we must wait a grace period before freeing it.
1004 */
1005 if (q_vector)
1006 kfree_rcu(q_vector, rcu);
1007}
1008
1009/**
1010 * igb_reset_q_vector - Reset config for interrupt vector
1011 * @adapter: board private structure to initialize
1012 * @v_idx: Index of vector to be reset
1013 *
1014 * If NAPI is enabled it will delete any references to the
1015 * NAPI struct. This is preparation for igb_free_q_vector.
1016 **/
1017static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1018{
1019 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1020
1021 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1022 * allocated. So, q_vector is NULL so we should stop here.
1023 */
1024 if (!q_vector)
1025 return;
1026
1027 if (q_vector->tx.ring)
1028 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1029
1030 if (q_vector->rx.ring)
1031 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1032
1033 netif_napi_del(napi: &q_vector->napi);
1034
1035}
1036
1037static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1038{
1039 int v_idx = adapter->num_q_vectors;
1040
1041 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1042 pci_disable_msix(dev: adapter->pdev);
1043 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1044 pci_disable_msi(dev: adapter->pdev);
1045
1046 while (v_idx--)
1047 igb_reset_q_vector(adapter, v_idx);
1048}
1049
1050/**
1051 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1052 * @adapter: board private structure to initialize
1053 *
1054 * This function frees the memory allocated to the q_vectors. In addition if
1055 * NAPI is enabled it will delete any references to the NAPI struct prior
1056 * to freeing the q_vector.
1057 **/
1058static void igb_free_q_vectors(struct igb_adapter *adapter)
1059{
1060 int v_idx = adapter->num_q_vectors;
1061
1062 adapter->num_tx_queues = 0;
1063 adapter->num_rx_queues = 0;
1064 adapter->num_q_vectors = 0;
1065
1066 while (v_idx--) {
1067 igb_reset_q_vector(adapter, v_idx);
1068 igb_free_q_vector(adapter, v_idx);
1069 }
1070}
1071
1072/**
1073 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1074 * @adapter: board private structure to initialize
1075 *
1076 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1077 * MSI-X interrupts allocated.
1078 */
1079static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1080{
1081 igb_free_q_vectors(adapter);
1082 igb_reset_interrupt_capability(adapter);
1083}
1084
1085/**
1086 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1087 * @adapter: board private structure to initialize
1088 * @msix: boolean value of MSIX capability
1089 *
1090 * Attempt to configure interrupts using the best available
1091 * capabilities of the hardware and kernel.
1092 **/
1093static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1094{
1095 int err;
1096 int numvecs, i;
1097
1098 if (!msix)
1099 goto msi_only;
1100 adapter->flags |= IGB_FLAG_HAS_MSIX;
1101
1102 /* Number of supported queues. */
1103 adapter->num_rx_queues = adapter->rss_queues;
1104 if (adapter->vfs_allocated_count)
1105 adapter->num_tx_queues = 1;
1106 else
1107 adapter->num_tx_queues = adapter->rss_queues;
1108
1109 /* start with one vector for every Rx queue */
1110 numvecs = adapter->num_rx_queues;
1111
1112 /* if Tx handler is separate add 1 for every Tx queue */
1113 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1114 numvecs += adapter->num_tx_queues;
1115
1116 /* store the number of vectors reserved for queues */
1117 adapter->num_q_vectors = numvecs;
1118
1119 /* add 1 vector for link status interrupts */
1120 numvecs++;
1121 for (i = 0; i < numvecs; i++)
1122 adapter->msix_entries[i].entry = i;
1123
1124 err = pci_enable_msix_range(dev: adapter->pdev,
1125 entries: adapter->msix_entries,
1126 minvec: numvecs,
1127 maxvec: numvecs);
1128 if (err > 0)
1129 return;
1130
1131 igb_reset_interrupt_capability(adapter);
1132
1133 /* If we can't do MSI-X, try MSI */
1134msi_only:
1135 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1136#ifdef CONFIG_PCI_IOV
1137 /* disable SR-IOV for non MSI-X configurations */
1138 if (adapter->vf_data) {
1139 struct e1000_hw *hw = &adapter->hw;
1140 /* disable iov and allow time for transactions to clear */
1141 pci_disable_sriov(dev: adapter->pdev);
1142 msleep(msecs: 500);
1143
1144 kfree(objp: adapter->vf_mac_list);
1145 adapter->vf_mac_list = NULL;
1146 kfree(objp: adapter->vf_data);
1147 adapter->vf_data = NULL;
1148 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1149 wrfl();
1150 msleep(msecs: 100);
1151 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1152 }
1153#endif
1154 adapter->vfs_allocated_count = 0;
1155 adapter->rss_queues = 1;
1156 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1157 adapter->num_rx_queues = 1;
1158 adapter->num_tx_queues = 1;
1159 adapter->num_q_vectors = 1;
1160 if (!pci_enable_msi(dev: adapter->pdev))
1161 adapter->flags |= IGB_FLAG_HAS_MSI;
1162}
1163
1164static void igb_add_ring(struct igb_ring *ring,
1165 struct igb_ring_container *head)
1166{
1167 head->ring = ring;
1168 head->count++;
1169}
1170
1171/**
1172 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1173 * @adapter: board private structure to initialize
1174 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1175 * @v_idx: index of vector in adapter struct
1176 * @txr_count: total number of Tx rings to allocate
1177 * @txr_idx: index of first Tx ring to allocate
1178 * @rxr_count: total number of Rx rings to allocate
1179 * @rxr_idx: index of first Rx ring to allocate
1180 *
1181 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1182 **/
1183static int igb_alloc_q_vector(struct igb_adapter *adapter,
1184 int v_count, int v_idx,
1185 int txr_count, int txr_idx,
1186 int rxr_count, int rxr_idx)
1187{
1188 struct igb_q_vector *q_vector;
1189 struct igb_ring *ring;
1190 int ring_count;
1191 size_t size;
1192
1193 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1194 if (txr_count > 1 || rxr_count > 1)
1195 return -ENOMEM;
1196
1197 ring_count = txr_count + rxr_count;
1198 size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
1199
1200 /* allocate q_vector and rings */
1201 q_vector = adapter->q_vector[v_idx];
1202 if (!q_vector) {
1203 q_vector = kzalloc(size, GFP_KERNEL);
1204 } else if (size > ksize(objp: q_vector)) {
1205 struct igb_q_vector *new_q_vector;
1206
1207 new_q_vector = kzalloc(size, GFP_KERNEL);
1208 if (new_q_vector)
1209 kfree_rcu(q_vector, rcu);
1210 q_vector = new_q_vector;
1211 } else {
1212 memset(q_vector, 0, size);
1213 }
1214 if (!q_vector)
1215 return -ENOMEM;
1216
1217 /* initialize NAPI */
1218 netif_napi_add(dev: adapter->netdev, napi: &q_vector->napi, poll: igb_poll);
1219
1220 /* tie q_vector and adapter together */
1221 adapter->q_vector[v_idx] = q_vector;
1222 q_vector->adapter = adapter;
1223
1224 /* initialize work limits */
1225 q_vector->tx.work_limit = adapter->tx_work_limit;
1226
1227 /* initialize ITR configuration */
1228 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1229 q_vector->itr_val = IGB_START_ITR;
1230
1231 /* initialize pointer to rings */
1232 ring = q_vector->ring;
1233
1234 /* intialize ITR */
1235 if (rxr_count) {
1236 /* rx or rx/tx vector */
1237 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1238 q_vector->itr_val = adapter->rx_itr_setting;
1239 } else {
1240 /* tx only vector */
1241 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1242 q_vector->itr_val = adapter->tx_itr_setting;
1243 }
1244
1245 if (txr_count) {
1246 /* assign generic ring traits */
1247 ring->dev = &adapter->pdev->dev;
1248 ring->netdev = adapter->netdev;
1249
1250 /* configure backlink on ring */
1251 ring->q_vector = q_vector;
1252
1253 /* update q_vector Tx values */
1254 igb_add_ring(ring, head: &q_vector->tx);
1255
1256 /* For 82575, context index must be unique per ring. */
1257 if (adapter->hw.mac.type == e1000_82575)
1258 set_bit(nr: IGB_RING_FLAG_TX_CTX_IDX, addr: &ring->flags);
1259
1260 /* apply Tx specific ring traits */
1261 ring->count = adapter->tx_ring_count;
1262 ring->queue_index = txr_idx;
1263
1264 ring->cbs_enable = false;
1265 ring->idleslope = 0;
1266 ring->sendslope = 0;
1267 ring->hicredit = 0;
1268 ring->locredit = 0;
1269
1270 u64_stats_init(syncp: &ring->tx_syncp);
1271 u64_stats_init(syncp: &ring->tx_syncp2);
1272
1273 /* assign ring to adapter */
1274 adapter->tx_ring[txr_idx] = ring;
1275
1276 /* push pointer to next ring */
1277 ring++;
1278 }
1279
1280 if (rxr_count) {
1281 /* assign generic ring traits */
1282 ring->dev = &adapter->pdev->dev;
1283 ring->netdev = adapter->netdev;
1284
1285 /* configure backlink on ring */
1286 ring->q_vector = q_vector;
1287
1288 /* update q_vector Rx values */
1289 igb_add_ring(ring, head: &q_vector->rx);
1290
1291 /* set flag indicating ring supports SCTP checksum offload */
1292 if (adapter->hw.mac.type >= e1000_82576)
1293 set_bit(nr: IGB_RING_FLAG_RX_SCTP_CSUM, addr: &ring->flags);
1294
1295 /* On i350, i354, i210, and i211, loopback VLAN packets
1296 * have the tag byte-swapped.
1297 */
1298 if (adapter->hw.mac.type >= e1000_i350)
1299 set_bit(nr: IGB_RING_FLAG_RX_LB_VLAN_BSWAP, addr: &ring->flags);
1300
1301 /* apply Rx specific ring traits */
1302 ring->count = adapter->rx_ring_count;
1303 ring->queue_index = rxr_idx;
1304
1305 u64_stats_init(syncp: &ring->rx_syncp);
1306
1307 /* assign ring to adapter */
1308 adapter->rx_ring[rxr_idx] = ring;
1309 }
1310
1311 return 0;
1312}
1313
1314
1315/**
1316 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1317 * @adapter: board private structure to initialize
1318 *
1319 * We allocate one q_vector per queue interrupt. If allocation fails we
1320 * return -ENOMEM.
1321 **/
1322static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1323{
1324 int q_vectors = adapter->num_q_vectors;
1325 int rxr_remaining = adapter->num_rx_queues;
1326 int txr_remaining = adapter->num_tx_queues;
1327 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1328 int err;
1329
1330 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1331 for (; rxr_remaining; v_idx++) {
1332 err = igb_alloc_q_vector(adapter, v_count: q_vectors, v_idx,
1333 txr_count: 0, txr_idx: 0, rxr_count: 1, rxr_idx);
1334
1335 if (err)
1336 goto err_out;
1337
1338 /* update counts and index */
1339 rxr_remaining--;
1340 rxr_idx++;
1341 }
1342 }
1343
1344 for (; v_idx < q_vectors; v_idx++) {
1345 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1346 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1347
1348 err = igb_alloc_q_vector(adapter, v_count: q_vectors, v_idx,
1349 txr_count: tqpv, txr_idx, rxr_count: rqpv, rxr_idx);
1350
1351 if (err)
1352 goto err_out;
1353
1354 /* update counts and index */
1355 rxr_remaining -= rqpv;
1356 txr_remaining -= tqpv;
1357 rxr_idx++;
1358 txr_idx++;
1359 }
1360
1361 return 0;
1362
1363err_out:
1364 adapter->num_tx_queues = 0;
1365 adapter->num_rx_queues = 0;
1366 adapter->num_q_vectors = 0;
1367
1368 while (v_idx--)
1369 igb_free_q_vector(adapter, v_idx);
1370
1371 return -ENOMEM;
1372}
1373
1374/**
1375 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1376 * @adapter: board private structure to initialize
1377 * @msix: boolean value of MSIX capability
1378 *
1379 * This function initializes the interrupts and allocates all of the queues.
1380 **/
1381static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1382{
1383 struct pci_dev *pdev = adapter->pdev;
1384 int err;
1385
1386 igb_set_interrupt_capability(adapter, msix);
1387
1388 err = igb_alloc_q_vectors(adapter);
1389 if (err) {
1390 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1391 goto err_alloc_q_vectors;
1392 }
1393
1394 igb_cache_ring_register(adapter);
1395
1396 return 0;
1397
1398err_alloc_q_vectors:
1399 igb_reset_interrupt_capability(adapter);
1400 return err;
1401}
1402
1403/**
1404 * igb_request_irq - initialize interrupts
1405 * @adapter: board private structure to initialize
1406 *
1407 * Attempts to configure interrupts using the best available
1408 * capabilities of the hardware and kernel.
1409 **/
1410static int igb_request_irq(struct igb_adapter *adapter)
1411{
1412 struct net_device *netdev = adapter->netdev;
1413 struct pci_dev *pdev = adapter->pdev;
1414 int err = 0;
1415
1416 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1417 err = igb_request_msix(adapter);
1418 if (!err)
1419 goto request_done;
1420 /* fall back to MSI */
1421 igb_free_all_tx_resources(adapter);
1422 igb_free_all_rx_resources(adapter);
1423
1424 igb_clear_interrupt_scheme(adapter);
1425 err = igb_init_interrupt_scheme(adapter, msix: false);
1426 if (err)
1427 goto request_done;
1428
1429 igb_setup_all_tx_resources(adapter);
1430 igb_setup_all_rx_resources(adapter);
1431 igb_configure(adapter);
1432 }
1433
1434 igb_assign_vector(q_vector: adapter->q_vector[0], msix_vector: 0);
1435
1436 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1437 err = request_irq(irq: pdev->irq, handler: igb_intr_msi, flags: 0,
1438 name: netdev->name, dev: adapter);
1439 if (!err)
1440 goto request_done;
1441
1442 /* fall back to legacy interrupts */
1443 igb_reset_interrupt_capability(adapter);
1444 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1445 }
1446
1447 err = request_irq(irq: pdev->irq, handler: igb_intr, IRQF_SHARED,
1448 name: netdev->name, dev: adapter);
1449
1450 if (err)
1451 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1452 err);
1453
1454request_done:
1455 return err;
1456}
1457
1458static void igb_free_irq(struct igb_adapter *adapter)
1459{
1460 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1461 int vector = 0, i;
1462
1463 free_irq(adapter->msix_entries[vector++].vector, adapter);
1464
1465 for (i = 0; i < adapter->num_q_vectors; i++)
1466 free_irq(adapter->msix_entries[vector++].vector,
1467 adapter->q_vector[i]);
1468 } else {
1469 free_irq(adapter->pdev->irq, adapter);
1470 }
1471}
1472
1473/**
1474 * igb_irq_disable - Mask off interrupt generation on the NIC
1475 * @adapter: board private structure
1476 **/
1477static void igb_irq_disable(struct igb_adapter *adapter)
1478{
1479 struct e1000_hw *hw = &adapter->hw;
1480
1481 /* we need to be careful when disabling interrupts. The VFs are also
1482 * mapped into these registers and so clearing the bits can cause
1483 * issues on the VF drivers so we only need to clear what we set
1484 */
1485 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1486 u32 regval = rd32(E1000_EIAM);
1487
1488 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1489 wr32(E1000_EIMC, adapter->eims_enable_mask);
1490 regval = rd32(E1000_EIAC);
1491 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1492 }
1493
1494 wr32(E1000_IAM, 0);
1495 wr32(E1000_IMC, ~0);
1496 wrfl();
1497 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1498 int i;
1499
1500 for (i = 0; i < adapter->num_q_vectors; i++)
1501 synchronize_irq(irq: adapter->msix_entries[i].vector);
1502 } else {
1503 synchronize_irq(irq: adapter->pdev->irq);
1504 }
1505}
1506
1507/**
1508 * igb_irq_enable - Enable default interrupt generation settings
1509 * @adapter: board private structure
1510 **/
1511static void igb_irq_enable(struct igb_adapter *adapter)
1512{
1513 struct e1000_hw *hw = &adapter->hw;
1514
1515 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1516 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1517 u32 regval = rd32(E1000_EIAC);
1518
1519 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1520 regval = rd32(E1000_EIAM);
1521 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1522 wr32(E1000_EIMS, adapter->eims_enable_mask);
1523 if (adapter->vfs_allocated_count) {
1524 wr32(E1000_MBVFIMR, 0xFF);
1525 ims |= E1000_IMS_VMMB;
1526 }
1527 wr32(E1000_IMS, ims);
1528 } else {
1529 wr32(E1000_IMS, IMS_ENABLE_MASK |
1530 E1000_IMS_DRSTA);
1531 wr32(E1000_IAM, IMS_ENABLE_MASK |
1532 E1000_IMS_DRSTA);
1533 }
1534}
1535
1536static void igb_update_mng_vlan(struct igb_adapter *adapter)
1537{
1538 struct e1000_hw *hw = &adapter->hw;
1539 u16 pf_id = adapter->vfs_allocated_count;
1540 u16 vid = adapter->hw.mng_cookie.vlan_id;
1541 u16 old_vid = adapter->mng_vlan_id;
1542
1543 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1544 /* add VID to filter table */
1545 igb_vfta_set(hw, vid, vind: pf_id, vlan_on: true, vlvf_bypass: true);
1546 adapter->mng_vlan_id = vid;
1547 } else {
1548 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1549 }
1550
1551 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1552 (vid != old_vid) &&
1553 !test_bit(old_vid, adapter->active_vlans)) {
1554 /* remove VID from filter table */
1555 igb_vfta_set(hw, vid, vind: pf_id, vlan_on: false, vlvf_bypass: true);
1556 }
1557}
1558
1559/**
1560 * igb_release_hw_control - release control of the h/w to f/w
1561 * @adapter: address of board private structure
1562 *
1563 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1564 * For ASF and Pass Through versions of f/w this means that the
1565 * driver is no longer loaded.
1566 **/
1567static void igb_release_hw_control(struct igb_adapter *adapter)
1568{
1569 struct e1000_hw *hw = &adapter->hw;
1570 u32 ctrl_ext;
1571
1572 /* Let firmware take over control of h/w */
1573 ctrl_ext = rd32(E1000_CTRL_EXT);
1574 wr32(E1000_CTRL_EXT,
1575 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1576}
1577
1578/**
1579 * igb_get_hw_control - get control of the h/w from f/w
1580 * @adapter: address of board private structure
1581 *
1582 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1583 * For ASF and Pass Through versions of f/w this means that
1584 * the driver is loaded.
1585 **/
1586static void igb_get_hw_control(struct igb_adapter *adapter)
1587{
1588 struct e1000_hw *hw = &adapter->hw;
1589 u32 ctrl_ext;
1590
1591 /* Let firmware know the driver has taken over */
1592 ctrl_ext = rd32(E1000_CTRL_EXT);
1593 wr32(E1000_CTRL_EXT,
1594 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1595}
1596
1597static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1598{
1599 struct net_device *netdev = adapter->netdev;
1600 struct e1000_hw *hw = &adapter->hw;
1601
1602 WARN_ON(hw->mac.type != e1000_i210);
1603
1604 if (enable)
1605 adapter->flags |= IGB_FLAG_FQTSS;
1606 else
1607 adapter->flags &= ~IGB_FLAG_FQTSS;
1608
1609 if (netif_running(dev: netdev))
1610 schedule_work(work: &adapter->reset_task);
1611}
1612
1613static bool is_fqtss_enabled(struct igb_adapter *adapter)
1614{
1615 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1616}
1617
1618static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1619 enum tx_queue_prio prio)
1620{
1621 u32 val;
1622
1623 WARN_ON(hw->mac.type != e1000_i210);
1624 WARN_ON(queue < 0 || queue > 4);
1625
1626 val = rd32(E1000_I210_TXDCTL(queue));
1627
1628 if (prio == TX_QUEUE_PRIO_HIGH)
1629 val |= E1000_TXDCTL_PRIORITY;
1630 else
1631 val &= ~E1000_TXDCTL_PRIORITY;
1632
1633 wr32(E1000_I210_TXDCTL(queue), val);
1634}
1635
1636static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1637{
1638 u32 val;
1639
1640 WARN_ON(hw->mac.type != e1000_i210);
1641 WARN_ON(queue < 0 || queue > 1);
1642
1643 val = rd32(E1000_I210_TQAVCC(queue));
1644
1645 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1646 val |= E1000_TQAVCC_QUEUEMODE;
1647 else
1648 val &= ~E1000_TQAVCC_QUEUEMODE;
1649
1650 wr32(E1000_I210_TQAVCC(queue), val);
1651}
1652
1653static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1654{
1655 int i;
1656
1657 for (i = 0; i < adapter->num_tx_queues; i++) {
1658 if (adapter->tx_ring[i]->cbs_enable)
1659 return true;
1660 }
1661
1662 return false;
1663}
1664
1665static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1666{
1667 int i;
1668
1669 for (i = 0; i < adapter->num_tx_queues; i++) {
1670 if (adapter->tx_ring[i]->launchtime_enable)
1671 return true;
1672 }
1673
1674 return false;
1675}
1676
1677/**
1678 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1679 * @adapter: pointer to adapter struct
1680 * @queue: queue number
1681 *
1682 * Configure CBS and Launchtime for a given hardware queue.
1683 * Parameters are retrieved from the correct Tx ring, so
1684 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1685 * for setting those correctly prior to this function being called.
1686 **/
1687static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1688{
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 struct igb_ring *ring;
1692 u32 tqavcc, tqavctrl;
1693 u16 value;
1694
1695 WARN_ON(hw->mac.type != e1000_i210);
1696 WARN_ON(queue < 0 || queue > 1);
1697 ring = adapter->tx_ring[queue];
1698
1699 /* If any of the Qav features is enabled, configure queues as SR and
1700 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1701 * as SP.
1702 */
1703 if (ring->cbs_enable || ring->launchtime_enable) {
1704 set_tx_desc_fetch_prio(hw, queue, prio: TX_QUEUE_PRIO_HIGH);
1705 set_queue_mode(hw, queue, mode: QUEUE_MODE_STREAM_RESERVATION);
1706 } else {
1707 set_tx_desc_fetch_prio(hw, queue, prio: TX_QUEUE_PRIO_LOW);
1708 set_queue_mode(hw, queue, mode: QUEUE_MODE_STRICT_PRIORITY);
1709 }
1710
1711 /* If CBS is enabled, set DataTranARB and config its parameters. */
1712 if (ring->cbs_enable || queue == 0) {
1713 /* i210 does not allow the queue 0 to be in the Strict
1714 * Priority mode while the Qav mode is enabled, so,
1715 * instead of disabling strict priority mode, we give
1716 * queue 0 the maximum of credits possible.
1717 *
1718 * See section 8.12.19 of the i210 datasheet, "Note:
1719 * Queue0 QueueMode must be set to 1b when
1720 * TransmitMode is set to Qav."
1721 */
1722 if (queue == 0 && !ring->cbs_enable) {
1723 /* max "linkspeed" idleslope in kbps */
1724 ring->idleslope = 1000000;
1725 ring->hicredit = ETH_FRAME_LEN;
1726 }
1727
1728 /* Always set data transfer arbitration to credit-based
1729 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1730 * the queues.
1731 */
1732 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1733 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1734 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1735
1736 /* According to i210 datasheet section 7.2.7.7, we should set
1737 * the 'idleSlope' field from TQAVCC register following the
1738 * equation:
1739 *
1740 * For 100 Mbps link speed:
1741 *
1742 * value = BW * 0x7735 * 0.2 (E1)
1743 *
1744 * For 1000Mbps link speed:
1745 *
1746 * value = BW * 0x7735 * 2 (E2)
1747 *
1748 * E1 and E2 can be merged into one equation as shown below.
1749 * Note that 'link-speed' is in Mbps.
1750 *
1751 * value = BW * 0x7735 * 2 * link-speed
1752 * -------------- (E3)
1753 * 1000
1754 *
1755 * 'BW' is the percentage bandwidth out of full link speed
1756 * which can be found with the following equation. Note that
1757 * idleSlope here is the parameter from this function which
1758 * is in kbps.
1759 *
1760 * BW = idleSlope
1761 * ----------------- (E4)
1762 * link-speed * 1000
1763 *
1764 * That said, we can come up with a generic equation to
1765 * calculate the value we should set it TQAVCC register by
1766 * replacing 'BW' in E3 by E4. The resulting equation is:
1767 *
1768 * value = idleSlope * 0x7735 * 2 * link-speed
1769 * ----------------- -------------- (E5)
1770 * link-speed * 1000 1000
1771 *
1772 * 'link-speed' is present in both sides of the fraction so
1773 * it is canceled out. The final equation is the following:
1774 *
1775 * value = idleSlope * 61034
1776 * ----------------- (E6)
1777 * 1000000
1778 *
1779 * NOTE: For i210, given the above, we can see that idleslope
1780 * is represented in 16.38431 kbps units by the value at
1781 * the TQAVCC register (1Gbps / 61034), which reduces
1782 * the granularity for idleslope increments.
1783 * For instance, if you want to configure a 2576kbps
1784 * idleslope, the value to be written on the register
1785 * would have to be 157.23. If rounded down, you end
1786 * up with less bandwidth available than originally
1787 * required (~2572 kbps). If rounded up, you end up
1788 * with a higher bandwidth (~2589 kbps). Below the
1789 * approach we take is to always round up the
1790 * calculated value, so the resulting bandwidth might
1791 * be slightly higher for some configurations.
1792 */
1793 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1794
1795 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1796 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1797 tqavcc |= value;
1798 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1799
1800 wr32(E1000_I210_TQAVHC(queue),
1801 0x80000000 + ring->hicredit * 0x7735);
1802 } else {
1803
1804 /* Set idleSlope to zero. */
1805 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1806 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1807 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1808
1809 /* Set hiCredit to zero. */
1810 wr32(E1000_I210_TQAVHC(queue), 0);
1811
1812 /* If CBS is not enabled for any queues anymore, then return to
1813 * the default state of Data Transmission Arbitration on
1814 * TQAVCTRL.
1815 */
1816 if (!is_any_cbs_enabled(adapter)) {
1817 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1818 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1819 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1820 }
1821 }
1822
1823 /* If LaunchTime is enabled, set DataTranTIM. */
1824 if (ring->launchtime_enable) {
1825 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1826 * for any of the SR queues, and configure fetchtime delta.
1827 * XXX NOTE:
1828 * - LaunchTime will be enabled for all SR queues.
1829 * - A fixed offset can be added relative to the launch
1830 * time of all packets if configured at reg LAUNCH_OS0.
1831 * We are keeping it as 0 for now (default value).
1832 */
1833 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1834 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1835 E1000_TQAVCTRL_FETCHTIME_DELTA;
1836 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1837 } else {
1838 /* If Launchtime is not enabled for any SR queues anymore,
1839 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1840 * effectively disabling Launchtime.
1841 */
1842 if (!is_any_txtime_enabled(adapter)) {
1843 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1844 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1845 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1846 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1847 }
1848 }
1849
1850 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1851 * CBS are not configurable by software so we don't do any 'controller
1852 * configuration' in respect to these parameters.
1853 */
1854
1855 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1856 ring->cbs_enable ? "enabled" : "disabled",
1857 ring->launchtime_enable ? "enabled" : "disabled",
1858 queue,
1859 ring->idleslope, ring->sendslope,
1860 ring->hicredit, ring->locredit);
1861}
1862
1863static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1864 bool enable)
1865{
1866 struct igb_ring *ring;
1867
1868 if (queue < 0 || queue > adapter->num_tx_queues)
1869 return -EINVAL;
1870
1871 ring = adapter->tx_ring[queue];
1872 ring->launchtime_enable = enable;
1873
1874 return 0;
1875}
1876
1877static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1878 bool enable, int idleslope, int sendslope,
1879 int hicredit, int locredit)
1880{
1881 struct igb_ring *ring;
1882
1883 if (queue < 0 || queue > adapter->num_tx_queues)
1884 return -EINVAL;
1885
1886 ring = adapter->tx_ring[queue];
1887
1888 ring->cbs_enable = enable;
1889 ring->idleslope = idleslope;
1890 ring->sendslope = sendslope;
1891 ring->hicredit = hicredit;
1892 ring->locredit = locredit;
1893
1894 return 0;
1895}
1896
1897/**
1898 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1899 * @adapter: pointer to adapter struct
1900 *
1901 * Configure TQAVCTRL register switching the controller's Tx mode
1902 * if FQTSS mode is enabled or disabled. Additionally, will issue
1903 * a call to igb_config_tx_modes() per queue so any previously saved
1904 * Tx parameters are applied.
1905 **/
1906static void igb_setup_tx_mode(struct igb_adapter *adapter)
1907{
1908 struct net_device *netdev = adapter->netdev;
1909 struct e1000_hw *hw = &adapter->hw;
1910 u32 val;
1911
1912 /* Only i210 controller supports changing the transmission mode. */
1913 if (hw->mac.type != e1000_i210)
1914 return;
1915
1916 if (is_fqtss_enabled(adapter)) {
1917 int i, max_queue;
1918
1919 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1920 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1921 * so SP queues wait for SR ones.
1922 */
1923 val = rd32(E1000_I210_TQAVCTRL);
1924 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1925 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1926 wr32(E1000_I210_TQAVCTRL, val);
1927
1928 /* Configure Tx and Rx packet buffers sizes as described in
1929 * i210 datasheet section 7.2.7.7.
1930 */
1931 val = rd32(E1000_TXPBS);
1932 val &= ~I210_TXPBSIZE_MASK;
1933 val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
1934 I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
1935 wr32(E1000_TXPBS, val);
1936
1937 val = rd32(E1000_RXPBS);
1938 val &= ~I210_RXPBSIZE_MASK;
1939 val |= I210_RXPBSIZE_PB_30KB;
1940 wr32(E1000_RXPBS, val);
1941
1942 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1943 * register should not exceed the buffer size programmed in
1944 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1945 * so according to the datasheet we should set MAX_TPKT_SIZE to
1946 * 4kB / 64.
1947 *
1948 * However, when we do so, no frame from queue 2 and 3 are
1949 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1950 * or _equal_ to the buffer size programmed in TXPBS. For this
1951 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1952 */
1953 val = (4096 - 1) / 64;
1954 wr32(E1000_I210_DTXMXPKTSZ, val);
1955
1956 /* Since FQTSS mode is enabled, apply any CBS configuration
1957 * previously set. If no previous CBS configuration has been
1958 * done, then the initial configuration is applied, which means
1959 * CBS is disabled.
1960 */
1961 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1962 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1963
1964 for (i = 0; i < max_queue; i++) {
1965 igb_config_tx_modes(adapter, queue: i);
1966 }
1967 } else {
1968 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1969 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1970 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1971
1972 val = rd32(E1000_I210_TQAVCTRL);
1973 /* According to Section 8.12.21, the other flags we've set when
1974 * enabling FQTSS are not relevant when disabling FQTSS so we
1975 * don't set they here.
1976 */
1977 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1978 wr32(E1000_I210_TQAVCTRL, val);
1979 }
1980
1981 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1982 "enabled" : "disabled");
1983}
1984
1985/**
1986 * igb_configure - configure the hardware for RX and TX
1987 * @adapter: private board structure
1988 **/
1989static void igb_configure(struct igb_adapter *adapter)
1990{
1991 struct net_device *netdev = adapter->netdev;
1992 int i;
1993
1994 igb_get_hw_control(adapter);
1995 igb_set_rx_mode(netdev);
1996 igb_setup_tx_mode(adapter);
1997
1998 igb_restore_vlan(adapter);
1999
2000 igb_setup_tctl(adapter);
2001 igb_setup_mrqc(adapter);
2002 igb_setup_rctl(adapter);
2003
2004 igb_nfc_filter_restore(adapter);
2005 igb_configure_tx(adapter);
2006 igb_configure_rx(adapter);
2007
2008 igb_rx_fifo_flush_82575(hw: &adapter->hw);
2009
2010 /* call igb_desc_unused which always leaves
2011 * at least 1 descriptor unused to make sure
2012 * next_to_use != next_to_clean
2013 */
2014 for (i = 0; i < adapter->num_rx_queues; i++) {
2015 struct igb_ring *ring = adapter->rx_ring[i];
2016 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2017 }
2018}
2019
2020/**
2021 * igb_power_up_link - Power up the phy/serdes link
2022 * @adapter: address of board private structure
2023 **/
2024void igb_power_up_link(struct igb_adapter *adapter)
2025{
2026 igb_reset_phy(hw: &adapter->hw);
2027
2028 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2029 igb_power_up_phy_copper(hw: &adapter->hw);
2030 else
2031 igb_power_up_serdes_link_82575(hw: &adapter->hw);
2032
2033 igb_setup_link(hw: &adapter->hw);
2034}
2035
2036/**
2037 * igb_power_down_link - Power down the phy/serdes link
2038 * @adapter: address of board private structure
2039 */
2040static void igb_power_down_link(struct igb_adapter *adapter)
2041{
2042 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2043 igb_power_down_phy_copper_82575(hw: &adapter->hw);
2044 else
2045 igb_shutdown_serdes_link_82575(hw: &adapter->hw);
2046}
2047
2048/**
2049 * igb_check_swap_media - Detect and switch function for Media Auto Sense
2050 * @adapter: address of the board private structure
2051 **/
2052static void igb_check_swap_media(struct igb_adapter *adapter)
2053{
2054 struct e1000_hw *hw = &adapter->hw;
2055 u32 ctrl_ext, connsw;
2056 bool swap_now = false;
2057
2058 ctrl_ext = rd32(E1000_CTRL_EXT);
2059 connsw = rd32(E1000_CONNSW);
2060
2061 /* need to live swap if current media is copper and we have fiber/serdes
2062 * to go to.
2063 */
2064
2065 if ((hw->phy.media_type == e1000_media_type_copper) &&
2066 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2067 swap_now = true;
2068 } else if ((hw->phy.media_type != e1000_media_type_copper) &&
2069 !(connsw & E1000_CONNSW_SERDESD)) {
2070 /* copper signal takes time to appear */
2071 if (adapter->copper_tries < 4) {
2072 adapter->copper_tries++;
2073 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2074 wr32(E1000_CONNSW, connsw);
2075 return;
2076 } else {
2077 adapter->copper_tries = 0;
2078 if ((connsw & E1000_CONNSW_PHYSD) &&
2079 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2080 swap_now = true;
2081 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2082 wr32(E1000_CONNSW, connsw);
2083 }
2084 }
2085 }
2086
2087 if (!swap_now)
2088 return;
2089
2090 switch (hw->phy.media_type) {
2091 case e1000_media_type_copper:
2092 netdev_info(dev: adapter->netdev,
2093 format: "MAS: changing media to fiber/serdes\n");
2094 ctrl_ext |=
2095 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2096 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2097 adapter->copper_tries = 0;
2098 break;
2099 case e1000_media_type_internal_serdes:
2100 case e1000_media_type_fiber:
2101 netdev_info(dev: adapter->netdev,
2102 format: "MAS: changing media to copper\n");
2103 ctrl_ext &=
2104 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2105 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2106 break;
2107 default:
2108 /* shouldn't get here during regular operation */
2109 netdev_err(dev: adapter->netdev,
2110 format: "AMS: Invalid media type found, returning\n");
2111 break;
2112 }
2113 wr32(E1000_CTRL_EXT, ctrl_ext);
2114}
2115
2116/**
2117 * igb_up - Open the interface and prepare it to handle traffic
2118 * @adapter: board private structure
2119 **/
2120int igb_up(struct igb_adapter *adapter)
2121{
2122 struct e1000_hw *hw = &adapter->hw;
2123 int i;
2124
2125 /* hardware has been reset, we need to reload some things */
2126 igb_configure(adapter);
2127
2128 clear_bit(nr: __IGB_DOWN, addr: &adapter->state);
2129
2130 for (i = 0; i < adapter->num_q_vectors; i++)
2131 napi_enable(n: &(adapter->q_vector[i]->napi));
2132
2133 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2134 igb_configure_msix(adapter);
2135 else
2136 igb_assign_vector(q_vector: adapter->q_vector[0], msix_vector: 0);
2137
2138 /* Clear any pending interrupts. */
2139 rd32(E1000_TSICR);
2140 rd32(E1000_ICR);
2141 igb_irq_enable(adapter);
2142
2143 /* notify VFs that reset has been completed */
2144 if (adapter->vfs_allocated_count) {
2145 u32 reg_data = rd32(E1000_CTRL_EXT);
2146
2147 reg_data |= E1000_CTRL_EXT_PFRSTD;
2148 wr32(E1000_CTRL_EXT, reg_data);
2149 }
2150
2151 netif_tx_start_all_queues(dev: adapter->netdev);
2152
2153 /* start the watchdog. */
2154 hw->mac.get_link_status = 1;
2155 schedule_work(work: &adapter->watchdog_task);
2156
2157 if ((adapter->flags & IGB_FLAG_EEE) &&
2158 (!hw->dev_spec._82575.eee_disable))
2159 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2160
2161 return 0;
2162}
2163
2164void igb_down(struct igb_adapter *adapter)
2165{
2166 struct net_device *netdev = adapter->netdev;
2167 struct e1000_hw *hw = &adapter->hw;
2168 u32 tctl, rctl;
2169 int i;
2170
2171 /* signal that we're down so the interrupt handler does not
2172 * reschedule our watchdog timer
2173 */
2174 set_bit(nr: __IGB_DOWN, addr: &adapter->state);
2175
2176 /* disable receives in the hardware */
2177 rctl = rd32(E1000_RCTL);
2178 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2179 /* flush and sleep below */
2180
2181 igb_nfc_filter_exit(adapter);
2182
2183 netif_carrier_off(dev: netdev);
2184 netif_tx_stop_all_queues(dev: netdev);
2185
2186 /* disable transmits in the hardware */
2187 tctl = rd32(E1000_TCTL);
2188 tctl &= ~E1000_TCTL_EN;
2189 wr32(E1000_TCTL, tctl);
2190 /* flush both disables and wait for them to finish */
2191 wrfl();
2192 usleep_range(min: 10000, max: 11000);
2193
2194 igb_irq_disable(adapter);
2195
2196 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2197
2198 for (i = 0; i < adapter->num_q_vectors; i++) {
2199 if (adapter->q_vector[i]) {
2200 napi_synchronize(n: &adapter->q_vector[i]->napi);
2201 napi_disable(n: &adapter->q_vector[i]->napi);
2202 }
2203 }
2204
2205 del_timer_sync(timer: &adapter->watchdog_timer);
2206 del_timer_sync(timer: &adapter->phy_info_timer);
2207
2208 /* record the stats before reset*/
2209 spin_lock(lock: &adapter->stats64_lock);
2210 igb_update_stats(adapter);
2211 spin_unlock(lock: &adapter->stats64_lock);
2212
2213 adapter->link_speed = 0;
2214 adapter->link_duplex = 0;
2215
2216 if (!pci_channel_offline(pdev: adapter->pdev))
2217 igb_reset(adapter);
2218
2219 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2220 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2221
2222 igb_clean_all_tx_rings(adapter);
2223 igb_clean_all_rx_rings(adapter);
2224#ifdef CONFIG_IGB_DCA
2225
2226 /* since we reset the hardware DCA settings were cleared */
2227 igb_setup_dca(adapter);
2228#endif
2229}
2230
2231void igb_reinit_locked(struct igb_adapter *adapter)
2232{
2233 while (test_and_set_bit(nr: __IGB_RESETTING, addr: &adapter->state))
2234 usleep_range(min: 1000, max: 2000);
2235 igb_down(adapter);
2236 igb_up(adapter);
2237 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
2238}
2239
2240/** igb_enable_mas - Media Autosense re-enable after swap
2241 *
2242 * @adapter: adapter struct
2243 **/
2244static void igb_enable_mas(struct igb_adapter *adapter)
2245{
2246 struct e1000_hw *hw = &adapter->hw;
2247 u32 connsw = rd32(E1000_CONNSW);
2248
2249 /* configure for SerDes media detect */
2250 if ((hw->phy.media_type == e1000_media_type_copper) &&
2251 (!(connsw & E1000_CONNSW_SERDESD))) {
2252 connsw |= E1000_CONNSW_ENRGSRC;
2253 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2254 wr32(E1000_CONNSW, connsw);
2255 wrfl();
2256 }
2257}
2258
2259#ifdef CONFIG_IGB_HWMON
2260/**
2261 * igb_set_i2c_bb - Init I2C interface
2262 * @hw: pointer to hardware structure
2263 **/
2264static void igb_set_i2c_bb(struct e1000_hw *hw)
2265{
2266 u32 ctrl_ext;
2267 s32 i2cctl;
2268
2269 ctrl_ext = rd32(E1000_CTRL_EXT);
2270 ctrl_ext |= E1000_CTRL_I2C_ENA;
2271 wr32(E1000_CTRL_EXT, ctrl_ext);
2272 wrfl();
2273
2274 i2cctl = rd32(E1000_I2CPARAMS);
2275 i2cctl |= E1000_I2CBB_EN
2276 | E1000_I2C_CLK_OE_N
2277 | E1000_I2C_DATA_OE_N;
2278 wr32(E1000_I2CPARAMS, i2cctl);
2279 wrfl();
2280}
2281#endif
2282
2283void igb_reset(struct igb_adapter *adapter)
2284{
2285 struct pci_dev *pdev = adapter->pdev;
2286 struct e1000_hw *hw = &adapter->hw;
2287 struct e1000_mac_info *mac = &hw->mac;
2288 struct e1000_fc_info *fc = &hw->fc;
2289 u32 pba, hwm;
2290
2291 /* Repartition Pba for greater than 9k mtu
2292 * To take effect CTRL.RST is required.
2293 */
2294 switch (mac->type) {
2295 case e1000_i350:
2296 case e1000_i354:
2297 case e1000_82580:
2298 pba = rd32(E1000_RXPBS);
2299 pba = igb_rxpbs_adjust_82580(data: pba);
2300 break;
2301 case e1000_82576:
2302 pba = rd32(E1000_RXPBS);
2303 pba &= E1000_RXPBS_SIZE_MASK_82576;
2304 break;
2305 case e1000_82575:
2306 case e1000_i210:
2307 case e1000_i211:
2308 default:
2309 pba = E1000_PBA_34K;
2310 break;
2311 }
2312
2313 if (mac->type == e1000_82575) {
2314 u32 min_rx_space, min_tx_space, needed_tx_space;
2315
2316 /* write Rx PBA so that hardware can report correct Tx PBA */
2317 wr32(E1000_PBA, pba);
2318
2319 /* To maintain wire speed transmits, the Tx FIFO should be
2320 * large enough to accommodate two full transmit packets,
2321 * rounded up to the next 1KB and expressed in KB. Likewise,
2322 * the Rx FIFO should be large enough to accommodate at least
2323 * one full receive packet and is similarly rounded up and
2324 * expressed in KB.
2325 */
2326 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2327
2328 /* The Tx FIFO also stores 16 bytes of information about the Tx
2329 * but don't include Ethernet FCS because hardware appends it.
2330 * We only need to round down to the nearest 512 byte block
2331 * count since the value we care about is 2 frames, not 1.
2332 */
2333 min_tx_space = adapter->max_frame_size;
2334 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2335 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2336
2337 /* upper 16 bits has Tx packet buffer allocation size in KB */
2338 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2339
2340 /* If current Tx allocation is less than the min Tx FIFO size,
2341 * and the min Tx FIFO size is less than the current Rx FIFO
2342 * allocation, take space away from current Rx allocation.
2343 */
2344 if (needed_tx_space < pba) {
2345 pba -= needed_tx_space;
2346
2347 /* if short on Rx space, Rx wins and must trump Tx
2348 * adjustment
2349 */
2350 if (pba < min_rx_space)
2351 pba = min_rx_space;
2352 }
2353
2354 /* adjust PBA for jumbo frames */
2355 wr32(E1000_PBA, pba);
2356 }
2357
2358 /* flow control settings
2359 * The high water mark must be low enough to fit one full frame
2360 * after transmitting the pause frame. As such we must have enough
2361 * space to allow for us to complete our current transmit and then
2362 * receive the frame that is in progress from the link partner.
2363 * Set it to:
2364 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2365 */
2366 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2367
2368 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2369 fc->low_water = fc->high_water - 16;
2370 fc->pause_time = 0xFFFF;
2371 fc->send_xon = 1;
2372 fc->current_mode = fc->requested_mode;
2373
2374 /* disable receive for all VFs and wait one second */
2375 if (adapter->vfs_allocated_count) {
2376 int i;
2377
2378 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2379 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2380
2381 /* ping all the active vfs to let them know we are going down */
2382 igb_ping_all_vfs(adapter);
2383
2384 /* disable transmits and receives */
2385 wr32(E1000_VFRE, 0);
2386 wr32(E1000_VFTE, 0);
2387 }
2388
2389 /* Allow time for pending master requests to run */
2390 hw->mac.ops.reset_hw(hw);
2391 wr32(E1000_WUC, 0);
2392
2393 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2394 /* need to resetup here after media swap */
2395 adapter->ei.get_invariants(hw);
2396 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2397 }
2398 if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
2399 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2400 igb_enable_mas(adapter);
2401 }
2402 if (hw->mac.ops.init_hw(hw))
2403 dev_err(&pdev->dev, "Hardware Error\n");
2404
2405 /* RAR registers were cleared during init_hw, clear mac table */
2406 igb_flush_mac_table(adapter);
2407 __dev_uc_unsync(dev: adapter->netdev, NULL);
2408
2409 /* Recover default RAR entry */
2410 igb_set_default_mac_filter(adapter);
2411
2412 /* Flow control settings reset on hardware reset, so guarantee flow
2413 * control is off when forcing speed.
2414 */
2415 if (!hw->mac.autoneg)
2416 igb_force_mac_fc(hw);
2417
2418 igb_init_dmac(adapter, pba);
2419#ifdef CONFIG_IGB_HWMON
2420 /* Re-initialize the thermal sensor on i350 devices. */
2421 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2422 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2423 /* If present, re-initialize the external thermal sensor
2424 * interface.
2425 */
2426 if (adapter->ets)
2427 igb_set_i2c_bb(hw);
2428 mac->ops.init_thermal_sensor_thresh(hw);
2429 }
2430 }
2431#endif
2432 /* Re-establish EEE setting */
2433 if (hw->phy.media_type == e1000_media_type_copper) {
2434 switch (mac->type) {
2435 case e1000_i350:
2436 case e1000_i210:
2437 case e1000_i211:
2438 igb_set_eee_i350(hw, adv1G: true, adv100M: true);
2439 break;
2440 case e1000_i354:
2441 igb_set_eee_i354(hw, adv1G: true, adv100M: true);
2442 break;
2443 default:
2444 break;
2445 }
2446 }
2447 if (!netif_running(dev: adapter->netdev))
2448 igb_power_down_link(adapter);
2449
2450 igb_update_mng_vlan(adapter);
2451
2452 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2453 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2454
2455 /* Re-enable PTP, where applicable. */
2456 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2457 igb_ptp_reset(adapter);
2458
2459 igb_get_phy_info(hw);
2460}
2461
2462static netdev_features_t igb_fix_features(struct net_device *netdev,
2463 netdev_features_t features)
2464{
2465 /* Since there is no support for separate Rx/Tx vlan accel
2466 * enable/disable make sure Tx flag is always in same state as Rx.
2467 */
2468 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2469 features |= NETIF_F_HW_VLAN_CTAG_TX;
2470 else
2471 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2472
2473 return features;
2474}
2475
2476static int igb_set_features(struct net_device *netdev,
2477 netdev_features_t features)
2478{
2479 netdev_features_t changed = netdev->features ^ features;
2480 struct igb_adapter *adapter = netdev_priv(dev: netdev);
2481
2482 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2483 igb_vlan_mode(netdev, features);
2484
2485 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2486 return 0;
2487
2488 if (!(features & NETIF_F_NTUPLE)) {
2489 struct hlist_node *node2;
2490 struct igb_nfc_filter *rule;
2491
2492 spin_lock(lock: &adapter->nfc_lock);
2493 hlist_for_each_entry_safe(rule, node2,
2494 &adapter->nfc_filter_list, nfc_node) {
2495 igb_erase_filter(adapter, input: rule);
2496 hlist_del(n: &rule->nfc_node);
2497 kfree(objp: rule);
2498 }
2499 spin_unlock(lock: &adapter->nfc_lock);
2500 adapter->nfc_filter_count = 0;
2501 }
2502
2503 netdev->features = features;
2504
2505 if (netif_running(dev: netdev))
2506 igb_reinit_locked(adapter);
2507 else
2508 igb_reset(adapter);
2509
2510 return 1;
2511}
2512
2513static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2514 struct net_device *dev,
2515 const unsigned char *addr, u16 vid,
2516 u16 flags,
2517 struct netlink_ext_ack *extack)
2518{
2519 /* guarantee we can provide a unique filter for the unicast address */
2520 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2521 struct igb_adapter *adapter = netdev_priv(dev);
2522 int vfn = adapter->vfs_allocated_count;
2523
2524 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2525 return -ENOMEM;
2526 }
2527
2528 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2529}
2530
2531#define IGB_MAX_MAC_HDR_LEN 127
2532#define IGB_MAX_NETWORK_HDR_LEN 511
2533
2534static netdev_features_t
2535igb_features_check(struct sk_buff *skb, struct net_device *dev,
2536 netdev_features_t features)
2537{
2538 unsigned int network_hdr_len, mac_hdr_len;
2539
2540 /* Make certain the headers can be described by a context descriptor */
2541 mac_hdr_len = skb_network_offset(skb);
2542 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2543 return features & ~(NETIF_F_HW_CSUM |
2544 NETIF_F_SCTP_CRC |
2545 NETIF_F_GSO_UDP_L4 |
2546 NETIF_F_HW_VLAN_CTAG_TX |
2547 NETIF_F_TSO |
2548 NETIF_F_TSO6);
2549
2550 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2551 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2552 return features & ~(NETIF_F_HW_CSUM |
2553 NETIF_F_SCTP_CRC |
2554 NETIF_F_GSO_UDP_L4 |
2555 NETIF_F_TSO |
2556 NETIF_F_TSO6);
2557
2558 /* We can only support IPV4 TSO in tunnels if we can mangle the
2559 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2560 */
2561 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2562 features &= ~NETIF_F_TSO;
2563
2564 return features;
2565}
2566
2567static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2568{
2569 if (!is_fqtss_enabled(adapter)) {
2570 enable_fqtss(adapter, enable: true);
2571 return;
2572 }
2573
2574 igb_config_tx_modes(adapter, queue);
2575
2576 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2577 enable_fqtss(adapter, enable: false);
2578}
2579
2580static int igb_offload_cbs(struct igb_adapter *adapter,
2581 struct tc_cbs_qopt_offload *qopt)
2582{
2583 struct e1000_hw *hw = &adapter->hw;
2584 int err;
2585
2586 /* CBS offloading is only supported by i210 controller. */
2587 if (hw->mac.type != e1000_i210)
2588 return -EOPNOTSUPP;
2589
2590 /* CBS offloading is only supported by queue 0 and queue 1. */
2591 if (qopt->queue < 0 || qopt->queue > 1)
2592 return -EINVAL;
2593
2594 err = igb_save_cbs_params(adapter, queue: qopt->queue, enable: qopt->enable,
2595 idleslope: qopt->idleslope, sendslope: qopt->sendslope,
2596 hicredit: qopt->hicredit, locredit: qopt->locredit);
2597 if (err)
2598 return err;
2599
2600 igb_offload_apply(adapter, queue: qopt->queue);
2601
2602 return 0;
2603}
2604
2605#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2606#define VLAN_PRIO_FULL_MASK (0x07)
2607
2608static int igb_parse_cls_flower(struct igb_adapter *adapter,
2609 struct flow_cls_offload *f,
2610 int traffic_class,
2611 struct igb_nfc_filter *input)
2612{
2613 struct flow_rule *rule = flow_cls_offload_flow_rule(flow_cmd: f);
2614 struct flow_dissector *dissector = rule->match.dissector;
2615 struct netlink_ext_ack *extack = f->common.extack;
2616
2617 if (dissector->used_keys &
2618 ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
2619 BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
2620 BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2621 BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
2622 NL_SET_ERR_MSG_MOD(extack,
2623 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2624 return -EOPNOTSUPP;
2625 }
2626
2627 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2628 struct flow_match_eth_addrs match;
2629
2630 flow_rule_match_eth_addrs(rule, out: &match);
2631 if (!is_zero_ether_addr(addr: match.mask->dst)) {
2632 if (!is_broadcast_ether_addr(addr: match.mask->dst)) {
2633 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2634 return -EINVAL;
2635 }
2636
2637 input->filter.match_flags |=
2638 IGB_FILTER_FLAG_DST_MAC_ADDR;
2639 ether_addr_copy(dst: input->filter.dst_addr, src: match.key->dst);
2640 }
2641
2642 if (!is_zero_ether_addr(addr: match.mask->src)) {
2643 if (!is_broadcast_ether_addr(addr: match.mask->src)) {
2644 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2645 return -EINVAL;
2646 }
2647
2648 input->filter.match_flags |=
2649 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2650 ether_addr_copy(dst: input->filter.src_addr, src: match.key->src);
2651 }
2652 }
2653
2654 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_BASIC)) {
2655 struct flow_match_basic match;
2656
2657 flow_rule_match_basic(rule, out: &match);
2658 if (match.mask->n_proto) {
2659 if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
2660 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2661 return -EINVAL;
2662 }
2663
2664 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2665 input->filter.etype = match.key->n_proto;
2666 }
2667 }
2668
2669 if (flow_rule_match_key(rule, key: FLOW_DISSECTOR_KEY_VLAN)) {
2670 struct flow_match_vlan match;
2671
2672 flow_rule_match_vlan(rule, out: &match);
2673 if (match.mask->vlan_priority) {
2674 if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2675 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2676 return -EINVAL;
2677 }
2678
2679 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2680 input->filter.vlan_tci =
2681 (__force __be16)match.key->vlan_priority;
2682 }
2683 }
2684
2685 input->action = traffic_class;
2686 input->cookie = f->cookie;
2687
2688 return 0;
2689}
2690
2691static int igb_configure_clsflower(struct igb_adapter *adapter,
2692 struct flow_cls_offload *cls_flower)
2693{
2694 struct netlink_ext_ack *extack = cls_flower->common.extack;
2695 struct igb_nfc_filter *filter, *f;
2696 int err, tc;
2697
2698 tc = tc_classid_to_hwtc(dev: adapter->netdev, classid: cls_flower->classid);
2699 if (tc < 0) {
2700 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2701 return -EINVAL;
2702 }
2703
2704 filter = kzalloc(size: sizeof(*filter), GFP_KERNEL);
2705 if (!filter)
2706 return -ENOMEM;
2707
2708 err = igb_parse_cls_flower(adapter, f: cls_flower, traffic_class: tc, input: filter);
2709 if (err < 0)
2710 goto err_parse;
2711
2712 spin_lock(lock: &adapter->nfc_lock);
2713
2714 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2715 if (!memcmp(p: &f->filter, q: &filter->filter, size: sizeof(f->filter))) {
2716 err = -EEXIST;
2717 NL_SET_ERR_MSG_MOD(extack,
2718 "This filter is already set in ethtool");
2719 goto err_locked;
2720 }
2721 }
2722
2723 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2724 if (!memcmp(p: &f->filter, q: &filter->filter, size: sizeof(f->filter))) {
2725 err = -EEXIST;
2726 NL_SET_ERR_MSG_MOD(extack,
2727 "This filter is already set in cls_flower");
2728 goto err_locked;
2729 }
2730 }
2731
2732 err = igb_add_filter(adapter, input: filter);
2733 if (err < 0) {
2734 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2735 goto err_locked;
2736 }
2737
2738 hlist_add_head(n: &filter->nfc_node, h: &adapter->cls_flower_list);
2739
2740 spin_unlock(lock: &adapter->nfc_lock);
2741
2742 return 0;
2743
2744err_locked:
2745 spin_unlock(lock: &adapter->nfc_lock);
2746
2747err_parse:
2748 kfree(objp: filter);
2749
2750 return err;
2751}
2752
2753static int igb_delete_clsflower(struct igb_adapter *adapter,
2754 struct flow_cls_offload *cls_flower)
2755{
2756 struct igb_nfc_filter *filter;
2757 int err;
2758
2759 spin_lock(lock: &adapter->nfc_lock);
2760
2761 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2762 if (filter->cookie == cls_flower->cookie)
2763 break;
2764
2765 if (!filter) {
2766 err = -ENOENT;
2767 goto out;
2768 }
2769
2770 err = igb_erase_filter(adapter, input: filter);
2771 if (err < 0)
2772 goto out;
2773
2774 hlist_del(n: &filter->nfc_node);
2775 kfree(objp: filter);
2776
2777out:
2778 spin_unlock(lock: &adapter->nfc_lock);
2779
2780 return err;
2781}
2782
2783static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2784 struct flow_cls_offload *cls_flower)
2785{
2786 switch (cls_flower->command) {
2787 case FLOW_CLS_REPLACE:
2788 return igb_configure_clsflower(adapter, cls_flower);
2789 case FLOW_CLS_DESTROY:
2790 return igb_delete_clsflower(adapter, cls_flower);
2791 case FLOW_CLS_STATS:
2792 return -EOPNOTSUPP;
2793 default:
2794 return -EOPNOTSUPP;
2795 }
2796}
2797
2798static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2799 void *cb_priv)
2800{
2801 struct igb_adapter *adapter = cb_priv;
2802
2803 if (!tc_cls_can_offload_and_chain0(dev: adapter->netdev, common: type_data))
2804 return -EOPNOTSUPP;
2805
2806 switch (type) {
2807 case TC_SETUP_CLSFLOWER:
2808 return igb_setup_tc_cls_flower(adapter, cls_flower: type_data);
2809
2810 default:
2811 return -EOPNOTSUPP;
2812 }
2813}
2814
2815static int igb_offload_txtime(struct igb_adapter *adapter,
2816 struct tc_etf_qopt_offload *qopt)
2817{
2818 struct e1000_hw *hw = &adapter->hw;
2819 int err;
2820
2821 /* Launchtime offloading is only supported by i210 controller. */
2822 if (hw->mac.type != e1000_i210)
2823 return -EOPNOTSUPP;
2824
2825 /* Launchtime offloading is only supported by queues 0 and 1. */
2826 if (qopt->queue < 0 || qopt->queue > 1)
2827 return -EINVAL;
2828
2829 err = igb_save_txtime_params(adapter, queue: qopt->queue, enable: qopt->enable);
2830 if (err)
2831 return err;
2832
2833 igb_offload_apply(adapter, queue: qopt->queue);
2834
2835 return 0;
2836}
2837
2838static int igb_tc_query_caps(struct igb_adapter *adapter,
2839 struct tc_query_caps_base *base)
2840{
2841 switch (base->type) {
2842 case TC_SETUP_QDISC_TAPRIO: {
2843 struct tc_taprio_caps *caps = base->caps;
2844
2845 caps->broken_mqprio = true;
2846
2847 return 0;
2848 }
2849 default:
2850 return -EOPNOTSUPP;
2851 }
2852}
2853
2854static LIST_HEAD(igb_block_cb_list);
2855
2856static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2857 void *type_data)
2858{
2859 struct igb_adapter *adapter = netdev_priv(dev);
2860
2861 switch (type) {
2862 case TC_QUERY_CAPS:
2863 return igb_tc_query_caps(adapter, base: type_data);
2864 case TC_SETUP_QDISC_CBS:
2865 return igb_offload_cbs(adapter, qopt: type_data);
2866 case TC_SETUP_BLOCK:
2867 return flow_block_cb_setup_simple(f: type_data,
2868 driver_list: &igb_block_cb_list,
2869 cb: igb_setup_tc_block_cb,
2870 cb_ident: adapter, cb_priv: adapter, ingress_only: true);
2871
2872 case TC_SETUP_QDISC_ETF:
2873 return igb_offload_txtime(adapter, qopt: type_data);
2874
2875 default:
2876 return -EOPNOTSUPP;
2877 }
2878}
2879
2880static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
2881{
2882 int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
2883 struct igb_adapter *adapter = netdev_priv(dev);
2884 struct bpf_prog *prog = bpf->prog, *old_prog;
2885 bool running = netif_running(dev);
2886 bool need_reset;
2887
2888 /* verify igb ring attributes are sufficient for XDP */
2889 for (i = 0; i < adapter->num_rx_queues; i++) {
2890 struct igb_ring *ring = adapter->rx_ring[i];
2891
2892 if (frame_size > igb_rx_bufsz(ring)) {
2893 NL_SET_ERR_MSG_MOD(bpf->extack,
2894 "The RX buffer size is too small for the frame size");
2895 netdev_warn(dev, format: "XDP RX buffer size %d is too small for the frame size %d\n",
2896 igb_rx_bufsz(ring), frame_size);
2897 return -EINVAL;
2898 }
2899 }
2900
2901 old_prog = xchg(&adapter->xdp_prog, prog);
2902 need_reset = (!!prog != !!old_prog);
2903
2904 /* device is up and bpf is added/removed, must setup the RX queues */
2905 if (need_reset && running) {
2906 igb_close(dev);
2907 } else {
2908 for (i = 0; i < adapter->num_rx_queues; i++)
2909 (void)xchg(&adapter->rx_ring[i]->xdp_prog,
2910 adapter->xdp_prog);
2911 }
2912
2913 if (old_prog)
2914 bpf_prog_put(prog: old_prog);
2915
2916 /* bpf is just replaced, RXQ and MTU are already setup */
2917 if (!need_reset) {
2918 return 0;
2919 } else {
2920 if (prog)
2921 xdp_features_set_redirect_target(dev, support_sg: true);
2922 else
2923 xdp_features_clear_redirect_target(dev);
2924 }
2925
2926 if (running)
2927 igb_open(dev);
2928
2929 return 0;
2930}
2931
2932static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2933{
2934 switch (xdp->command) {
2935 case XDP_SETUP_PROG:
2936 return igb_xdp_setup(dev, bpf: xdp);
2937 default:
2938 return -EINVAL;
2939 }
2940}
2941
2942static void igb_xdp_ring_update_tail(struct igb_ring *ring)
2943{
2944 /* Force memory writes to complete before letting h/w know there
2945 * are new descriptors to fetch.
2946 */
2947 wmb();
2948 writel(val: ring->next_to_use, addr: ring->tail);
2949}
2950
2951static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
2952{
2953 unsigned int r_idx = smp_processor_id();
2954
2955 if (r_idx >= adapter->num_tx_queues)
2956 r_idx = r_idx % adapter->num_tx_queues;
2957
2958 return adapter->tx_ring[r_idx];
2959}
2960
2961static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
2962{
2963 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2964 int cpu = smp_processor_id();
2965 struct igb_ring *tx_ring;
2966 struct netdev_queue *nq;
2967 u32 ret;
2968
2969 if (unlikely(!xdpf))
2970 return IGB_XDP_CONSUMED;
2971
2972 /* During program transitions its possible adapter->xdp_prog is assigned
2973 * but ring has not been configured yet. In this case simply abort xmit.
2974 */
2975 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
2976 if (unlikely(!tx_ring))
2977 return IGB_XDP_CONSUMED;
2978
2979 nq = txring_txq(tx_ring);
2980 __netif_tx_lock(txq: nq, cpu);
2981 /* Avoid transmit queue timeout since we share it with the slow path */
2982 txq_trans_cond_update(txq: nq);
2983 ret = igb_xmit_xdp_ring(adapter, ring: tx_ring, xdpf);
2984 __netif_tx_unlock(txq: nq);
2985
2986 return ret;
2987}
2988
2989static int igb_xdp_xmit(struct net_device *dev, int n,
2990 struct xdp_frame **frames, u32 flags)
2991{
2992 struct igb_adapter *adapter = netdev_priv(dev);
2993 int cpu = smp_processor_id();
2994 struct igb_ring *tx_ring;
2995 struct netdev_queue *nq;
2996 int nxmit = 0;
2997 int i;
2998
2999 if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
3000 return -ENETDOWN;
3001
3002 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3003 return -EINVAL;
3004
3005 /* During program transitions its possible adapter->xdp_prog is assigned
3006 * but ring has not been configured yet. In this case simply abort xmit.
3007 */
3008 tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
3009 if (unlikely(!tx_ring))
3010 return -ENXIO;
3011
3012 nq = txring_txq(tx_ring);
3013 __netif_tx_lock(txq: nq, cpu);
3014
3015 /* Avoid transmit queue timeout since we share it with the slow path */
3016 txq_trans_cond_update(txq: nq);
3017
3018 for (i = 0; i < n; i++) {
3019 struct xdp_frame *xdpf = frames[i];
3020 int err;
3021
3022 err = igb_xmit_xdp_ring(adapter, ring: tx_ring, xdpf);
3023 if (err != IGB_XDP_TX)
3024 break;
3025 nxmit++;
3026 }
3027
3028 __netif_tx_unlock(txq: nq);
3029
3030 if (unlikely(flags & XDP_XMIT_FLUSH))
3031 igb_xdp_ring_update_tail(ring: tx_ring);
3032
3033 return nxmit;
3034}
3035
3036static const struct net_device_ops igb_netdev_ops = {
3037 .ndo_open = igb_open,
3038 .ndo_stop = igb_close,
3039 .ndo_start_xmit = igb_xmit_frame,
3040 .ndo_get_stats64 = igb_get_stats64,
3041 .ndo_set_rx_mode = igb_set_rx_mode,
3042 .ndo_set_mac_address = igb_set_mac,
3043 .ndo_change_mtu = igb_change_mtu,
3044 .ndo_eth_ioctl = igb_ioctl,
3045 .ndo_tx_timeout = igb_tx_timeout,
3046 .ndo_validate_addr = eth_validate_addr,
3047 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
3048 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
3049 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
3050 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
3051 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
3052 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
3053 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
3054 .ndo_get_vf_config = igb_ndo_get_vf_config,
3055 .ndo_fix_features = igb_fix_features,
3056 .ndo_set_features = igb_set_features,
3057 .ndo_fdb_add = igb_ndo_fdb_add,
3058 .ndo_features_check = igb_features_check,
3059 .ndo_setup_tc = igb_setup_tc,
3060 .ndo_bpf = igb_xdp,
3061 .ndo_xdp_xmit = igb_xdp_xmit,
3062};
3063
3064/**
3065 * igb_set_fw_version - Configure version string for ethtool
3066 * @adapter: adapter struct
3067 **/
3068void igb_set_fw_version(struct igb_adapter *adapter)
3069{
3070 struct e1000_hw *hw = &adapter->hw;
3071 struct e1000_fw_version fw;
3072
3073 igb_get_fw_version(hw, fw_vers: &fw);
3074
3075 switch (hw->mac.type) {
3076 case e1000_i210:
3077 case e1000_i211:
3078 if (!(igb_get_flash_presence_i210(hw))) {
3079 snprintf(buf: adapter->fw_version,
3080 size: sizeof(adapter->fw_version),
3081 fmt: "%2d.%2d-%d",
3082 fw.invm_major, fw.invm_minor,
3083 fw.invm_img_type);
3084 break;
3085 }
3086 fallthrough;
3087 default:
3088 /* if option rom is valid, display its version too */
3089 if (fw.or_valid) {
3090 snprintf(buf: adapter->fw_version,
3091 size: sizeof(adapter->fw_version),
3092 fmt: "%d.%d, 0x%08x, %d.%d.%d",
3093 fw.eep_major, fw.eep_minor, fw.etrack_id,
3094 fw.or_major, fw.or_build, fw.or_patch);
3095 /* no option rom */
3096 } else if (fw.etrack_id != 0X0000) {
3097 snprintf(buf: adapter->fw_version,
3098 size: sizeof(adapter->fw_version),
3099 fmt: "%d.%d, 0x%08x",
3100 fw.eep_major, fw.eep_minor, fw.etrack_id);
3101 } else {
3102 snprintf(buf: adapter->fw_version,
3103 size: sizeof(adapter->fw_version),
3104 fmt: "%d.%d.%d",
3105 fw.eep_major, fw.eep_minor, fw.eep_build);
3106 }
3107 break;
3108 }
3109}
3110
3111/**
3112 * igb_init_mas - init Media Autosense feature if enabled in the NVM
3113 *
3114 * @adapter: adapter struct
3115 **/
3116static void igb_init_mas(struct igb_adapter *adapter)
3117{
3118 struct e1000_hw *hw = &adapter->hw;
3119 u16 eeprom_data;
3120
3121 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
3122 switch (hw->bus.func) {
3123 case E1000_FUNC_0:
3124 if (eeprom_data & IGB_MAS_ENABLE_0) {
3125 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3126 netdev_info(dev: adapter->netdev,
3127 format: "MAS: Enabling Media Autosense for port %d\n",
3128 hw->bus.func);
3129 }
3130 break;
3131 case E1000_FUNC_1:
3132 if (eeprom_data & IGB_MAS_ENABLE_1) {
3133 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3134 netdev_info(dev: adapter->netdev,
3135 format: "MAS: Enabling Media Autosense for port %d\n",
3136 hw->bus.func);
3137 }
3138 break;
3139 case E1000_FUNC_2:
3140 if (eeprom_data & IGB_MAS_ENABLE_2) {
3141 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3142 netdev_info(dev: adapter->netdev,
3143 format: "MAS: Enabling Media Autosense for port %d\n",
3144 hw->bus.func);
3145 }
3146 break;
3147 case E1000_FUNC_3:
3148 if (eeprom_data & IGB_MAS_ENABLE_3) {
3149 adapter->flags |= IGB_FLAG_MAS_ENABLE;
3150 netdev_info(dev: adapter->netdev,
3151 format: "MAS: Enabling Media Autosense for port %d\n",
3152 hw->bus.func);
3153 }
3154 break;
3155 default:
3156 /* Shouldn't get here */
3157 netdev_err(dev: adapter->netdev,
3158 format: "MAS: Invalid port configuration, returning\n");
3159 break;
3160 }
3161}
3162
3163/**
3164 * igb_init_i2c - Init I2C interface
3165 * @adapter: pointer to adapter structure
3166 **/
3167static s32 igb_init_i2c(struct igb_adapter *adapter)
3168{
3169 s32 status = 0;
3170
3171 /* I2C interface supported on i350 devices */
3172 if (adapter->hw.mac.type != e1000_i350)
3173 return 0;
3174
3175 /* Initialize the i2c bus which is controlled by the registers.
3176 * This bus will use the i2c_algo_bit structure that implements
3177 * the protocol through toggling of the 4 bits in the register.
3178 */
3179 adapter->i2c_adap.owner = THIS_MODULE;
3180 adapter->i2c_algo = igb_i2c_algo;
3181 adapter->i2c_algo.data = adapter;
3182 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3183 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3184 strscpy(adapter->i2c_adap.name, "igb BB",
3185 sizeof(adapter->i2c_adap.name));
3186 status = i2c_bit_add_bus(&adapter->i2c_adap);
3187 return status;
3188}
3189
3190/**
3191 * igb_probe - Device Initialization Routine
3192 * @pdev: PCI device information struct
3193 * @ent: entry in igb_pci_tbl
3194 *
3195 * Returns 0 on success, negative on failure
3196 *
3197 * igb_probe initializes an adapter identified by a pci_dev structure.
3198 * The OS initialization, configuring of the adapter private structure,
3199 * and a hardware reset occur.
3200 **/
3201static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3202{
3203 struct net_device *netdev;
3204 struct igb_adapter *adapter;
3205 struct e1000_hw *hw;
3206 u16 eeprom_data = 0;
3207 s32 ret_val;
3208 static int global_quad_port_a; /* global quad port a indication */
3209 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3210 u8 part_str[E1000_PBANUM_LENGTH];
3211 int err;
3212
3213 /* Catch broken hardware that put the wrong VF device ID in
3214 * the PCIe SR-IOV capability.
3215 */
3216 if (pdev->is_virtfn) {
3217 WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
3218 pci_name(pdev), pdev->vendor, pdev->device);
3219 return -EINVAL;
3220 }
3221
3222 err = pci_enable_device_mem(dev: pdev);
3223 if (err)
3224 return err;
3225
3226 err = dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(64));
3227 if (err) {
3228 dev_err(&pdev->dev,
3229 "No usable DMA configuration, aborting\n");
3230 goto err_dma;
3231 }
3232
3233 err = pci_request_mem_regions(pdev, name: igb_driver_name);
3234 if (err)
3235 goto err_pci_reg;
3236
3237 pci_set_master(dev: pdev);
3238 pci_save_state(dev: pdev);
3239
3240 err = -ENOMEM;
3241 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3242 IGB_MAX_TX_QUEUES);
3243 if (!netdev)
3244 goto err_alloc_etherdev;
3245
3246 SET_NETDEV_DEV(netdev, &pdev->dev);
3247
3248 pci_set_drvdata(pdev, data: netdev);
3249 adapter = netdev_priv(dev: netdev);
3250 adapter->netdev = netdev;
3251 adapter->pdev = pdev;
3252 hw = &adapter->hw;
3253 hw->back = adapter;
3254 adapter->msg_enable = netif_msg_init(debug_value: debug, DEFAULT_MSG_ENABLE);
3255
3256 err = -EIO;
3257 adapter->io_addr = pci_iomap(dev: pdev, bar: 0, max: 0);
3258 if (!adapter->io_addr)
3259 goto err_ioremap;
3260 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3261 hw->hw_addr = adapter->io_addr;
3262
3263 netdev->netdev_ops = &igb_netdev_ops;
3264 igb_set_ethtool_ops(netdev);
3265 netdev->watchdog_timeo = 5 * HZ;
3266
3267 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
3268
3269 netdev->mem_start = pci_resource_start(pdev, 0);
3270 netdev->mem_end = pci_resource_end(pdev, 0);
3271
3272 /* PCI config space info */
3273 hw->vendor_id = pdev->vendor;
3274 hw->device_id = pdev->device;
3275 hw->revision_id = pdev->revision;
3276 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3277 hw->subsystem_device_id = pdev->subsystem_device;
3278
3279 /* Copy the default MAC, PHY and NVM function pointers */
3280 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3281 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3282 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3283 /* Initialize skew-specific constants */
3284 err = ei->get_invariants(hw);
3285 if (err)
3286 goto err_sw_init;
3287
3288 /* setup the private structure */
3289 err = igb_sw_init(adapter);
3290 if (err)
3291 goto err_sw_init;
3292
3293 igb_get_bus_info_pcie(hw);
3294
3295 hw->phy.autoneg_wait_to_complete = false;
3296
3297 /* Copper options */
3298 if (hw->phy.media_type == e1000_media_type_copper) {
3299 hw->phy.mdix = AUTO_ALL_MODES;
3300 hw->phy.disable_polarity_correction = false;
3301 hw->phy.ms_type = e1000_ms_hw_default;
3302 }
3303
3304 if (igb_check_reset_block(hw))
3305 dev_info(&pdev->dev,
3306 "PHY reset is blocked due to SOL/IDER session.\n");
3307
3308 /* features is initialized to 0 in allocation, it might have bits
3309 * set by igb_sw_init so we should use an or instead of an
3310 * assignment.
3311 */
3312 netdev->features |= NETIF_F_SG |
3313 NETIF_F_TSO |
3314 NETIF_F_TSO6 |
3315 NETIF_F_RXHASH |
3316 NETIF_F_RXCSUM |
3317 NETIF_F_HW_CSUM;
3318
3319 if (hw->mac.type >= e1000_82576)
3320 netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
3321
3322 if (hw->mac.type >= e1000_i350)
3323 netdev->features |= NETIF_F_HW_TC;
3324
3325#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3326 NETIF_F_GSO_GRE_CSUM | \
3327 NETIF_F_GSO_IPXIP4 | \
3328 NETIF_F_GSO_IPXIP6 | \
3329 NETIF_F_GSO_UDP_TUNNEL | \
3330 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3331
3332 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3333 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3334
3335 /* copy netdev features into list of user selectable features */
3336 netdev->hw_features |= netdev->features |
3337 NETIF_F_HW_VLAN_CTAG_RX |
3338 NETIF_F_HW_VLAN_CTAG_TX |
3339 NETIF_F_RXALL;
3340
3341 if (hw->mac.type >= e1000_i350)
3342 netdev->hw_features |= NETIF_F_NTUPLE;
3343
3344 netdev->features |= NETIF_F_HIGHDMA;
3345
3346 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3347 netdev->mpls_features |= NETIF_F_HW_CSUM;
3348 netdev->hw_enc_features |= netdev->vlan_features;
3349
3350 /* set this bit last since it cannot be part of vlan_features */
3351 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3352 NETIF_F_HW_VLAN_CTAG_RX |
3353 NETIF_F_HW_VLAN_CTAG_TX;
3354
3355 netdev->priv_flags |= IFF_SUPP_NOFCS;
3356
3357 netdev->priv_flags |= IFF_UNICAST_FLT;
3358 netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
3359
3360 /* MTU range: 68 - 9216 */
3361 netdev->min_mtu = ETH_MIN_MTU;
3362 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3363
3364 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3365
3366 /* before reading the NVM, reset the controller to put the device in a
3367 * known good starting state
3368 */
3369 hw->mac.ops.reset_hw(hw);
3370
3371 /* make sure the NVM is good , i211/i210 parts can have special NVM
3372 * that doesn't contain a checksum
3373 */
3374 switch (hw->mac.type) {
3375 case e1000_i210:
3376 case e1000_i211:
3377 if (igb_get_flash_presence_i210(hw)) {
3378 if (hw->nvm.ops.validate(hw) < 0) {
3379 dev_err(&pdev->dev,
3380 "The NVM Checksum Is Not Valid\n");
3381 err = -EIO;
3382 goto err_eeprom;
3383 }
3384 }
3385 break;
3386 default:
3387 if (hw->nvm.ops.validate(hw) < 0) {
3388 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3389 err = -EIO;
3390 goto err_eeprom;
3391 }
3392 break;
3393 }
3394
3395 if (eth_platform_get_mac_address(dev: &pdev->dev, mac_addr: hw->mac.addr)) {
3396 /* copy the MAC address out of the NVM */
3397 if (hw->mac.ops.read_mac_addr(hw))
3398 dev_err(&pdev->dev, "NVM Read Error\n");
3399 }
3400
3401 eth_hw_addr_set(dev: netdev, addr: hw->mac.addr);
3402
3403 if (!is_valid_ether_addr(addr: netdev->dev_addr)) {
3404 dev_err(&pdev->dev, "Invalid MAC Address\n");
3405 err = -EIO;
3406 goto err_eeprom;
3407 }
3408
3409 igb_set_default_mac_filter(adapter);
3410
3411 /* get firmware version for ethtool -i */
3412 igb_set_fw_version(adapter);
3413
3414 /* configure RXPBSIZE and TXPBSIZE */
3415 if (hw->mac.type == e1000_i210) {
3416 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3417 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3418 }
3419
3420 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3421 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3422
3423 INIT_WORK(&adapter->reset_task, igb_reset_task);
3424 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3425
3426 /* Initialize link properties that are user-changeable */
3427 adapter->fc_autoneg = true;
3428 hw->mac.autoneg = true;
3429 hw->phy.autoneg_advertised = 0x2f;
3430
3431 hw->fc.requested_mode = e1000_fc_default;
3432 hw->fc.current_mode = e1000_fc_default;
3433
3434 igb_validate_mdi_setting(hw);
3435
3436 /* By default, support wake on port A */
3437 if (hw->bus.func == 0)
3438 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3439
3440 /* Check the NVM for wake support on non-port A ports */
3441 if (hw->mac.type >= e1000_82580)
3442 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3443 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3444 &eeprom_data);
3445 else if (hw->bus.func == 1)
3446 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3447
3448 if (eeprom_data & IGB_EEPROM_APME)
3449 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3450
3451 /* now that we have the eeprom settings, apply the special cases where
3452 * the eeprom may be wrong or the board simply won't support wake on
3453 * lan on a particular port
3454 */
3455 switch (pdev->device) {
3456 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3457 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3458 break;
3459 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3460 case E1000_DEV_ID_82576_FIBER:
3461 case E1000_DEV_ID_82576_SERDES:
3462 /* Wake events only supported on port A for dual fiber
3463 * regardless of eeprom setting
3464 */
3465 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3466 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3467 break;
3468 case E1000_DEV_ID_82576_QUAD_COPPER:
3469 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3470 /* if quad port adapter, disable WoL on all but port A */
3471 if (global_quad_port_a != 0)
3472 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3473 else
3474 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3475 /* Reset for multiple quad port adapters */
3476 if (++global_quad_port_a == 4)
3477 global_quad_port_a = 0;
3478 break;
3479 default:
3480 /* If the device can't wake, don't set software support */
3481 if (!device_can_wakeup(dev: &adapter->pdev->dev))
3482 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3483 }
3484
3485 /* initialize the wol settings based on the eeprom settings */
3486 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3487 adapter->wol |= E1000_WUFC_MAG;
3488
3489 /* Some vendors want WoL disabled by default, but still supported */
3490 if ((hw->mac.type == e1000_i350) &&
3491 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3492 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3493 adapter->wol = 0;
3494 }
3495
3496 /* Some vendors want the ability to Use the EEPROM setting as
3497 * enable/disable only, and not for capability
3498 */
3499 if (((hw->mac.type == e1000_i350) ||
3500 (hw->mac.type == e1000_i354)) &&
3501 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3502 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3503 adapter->wol = 0;
3504 }
3505 if (hw->mac.type == e1000_i350) {
3506 if (((pdev->subsystem_device == 0x5001) ||
3507 (pdev->subsystem_device == 0x5002)) &&
3508 (hw->bus.func == 0)) {
3509 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3510 adapter->wol = 0;
3511 }
3512 if (pdev->subsystem_device == 0x1F52)
3513 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3514 }
3515
3516 device_set_wakeup_enable(dev: &adapter->pdev->dev,
3517 enable: adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3518
3519 /* reset the hardware with the new settings */
3520 igb_reset(adapter);
3521
3522 /* Init the I2C interface */
3523 err = igb_init_i2c(adapter);
3524 if (err) {
3525 dev_err(&pdev->dev, "failed to init i2c interface\n");
3526 goto err_eeprom;
3527 }
3528
3529 /* let the f/w know that the h/w is now under the control of the
3530 * driver.
3531 */
3532 igb_get_hw_control(adapter);
3533
3534 strcpy(p: netdev->name, q: "eth%d");
3535 err = register_netdev(dev: netdev);
3536 if (err)
3537 goto err_register;
3538
3539 /* carrier off reporting is important to ethtool even BEFORE open */
3540 netif_carrier_off(dev: netdev);
3541
3542#ifdef CONFIG_IGB_DCA
3543 if (dca_add_requester(dev: &pdev->dev) == 0) {
3544 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3545 dev_info(&pdev->dev, "DCA enabled\n");
3546 igb_setup_dca(adapter);
3547 }
3548
3549#endif
3550#ifdef CONFIG_IGB_HWMON
3551 /* Initialize the thermal sensor on i350 devices. */
3552 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3553 u16 ets_word;
3554
3555 /* Read the NVM to determine if this i350 device supports an
3556 * external thermal sensor.
3557 */
3558 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3559 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3560 adapter->ets = true;
3561 else
3562 adapter->ets = false;
3563 /* Only enable I2C bit banging if an external thermal
3564 * sensor is supported.
3565 */
3566 if (adapter->ets)
3567 igb_set_i2c_bb(hw);
3568 hw->mac.ops.init_thermal_sensor_thresh(hw);
3569 if (igb_sysfs_init(adapter))
3570 dev_err(&pdev->dev,
3571 "failed to allocate sysfs resources\n");
3572 } else {
3573 adapter->ets = false;
3574 }
3575#endif
3576 /* Check if Media Autosense is enabled */
3577 adapter->ei = *ei;
3578 if (hw->dev_spec._82575.mas_capable)
3579 igb_init_mas(adapter);
3580
3581 /* do hw tstamp init after resetting */
3582 igb_ptp_init(adapter);
3583
3584 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3585 /* print bus type/speed/width info, not applicable to i354 */
3586 if (hw->mac.type != e1000_i354) {
3587 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3588 netdev->name,
3589 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3590 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3591 "unknown"),
3592 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3593 "Width x4" :
3594 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3595 "Width x2" :
3596 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3597 "Width x1" : "unknown"), netdev->dev_addr);
3598 }
3599
3600 if ((hw->mac.type == e1000_82576 &&
3601 rd32(E1000_EECD) & E1000_EECD_PRES) ||
3602 (hw->mac.type >= e1000_i210 ||
3603 igb_get_flash_presence_i210(hw))) {
3604 ret_val = igb_read_part_string(hw, part_num: part_str,
3605 E1000_PBANUM_LENGTH);
3606 } else {
3607 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3608 }
3609
3610 if (ret_val)
3611 strcpy(p: part_str, q: "Unknown");
3612 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3613 dev_info(&pdev->dev,
3614 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3615 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3616 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3617 adapter->num_rx_queues, adapter->num_tx_queues);
3618 if (hw->phy.media_type == e1000_media_type_copper) {
3619 switch (hw->mac.type) {
3620 case e1000_i350:
3621 case e1000_i210:
3622 case e1000_i211:
3623 /* Enable EEE for internal copper PHY devices */
3624 err = igb_set_eee_i350(hw, adv1G: true, adv100M: true);
3625 if ((!err) &&
3626 (!hw->dev_spec._82575.eee_disable)) {
3627 adapter->eee_advert =
3628 MDIO_EEE_100TX | MDIO_EEE_1000T;
3629 adapter->flags |= IGB_FLAG_EEE;
3630 }
3631 break;
3632 case e1000_i354:
3633 if ((rd32(E1000_CTRL_EXT) &
3634 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3635 err = igb_set_eee_i354(hw, adv1G: true, adv100M: true);
3636 if ((!err) &&
3637 (!hw->dev_spec._82575.eee_disable)) {
3638 adapter->eee_advert =
3639 MDIO_EEE_100TX | MDIO_EEE_1000T;
3640 adapter->flags |= IGB_FLAG_EEE;
3641 }
3642 }
3643 break;
3644 default:
3645 break;
3646 }
3647 }
3648
3649 dev_pm_set_driver_flags(dev: &pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
3650
3651 pm_runtime_put_noidle(dev: &pdev->dev);
3652 return 0;
3653
3654err_register:
3655 igb_release_hw_control(adapter);
3656 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3657err_eeprom:
3658 if (!igb_check_reset_block(hw))
3659 igb_reset_phy(hw);
3660
3661 if (hw->flash_address)
3662 iounmap(addr: hw->flash_address);
3663err_sw_init:
3664 kfree(objp: adapter->mac_table);
3665 kfree(objp: adapter->shadow_vfta);
3666 igb_clear_interrupt_scheme(adapter);
3667#ifdef CONFIG_PCI_IOV
3668 igb_disable_sriov(dev: pdev, reinit: false);
3669#endif
3670 pci_iounmap(dev: pdev, adapter->io_addr);
3671err_ioremap:
3672 free_netdev(dev: netdev);
3673err_alloc_etherdev:
3674 pci_release_mem_regions(pdev);
3675err_pci_reg:
3676err_dma:
3677 pci_disable_device(dev: pdev);
3678 return err;
3679}
3680
3681#ifdef CONFIG_PCI_IOV
3682static int igb_sriov_reinit(struct pci_dev *dev)
3683{
3684 struct net_device *netdev = pci_get_drvdata(pdev: dev);
3685 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3686 struct pci_dev *pdev = adapter->pdev;
3687
3688 rtnl_lock();
3689
3690 if (netif_running(dev: netdev))
3691 igb_close(netdev);
3692 else
3693 igb_reset(adapter);
3694
3695 igb_clear_interrupt_scheme(adapter);
3696
3697 igb_init_queue_configuration(adapter);
3698
3699 if (igb_init_interrupt_scheme(adapter, msix: true)) {
3700 rtnl_unlock();
3701 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3702 return -ENOMEM;
3703 }
3704
3705 if (netif_running(dev: netdev))
3706 igb_open(netdev);
3707
3708 rtnl_unlock();
3709
3710 return 0;
3711}
3712
3713static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
3714{
3715 struct net_device *netdev = pci_get_drvdata(pdev);
3716 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3717 struct e1000_hw *hw = &adapter->hw;
3718 unsigned long flags;
3719
3720 /* reclaim resources allocated to VFs */
3721 if (adapter->vf_data) {
3722 /* disable iov and allow time for transactions to clear */
3723 if (pci_vfs_assigned(dev: pdev)) {
3724 dev_warn(&pdev->dev,
3725 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3726 return -EPERM;
3727 } else {
3728 pci_disable_sriov(dev: pdev);
3729 msleep(msecs: 500);
3730 }
3731 spin_lock_irqsave(&adapter->vfs_lock, flags);
3732 kfree(objp: adapter->vf_mac_list);
3733 adapter->vf_mac_list = NULL;
3734 kfree(objp: adapter->vf_data);
3735 adapter->vf_data = NULL;
3736 adapter->vfs_allocated_count = 0;
3737 spin_unlock_irqrestore(lock: &adapter->vfs_lock, flags);
3738 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3739 wrfl();
3740 msleep(msecs: 100);
3741 dev_info(&pdev->dev, "IOV Disabled\n");
3742
3743 /* Re-enable DMA Coalescing flag since IOV is turned off */
3744 adapter->flags |= IGB_FLAG_DMAC;
3745 }
3746
3747 return reinit ? igb_sriov_reinit(dev: pdev) : 0;
3748}
3749
3750static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
3751{
3752 struct net_device *netdev = pci_get_drvdata(pdev);
3753 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3754 int old_vfs = pci_num_vf(dev: pdev);
3755 struct vf_mac_filter *mac_list;
3756 int err = 0;
3757 int num_vf_mac_filters, i;
3758
3759 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3760 err = -EPERM;
3761 goto out;
3762 }
3763 if (!num_vfs)
3764 goto out;
3765
3766 if (old_vfs) {
3767 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3768 old_vfs, max_vfs);
3769 adapter->vfs_allocated_count = old_vfs;
3770 } else
3771 adapter->vfs_allocated_count = num_vfs;
3772
3773 adapter->vf_data = kcalloc(n: adapter->vfs_allocated_count,
3774 size: sizeof(struct vf_data_storage), GFP_KERNEL);
3775
3776 /* if allocation failed then we do not support SR-IOV */
3777 if (!adapter->vf_data) {
3778 adapter->vfs_allocated_count = 0;
3779 err = -ENOMEM;
3780 goto out;
3781 }
3782
3783 /* Due to the limited number of RAR entries calculate potential
3784 * number of MAC filters available for the VFs. Reserve entries
3785 * for PF default MAC, PF MAC filters and at least one RAR entry
3786 * for each VF for VF MAC.
3787 */
3788 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3789 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3790 adapter->vfs_allocated_count);
3791
3792 adapter->vf_mac_list = kcalloc(n: num_vf_mac_filters,
3793 size: sizeof(struct vf_mac_filter),
3794 GFP_KERNEL);
3795
3796 mac_list = adapter->vf_mac_list;
3797 INIT_LIST_HEAD(list: &adapter->vf_macs.l);
3798
3799 if (adapter->vf_mac_list) {
3800 /* Initialize list of VF MAC filters */
3801 for (i = 0; i < num_vf_mac_filters; i++) {
3802 mac_list->vf = -1;
3803 mac_list->free = true;
3804 list_add(new: &mac_list->l, head: &adapter->vf_macs.l);
3805 mac_list++;
3806 }
3807 } else {
3808 /* If we could not allocate memory for the VF MAC filters
3809 * we can continue without this feature but warn user.
3810 */
3811 dev_err(&pdev->dev,
3812 "Unable to allocate memory for VF MAC filter list\n");
3813 }
3814
3815 dev_info(&pdev->dev, "%d VFs allocated\n",
3816 adapter->vfs_allocated_count);
3817 for (i = 0; i < adapter->vfs_allocated_count; i++)
3818 igb_vf_configure(adapter, vf: i);
3819
3820 /* DMA Coalescing is not supported in IOV mode. */
3821 adapter->flags &= ~IGB_FLAG_DMAC;
3822
3823 if (reinit) {
3824 err = igb_sriov_reinit(dev: pdev);
3825 if (err)
3826 goto err_out;
3827 }
3828
3829 /* only call pci_enable_sriov() if no VFs are allocated already */
3830 if (!old_vfs) {
3831 err = pci_enable_sriov(dev: pdev, nr_virtfn: adapter->vfs_allocated_count);
3832 if (err)
3833 goto err_out;
3834 }
3835
3836 goto out;
3837
3838err_out:
3839 kfree(objp: adapter->vf_mac_list);
3840 adapter->vf_mac_list = NULL;
3841 kfree(objp: adapter->vf_data);
3842 adapter->vf_data = NULL;
3843 adapter->vfs_allocated_count = 0;
3844out:
3845 return err;
3846}
3847
3848#endif
3849/**
3850 * igb_remove_i2c - Cleanup I2C interface
3851 * @adapter: pointer to adapter structure
3852 **/
3853static void igb_remove_i2c(struct igb_adapter *adapter)
3854{
3855 /* free the adapter bus structure */
3856 i2c_del_adapter(adap: &adapter->i2c_adap);
3857}
3858
3859/**
3860 * igb_remove - Device Removal Routine
3861 * @pdev: PCI device information struct
3862 *
3863 * igb_remove is called by the PCI subsystem to alert the driver
3864 * that it should release a PCI device. The could be caused by a
3865 * Hot-Plug event, or because the driver is going to be removed from
3866 * memory.
3867 **/
3868static void igb_remove(struct pci_dev *pdev)
3869{
3870 struct net_device *netdev = pci_get_drvdata(pdev);
3871 struct igb_adapter *adapter = netdev_priv(dev: netdev);
3872 struct e1000_hw *hw = &adapter->hw;
3873
3874 pm_runtime_get_noresume(dev: &pdev->dev);
3875#ifdef CONFIG_IGB_HWMON
3876 igb_sysfs_exit(adapter);
3877#endif
3878 igb_remove_i2c(adapter);
3879 igb_ptp_stop(adapter);
3880 /* The watchdog timer may be rescheduled, so explicitly
3881 * disable watchdog from being rescheduled.
3882 */
3883 set_bit(nr: __IGB_DOWN, addr: &adapter->state);
3884 del_timer_sync(timer: &adapter->watchdog_timer);
3885 del_timer_sync(timer: &adapter->phy_info_timer);
3886
3887 cancel_work_sync(work: &adapter->reset_task);
3888 cancel_work_sync(work: &adapter->watchdog_task);
3889
3890#ifdef CONFIG_IGB_DCA
3891 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3892 dev_info(&pdev->dev, "DCA disabled\n");
3893 dca_remove_requester(dev: &pdev->dev);
3894 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3895 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3896 }
3897#endif
3898
3899 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3900 * would have already happened in close and is redundant.
3901 */
3902 igb_release_hw_control(adapter);
3903
3904#ifdef CONFIG_PCI_IOV
3905 igb_disable_sriov(pdev, reinit: false);
3906#endif
3907
3908 unregister_netdev(dev: netdev);
3909
3910 igb_clear_interrupt_scheme(adapter);
3911
3912 pci_iounmap(dev: pdev, adapter->io_addr);
3913 if (hw->flash_address)
3914 iounmap(addr: hw->flash_address);
3915 pci_release_mem_regions(pdev);
3916
3917 kfree(objp: adapter->mac_table);
3918 kfree(objp: adapter->shadow_vfta);
3919 free_netdev(dev: netdev);
3920
3921 pci_disable_device(dev: pdev);
3922}
3923
3924/**
3925 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3926 * @adapter: board private structure to initialize
3927 *
3928 * This function initializes the vf specific data storage and then attempts to
3929 * allocate the VFs. The reason for ordering it this way is because it is much
3930 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3931 * the memory for the VFs.
3932 **/
3933static void igb_probe_vfs(struct igb_adapter *adapter)
3934{
3935#ifdef CONFIG_PCI_IOV
3936 struct pci_dev *pdev = adapter->pdev;
3937 struct e1000_hw *hw = &adapter->hw;
3938
3939 /* Virtualization features not supported on i210 and 82580 family. */
3940 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
3941 (hw->mac.type == e1000_82580))
3942 return;
3943
3944 /* Of the below we really only want the effect of getting
3945 * IGB_FLAG_HAS_MSIX set (if available), without which
3946 * igb_enable_sriov() has no effect.
3947 */
3948 igb_set_interrupt_capability(adapter, msix: true);
3949 igb_reset_interrupt_capability(adapter);
3950
3951 pci_sriov_set_totalvfs(dev: pdev, numvfs: 7);
3952 igb_enable_sriov(pdev, num_vfs: max_vfs, reinit: false);
3953
3954#endif /* CONFIG_PCI_IOV */
3955}
3956
3957unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3958{
3959 struct e1000_hw *hw = &adapter->hw;
3960 unsigned int max_rss_queues;
3961
3962 /* Determine the maximum number of RSS queues supported. */
3963 switch (hw->mac.type) {
3964 case e1000_i211:
3965 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3966 break;
3967 case e1000_82575:
3968 case e1000_i210:
3969 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3970 break;
3971 case e1000_i350:
3972 /* I350 cannot do RSS and SR-IOV at the same time */
3973 if (!!adapter->vfs_allocated_count) {
3974 max_rss_queues = 1;
3975 break;
3976 }
3977 fallthrough;
3978 case e1000_82576:
3979 if (!!adapter->vfs_allocated_count) {
3980 max_rss_queues = 2;
3981 break;
3982 }
3983 fallthrough;
3984 case e1000_82580:
3985 case e1000_i354:
3986 default:
3987 max_rss_queues = IGB_MAX_RX_QUEUES;
3988 break;
3989 }
3990
3991 return max_rss_queues;
3992}
3993
3994static void igb_init_queue_configuration(struct igb_adapter *adapter)
3995{
3996 u32 max_rss_queues;
3997
3998 max_rss_queues = igb_get_max_rss_queues(adapter);
3999 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4000
4001 igb_set_flag_queue_pairs(adapter, max_rss_queues);
4002}
4003
4004void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
4005 const u32 max_rss_queues)
4006{
4007 struct e1000_hw *hw = &adapter->hw;
4008
4009 /* Determine if we need to pair queues. */
4010 switch (hw->mac.type) {
4011 case e1000_82575:
4012 case e1000_i211:
4013 /* Device supports enough interrupts without queue pairing. */
4014 break;
4015 case e1000_82576:
4016 case e1000_82580:
4017 case e1000_i350:
4018 case e1000_i354:
4019 case e1000_i210:
4020 default:
4021 /* If rss_queues > half of max_rss_queues, pair the queues in
4022 * order to conserve interrupts due to limited supply.
4023 */
4024 if (adapter->rss_queues > (max_rss_queues / 2))
4025 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
4026 else
4027 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
4028 break;
4029 }
4030}
4031
4032/**
4033 * igb_sw_init - Initialize general software structures (struct igb_adapter)
4034 * @adapter: board private structure to initialize
4035 *
4036 * igb_sw_init initializes the Adapter private data structure.
4037 * Fields are initialized based on PCI device information and
4038 * OS network device settings (MTU size).
4039 **/
4040static int igb_sw_init(struct igb_adapter *adapter)
4041{
4042 struct e1000_hw *hw = &adapter->hw;
4043 struct net_device *netdev = adapter->netdev;
4044 struct pci_dev *pdev = adapter->pdev;
4045
4046 pci_read_config_word(dev: pdev, PCI_COMMAND, val: &hw->bus.pci_cmd_word);
4047
4048 /* set default ring sizes */
4049 adapter->tx_ring_count = IGB_DEFAULT_TXD;
4050 adapter->rx_ring_count = IGB_DEFAULT_RXD;
4051
4052 /* set default ITR values */
4053 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
4054 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
4055
4056 /* set default work limits */
4057 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
4058
4059 adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
4060 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4061
4062 spin_lock_init(&adapter->nfc_lock);
4063 spin_lock_init(&adapter->stats64_lock);
4064
4065 /* init spinlock to avoid concurrency of VF resources */
4066 spin_lock_init(&adapter->vfs_lock);
4067#ifdef CONFIG_PCI_IOV
4068 switch (hw->mac.type) {
4069 case e1000_82576:
4070 case e1000_i350:
4071 if (max_vfs > 7) {
4072 dev_warn(&pdev->dev,
4073 "Maximum of 7 VFs per PF, using max\n");
4074 max_vfs = adapter->vfs_allocated_count = 7;
4075 } else
4076 adapter->vfs_allocated_count = max_vfs;
4077 if (adapter->vfs_allocated_count)
4078 dev_warn(&pdev->dev,
4079 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
4080 break;
4081 default:
4082 break;
4083 }
4084#endif /* CONFIG_PCI_IOV */
4085
4086 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4087 adapter->flags |= IGB_FLAG_HAS_MSIX;
4088
4089 adapter->mac_table = kcalloc(n: hw->mac.rar_entry_count,
4090 size: sizeof(struct igb_mac_addr),
4091 GFP_KERNEL);
4092 if (!adapter->mac_table)
4093 return -ENOMEM;
4094
4095 igb_probe_vfs(adapter);
4096
4097 igb_init_queue_configuration(adapter);
4098
4099 /* Setup and initialize a copy of the hw vlan table array */
4100 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, size: sizeof(u32),
4101 GFP_KERNEL);
4102 if (!adapter->shadow_vfta)
4103 return -ENOMEM;
4104
4105 /* This call may decrease the number of queues */
4106 if (igb_init_interrupt_scheme(adapter, msix: true)) {
4107 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4108 return -ENOMEM;
4109 }
4110
4111 /* Explicitly disable IRQ since the NIC can be in any state. */
4112 igb_irq_disable(adapter);
4113
4114 if (hw->mac.type >= e1000_i350)
4115 adapter->flags &= ~IGB_FLAG_DMAC;
4116
4117 set_bit(nr: __IGB_DOWN, addr: &adapter->state);
4118 return 0;
4119}
4120
4121/**
4122 * __igb_open - Called when a network interface is made active
4123 * @netdev: network interface device structure
4124 * @resuming: indicates whether we are in a resume call
4125 *
4126 * Returns 0 on success, negative value on failure
4127 *
4128 * The open entry point is called when a network interface is made
4129 * active by the system (IFF_UP). At this point all resources needed
4130 * for transmit and receive operations are allocated, the interrupt
4131 * handler is registered with the OS, the watchdog timer is started,
4132 * and the stack is notified that the interface is ready.
4133 **/
4134static int __igb_open(struct net_device *netdev, bool resuming)
4135{
4136 struct igb_adapter *adapter = netdev_priv(dev: netdev);
4137 struct e1000_hw *hw = &adapter->hw;
4138 struct pci_dev *pdev = adapter->pdev;
4139 int err;
4140 int i;
4141
4142 /* disallow open during test */
4143 if (test_bit(__IGB_TESTING, &adapter->state)) {
4144 WARN_ON(resuming);
4145 return -EBUSY;
4146 }
4147
4148 if (!resuming)
4149 pm_runtime_get_sync(dev: &pdev->dev);
4150
4151 netif_carrier_off(dev: netdev);
4152
4153 /* allocate transmit descriptors */
4154 err = igb_setup_all_tx_resources(adapter);
4155 if (err)
4156 goto err_setup_tx;
4157
4158 /* allocate receive descriptors */
4159 err = igb_setup_all_rx_resources(adapter);
4160 if (err)
4161 goto err_setup_rx;
4162
4163 igb_power_up_link(adapter);
4164
4165 /* before we allocate an interrupt, we must be ready to handle it.
4166 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4167 * as soon as we call pci_request_irq, so we have to setup our
4168 * clean_rx handler before we do so.
4169 */
4170 igb_configure(adapter);
4171
4172 err = igb_request_irq(adapter);
4173 if (err)
4174 goto err_req_irq;
4175
4176 /* Notify the stack of the actual queue counts. */
4177 err = netif_set_real_num_tx_queues(dev: adapter->netdev,
4178 txq: adapter->num_tx_queues);
4179 if (err)
4180 goto err_set_queues;
4181
4182 err = netif_set_real_num_rx_queues(dev: adapter->netdev,
4183 rxq: adapter->num_rx_queues);
4184 if (err)
4185 goto err_set_queues;
4186
4187 /* From here on the code is the same as igb_up() */
4188 clear_bit(nr: __IGB_DOWN, addr: &adapter->state);
4189
4190 for (i = 0; i < adapter->num_q_vectors; i++)
4191 napi_enable(n: &(adapter->q_vector[i]->napi));
4192
4193 /* Clear any pending interrupts. */
4194 rd32(E1000_TSICR);
4195 rd32(E1000_ICR);
4196
4197 igb_irq_enable(adapter);
4198
4199 /* notify VFs that reset has been completed */
4200 if (adapter->vfs_allocated_count) {
4201 u32 reg_data = rd32(E1000_CTRL_EXT);
4202
4203 reg_data |= E1000_CTRL_EXT_PFRSTD;
4204 wr32(E1000_CTRL_EXT, reg_data);
4205 }
4206
4207 netif_tx_start_all_queues(dev: netdev);
4208
4209 if (!resuming)
4210 pm_runtime_put(dev: &pdev->dev);
4211
4212 /* start the watchdog. */
4213 hw->mac.get_link_status = 1;
4214 schedule_work(work: &adapter->watchdog_task);
4215
4216 return 0;
4217
4218err_set_queues:
4219 igb_free_irq(adapter);
4220err_req_irq:
4221 igb_release_hw_control(adapter);
4222 igb_power_down_link(adapter);
4223 igb_free_all_rx_resources(adapter);
4224err_setup_rx:
4225 igb_free_all_tx_resources(adapter);
4226err_setup_tx:
4227 igb_reset(adapter);
4228 if (!resuming)
4229 pm_runtime_put(dev: &pdev->dev);
4230
4231 return err;
4232}
4233
4234int igb_open(struct net_device *netdev)
4235{
4236 return __igb_open(netdev, resuming: false);
4237}
4238
4239/**
4240 * __igb_close - Disables a network interface
4241 * @netdev: network interface device structure
4242 * @suspending: indicates we are in a suspend call
4243 *
4244 * Returns 0, this is not allowed to fail
4245 *
4246 * The close entry point is called when an interface is de-activated
4247 * by the OS. The hardware is still under the driver's control, but
4248 * needs to be disabled. A global MAC reset is issued to stop the
4249 * hardware, and all transmit and receive resources are freed.
4250 **/
4251static int __igb_close(struct net_device *netdev, bool suspending)
4252{
4253 struct igb_adapter *adapter = netdev_priv(dev: netdev);
4254 struct pci_dev *pdev = adapter->pdev;
4255
4256 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4257
4258 if (!suspending)
4259 pm_runtime_get_sync(dev: &pdev->dev);
4260
4261 igb_down(adapter);
4262 igb_free_irq(adapter);
4263
4264 igb_free_all_tx_resources(adapter);
4265 igb_free_all_rx_resources(adapter);
4266
4267 if (!suspending)
4268 pm_runtime_put_sync(dev: &pdev->dev);
4269 return 0;
4270}
4271
4272int igb_close(struct net_device *netdev)
4273{
4274 if (netif_device_present(dev: netdev) || netdev->dismantle)
4275 return __igb_close(netdev, suspending: false);
4276 return 0;
4277}
4278
4279/**
4280 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4281 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4282 *
4283 * Return 0 on success, negative on failure
4284 **/
4285int igb_setup_tx_resources(struct igb_ring *tx_ring)
4286{
4287 struct device *dev = tx_ring->dev;
4288 int size;
4289
4290 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4291
4292 tx_ring->tx_buffer_info = vmalloc(size);
4293 if (!tx_ring->tx_buffer_info)
4294 goto err;
4295
4296 /* round up to nearest 4K */
4297 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4298 tx_ring->size = ALIGN(tx_ring->size, 4096);
4299
4300 tx_ring->desc = dma_alloc_coherent(dev, size: tx_ring->size,
4301 dma_handle: &tx_ring->dma, GFP_KERNEL);
4302 if (!tx_ring->desc)
4303 goto err;
4304
4305 tx_ring->next_to_use = 0;
4306 tx_ring->next_to_clean = 0;
4307
4308 return 0;
4309
4310err:
4311 vfree(addr: tx_ring->tx_buffer_info);
4312 tx_ring->tx_buffer_info = NULL;
4313 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4314 return -ENOMEM;
4315}
4316
4317/**
4318 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4319 * (Descriptors) for all queues
4320 * @adapter: board private structure
4321 *
4322 * Return 0 on success, negative on failure
4323 **/
4324static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4325{
4326 struct pci_dev *pdev = adapter->pdev;
4327 int i, err = 0;
4328
4329 for (i = 0; i < adapter->num_tx_queues; i++) {
4330 err = igb_setup_tx_resources(tx_ring: adapter->tx_ring[i]);
4331 if (err) {
4332 dev_err(&pdev->dev,
4333 "Allocation for Tx Queue %u failed\n", i);
4334 for (i--; i >= 0; i--)
4335 igb_free_tx_resources(adapter->tx_ring[i]);
4336 break;
4337 }
4338 }
4339
4340 return err;
4341}
4342
4343/**
4344 * igb_setup_tctl - configure the transmit control registers
4345 * @adapter: Board private structure
4346 **/
4347void igb_setup_tctl(struct igb_adapter *adapter)
4348{
4349 struct e1000_hw *hw = &adapter->hw;
4350 u32 tctl;
4351
4352 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4353 wr32(E1000_TXDCTL(0), 0);
4354
4355 /* Program the Transmit Control Register */
4356 tctl = rd32(E1000_TCTL);
4357 tctl &= ~E1000_TCTL_CT;
4358 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4359 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4360
4361 igb_config_collision_dist(hw);
4362
4363 /* Enable transmits */
4364 tctl |= E1000_TCTL_EN;
4365
4366 wr32(E1000_TCTL, tctl);
4367}
4368
4369/**
4370 * igb_configure_tx_ring - Configure transmit ring after Reset
4371 * @adapter: board private structure
4372 * @ring: tx ring to configure
4373 *
4374 * Configure a transmit ring after a reset.
4375 **/
4376void igb_configure_tx_ring(struct igb_adapter *adapter,
4377 struct igb_ring *ring)
4378{
4379 struct e1000_hw *hw = &adapter->hw;
4380 u32 txdctl = 0;
4381 u64 tdba = ring->dma;
4382 int reg_idx = ring->reg_idx;
4383
4384 wr32(E1000_TDLEN(reg_idx),
4385 ring->count * sizeof(union e1000_adv_tx_desc));
4386 wr32(E1000_TDBAL(reg_idx),
4387 tdba & 0x00000000ffffffffULL);
4388 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4389
4390 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4391 wr32(E1000_TDH(reg_idx), 0);
4392 writel(val: 0, addr: ring->tail);
4393
4394 txdctl |= IGB_TX_PTHRESH;
4395 txdctl |= IGB_TX_HTHRESH << 8;
4396 txdctl |= IGB_TX_WTHRESH << 16;
4397
4398 /* reinitialize tx_buffer_info */
4399 memset(ring->tx_buffer_info, 0,
4400 sizeof(struct igb_tx_buffer) * ring->count);
4401
4402 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4403 wr32(E1000_TXDCTL(reg_idx), txdctl);
4404}
4405
4406/**
4407 * igb_configure_tx - Configure transmit Unit after Reset
4408 * @adapter: board private structure
4409 *
4410 * Configure the Tx unit of the MAC after a reset.
4411 **/
4412static void igb_configure_tx(struct igb_adapter *adapter)
4413{
4414 struct e1000_hw *hw = &adapter->hw;
4415 int i;
4416
4417 /* disable the queues */
4418 for (i = 0; i < adapter->num_tx_queues; i++)
4419 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4420
4421 wrfl();
4422 usleep_range(min: 10000, max: 20000);
4423
4424 for (i = 0; i < adapter->num_tx_queues; i++)
4425 igb_configure_tx_ring(adapter, ring: adapter->tx_ring[i]);
4426}
4427
4428/**
4429 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4430 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4431 *
4432 * Returns 0 on success, negative on failure
4433 **/
4434int igb_setup_rx_resources(struct igb_ring *rx_ring)
4435{
4436 struct igb_adapter *adapter = netdev_priv(dev: rx_ring->netdev);
4437 struct device *dev = rx_ring->dev;
4438 int size, res;
4439
4440 /* XDP RX-queue info */
4441 if (xdp_rxq_info_is_reg(xdp_rxq: &rx_ring->xdp_rxq))
4442 xdp_rxq_info_unreg(xdp_rxq: &rx_ring->xdp_rxq);
4443 res = xdp_rxq_info_reg(xdp_rxq: &rx_ring->xdp_rxq, dev: rx_ring->netdev,
4444 queue_index: rx_ring->queue_index, napi_id: 0);
4445 if (res < 0) {
4446 dev_err(dev, "Failed to register xdp_rxq index %u\n",
4447 rx_ring->queue_index);
4448 return res;
4449 }
4450
4451 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4452
4453 rx_ring->rx_buffer_info = vmalloc(size);
4454 if (!rx_ring->rx_buffer_info)
4455 goto err;
4456
4457 /* Round up to nearest 4K */
4458 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4459 rx_ring->size = ALIGN(rx_ring->size, 4096);
4460
4461 rx_ring->desc = dma_alloc_coherent(dev, size: rx_ring->size,
4462 dma_handle: &rx_ring->dma, GFP_KERNEL);
4463 if (!rx_ring->desc)
4464 goto err;
4465
4466 rx_ring->next_to_alloc = 0;
4467 rx_ring->next_to_clean = 0;
4468 rx_ring->next_to_use = 0;
4469
4470 rx_ring->xdp_prog = adapter->xdp_prog;
4471
4472 return 0;
4473
4474err:
4475 xdp_rxq_info_unreg(xdp_rxq: &rx_ring->xdp_rxq);
4476 vfree(addr: rx_ring->rx_buffer_info);
4477 rx_ring->rx_buffer_info = NULL;
4478 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4479 return -ENOMEM;
4480}
4481
4482/**
4483 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4484 * (Descriptors) for all queues
4485 * @adapter: board private structure
4486 *
4487 * Return 0 on success, negative on failure
4488 **/
4489static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4490{
4491 struct pci_dev *pdev = adapter->pdev;
4492 int i, err = 0;
4493
4494 for (i = 0; i < adapter->num_rx_queues; i++) {
4495 err = igb_setup_rx_resources(rx_ring: adapter->rx_ring[i]);
4496 if (err) {
4497 dev_err(&pdev->dev,
4498 "Allocation for Rx Queue %u failed\n", i);
4499 for (i--; i >= 0; i--)
4500 igb_free_rx_resources(adapter->rx_ring[i]);
4501 break;
4502 }
4503 }
4504
4505 return err;
4506}
4507
4508/**
4509 * igb_setup_mrqc - configure the multiple receive queue control registers
4510 * @adapter: Board private structure
4511 **/
4512static void igb_setup_mrqc(struct igb_adapter *adapter)
4513{
4514 struct e1000_hw *hw = &adapter->hw;
4515 u32 mrqc, rxcsum;
4516 u32 j, num_rx_queues;
4517 u32 rss_key[10];
4518
4519 netdev_rss_key_fill(buffer: rss_key, len: sizeof(rss_key));
4520 for (j = 0; j < 10; j++)
4521 wr32(E1000_RSSRK(j), rss_key[j]);
4522
4523 num_rx_queues = adapter->rss_queues;
4524
4525 switch (hw->mac.type) {
4526 case e1000_82576:
4527 /* 82576 supports 2 RSS queues for SR-IOV */
4528 if (adapter->vfs_allocated_count)
4529 num_rx_queues = 2;
4530 break;
4531 default:
4532 break;
4533 }
4534
4535 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4536 for (j = 0; j < IGB_RETA_SIZE; j++)
4537 adapter->rss_indir_tbl[j] =
4538 (j * num_rx_queues) / IGB_RETA_SIZE;
4539 adapter->rss_indir_tbl_init = num_rx_queues;
4540 }
4541 igb_write_rss_indir_tbl(adapter);
4542
4543 /* Disable raw packet checksumming so that RSS hash is placed in
4544 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4545 * offloads as they are enabled by default
4546 */
4547 rxcsum = rd32(E1000_RXCSUM);
4548 rxcsum |= E1000_RXCSUM_PCSD;
4549
4550 if (adapter->hw.mac.type >= e1000_82576)
4551 /* Enable Receive Checksum Offload for SCTP */
4552 rxcsum |= E1000_RXCSUM_CRCOFL;
4553
4554 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4555 wr32(E1000_RXCSUM, rxcsum);
4556
4557 /* Generate RSS hash based on packet types, TCP/UDP
4558 * port numbers and/or IPv4/v6 src and dst addresses
4559 */
4560 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4561 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4562 E1000_MRQC_RSS_FIELD_IPV6 |
4563 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4564 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4565
4566 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4567 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4568 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4569 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4570
4571 /* If VMDq is enabled then we set the appropriate mode for that, else
4572 * we default to RSS so that an RSS hash is calculated per packet even
4573 * if we are only using one queue
4574 */
4575 if (adapter->vfs_allocated_count) {
4576 if (hw->mac.type > e1000_82575) {
4577 /* Set the default pool for the PF's first queue */
4578 u32 vtctl = rd32(E1000_VT_CTL);
4579
4580 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4581 E1000_VT_CTL_DISABLE_DEF_POOL);
4582 vtctl |= adapter->vfs_allocated_count <<
4583 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4584 wr32(E1000_VT_CTL, vtctl);
4585 }
4586 if (adapter->rss_queues > 1)
4587 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4588 else
4589 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4590 } else {
4591 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4592 }
4593 igb_vmm_control(adapter);
4594
4595 wr32(E1000_MRQC, mrqc);
4596}
4597
4598/**
4599 * igb_setup_rctl - configure the receive control registers
4600 * @adapter: Board private structure
4601 **/
4602void igb_setup_rctl(struct igb_adapter *adapter)
4603{
4604 struct e1000_hw *hw = &adapter->hw;
4605 u32 rctl;
4606
4607 rctl = rd32(E1000_RCTL);
4608
4609 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4610 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4611
4612 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4613 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4614
4615 /* enable stripping of CRC. It's unlikely this will break BMC
4616 * redirection as it did with e1000. Newer features require
4617 * that the HW strips the CRC.
4618 */
4619 rctl |= E1000_RCTL_SECRC;
4620
4621 /* disable store bad packets and clear size bits. */
4622 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4623
4624 /* enable LPE to allow for reception of jumbo frames */
4625 rctl |= E1000_RCTL_LPE;
4626
4627 /* disable queue 0 to prevent tail write w/o re-config */
4628 wr32(E1000_RXDCTL(0), 0);
4629
4630 /* Attention!!! For SR-IOV PF driver operations you must enable
4631 * queue drop for all VF and PF queues to prevent head of line blocking
4632 * if an un-trusted VF does not provide descriptors to hardware.
4633 */
4634 if (adapter->vfs_allocated_count) {
4635 /* set all queue drop enable bits */
4636 wr32(E1000_QDE, ALL_QUEUES);
4637 }
4638
4639 /* This is useful for sniffing bad packets. */
4640 if (adapter->netdev->features & NETIF_F_RXALL) {
4641 /* UPE and MPE will be handled by normal PROMISC logic
4642 * in e1000e_set_rx_mode
4643 */
4644 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4645 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4646 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4647
4648 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4649 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4650 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4651 * and that breaks VLANs.
4652 */
4653 }
4654
4655 wr32(E1000_RCTL, rctl);
4656}
4657
4658static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4659 int vfn)
4660{
4661 struct e1000_hw *hw = &adapter->hw;
4662 u32 vmolr;
4663
4664 if (size > MAX_JUMBO_FRAME_SIZE)
4665 size = MAX_JUMBO_FRAME_SIZE;
4666
4667 vmolr = rd32(E1000_VMOLR(vfn));
4668 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4669 vmolr |= size | E1000_VMOLR_LPE;
4670 wr32(E1000_VMOLR(vfn), vmolr);
4671
4672 return 0;
4673}
4674
4675static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4676 int vfn, bool enable)
4677{
4678 struct e1000_hw *hw = &adapter->hw;
4679 u32 val, reg;
4680
4681 if (hw->mac.type < e1000_82576)
4682 return;
4683
4684 if (hw->mac.type == e1000_i350)
4685 reg = E1000_DVMOLR(vfn);
4686 else
4687 reg = E1000_VMOLR(vfn);
4688
4689 val = rd32(reg);
4690 if (enable)
4691 val |= E1000_VMOLR_STRVLAN;
4692 else
4693 val &= ~(E1000_VMOLR_STRVLAN);
4694 wr32(reg, val);
4695}
4696
4697static inline void igb_set_vmolr(struct igb_adapter *adapter,
4698 int vfn, bool aupe)
4699{
4700 struct e1000_hw *hw = &adapter->hw;
4701 u32 vmolr;
4702
4703 /* This register exists only on 82576 and newer so if we are older then
4704 * we should exit and do nothing
4705 */
4706 if (hw->mac.type < e1000_82576)
4707 return;
4708
4709 vmolr = rd32(E1000_VMOLR(vfn));
4710 if (aupe)
4711 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4712 else
4713 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4714
4715 /* clear all bits that might not be set */
4716 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4717
4718 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4719 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4720 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4721 * multicast packets
4722 */
4723 if (vfn <= adapter->vfs_allocated_count)
4724 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4725
4726 wr32(E1000_VMOLR(vfn), vmolr);
4727}
4728
4729/**
4730 * igb_setup_srrctl - configure the split and replication receive control
4731 * registers
4732 * @adapter: Board private structure
4733 * @ring: receive ring to be configured
4734 **/
4735void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
4736{
4737 struct e1000_hw *hw = &adapter->hw;
4738 int reg_idx = ring->reg_idx;
4739 u32 srrctl = 0;
4740
4741 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4742 if (ring_uses_large_buffer(ring))
4743 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4744 else
4745 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4746 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4747 if (hw->mac.type >= e1000_82580)
4748 srrctl |= E1000_SRRCTL_TIMESTAMP;
4749 /* Only set Drop Enable if VFs allocated, or we are supporting multiple
4750 * queues and rx flow control is disabled
4751 */
4752 if (adapter->vfs_allocated_count ||
4753 (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
4754 adapter->num_rx_queues > 1))
4755 srrctl |= E1000_SRRCTL_DROP_EN;
4756
4757 wr32(E1000_SRRCTL(reg_idx), srrctl);
4758}
4759
4760/**
4761 * igb_configure_rx_ring - Configure a receive ring after Reset
4762 * @adapter: board private structure
4763 * @ring: receive ring to be configured
4764 *
4765 * Configure the Rx unit of the MAC after a reset.
4766 **/
4767void igb_configure_rx_ring(struct igb_adapter *adapter,
4768 struct igb_ring *ring)
4769{
4770 struct e1000_hw *hw = &adapter->hw;
4771 union e1000_adv_rx_desc *rx_desc;
4772 u64 rdba = ring->dma;
4773 int reg_idx = ring->reg_idx;
4774 u32 rxdctl = 0;
4775
4776 xdp_rxq_info_unreg_mem_model(xdp_rxq: &ring->xdp_rxq);
4777 WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
4778 MEM_TYPE_PAGE_SHARED, NULL));
4779
4780 /* disable the queue */
4781 wr32(E1000_RXDCTL(reg_idx), 0);
4782
4783 /* Set DMA base address registers */
4784 wr32(E1000_RDBAL(reg_idx),
4785 rdba & 0x00000000ffffffffULL);
4786 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4787 wr32(E1000_RDLEN(reg_idx),
4788 ring->count * sizeof(union e1000_adv_rx_desc));
4789
4790 /* initialize head and tail */
4791 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4792 wr32(E1000_RDH(reg_idx), 0);
4793 writel(val: 0, addr: ring->tail);
4794
4795 /* set descriptor configuration */
4796 igb_setup_srrctl(adapter, ring);
4797
4798 /* set filtering for VMDQ pools */
4799 igb_set_vmolr(adapter, vfn: reg_idx & 0x7, aupe: true);
4800
4801 rxdctl |= IGB_RX_PTHRESH;
4802 rxdctl |= IGB_RX_HTHRESH << 8;
4803 rxdctl |= IGB_RX_WTHRESH << 16;
4804
4805 /* initialize rx_buffer_info */
4806 memset(ring->rx_buffer_info, 0,
4807 sizeof(struct igb_rx_buffer) * ring->count);
4808
4809 /* initialize Rx descriptor 0 */
4810 rx_desc = IGB_RX_DESC(ring, 0);
4811 rx_desc->wb.upper.length = 0;
4812
4813 /* enable receive descriptor fetching */
4814 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4815 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4816}
4817
4818static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4819 struct igb_ring *rx_ring)
4820{
4821#if (PAGE_SIZE < 8192)
4822 struct e1000_hw *hw = &adapter->hw;
4823#endif
4824
4825 /* set build_skb and buffer size flags */
4826 clear_ring_build_skb_enabled(rx_ring);
4827 clear_ring_uses_large_buffer(rx_ring);
4828
4829 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4830 return;
4831
4832 set_ring_build_skb_enabled(rx_ring);
4833
4834#if (PAGE_SIZE < 8192)
4835 if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
4836 rd32(E1000_RCTL) & E1000_RCTL_SBP)
4837 set_ring_uses_large_buffer(rx_ring);
4838#endif
4839}
4840
4841/**
4842 * igb_configure_rx - Configure receive Unit after Reset
4843 * @adapter: board private structure
4844 *
4845 * Configure the Rx unit of the MAC after a reset.
4846 **/
4847static void igb_configure_rx(struct igb_adapter *adapter)
4848{
4849 int i;
4850
4851 /* set the correct pool for the PF default MAC address in entry 0 */
4852 igb_set_default_mac_filter(adapter);
4853
4854 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4855 * the Base and Length of the Rx Descriptor Ring
4856 */
4857 for (i = 0; i < adapter->num_rx_queues; i++) {
4858 struct igb_ring *rx_ring = adapter->rx_ring[i];
4859
4860 igb_set_rx_buffer_len(adapter, rx_ring);
4861 igb_configure_rx_ring(adapter, ring: rx_ring);
4862 }
4863}
4864
4865/**
4866 * igb_free_tx_resources - Free Tx Resources per Queue
4867 * @tx_ring: Tx descriptor ring for a specific queue
4868 *
4869 * Free all transmit software resources
4870 **/
4871void igb_free_tx_resources(struct igb_ring *tx_ring)
4872{
4873 igb_clean_tx_ring(tx_ring);
4874
4875 vfree(addr: tx_ring->tx_buffer_info);
4876 tx_ring->tx_buffer_info = NULL;
4877
4878 /* if not set, then don't free */
4879 if (!tx_ring->desc)
4880 return;
4881
4882 dma_free_coherent(dev: tx_ring->dev, size: tx_ring->size,
4883 cpu_addr: tx_ring->desc, dma_handle: tx_ring->dma);
4884
4885 tx_ring->desc = NULL;
4886}
4887
4888/**
4889 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4890 * @adapter: board private structure
4891 *
4892 * Free all transmit software resources
4893 **/
4894static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4895{
4896 int i;
4897
4898 for (i = 0; i < adapter->num_tx_queues; i++)
4899 if (adapter->tx_ring[i])
4900 igb_free_tx_resources(tx_ring: adapter->tx_ring[i]);
4901}
4902
4903/**
4904 * igb_clean_tx_ring - Free Tx Buffers
4905 * @tx_ring: ring to be cleaned
4906 **/
4907static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4908{
4909 u16 i = tx_ring->next_to_clean;
4910 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4911
4912 while (i != tx_ring->next_to_use) {
4913 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4914
4915 /* Free all the Tx ring sk_buffs or xdp frames */
4916 if (tx_buffer->type == IGB_TYPE_SKB)
4917 dev_kfree_skb_any(skb: tx_buffer->skb);
4918 else
4919 xdp_return_frame(xdpf: tx_buffer->xdpf);
4920
4921 /* unmap skb header data */
4922 dma_unmap_single(tx_ring->dev,
4923 dma_unmap_addr(tx_buffer, dma),
4924 dma_unmap_len(tx_buffer, len),
4925 DMA_TO_DEVICE);
4926
4927 /* check for eop_desc to determine the end of the packet */
4928 eop_desc = tx_buffer->next_to_watch;
4929 tx_desc = IGB_TX_DESC(tx_ring, i);
4930
4931 /* unmap remaining buffers */
4932 while (tx_desc != eop_desc) {
4933 tx_buffer++;
4934 tx_desc++;
4935 i++;
4936 if (unlikely(i == tx_ring->count)) {
4937 i = 0;
4938 tx_buffer = tx_ring->tx_buffer_info;
4939 tx_desc = IGB_TX_DESC(tx_ring, 0);
4940 }
4941
4942 /* unmap any remaining paged data */
4943 if (dma_unmap_len(tx_buffer, len))
4944 dma_unmap_page(tx_ring->dev,
4945 dma_unmap_addr(tx_buffer, dma),
4946 dma_unmap_len(tx_buffer, len),
4947 DMA_TO_DEVICE);
4948 }
4949
4950 tx_buffer->next_to_watch = NULL;
4951
4952 /* move us one more past the eop_desc for start of next pkt */
4953 tx_buffer++;
4954 i++;
4955 if (unlikely(i == tx_ring->count)) {
4956 i = 0;
4957 tx_buffer = tx_ring->tx_buffer_info;
4958 }
4959 }
4960
4961 /* reset BQL for queue */
4962 netdev_tx_reset_queue(q: txring_txq(tx_ring));
4963
4964 /* reset next_to_use and next_to_clean */
4965 tx_ring->next_to_use = 0;
4966 tx_ring->next_to_clean = 0;
4967}
4968
4969/**
4970 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4971 * @adapter: board private structure
4972 **/
4973static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4974{
4975 int i;
4976
4977 for (i = 0; i < adapter->num_tx_queues; i++)
4978 if (adapter->tx_ring[i])
4979 igb_clean_tx_ring(tx_ring: adapter->tx_ring[i]);
4980}
4981
4982/**
4983 * igb_free_rx_resources - Free Rx Resources
4984 * @rx_ring: ring to clean the resources from
4985 *
4986 * Free all receive software resources
4987 **/
4988void igb_free_rx_resources(struct igb_ring *rx_ring)
4989{
4990 igb_clean_rx_ring(rx_ring);
4991
4992 rx_ring->xdp_prog = NULL;
4993 xdp_rxq_info_unreg(xdp_rxq: &rx_ring->xdp_rxq);
4994 vfree(addr: rx_ring->rx_buffer_info);
4995 rx_ring->rx_buffer_info = NULL;
4996
4997 /* if not set, then don't free */
4998 if (!rx_ring->desc)
4999 return;
5000
5001 dma_free_coherent(dev: rx_ring->dev, size: rx_ring->size,
5002 cpu_addr: rx_ring->desc, dma_handle: rx_ring->dma);
5003
5004 rx_ring->desc = NULL;
5005}
5006
5007/**
5008 * igb_free_all_rx_resources - Free Rx Resources for All Queues
5009 * @adapter: board private structure
5010 *
5011 * Free all receive software resources
5012 **/
5013static void igb_free_all_rx_resources(struct igb_adapter *adapter)
5014{
5015 int i;
5016
5017 for (i = 0; i < adapter->num_rx_queues; i++)
5018 if (adapter->rx_ring[i])
5019 igb_free_rx_resources(rx_ring: adapter->rx_ring[i]);
5020}
5021
5022/**
5023 * igb_clean_rx_ring - Free Rx Buffers per Queue
5024 * @rx_ring: ring to free buffers from
5025 **/
5026static void igb_clean_rx_ring(struct igb_ring *rx_ring)
5027{
5028 u16 i = rx_ring->next_to_clean;
5029
5030 dev_kfree_skb(rx_ring->skb);
5031 rx_ring->skb = NULL;
5032
5033 /* Free all the Rx ring sk_buffs */
5034 while (i != rx_ring->next_to_alloc) {
5035 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
5036
5037 /* Invalidate cache lines that may have been written to by
5038 * device so that we avoid corrupting memory.
5039 */
5040 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
5041 addr: buffer_info->dma,
5042 offset: buffer_info->page_offset,
5043 size: igb_rx_bufsz(ring: rx_ring),
5044 dir: DMA_FROM_DEVICE);
5045
5046 /* free resources associated with mapping */
5047 dma_unmap_page_attrs(dev: rx_ring->dev,
5048 addr: buffer_info->dma,
5049 igb_rx_pg_size(rx_ring),
5050 dir: DMA_FROM_DEVICE,
5051 IGB_RX_DMA_ATTR);
5052 __page_frag_cache_drain(page: buffer_info->page,
5053 count: buffer_info->pagecnt_bias);
5054
5055 i++;
5056 if (i == rx_ring->count)
5057 i = 0;
5058 }
5059
5060 rx_ring->next_to_alloc = 0;
5061 rx_ring->next_to_clean = 0;
5062 rx_ring->next_to_use = 0;
5063}
5064
5065/**
5066 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
5067 * @adapter: board private structure
5068 **/
5069static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
5070{
5071 int i;
5072
5073 for (i = 0; i < adapter->num_rx_queues; i++)
5074 if (adapter->rx_ring[i])
5075 igb_clean_rx_ring(rx_ring: adapter->rx_ring[i]);
5076}
5077
5078/**
5079 * igb_set_mac - Change the Ethernet Address of the NIC
5080 * @netdev: network interface device structure
5081 * @p: pointer to an address structure
5082 *
5083 * Returns 0 on success, negative on failure
5084 **/
5085static int igb_set_mac(struct net_device *netdev, void *p)
5086{
5087 struct igb_adapter *adapter = netdev_priv(dev: netdev);
5088 struct e1000_hw *hw = &adapter->hw;
5089 struct sockaddr *addr = p;
5090
5091 if (!is_valid_ether_addr(addr: addr->sa_data))
5092 return -EADDRNOTAVAIL;
5093
5094 eth_hw_addr_set(dev: netdev, addr: addr->sa_data);
5095 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
5096
5097 /* set the correct pool for the new PF MAC address in entry 0 */
5098 igb_set_default_mac_filter(adapter);
5099
5100 return 0;
5101}
5102
5103/**
5104 * igb_write_mc_addr_list - write multicast addresses to MTA
5105 * @netdev: network interface device structure
5106 *
5107 * Writes multicast address list to the MTA hash table.
5108 * Returns: -ENOMEM on failure
5109 * 0 on no addresses written
5110 * X on writing X addresses to MTA
5111 **/
5112static int igb_write_mc_addr_list(struct net_device *netdev)
5113{
5114 struct igb_adapter *adapter = netdev_priv(dev: netdev);
5115 struct e1000_hw *hw = &adapter->hw;
5116 struct netdev_hw_addr *ha;
5117 u8 *mta_list;
5118 int i;
5119
5120 if (netdev_mc_empty(netdev)) {
5121 /* nothing to program, so clear mc list */
5122 igb_update_mc_addr_list(hw, NULL, mc_addr_count: 0);
5123 igb_restore_vf_multicasts(adapter);
5124 return 0;
5125 }
5126
5127 mta_list = kcalloc(netdev_mc_count(netdev), size: 6, GFP_ATOMIC);
5128 if (!mta_list)
5129 return -ENOMEM;
5130
5131 /* The shared function expects a packed array of only addresses. */
5132 i = 0;
5133 netdev_for_each_mc_addr(ha, netdev)
5134 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
5135
5136 igb_update_mc_addr_list(hw, mc_addr_list: mta_list, mc_addr_count: i);
5137 kfree(objp: mta_list);
5138
5139 return netdev_mc_count(netdev);
5140}
5141
5142static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
5143{
5144 struct e1000_hw *hw = &adapter->hw;
5145 u32 i, pf_id;
5146
5147 switch (hw->mac.type) {
5148 case e1000_i210:
5149 case e1000_i211:
5150 case e1000_i350:
5151 /* VLAN filtering needed for VLAN prio filter */
5152 if (adapter->netdev->features & NETIF_F_NTUPLE)
5153 break;
5154 fallthrough;
5155 case e1000_82576:
5156 case e1000_82580:
5157 case e1000_i354:
5158 /* VLAN filtering needed for pool filtering */
5159 if (adapter->vfs_allocated_count)
5160 break;
5161 fallthrough;
5162 default:
5163 return 1;
5164 }
5165
5166 /* We are already in VLAN promisc, nothing to do */
5167 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
5168 return 0;
5169
5170 if (!adapter->vfs_allocated_count)
5171 goto set_vfta;
5172
5173 /* Add PF to all active pools */
5174 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5175
5176 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5177 u32 vlvf = rd32(E1000_VLVF(i));
5178
5179 vlvf |= BIT(pf_id);
5180 wr32(E1000_VLVF(i), vlvf);
5181 }
5182
5183set_vfta:
5184 /* Set all bits in the VLAN filter table array */
5185 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
5186 hw->mac.ops.write_vfta(hw, i, ~0U);
5187
5188 /* Set flag so we don't redo unnecessary work */
5189 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
5190
5191 return 0;
5192}
5193
5194#define VFTA_BLOCK_SIZE 8
5195static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
5196{
5197 struct e1000_hw *hw = &adapter->hw;
5198 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
5199 u32 vid_start = vfta_offset * 32;
5200 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
5201 u32 i, vid, word, bits, pf_id;
5202
5203 /* guarantee that we don't scrub out management VLAN */
5204 vid = adapter->mng_vlan_id;
5205 if (vid >= vid_start && vid < vid_end)
5206 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5207
5208 if (!adapter->vfs_allocated_count)
5209 goto set_vfta;
5210
5211 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
5212
5213 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
5214 u32 vlvf = rd32(E1000_VLVF(i));
5215
5216 /* pull VLAN ID from VLVF */
5217 vid = vlvf & VLAN_VID_MASK;
5218
5219 /* only concern ourselves with a certain range */
5220 if (vid < vid_start || vid >= vid_end)
5221 continue;
5222
5223 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
5224 /* record VLAN ID in VFTA */
5225 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
5226
5227 /* if PF is part of this then continue */
5228 if (test_bit(vid, adapter->active_vlans))
5229 continue;
5230 }
5231
5232 /* remove PF from the pool */
5233 bits = ~BIT(pf_id);
5234 bits &= rd32(E1000_VLVF(i));
5235 wr32(E1000_VLVF(i), bits);
5236 }
5237
5238set_vfta:
5239 /* extract values from active_vlans and write back to VFTA */
5240 for (i = VFTA_BLOCK_SIZE; i--;) {
5241 vid = (vfta_offset + i) * 32;
5242 word = vid / BITS_PER_LONG;
5243 bits = vid % BITS_PER_LONG;
5244
5245 vfta[i] |= adapter->active_vlans[word] >> bits;
5246
5247 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
5248 }
5249}
5250
5251static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
5252{
5253 u32 i;
5254
5255 /* We are not in VLAN promisc, nothing to do */
5256 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
5257 return;
5258
5259 /* Set flag so we don't redo unnecessary work */
5260 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
5261
5262 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
5263 igb_scrub_vfta(adapter, vfta_offset: i);
5264}
5265
5266/**
5267 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
5268 * @netdev: network interface device structure
5269 *
5270 * The set_rx_mode entry point is called whenever the unicast or multicast
5271 * address lists or the network interface flags are updated. This routine is
5272 * responsible for configuring the hardware for proper unicast, multicast,
5273 * promiscuous mode, and all-multi behavior.
5274 **/
5275static void igb_set_rx_mode(struct net_device *netdev)
5276{
5277 struct igb_adapter *adapter = netdev_priv(dev: netdev);
5278 struct e1000_hw *hw = &adapter->hw;
5279 unsigned int vfn = adapter->vfs_allocated_count;
5280 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5281 int count;
5282
5283 /* Check for Promiscuous and All Multicast modes */
5284 if (netdev->flags & IFF_PROMISC) {
5285 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5286 vmolr |= E1000_VMOLR_MPME;
5287
5288 /* enable use of UTA filter to force packets to default pool */
5289 if (hw->mac.type == e1000_82576)
5290 vmolr |= E1000_VMOLR_ROPE;
5291 } else {
5292 if (netdev->flags & IFF_ALLMULTI) {
5293 rctl |= E1000_RCTL_MPE;
5294 vmolr |= E1000_VMOLR_MPME;
5295 } else {
5296 /* Write addresses to the MTA, if the attempt fails
5297 * then we should just turn on promiscuous mode so
5298 * that we can at least receive multicast traffic
5299 */
5300 count = igb_write_mc_addr_list(netdev);
5301 if (count < 0) {
5302 rctl |= E1000_RCTL_MPE;
5303 vmolr |= E1000_VMOLR_MPME;
5304 } else if (count) {
5305 vmolr |= E1000_VMOLR_ROMPE;
5306 }
5307 }
5308 }
5309
5310 /* Write addresses to available RAR registers, if there is not
5311 * sufficient space to store all the addresses then enable
5312 * unicast promiscuous mode
5313 */
5314 if (__dev_uc_sync(dev: netdev, sync: igb_uc_sync, unsync: igb_uc_unsync)) {
5315 rctl |= E1000_RCTL_UPE;
5316 vmolr |= E1000_VMOLR_ROPE;
5317 }
5318
5319 /* enable VLAN filtering by default */
5320 rctl |= E1000_RCTL_VFE;
5321
5322 /* disable VLAN filtering for modes that require it */
5323 if ((netdev->flags & IFF_PROMISC) ||
5324 (netdev->features & NETIF_F_RXALL)) {
5325 /* if we fail to set all rules then just clear VFE */
5326 if (igb_vlan_promisc_enable(adapter))
5327 rctl &= ~E1000_RCTL_VFE;
5328 } else {
5329 igb_vlan_promisc_disable(adapter);
5330 }
5331
5332 /* update state of unicast, multicast, and VLAN filtering modes */
5333 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5334 E1000_RCTL_VFE);
5335 wr32(E1000_RCTL, rctl);
5336
5337#if (PAGE_SIZE < 8192)
5338 if (!adapter->vfs_allocated_count) {
5339 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5340 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5341 }
5342#endif
5343 wr32(E1000_RLPML, rlpml);
5344
5345 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5346 * the VMOLR to enable the appropriate modes. Without this workaround
5347 * we will have issues with VLAN tag stripping not being done for frames
5348 * that are only arriving because we are the default pool
5349 */
5350 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5351 return;
5352
5353 /* set UTA to appropriate mode */
5354 igb_set_uta(adapter, set: !!(vmolr & E1000_VMOLR_ROPE));
5355
5356 vmolr |= rd32(E1000_VMOLR(vfn)) &
5357 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5358
5359 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5360 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5361#if (PAGE_SIZE < 8192)
5362 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5363 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5364 else
5365#endif
5366 vmolr |= MAX_JUMBO_FRAME_SIZE;
5367 vmolr |= E1000_VMOLR_LPE;
5368
5369 wr32(E1000_VMOLR(vfn), vmolr);
5370
5371 igb_restore_vf_multicasts(adapter);
5372}
5373
5374static void igb_check_wvbr(struct igb_adapter *adapter)
5375{
5376 struct e1000_hw *hw = &adapter->hw;
5377 u32 wvbr = 0;
5378
5379 switch (hw->mac.type) {
5380 case e1000_82576:
5381 case e1000_i350:
5382 wvbr = rd32(E1000_WVBR);
5383 if (!wvbr)
5384 return;
5385 break;
5386 default:
5387 break;
5388 }
5389
5390 adapter->wvbr |= wvbr;
5391}
5392
5393#define IGB_STAGGERED_QUEUE_OFFSET 8
5394
5395static void igb_spoof_check(struct igb_adapter *adapter)
5396{
5397 int j;
5398
5399 if (!adapter->wvbr)
5400 return;
5401
5402 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5403 if (adapter->wvbr & BIT(j) ||
5404 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5405 dev_warn(&adapter->pdev->dev,
5406 "Spoof event(s) detected on VF %d\n", j);
5407 adapter->wvbr &=
5408 ~(BIT(j) |
5409 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5410 }
5411 }
5412}
5413
5414/* Need to wait a few seconds after link up to get diagnostic information from
5415 * the phy
5416 */
5417static void igb_update_phy_info(struct timer_list *t)
5418{
5419 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5420 igb_get_phy_info(hw: &adapter->hw);
5421}
5422
5423/**
5424 * igb_has_link - check shared code for link and determine up/down
5425 * @adapter: pointer to driver private info
5426 **/
5427bool igb_has_link(struct igb_adapter *adapter)
5428{
5429 struct e1000_hw *hw = &adapter->hw;
5430 bool link_active = false;
5431
5432 /* get_link_status is set on LSC (link status) interrupt or
5433 * rx sequence error interrupt. get_link_status will stay
5434 * false until the e1000_check_for_link establishes link
5435 * for copper adapters ONLY
5436 */
5437 switch (hw->phy.media_type) {
5438 case e1000_media_type_copper:
5439 if (!hw->mac.get_link_status)
5440 return true;
5441 fallthrough;
5442 case e1000_media_type_internal_serdes:
5443 hw->mac.ops.check_for_link(hw);
5444 link_active = !hw->mac.get_link_status;
5445 break;
5446 default:
5447 case e1000_media_type_unknown:
5448 break;
5449 }
5450
5451 if (((hw->mac.type == e1000_i210) ||
5452 (hw->mac.type == e1000_i211)) &&
5453 (hw->phy.id == I210_I_PHY_ID)) {
5454 if (!netif_carrier_ok(dev: adapter->netdev)) {
5455 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5456 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5457 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5458 adapter->link_check_timeout = jiffies;
5459 }
5460 }
5461
5462 return link_active;
5463}
5464
5465static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5466{
5467 bool ret = false;
5468 u32 ctrl_ext, thstat;
5469
5470 /* check for thermal sensor event on i350 copper only */
5471 if (hw->mac.type == e1000_i350) {
5472 thstat = rd32(E1000_THSTAT);
5473 ctrl_ext = rd32(E1000_CTRL_EXT);
5474
5475 if ((hw->phy.media_type == e1000_media_type_copper) &&
5476 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5477 ret = !!(thstat & event);
5478 }
5479
5480 return ret;
5481}
5482
5483/**
5484 * igb_check_lvmmc - check for malformed packets received
5485 * and indicated in LVMMC register
5486 * @adapter: pointer to adapter
5487 **/
5488static void igb_check_lvmmc(struct igb_adapter *adapter)
5489{
5490 struct e1000_hw *hw = &adapter->hw;
5491 u32 lvmmc;
5492
5493 lvmmc = rd32(E1000_LVMMC);
5494 if (lvmmc) {
5495 if (unlikely(net_ratelimit())) {
5496 netdev_warn(dev: adapter->netdev,
5497 format: "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5498 lvmmc);
5499 }
5500 }
5501}
5502
5503/**
5504 * igb_watchdog - Timer Call-back
5505 * @t: pointer to timer_list containing our private info pointer
5506 **/
5507static void igb_watchdog(struct timer_list *t)
5508{
5509 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5510 /* Do the rest outside of interrupt context */
5511 schedule_work(work: &adapter->watchdog_task);
5512}
5513
5514static void igb_watchdog_task(struct work_struct *work)
5515{
5516 struct igb_adapter *adapter = container_of(work,
5517 struct igb_adapter,
5518 watchdog_task);
5519 struct e1000_hw *hw = &adapter->hw;
5520 struct e1000_phy_info *phy = &hw->phy;
5521 struct net_device *netdev = adapter->netdev;
5522 u32 link;
5523 int i;
5524 u32 connsw;
5525 u16 phy_data, retry_count = 20;
5526
5527 link = igb_has_link(adapter);
5528
5529 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5530 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5531 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5532 else
5533 link = false;
5534 }
5535
5536 /* Force link down if we have fiber to swap to */
5537 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5538 if (hw->phy.media_type == e1000_media_type_copper) {
5539 connsw = rd32(E1000_CONNSW);
5540 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5541 link = 0;
5542 }
5543 }
5544 if (link) {
5545 /* Perform a reset if the media type changed. */
5546 if (hw->dev_spec._82575.media_changed) {
5547 hw->dev_spec._82575.media_changed = false;
5548 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5549 igb_reset(adapter);
5550 }
5551 /* Cancel scheduled suspend requests. */
5552 pm_runtime_resume(dev: netdev->dev.parent);
5553
5554 if (!netif_carrier_ok(dev: netdev)) {
5555 u32 ctrl;
5556
5557 hw->mac.ops.get_speed_and_duplex(hw,
5558 &adapter->link_speed,
5559 &adapter->link_duplex);
5560
5561 ctrl = rd32(E1000_CTRL);
5562 /* Links status message must follow this format */
5563 netdev_info(dev: netdev,
5564 format: "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5565 netdev->name,
5566 adapter->link_speed,
5567 adapter->link_duplex == FULL_DUPLEX ?
5568 "Full" : "Half",
5569 (ctrl & E1000_CTRL_TFCE) &&
5570 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5571 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5572 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5573
5574 /* disable EEE if enabled */
5575 if ((adapter->flags & IGB_FLAG_EEE) &&
5576 (adapter->link_duplex == HALF_DUPLEX)) {
5577 dev_info(&adapter->pdev->dev,
5578 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5579 adapter->hw.dev_spec._82575.eee_disable = true;
5580 adapter->flags &= ~IGB_FLAG_EEE;
5581 }
5582
5583 /* check if SmartSpeed worked */
5584 igb_check_downshift(hw);
5585 if (phy->speed_downgraded)
5586 netdev_warn(dev: netdev, format: "Link Speed was downgraded by SmartSpeed\n");
5587
5588 /* check for thermal sensor event */
5589 if (igb_thermal_sensor_event(hw,
5590 E1000_THSTAT_LINK_THROTTLE))
5591 netdev_info(dev: netdev, format: "The network adapter link speed was downshifted because it overheated\n");
5592
5593 /* adjust timeout factor according to speed/duplex */
5594 adapter->tx_timeout_factor = 1;
5595 switch (adapter->link_speed) {
5596 case SPEED_10:
5597 adapter->tx_timeout_factor = 14;
5598 break;
5599 case SPEED_100:
5600 /* maybe add some timeout factor ? */
5601 break;
5602 }
5603
5604 if (adapter->link_speed != SPEED_1000 ||
5605 !hw->phy.ops.read_reg)
5606 goto no_wait;
5607
5608 /* wait for Remote receiver status OK */
5609retry_read_status:
5610 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5611 data: &phy_data)) {
5612 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5613 retry_count) {
5614 msleep(msecs: 100);
5615 retry_count--;
5616 goto retry_read_status;
5617 } else if (!retry_count) {
5618 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5619 }
5620 } else {
5621 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5622 }
5623no_wait:
5624 netif_carrier_on(dev: netdev);
5625
5626 igb_ping_all_vfs(adapter);
5627 igb_check_vf_rate_limit(adapter);
5628
5629 /* link state has changed, schedule phy info update */
5630 if (!test_bit(__IGB_DOWN, &adapter->state))
5631 mod_timer(timer: &adapter->phy_info_timer,
5632 expires: round_jiffies(j: jiffies + 2 * HZ));
5633 }
5634 } else {
5635 if (netif_carrier_ok(dev: netdev)) {
5636 adapter->link_speed = 0;
5637 adapter->link_duplex = 0;
5638
5639 /* check for thermal sensor event */
5640 if (igb_thermal_sensor_event(hw,
5641 E1000_THSTAT_PWR_DOWN)) {
5642 netdev_err(dev: netdev, format: "The network adapter was stopped because it overheated\n");
5643 }
5644
5645 /* Links status message must follow this format */
5646 netdev_info(dev: netdev, format: "igb: %s NIC Link is Down\n",
5647 netdev->name);
5648 netif_carrier_off(dev: netdev);
5649
5650 igb_ping_all_vfs(adapter);
5651
5652 /* link state has changed, schedule phy info update */
5653 if (!test_bit(__IGB_DOWN, &adapter->state))
5654 mod_timer(timer: &adapter->phy_info_timer,
5655 expires: round_jiffies(j: jiffies + 2 * HZ));
5656
5657 /* link is down, time to check for alternate media */
5658 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5659 igb_check_swap_media(adapter);
5660 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5661 schedule_work(work: &adapter->reset_task);
5662 /* return immediately */
5663 return;
5664 }
5665 }
5666 pm_schedule_suspend(dev: netdev->dev.parent,
5667 MSEC_PER_SEC * 5);
5668
5669 /* also check for alternate media here */
5670 } else if (!netif_carrier_ok(dev: netdev) &&
5671 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5672 igb_check_swap_media(adapter);
5673 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5674 schedule_work(work: &adapter->reset_task);
5675 /* return immediately */
5676 return;
5677 }
5678 }
5679 }
5680
5681 spin_lock(lock: &adapter->stats64_lock);
5682 igb_update_stats(adapter);
5683 spin_unlock(lock: &adapter->stats64_lock);
5684
5685 for (i = 0; i < adapter->num_tx_queues; i++) {
5686 struct igb_ring *tx_ring = adapter->tx_ring[i];
5687 if (!netif_carrier_ok(dev: netdev)) {
5688 /* We've lost link, so the controller stops DMA,
5689 * but we've got queued Tx work that's never going
5690 * to get done, so reset controller to flush Tx.
5691 * (Do the reset outside of interrupt context).
5692 */
5693 if (igb_desc_unused(ring: tx_ring) + 1 < tx_ring->count) {
5694 adapter->tx_timeout_count++;
5695 schedule_work(work: &adapter->reset_task);
5696 /* return immediately since reset is imminent */
5697 return;
5698 }
5699 }
5700
5701 /* Force detection of hung controller every watchdog period */
5702 set_bit(nr: IGB_RING_FLAG_TX_DETECT_HANG, addr: &tx_ring->flags);
5703 }
5704
5705 /* Cause software interrupt to ensure Rx ring is cleaned */
5706 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5707 u32 eics = 0;
5708
5709 for (i = 0; i < adapter->num_q_vectors; i++)
5710 eics |= adapter->q_vector[i]->eims_value;
5711 wr32(E1000_EICS, eics);
5712 } else {
5713 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5714 }
5715
5716 igb_spoof_check(adapter);
5717 igb_ptp_rx_hang(adapter);
5718 igb_ptp_tx_hang(adapter);
5719
5720 /* Check LVMMC register on i350/i354 only */
5721 if ((adapter->hw.mac.type == e1000_i350) ||
5722 (adapter->hw.mac.type == e1000_i354))
5723 igb_check_lvmmc(adapter);
5724
5725 /* Reset the timer */
5726 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5727 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5728 mod_timer(timer: &adapter->watchdog_timer,
5729 expires: round_jiffies(j: jiffies + HZ));
5730 else
5731 mod_timer(timer: &adapter->watchdog_timer,
5732 expires: round_jiffies(j: jiffies + 2 * HZ));
5733 }
5734}
5735
5736enum latency_range {
5737 lowest_latency = 0,
5738 low_latency = 1,
5739 bulk_latency = 2,
5740 latency_invalid = 255
5741};
5742
5743/**
5744 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5745 * @q_vector: pointer to q_vector
5746 *
5747 * Stores a new ITR value based on strictly on packet size. This
5748 * algorithm is less sophisticated than that used in igb_update_itr,
5749 * due to the difficulty of synchronizing statistics across multiple
5750 * receive rings. The divisors and thresholds used by this function
5751 * were determined based on theoretical maximum wire speed and testing
5752 * data, in order to minimize response time while increasing bulk
5753 * throughput.
5754 * This functionality is controlled by ethtool's coalescing settings.
5755 * NOTE: This function is called only when operating in a multiqueue
5756 * receive environment.
5757 **/
5758static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5759{
5760 int new_val = q_vector->itr_val;
5761 int avg_wire_size = 0;
5762 struct igb_adapter *adapter = q_vector->adapter;
5763 unsigned int packets;
5764
5765 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5766 * ints/sec - ITR timer value of 120 ticks.
5767 */
5768 if (adapter->link_speed != SPEED_1000) {
5769 new_val = IGB_4K_ITR;
5770 goto set_itr_val;
5771 }
5772
5773 packets = q_vector->rx.total_packets;
5774 if (packets)
5775 avg_wire_size = q_vector->rx.total_bytes / packets;
5776
5777 packets = q_vector->tx.total_packets;
5778 if (packets)
5779 avg_wire_size = max_t(u32, avg_wire_size,
5780 q_vector->tx.total_bytes / packets);
5781
5782 /* if avg_wire_size isn't set no work was done */
5783 if (!avg_wire_size)
5784 goto clear_counts;
5785
5786 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5787 avg_wire_size += 24;
5788
5789 /* Don't starve jumbo frames */
5790 avg_wire_size = min(avg_wire_size, 3000);
5791
5792 /* Give a little boost to mid-size frames */
5793 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5794 new_val = avg_wire_size / 3;
5795 else
5796 new_val = avg_wire_size / 2;
5797
5798 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5799 if (new_val < IGB_20K_ITR &&
5800 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5801 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5802 new_val = IGB_20K_ITR;
5803
5804set_itr_val:
5805 if (new_val != q_vector->itr_val) {
5806 q_vector->itr_val = new_val;
5807 q_vector->set_itr = 1;
5808 }
5809clear_counts:
5810 q_vector->rx.total_bytes = 0;
5811 q_vector->rx.total_packets = 0;
5812 q_vector->tx.total_bytes = 0;
5813 q_vector->tx.total_packets = 0;
5814}
5815
5816/**
5817 * igb_update_itr - update the dynamic ITR value based on statistics
5818 * @q_vector: pointer to q_vector
5819 * @ring_container: ring info to update the itr for
5820 *
5821 * Stores a new ITR value based on packets and byte
5822 * counts during the last interrupt. The advantage of per interrupt
5823 * computation is faster updates and more accurate ITR for the current
5824 * traffic pattern. Constants in this function were computed
5825 * based on theoretical maximum wire speed and thresholds were set based
5826 * on testing data as well as attempting to minimize response time
5827 * while increasing bulk throughput.
5828 * This functionality is controlled by ethtool's coalescing settings.
5829 * NOTE: These calculations are only valid when operating in a single-
5830 * queue environment.
5831 **/
5832static void igb_update_itr(struct igb_q_vector *q_vector,
5833 struct igb_ring_container *ring_container)
5834{
5835 unsigned int packets = ring_container->total_packets;
5836 unsigned int bytes = ring_container->total_bytes;
5837 u8 itrval = ring_container->itr;
5838
5839 /* no packets, exit with status unchanged */
5840 if (packets == 0)
5841 return;
5842
5843 switch (itrval) {
5844 case lowest_latency:
5845 /* handle TSO and jumbo frames */
5846 if (bytes/packets > 8000)
5847 itrval = bulk_latency;
5848 else if ((packets < 5) && (bytes > 512))
5849 itrval = low_latency;
5850 break;
5851 case low_latency: /* 50 usec aka 20000 ints/s */
5852 if (bytes > 10000) {
5853 /* this if handles the TSO accounting */
5854 if (bytes/packets > 8000)
5855 itrval = bulk_latency;
5856 else if ((packets < 10) || ((bytes/packets) > 1200))
5857 itrval = bulk_latency;
5858 else if ((packets > 35))
5859 itrval = lowest_latency;
5860 } else if (bytes/packets > 2000) {
5861 itrval = bulk_latency;
5862 } else if (packets <= 2 && bytes < 512) {
5863 itrval = lowest_latency;
5864 }
5865 break;
5866 case bulk_latency: /* 250 usec aka 4000 ints/s */
5867 if (bytes > 25000) {
5868 if (packets > 35)
5869 itrval = low_latency;
5870 } else if (bytes < 1500) {
5871 itrval = low_latency;
5872 }
5873 break;
5874 }
5875
5876 /* clear work counters since we have the values we need */
5877 ring_container->total_bytes = 0;
5878 ring_container->total_packets = 0;
5879
5880 /* write updated itr to ring container */
5881 ring_container->itr = itrval;
5882}
5883
5884static void igb_set_itr(struct igb_q_vector *q_vector)
5885{
5886 struct igb_adapter *adapter = q_vector->adapter;
5887 u32 new_itr = q_vector->itr_val;
5888 u8 current_itr = 0;
5889
5890 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5891 if (adapter->link_speed != SPEED_1000) {
5892 current_itr = 0;
5893 new_itr = IGB_4K_ITR;
5894 goto set_itr_now;
5895 }
5896
5897 igb_update_itr(q_vector, ring_container: &q_vector->tx);
5898 igb_update_itr(q_vector, ring_container: &q_vector->rx);
5899
5900 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5901
5902 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5903 if (current_itr == lowest_latency &&
5904 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5905 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5906 current_itr = low_latency;
5907
5908 switch (current_itr) {
5909 /* counts and packets in update_itr are dependent on these numbers */
5910 case lowest_latency:
5911 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5912 break;
5913 case low_latency:
5914 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5915 break;
5916 case bulk_latency:
5917 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5918 break;
5919 default:
5920 break;
5921 }
5922
5923set_itr_now:
5924 if (new_itr != q_vector->itr_val) {
5925 /* this attempts to bias the interrupt rate towards Bulk
5926 * by adding intermediate steps when interrupt rate is
5927 * increasing
5928 */
5929 new_itr = new_itr > q_vector->itr_val ?
5930 max((new_itr * q_vector->itr_val) /
5931 (new_itr + (q_vector->itr_val >> 2)),
5932 new_itr) : new_itr;
5933 /* Don't write the value here; it resets the adapter's
5934 * internal timer, and causes us to delay far longer than
5935 * we should between interrupts. Instead, we write the ITR
5936 * value at the beginning of the next interrupt so the timing
5937 * ends up being correct.
5938 */
5939 q_vector->itr_val = new_itr;
5940 q_vector->set_itr = 1;
5941 }
5942}
5943
5944static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5945 struct igb_tx_buffer *first,
5946 u32 vlan_macip_lens, u32 type_tucmd,
5947 u32 mss_l4len_idx)
5948{
5949 struct e1000_adv_tx_context_desc *context_desc;
5950 u16 i = tx_ring->next_to_use;
5951 struct timespec64 ts;
5952
5953 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5954
5955 i++;
5956 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5957
5958 /* set bits to identify this as an advanced context descriptor */
5959 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5960
5961 /* For 82575, context index must be unique per ring. */
5962 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5963 mss_l4len_idx |= tx_ring->reg_idx << 4;
5964
5965 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5966 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5967 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5968
5969 /* We assume there is always a valid tx time available. Invalid times
5970 * should have been handled by the upper layers.
5971 */
5972 if (tx_ring->launchtime_enable) {
5973 ts = ktime_to_timespec64(first->skb->tstamp);
5974 skb_txtime_consumed(skb: first->skb);
5975 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5976 } else {
5977 context_desc->seqnum_seed = 0;
5978 }
5979}
5980
5981static int igb_tso(struct igb_ring *tx_ring,
5982 struct igb_tx_buffer *first,
5983 u8 *hdr_len)
5984{
5985 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5986 struct sk_buff *skb = first->skb;
5987 union {
5988 struct iphdr *v4;
5989 struct ipv6hdr *v6;
5990 unsigned char *hdr;
5991 } ip;
5992 union {
5993 struct tcphdr *tcp;
5994 struct udphdr *udp;
5995 unsigned char *hdr;
5996 } l4;
5997 u32 paylen, l4_offset;
5998 int err;
5999
6000 if (skb->ip_summed != CHECKSUM_PARTIAL)
6001 return 0;
6002
6003 if (!skb_is_gso(skb))
6004 return 0;
6005
6006 err = skb_cow_head(skb, headroom: 0);
6007 if (err < 0)
6008 return err;
6009
6010 ip.hdr = skb_network_header(skb);
6011 l4.hdr = skb_checksum_start(skb);
6012
6013 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
6014 type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
6015 E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
6016
6017 /* initialize outer IP header fields */
6018 if (ip.v4->version == 4) {
6019 unsigned char *csum_start = skb_checksum_start(skb);
6020 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
6021
6022 /* IP header will have to cancel out any data that
6023 * is not a part of the outer IP header
6024 */
6025 ip.v4->check = csum_fold(sum: csum_partial(buff: trans_start,
6026 len: csum_start - trans_start,
6027 sum: 0));
6028 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
6029
6030 ip.v4->tot_len = 0;
6031 first->tx_flags |= IGB_TX_FLAGS_TSO |
6032 IGB_TX_FLAGS_CSUM |
6033 IGB_TX_FLAGS_IPV4;
6034 } else {
6035 ip.v6->payload_len = 0;
6036 first->tx_flags |= IGB_TX_FLAGS_TSO |
6037 IGB_TX_FLAGS_CSUM;
6038 }
6039
6040 /* determine offset of inner transport header */
6041 l4_offset = l4.hdr - skb->data;
6042
6043 /* remove payload length from inner checksum */
6044 paylen = skb->len - l4_offset;
6045 if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
6046 /* compute length of segmentation header */
6047 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
6048 csum_replace_by_diff(sum: &l4.tcp->check,
6049 diff: (__force __wsum)htonl(paylen));
6050 } else {
6051 /* compute length of segmentation header */
6052 *hdr_len = sizeof(*l4.udp) + l4_offset;
6053 csum_replace_by_diff(sum: &l4.udp->check,
6054 diff: (__force __wsum)htonl(paylen));
6055 }
6056
6057 /* update gso size and bytecount with header size */
6058 first->gso_segs = skb_shinfo(skb)->gso_segs;
6059 first->bytecount += (first->gso_segs - 1) * *hdr_len;
6060
6061 /* MSS L4LEN IDX */
6062 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
6063 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
6064
6065 /* VLAN MACLEN IPLEN */
6066 vlan_macip_lens = l4.hdr - ip.hdr;
6067 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
6068 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6069
6070 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
6071 type_tucmd, mss_l4len_idx);
6072
6073 return 1;
6074}
6075
6076static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
6077{
6078 struct sk_buff *skb = first->skb;
6079 u32 vlan_macip_lens = 0;
6080 u32 type_tucmd = 0;
6081
6082 if (skb->ip_summed != CHECKSUM_PARTIAL) {
6083csum_failed:
6084 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
6085 !tx_ring->launchtime_enable)
6086 return;
6087 goto no_csum;
6088 }
6089
6090 switch (skb->csum_offset) {
6091 case offsetof(struct tcphdr, check):
6092 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
6093 fallthrough;
6094 case offsetof(struct udphdr, check):
6095 break;
6096 case offsetof(struct sctphdr, checksum):
6097 /* validate that this is actually an SCTP request */
6098 if (skb_csum_is_sctp(skb)) {
6099 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
6100 break;
6101 }
6102 fallthrough;
6103 default:
6104 skb_checksum_help(skb);
6105 goto csum_failed;
6106 }
6107
6108 /* update TX checksum flag */
6109 first->tx_flags |= IGB_TX_FLAGS_CSUM;
6110 vlan_macip_lens = skb_checksum_start_offset(skb) -
6111 skb_network_offset(skb);
6112no_csum:
6113 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
6114 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
6115
6116 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, mss_l4len_idx: 0);
6117}
6118
6119#define IGB_SET_FLAG(_input, _flag, _result) \
6120 ((_flag <= _result) ? \
6121 ((u32)(_input & _flag) * (_result / _flag)) : \
6122 ((u32)(_input & _flag) / (_flag / _result)))
6123
6124static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
6125{
6126 /* set type for advanced descriptor with frame checksum insertion */
6127 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
6128 E1000_ADVTXD_DCMD_DEXT |
6129 E1000_ADVTXD_DCMD_IFCS;
6130
6131 /* set HW vlan bit if vlan is present */
6132 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
6133 (E1000_ADVTXD_DCMD_VLE));
6134
6135 /* set segmentation bits for TSO */
6136 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
6137 (E1000_ADVTXD_DCMD_TSE));
6138
6139 /* set timestamp bit if present */
6140 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
6141 (E1000_ADVTXD_MAC_TSTAMP));
6142
6143 /* insert frame checksum */
6144 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
6145
6146 return cmd_type;
6147}
6148
6149static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
6150 union e1000_adv_tx_desc *tx_desc,
6151 u32 tx_flags, unsigned int paylen)
6152{
6153 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
6154
6155 /* 82575 requires a unique index per ring */
6156 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6157 olinfo_status |= tx_ring->reg_idx << 4;
6158
6159 /* insert L4 checksum */
6160 olinfo_status |= IGB_SET_FLAG(tx_flags,
6161 IGB_TX_FLAGS_CSUM,
6162 (E1000_TXD_POPTS_TXSM << 8));
6163
6164 /* insert IPv4 checksum */
6165 olinfo_status |= IGB_SET_FLAG(tx_flags,
6166 IGB_TX_FLAGS_IPV4,
6167 (E1000_TXD_POPTS_IXSM << 8));
6168
6169 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6170}
6171
6172static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6173{
6174 struct net_device *netdev = tx_ring->netdev;
6175
6176 netif_stop_subqueue(dev: netdev, queue_index: tx_ring->queue_index);
6177
6178 /* Herbert's original patch had:
6179 * smp_mb__after_netif_stop_queue();
6180 * but since that doesn't exist yet, just open code it.
6181 */
6182 smp_mb();
6183
6184 /* We need to check again in a case another CPU has just
6185 * made room available.
6186 */
6187 if (igb_desc_unused(ring: tx_ring) < size)
6188 return -EBUSY;
6189
6190 /* A reprieve! */
6191 netif_wake_subqueue(dev: netdev, queue_index: tx_ring->queue_index);
6192
6193 u64_stats_update_begin(syncp: &tx_ring->tx_syncp2);
6194 tx_ring->tx_stats.restart_queue2++;
6195 u64_stats_update_end(syncp: &tx_ring->tx_syncp2);
6196
6197 return 0;
6198}
6199
6200static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
6201{
6202 if (igb_desc_unused(ring: tx_ring) >= size)
6203 return 0;
6204 return __igb_maybe_stop_tx(tx_ring, size);
6205}
6206
6207static int igb_tx_map(struct igb_ring *tx_ring,
6208 struct igb_tx_buffer *first,
6209 const u8 hdr_len)
6210{
6211 struct sk_buff *skb = first->skb;
6212 struct igb_tx_buffer *tx_buffer;
6213 union e1000_adv_tx_desc *tx_desc;
6214 skb_frag_t *frag;
6215 dma_addr_t dma;
6216 unsigned int data_len, size;
6217 u32 tx_flags = first->tx_flags;
6218 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
6219 u16 i = tx_ring->next_to_use;
6220
6221 tx_desc = IGB_TX_DESC(tx_ring, i);
6222
6223 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, paylen: skb->len - hdr_len);
6224
6225 size = skb_headlen(skb);
6226 data_len = skb->data_len;
6227
6228 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
6229
6230 tx_buffer = first;
6231
6232 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
6233 if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma))
6234 goto dma_error;
6235
6236 /* record length, and DMA address */
6237 dma_unmap_len_set(tx_buffer, len, size);
6238 dma_unmap_addr_set(tx_buffer, dma, dma);
6239
6240 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6241
6242 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
6243 tx_desc->read.cmd_type_len =
6244 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
6245
6246 i++;
6247 tx_desc++;
6248 if (i == tx_ring->count) {
6249 tx_desc = IGB_TX_DESC(tx_ring, 0);
6250 i = 0;
6251 }
6252 tx_desc->read.olinfo_status = 0;
6253
6254 dma += IGB_MAX_DATA_PER_TXD;
6255 size -= IGB_MAX_DATA_PER_TXD;
6256
6257 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6258 }
6259
6260 if (likely(!data_len))
6261 break;
6262
6263 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
6264
6265 i++;
6266 tx_desc++;
6267 if (i == tx_ring->count) {
6268 tx_desc = IGB_TX_DESC(tx_ring, 0);
6269 i = 0;
6270 }
6271 tx_desc->read.olinfo_status = 0;
6272
6273 size = skb_frag_size(frag);
6274 data_len -= size;
6275
6276 dma = skb_frag_dma_map(dev: tx_ring->dev, frag, offset: 0,
6277 size, dir: DMA_TO_DEVICE);
6278
6279 tx_buffer = &tx_ring->tx_buffer_info[i];
6280 }
6281
6282 /* write last descriptor with RS and EOP bits */
6283 cmd_type |= size | IGB_TXD_DCMD;
6284 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6285
6286 netdev_tx_sent_queue(dev_queue: txring_txq(tx_ring), bytes: first->bytecount);
6287
6288 /* set the timestamp */
6289 first->time_stamp = jiffies;
6290
6291 skb_tx_timestamp(skb);
6292
6293 /* Force memory writes to complete before letting h/w know there
6294 * are new descriptors to fetch. (Only applicable for weak-ordered
6295 * memory model archs, such as IA-64).
6296 *
6297 * We also need this memory barrier to make certain all of the
6298 * status bits have been updated before next_to_watch is written.
6299 */
6300 dma_wmb();
6301
6302 /* set next_to_watch value indicating a packet is present */
6303 first->next_to_watch = tx_desc;
6304
6305 i++;
6306 if (i == tx_ring->count)
6307 i = 0;
6308
6309 tx_ring->next_to_use = i;
6310
6311 /* Make sure there is space in the ring for the next send. */
6312 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6313
6314 if (netif_xmit_stopped(dev_queue: txring_txq(tx_ring)) || !netdev_xmit_more()) {
6315 writel(val: i, addr: tx_ring->tail);
6316 }
6317 return 0;
6318
6319dma_error:
6320 dev_err(tx_ring->dev, "TX DMA map failed\n");
6321 tx_buffer = &tx_ring->tx_buffer_info[i];
6322
6323 /* clear dma mappings for failed tx_buffer_info map */
6324 while (tx_buffer != first) {
6325 if (dma_unmap_len(tx_buffer, len))
6326 dma_unmap_page(tx_ring->dev,
6327 dma_unmap_addr(tx_buffer, dma),
6328 dma_unmap_len(tx_buffer, len),
6329 DMA_TO_DEVICE);
6330 dma_unmap_len_set(tx_buffer, len, 0);
6331
6332 if (i-- == 0)
6333 i += tx_ring->count;
6334 tx_buffer = &tx_ring->tx_buffer_info[i];
6335 }
6336
6337 if (dma_unmap_len(tx_buffer, len))
6338 dma_unmap_single(tx_ring->dev,
6339 dma_unmap_addr(tx_buffer, dma),
6340 dma_unmap_len(tx_buffer, len),
6341 DMA_TO_DEVICE);
6342 dma_unmap_len_set(tx_buffer, len, 0);
6343
6344 dev_kfree_skb_any(skb: tx_buffer->skb);
6345 tx_buffer->skb = NULL;
6346
6347 tx_ring->next_to_use = i;
6348
6349 return -1;
6350}
6351
6352int igb_xmit_xdp_ring(struct igb_adapter *adapter,
6353 struct igb_ring *tx_ring,
6354 struct xdp_frame *xdpf)
6355{
6356 struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(frame: xdpf);
6357 u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
6358 u16 count, i, index = tx_ring->next_to_use;
6359 struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
6360 struct igb_tx_buffer *tx_buffer = tx_head;
6361 union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
6362 u32 len = xdpf->len, cmd_type, olinfo_status;
6363 void *data = xdpf->data;
6364
6365 count = TXD_USE_COUNT(len);
6366 for (i = 0; i < nr_frags; i++)
6367 count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
6368
6369 if (igb_maybe_stop_tx(tx_ring, size: count + 3))
6370 return IGB_XDP_CONSUMED;
6371
6372 i = 0;
6373 /* record the location of the first descriptor for this packet */
6374 tx_head->bytecount = xdp_get_frame_len(xdpf);
6375 tx_head->type = IGB_TYPE_XDP;
6376 tx_head->gso_segs = 1;
6377 tx_head->xdpf = xdpf;
6378
6379 olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
6380 /* 82575 requires a unique index per ring */
6381 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
6382 olinfo_status |= tx_ring->reg_idx << 4;
6383 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
6384
6385 for (;;) {
6386 dma_addr_t dma;
6387
6388 dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
6389 if (dma_mapping_error(dev: tx_ring->dev, dma_addr: dma))
6390 goto unmap;
6391
6392 /* record length, and DMA address */
6393 dma_unmap_len_set(tx_buffer, len, len);
6394 dma_unmap_addr_set(tx_buffer, dma, dma);
6395
6396 /* put descriptor type bits */
6397 cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
6398 E1000_ADVTXD_DCMD_IFCS | len;
6399
6400 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6401 tx_desc->read.buffer_addr = cpu_to_le64(dma);
6402
6403 tx_buffer->protocol = 0;
6404
6405 if (++index == tx_ring->count)
6406 index = 0;
6407
6408 if (i == nr_frags)
6409 break;
6410
6411 tx_buffer = &tx_ring->tx_buffer_info[index];
6412 tx_desc = IGB_TX_DESC(tx_ring, index);
6413 tx_desc->read.olinfo_status = 0;
6414
6415 data = skb_frag_address(frag: &sinfo->frags[i]);
6416 len = skb_frag_size(frag: &sinfo->frags[i]);
6417 i++;
6418 }
6419 tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
6420
6421 netdev_tx_sent_queue(dev_queue: txring_txq(tx_ring), bytes: tx_head->bytecount);
6422 /* set the timestamp */
6423 tx_head->time_stamp = jiffies;
6424
6425 /* Avoid any potential race with xdp_xmit and cleanup */
6426 smp_wmb();
6427
6428 /* set next_to_watch value indicating a packet is present */
6429 tx_head->next_to_watch = tx_desc;
6430 tx_ring->next_to_use = index;
6431
6432 /* Make sure there is space in the ring for the next send. */
6433 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6434
6435 if (netif_xmit_stopped(dev_queue: txring_txq(tx_ring)) || !netdev_xmit_more())
6436 writel(val: index, addr: tx_ring->tail);
6437
6438 return IGB_XDP_TX;
6439
6440unmap:
6441 for (;;) {
6442 tx_buffer = &tx_ring->tx_buffer_info[index];
6443 if (dma_unmap_len(tx_buffer, len))
6444 dma_unmap_page(tx_ring->dev,
6445 dma_unmap_addr(tx_buffer, dma),
6446 dma_unmap_len(tx_buffer, len),
6447 DMA_TO_DEVICE);
6448 dma_unmap_len_set(tx_buffer, len, 0);
6449 if (tx_buffer == tx_head)
6450 break;
6451
6452 if (!index)
6453 index += tx_ring->count;
6454 index--;
6455 }
6456
6457 return IGB_XDP_CONSUMED;
6458}
6459
6460netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6461 struct igb_ring *tx_ring)
6462{
6463 struct igb_tx_buffer *first;
6464 int tso;
6465 u32 tx_flags = 0;
6466 unsigned short f;
6467 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6468 __be16 protocol = vlan_get_protocol(skb);
6469 u8 hdr_len = 0;
6470
6471 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6472 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6473 * + 2 desc gap to keep tail from touching head,
6474 * + 1 desc for context descriptor,
6475 * otherwise try next time
6476 */
6477 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6478 count += TXD_USE_COUNT(skb_frag_size(
6479 &skb_shinfo(skb)->frags[f]));
6480
6481 if (igb_maybe_stop_tx(tx_ring, size: count + 3)) {
6482 /* this is a hard error */
6483 return NETDEV_TX_BUSY;
6484 }
6485
6486 /* record the location of the first descriptor for this packet */
6487 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6488 first->type = IGB_TYPE_SKB;
6489 first->skb = skb;
6490 first->bytecount = skb->len;
6491 first->gso_segs = 1;
6492
6493 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6494 struct igb_adapter *adapter = netdev_priv(dev: tx_ring->netdev);
6495
6496 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6497 !test_and_set_bit_lock(nr: __IGB_PTP_TX_IN_PROGRESS,
6498 addr: &adapter->state)) {
6499 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6500 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6501
6502 adapter->ptp_tx_skb = skb_get(skb);
6503 adapter->ptp_tx_start = jiffies;
6504 if (adapter->hw.mac.type == e1000_82576)
6505 schedule_work(work: &adapter->ptp_tx_work);
6506 } else {
6507 adapter->tx_hwtstamp_skipped++;
6508 }
6509 }
6510
6511 if (skb_vlan_tag_present(skb)) {
6512 tx_flags |= IGB_TX_FLAGS_VLAN;
6513 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6514 }
6515
6516 /* record initial flags and protocol */
6517 first->tx_flags = tx_flags;
6518 first->protocol = protocol;
6519
6520 tso = igb_tso(tx_ring, first, hdr_len: &hdr_len);
6521 if (tso < 0)
6522 goto out_drop;
6523 else if (!tso)
6524 igb_tx_csum(tx_ring, first);
6525
6526 if (igb_tx_map(tx_ring, first, hdr_len))
6527 goto cleanup_tx_tstamp;
6528
6529 return NETDEV_TX_OK;
6530
6531out_drop:
6532 dev_kfree_skb_any(skb: first->skb);
6533 first->skb = NULL;
6534cleanup_tx_tstamp:
6535 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6536 struct igb_adapter *adapter = netdev_priv(dev: tx_ring->netdev);
6537
6538 dev_kfree_skb_any(skb: adapter->ptp_tx_skb);
6539 adapter->ptp_tx_skb = NULL;
6540 if (adapter->hw.mac.type == e1000_82576)
6541 cancel_work_sync(work: &adapter->ptp_tx_work);
6542 clear_bit_unlock(nr: __IGB_PTP_TX_IN_PROGRESS, addr: &adapter->state);
6543 }
6544
6545 return NETDEV_TX_OK;
6546}
6547
6548static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6549 struct sk_buff *skb)
6550{
6551 unsigned int r_idx = skb->queue_mapping;
6552
6553 if (r_idx >= adapter->num_tx_queues)
6554 r_idx = r_idx % adapter->num_tx_queues;
6555
6556 return adapter->tx_ring[r_idx];
6557}
6558
6559static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6560 struct net_device *netdev)
6561{
6562 struct igb_adapter *adapter = netdev_priv(dev: netdev);
6563
6564 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6565 * in order to meet this minimum size requirement.
6566 */
6567 if (skb_put_padto(skb, len: 17))
6568 return NETDEV_TX_OK;
6569
6570 return igb_xmit_frame_ring(skb, tx_ring: igb_tx_queue_mapping(adapter, skb));
6571}
6572
6573/**
6574 * igb_tx_timeout - Respond to a Tx Hang
6575 * @netdev: network interface device structure
6576 * @txqueue: number of the Tx queue that hung (unused)
6577 **/
6578static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6579{
6580 struct igb_adapter *adapter = netdev_priv(dev: netdev);
6581 struct e1000_hw *hw = &adapter->hw;
6582
6583 /* Do the reset outside of interrupt context */
6584 adapter->tx_timeout_count++;
6585
6586 if (hw->mac.type >= e1000_82580)
6587 hw->dev_spec._82575.global_device_reset = true;
6588
6589 schedule_work(work: &adapter->reset_task);
6590 wr32(E1000_EICS,
6591 (adapter->eims_enable_mask & ~adapter->eims_other));
6592}
6593
6594static void igb_reset_task(struct work_struct *work)
6595{
6596 struct igb_adapter *adapter;
6597 adapter = container_of(work, struct igb_adapter, reset_task);
6598
6599 rtnl_lock();
6600 /* If we're already down or resetting, just bail */
6601 if (test_bit(__IGB_DOWN, &adapter->state) ||
6602 test_bit(__IGB_RESETTING, &adapter->state)) {
6603 rtnl_unlock();
6604 return;
6605 }
6606
6607 igb_dump(adapter);
6608 netdev_err(dev: adapter->netdev, format: "Reset adapter\n");
6609 igb_reinit_locked(adapter);
6610 rtnl_unlock();
6611}
6612
6613/**
6614 * igb_get_stats64 - Get System Network Statistics
6615 * @netdev: network interface device structure
6616 * @stats: rtnl_link_stats64 pointer
6617 **/
6618static void igb_get_stats64(struct net_device *netdev,
6619 struct rtnl_link_stats64 *stats)
6620{
6621 struct igb_adapter *adapter = netdev_priv(dev: netdev);
6622
6623 spin_lock(lock: &adapter->stats64_lock);
6624 igb_update_stats(adapter);
6625 memcpy(stats, &adapter->stats64, sizeof(*stats));
6626 spin_unlock(lock: &adapter->stats64_lock);
6627}
6628
6629/**
6630 * igb_change_mtu - Change the Maximum Transfer Unit
6631 * @netdev: network interface device structure
6632 * @new_mtu: new value for maximum frame size
6633 *
6634 * Returns 0 on success, negative on failure
6635 **/
6636static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6637{
6638 struct igb_adapter *adapter = netdev_priv(dev: netdev);
6639 int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
6640
6641 if (adapter->xdp_prog) {
6642 int i;
6643
6644 for (i = 0; i < adapter->num_rx_queues; i++) {
6645 struct igb_ring *ring = adapter->rx_ring[i];
6646
6647 if (max_frame > igb_rx_bufsz(ring)) {
6648 netdev_warn(dev: adapter->netdev,
6649 format: "Requested MTU size is not supported with XDP. Max frame size is %d\n",
6650 max_frame);
6651 return -EINVAL;
6652 }
6653 }
6654 }
6655
6656 /* adjust max frame to be at least the size of a standard frame */
6657 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6658 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6659
6660 while (test_and_set_bit(nr: __IGB_RESETTING, addr: &adapter->state))
6661 usleep_range(min: 1000, max: 2000);
6662
6663 /* igb_down has a dependency on max_frame_size */
6664 adapter->max_frame_size = max_frame;
6665
6666 if (netif_running(dev: netdev))
6667 igb_down(adapter);
6668
6669 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6670 netdev->mtu, new_mtu);
6671 netdev->mtu = new_mtu;
6672
6673 if (netif_running(dev: netdev))
6674 igb_up(adapter);
6675 else
6676 igb_reset(adapter);
6677
6678 clear_bit(nr: __IGB_RESETTING, addr: &adapter->state);
6679
6680 return 0;
6681}
6682
6683/**
6684 * igb_update_stats - Update the board statistics counters
6685 * @adapter: board private structure
6686 **/
6687void igb_update_stats(struct igb_adapter *adapter)
6688{
6689 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6690 struct e1000_hw *hw = &adapter->hw;
6691 struct pci_dev *pdev = adapter->pdev;
6692 u32 reg, mpc;
6693 int i;
6694 u64 bytes, packets;
6695 unsigned int start;
6696 u64 _bytes, _packets;
6697
6698 /* Prevent stats update while adapter is being reset, or if the pci
6699 * connection is down.
6700 */
6701 if (adapter->link_speed == 0)
6702 return;
6703 if (pci_channel_offline(pdev))
6704 return;
6705
6706 bytes = 0;
6707 packets = 0;
6708
6709 rcu_read_lock();
6710 for (i = 0; i < adapter->num_rx_queues; i++) {
6711 struct igb_ring *ring = adapter->rx_ring[i];
6712 u32 rqdpc = rd32(E1000_RQDPC(i));
6713 if (hw->mac.type >= e1000_i210)
6714 wr32(E1000_RQDPC(i), 0);
6715
6716 if (rqdpc) {
6717 ring->rx_stats.drops += rqdpc;
6718 net_stats->rx_fifo_errors += rqdpc;
6719 }
6720
6721 do {
6722 start = u64_stats_fetch_begin(syncp: &ring->rx_syncp);
6723 _bytes = ring->rx_stats.bytes;
6724 _packets = ring->rx_stats.packets;
6725 } while (u64_stats_fetch_retry(syncp: &ring->rx_syncp, start));
6726 bytes += _bytes;
6727 packets += _packets;
6728 }
6729
6730 net_stats->rx_bytes = bytes;
6731 net_stats->rx_packets = packets;
6732
6733 bytes = 0;
6734 packets = 0;
6735 for (i = 0; i < adapter->num_tx_queues; i++) {
6736 struct igb_ring *ring = adapter->tx_ring[i];
6737 do {
6738 start = u64_stats_fetch_begin(syncp: &ring->tx_syncp);
6739 _bytes = ring->tx_stats.bytes;
6740 _packets = ring->tx_stats.packets;
6741 } while (u64_stats_fetch_retry(syncp: &ring->tx_syncp, start));
6742 bytes += _bytes;
6743 packets += _packets;
6744 }
6745 net_stats->tx_bytes = bytes;
6746 net_stats->tx_packets = packets;
6747 rcu_read_unlock();
6748
6749 /* read stats registers */
6750 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6751 adapter->stats.gprc += rd32(E1000_GPRC);
6752 adapter->stats.gorc += rd32(E1000_GORCL);
6753 rd32(E1000_GORCH); /* clear GORCL */
6754 adapter->stats.bprc += rd32(E1000_BPRC);
6755 adapter->stats.mprc += rd32(E1000_MPRC);
6756 adapter->stats.roc += rd32(E1000_ROC);
6757
6758 adapter->stats.prc64 += rd32(E1000_PRC64);
6759 adapter->stats.prc127 += rd32(E1000_PRC127);
6760 adapter->stats.prc255 += rd32(E1000_PRC255);
6761 adapter->stats.prc511 += rd32(E1000_PRC511);
6762 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6763 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6764 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6765 adapter->stats.sec += rd32(E1000_SEC);
6766
6767 mpc = rd32(E1000_MPC);
6768 adapter->stats.mpc += mpc;
6769 net_stats->rx_fifo_errors += mpc;
6770 adapter->stats.scc += rd32(E1000_SCC);
6771 adapter->stats.ecol += rd32(E1000_ECOL);
6772 adapter->stats.mcc += rd32(E1000_MCC);
6773 adapter->stats.latecol += rd32(E1000_LATECOL);
6774 adapter->stats.dc += rd32(E1000_DC);
6775 adapter->stats.rlec += rd32(E1000_RLEC);
6776 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6777 adapter->stats.xontxc += rd32(E1000_XONTXC);
6778 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6779 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6780 adapter->stats.fcruc += rd32(E1000_FCRUC);
6781 adapter->stats.gptc += rd32(E1000_GPTC);
6782 adapter->stats.gotc += rd32(E1000_GOTCL);
6783 rd32(E1000_GOTCH); /* clear GOTCL */
6784 adapter->stats.rnbc += rd32(E1000_RNBC);
6785 adapter->stats.ruc += rd32(E1000_RUC);
6786 adapter->stats.rfc += rd32(E1000_RFC);
6787 adapter->stats.rjc += rd32(E1000_RJC);
6788 adapter->stats.tor += rd32(E1000_TORH);
6789 adapter->stats.tot += rd32(E1000_TOTH);
6790 adapter->stats.tpr += rd32(E1000_TPR);
6791
6792 adapter->stats.ptc64 += rd32(E1000_PTC64);
6793 adapter->stats.ptc127 += rd32(E1000_PTC127);
6794 adapter->stats.ptc255 += rd32(E1000_PTC255);
6795 adapter->stats.ptc511 += rd32(E1000_PTC511);
6796 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6797 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6798
6799 adapter->stats.mptc += rd32(E1000_MPTC);
6800 adapter->stats.bptc += rd32(E1000_BPTC);
6801
6802 adapter->stats.tpt += rd32(E1000_TPT);
6803 adapter->stats.colc += rd32(E1000_COLC);
6804
6805 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6806 /* read internal phy specific stats */
6807 reg = rd32(E1000_CTRL_EXT);
6808 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6809 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6810
6811 /* this stat has invalid values on i210/i211 */
6812 if ((hw->mac.type != e1000_i210) &&
6813 (hw->mac.type != e1000_i211))
6814 adapter->stats.tncrs += rd32(E1000_TNCRS);
6815 }
6816
6817 adapter->stats.tsctc += rd32(E1000_TSCTC);
6818 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6819
6820 adapter->stats.iac += rd32(E1000_IAC);
6821 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6822 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6823 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6824 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6825 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6826 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6827 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6828 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6829
6830 /* Fill out the OS statistics structure */
6831 net_stats->multicast = adapter->stats.mprc;
6832 net_stats->collisions = adapter->stats.colc;
6833
6834 /* Rx Errors */
6835
6836 /* RLEC on some newer hardware can be incorrect so build
6837 * our own version based on RUC and ROC
6838 */
6839 net_stats->rx_errors = adapter->stats.rxerrc +
6840 adapter->stats.crcerrs + adapter->stats.algnerrc +
6841 adapter->stats.ruc + adapter->stats.roc +
6842 adapter->stats.cexterr;
6843 net_stats->rx_length_errors = adapter->stats.ruc +
6844 adapter->stats.roc;
6845 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6846 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6847 net_stats->rx_missed_errors = adapter->stats.mpc;
6848
6849 /* Tx Errors */
6850 net_stats->tx_errors = adapter->stats.ecol +
6851 adapter->stats.latecol;
6852 net_stats->tx_aborted_errors = adapter->stats.ecol;
6853 net_stats->tx_window_errors = adapter->stats.latecol;
6854 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6855
6856 /* Tx Dropped needs to be maintained elsewhere */
6857
6858 /* Management Stats */
6859 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6860 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6861 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6862
6863 /* OS2BMC Stats */
6864 reg = rd32(E1000_MANC);
6865 if (reg & E1000_MANC_EN_BMC2OS) {
6866 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6867 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6868 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6869 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6870 }
6871}
6872
6873static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
6874{
6875 int pin = ptp_find_pin(ptp: adapter->ptp_clock, func: PTP_PF_PEROUT, chan: tsintr_tt);
6876 struct e1000_hw *hw = &adapter->hw;
6877 struct timespec64 ts;
6878 u32 tsauxc;
6879
6880 if (pin < 0 || pin >= IGB_N_SDP)
6881 return;
6882
6883 spin_lock(lock: &adapter->tmreg_lock);
6884
6885 if (hw->mac.type == e1000_82580 ||
6886 hw->mac.type == e1000_i354 ||
6887 hw->mac.type == e1000_i350) {
6888 s64 ns = timespec64_to_ns(ts: &adapter->perout[tsintr_tt].period);
6889 u32 systiml, systimh, level_mask, level, rem;
6890 u64 systim, now;
6891
6892 /* read systim registers in sequence */
6893 rd32(E1000_SYSTIMR);
6894 systiml = rd32(E1000_SYSTIML);
6895 systimh = rd32(E1000_SYSTIMH);
6896 systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
6897 now = timecounter_cyc2time(tc: &adapter->tc, cycle_tstamp: systim);
6898
6899 if (pin < 2) {
6900 level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
6901 level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
6902 } else {
6903 level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
6904 level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
6905 }
6906
6907 div_u64_rem(dividend: now, divisor: ns, remainder: &rem);
6908 systim = systim + (ns - rem);
6909
6910 /* synchronize pin level with rising/falling edges */
6911 div_u64_rem(dividend: now, divisor: ns << 1, remainder: &rem);
6912 if (rem < ns) {
6913 /* first half of period */
6914 if (level == 0) {
6915 /* output is already low, skip this period */
6916 systim += ns;
6917 pr_notice("igb: periodic output on %s missed falling edge\n",
6918 adapter->sdp_config[pin].name);
6919 }
6920 } else {
6921 /* second half of period */
6922 if (level == 1) {
6923 /* output is already high, skip this period */
6924 systim += ns;
6925 pr_notice("igb: periodic output on %s missed rising edge\n",
6926 adapter->sdp_config[pin].name);
6927 }
6928 }
6929
6930 /* for this chip family tv_sec is the upper part of the binary value,
6931 * so not seconds
6932 */
6933 ts.tv_nsec = (u32)systim;
6934 ts.tv_sec = ((u32)(systim >> 32)) & 0xFF;
6935 } else {
6936 ts = timespec64_add(lhs: adapter->perout[tsintr_tt].start,
6937 rhs: adapter->perout[tsintr_tt].period);
6938 }
6939
6940 /* u32 conversion of tv_sec is safe until y2106 */
6941 wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
6942 wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
6943 tsauxc = rd32(E1000_TSAUXC);
6944 tsauxc |= TSAUXC_EN_TT0;
6945 wr32(E1000_TSAUXC, tsauxc);
6946 adapter->perout[tsintr_tt].start = ts;
6947
6948 spin_unlock(lock: &adapter->tmreg_lock);
6949}
6950
6951static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
6952{
6953 int pin = ptp_find_pin(ptp: adapter->ptp_clock, func: PTP_PF_EXTTS, chan: tsintr_tt);
6954 int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
6955 int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
6956 struct e1000_hw *hw = &adapter->hw;
6957 struct ptp_clock_event event;
6958 struct timespec64 ts;
6959 unsigned long flags;
6960
6961 if (pin < 0 || pin >= IGB_N_SDP)
6962 return;
6963
6964 if (hw->mac.type == e1000_82580 ||
6965 hw->mac.type == e1000_i354 ||
6966 hw->mac.type == e1000_i350) {
6967 u64 ns = rd32(auxstmpl);
6968
6969 ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
6970 spin_lock_irqsave(&adapter->tmreg_lock, flags);
6971 ns = timecounter_cyc2time(tc: &adapter->tc, cycle_tstamp: ns);
6972 spin_unlock_irqrestore(lock: &adapter->tmreg_lock, flags);
6973 ts = ns_to_timespec64(nsec: ns);
6974 } else {
6975 ts.tv_nsec = rd32(auxstmpl);
6976 ts.tv_sec = rd32(auxstmph);
6977 }
6978
6979 event.type = PTP_CLOCK_EXTTS;
6980 event.index = tsintr_tt;
6981 event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
6982 ptp_clock_event(ptp: adapter->ptp_clock, event: &event);
6983}
6984
6985static void igb_tsync_interrupt(struct igb_adapter *adapter)
6986{
6987 struct e1000_hw *hw = &adapter->hw;
6988 u32 tsicr = rd32(E1000_TSICR);
6989 struct ptp_clock_event event;
6990
6991 if (tsicr & TSINTR_SYS_WRAP) {
6992 event.type = PTP_CLOCK_PPS;
6993 if (adapter->ptp_caps.pps)
6994 ptp_clock_event(ptp: adapter->ptp_clock, event: &event);
6995 }
6996
6997 if (tsicr & E1000_TSICR_TXTS) {
6998 /* retrieve hardware timestamp */
6999 schedule_work(work: &adapter->ptp_tx_work);
7000 }
7001
7002 if (tsicr & TSINTR_TT0)
7003 igb_perout(adapter, tsintr_tt: 0);
7004
7005 if (tsicr & TSINTR_TT1)
7006 igb_perout(adapter, tsintr_tt: 1);
7007
7008 if (tsicr & TSINTR_AUTT0)
7009 igb_extts(adapter, tsintr_tt: 0);
7010
7011 if (tsicr & TSINTR_AUTT1)
7012 igb_extts(adapter, tsintr_tt: 1);
7013}
7014
7015static irqreturn_t igb_msix_other(int irq, void *data)
7016{
7017 struct igb_adapter *adapter = data;
7018 struct e1000_hw *hw = &adapter->hw;
7019 u32 icr = rd32(E1000_ICR);
7020 /* reading ICR causes bit 31 of EICR to be cleared */
7021
7022 if (icr & E1000_ICR_DRSTA)
7023 schedule_work(work: &adapter->reset_task);
7024
7025 if (icr & E1000_ICR_DOUTSYNC) {
7026 /* HW is reporting DMA is out of sync */
7027 adapter->stats.doosync++;
7028 /* The DMA Out of Sync is also indication of a spoof event
7029 * in IOV mode. Check the Wrong VM Behavior register to
7030 * see if it is really a spoof event.
7031 */
7032 igb_check_wvbr(adapter);
7033 }
7034
7035 /* Check for a mailbox event */
7036 if (icr & E1000_ICR_VMMB)
7037 igb_msg_task(adapter);
7038
7039 if (icr & E1000_ICR_LSC) {
7040 hw->mac.get_link_status = 1;
7041 /* guard against interrupt when we're going down */
7042 if (!test_bit(__IGB_DOWN, &adapter->state))
7043 mod_timer(timer: &adapter->watchdog_timer, expires: jiffies + 1);
7044 }
7045
7046 if (icr & E1000_ICR_TS)
7047 igb_tsync_interrupt(adapter);
7048
7049 wr32(E1000_EIMS, adapter->eims_other);
7050
7051 return IRQ_HANDLED;
7052}
7053
7054static void igb_write_itr(struct igb_q_vector *q_vector)
7055{
7056 struct igb_adapter *adapter = q_vector->adapter;
7057 u32 itr_val = q_vector->itr_val & 0x7FFC;
7058
7059 if (!q_vector->set_itr)
7060 return;
7061
7062 if (!itr_val)
7063 itr_val = 0x4;
7064
7065 if (adapter->hw.mac.type == e1000_82575)
7066 itr_val |= itr_val << 16;
7067 else
7068 itr_val |= E1000_EITR_CNT_IGNR;
7069
7070 writel(val: itr_val, addr: q_vector->itr_register);
7071 q_vector->set_itr = 0;
7072}
7073
7074static irqreturn_t igb_msix_ring(int irq, void *data)
7075{
7076 struct igb_q_vector *q_vector = data;
7077
7078 /* Write the ITR value calculated from the previous interrupt. */
7079 igb_write_itr(q_vector);
7080
7081 napi_schedule(n: &q_vector->napi);
7082
7083 return IRQ_HANDLED;
7084}
7085
7086#ifdef CONFIG_IGB_DCA
7087static void igb_update_tx_dca(struct igb_adapter *adapter,
7088 struct igb_ring *tx_ring,
7089 int cpu)
7090{
7091 struct e1000_hw *hw = &adapter->hw;
7092 u32 txctrl = dca3_get_tag(dev: tx_ring->dev, cpu);
7093
7094 if (hw->mac.type != e1000_82575)
7095 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
7096
7097 /* We can enable relaxed ordering for reads, but not writes when
7098 * DCA is enabled. This is due to a known issue in some chipsets
7099 * which will cause the DCA tag to be cleared.
7100 */
7101 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
7102 E1000_DCA_TXCTRL_DATA_RRO_EN |
7103 E1000_DCA_TXCTRL_DESC_DCA_EN;
7104
7105 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
7106}
7107
7108static void igb_update_rx_dca(struct igb_adapter *adapter,
7109 struct igb_ring *rx_ring,
7110 int cpu)
7111{
7112 struct e1000_hw *hw = &adapter->hw;
7113 u32 rxctrl = dca3_get_tag(dev: &adapter->pdev->dev, cpu);
7114
7115 if (hw->mac.type != e1000_82575)
7116 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
7117
7118 /* We can enable relaxed ordering for reads, but not writes when
7119 * DCA is enabled. This is due to a known issue in some chipsets
7120 * which will cause the DCA tag to be cleared.
7121 */
7122 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
7123 E1000_DCA_RXCTRL_DESC_DCA_EN;
7124
7125 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
7126}
7127
7128static void igb_update_dca(struct igb_q_vector *q_vector)
7129{
7130 struct igb_adapter *adapter = q_vector->adapter;
7131 int cpu = get_cpu();
7132
7133 if (q_vector->cpu == cpu)
7134 goto out_no_update;
7135
7136 if (q_vector->tx.ring)
7137 igb_update_tx_dca(adapter, tx_ring: q_vector->tx.ring, cpu);
7138
7139 if (q_vector->rx.ring)
7140 igb_update_rx_dca(adapter, rx_ring: q_vector->rx.ring, cpu);
7141
7142 q_vector->cpu = cpu;
7143out_no_update:
7144 put_cpu();
7145}
7146
7147static void igb_setup_dca(struct igb_adapter *adapter)
7148{
7149 struct e1000_hw *hw = &adapter->hw;
7150 int i;
7151
7152 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
7153 return;
7154
7155 /* Always use CB2 mode, difference is masked in the CB driver. */
7156 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
7157
7158 for (i = 0; i < adapter->num_q_vectors; i++) {
7159 adapter->q_vector[i]->cpu = -1;
7160 igb_update_dca(q_vector: adapter->q_vector[i]);
7161 }
7162}
7163
7164static int __igb_notify_dca(struct device *dev, void *data)
7165{
7166 struct net_device *netdev = dev_get_drvdata(dev);
7167 struct igb_adapter *adapter = netdev_priv(dev: netdev);
7168 struct pci_dev *pdev = adapter->pdev;
7169 struct e1000_hw *hw = &adapter->hw;
7170 unsigned long event = *(unsigned long *)data;
7171
7172 switch (event) {
7173 case DCA_PROVIDER_ADD:
7174 /* if already enabled, don't do it again */
7175 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
7176 break;
7177 if (dca_add_requester(dev) == 0) {
7178 adapter->flags |= IGB_FLAG_DCA_ENABLED;
7179 dev_info(&pdev->dev, "DCA enabled\n");
7180 igb_setup_dca(adapter);
7181 break;
7182 }
7183 fallthrough; /* since DCA is disabled. */
7184 case DCA_PROVIDER_REMOVE:
7185 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
7186 /* without this a class_device is left
7187 * hanging around in the sysfs model
7188 */
7189 dca_remove_requester(dev);
7190 dev_info(&pdev->dev, "DCA disabled\n");
7191 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
7192 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
7193 }
7194 break;
7195 }
7196
7197 return 0;
7198}
7199
7200static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
7201 void *p)
7202{
7203 int ret_val;
7204
7205 ret_val = driver_for_each_device(drv: &igb_driver.driver, NULL, data: &event,
7206 fn: __igb_notify_dca);
7207
7208 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
7209}
7210#endif /* CONFIG_IGB_DCA */
7211
7212#ifdef CONFIG_PCI_IOV
7213static int igb_vf_configure(struct igb_adapter *adapter, int vf)
7214{
7215 unsigned char mac_addr[ETH_ALEN];
7216
7217 eth_zero_addr(addr: mac_addr);
7218 igb_set_vf_mac(adapter, vf, mac_addr);
7219
7220 /* By default spoof check is enabled for all VFs */
7221 adapter->vf_data[vf].spoofchk_enabled = true;
7222
7223 /* By default VFs are not trusted */
7224 adapter->vf_data[vf].trusted = false;
7225
7226 return 0;
7227}
7228
7229#endif
7230static void igb_ping_all_vfs(struct igb_adapter *adapter)
7231{
7232 struct e1000_hw *hw = &adapter->hw;
7233 u32 ping;
7234 int i;
7235
7236 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
7237 ping = E1000_PF_CONTROL_MSG;
7238 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
7239 ping |= E1000_VT_MSGTYPE_CTS;
7240 igb_write_mbx(hw, msg: &ping, size: 1, mbx_id: i);
7241 }
7242}
7243
7244static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7245{
7246 struct e1000_hw *hw = &adapter->hw;
7247 u32 vmolr = rd32(E1000_VMOLR(vf));
7248 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7249
7250 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
7251 IGB_VF_FLAG_MULTI_PROMISC);
7252 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7253
7254 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
7255 vmolr |= E1000_VMOLR_MPME;
7256 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7257 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
7258 } else {
7259 /* if we have hashes and we are clearing a multicast promisc
7260 * flag we need to write the hashes to the MTA as this step
7261 * was previously skipped
7262 */
7263 if (vf_data->num_vf_mc_hashes > 30) {
7264 vmolr |= E1000_VMOLR_MPME;
7265 } else if (vf_data->num_vf_mc_hashes) {
7266 int j;
7267
7268 vmolr |= E1000_VMOLR_ROMPE;
7269 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7270 igb_mta_set(hw, hash_value: vf_data->vf_mc_hashes[j]);
7271 }
7272 }
7273
7274 wr32(E1000_VMOLR(vf), vmolr);
7275
7276 /* there are flags left unprocessed, likely not supported */
7277 if (*msgbuf & E1000_VT_MSGINFO_MASK)
7278 return -EINVAL;
7279
7280 return 0;
7281}
7282
7283static int igb_set_vf_multicasts(struct igb_adapter *adapter,
7284 u32 *msgbuf, u32 vf)
7285{
7286 int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7287 u16 *hash_list = (u16 *)&msgbuf[1];
7288 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7289 int i;
7290
7291 /* salt away the number of multicast addresses assigned
7292 * to this VF for later use to restore when the PF multi cast
7293 * list changes
7294 */
7295 vf_data->num_vf_mc_hashes = n;
7296
7297 /* only up to 30 hash values supported */
7298 if (n > 30)
7299 n = 30;
7300
7301 /* store the hashes for later use */
7302 for (i = 0; i < n; i++)
7303 vf_data->vf_mc_hashes[i] = hash_list[i];
7304
7305 /* Flush and reset the mta with the new values */
7306 igb_set_rx_mode(netdev: adapter->netdev);
7307
7308 return 0;
7309}
7310
7311static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
7312{
7313 struct e1000_hw *hw = &adapter->hw;
7314 struct vf_data_storage *vf_data;
7315 int i, j;
7316
7317 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7318 u32 vmolr = rd32(E1000_VMOLR(i));
7319
7320 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
7321
7322 vf_data = &adapter->vf_data[i];
7323
7324 if ((vf_data->num_vf_mc_hashes > 30) ||
7325 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
7326 vmolr |= E1000_VMOLR_MPME;
7327 } else if (vf_data->num_vf_mc_hashes) {
7328 vmolr |= E1000_VMOLR_ROMPE;
7329 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
7330 igb_mta_set(hw, hash_value: vf_data->vf_mc_hashes[j]);
7331 }
7332 wr32(E1000_VMOLR(i), vmolr);
7333 }
7334}
7335
7336static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
7337{
7338 struct e1000_hw *hw = &adapter->hw;
7339 u32 pool_mask, vlvf_mask, i;
7340
7341 /* create mask for VF and other pools */
7342 pool_mask = E1000_VLVF_POOLSEL_MASK;
7343 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
7344
7345 /* drop PF from pool bits */
7346 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
7347 adapter->vfs_allocated_count);
7348
7349 /* Find the vlan filter for this id */
7350 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
7351 u32 vlvf = rd32(E1000_VLVF(i));
7352 u32 vfta_mask, vid, vfta;
7353
7354 /* remove the vf from the pool */
7355 if (!(vlvf & vlvf_mask))
7356 continue;
7357
7358 /* clear out bit from VLVF */
7359 vlvf ^= vlvf_mask;
7360
7361 /* if other pools are present, just remove ourselves */
7362 if (vlvf & pool_mask)
7363 goto update_vlvfb;
7364
7365 /* if PF is present, leave VFTA */
7366 if (vlvf & E1000_VLVF_POOLSEL_MASK)
7367 goto update_vlvf;
7368
7369 vid = vlvf & E1000_VLVF_VLANID_MASK;
7370 vfta_mask = BIT(vid % 32);
7371
7372 /* clear bit from VFTA */
7373 vfta = adapter->shadow_vfta[vid / 32];
7374 if (vfta & vfta_mask)
7375 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
7376update_vlvf:
7377 /* clear pool selection enable */
7378 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7379 vlvf &= E1000_VLVF_POOLSEL_MASK;
7380 else
7381 vlvf = 0;
7382update_vlvfb:
7383 /* clear pool bits */
7384 wr32(E1000_VLVF(i), vlvf);
7385 }
7386}
7387
7388static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
7389{
7390 u32 vlvf;
7391 int idx;
7392
7393 /* short cut the special case */
7394 if (vlan == 0)
7395 return 0;
7396
7397 /* Search for the VLAN id in the VLVF entries */
7398 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
7399 vlvf = rd32(E1000_VLVF(idx));
7400 if ((vlvf & VLAN_VID_MASK) == vlan)
7401 break;
7402 }
7403
7404 return idx;
7405}
7406
7407static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
7408{
7409 struct e1000_hw *hw = &adapter->hw;
7410 u32 bits, pf_id;
7411 int idx;
7412
7413 idx = igb_find_vlvf_entry(hw, vlan: vid);
7414 if (!idx)
7415 return;
7416
7417 /* See if any other pools are set for this VLAN filter
7418 * entry other than the PF.
7419 */
7420 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
7421 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
7422 bits &= rd32(E1000_VLVF(idx));
7423
7424 /* Disable the filter so this falls into the default pool. */
7425 if (!bits) {
7426 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
7427 wr32(E1000_VLVF(idx), BIT(pf_id));
7428 else
7429 wr32(E1000_VLVF(idx), 0);
7430 }
7431}
7432
7433static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
7434 bool add, u32 vf)
7435{
7436 int pf_id = adapter->vfs_allocated_count;
7437 struct e1000_hw *hw = &adapter->hw;
7438 int err;
7439
7440 /* If VLAN overlaps with one the PF is currently monitoring make
7441 * sure that we are able to allocate a VLVF entry. This may be
7442 * redundant but it guarantees PF will maintain visibility to
7443 * the VLAN.
7444 */
7445 if (add && test_bit(vid, adapter->active_vlans)) {
7446 err = igb_vfta_set(hw, vid, vind: pf_id, vlan_on: true, vlvf_bypass: false);
7447 if (err)
7448 return err;
7449 }
7450
7451 err = igb_vfta_set(hw, vid, vind: vf, vlan_on: add, vlvf_bypass: false);
7452
7453 if (add && !err)
7454 return err;
7455
7456 /* If we failed to add the VF VLAN or we are removing the VF VLAN
7457 * we may need to drop the PF pool bit in order to allow us to free
7458 * up the VLVF resources.
7459 */
7460 if (test_bit(vid, adapter->active_vlans) ||
7461 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
7462 igb_update_pf_vlvf(adapter, vid);
7463
7464 return err;
7465}
7466
7467static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7468{
7469 struct e1000_hw *hw = &adapter->hw;
7470
7471 if (vid)
7472 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7473 else
7474 wr32(E1000_VMVIR(vf), 0);
7475}
7476
7477static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7478 u16 vlan, u8 qos)
7479{
7480 int err;
7481
7482 err = igb_set_vf_vlan(adapter, vid: vlan, add: true, vf);
7483 if (err)
7484 return err;
7485
7486 igb_set_vmvir(adapter, vid: vlan | (qos << VLAN_PRIO_SHIFT), vf);
7487 igb_set_vmolr(adapter, vfn: vf, aupe: !vlan);
7488
7489 /* revoke access to previous VLAN */
7490 if (vlan != adapter->vf_data[vf].pf_vlan)
7491 igb_set_vf_vlan(adapter, vid: adapter->vf_data[vf].pf_vlan,
7492 add: false, vf);
7493
7494 adapter->vf_data[vf].pf_vlan = vlan;
7495 adapter->vf_data[vf].pf_qos = qos;
7496 igb_set_vf_vlan_strip(adapter, vfn: vf, enable: true);
7497 dev_info(&adapter->pdev->dev,
7498 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7499 if (test_bit(__IGB_DOWN, &adapter->state)) {
7500 dev_warn(&adapter->pdev->dev,
7501 "The VF VLAN has been set, but the PF device is not up.\n");
7502 dev_warn(&adapter->pdev->dev,
7503 "Bring the PF device up before attempting to use the VF device.\n");
7504 }
7505
7506 return err;
7507}
7508
7509static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7510{
7511 /* Restore tagless access via VLAN 0 */
7512 igb_set_vf_vlan(adapter, vid: 0, add: true, vf);
7513
7514 igb_set_vmvir(adapter, vid: 0, vf);
7515 igb_set_vmolr(adapter, vfn: vf, aupe: true);
7516
7517 /* Remove any PF assigned VLAN */
7518 if (adapter->vf_data[vf].pf_vlan)
7519 igb_set_vf_vlan(adapter, vid: adapter->vf_data[vf].pf_vlan,
7520 add: false, vf);
7521
7522 adapter->vf_data[vf].pf_vlan = 0;
7523 adapter->vf_data[vf].pf_qos = 0;
7524 igb_set_vf_vlan_strip(adapter, vfn: vf, enable: false);
7525
7526 return 0;
7527}
7528
7529static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7530 u16 vlan, u8 qos, __be16 vlan_proto)
7531{
7532 struct igb_adapter *adapter = netdev_priv(dev: netdev);
7533
7534 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7535 return -EINVAL;
7536
7537 if (vlan_proto != htons(ETH_P_8021Q))
7538 return -EPROTONOSUPPORT;
7539
7540 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7541 igb_disable_port_vlan(adapter, vf);
7542}
7543
7544static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7545{
7546 int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
7547 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7548 int ret;
7549
7550 if (adapter->vf_data[vf].pf_vlan)
7551 return -1;
7552
7553 /* VLAN 0 is a special case, don't allow it to be removed */
7554 if (!vid && !add)
7555 return 0;
7556
7557 ret = igb_set_vf_vlan(adapter, vid, add: !!add, vf);
7558 if (!ret)
7559 igb_set_vf_vlan_strip(adapter, vfn: vf, enable: !!vid);
7560 return ret;
7561}
7562
7563static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7564{
7565 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7566
7567 /* clear flags - except flag that indicates PF has set the MAC */
7568 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7569 vf_data->last_nack = jiffies;
7570
7571 /* reset vlans for device */
7572 igb_clear_vf_vfta(adapter, vf);
7573 igb_set_vf_vlan(adapter, vid: vf_data->pf_vlan, add: true, vf);
7574 igb_set_vmvir(adapter, vid: vf_data->pf_vlan |
7575 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7576 igb_set_vmolr(adapter, vfn: vf, aupe: !vf_data->pf_vlan);
7577 igb_set_vf_vlan_strip(adapter, vfn: vf, enable: !!(vf_data->pf_vlan));
7578
7579 /* reset multicast table array for vf */
7580 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7581
7582 /* Flush and reset the mta with the new values */
7583 igb_set_rx_mode(netdev: adapter->netdev);
7584}
7585
7586static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7587{
7588 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7589
7590 /* clear mac address as we were hotplug removed/added */
7591 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7592 eth_zero_addr(addr: vf_mac);
7593
7594 /* process remaining reset events */
7595 igb_vf_reset(adapter, vf);
7596}
7597
7598static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7599{
7600 struct e1000_hw *hw = &adapter->hw;
7601 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7602 u32 reg, msgbuf[3] = {};
7603 u8 *addr = (u8 *)(&msgbuf[1]);
7604
7605 /* process all the same items cleared in a function level reset */
7606 igb_vf_reset(adapter, vf);
7607
7608 /* set vf mac address */
7609 igb_set_vf_mac(adapter, vf, vf_mac);
7610
7611 /* enable transmit and receive for vf */
7612 reg = rd32(E1000_VFTE);
7613 wr32(E1000_VFTE, reg | BIT(vf));
7614 reg = rd32(E1000_VFRE);
7615 wr32(E1000_VFRE, reg | BIT(vf));
7616
7617 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7618
7619 /* reply to reset with ack and vf mac address */
7620 if (!is_zero_ether_addr(addr: vf_mac)) {
7621 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7622 memcpy(addr, vf_mac, ETH_ALEN);
7623 } else {
7624 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7625 }
7626 igb_write_mbx(hw, msg: msgbuf, size: 3, mbx_id: vf);
7627}
7628
7629static void igb_flush_mac_table(struct igb_adapter *adapter)
7630{
7631 struct e1000_hw *hw = &adapter->hw;
7632 int i;
7633
7634 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7635 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7636 eth_zero_addr(addr: adapter->mac_table[i].addr);
7637 adapter->mac_table[i].queue = 0;
7638 igb_rar_set_index(adapter, i);
7639 }
7640}
7641
7642static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7643{
7644 struct e1000_hw *hw = &adapter->hw;
7645 /* do not count rar entries reserved for VFs MAC addresses */
7646 int rar_entries = hw->mac.rar_entry_count -
7647 adapter->vfs_allocated_count;
7648 int i, count = 0;
7649
7650 for (i = 0; i < rar_entries; i++) {
7651 /* do not count default entries */
7652 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7653 continue;
7654
7655 /* do not count "in use" entries for different queues */
7656 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7657 (adapter->mac_table[i].queue != queue))
7658 continue;
7659
7660 count++;
7661 }
7662
7663 return count;
7664}
7665
7666/* Set default MAC address for the PF in the first RAR entry */
7667static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7668{
7669 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7670
7671 ether_addr_copy(dst: mac_table->addr, src: adapter->hw.mac.addr);
7672 mac_table->queue = adapter->vfs_allocated_count;
7673 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7674
7675 igb_rar_set_index(adapter, 0);
7676}
7677
7678/* If the filter to be added and an already existing filter express
7679 * the same address and address type, it should be possible to only
7680 * override the other configurations, for example the queue to steer
7681 * traffic.
7682 */
7683static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7684 const u8 *addr, const u8 flags)
7685{
7686 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7687 return true;
7688
7689 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7690 (flags & IGB_MAC_STATE_SRC_ADDR))
7691 return false;
7692
7693 if (!ether_addr_equal(addr1: addr, addr2: entry->addr))
7694 return false;
7695
7696 return true;
7697}
7698
7699/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7700 * 'flags' is used to indicate what kind of match is made, match is by
7701 * default for the destination address, if matching by source address
7702 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7703 */
7704static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7705 const u8 *addr, const u8 queue,
7706 const u8 flags)
7707{
7708 struct e1000_hw *hw = &adapter->hw;
7709 int rar_entries = hw->mac.rar_entry_count -
7710 adapter->vfs_allocated_count;
7711 int i;
7712
7713 if (is_zero_ether_addr(addr))
7714 return -EINVAL;
7715
7716 /* Search for the first empty entry in the MAC table.
7717 * Do not touch entries at the end of the table reserved for the VF MAC
7718 * addresses.
7719 */
7720 for (i = 0; i < rar_entries; i++) {
7721 if (!igb_mac_entry_can_be_used(entry: &adapter->mac_table[i],
7722 addr, flags))
7723 continue;
7724
7725 ether_addr_copy(dst: adapter->mac_table[i].addr, src: addr);
7726 adapter->mac_table[i].queue = queue;
7727 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7728
7729 igb_rar_set_index(adapter, i);
7730 return i;
7731 }
7732
7733 return -ENOSPC;
7734}
7735
7736static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7737 const u8 queue)
7738{
7739 return igb_add_mac_filter_flags(adapter, addr, queue, flags: 0);
7740}
7741
7742/* Remove a MAC filter for 'addr' directing matching traffic to
7743 * 'queue', 'flags' is used to indicate what kind of match need to be
7744 * removed, match is by default for the destination address, if
7745 * matching by source address is to be removed the flag
7746 * IGB_MAC_STATE_SRC_ADDR can be used.
7747 */
7748static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7749 const u8 *addr, const u8 queue,
7750 const u8 flags)
7751{
7752 struct e1000_hw *hw = &adapter->hw;
7753 int rar_entries = hw->mac.rar_entry_count -
7754 adapter->vfs_allocated_count;
7755 int i;
7756
7757 if (is_zero_ether_addr(addr))
7758 return -EINVAL;
7759
7760 /* Search for matching entry in the MAC table based on given address
7761 * and queue. Do not touch entries at the end of the table reserved
7762 * for the VF MAC addresses.
7763 */
7764 for (i = 0; i < rar_entries; i++) {
7765 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7766 continue;
7767 if ((adapter->mac_table[i].state & flags) != flags)
7768 continue;
7769 if (adapter->mac_table[i].queue != queue)
7770 continue;
7771 if (!ether_addr_equal(addr1: adapter->mac_table[i].addr, addr2: addr))
7772 continue;
7773
7774 /* When a filter for the default address is "deleted",
7775 * we return it to its initial configuration
7776 */
7777 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7778 adapter->mac_table[i].state =
7779 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7780 adapter->mac_table[i].queue =
7781 adapter->vfs_allocated_count;
7782 } else {
7783 adapter->mac_table[i].state = 0;
7784 adapter->mac_table[i].queue = 0;
7785 eth_zero_addr(addr: adapter->mac_table[i].addr);
7786 }
7787
7788 igb_rar_set_index(adapter, i);
7789 return 0;
7790 }
7791
7792 return -ENOENT;
7793}
7794
7795static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7796 const u8 queue)
7797{
7798 return igb_del_mac_filter_flags(adapter, addr, queue, flags: 0);
7799}
7800
7801int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7802 const u8 *addr, u8 queue, u8 flags)
7803{
7804 struct e1000_hw *hw = &adapter->hw;
7805
7806 /* In theory, this should be supported on 82575 as well, but
7807 * that part wasn't easily accessible during development.
7808 */
7809 if (hw->mac.type != e1000_i210)
7810 return -EOPNOTSUPP;
7811
7812 return igb_add_mac_filter_flags(adapter, addr, queue,
7813 IGB_MAC_STATE_QUEUE_STEERING | flags);
7814}
7815
7816int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7817 const u8 *addr, u8 queue, u8 flags)
7818{
7819 return igb_del_mac_filter_flags(adapter, addr, queue,
7820 IGB_MAC_STATE_QUEUE_STEERING | flags);
7821}
7822
7823static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7824{
7825 struct igb_adapter *adapter = netdev_priv(dev: netdev);
7826 int ret;
7827
7828 ret = igb_add_mac_filter(adapter, addr, queue: adapter->vfs_allocated_count);
7829
7830 return min_t(int, ret, 0);
7831}
7832
7833static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7834{
7835 struct igb_adapter *adapter = netdev_priv(dev: netdev);
7836
7837 igb_del_mac_filter(adapter, addr, queue: adapter->vfs_allocated_count);
7838
7839 return 0;
7840}
7841
7842static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7843 const u32 info, const u8 *addr)
7844{
7845 struct pci_dev *pdev = adapter->pdev;
7846 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7847 struct vf_mac_filter *entry;
7848 bool found = false;
7849 int ret = 0;
7850
7851 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7852 !vf_data->trusted) {
7853 dev_warn(&pdev->dev,
7854 "VF %d requested MAC filter but is administratively denied\n",
7855 vf);
7856 return -EINVAL;
7857 }
7858 if (!is_valid_ether_addr(addr)) {
7859 dev_warn(&pdev->dev,
7860 "VF %d attempted to set invalid MAC filter\n",
7861 vf);
7862 return -EINVAL;
7863 }
7864
7865 switch (info) {
7866 case E1000_VF_MAC_FILTER_CLR:
7867 /* remove all unicast MAC filters related to the current VF */
7868 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7869 if (entry->vf == vf) {
7870 entry->vf = -1;
7871 entry->free = true;
7872 igb_del_mac_filter(adapter, addr: entry->vf_mac, queue: vf);
7873 }
7874 }
7875 break;
7876 case E1000_VF_MAC_FILTER_ADD:
7877 /* try to find empty slot in the list */
7878 list_for_each_entry(entry, &adapter->vf_macs.l, l) {
7879 if (entry->free) {
7880 found = true;
7881 break;
7882 }
7883 }
7884
7885 if (found) {
7886 entry->free = false;
7887 entry->vf = vf;
7888 ether_addr_copy(dst: entry->vf_mac, src: addr);
7889
7890 ret = igb_add_mac_filter(adapter, addr, queue: vf);
7891 ret = min_t(int, ret, 0);
7892 } else {
7893 ret = -ENOSPC;
7894 }
7895
7896 if (ret == -ENOSPC)
7897 dev_warn(&pdev->dev,
7898 "VF %d has requested MAC filter but there is no space for it\n",
7899 vf);
7900 break;
7901 default:
7902 ret = -EINVAL;
7903 break;
7904 }
7905
7906 return ret;
7907}
7908
7909static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7910{
7911 struct pci_dev *pdev = adapter->pdev;
7912 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7913 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7914
7915 /* The VF MAC Address is stored in a packed array of bytes
7916 * starting at the second 32 bit word of the msg array
7917 */
7918 unsigned char *addr = (unsigned char *)&msg[1];
7919 int ret = 0;
7920
7921 if (!info) {
7922 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7923 !vf_data->trusted) {
7924 dev_warn(&pdev->dev,
7925 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7926 vf);
7927 return -EINVAL;
7928 }
7929
7930 if (!is_valid_ether_addr(addr)) {
7931 dev_warn(&pdev->dev,
7932 "VF %d attempted to set invalid MAC\n",
7933 vf);
7934 return -EINVAL;
7935 }
7936
7937 ret = igb_set_vf_mac(adapter, vf, addr);
7938 } else {
7939 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7940 }
7941
7942 return ret;
7943}
7944
7945static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7946{
7947 struct e1000_hw *hw = &adapter->hw;
7948 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7949 u32 msg = E1000_VT_MSGTYPE_NACK;
7950
7951 /* if device isn't clear to send it shouldn't be reading either */
7952 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7953 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7954 igb_write_mbx(hw, msg: &msg, size: 1, mbx_id: vf);
7955 vf_data->last_nack = jiffies;
7956 }
7957}
7958
7959static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7960{
7961 struct pci_dev *pdev = adapter->pdev;
7962 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7963 struct e1000_hw *hw = &adapter->hw;
7964 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7965 s32 retval;
7966
7967 retval = igb_read_mbx(hw, msg: msgbuf, E1000_VFMAILBOX_SIZE, mbx_id: vf, unlock: false);
7968
7969 if (retval) {
7970 /* if receive failed revoke VF CTS stats and restart init */
7971 dev_err(&pdev->dev, "Error receiving message from VF\n");
7972 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7973 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7974 goto unlock;
7975 goto out;
7976 }
7977
7978 /* this is a message we already processed, do nothing */
7979 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7980 goto unlock;
7981
7982 /* until the vf completes a reset it should not be
7983 * allowed to start any configuration.
7984 */
7985 if (msgbuf[0] == E1000_VF_RESET) {
7986 /* unlocks mailbox */
7987 igb_vf_reset_msg(adapter, vf);
7988 return;
7989 }
7990
7991 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7992 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7993 goto unlock;
7994 retval = -1;
7995 goto out;
7996 }
7997
7998 switch ((msgbuf[0] & 0xFFFF)) {
7999 case E1000_VF_SET_MAC_ADDR:
8000 retval = igb_set_vf_mac_addr(adapter, msg: msgbuf, vf);
8001 break;
8002 case E1000_VF_SET_PROMISC:
8003 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
8004 break;
8005 case E1000_VF_SET_MULTICAST:
8006 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
8007 break;
8008 case E1000_VF_SET_LPE:
8009 retval = igb_set_vf_rlpml(adapter, size: msgbuf[1], vfn: vf);
8010 break;
8011 case E1000_VF_SET_VLAN:
8012 retval = -1;
8013 if (vf_data->pf_vlan)
8014 dev_warn(&pdev->dev,
8015 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
8016 vf);
8017 else
8018 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
8019 break;
8020 default:
8021 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
8022 retval = -1;
8023 break;
8024 }
8025
8026 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
8027out:
8028 /* notify the VF of the results of what it sent us */
8029 if (retval)
8030 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
8031 else
8032 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
8033
8034 /* unlocks mailbox */
8035 igb_write_mbx(hw, msg: msgbuf, size: 1, mbx_id: vf);
8036 return;
8037
8038unlock:
8039 igb_unlock_mbx(hw, mbx_id: vf);
8040}
8041
8042static void igb_msg_task(struct igb_adapter *adapter)
8043{
8044 struct e1000_hw *hw = &adapter->hw;
8045 unsigned long flags;
8046 u32 vf;
8047
8048 spin_lock_irqsave(&adapter->vfs_lock, flags);
8049 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
8050 /* process any reset requests */
8051 if (!igb_check_for_rst(hw, mbx_id: vf))
8052 igb_vf_reset_event(adapter, vf);
8053
8054 /* process any messages pending */
8055 if (!igb_check_for_msg(hw, mbx_id: vf))
8056 igb_rcv_msg_from_vf(adapter, vf);
8057
8058 /* process any acks */
8059 if (!igb_check_for_ack(hw, mbx_id: vf))
8060 igb_rcv_ack_from_vf(adapter, vf);
8061 }
8062 spin_unlock_irqrestore(lock: &adapter->vfs_lock, flags);
8063}
8064
8065/**
8066 * igb_set_uta - Set unicast filter table address
8067 * @adapter: board private structure
8068 * @set: boolean indicating if we are setting or clearing bits
8069 *
8070 * The unicast table address is a register array of 32-bit registers.
8071 * The table is meant to be used in a way similar to how the MTA is used
8072 * however due to certain limitations in the hardware it is necessary to
8073 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
8074 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
8075 **/
8076static void igb_set_uta(struct igb_adapter *adapter, bool set)
8077{
8078 struct e1000_hw *hw = &adapter->hw;
8079 u32 uta = set ? ~0 : 0;
8080 int i;
8081
8082 /* we only need to do this if VMDq is enabled */
8083 if (!adapter->vfs_allocated_count)
8084 return;
8085
8086 for (i = hw->mac.uta_reg_count; i--;)
8087 array_wr32(E1000_UTA, i, uta);
8088}
8089
8090/**
8091 * igb_intr_msi - Interrupt Handler
8092 * @irq: interrupt number
8093 * @data: pointer to a network interface device structure
8094 **/
8095static irqreturn_t igb_intr_msi(int irq, void *data)
8096{
8097 struct igb_adapter *adapter = data;
8098 struct igb_q_vector *q_vector = adapter->q_vector[0];
8099 struct e1000_hw *hw = &adapter->hw;
8100 /* read ICR disables interrupts using IAM */
8101 u32 icr = rd32(E1000_ICR);
8102
8103 igb_write_itr(q_vector);
8104
8105 if (icr & E1000_ICR_DRSTA)
8106 schedule_work(work: &adapter->reset_task);
8107
8108 if (icr & E1000_ICR_DOUTSYNC) {
8109 /* HW is reporting DMA is out of sync */
8110 adapter->stats.doosync++;
8111 }
8112
8113 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8114 hw->mac.get_link_status = 1;
8115 if (!test_bit(__IGB_DOWN, &adapter->state))
8116 mod_timer(timer: &adapter->watchdog_timer, expires: jiffies + 1);
8117 }
8118
8119 if (icr & E1000_ICR_TS)
8120 igb_tsync_interrupt(adapter);
8121
8122 napi_schedule(n: &q_vector->napi);
8123
8124 return IRQ_HANDLED;
8125}
8126
8127/**
8128 * igb_intr - Legacy Interrupt Handler
8129 * @irq: interrupt number
8130 * @data: pointer to a network interface device structure
8131 **/
8132static irqreturn_t igb_intr(int irq, void *data)
8133{
8134 struct igb_adapter *adapter = data;
8135 struct igb_q_vector *q_vector = adapter->q_vector[0];
8136 struct e1000_hw *hw = &adapter->hw;
8137 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
8138 * need for the IMC write
8139 */
8140 u32 icr = rd32(E1000_ICR);
8141
8142 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
8143 * not set, then the adapter didn't send an interrupt
8144 */
8145 if (!(icr & E1000_ICR_INT_ASSERTED))
8146 return IRQ_NONE;
8147
8148 igb_write_itr(q_vector);
8149
8150 if (icr & E1000_ICR_DRSTA)
8151 schedule_work(work: &adapter->reset_task);
8152
8153 if (icr & E1000_ICR_DOUTSYNC) {
8154 /* HW is reporting DMA is out of sync */
8155 adapter->stats.doosync++;
8156 }
8157
8158 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
8159 hw->mac.get_link_status = 1;
8160 /* guard against interrupt when we're going down */
8161 if (!test_bit(__IGB_DOWN, &adapter->state))
8162 mod_timer(timer: &adapter->watchdog_timer, expires: jiffies + 1);
8163 }
8164
8165 if (icr & E1000_ICR_TS)
8166 igb_tsync_interrupt(adapter);
8167
8168 napi_schedule(n: &q_vector->napi);
8169
8170 return IRQ_HANDLED;
8171}
8172
8173static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
8174{
8175 struct igb_adapter *adapter = q_vector->adapter;
8176 struct e1000_hw *hw = &adapter->hw;
8177
8178 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
8179 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
8180 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
8181 igb_set_itr(q_vector);
8182 else
8183 igb_update_ring_itr(q_vector);
8184 }
8185
8186 if (!test_bit(__IGB_DOWN, &adapter->state)) {
8187 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8188 wr32(E1000_EIMS, q_vector->eims_value);
8189 else
8190 igb_irq_enable(adapter);
8191 }
8192}
8193
8194/**
8195 * igb_poll - NAPI Rx polling callback
8196 * @napi: napi polling structure
8197 * @budget: count of how many packets we should handle
8198 **/
8199static int igb_poll(struct napi_struct *napi, int budget)
8200{
8201 struct igb_q_vector *q_vector = container_of(napi,
8202 struct igb_q_vector,
8203 napi);
8204 bool clean_complete = true;
8205 int work_done = 0;
8206
8207#ifdef CONFIG_IGB_DCA
8208 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
8209 igb_update_dca(q_vector);
8210#endif
8211 if (q_vector->tx.ring)
8212 clean_complete = igb_clean_tx_irq(q_vector, budget);
8213
8214 if (q_vector->rx.ring) {
8215 int cleaned = igb_clean_rx_irq(q_vector, budget);
8216
8217 work_done += cleaned;
8218 if (cleaned >= budget)
8219 clean_complete = false;
8220 }
8221
8222 /* If all work not completed, return budget and keep polling */
8223 if (!clean_complete)
8224 return budget;
8225
8226 /* Exit the polling mode, but don't re-enable interrupts if stack might
8227 * poll us due to busy-polling
8228 */
8229 if (likely(napi_complete_done(napi, work_done)))
8230 igb_ring_irq_enable(q_vector);
8231
8232 return work_done;
8233}
8234
8235/**
8236 * igb_clean_tx_irq - Reclaim resources after transmit completes
8237 * @q_vector: pointer to q_vector containing needed info
8238 * @napi_budget: Used to determine if we are in netpoll
8239 *
8240 * returns true if ring is completely cleaned
8241 **/
8242static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
8243{
8244 struct igb_adapter *adapter = q_vector->adapter;
8245 struct igb_ring *tx_ring = q_vector->tx.ring;
8246 struct igb_tx_buffer *tx_buffer;
8247 union e1000_adv_tx_desc *tx_desc;
8248 unsigned int total_bytes = 0, total_packets = 0;
8249 unsigned int budget = q_vector->tx.work_limit;
8250 unsigned int i = tx_ring->next_to_clean;
8251
8252 if (test_bit(__IGB_DOWN, &adapter->state))
8253 return true;
8254
8255 tx_buffer = &tx_ring->tx_buffer_info[i];
8256 tx_desc = IGB_TX_DESC(tx_ring, i);
8257 i -= tx_ring->count;
8258
8259 do {
8260 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8261
8262 /* if next_to_watch is not set then there is no work pending */
8263 if (!eop_desc)
8264 break;
8265
8266 /* prevent any other reads prior to eop_desc */
8267 smp_rmb();
8268
8269 /* if DD is not set pending work has not been completed */
8270 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
8271 break;
8272
8273 /* clear next_to_watch to prevent false hangs */
8274 tx_buffer->next_to_watch = NULL;
8275
8276 /* update the statistics for this packet */
8277 total_bytes += tx_buffer->bytecount;
8278 total_packets += tx_buffer->gso_segs;
8279
8280 /* free the skb */
8281 if (tx_buffer->type == IGB_TYPE_SKB)
8282 napi_consume_skb(skb: tx_buffer->skb, budget: napi_budget);
8283 else
8284 xdp_return_frame(xdpf: tx_buffer->xdpf);
8285
8286 /* unmap skb header data */
8287 dma_unmap_single(tx_ring->dev,
8288 dma_unmap_addr(tx_buffer, dma),
8289 dma_unmap_len(tx_buffer, len),
8290 DMA_TO_DEVICE);
8291
8292 /* clear tx_buffer data */
8293 dma_unmap_len_set(tx_buffer, len, 0);
8294
8295 /* clear last DMA location and unmap remaining buffers */
8296 while (tx_desc != eop_desc) {
8297 tx_buffer++;
8298 tx_desc++;
8299 i++;
8300 if (unlikely(!i)) {
8301 i -= tx_ring->count;
8302 tx_buffer = tx_ring->tx_buffer_info;
8303 tx_desc = IGB_TX_DESC(tx_ring, 0);
8304 }
8305
8306 /* unmap any remaining paged data */
8307 if (dma_unmap_len(tx_buffer, len)) {
8308 dma_unmap_page(tx_ring->dev,
8309 dma_unmap_addr(tx_buffer, dma),
8310 dma_unmap_len(tx_buffer, len),
8311 DMA_TO_DEVICE);
8312 dma_unmap_len_set(tx_buffer, len, 0);
8313 }
8314 }
8315
8316 /* move us one more past the eop_desc for start of next pkt */
8317 tx_buffer++;
8318 tx_desc++;
8319 i++;
8320 if (unlikely(!i)) {
8321 i -= tx_ring->count;
8322 tx_buffer = tx_ring->tx_buffer_info;
8323 tx_desc = IGB_TX_DESC(tx_ring, 0);
8324 }
8325
8326 /* issue prefetch for next Tx descriptor */
8327 prefetch(tx_desc);
8328
8329 /* update budget accounting */
8330 budget--;
8331 } while (likely(budget));
8332
8333 netdev_tx_completed_queue(dev_queue: txring_txq(tx_ring),
8334 pkts: total_packets, bytes: total_bytes);
8335 i += tx_ring->count;
8336 tx_ring->next_to_clean = i;
8337 u64_stats_update_begin(syncp: &tx_ring->tx_syncp);
8338 tx_ring->tx_stats.bytes += total_bytes;
8339 tx_ring->tx_stats.packets += total_packets;
8340 u64_stats_update_end(syncp: &tx_ring->tx_syncp);
8341 q_vector->tx.total_bytes += total_bytes;
8342 q_vector->tx.total_packets += total_packets;
8343
8344 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
8345 struct e1000_hw *hw = &adapter->hw;
8346
8347 /* Detect a transmit hang in hardware, this serializes the
8348 * check with the clearing of time_stamp and movement of i
8349 */
8350 clear_bit(nr: IGB_RING_FLAG_TX_DETECT_HANG, addr: &tx_ring->flags);
8351 if (tx_buffer->next_to_watch &&
8352 time_after(jiffies, tx_buffer->time_stamp +
8353 (adapter->tx_timeout_factor * HZ)) &&
8354 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
8355
8356 /* detected Tx unit hang */
8357 dev_err(tx_ring->dev,
8358 "Detected Tx Unit Hang\n"
8359 " Tx Queue <%d>\n"
8360 " TDH <%x>\n"
8361 " TDT <%x>\n"
8362 " next_to_use <%x>\n"
8363 " next_to_clean <%x>\n"
8364 "buffer_info[next_to_clean]\n"
8365 " time_stamp <%lx>\n"
8366 " next_to_watch <%p>\n"
8367 " jiffies <%lx>\n"
8368 " desc.status <%x>\n",
8369 tx_ring->queue_index,
8370 rd32(E1000_TDH(tx_ring->reg_idx)),
8371 readl(tx_ring->tail),
8372 tx_ring->next_to_use,
8373 tx_ring->next_to_clean,
8374 tx_buffer->time_stamp,
8375 tx_buffer->next_to_watch,
8376 jiffies,
8377 tx_buffer->next_to_watch->wb.status);
8378 netif_stop_subqueue(dev: tx_ring->netdev,
8379 queue_index: tx_ring->queue_index);
8380
8381 /* we are about to reset, no point in enabling stuff */
8382 return true;
8383 }
8384 }
8385
8386#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
8387 if (unlikely(total_packets &&
8388 netif_carrier_ok(tx_ring->netdev) &&
8389 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
8390 /* Make sure that anybody stopping the queue after this
8391 * sees the new next_to_clean.
8392 */
8393 smp_mb();
8394 if (__netif_subqueue_stopped(dev: tx_ring->netdev,
8395 queue_index: tx_ring->queue_index) &&
8396 !(test_bit(__IGB_DOWN, &adapter->state))) {
8397 netif_wake_subqueue(dev: tx_ring->netdev,
8398 queue_index: tx_ring->queue_index);
8399
8400 u64_stats_update_begin(syncp: &tx_ring->tx_syncp);
8401 tx_ring->tx_stats.restart_queue++;
8402 u64_stats_update_end(syncp: &tx_ring->tx_syncp);
8403 }
8404 }
8405
8406 return !!budget;
8407}
8408
8409/**
8410 * igb_reuse_rx_page - page flip buffer and store it back on the ring
8411 * @rx_ring: rx descriptor ring to store buffers on
8412 * @old_buff: donor buffer to have page reused
8413 *
8414 * Synchronizes page for reuse by the adapter
8415 **/
8416static void igb_reuse_rx_page(struct igb_ring *rx_ring,
8417 struct igb_rx_buffer *old_buff)
8418{
8419 struct igb_rx_buffer *new_buff;
8420 u16 nta = rx_ring->next_to_alloc;
8421
8422 new_buff = &rx_ring->rx_buffer_info[nta];
8423
8424 /* update, and store next to alloc */
8425 nta++;
8426 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
8427
8428 /* Transfer page from old buffer to new buffer.
8429 * Move each member individually to avoid possible store
8430 * forwarding stalls.
8431 */
8432 new_buff->dma = old_buff->dma;
8433 new_buff->page = old_buff->page;
8434 new_buff->page_offset = old_buff->page_offset;
8435 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
8436}
8437
8438static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
8439 int rx_buf_pgcnt)
8440{
8441 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
8442 struct page *page = rx_buffer->page;
8443
8444 /* avoid re-using remote and pfmemalloc pages */
8445 if (!dev_page_is_reusable(page))
8446 return false;
8447
8448#if (PAGE_SIZE < 8192)
8449 /* if we are only owner of page we can reuse it */
8450 if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
8451 return false;
8452#else
8453#define IGB_LAST_OFFSET \
8454 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
8455
8456 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
8457 return false;
8458#endif
8459
8460 /* If we have drained the page fragment pool we need to update
8461 * the pagecnt_bias and page count so that we fully restock the
8462 * number of references the driver holds.
8463 */
8464 if (unlikely(pagecnt_bias == 1)) {
8465 page_ref_add(page, USHRT_MAX - 1);
8466 rx_buffer->pagecnt_bias = USHRT_MAX;
8467 }
8468
8469 return true;
8470}
8471
8472/**
8473 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8474 * @rx_ring: rx descriptor ring to transact packets on
8475 * @rx_buffer: buffer containing page to add
8476 * @skb: sk_buff to place the data into
8477 * @size: size of buffer to be added
8478 *
8479 * This function will add the data contained in rx_buffer->page to the skb.
8480 **/
8481static void igb_add_rx_frag(struct igb_ring *rx_ring,
8482 struct igb_rx_buffer *rx_buffer,
8483 struct sk_buff *skb,
8484 unsigned int size)
8485{
8486#if (PAGE_SIZE < 8192)
8487 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8488#else
8489 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8490 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8491 SKB_DATA_ALIGN(size);
8492#endif
8493 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page: rx_buffer->page,
8494 off: rx_buffer->page_offset, size, truesize);
8495#if (PAGE_SIZE < 8192)
8496 rx_buffer->page_offset ^= truesize;
8497#else
8498 rx_buffer->page_offset += truesize;
8499#endif
8500}
8501
8502static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8503 struct igb_rx_buffer *rx_buffer,
8504 struct xdp_buff *xdp,
8505 ktime_t timestamp)
8506{
8507#if (PAGE_SIZE < 8192)
8508 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8509#else
8510 unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
8511 xdp->data_hard_start);
8512#endif
8513 unsigned int size = xdp->data_end - xdp->data;
8514 unsigned int headlen;
8515 struct sk_buff *skb;
8516
8517 /* prefetch first cache line of first page */
8518 net_prefetch(p: xdp->data);
8519
8520 /* allocate a skb to store the frags */
8521 skb = napi_alloc_skb(napi: &rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8522 if (unlikely(!skb))
8523 return NULL;
8524
8525 if (timestamp)
8526 skb_hwtstamps(skb)->hwtstamp = timestamp;
8527
8528 /* Determine available headroom for copy */
8529 headlen = size;
8530 if (headlen > IGB_RX_HDR_LEN)
8531 headlen = eth_get_headlen(dev: skb->dev, data: xdp->data, IGB_RX_HDR_LEN);
8532
8533 /* align pull length to size of long to optimize memcpy performance */
8534 memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
8535
8536 /* update all of the pointers */
8537 size -= headlen;
8538 if (size) {
8539 skb_add_rx_frag(skb, i: 0, page: rx_buffer->page,
8540 off: (xdp->data + headlen) - page_address(rx_buffer->page),
8541 size, truesize);
8542#if (PAGE_SIZE < 8192)
8543 rx_buffer->page_offset ^= truesize;
8544#else
8545 rx_buffer->page_offset += truesize;
8546#endif
8547 } else {
8548 rx_buffer->pagecnt_bias++;
8549 }
8550
8551 return skb;
8552}
8553
8554static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8555 struct igb_rx_buffer *rx_buffer,
8556 struct xdp_buff *xdp,
8557 ktime_t timestamp)
8558{
8559#if (PAGE_SIZE < 8192)
8560 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8561#else
8562 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8563 SKB_DATA_ALIGN(xdp->data_end -
8564 xdp->data_hard_start);
8565#endif
8566 unsigned int metasize = xdp->data - xdp->data_meta;
8567 struct sk_buff *skb;
8568
8569 /* prefetch first cache line of first page */
8570 net_prefetch(p: xdp->data_meta);
8571
8572 /* build an skb around the page buffer */
8573 skb = napi_build_skb(data: xdp->data_hard_start, frag_size: truesize);
8574 if (unlikely(!skb))
8575 return NULL;
8576
8577 /* update pointers within the skb to store the data */
8578 skb_reserve(skb, len: xdp->data - xdp->data_hard_start);
8579 __skb_put(skb, len: xdp->data_end - xdp->data);
8580
8581 if (metasize)
8582 skb_metadata_set(skb, meta_len: metasize);
8583
8584 if (timestamp)
8585 skb_hwtstamps(skb)->hwtstamp = timestamp;
8586
8587 /* update buffer offset */
8588#if (PAGE_SIZE < 8192)
8589 rx_buffer->page_offset ^= truesize;
8590#else
8591 rx_buffer->page_offset += truesize;
8592#endif
8593
8594 return skb;
8595}
8596
8597static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
8598 struct igb_ring *rx_ring,
8599 struct xdp_buff *xdp)
8600{
8601 int err, result = IGB_XDP_PASS;
8602 struct bpf_prog *xdp_prog;
8603 u32 act;
8604
8605 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
8606
8607 if (!xdp_prog)
8608 goto xdp_out;
8609
8610 prefetchw(x: xdp->data_hard_start); /* xdp_frame write */
8611
8612 act = bpf_prog_run_xdp(prog: xdp_prog, xdp);
8613 switch (act) {
8614 case XDP_PASS:
8615 break;
8616 case XDP_TX:
8617 result = igb_xdp_xmit_back(adapter, xdp);
8618 if (result == IGB_XDP_CONSUMED)
8619 goto out_failure;
8620 break;
8621 case XDP_REDIRECT:
8622 err = xdp_do_redirect(dev: adapter->netdev, xdp, prog: xdp_prog);
8623 if (err)
8624 goto out_failure;
8625 result = IGB_XDP_REDIR;
8626 break;
8627 default:
8628 bpf_warn_invalid_xdp_action(dev: adapter->netdev, prog: xdp_prog, act);
8629 fallthrough;
8630 case XDP_ABORTED:
8631out_failure:
8632 trace_xdp_exception(dev: rx_ring->netdev, xdp: xdp_prog, act);
8633 fallthrough;
8634 case XDP_DROP:
8635 result = IGB_XDP_CONSUMED;
8636 break;
8637 }
8638xdp_out:
8639 return ERR_PTR(error: -result);
8640}
8641
8642static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
8643 unsigned int size)
8644{
8645 unsigned int truesize;
8646
8647#if (PAGE_SIZE < 8192)
8648 truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
8649#else
8650 truesize = ring_uses_build_skb(rx_ring) ?
8651 SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
8652 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
8653 SKB_DATA_ALIGN(size);
8654#endif
8655 return truesize;
8656}
8657
8658static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
8659 struct igb_rx_buffer *rx_buffer,
8660 unsigned int size)
8661{
8662 unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
8663#if (PAGE_SIZE < 8192)
8664 rx_buffer->page_offset ^= truesize;
8665#else
8666 rx_buffer->page_offset += truesize;
8667#endif
8668}
8669
8670static inline void igb_rx_checksum(struct igb_ring *ring,
8671 union e1000_adv_rx_desc *rx_desc,
8672 struct sk_buff *skb)
8673{
8674 skb_checksum_none_assert(skb);
8675
8676 /* Ignore Checksum bit is set */
8677 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8678 return;
8679
8680 /* Rx checksum disabled via ethtool */
8681 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8682 return;
8683
8684 /* TCP/UDP checksum error bit is set */
8685 if (igb_test_staterr(rx_desc,
8686 E1000_RXDEXT_STATERR_TCPE |
8687 E1000_RXDEXT_STATERR_IPE)) {
8688 /* work around errata with sctp packets where the TCPE aka
8689 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8690 * packets, (aka let the stack check the crc32c)
8691 */
8692 if (!((skb->len == 60) &&
8693 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8694 u64_stats_update_begin(syncp: &ring->rx_syncp);
8695 ring->rx_stats.csum_err++;
8696 u64_stats_update_end(syncp: &ring->rx_syncp);
8697 }
8698 /* let the stack verify checksum errors */
8699 return;
8700 }
8701 /* It must be a TCP or UDP packet with a valid checksum */
8702 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8703 E1000_RXD_STAT_UDPCS))
8704 skb->ip_summed = CHECKSUM_UNNECESSARY;
8705
8706 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8707 le32_to_cpu(rx_desc->wb.upper.status_error));
8708}
8709
8710static inline void igb_rx_hash(struct igb_ring *ring,
8711 union e1000_adv_rx_desc *rx_desc,
8712 struct sk_buff *skb)
8713{
8714 if (ring->netdev->features & NETIF_F_RXHASH)
8715 skb_set_hash(skb,
8716 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8717 type: PKT_HASH_TYPE_L3);
8718}
8719
8720/**
8721 * igb_is_non_eop - process handling of non-EOP buffers
8722 * @rx_ring: Rx ring being processed
8723 * @rx_desc: Rx descriptor for current buffer
8724 *
8725 * This function updates next to clean. If the buffer is an EOP buffer
8726 * this function exits returning false, otherwise it will place the
8727 * sk_buff in the next buffer to be chained and return true indicating
8728 * that this is in fact a non-EOP buffer.
8729 **/
8730static bool igb_is_non_eop(struct igb_ring *rx_ring,
8731 union e1000_adv_rx_desc *rx_desc)
8732{
8733 u32 ntc = rx_ring->next_to_clean + 1;
8734
8735 /* fetch, update, and store next to clean */
8736 ntc = (ntc < rx_ring->count) ? ntc : 0;
8737 rx_ring->next_to_clean = ntc;
8738
8739 prefetch(IGB_RX_DESC(rx_ring, ntc));
8740
8741 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8742 return false;
8743
8744 return true;
8745}
8746
8747/**
8748 * igb_cleanup_headers - Correct corrupted or empty headers
8749 * @rx_ring: rx descriptor ring packet is being transacted on
8750 * @rx_desc: pointer to the EOP Rx descriptor
8751 * @skb: pointer to current skb being fixed
8752 *
8753 * Address the case where we are pulling data in on pages only
8754 * and as such no data is present in the skb header.
8755 *
8756 * In addition if skb is not at least 60 bytes we need to pad it so that
8757 * it is large enough to qualify as a valid Ethernet frame.
8758 *
8759 * Returns true if an error was encountered and skb was freed.
8760 **/
8761static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8762 union e1000_adv_rx_desc *rx_desc,
8763 struct sk_buff *skb)
8764{
8765 /* XDP packets use error pointer so abort at this point */
8766 if (IS_ERR(ptr: skb))
8767 return true;
8768
8769 if (unlikely((igb_test_staterr(rx_desc,
8770 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8771 struct net_device *netdev = rx_ring->netdev;
8772 if (!(netdev->features & NETIF_F_RXALL)) {
8773 dev_kfree_skb_any(skb);
8774 return true;
8775 }
8776 }
8777
8778 /* if eth_skb_pad returns an error the skb was freed */
8779 if (eth_skb_pad(skb))
8780 return true;
8781
8782 return false;
8783}
8784
8785/**
8786 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8787 * @rx_ring: rx descriptor ring packet is being transacted on
8788 * @rx_desc: pointer to the EOP Rx descriptor
8789 * @skb: pointer to current skb being populated
8790 *
8791 * This function checks the ring, descriptor, and packet information in
8792 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8793 * other fields within the skb.
8794 **/
8795static void igb_process_skb_fields(struct igb_ring *rx_ring,
8796 union e1000_adv_rx_desc *rx_desc,
8797 struct sk_buff *skb)
8798{
8799 struct net_device *dev = rx_ring->netdev;
8800
8801 igb_rx_hash(ring: rx_ring, rx_desc, skb);
8802
8803 igb_rx_checksum(ring: rx_ring, rx_desc, skb);
8804
8805 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8806 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8807 igb_ptp_rx_rgtstamp(q_vector: rx_ring->q_vector, skb);
8808
8809 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8810 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8811 u16 vid;
8812
8813 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8814 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8815 vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
8816 else
8817 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8818
8819 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci: vid);
8820 }
8821
8822 skb_record_rx_queue(skb, rx_queue: rx_ring->queue_index);
8823
8824 skb->protocol = eth_type_trans(skb, dev: rx_ring->netdev);
8825}
8826
8827static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8828{
8829 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8830}
8831
8832static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8833 const unsigned int size, int *rx_buf_pgcnt)
8834{
8835 struct igb_rx_buffer *rx_buffer;
8836
8837 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8838 *rx_buf_pgcnt =
8839#if (PAGE_SIZE < 8192)
8840 page_count(page: rx_buffer->page);
8841#else
8842 0;
8843#endif
8844 prefetchw(x: rx_buffer->page);
8845
8846 /* we are reusing so sync this buffer for CPU use */
8847 dma_sync_single_range_for_cpu(dev: rx_ring->dev,
8848 addr: rx_buffer->dma,
8849 offset: rx_buffer->page_offset,
8850 size,
8851 dir: DMA_FROM_DEVICE);
8852
8853 rx_buffer->pagecnt_bias--;
8854
8855 return rx_buffer;
8856}
8857
8858static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8859 struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
8860{
8861 if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
8862 /* hand second half of page back to the ring */
8863 igb_reuse_rx_page(rx_ring, old_buff: rx_buffer);
8864 } else {
8865 /* We are not reusing the buffer so unmap it and free
8866 * any references we are holding to it
8867 */
8868 dma_unmap_page_attrs(dev: rx_ring->dev, addr: rx_buffer->dma,
8869 igb_rx_pg_size(rx_ring), dir: DMA_FROM_DEVICE,
8870 IGB_RX_DMA_ATTR);
8871 __page_frag_cache_drain(page: rx_buffer->page,
8872 count: rx_buffer->pagecnt_bias);
8873 }
8874
8875 /* clear contents of rx_buffer */
8876 rx_buffer->page = NULL;
8877}
8878
8879static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8880{
8881 struct igb_adapter *adapter = q_vector->adapter;
8882 struct igb_ring *rx_ring = q_vector->rx.ring;
8883 struct sk_buff *skb = rx_ring->skb;
8884 unsigned int total_bytes = 0, total_packets = 0;
8885 u16 cleaned_count = igb_desc_unused(ring: rx_ring);
8886 unsigned int xdp_xmit = 0;
8887 struct xdp_buff xdp;
8888 u32 frame_sz = 0;
8889 int rx_buf_pgcnt;
8890
8891 /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
8892#if (PAGE_SIZE < 8192)
8893 frame_sz = igb_rx_frame_truesize(rx_ring, size: 0);
8894#endif
8895 xdp_init_buff(xdp: &xdp, frame_sz, rxq: &rx_ring->xdp_rxq);
8896
8897 while (likely(total_packets < budget)) {
8898 union e1000_adv_rx_desc *rx_desc;
8899 struct igb_rx_buffer *rx_buffer;
8900 ktime_t timestamp = 0;
8901 int pkt_offset = 0;
8902 unsigned int size;
8903 void *pktbuf;
8904
8905 /* return some buffers to hardware, one at a time is too slow */
8906 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8907 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8908 cleaned_count = 0;
8909 }
8910
8911 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8912 size = le16_to_cpu(rx_desc->wb.upper.length);
8913 if (!size)
8914 break;
8915
8916 /* This memory barrier is needed to keep us from reading
8917 * any other fields out of the rx_desc until we know the
8918 * descriptor has been written back
8919 */
8920 dma_rmb();
8921
8922 rx_buffer = igb_get_rx_buffer(rx_ring, size, rx_buf_pgcnt: &rx_buf_pgcnt);
8923 pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
8924
8925 /* pull rx packet timestamp if available and valid */
8926 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8927 int ts_hdr_len;
8928
8929 ts_hdr_len = igb_ptp_rx_pktstamp(q_vector: rx_ring->q_vector,
8930 va: pktbuf, timestamp: &timestamp);
8931
8932 pkt_offset += ts_hdr_len;
8933 size -= ts_hdr_len;
8934 }
8935
8936 /* retrieve a buffer from the ring */
8937 if (!skb) {
8938 unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
8939 unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
8940
8941 xdp_prepare_buff(xdp: &xdp, hard_start, headroom: offset, data_len: size, meta_valid: true);
8942 xdp_buff_clear_frags_flag(xdp: &xdp);
8943#if (PAGE_SIZE > 4096)
8944 /* At larger PAGE_SIZE, frame_sz depend on len size */
8945 xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
8946#endif
8947 skb = igb_run_xdp(adapter, rx_ring, xdp: &xdp);
8948 }
8949
8950 if (IS_ERR(ptr: skb)) {
8951 unsigned int xdp_res = -PTR_ERR(ptr: skb);
8952
8953 if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
8954 xdp_xmit |= xdp_res;
8955 igb_rx_buffer_flip(rx_ring, rx_buffer, size);
8956 } else {
8957 rx_buffer->pagecnt_bias++;
8958 }
8959 total_packets++;
8960 total_bytes += size;
8961 } else if (skb)
8962 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8963 else if (ring_uses_build_skb(rx_ring))
8964 skb = igb_build_skb(rx_ring, rx_buffer, xdp: &xdp,
8965 timestamp);
8966 else
8967 skb = igb_construct_skb(rx_ring, rx_buffer,
8968 xdp: &xdp, timestamp);
8969
8970 /* exit if we failed to retrieve a buffer */
8971 if (!skb) {
8972 rx_ring->rx_stats.alloc_failed++;
8973 rx_buffer->pagecnt_bias++;
8974 break;
8975 }
8976
8977 igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
8978 cleaned_count++;
8979
8980 /* fetch next buffer in frame if non-eop */
8981 if (igb_is_non_eop(rx_ring, rx_desc))
8982 continue;
8983
8984 /* verify the packet layout is correct */
8985 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8986 skb = NULL;
8987 continue;
8988 }
8989
8990 /* probably a little skewed due to removing CRC */
8991 total_bytes += skb->len;
8992
8993 /* populate checksum, timestamp, VLAN, and protocol */
8994 igb_process_skb_fields(rx_ring, rx_desc, skb);
8995
8996 napi_gro_receive(napi: &q_vector->napi, skb);
8997
8998 /* reset skb pointer */
8999 skb = NULL;
9000
9001 /* update budget accounting */
9002 total_packets++;
9003 }
9004
9005 /* place incomplete frames back on ring for completion */
9006 rx_ring->skb = skb;
9007
9008 if (xdp_xmit & IGB_XDP_REDIR)
9009 xdp_do_flush();
9010
9011 if (xdp_xmit & IGB_XDP_TX) {
9012 struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
9013
9014 igb_xdp_ring_update_tail(ring: tx_ring);
9015 }
9016
9017 u64_stats_update_begin(syncp: &rx_ring->rx_syncp);
9018 rx_ring->rx_stats.packets += total_packets;
9019 rx_ring->rx_stats.bytes += total_bytes;
9020 u64_stats_update_end(syncp: &rx_ring->rx_syncp);
9021 q_vector->rx.total_packets += total_packets;
9022 q_vector->rx.total_bytes += total_bytes;
9023
9024 if (cleaned_count)
9025 igb_alloc_rx_buffers(rx_ring, cleaned_count);
9026
9027 return total_packets;
9028}
9029
9030static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
9031 struct igb_rx_buffer *bi)
9032{
9033 struct page *page = bi->page;
9034 dma_addr_t dma;
9035
9036 /* since we are recycling buffers we should seldom need to alloc */
9037 if (likely(page))
9038 return true;
9039
9040 /* alloc new page for storage */
9041 page = dev_alloc_pages(order: igb_rx_pg_order(ring: rx_ring));
9042 if (unlikely(!page)) {
9043 rx_ring->rx_stats.alloc_failed++;
9044 return false;
9045 }
9046
9047 /* map page for use */
9048 dma = dma_map_page_attrs(dev: rx_ring->dev, page, offset: 0,
9049 igb_rx_pg_size(rx_ring),
9050 dir: DMA_FROM_DEVICE,
9051 IGB_RX_DMA_ATTR);
9052
9053 /* if mapping failed free memory back to system since
9054 * there isn't much point in holding memory we can't use
9055 */
9056 if (dma_mapping_error(dev: rx_ring->dev, dma_addr: dma)) {
9057 __free_pages(page, order: igb_rx_pg_order(ring: rx_ring));
9058
9059 rx_ring->rx_stats.alloc_failed++;
9060 return false;
9061 }
9062
9063 bi->dma = dma;
9064 bi->page = page;
9065 bi->page_offset = igb_rx_offset(rx_ring);
9066 page_ref_add(page, USHRT_MAX - 1);
9067 bi->pagecnt_bias = USHRT_MAX;
9068
9069 return true;
9070}
9071
9072/**
9073 * igb_alloc_rx_buffers - Replace used receive buffers
9074 * @rx_ring: rx descriptor ring to allocate new receive buffers
9075 * @cleaned_count: count of buffers to allocate
9076 **/
9077void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9078{
9079 union e1000_adv_rx_desc *rx_desc;
9080 struct igb_rx_buffer *bi;
9081 u16 i = rx_ring->next_to_use;
9082 u16 bufsz;
9083
9084 /* nothing to do */
9085 if (!cleaned_count)
9086 return;
9087
9088 rx_desc = IGB_RX_DESC(rx_ring, i);
9089 bi = &rx_ring->rx_buffer_info[i];
9090 i -= rx_ring->count;
9091
9092 bufsz = igb_rx_bufsz(ring: rx_ring);
9093
9094 do {
9095 if (!igb_alloc_mapped_page(rx_ring, bi))
9096 break;
9097
9098 /* sync the buffer for use by the device */
9099 dma_sync_single_range_for_device(dev: rx_ring->dev, addr: bi->dma,
9100 offset: bi->page_offset, size: bufsz,
9101 dir: DMA_FROM_DEVICE);
9102
9103 /* Refresh the desc even if buffer_addrs didn't change
9104 * because each write-back erases this info.
9105 */
9106 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9107
9108 rx_desc++;
9109 bi++;
9110 i++;
9111 if (unlikely(!i)) {
9112 rx_desc = IGB_RX_DESC(rx_ring, 0);
9113 bi = rx_ring->rx_buffer_info;
9114 i -= rx_ring->count;
9115 }
9116
9117 /* clear the length for the next_to_use descriptor */
9118 rx_desc->wb.upper.length = 0;
9119
9120 cleaned_count--;
9121 } while (cleaned_count);
9122
9123 i += rx_ring->count;
9124
9125 if (rx_ring->next_to_use != i) {
9126 /* record the next descriptor to use */
9127 rx_ring->next_to_use = i;
9128
9129 /* update next to alloc since we have filled the ring */
9130 rx_ring->next_to_alloc = i;
9131
9132 /* Force memory writes to complete before letting h/w
9133 * know there are new descriptors to fetch. (Only
9134 * applicable for weak-ordered memory model archs,
9135 * such as IA-64).
9136 */
9137 dma_wmb();
9138 writel(val: i, addr: rx_ring->tail);
9139 }
9140}
9141
9142/**
9143 * igb_mii_ioctl -
9144 * @netdev: pointer to netdev struct
9145 * @ifr: interface structure
9146 * @cmd: ioctl command to execute
9147 **/
9148static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9149{
9150 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9151 struct mii_ioctl_data *data = if_mii(rq: ifr);
9152
9153 if (adapter->hw.phy.media_type != e1000_media_type_copper)
9154 return -EOPNOTSUPP;
9155
9156 switch (cmd) {
9157 case SIOCGMIIPHY:
9158 data->phy_id = adapter->hw.phy.addr;
9159 break;
9160 case SIOCGMIIREG:
9161 if (igb_read_phy_reg(hw: &adapter->hw, offset: data->reg_num & 0x1F,
9162 data: &data->val_out))
9163 return -EIO;
9164 break;
9165 case SIOCSMIIREG:
9166 default:
9167 return -EOPNOTSUPP;
9168 }
9169 return 0;
9170}
9171
9172/**
9173 * igb_ioctl -
9174 * @netdev: pointer to netdev struct
9175 * @ifr: interface structure
9176 * @cmd: ioctl command to execute
9177 **/
9178static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
9179{
9180 switch (cmd) {
9181 case SIOCGMIIPHY:
9182 case SIOCGMIIREG:
9183 case SIOCSMIIREG:
9184 return igb_mii_ioctl(netdev, ifr, cmd);
9185 case SIOCGHWTSTAMP:
9186 return igb_ptp_get_ts_config(netdev, ifr);
9187 case SIOCSHWTSTAMP:
9188 return igb_ptp_set_ts_config(netdev, ifr);
9189 default:
9190 return -EOPNOTSUPP;
9191 }
9192}
9193
9194void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9195{
9196 struct igb_adapter *adapter = hw->back;
9197
9198 pci_read_config_word(dev: adapter->pdev, where: reg, val: value);
9199}
9200
9201void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
9202{
9203 struct igb_adapter *adapter = hw->back;
9204
9205 pci_write_config_word(dev: adapter->pdev, where: reg, val: *value);
9206}
9207
9208s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9209{
9210 struct igb_adapter *adapter = hw->back;
9211
9212 if (pcie_capability_read_word(dev: adapter->pdev, pos: reg, val: value))
9213 return -E1000_ERR_CONFIG;
9214
9215 return 0;
9216}
9217
9218s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
9219{
9220 struct igb_adapter *adapter = hw->back;
9221
9222 if (pcie_capability_write_word(dev: adapter->pdev, pos: reg, val: *value))
9223 return -E1000_ERR_CONFIG;
9224
9225 return 0;
9226}
9227
9228static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9229{
9230 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9231 struct e1000_hw *hw = &adapter->hw;
9232 u32 ctrl, rctl;
9233 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9234
9235 if (enable) {
9236 /* enable VLAN tag insert/strip */
9237 ctrl = rd32(E1000_CTRL);
9238 ctrl |= E1000_CTRL_VME;
9239 wr32(E1000_CTRL, ctrl);
9240
9241 /* Disable CFI check */
9242 rctl = rd32(E1000_RCTL);
9243 rctl &= ~E1000_RCTL_CFIEN;
9244 wr32(E1000_RCTL, rctl);
9245 } else {
9246 /* disable VLAN tag insert/strip */
9247 ctrl = rd32(E1000_CTRL);
9248 ctrl &= ~E1000_CTRL_VME;
9249 wr32(E1000_CTRL, ctrl);
9250 }
9251
9252 igb_set_vf_vlan_strip(adapter, vfn: adapter->vfs_allocated_count, enable);
9253}
9254
9255static int igb_vlan_rx_add_vid(struct net_device *netdev,
9256 __be16 proto, u16 vid)
9257{
9258 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9259 struct e1000_hw *hw = &adapter->hw;
9260 int pf_id = adapter->vfs_allocated_count;
9261
9262 /* add the filter since PF can receive vlans w/o entry in vlvf */
9263 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9264 igb_vfta_set(hw, vid, vind: pf_id, vlan_on: true, vlvf_bypass: !!vid);
9265
9266 set_bit(nr: vid, addr: adapter->active_vlans);
9267
9268 return 0;
9269}
9270
9271static int igb_vlan_rx_kill_vid(struct net_device *netdev,
9272 __be16 proto, u16 vid)
9273{
9274 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9275 int pf_id = adapter->vfs_allocated_count;
9276 struct e1000_hw *hw = &adapter->hw;
9277
9278 /* remove VID from filter table */
9279 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
9280 igb_vfta_set(hw, vid, vind: pf_id, vlan_on: false, vlvf_bypass: true);
9281
9282 clear_bit(nr: vid, addr: adapter->active_vlans);
9283
9284 return 0;
9285}
9286
9287static void igb_restore_vlan(struct igb_adapter *adapter)
9288{
9289 u16 vid = 1;
9290
9291 igb_vlan_mode(netdev: adapter->netdev, features: adapter->netdev->features);
9292 igb_vlan_rx_add_vid(netdev: adapter->netdev, htons(ETH_P_8021Q), vid: 0);
9293
9294 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
9295 igb_vlan_rx_add_vid(netdev: adapter->netdev, htons(ETH_P_8021Q), vid);
9296}
9297
9298int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9299{
9300 struct pci_dev *pdev = adapter->pdev;
9301 struct e1000_mac_info *mac = &adapter->hw.mac;
9302
9303 mac->autoneg = 0;
9304
9305 /* Make sure dplx is at most 1 bit and lsb of speed is not set
9306 * for the switch() below to work
9307 */
9308 if ((spd & 1) || (dplx & ~1))
9309 goto err_inval;
9310
9311 /* Fiber NIC's only allow 1000 gbps Full duplex
9312 * and 100Mbps Full duplex for 100baseFx sfp
9313 */
9314 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
9315 switch (spd + dplx) {
9316 case SPEED_10 + DUPLEX_HALF:
9317 case SPEED_10 + DUPLEX_FULL:
9318 case SPEED_100 + DUPLEX_HALF:
9319 goto err_inval;
9320 default:
9321 break;
9322 }
9323 }
9324
9325 switch (spd + dplx) {
9326 case SPEED_10 + DUPLEX_HALF:
9327 mac->forced_speed_duplex = ADVERTISE_10_HALF;
9328 break;
9329 case SPEED_10 + DUPLEX_FULL:
9330 mac->forced_speed_duplex = ADVERTISE_10_FULL;
9331 break;
9332 case SPEED_100 + DUPLEX_HALF:
9333 mac->forced_speed_duplex = ADVERTISE_100_HALF;
9334 break;
9335 case SPEED_100 + DUPLEX_FULL:
9336 mac->forced_speed_duplex = ADVERTISE_100_FULL;
9337 break;
9338 case SPEED_1000 + DUPLEX_FULL:
9339 mac->autoneg = 1;
9340 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
9341 break;
9342 case SPEED_1000 + DUPLEX_HALF: /* not supported */
9343 default:
9344 goto err_inval;
9345 }
9346
9347 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
9348 adapter->hw.phy.mdix = AUTO_ALL_MODES;
9349
9350 return 0;
9351
9352err_inval:
9353 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
9354 return -EINVAL;
9355}
9356
9357static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
9358 bool runtime)
9359{
9360 struct net_device *netdev = pci_get_drvdata(pdev);
9361 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9362 struct e1000_hw *hw = &adapter->hw;
9363 u32 ctrl, rctl, status;
9364 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9365 bool wake;
9366
9367 rtnl_lock();
9368 netif_device_detach(dev: netdev);
9369
9370 if (netif_running(dev: netdev))
9371 __igb_close(netdev, suspending: true);
9372
9373 igb_ptp_suspend(adapter);
9374
9375 igb_clear_interrupt_scheme(adapter);
9376 rtnl_unlock();
9377
9378 status = rd32(E1000_STATUS);
9379 if (status & E1000_STATUS_LU)
9380 wufc &= ~E1000_WUFC_LNKC;
9381
9382 if (wufc) {
9383 igb_setup_rctl(adapter);
9384 igb_set_rx_mode(netdev);
9385
9386 /* turn on all-multi mode if wake on multicast is enabled */
9387 if (wufc & E1000_WUFC_MC) {
9388 rctl = rd32(E1000_RCTL);
9389 rctl |= E1000_RCTL_MPE;
9390 wr32(E1000_RCTL, rctl);
9391 }
9392
9393 ctrl = rd32(E1000_CTRL);
9394 ctrl |= E1000_CTRL_ADVD3WUC;
9395 wr32(E1000_CTRL, ctrl);
9396
9397 /* Allow time for pending master requests to run */
9398 igb_disable_pcie_master(hw);
9399
9400 wr32(E1000_WUC, E1000_WUC_PME_EN);
9401 wr32(E1000_WUFC, wufc);
9402 } else {
9403 wr32(E1000_WUC, 0);
9404 wr32(E1000_WUFC, 0);
9405 }
9406
9407 wake = wufc || adapter->en_mng_pt;
9408 if (!wake)
9409 igb_power_down_link(adapter);
9410 else
9411 igb_power_up_link(adapter);
9412
9413 if (enable_wake)
9414 *enable_wake = wake;
9415
9416 /* Release control of h/w to f/w. If f/w is AMT enabled, this
9417 * would have already happened in close and is redundant.
9418 */
9419 igb_release_hw_control(adapter);
9420
9421 pci_disable_device(dev: pdev);
9422
9423 return 0;
9424}
9425
9426static void igb_deliver_wake_packet(struct net_device *netdev)
9427{
9428 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9429 struct e1000_hw *hw = &adapter->hw;
9430 struct sk_buff *skb;
9431 u32 wupl;
9432
9433 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
9434
9435 /* WUPM stores only the first 128 bytes of the wake packet.
9436 * Read the packet only if we have the whole thing.
9437 */
9438 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
9439 return;
9440
9441 skb = netdev_alloc_skb_ip_align(dev: netdev, E1000_WUPM_BYTES);
9442 if (!skb)
9443 return;
9444
9445 skb_put(skb, len: wupl);
9446
9447 /* Ensure reads are 32-bit aligned */
9448 wupl = roundup(wupl, 4);
9449
9450 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
9451
9452 skb->protocol = eth_type_trans(skb, dev: netdev);
9453 netif_rx(skb);
9454}
9455
9456static int __maybe_unused igb_suspend(struct device *dev)
9457{
9458 return __igb_shutdown(to_pci_dev(dev), NULL, runtime: 0);
9459}
9460
9461static int __maybe_unused __igb_resume(struct device *dev, bool rpm)
9462{
9463 struct pci_dev *pdev = to_pci_dev(dev);
9464 struct net_device *netdev = pci_get_drvdata(pdev);
9465 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9466 struct e1000_hw *hw = &adapter->hw;
9467 u32 err, val;
9468
9469 pci_set_power_state(dev: pdev, PCI_D0);
9470 pci_restore_state(dev: pdev);
9471 pci_save_state(dev: pdev);
9472
9473 if (!pci_device_is_present(pdev))
9474 return -ENODEV;
9475 err = pci_enable_device_mem(dev: pdev);
9476 if (err) {
9477 dev_err(&pdev->dev,
9478 "igb: Cannot enable PCI device from suspend\n");
9479 return err;
9480 }
9481 pci_set_master(dev: pdev);
9482
9483 pci_enable_wake(dev: pdev, PCI_D3hot, enable: 0);
9484 pci_enable_wake(dev: pdev, PCI_D3cold, enable: 0);
9485
9486 if (igb_init_interrupt_scheme(adapter, msix: true)) {
9487 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9488 return -ENOMEM;
9489 }
9490
9491 igb_reset(adapter);
9492
9493 /* let the f/w know that the h/w is now under the control of the
9494 * driver.
9495 */
9496 igb_get_hw_control(adapter);
9497
9498 val = rd32(E1000_WUS);
9499 if (val & WAKE_PKT_WUS)
9500 igb_deliver_wake_packet(netdev);
9501
9502 wr32(E1000_WUS, ~0);
9503
9504 if (!rpm)
9505 rtnl_lock();
9506 if (!err && netif_running(dev: netdev))
9507 err = __igb_open(netdev, resuming: true);
9508
9509 if (!err)
9510 netif_device_attach(dev: netdev);
9511 if (!rpm)
9512 rtnl_unlock();
9513
9514 return err;
9515}
9516
9517static int __maybe_unused igb_resume(struct device *dev)
9518{
9519 return __igb_resume(dev, rpm: false);
9520}
9521
9522static int __maybe_unused igb_runtime_idle(struct device *dev)
9523{
9524 struct net_device *netdev = dev_get_drvdata(dev);
9525 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9526
9527 if (!igb_has_link(adapter))
9528 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
9529
9530 return -EBUSY;
9531}
9532
9533static int __maybe_unused igb_runtime_suspend(struct device *dev)
9534{
9535 return __igb_shutdown(to_pci_dev(dev), NULL, runtime: 1);
9536}
9537
9538static int __maybe_unused igb_runtime_resume(struct device *dev)
9539{
9540 return __igb_resume(dev, rpm: true);
9541}
9542
9543static void igb_shutdown(struct pci_dev *pdev)
9544{
9545 bool wake;
9546
9547 __igb_shutdown(pdev, enable_wake: &wake, runtime: 0);
9548
9549 if (system_state == SYSTEM_POWER_OFF) {
9550 pci_wake_from_d3(dev: pdev, enable: wake);
9551 pci_set_power_state(dev: pdev, PCI_D3hot);
9552 }
9553}
9554
9555static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9556{
9557#ifdef CONFIG_PCI_IOV
9558 int err;
9559
9560 if (num_vfs == 0) {
9561 return igb_disable_sriov(pdev: dev, reinit: true);
9562 } else {
9563 err = igb_enable_sriov(pdev: dev, num_vfs, reinit: true);
9564 return err ? err : num_vfs;
9565 }
9566#endif
9567 return 0;
9568}
9569
9570/**
9571 * igb_io_error_detected - called when PCI error is detected
9572 * @pdev: Pointer to PCI device
9573 * @state: The current pci connection state
9574 *
9575 * This function is called after a PCI bus error affecting
9576 * this device has been detected.
9577 **/
9578static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9579 pci_channel_state_t state)
9580{
9581 struct net_device *netdev = pci_get_drvdata(pdev);
9582 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9583
9584 if (state == pci_channel_io_normal) {
9585 dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
9586 return PCI_ERS_RESULT_CAN_RECOVER;
9587 }
9588
9589 netif_device_detach(dev: netdev);
9590
9591 if (state == pci_channel_io_perm_failure)
9592 return PCI_ERS_RESULT_DISCONNECT;
9593
9594 if (netif_running(dev: netdev))
9595 igb_down(adapter);
9596 pci_disable_device(dev: pdev);
9597
9598 /* Request a slot reset. */
9599 return PCI_ERS_RESULT_NEED_RESET;
9600}
9601
9602/**
9603 * igb_io_slot_reset - called after the pci bus has been reset.
9604 * @pdev: Pointer to PCI device
9605 *
9606 * Restart the card from scratch, as if from a cold-boot. Implementation
9607 * resembles the first-half of the __igb_resume routine.
9608 **/
9609static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9610{
9611 struct net_device *netdev = pci_get_drvdata(pdev);
9612 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9613 struct e1000_hw *hw = &adapter->hw;
9614 pci_ers_result_t result;
9615
9616 if (pci_enable_device_mem(dev: pdev)) {
9617 dev_err(&pdev->dev,
9618 "Cannot re-enable PCI device after reset.\n");
9619 result = PCI_ERS_RESULT_DISCONNECT;
9620 } else {
9621 pci_set_master(dev: pdev);
9622 pci_restore_state(dev: pdev);
9623 pci_save_state(dev: pdev);
9624
9625 pci_enable_wake(dev: pdev, PCI_D3hot, enable: 0);
9626 pci_enable_wake(dev: pdev, PCI_D3cold, enable: 0);
9627
9628 /* In case of PCI error, adapter lose its HW address
9629 * so we should re-assign it here.
9630 */
9631 hw->hw_addr = adapter->io_addr;
9632
9633 igb_reset(adapter);
9634 wr32(E1000_WUS, ~0);
9635 result = PCI_ERS_RESULT_RECOVERED;
9636 }
9637
9638 return result;
9639}
9640
9641/**
9642 * igb_io_resume - called when traffic can start flowing again.
9643 * @pdev: Pointer to PCI device
9644 *
9645 * This callback is called when the error recovery driver tells us that
9646 * its OK to resume normal operation. Implementation resembles the
9647 * second-half of the __igb_resume routine.
9648 */
9649static void igb_io_resume(struct pci_dev *pdev)
9650{
9651 struct net_device *netdev = pci_get_drvdata(pdev);
9652 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9653
9654 if (netif_running(dev: netdev)) {
9655 if (igb_up(adapter)) {
9656 dev_err(&pdev->dev, "igb_up failed after reset\n");
9657 return;
9658 }
9659 }
9660
9661 netif_device_attach(dev: netdev);
9662
9663 /* let the f/w know that the h/w is now under the control of the
9664 * driver.
9665 */
9666 igb_get_hw_control(adapter);
9667}
9668
9669/**
9670 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9671 * @adapter: Pointer to adapter structure
9672 * @index: Index of the RAR entry which need to be synced with MAC table
9673 **/
9674static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9675{
9676 struct e1000_hw *hw = &adapter->hw;
9677 u32 rar_low, rar_high;
9678 u8 *addr = adapter->mac_table[index].addr;
9679
9680 /* HW expects these to be in network order when they are plugged
9681 * into the registers which are little endian. In order to guarantee
9682 * that ordering we need to do an leXX_to_cpup here in order to be
9683 * ready for the byteswap that occurs with writel
9684 */
9685 rar_low = le32_to_cpup(p: (__le32 *)(addr));
9686 rar_high = le16_to_cpup(p: (__le16 *)(addr + 4));
9687
9688 /* Indicate to hardware the Address is Valid. */
9689 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9690 if (is_valid_ether_addr(addr))
9691 rar_high |= E1000_RAH_AV;
9692
9693 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9694 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9695
9696 switch (hw->mac.type) {
9697 case e1000_82575:
9698 case e1000_i210:
9699 if (adapter->mac_table[index].state &
9700 IGB_MAC_STATE_QUEUE_STEERING)
9701 rar_high |= E1000_RAH_QSEL_ENABLE;
9702
9703 rar_high |= E1000_RAH_POOL_1 *
9704 adapter->mac_table[index].queue;
9705 break;
9706 default:
9707 rar_high |= E1000_RAH_POOL_1 <<
9708 adapter->mac_table[index].queue;
9709 break;
9710 }
9711 }
9712
9713 wr32(E1000_RAL(index), rar_low);
9714 wrfl();
9715 wr32(E1000_RAH(index), rar_high);
9716 wrfl();
9717}
9718
9719static int igb_set_vf_mac(struct igb_adapter *adapter,
9720 int vf, unsigned char *mac_addr)
9721{
9722 struct e1000_hw *hw = &adapter->hw;
9723 /* VF MAC addresses start at end of receive addresses and moves
9724 * towards the first, as a result a collision should not be possible
9725 */
9726 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9727 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9728
9729 ether_addr_copy(dst: vf_mac_addr, src: mac_addr);
9730 ether_addr_copy(dst: adapter->mac_table[rar_entry].addr, src: mac_addr);
9731 adapter->mac_table[rar_entry].queue = vf;
9732 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9733 igb_rar_set_index(adapter, index: rar_entry);
9734
9735 return 0;
9736}
9737
9738static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9739{
9740 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9741
9742 if (vf >= adapter->vfs_allocated_count)
9743 return -EINVAL;
9744
9745 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9746 * flag and allows to overwrite the MAC via VF netdev. This
9747 * is necessary to allow libvirt a way to restore the original
9748 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9749 * down a VM.
9750 */
9751 if (is_zero_ether_addr(addr: mac)) {
9752 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9753 dev_info(&adapter->pdev->dev,
9754 "remove administratively set MAC on VF %d\n",
9755 vf);
9756 } else if (is_valid_ether_addr(addr: mac)) {
9757 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9758 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9759 mac, vf);
9760 dev_info(&adapter->pdev->dev,
9761 "Reload the VF driver to make this change effective.");
9762 /* Generate additional warning if PF is down */
9763 if (test_bit(__IGB_DOWN, &adapter->state)) {
9764 dev_warn(&adapter->pdev->dev,
9765 "The VF MAC address has been set, but the PF device is not up.\n");
9766 dev_warn(&adapter->pdev->dev,
9767 "Bring the PF device up before attempting to use the VF device.\n");
9768 }
9769 } else {
9770 return -EINVAL;
9771 }
9772 return igb_set_vf_mac(adapter, vf, mac_addr: mac);
9773}
9774
9775static int igb_link_mbps(int internal_link_speed)
9776{
9777 switch (internal_link_speed) {
9778 case SPEED_100:
9779 return 100;
9780 case SPEED_1000:
9781 return 1000;
9782 default:
9783 return 0;
9784 }
9785}
9786
9787static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9788 int link_speed)
9789{
9790 int rf_dec, rf_int;
9791 u32 bcnrc_val;
9792
9793 if (tx_rate != 0) {
9794 /* Calculate the rate factor values to set */
9795 rf_int = link_speed / tx_rate;
9796 rf_dec = (link_speed - (rf_int * tx_rate));
9797 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9798 tx_rate;
9799
9800 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9801 bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
9802 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9803 } else {
9804 bcnrc_val = 0;
9805 }
9806
9807 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9808 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9809 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9810 */
9811 wr32(E1000_RTTBCNRM, 0x14);
9812 wr32(E1000_RTTBCNRC, bcnrc_val);
9813}
9814
9815static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9816{
9817 int actual_link_speed, i;
9818 bool reset_rate = false;
9819
9820 /* VF TX rate limit was not set or not supported */
9821 if ((adapter->vf_rate_link_speed == 0) ||
9822 (adapter->hw.mac.type != e1000_82576))
9823 return;
9824
9825 actual_link_speed = igb_link_mbps(internal_link_speed: adapter->link_speed);
9826 if (actual_link_speed != adapter->vf_rate_link_speed) {
9827 reset_rate = true;
9828 adapter->vf_rate_link_speed = 0;
9829 dev_info(&adapter->pdev->dev,
9830 "Link speed has been changed. VF Transmit rate is disabled\n");
9831 }
9832
9833 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9834 if (reset_rate)
9835 adapter->vf_data[i].tx_rate = 0;
9836
9837 igb_set_vf_rate_limit(hw: &adapter->hw, vf: i,
9838 tx_rate: adapter->vf_data[i].tx_rate,
9839 link_speed: actual_link_speed);
9840 }
9841}
9842
9843static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9844 int min_tx_rate, int max_tx_rate)
9845{
9846 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9847 struct e1000_hw *hw = &adapter->hw;
9848 int actual_link_speed;
9849
9850 if (hw->mac.type != e1000_82576)
9851 return -EOPNOTSUPP;
9852
9853 if (min_tx_rate)
9854 return -EINVAL;
9855
9856 actual_link_speed = igb_link_mbps(internal_link_speed: adapter->link_speed);
9857 if ((vf >= adapter->vfs_allocated_count) ||
9858 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9859 (max_tx_rate < 0) ||
9860 (max_tx_rate > actual_link_speed))
9861 return -EINVAL;
9862
9863 adapter->vf_rate_link_speed = actual_link_speed;
9864 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9865 igb_set_vf_rate_limit(hw, vf, tx_rate: max_tx_rate, link_speed: actual_link_speed);
9866
9867 return 0;
9868}
9869
9870static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9871 bool setting)
9872{
9873 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9874 struct e1000_hw *hw = &adapter->hw;
9875 u32 reg_val, reg_offset;
9876
9877 if (!adapter->vfs_allocated_count)
9878 return -EOPNOTSUPP;
9879
9880 if (vf >= adapter->vfs_allocated_count)
9881 return -EINVAL;
9882
9883 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9884 reg_val = rd32(reg_offset);
9885 if (setting)
9886 reg_val |= (BIT(vf) |
9887 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9888 else
9889 reg_val &= ~(BIT(vf) |
9890 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9891 wr32(reg_offset, reg_val);
9892
9893 adapter->vf_data[vf].spoofchk_enabled = setting;
9894 return 0;
9895}
9896
9897static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9898{
9899 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9900
9901 if (vf >= adapter->vfs_allocated_count)
9902 return -EINVAL;
9903 if (adapter->vf_data[vf].trusted == setting)
9904 return 0;
9905
9906 adapter->vf_data[vf].trusted = setting;
9907
9908 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9909 vf, setting ? "" : "not ");
9910 return 0;
9911}
9912
9913static int igb_ndo_get_vf_config(struct net_device *netdev,
9914 int vf, struct ifla_vf_info *ivi)
9915{
9916 struct igb_adapter *adapter = netdev_priv(dev: netdev);
9917 if (vf >= adapter->vfs_allocated_count)
9918 return -EINVAL;
9919 ivi->vf = vf;
9920 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9921 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9922 ivi->min_tx_rate = 0;
9923 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9924 ivi->qos = adapter->vf_data[vf].pf_qos;
9925 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9926 ivi->trusted = adapter->vf_data[vf].trusted;
9927 return 0;
9928}
9929
9930static void igb_vmm_control(struct igb_adapter *adapter)
9931{
9932 struct e1000_hw *hw = &adapter->hw;
9933 u32 reg;
9934
9935 switch (hw->mac.type) {
9936 case e1000_82575:
9937 case e1000_i210:
9938 case e1000_i211:
9939 case e1000_i354:
9940 default:
9941 /* replication is not supported for 82575 */
9942 return;
9943 case e1000_82576:
9944 /* notify HW that the MAC is adding vlan tags */
9945 reg = rd32(E1000_DTXCTL);
9946 reg |= E1000_DTXCTL_VLAN_ADDED;
9947 wr32(E1000_DTXCTL, reg);
9948 fallthrough;
9949 case e1000_82580:
9950 /* enable replication vlan tag stripping */
9951 reg = rd32(E1000_RPLOLR);
9952 reg |= E1000_RPLOLR_STRVLAN;
9953 wr32(E1000_RPLOLR, reg);
9954 fallthrough;
9955 case e1000_i350:
9956 /* none of the above registers are supported by i350 */
9957 break;
9958 }
9959
9960 if (adapter->vfs_allocated_count) {
9961 igb_vmdq_set_loopback_pf(hw, true);
9962 igb_vmdq_set_replication_pf(hw, true);
9963 igb_vmdq_set_anti_spoofing_pf(hw, true,
9964 adapter->vfs_allocated_count);
9965 } else {
9966 igb_vmdq_set_loopback_pf(hw, false);
9967 igb_vmdq_set_replication_pf(hw, false);
9968 }
9969}
9970
9971static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9972{
9973 struct e1000_hw *hw = &adapter->hw;
9974 u32 dmac_thr;
9975 u16 hwm;
9976 u32 reg;
9977
9978 if (hw->mac.type > e1000_82580) {
9979 if (adapter->flags & IGB_FLAG_DMAC) {
9980 /* force threshold to 0. */
9981 wr32(E1000_DMCTXTH, 0);
9982
9983 /* DMA Coalescing high water mark needs to be greater
9984 * than the Rx threshold. Set hwm to PBA - max frame
9985 * size in 16B units, capping it at PBA - 6KB.
9986 */
9987 hwm = 64 * (pba - 6);
9988 reg = rd32(E1000_FCRTC);
9989 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9990 reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
9991 wr32(E1000_FCRTC, reg);
9992
9993 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9994 * frame size, capping it at PBA - 10KB.
9995 */
9996 dmac_thr = pba - 10;
9997 reg = rd32(E1000_DMACR);
9998 reg &= ~E1000_DMACR_DMACTHR_MASK;
9999 reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10000
10001 /* transition to L0x or L1 if available..*/
10002 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10003
10004 /* watchdog timer= +-1000 usec in 32usec intervals */
10005 reg |= (1000 >> 5);
10006
10007 /* Disable BMC-to-OS Watchdog Enable */
10008 if (hw->mac.type != e1000_i354)
10009 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10010 wr32(E1000_DMACR, reg);
10011
10012 /* no lower threshold to disable
10013 * coalescing(smart fifb)-UTRESH=0
10014 */
10015 wr32(E1000_DMCRTRH, 0);
10016
10017 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10018
10019 wr32(E1000_DMCTLX, reg);
10020
10021 /* free space in tx packet buffer to wake from
10022 * DMA coal
10023 */
10024 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10025 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10026 }
10027
10028 if (hw->mac.type >= e1000_i210 ||
10029 (adapter->flags & IGB_FLAG_DMAC)) {
10030 reg = rd32(E1000_PCIEMISC);
10031 reg |= E1000_PCIEMISC_LX_DECISION;
10032 wr32(E1000_PCIEMISC, reg);
10033 } /* endif adapter->dmac is not disabled */
10034 } else if (hw->mac.type == e1000_82580) {
10035 u32 reg = rd32(E1000_PCIEMISC);
10036
10037 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10038 wr32(E1000_DMACR, 0);
10039 }
10040}
10041
10042/**
10043 * igb_read_i2c_byte - Reads 8 bit word over I2C
10044 * @hw: pointer to hardware structure
10045 * @byte_offset: byte offset to read
10046 * @dev_addr: device address
10047 * @data: value read
10048 *
10049 * Performs byte read operation over I2C interface at
10050 * a specified device address.
10051 **/
10052s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10053 u8 dev_addr, u8 *data)
10054{
10055 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10056 struct i2c_client *this_client = adapter->i2c_client;
10057 s32 status;
10058 u16 swfw_mask = 0;
10059
10060 if (!this_client)
10061 return E1000_ERR_I2C;
10062
10063 swfw_mask = E1000_SWFW_PHY0_SM;
10064
10065 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10066 return E1000_ERR_SWFW_SYNC;
10067
10068 status = i2c_smbus_read_byte_data(client: this_client, command: byte_offset);
10069 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10070
10071 if (status < 0)
10072 return E1000_ERR_I2C;
10073 else {
10074 *data = status;
10075 return 0;
10076 }
10077}
10078
10079/**
10080 * igb_write_i2c_byte - Writes 8 bit word over I2C
10081 * @hw: pointer to hardware structure
10082 * @byte_offset: byte offset to write
10083 * @dev_addr: device address
10084 * @data: value to write
10085 *
10086 * Performs byte write operation over I2C interface at
10087 * a specified device address.
10088 **/
10089s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10090 u8 dev_addr, u8 data)
10091{
10092 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10093 struct i2c_client *this_client = adapter->i2c_client;
10094 s32 status;
10095 u16 swfw_mask = E1000_SWFW_PHY0_SM;
10096
10097 if (!this_client)
10098 return E1000_ERR_I2C;
10099
10100 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10101 return E1000_ERR_SWFW_SYNC;
10102 status = i2c_smbus_write_byte_data(client: this_client, command: byte_offset, value: data);
10103 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10104
10105 if (status)
10106 return E1000_ERR_I2C;
10107 else
10108 return 0;
10109
10110}
10111
10112int igb_reinit_queues(struct igb_adapter *adapter)
10113{
10114 struct net_device *netdev = adapter->netdev;
10115 struct pci_dev *pdev = adapter->pdev;
10116 int err = 0;
10117
10118 if (netif_running(dev: netdev))
10119 igb_close(netdev);
10120
10121 igb_reset_interrupt_capability(adapter);
10122
10123 if (igb_init_interrupt_scheme(adapter, msix: true)) {
10124 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10125 return -ENOMEM;
10126 }
10127
10128 if (netif_running(dev: netdev))
10129 err = igb_open(netdev);
10130
10131 return err;
10132}
10133
10134static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10135{
10136 struct igb_nfc_filter *rule;
10137
10138 spin_lock(lock: &adapter->nfc_lock);
10139
10140 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10141 igb_erase_filter(adapter, input: rule);
10142
10143 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10144 igb_erase_filter(adapter, input: rule);
10145
10146 spin_unlock(lock: &adapter->nfc_lock);
10147}
10148
10149static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10150{
10151 struct igb_nfc_filter *rule;
10152
10153 spin_lock(lock: &adapter->nfc_lock);
10154
10155 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10156 igb_add_filter(adapter, input: rule);
10157
10158 spin_unlock(lock: &adapter->nfc_lock);
10159}
10160/* igb_main.c */
10161

source code of linux/drivers/net/ethernet/intel/igb/igb_main.c