1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/* Copyright(c) 2018-2019 Realtek Corporation
3 */
4
5#include <linux/devcoredump.h>
6
7#include "main.h"
8#include "regd.h"
9#include "fw.h"
10#include "ps.h"
11#include "sec.h"
12#include "mac.h"
13#include "coex.h"
14#include "phy.h"
15#include "reg.h"
16#include "efuse.h"
17#include "tx.h"
18#include "debug.h"
19#include "bf.h"
20#include "sar.h"
21#include "sdio.h"
22
23bool rtw_disable_lps_deep_mode;
24EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25bool rtw_bf_support = true;
26unsigned int rtw_debug_mask;
27EXPORT_SYMBOL(rtw_debug_mask);
28/* EDCCA is enabled during normal behavior. For debugging purpose in
29 * a noisy environment, it can be disabled via edcca debugfs. Because
30 * all rtw88 devices will probably be affected if environment is noisy,
31 * rtw_edcca_enabled is just declared by driver instead of by device.
32 * So, turning it off will take effect for all rtw88 devices before
33 * there is a tough reason to maintain rtw_edcca_enabled by device.
34 */
35bool rtw_edcca_enabled = true;
36
37module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38module_param_named(support_bf, rtw_bf_support, bool, 0644);
39module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40
41MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43MODULE_PARM_DESC(debug_mask, "Debugging mask");
44
45static struct ieee80211_channel rtw_channeltable_2g[] = {
46 {.center_freq = 2412, .hw_value = 1,},
47 {.center_freq = 2417, .hw_value = 2,},
48 {.center_freq = 2422, .hw_value = 3,},
49 {.center_freq = 2427, .hw_value = 4,},
50 {.center_freq = 2432, .hw_value = 5,},
51 {.center_freq = 2437, .hw_value = 6,},
52 {.center_freq = 2442, .hw_value = 7,},
53 {.center_freq = 2447, .hw_value = 8,},
54 {.center_freq = 2452, .hw_value = 9,},
55 {.center_freq = 2457, .hw_value = 10,},
56 {.center_freq = 2462, .hw_value = 11,},
57 {.center_freq = 2467, .hw_value = 12,},
58 {.center_freq = 2472, .hw_value = 13,},
59 {.center_freq = 2484, .hw_value = 14,},
60};
61
62static struct ieee80211_channel rtw_channeltable_5g[] = {
63 {.center_freq = 5180, .hw_value = 36,},
64 {.center_freq = 5200, .hw_value = 40,},
65 {.center_freq = 5220, .hw_value = 44,},
66 {.center_freq = 5240, .hw_value = 48,},
67 {.center_freq = 5260, .hw_value = 52,},
68 {.center_freq = 5280, .hw_value = 56,},
69 {.center_freq = 5300, .hw_value = 60,},
70 {.center_freq = 5320, .hw_value = 64,},
71 {.center_freq = 5500, .hw_value = 100,},
72 {.center_freq = 5520, .hw_value = 104,},
73 {.center_freq = 5540, .hw_value = 108,},
74 {.center_freq = 5560, .hw_value = 112,},
75 {.center_freq = 5580, .hw_value = 116,},
76 {.center_freq = 5600, .hw_value = 120,},
77 {.center_freq = 5620, .hw_value = 124,},
78 {.center_freq = 5640, .hw_value = 128,},
79 {.center_freq = 5660, .hw_value = 132,},
80 {.center_freq = 5680, .hw_value = 136,},
81 {.center_freq = 5700, .hw_value = 140,},
82 {.center_freq = 5720, .hw_value = 144,},
83 {.center_freq = 5745, .hw_value = 149,},
84 {.center_freq = 5765, .hw_value = 153,},
85 {.center_freq = 5785, .hw_value = 157,},
86 {.center_freq = 5805, .hw_value = 161,},
87 {.center_freq = 5825, .hw_value = 165,
88 .flags = IEEE80211_CHAN_NO_HT40MINUS},
89};
90
91static struct ieee80211_rate rtw_ratetable[] = {
92 {.bitrate = 10, .hw_value = 0x00,},
93 {.bitrate = 20, .hw_value = 0x01,},
94 {.bitrate = 55, .hw_value = 0x02,},
95 {.bitrate = 110, .hw_value = 0x03,},
96 {.bitrate = 60, .hw_value = 0x04,},
97 {.bitrate = 90, .hw_value = 0x05,},
98 {.bitrate = 120, .hw_value = 0x06,},
99 {.bitrate = 180, .hw_value = 0x07,},
100 {.bitrate = 240, .hw_value = 0x08,},
101 {.bitrate = 360, .hw_value = 0x09,},
102 {.bitrate = 480, .hw_value = 0x0a,},
103 {.bitrate = 540, .hw_value = 0x0b,},
104};
105
106static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107 {
108 .max = 1,
109 .types = BIT(NL80211_IFTYPE_STATION),
110 },
111 {
112 .max = 1,
113 .types = BIT(NL80211_IFTYPE_AP),
114 }
115};
116
117static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118 {
119 .limits = rtw_iface_limits,
120 .n_limits = ARRAY_SIZE(rtw_iface_limits),
121 .max_interfaces = 2,
122 .num_different_channels = 1,
123 }
124};
125
126u16 rtw_desc_to_bitrate(u8 desc_rate)
127{
128 struct ieee80211_rate rate;
129
130 if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131 return 0;
132
133 rate = rtw_ratetable[desc_rate];
134
135 return rate.bitrate;
136}
137
138static struct ieee80211_supported_band rtw_band_2ghz = {
139 .band = NL80211_BAND_2GHZ,
140
141 .channels = rtw_channeltable_2g,
142 .n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143
144 .bitrates = rtw_ratetable,
145 .n_bitrates = ARRAY_SIZE(rtw_ratetable),
146
147 .ht_cap = {0},
148 .vht_cap = {0},
149};
150
151static struct ieee80211_supported_band rtw_band_5ghz = {
152 .band = NL80211_BAND_5GHZ,
153
154 .channels = rtw_channeltable_5g,
155 .n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156
157 /* 5G has no CCK rates */
158 .bitrates = rtw_ratetable + 4,
159 .n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160
161 .ht_cap = {0},
162 .vht_cap = {0},
163};
164
165struct rtw_watch_dog_iter_data {
166 struct rtw_dev *rtwdev;
167 struct rtw_vif *rtwvif;
168};
169
170static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171{
172 struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173 u8 fix_rate_enable = 0;
174 u8 new_csi_rate_idx;
175
176 if (rtwvif->bfee.role != RTW_BFEE_SU &&
177 rtwvif->bfee.role != RTW_BFEE_MU)
178 return;
179
180 rtw_chip_cfg_csi_rate(rtwdev, rssi: rtwdev->dm_info.min_rssi,
181 cur_rate: bf_info->cur_csi_rpt_rate,
182 fixrate_en: fix_rate_enable, new_rate: &new_csi_rate_idx);
183
184 if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185 bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186}
187
188static void rtw_vif_watch_dog_iter(void *data, struct ieee80211_vif *vif)
189{
190 struct rtw_watch_dog_iter_data *iter_data = data;
191 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
192
193 if (vif->type == NL80211_IFTYPE_STATION)
194 if (vif->cfg.assoc)
195 iter_data->rtwvif = rtwvif;
196
197 rtw_dynamic_csi_rate(rtwdev: iter_data->rtwdev, rtwvif);
198
199 rtwvif->stats.tx_unicast = 0;
200 rtwvif->stats.rx_unicast = 0;
201 rtwvif->stats.tx_cnt = 0;
202 rtwvif->stats.rx_cnt = 0;
203}
204
205/* process TX/RX statistics periodically for hardware,
206 * the information helps hardware to enhance performance
207 */
208static void rtw_watch_dog_work(struct work_struct *work)
209{
210 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
211 watch_dog_work.work);
212 struct rtw_traffic_stats *stats = &rtwdev->stats;
213 struct rtw_watch_dog_iter_data data = {};
214 bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
215 bool ps_active;
216
217 mutex_lock(&rtwdev->mutex);
218
219 if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
220 goto unlock;
221
222 ieee80211_queue_delayed_work(hw: rtwdev->hw, dwork: &rtwdev->watch_dog_work,
223 RTW_WATCH_DOG_DELAY_TIME);
224
225 if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
226 set_bit(nr: RTW_FLAG_BUSY_TRAFFIC, addr: rtwdev->flags);
227 else
228 clear_bit(nr: RTW_FLAG_BUSY_TRAFFIC, addr: rtwdev->flags);
229
230 rtw_coex_wl_status_check(rtwdev);
231 rtw_coex_query_bt_hid_list(rtwdev);
232
233 if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
234 rtw_coex_wl_status_change_notify(rtwdev, type: 0);
235
236 if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
237 stats->rx_cnt > RTW_LPS_THRESHOLD)
238 ps_active = true;
239 else
240 ps_active = false;
241
242 ewma_tp_add(e: &stats->tx_ewma_tp,
243 val: (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
244 ewma_tp_add(e: &stats->rx_ewma_tp,
245 val: (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
246 stats->tx_throughput = ewma_tp_read(e: &stats->tx_ewma_tp);
247 stats->rx_throughput = ewma_tp_read(e: &stats->rx_ewma_tp);
248
249 /* reset tx/rx statictics */
250 stats->tx_unicast = 0;
251 stats->rx_unicast = 0;
252 stats->tx_cnt = 0;
253 stats->rx_cnt = 0;
254
255 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
256 goto unlock;
257
258 /* make sure BB/RF is working for dynamic mech */
259 rtw_leave_lps(rtwdev);
260
261 rtw_phy_dynamic_mechanism(rtwdev);
262
263 data.rtwdev = rtwdev;
264 /* rtw_iterate_vifs internally uses an atomic iterator which is needed
265 * to avoid taking local->iflist_mtx mutex
266 */
267 rtw_iterate_vifs(rtwdev, iterator: rtw_vif_watch_dog_iter, data: &data);
268
269 /* fw supports only one station associated to enter lps, if there are
270 * more than two stations associated to the AP, then we can not enter
271 * lps, because fw does not handle the overlapped beacon interval
272 *
273 * rtw_recalc_lps() iterate vifs and determine if driver can enter
274 * ps by vif->type and vif->cfg.ps, all we need to do here is to
275 * get that vif and check if device is having traffic more than the
276 * threshold.
277 */
278 if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
279 !rtwdev->beacon_loss && !rtwdev->ap_active)
280 rtw_enter_lps(rtwdev, port_id: data.rtwvif->port);
281
282 rtwdev->watch_dog_cnt++;
283
284unlock:
285 mutex_unlock(lock: &rtwdev->mutex);
286}
287
288static void rtw_c2h_work(struct work_struct *work)
289{
290 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
291 struct sk_buff *skb, *tmp;
292
293 skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
294 skb_unlink(skb, list: &rtwdev->c2h_queue);
295 rtw_fw_c2h_cmd_handle(rtwdev, skb);
296 dev_kfree_skb_any(skb);
297 }
298}
299
300static void rtw_ips_work(struct work_struct *work)
301{
302 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
303
304 mutex_lock(&rtwdev->mutex);
305 if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
306 rtw_enter_ips(rtwdev);
307 mutex_unlock(lock: &rtwdev->mutex);
308}
309
310static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
311{
312 unsigned long mac_id;
313
314 mac_id = find_first_zero_bit(addr: rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
315 if (mac_id < RTW_MAX_MAC_ID_NUM)
316 set_bit(nr: mac_id, addr: rtwdev->mac_id_map);
317
318 return mac_id;
319}
320
321static void rtw_sta_rc_work(struct work_struct *work)
322{
323 struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
324 rc_work);
325 struct rtw_dev *rtwdev = si->rtwdev;
326
327 mutex_lock(&rtwdev->mutex);
328 rtw_update_sta_info(rtwdev, si, reset_ra_mask: true);
329 mutex_unlock(lock: &rtwdev->mutex);
330}
331
332int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
333 struct ieee80211_vif *vif)
334{
335 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
336 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
337 int i;
338
339 si->mac_id = rtw_acquire_macid(rtwdev);
340 if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
341 return -ENOSPC;
342
343 if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
344 rtwvif->mac_id = si->mac_id;
345 si->rtwdev = rtwdev;
346 si->sta = sta;
347 si->vif = vif;
348 si->init_ra_lv = 1;
349 ewma_rssi_init(e: &si->avg_rssi);
350 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
351 rtw_txq_init(rtwdev, txq: sta->txq[i]);
352 INIT_WORK(&si->rc_work, rtw_sta_rc_work);
353
354 rtw_update_sta_info(rtwdev, si, reset_ra_mask: true);
355 rtw_fw_media_status_report(rtwdev, mac_id: si->mac_id, conn: true);
356
357 rtwdev->sta_cnt++;
358 rtwdev->beacon_loss = false;
359 rtw_dbg(rtwdev, mask: RTW_DBG_STATE, fmt: "sta %pM joined with macid %d\n",
360 sta->addr, si->mac_id);
361
362 return 0;
363}
364
365void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
366 bool fw_exist)
367{
368 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
369 int i;
370
371 cancel_work_sync(work: &si->rc_work);
372
373 rtw_release_macid(rtwdev, mac_id: si->mac_id);
374 if (fw_exist)
375 rtw_fw_media_status_report(rtwdev, mac_id: si->mac_id, conn: false);
376
377 for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
378 rtw_txq_cleanup(rtwdev, txq: sta->txq[i]);
379
380 kfree(objp: si->mask);
381
382 rtwdev->sta_cnt--;
383 rtw_dbg(rtwdev, mask: RTW_DBG_STATE, fmt: "sta %pM with macid %d left\n",
384 sta->addr, si->mac_id);
385}
386
387struct rtw_fwcd_hdr {
388 u32 item;
389 u32 size;
390 u32 padding1;
391 u32 padding2;
392} __packed;
393
394static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
395{
396 const struct rtw_chip_info *chip = rtwdev->chip;
397 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
398 const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
399 u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
400 u8 i;
401
402 if (segs) {
403 prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
404
405 for (i = 0; i < segs->num; i++)
406 prep_size += segs->segs[i];
407 }
408
409 desc->data = vmalloc(size: prep_size);
410 if (!desc->data)
411 return -ENOMEM;
412
413 desc->size = prep_size;
414 desc->next = desc->data;
415
416 return 0;
417}
418
419static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
420{
421 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
422 struct rtw_fwcd_hdr *hdr;
423 u8 *next;
424
425 if (!desc->data) {
426 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "fwcd isn't prepared successfully\n");
427 return NULL;
428 }
429
430 next = desc->next + sizeof(struct rtw_fwcd_hdr);
431 if (next - desc->data + size > desc->size) {
432 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "fwcd isn't prepared enough\n");
433 return NULL;
434 }
435
436 hdr = (struct rtw_fwcd_hdr *)(desc->next);
437 hdr->item = item;
438 hdr->size = size;
439 hdr->padding1 = 0x01234567;
440 hdr->padding2 = 0x89abcdef;
441 desc->next = next + size;
442
443 return next;
444}
445
446static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
447{
448 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
449
450 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "dump fwcd\n");
451
452 /* Data will be freed after lifetime of device coredump. After calling
453 * dev_coredump, data is supposed to be handled by the device coredump
454 * framework. Note that a new dump will be discarded if a previous one
455 * hasn't been released yet.
456 */
457 dev_coredumpv(dev: rtwdev->dev, data: desc->data, datalen: desc->size, GFP_KERNEL);
458}
459
460static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
461{
462 struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
463
464 if (free_self) {
465 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "free fwcd by self\n");
466 vfree(addr: desc->data);
467 }
468
469 desc->data = NULL;
470 desc->next = NULL;
471}
472
473static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
474{
475 u32 size = rtwdev->chip->fw_rxff_size;
476 u32 *buf;
477 u8 seq;
478
479 buf = (u32 *)rtw_fwcd_next(rtwdev, item: RTW_FWCD_TLV, size);
480 if (!buf)
481 return -ENOMEM;
482
483 if (rtw_fw_dump_fifo(rtwdev, fifo_sel: RTW_FW_FIFO_SEL_RXBUF_FW, addr: 0, size, buffer: buf)) {
484 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "dump fw fifo fail\n");
485 return -EINVAL;
486 }
487
488 if (GET_FW_DUMP_LEN(buf) == 0) {
489 rtw_dbg(rtwdev, mask: RTW_DBG_FW, fmt: "fw crash dump's length is 0\n");
490 return -EINVAL;
491 }
492
493 seq = GET_FW_DUMP_SEQ(buf);
494 if (seq > 0) {
495 rtw_dbg(rtwdev, mask: RTW_DBG_FW,
496 fmt: "fw crash dump's seq is wrong: %d\n", seq);
497 return -EINVAL;
498 }
499
500 return 0;
501}
502
503int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
504 u32 fwcd_item)
505{
506 u32 rxff = rtwdev->chip->fw_rxff_size;
507 u32 dump_size, done_size = 0;
508 u8 *buf;
509 int ret;
510
511 buf = rtw_fwcd_next(rtwdev, item: fwcd_item, size);
512 if (!buf)
513 return -ENOMEM;
514
515 while (size) {
516 dump_size = size > rxff ? rxff : size;
517
518 ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src: ocp_src + done_size,
519 size: dump_size);
520 if (ret) {
521 rtw_err(rtwdev,
522 "ddma fw 0x%x [+0x%x] to fw fifo fail\n",
523 ocp_src, done_size);
524 return ret;
525 }
526
527 ret = rtw_fw_dump_fifo(rtwdev, fifo_sel: RTW_FW_FIFO_SEL_RXBUF_FW, addr: 0,
528 size: dump_size, buffer: (u32 *)(buf + done_size));
529 if (ret) {
530 rtw_err(rtwdev,
531 "dump fw 0x%x [+0x%x] from fw fifo fail\n",
532 ocp_src, done_size);
533 return ret;
534 }
535
536 size -= dump_size;
537 done_size += dump_size;
538 }
539
540 return 0;
541}
542EXPORT_SYMBOL(rtw_dump_fw);
543
544int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
545{
546 u8 *buf;
547 u32 i;
548
549 if (addr & 0x3) {
550 WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
551 return -EINVAL;
552 }
553
554 buf = rtw_fwcd_next(rtwdev, item: RTW_FWCD_REG, size);
555 if (!buf)
556 return -ENOMEM;
557
558 for (i = 0; i < size; i += 4)
559 *(u32 *)(buf + i) = rtw_read32(rtwdev, addr: addr + i);
560
561 return 0;
562}
563EXPORT_SYMBOL(rtw_dump_reg);
564
565void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
566 struct ieee80211_bss_conf *conf)
567{
568 struct ieee80211_vif *vif = NULL;
569
570 if (conf)
571 vif = container_of(conf, struct ieee80211_vif, bss_conf);
572
573 if (conf && vif->cfg.assoc) {
574 rtwvif->aid = vif->cfg.aid;
575 rtwvif->net_type = RTW_NET_MGD_LINKED;
576 } else {
577 rtwvif->aid = 0;
578 rtwvif->net_type = RTW_NET_NO_LINK;
579 }
580}
581
582static void rtw_reset_key_iter(struct ieee80211_hw *hw,
583 struct ieee80211_vif *vif,
584 struct ieee80211_sta *sta,
585 struct ieee80211_key_conf *key,
586 void *data)
587{
588 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
589 struct rtw_sec_desc *sec = &rtwdev->sec;
590
591 rtw_sec_clear_cam(rtwdev, sec, hw_key_idx: key->hw_key_idx);
592}
593
594static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
595{
596 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
597
598 if (rtwdev->sta_cnt == 0) {
599 rtw_warn(rtwdev, "sta count before reset should not be 0\n");
600 return;
601 }
602 rtw_sta_remove(rtwdev, sta, fw_exist: false);
603}
604
605static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
606{
607 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
608 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
609
610 rtw_bf_disassoc(rtwdev, vif, NULL);
611 rtw_vif_assoc_changed(rtwvif, NULL);
612 rtw_txq_cleanup(rtwdev, txq: vif->txq);
613}
614
615void rtw_fw_recovery(struct rtw_dev *rtwdev)
616{
617 if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
618 ieee80211_queue_work(hw: rtwdev->hw, work: &rtwdev->fw_recovery_work);
619}
620
621static void __fw_recovery_work(struct rtw_dev *rtwdev)
622{
623 int ret = 0;
624
625 set_bit(nr: RTW_FLAG_RESTARTING, addr: rtwdev->flags);
626 clear_bit(nr: RTW_FLAG_RESTART_TRIGGERING, addr: rtwdev->flags);
627
628 ret = rtw_fwcd_prep(rtwdev);
629 if (ret)
630 goto free;
631 ret = rtw_fw_dump_crash_log(rtwdev);
632 if (ret)
633 goto free;
634 ret = rtw_chip_dump_fw_crash(rtwdev);
635 if (ret)
636 goto free;
637
638 rtw_fwcd_dump(rtwdev);
639free:
640 rtw_fwcd_free(rtwdev, free_self: !!ret);
641 rtw_write8(rtwdev, REG_MCU_TST_CFG, val: 0);
642
643 WARN(1, "firmware crash, start reset and recover\n");
644
645 rcu_read_lock();
646 rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
647 rcu_read_unlock();
648 rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
649 rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
650 bitmap_zero(dst: rtwdev->hw_port, nbits: RTW_PORT_NUM);
651 rtw_enter_ips(rtwdev);
652}
653
654static void rtw_fw_recovery_work(struct work_struct *work)
655{
656 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
657 fw_recovery_work);
658
659 mutex_lock(&rtwdev->mutex);
660 __fw_recovery_work(rtwdev);
661 mutex_unlock(lock: &rtwdev->mutex);
662
663 ieee80211_restart_hw(hw: rtwdev->hw);
664}
665
666struct rtw_txq_ba_iter_data {
667};
668
669static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
670{
671 struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
672 int ret;
673 u8 tid;
674
675 tid = find_first_bit(addr: si->tid_ba, IEEE80211_NUM_TIDS);
676 while (tid != IEEE80211_NUM_TIDS) {
677 clear_bit(nr: tid, addr: si->tid_ba);
678 ret = ieee80211_start_tx_ba_session(sta, tid, timeout: 0);
679 if (ret == -EINVAL) {
680 struct ieee80211_txq *txq;
681 struct rtw_txq *rtwtxq;
682
683 txq = sta->txq[tid];
684 rtwtxq = (struct rtw_txq *)txq->drv_priv;
685 set_bit(nr: RTW_TXQ_BLOCK_BA, addr: &rtwtxq->flags);
686 }
687
688 tid = find_first_bit(addr: si->tid_ba, IEEE80211_NUM_TIDS);
689 }
690}
691
692static void rtw_txq_ba_work(struct work_struct *work)
693{
694 struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
695 struct rtw_txq_ba_iter_data data;
696
697 rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
698}
699
700void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
701{
702 if (IS_CH_2G_BAND(channel))
703 pkt_stat->band = NL80211_BAND_2GHZ;
704 else if (IS_CH_5G_BAND(channel))
705 pkt_stat->band = NL80211_BAND_5GHZ;
706 else
707 return;
708
709 pkt_stat->freq = ieee80211_channel_to_frequency(chan: channel, band: pkt_stat->band);
710}
711EXPORT_SYMBOL(rtw_set_rx_freq_band);
712
713void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
714{
715 rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
716 rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, val: dtim_period - 1);
717}
718
719void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
720 u8 primary_channel, enum rtw_supported_band band,
721 enum rtw_bandwidth bandwidth)
722{
723 enum nl80211_band nl_band = rtw_hw_to_nl80211_band(hw_band: band);
724 struct rtw_hal *hal = &rtwdev->hal;
725 u8 *cch_by_bw = hal->cch_by_bw;
726 u32 center_freq, primary_freq;
727 enum rtw_sar_bands sar_band;
728 u8 primary_channel_idx;
729
730 center_freq = ieee80211_channel_to_frequency(chan: center_channel, band: nl_band);
731 primary_freq = ieee80211_channel_to_frequency(chan: primary_channel, band: nl_band);
732
733 /* assign the center channel used while 20M bw is selected */
734 cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
735
736 /* assign the center channel used while current bw is selected */
737 cch_by_bw[bandwidth] = center_channel;
738
739 switch (bandwidth) {
740 case RTW_CHANNEL_WIDTH_20:
741 default:
742 primary_channel_idx = RTW_SC_DONT_CARE;
743 break;
744 case RTW_CHANNEL_WIDTH_40:
745 if (primary_freq > center_freq)
746 primary_channel_idx = RTW_SC_20_UPPER;
747 else
748 primary_channel_idx = RTW_SC_20_LOWER;
749 break;
750 case RTW_CHANNEL_WIDTH_80:
751 if (primary_freq > center_freq) {
752 if (primary_freq - center_freq == 10)
753 primary_channel_idx = RTW_SC_20_UPPER;
754 else
755 primary_channel_idx = RTW_SC_20_UPMOST;
756
757 /* assign the center channel used
758 * while 40M bw is selected
759 */
760 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
761 } else {
762 if (center_freq - primary_freq == 10)
763 primary_channel_idx = RTW_SC_20_LOWER;
764 else
765 primary_channel_idx = RTW_SC_20_LOWEST;
766
767 /* assign the center channel used
768 * while 40M bw is selected
769 */
770 cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
771 }
772 break;
773 }
774
775 switch (center_channel) {
776 case 1 ... 14:
777 sar_band = RTW_SAR_BAND_0;
778 break;
779 case 36 ... 64:
780 sar_band = RTW_SAR_BAND_1;
781 break;
782 case 100 ... 144:
783 sar_band = RTW_SAR_BAND_3;
784 break;
785 case 149 ... 177:
786 sar_band = RTW_SAR_BAND_4;
787 break;
788 default:
789 WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
790 sar_band = RTW_SAR_BAND_0;
791 break;
792 }
793
794 hal->current_primary_channel_index = primary_channel_idx;
795 hal->current_band_width = bandwidth;
796 hal->primary_channel = primary_channel;
797 hal->current_channel = center_channel;
798 hal->current_band_type = band;
799 hal->sar_band = sar_band;
800}
801
802void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
803 struct rtw_channel_params *chan_params)
804{
805 struct ieee80211_channel *channel = chandef->chan;
806 enum nl80211_chan_width width = chandef->width;
807 u32 primary_freq, center_freq;
808 u8 center_chan;
809 u8 bandwidth = RTW_CHANNEL_WIDTH_20;
810
811 center_chan = channel->hw_value;
812 primary_freq = channel->center_freq;
813 center_freq = chandef->center_freq1;
814
815 switch (width) {
816 case NL80211_CHAN_WIDTH_20_NOHT:
817 case NL80211_CHAN_WIDTH_20:
818 bandwidth = RTW_CHANNEL_WIDTH_20;
819 break;
820 case NL80211_CHAN_WIDTH_40:
821 bandwidth = RTW_CHANNEL_WIDTH_40;
822 if (primary_freq > center_freq)
823 center_chan -= 2;
824 else
825 center_chan += 2;
826 break;
827 case NL80211_CHAN_WIDTH_80:
828 bandwidth = RTW_CHANNEL_WIDTH_80;
829 if (primary_freq > center_freq) {
830 if (primary_freq - center_freq == 10)
831 center_chan -= 2;
832 else
833 center_chan -= 6;
834 } else {
835 if (center_freq - primary_freq == 10)
836 center_chan += 2;
837 else
838 center_chan += 6;
839 }
840 break;
841 default:
842 center_chan = 0;
843 break;
844 }
845
846 chan_params->center_chan = center_chan;
847 chan_params->bandwidth = bandwidth;
848 chan_params->primary_chan = channel->hw_value;
849}
850
851void rtw_set_channel(struct rtw_dev *rtwdev)
852{
853 const struct rtw_chip_info *chip = rtwdev->chip;
854 struct ieee80211_hw *hw = rtwdev->hw;
855 struct rtw_hal *hal = &rtwdev->hal;
856 struct rtw_channel_params ch_param;
857 u8 center_chan, primary_chan, bandwidth, band;
858
859 rtw_get_channel_params(chandef: &hw->conf.chandef, chan_params: &ch_param);
860 if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
861 return;
862
863 center_chan = ch_param.center_chan;
864 primary_chan = ch_param.primary_chan;
865 bandwidth = ch_param.bandwidth;
866 band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
867
868 rtw_update_channel(rtwdev, center_channel: center_chan, primary_channel: primary_chan, band, bandwidth);
869
870 if (rtwdev->scan_info.op_chan)
871 rtw_store_op_chan(rtwdev, backup: true);
872
873 chip->ops->set_channel(rtwdev, center_chan, bandwidth,
874 hal->current_primary_channel_index);
875
876 if (hal->current_band_type == RTW_BAND_5G) {
877 rtw_coex_switchband_notify(rtwdev, type: COEX_SWITCH_TO_5G);
878 } else {
879 if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
880 rtw_coex_switchband_notify(rtwdev, type: COEX_SWITCH_TO_24G);
881 else
882 rtw_coex_switchband_notify(rtwdev, type: COEX_SWITCH_TO_24G_NOFORSCAN);
883 }
884
885 rtw_phy_set_tx_power_level(rtwdev, channel: center_chan);
886
887 /* if the channel isn't set for scanning, we will do RF calibration
888 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
889 * during scanning on each channel takes too long.
890 */
891 if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
892 rtwdev->need_rfk = true;
893}
894
895void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
896{
897 const struct rtw_chip_info *chip = rtwdev->chip;
898
899 if (rtwdev->need_rfk) {
900 rtwdev->need_rfk = false;
901 chip->ops->phy_calibration(rtwdev);
902 }
903}
904
905static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
906{
907 int i;
908
909 for (i = 0; i < ETH_ALEN; i++)
910 rtw_write8(rtwdev, addr: start + i, val: addr[i]);
911}
912
913void rtw_vif_port_config(struct rtw_dev *rtwdev,
914 struct rtw_vif *rtwvif,
915 u32 config)
916{
917 u32 addr, mask;
918
919 if (config & PORT_SET_MAC_ADDR) {
920 addr = rtwvif->conf->mac_addr.addr;
921 rtw_vif_write_addr(rtwdev, start: addr, addr: rtwvif->mac_addr);
922 }
923 if (config & PORT_SET_BSSID) {
924 addr = rtwvif->conf->bssid.addr;
925 rtw_vif_write_addr(rtwdev, start: addr, addr: rtwvif->bssid);
926 }
927 if (config & PORT_SET_NET_TYPE) {
928 addr = rtwvif->conf->net_type.addr;
929 mask = rtwvif->conf->net_type.mask;
930 rtw_write32_mask(rtwdev, addr, mask, data: rtwvif->net_type);
931 }
932 if (config & PORT_SET_AID) {
933 addr = rtwvif->conf->aid.addr;
934 mask = rtwvif->conf->aid.mask;
935 rtw_write32_mask(rtwdev, addr, mask, data: rtwvif->aid);
936 }
937 if (config & PORT_SET_BCN_CTRL) {
938 addr = rtwvif->conf->bcn_ctrl.addr;
939 mask = rtwvif->conf->bcn_ctrl.mask;
940 rtw_write8_mask(rtwdev, addr, mask, data: rtwvif->bcn_ctrl);
941 }
942}
943
944static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
945{
946 u8 bw = 0;
947
948 switch (bw_cap) {
949 case EFUSE_HW_CAP_IGNORE:
950 case EFUSE_HW_CAP_SUPP_BW80:
951 bw |= BIT(RTW_CHANNEL_WIDTH_80);
952 fallthrough;
953 case EFUSE_HW_CAP_SUPP_BW40:
954 bw |= BIT(RTW_CHANNEL_WIDTH_40);
955 fallthrough;
956 default:
957 bw |= BIT(RTW_CHANNEL_WIDTH_20);
958 break;
959 }
960
961 return bw;
962}
963
964static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
965{
966 const struct rtw_chip_info *chip = rtwdev->chip;
967 struct rtw_hal *hal = &rtwdev->hal;
968
969 if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
970 hw_ant_num >= hal->rf_path_num)
971 return;
972
973 switch (hw_ant_num) {
974 case 1:
975 hal->rf_type = RF_1T1R;
976 hal->rf_path_num = 1;
977 if (!chip->fix_rf_phy_num)
978 hal->rf_phy_num = hal->rf_path_num;
979 hal->antenna_tx = BB_PATH_A;
980 hal->antenna_rx = BB_PATH_A;
981 break;
982 default:
983 WARN(1, "invalid hw configuration from efuse\n");
984 break;
985 }
986}
987
988static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
989{
990 u64 ra_mask = 0;
991 u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
992 u8 vht_mcs_cap;
993 int i, nss;
994
995 /* 4SS, every two bits for MCS7/8/9 */
996 for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
997 vht_mcs_cap = mcs_map & 0x3;
998 switch (vht_mcs_cap) {
999 case 2: /* MCS9 */
1000 ra_mask |= 0x3ffULL << nss;
1001 break;
1002 case 1: /* MCS8 */
1003 ra_mask |= 0x1ffULL << nss;
1004 break;
1005 case 0: /* MCS7 */
1006 ra_mask |= 0x0ffULL << nss;
1007 break;
1008 default:
1009 break;
1010 }
1011 }
1012
1013 return ra_mask;
1014}
1015
1016static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1017{
1018 u8 rate_id = 0;
1019
1020 switch (wireless_set) {
1021 case WIRELESS_CCK:
1022 rate_id = RTW_RATEID_B_20M;
1023 break;
1024 case WIRELESS_OFDM:
1025 rate_id = RTW_RATEID_G;
1026 break;
1027 case WIRELESS_CCK | WIRELESS_OFDM:
1028 rate_id = RTW_RATEID_BG;
1029 break;
1030 case WIRELESS_OFDM | WIRELESS_HT:
1031 if (tx_num == 1)
1032 rate_id = RTW_RATEID_GN_N1SS;
1033 else if (tx_num == 2)
1034 rate_id = RTW_RATEID_GN_N2SS;
1035 else if (tx_num == 3)
1036 rate_id = RTW_RATEID_ARFR5_N_3SS;
1037 break;
1038 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1039 if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1040 if (tx_num == 1)
1041 rate_id = RTW_RATEID_BGN_40M_1SS;
1042 else if (tx_num == 2)
1043 rate_id = RTW_RATEID_BGN_40M_2SS;
1044 else if (tx_num == 3)
1045 rate_id = RTW_RATEID_ARFR5_N_3SS;
1046 else if (tx_num == 4)
1047 rate_id = RTW_RATEID_ARFR7_N_4SS;
1048 } else {
1049 if (tx_num == 1)
1050 rate_id = RTW_RATEID_BGN_20M_1SS;
1051 else if (tx_num == 2)
1052 rate_id = RTW_RATEID_BGN_20M_2SS;
1053 else if (tx_num == 3)
1054 rate_id = RTW_RATEID_ARFR5_N_3SS;
1055 else if (tx_num == 4)
1056 rate_id = RTW_RATEID_ARFR7_N_4SS;
1057 }
1058 break;
1059 case WIRELESS_OFDM | WIRELESS_VHT:
1060 if (tx_num == 1)
1061 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1062 else if (tx_num == 2)
1063 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1064 else if (tx_num == 3)
1065 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1066 else if (tx_num == 4)
1067 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1068 break;
1069 case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1070 if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1071 if (tx_num == 1)
1072 rate_id = RTW_RATEID_ARFR1_AC_1SS;
1073 else if (tx_num == 2)
1074 rate_id = RTW_RATEID_ARFR0_AC_2SS;
1075 else if (tx_num == 3)
1076 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1077 else if (tx_num == 4)
1078 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1079 } else {
1080 if (tx_num == 1)
1081 rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1082 else if (tx_num == 2)
1083 rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1084 else if (tx_num == 3)
1085 rate_id = RTW_RATEID_ARFR4_AC_3SS;
1086 else if (tx_num == 4)
1087 rate_id = RTW_RATEID_ARFR6_AC_4SS;
1088 }
1089 break;
1090 default:
1091 break;
1092 }
1093
1094 return rate_id;
1095}
1096
1097#define RA_MASK_CCK_RATES 0x0000f
1098#define RA_MASK_OFDM_RATES 0x00ff0
1099#define RA_MASK_HT_RATES_1SS (0xff000ULL << 0)
1100#define RA_MASK_HT_RATES_2SS (0xff000ULL << 8)
1101#define RA_MASK_HT_RATES_3SS (0xff000ULL << 16)
1102#define RA_MASK_HT_RATES (RA_MASK_HT_RATES_1SS | \
1103 RA_MASK_HT_RATES_2SS | \
1104 RA_MASK_HT_RATES_3SS)
1105#define RA_MASK_VHT_RATES_1SS (0x3ff000ULL << 0)
1106#define RA_MASK_VHT_RATES_2SS (0x3ff000ULL << 10)
1107#define RA_MASK_VHT_RATES_3SS (0x3ff000ULL << 20)
1108#define RA_MASK_VHT_RATES (RA_MASK_VHT_RATES_1SS | \
1109 RA_MASK_VHT_RATES_2SS | \
1110 RA_MASK_VHT_RATES_3SS)
1111#define RA_MASK_CCK_IN_BG 0x00005
1112#define RA_MASK_CCK_IN_HT 0x00005
1113#define RA_MASK_CCK_IN_VHT 0x00005
1114#define RA_MASK_OFDM_IN_VHT 0x00010
1115#define RA_MASK_OFDM_IN_HT_2G 0x00010
1116#define RA_MASK_OFDM_IN_HT_5G 0x00030
1117
1118static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1119{
1120 u8 rssi_level = si->rssi_level;
1121
1122 if (wireless_set == WIRELESS_CCK)
1123 return 0xffffffffffffffffULL;
1124
1125 if (rssi_level == 0)
1126 return 0xffffffffffffffffULL;
1127 else if (rssi_level == 1)
1128 return 0xfffffffffffffff0ULL;
1129 else if (rssi_level == 2)
1130 return 0xffffffffffffefe0ULL;
1131 else if (rssi_level == 3)
1132 return 0xffffffffffffcfc0ULL;
1133 else if (rssi_level == 4)
1134 return 0xffffffffffff8f80ULL;
1135 else
1136 return 0xffffffffffff0f00ULL;
1137}
1138
1139static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1140{
1141 if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1142 ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1143
1144 if (ra_mask == 0)
1145 ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1146
1147 return ra_mask;
1148}
1149
1150static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1151 u64 ra_mask, bool is_vht_enable)
1152{
1153 struct rtw_hal *hal = &rtwdev->hal;
1154 const struct cfg80211_bitrate_mask *mask = si->mask;
1155 u64 cfg_mask = GENMASK_ULL(63, 0);
1156 u8 band;
1157
1158 if (!si->use_cfg_mask)
1159 return ra_mask;
1160
1161 band = hal->current_band_type;
1162 if (band == RTW_BAND_2G) {
1163 band = NL80211_BAND_2GHZ;
1164 cfg_mask = mask->control[band].legacy;
1165 } else if (band == RTW_BAND_5G) {
1166 band = NL80211_BAND_5GHZ;
1167 cfg_mask = u64_encode_bits(v: mask->control[band].legacy,
1168 RA_MASK_OFDM_RATES);
1169 }
1170
1171 if (!is_vht_enable) {
1172 if (ra_mask & RA_MASK_HT_RATES_1SS)
1173 cfg_mask |= u64_encode_bits(v: mask->control[band].ht_mcs[0],
1174 RA_MASK_HT_RATES_1SS);
1175 if (ra_mask & RA_MASK_HT_RATES_2SS)
1176 cfg_mask |= u64_encode_bits(v: mask->control[band].ht_mcs[1],
1177 RA_MASK_HT_RATES_2SS);
1178 } else {
1179 if (ra_mask & RA_MASK_VHT_RATES_1SS)
1180 cfg_mask |= u64_encode_bits(v: mask->control[band].vht_mcs[0],
1181 RA_MASK_VHT_RATES_1SS);
1182 if (ra_mask & RA_MASK_VHT_RATES_2SS)
1183 cfg_mask |= u64_encode_bits(v: mask->control[band].vht_mcs[1],
1184 RA_MASK_VHT_RATES_2SS);
1185 }
1186
1187 ra_mask &= cfg_mask;
1188
1189 return ra_mask;
1190}
1191
1192void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1193 bool reset_ra_mask)
1194{
1195 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1196 struct ieee80211_sta *sta = si->sta;
1197 struct rtw_efuse *efuse = &rtwdev->efuse;
1198 struct rtw_hal *hal = &rtwdev->hal;
1199 u8 wireless_set;
1200 u8 bw_mode;
1201 u8 rate_id;
1202 u8 rf_type = RF_1T1R;
1203 u8 stbc_en = 0;
1204 u8 ldpc_en = 0;
1205 u8 tx_num = 1;
1206 u64 ra_mask = 0;
1207 u64 ra_mask_bak = 0;
1208 bool is_vht_enable = false;
1209 bool is_support_sgi = false;
1210
1211 if (sta->deflink.vht_cap.vht_supported) {
1212 is_vht_enable = true;
1213 ra_mask |= get_vht_ra_mask(sta);
1214 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1215 stbc_en = VHT_STBC_EN;
1216 if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1217 ldpc_en = VHT_LDPC_EN;
1218 } else if (sta->deflink.ht_cap.ht_supported) {
1219 ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1220 (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1221 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1222 stbc_en = HT_STBC_EN;
1223 if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1224 ldpc_en = HT_LDPC_EN;
1225 }
1226
1227 if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1228 ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1229
1230 if (hal->current_band_type == RTW_BAND_5G) {
1231 ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1232 ra_mask_bak = ra_mask;
1233 if (sta->deflink.vht_cap.vht_supported) {
1234 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1235 wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1236 } else if (sta->deflink.ht_cap.ht_supported) {
1237 ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1238 wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1239 } else {
1240 wireless_set = WIRELESS_OFDM;
1241 }
1242 dm_info->rrsr_val_init = RRSR_INIT_5G;
1243 } else if (hal->current_band_type == RTW_BAND_2G) {
1244 ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1245 ra_mask_bak = ra_mask;
1246 if (sta->deflink.vht_cap.vht_supported) {
1247 ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1248 RA_MASK_OFDM_IN_VHT;
1249 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1250 WIRELESS_HT | WIRELESS_VHT;
1251 } else if (sta->deflink.ht_cap.ht_supported) {
1252 ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1253 RA_MASK_OFDM_IN_HT_2G;
1254 wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1255 WIRELESS_HT;
1256 } else if (sta->deflink.supp_rates[0] <= 0xf) {
1257 wireless_set = WIRELESS_CCK;
1258 } else {
1259 ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1260 wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1261 }
1262 dm_info->rrsr_val_init = RRSR_INIT_2G;
1263 } else {
1264 rtw_err(rtwdev, "Unknown band type\n");
1265 ra_mask_bak = ra_mask;
1266 wireless_set = 0;
1267 }
1268
1269 switch (sta->deflink.bandwidth) {
1270 case IEEE80211_STA_RX_BW_80:
1271 bw_mode = RTW_CHANNEL_WIDTH_80;
1272 is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1273 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1274 break;
1275 case IEEE80211_STA_RX_BW_40:
1276 bw_mode = RTW_CHANNEL_WIDTH_40;
1277 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1278 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1279 break;
1280 default:
1281 bw_mode = RTW_CHANNEL_WIDTH_20;
1282 is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1283 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1284 break;
1285 }
1286
1287 if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1288 tx_num = 2;
1289 rf_type = RF_2T2R;
1290 } else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1291 tx_num = 2;
1292 rf_type = RF_2T2R;
1293 }
1294
1295 rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1296
1297 ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1298 ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1299 ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1300
1301 si->bw_mode = bw_mode;
1302 si->stbc_en = stbc_en;
1303 si->ldpc_en = ldpc_en;
1304 si->rf_type = rf_type;
1305 si->sgi_enable = is_support_sgi;
1306 si->vht_enable = is_vht_enable;
1307 si->ra_mask = ra_mask;
1308 si->rate_id = rate_id;
1309
1310 rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1311}
1312
1313static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1314{
1315 const struct rtw_chip_info *chip = rtwdev->chip;
1316 struct rtw_fw_state *fw;
1317
1318 fw = &rtwdev->fw;
1319 wait_for_completion(&fw->completion);
1320 if (!fw->firmware)
1321 return -EINVAL;
1322
1323 if (chip->wow_fw_name) {
1324 fw = &rtwdev->wow_fw;
1325 wait_for_completion(&fw->completion);
1326 if (!fw->firmware)
1327 return -EINVAL;
1328 }
1329
1330 return 0;
1331}
1332
1333static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1334 struct rtw_fw_state *fw)
1335{
1336 const struct rtw_chip_info *chip = rtwdev->chip;
1337
1338 if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1339 !fw->feature)
1340 return LPS_DEEP_MODE_NONE;
1341
1342 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1343 rtw_fw_feature_check(fw, feature: FW_FEATURE_PG))
1344 return LPS_DEEP_MODE_PG;
1345
1346 if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1347 rtw_fw_feature_check(fw, feature: FW_FEATURE_LCLK))
1348 return LPS_DEEP_MODE_LCLK;
1349
1350 return LPS_DEEP_MODE_NONE;
1351}
1352
1353static int rtw_power_on(struct rtw_dev *rtwdev)
1354{
1355 const struct rtw_chip_info *chip = rtwdev->chip;
1356 struct rtw_fw_state *fw = &rtwdev->fw;
1357 bool wifi_only;
1358 int ret;
1359
1360 ret = rtw_hci_setup(rtwdev);
1361 if (ret) {
1362 rtw_err(rtwdev, "failed to setup hci\n");
1363 goto err;
1364 }
1365
1366 /* power on MAC before firmware downloaded */
1367 ret = rtw_mac_power_on(rtwdev);
1368 if (ret) {
1369 rtw_err(rtwdev, "failed to power on mac\n");
1370 goto err;
1371 }
1372
1373 ret = rtw_wait_firmware_completion(rtwdev);
1374 if (ret) {
1375 rtw_err(rtwdev, "failed to wait firmware completion\n");
1376 goto err_off;
1377 }
1378
1379 ret = rtw_download_firmware(rtwdev, fw);
1380 if (ret) {
1381 rtw_err(rtwdev, "failed to download firmware\n");
1382 goto err_off;
1383 }
1384
1385 /* config mac after firmware downloaded */
1386 ret = rtw_mac_init(rtwdev);
1387 if (ret) {
1388 rtw_err(rtwdev, "failed to configure mac\n");
1389 goto err_off;
1390 }
1391
1392 chip->ops->phy_set_param(rtwdev);
1393
1394 ret = rtw_hci_start(rtwdev);
1395 if (ret) {
1396 rtw_err(rtwdev, "failed to start hci\n");
1397 goto err_off;
1398 }
1399
1400 /* send H2C after HCI has started */
1401 rtw_fw_send_general_info(rtwdev);
1402 rtw_fw_send_phydm_info(rtwdev);
1403
1404 wifi_only = !rtwdev->efuse.btcoex;
1405 rtw_coex_power_on_setting(rtwdev);
1406 rtw_coex_init_hw_config(rtwdev, wifi_only);
1407
1408 return 0;
1409
1410err_off:
1411 rtw_mac_power_off(rtwdev);
1412
1413err:
1414 return ret;
1415}
1416
1417void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1418{
1419 if (!rtw_fw_feature_check(fw: &rtwdev->fw, feature: FW_FEATURE_NOTIFY_SCAN))
1420 return;
1421
1422 if (start) {
1423 rtw_fw_scan_notify(rtwdev, start: true);
1424 } else {
1425 reinit_completion(x: &rtwdev->fw_scan_density);
1426 rtw_fw_scan_notify(rtwdev, start: false);
1427 if (!wait_for_completion_timeout(x: &rtwdev->fw_scan_density,
1428 SCAN_NOTIFY_TIMEOUT))
1429 rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1430 }
1431}
1432
1433void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1434 const u8 *mac_addr, bool hw_scan)
1435{
1436 u32 config = 0;
1437 int ret = 0;
1438
1439 rtw_leave_lps(rtwdev);
1440
1441 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1442 ret = rtw_leave_ips(rtwdev);
1443 if (ret) {
1444 rtw_err(rtwdev, "failed to leave idle state\n");
1445 return;
1446 }
1447 }
1448
1449 ether_addr_copy(dst: rtwvif->mac_addr, src: mac_addr);
1450 config |= PORT_SET_MAC_ADDR;
1451 rtw_vif_port_config(rtwdev, rtwvif, config);
1452
1453 rtw_coex_scan_notify(rtwdev, type: COEX_SCAN_START);
1454 rtw_core_fw_scan_notify(rtwdev, start: true);
1455
1456 set_bit(nr: RTW_FLAG_DIG_DISABLE, addr: rtwdev->flags);
1457 set_bit(nr: RTW_FLAG_SCANNING, addr: rtwdev->flags);
1458}
1459
1460void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1461 bool hw_scan)
1462{
1463 struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1464 u32 config = 0;
1465
1466 if (!rtwvif)
1467 return;
1468
1469 clear_bit(nr: RTW_FLAG_SCANNING, addr: rtwdev->flags);
1470 clear_bit(nr: RTW_FLAG_DIG_DISABLE, addr: rtwdev->flags);
1471
1472 rtw_core_fw_scan_notify(rtwdev, start: false);
1473
1474 ether_addr_copy(dst: rtwvif->mac_addr, src: vif->addr);
1475 config |= PORT_SET_MAC_ADDR;
1476 rtw_vif_port_config(rtwdev, rtwvif, config);
1477
1478 rtw_coex_scan_notify(rtwdev, type: COEX_SCAN_FINISH);
1479
1480 if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1481 ieee80211_queue_work(hw: rtwdev->hw, work: &rtwdev->ips_work);
1482}
1483
1484int rtw_core_start(struct rtw_dev *rtwdev)
1485{
1486 int ret;
1487
1488 ret = rtw_power_on(rtwdev);
1489 if (ret)
1490 return ret;
1491
1492 rtw_sec_enable_sec_engine(rtwdev);
1493
1494 rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, fw: &rtwdev->fw);
1495 rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, fw: &rtwdev->wow_fw);
1496
1497 /* rcr reset after powered on */
1498 rtw_write32(rtwdev, REG_RCR, val: rtwdev->hal.rcr);
1499
1500 ieee80211_queue_delayed_work(hw: rtwdev->hw, dwork: &rtwdev->watch_dog_work,
1501 RTW_WATCH_DOG_DELAY_TIME);
1502
1503 set_bit(nr: RTW_FLAG_RUNNING, addr: rtwdev->flags);
1504
1505 return 0;
1506}
1507
1508static void rtw_power_off(struct rtw_dev *rtwdev)
1509{
1510 rtw_hci_stop(rtwdev);
1511 rtw_coex_power_off_setting(rtwdev);
1512 rtw_mac_power_off(rtwdev);
1513}
1514
1515void rtw_core_stop(struct rtw_dev *rtwdev)
1516{
1517 struct rtw_coex *coex = &rtwdev->coex;
1518
1519 clear_bit(nr: RTW_FLAG_RUNNING, addr: rtwdev->flags);
1520 clear_bit(nr: RTW_FLAG_FW_RUNNING, addr: rtwdev->flags);
1521
1522 mutex_unlock(lock: &rtwdev->mutex);
1523
1524 cancel_work_sync(work: &rtwdev->c2h_work);
1525 cancel_work_sync(work: &rtwdev->update_beacon_work);
1526 cancel_delayed_work_sync(dwork: &rtwdev->watch_dog_work);
1527 cancel_delayed_work_sync(dwork: &coex->bt_relink_work);
1528 cancel_delayed_work_sync(dwork: &coex->bt_reenable_work);
1529 cancel_delayed_work_sync(dwork: &coex->defreeze_work);
1530 cancel_delayed_work_sync(dwork: &coex->wl_remain_work);
1531 cancel_delayed_work_sync(dwork: &coex->bt_remain_work);
1532 cancel_delayed_work_sync(dwork: &coex->wl_connecting_work);
1533 cancel_delayed_work_sync(dwork: &coex->bt_multi_link_remain_work);
1534 cancel_delayed_work_sync(dwork: &coex->wl_ccklock_work);
1535
1536 mutex_lock(&rtwdev->mutex);
1537
1538 rtw_power_off(rtwdev);
1539}
1540
1541static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1542 struct ieee80211_sta_ht_cap *ht_cap)
1543{
1544 const struct rtw_chip_info *chip = rtwdev->chip;
1545 struct rtw_efuse *efuse = &rtwdev->efuse;
1546
1547 ht_cap->ht_supported = true;
1548 ht_cap->cap = 0;
1549 ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1550 IEEE80211_HT_CAP_MAX_AMSDU |
1551 (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1552
1553 if (rtw_chip_has_rx_ldpc(rtwdev))
1554 ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1555 if (rtw_chip_has_tx_stbc(rtwdev))
1556 ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1557
1558 if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1559 ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1560 IEEE80211_HT_CAP_DSSSCCK40 |
1561 IEEE80211_HT_CAP_SGI_40;
1562 ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1563 ht_cap->ampdu_density = chip->ampdu_density;
1564 ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1565 if (efuse->hw_cap.nss > 1) {
1566 ht_cap->mcs.rx_mask[0] = 0xFF;
1567 ht_cap->mcs.rx_mask[1] = 0xFF;
1568 ht_cap->mcs.rx_mask[4] = 0x01;
1569 ht_cap->mcs.rx_highest = cpu_to_le16(300);
1570 } else {
1571 ht_cap->mcs.rx_mask[0] = 0xFF;
1572 ht_cap->mcs.rx_mask[1] = 0x00;
1573 ht_cap->mcs.rx_mask[4] = 0x01;
1574 ht_cap->mcs.rx_highest = cpu_to_le16(150);
1575 }
1576}
1577
1578static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1579 struct ieee80211_sta_vht_cap *vht_cap)
1580{
1581 struct rtw_efuse *efuse = &rtwdev->efuse;
1582 u16 mcs_map;
1583 __le16 highest;
1584
1585 if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1586 efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1587 return;
1588
1589 vht_cap->vht_supported = true;
1590 vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1591 IEEE80211_VHT_CAP_SHORT_GI_80 |
1592 IEEE80211_VHT_CAP_RXSTBC_1 |
1593 IEEE80211_VHT_CAP_HTC_VHT |
1594 IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1595 0;
1596 if (rtwdev->hal.rf_path_num > 1)
1597 vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1598 vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1599 IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1600 vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1601 IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1602
1603 if (rtw_chip_has_rx_ldpc(rtwdev))
1604 vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1605
1606 mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1607 IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1608 IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1609 IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1610 IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1611 IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1612 IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1613 if (efuse->hw_cap.nss > 1) {
1614 highest = cpu_to_le16(780);
1615 mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1616 } else {
1617 highest = cpu_to_le16(390);
1618 mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1619 }
1620
1621 vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1622 vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1623 vht_cap->vht_mcs.rx_highest = highest;
1624 vht_cap->vht_mcs.tx_highest = highest;
1625}
1626
1627static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1628{
1629 u16 len;
1630
1631 len = rtwdev->chip->max_scan_ie_len;
1632
1633 if (!rtw_fw_feature_check(fw: &rtwdev->fw, feature: FW_FEATURE_SCAN_OFFLOAD) &&
1634 rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1635 len = IEEE80211_MAX_DATA_LEN;
1636 else if (rtw_fw_feature_ext_check(fw: &rtwdev->fw, feature: FW_FEATURE_EXT_OLD_PAGE_NUM))
1637 len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1638
1639 return len;
1640}
1641
1642static void rtw_set_supported_band(struct ieee80211_hw *hw,
1643 const struct rtw_chip_info *chip)
1644{
1645 struct rtw_dev *rtwdev = hw->priv;
1646 struct ieee80211_supported_band *sband;
1647
1648 if (chip->band & RTW_BAND_2G) {
1649 sband = kmemdup(p: &rtw_band_2ghz, size: sizeof(*sband), GFP_KERNEL);
1650 if (!sband)
1651 goto err_out;
1652 if (chip->ht_supported)
1653 rtw_init_ht_cap(rtwdev, ht_cap: &sband->ht_cap);
1654 hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1655 }
1656
1657 if (chip->band & RTW_BAND_5G) {
1658 sband = kmemdup(p: &rtw_band_5ghz, size: sizeof(*sband), GFP_KERNEL);
1659 if (!sband)
1660 goto err_out;
1661 if (chip->ht_supported)
1662 rtw_init_ht_cap(rtwdev, ht_cap: &sband->ht_cap);
1663 if (chip->vht_supported)
1664 rtw_init_vht_cap(rtwdev, vht_cap: &sband->vht_cap);
1665 hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1666 }
1667
1668 return;
1669
1670err_out:
1671 rtw_err(rtwdev, "failed to set supported band\n");
1672}
1673
1674static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1675 const struct rtw_chip_info *chip)
1676{
1677 kfree(objp: hw->wiphy->bands[NL80211_BAND_2GHZ]);
1678 kfree(objp: hw->wiphy->bands[NL80211_BAND_5GHZ]);
1679}
1680
1681static void rtw_vif_smps_iter(void *data, u8 *mac,
1682 struct ieee80211_vif *vif)
1683{
1684 struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1685
1686 if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1687 return;
1688
1689 if (rtwdev->hal.txrx_1ss)
1690 ieee80211_request_smps(vif, link_id: 0, smps_mode: IEEE80211_SMPS_STATIC);
1691 else
1692 ieee80211_request_smps(vif, link_id: 0, smps_mode: IEEE80211_SMPS_OFF);
1693}
1694
1695void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1696{
1697 const struct rtw_chip_info *chip = rtwdev->chip;
1698 struct rtw_hal *hal = &rtwdev->hal;
1699
1700 if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1701 return;
1702
1703 rtwdev->hal.txrx_1ss = txrx_1ss;
1704 if (txrx_1ss)
1705 chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1706 else
1707 chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1708 hal->antenna_rx, false);
1709 rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1710}
1711
1712static void __update_firmware_feature(struct rtw_dev *rtwdev,
1713 struct rtw_fw_state *fw)
1714{
1715 u32 feature;
1716 const struct rtw_fw_hdr *fw_hdr =
1717 (const struct rtw_fw_hdr *)fw->firmware->data;
1718
1719 feature = le32_to_cpu(fw_hdr->feature);
1720 fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1721
1722 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1723 RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1724 fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1725}
1726
1727static void __update_firmware_info(struct rtw_dev *rtwdev,
1728 struct rtw_fw_state *fw)
1729{
1730 const struct rtw_fw_hdr *fw_hdr =
1731 (const struct rtw_fw_hdr *)fw->firmware->data;
1732
1733 fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1734 fw->version = le16_to_cpu(fw_hdr->version);
1735 fw->sub_version = fw_hdr->subversion;
1736 fw->sub_index = fw_hdr->subindex;
1737
1738 __update_firmware_feature(rtwdev, fw);
1739}
1740
1741static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1742 struct rtw_fw_state *fw)
1743{
1744 struct rtw_fw_hdr_legacy *legacy =
1745 (struct rtw_fw_hdr_legacy *)fw->firmware->data;
1746
1747 fw->h2c_version = 0;
1748 fw->version = le16_to_cpu(legacy->version);
1749 fw->sub_version = legacy->subversion1;
1750 fw->sub_index = legacy->subversion2;
1751}
1752
1753static void update_firmware_info(struct rtw_dev *rtwdev,
1754 struct rtw_fw_state *fw)
1755{
1756 if (rtw_chip_wcpu_11n(rtwdev))
1757 __update_firmware_info_legacy(rtwdev, fw);
1758 else
1759 __update_firmware_info(rtwdev, fw);
1760}
1761
1762static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1763{
1764 struct rtw_fw_state *fw = context;
1765 struct rtw_dev *rtwdev = fw->rtwdev;
1766
1767 if (!firmware || !firmware->data) {
1768 rtw_err(rtwdev, "failed to request firmware\n");
1769 complete_all(&fw->completion);
1770 return;
1771 }
1772
1773 fw->firmware = firmware;
1774 update_firmware_info(rtwdev, fw);
1775 complete_all(&fw->completion);
1776
1777 rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1778 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1779 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1780}
1781
1782static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1783{
1784 const char *fw_name;
1785 struct rtw_fw_state *fw;
1786 int ret;
1787
1788 switch (type) {
1789 case RTW_WOWLAN_FW:
1790 fw = &rtwdev->wow_fw;
1791 fw_name = rtwdev->chip->wow_fw_name;
1792 break;
1793
1794 case RTW_NORMAL_FW:
1795 fw = &rtwdev->fw;
1796 fw_name = rtwdev->chip->fw_name;
1797 break;
1798
1799 default:
1800 rtw_warn(rtwdev, "unsupported firmware type\n");
1801 return -ENOENT;
1802 }
1803
1804 fw->type = type;
1805 fw->rtwdev = rtwdev;
1806 init_completion(x: &fw->completion);
1807
1808 ret = request_firmware_nowait(THIS_MODULE, uevent: true, name: fw_name, device: rtwdev->dev,
1809 GFP_KERNEL, context: fw, cont: rtw_load_firmware_cb);
1810 if (ret) {
1811 rtw_err(rtwdev, "failed to async firmware request\n");
1812 return ret;
1813 }
1814
1815 return 0;
1816}
1817
1818static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1819{
1820 const struct rtw_chip_info *chip = rtwdev->chip;
1821 struct rtw_hal *hal = &rtwdev->hal;
1822 struct rtw_efuse *efuse = &rtwdev->efuse;
1823
1824 switch (rtw_hci_type(rtwdev)) {
1825 case RTW_HCI_TYPE_PCIE:
1826 rtwdev->hci.rpwm_addr = 0x03d9;
1827 rtwdev->hci.cpwm_addr = 0x03da;
1828 break;
1829 case RTW_HCI_TYPE_SDIO:
1830 rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1831 rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1832 break;
1833 case RTW_HCI_TYPE_USB:
1834 rtwdev->hci.rpwm_addr = 0xfe58;
1835 rtwdev->hci.cpwm_addr = 0xfe57;
1836 break;
1837 default:
1838 rtw_err(rtwdev, "unsupported hci type\n");
1839 return -EINVAL;
1840 }
1841
1842 hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1843 hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1844 hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1845 if (hal->chip_version & BIT_RF_TYPE_ID) {
1846 hal->rf_type = RF_2T2R;
1847 hal->rf_path_num = 2;
1848 hal->antenna_tx = BB_PATH_AB;
1849 hal->antenna_rx = BB_PATH_AB;
1850 } else {
1851 hal->rf_type = RF_1T1R;
1852 hal->rf_path_num = 1;
1853 hal->antenna_tx = BB_PATH_A;
1854 hal->antenna_rx = BB_PATH_A;
1855 }
1856 hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1857 hal->rf_path_num;
1858
1859 efuse->physical_size = chip->phy_efuse_size;
1860 efuse->logical_size = chip->log_efuse_size;
1861 efuse->protect_size = chip->ptct_efuse_size;
1862
1863 /* default use ack */
1864 rtwdev->hal.rcr |= BIT_VHT_DACK;
1865
1866 hal->bfee_sts_cap = 3;
1867
1868 return 0;
1869}
1870
1871static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1872{
1873 struct rtw_fw_state *fw = &rtwdev->fw;
1874 int ret;
1875
1876 ret = rtw_hci_setup(rtwdev);
1877 if (ret) {
1878 rtw_err(rtwdev, "failed to setup hci\n");
1879 goto err;
1880 }
1881
1882 ret = rtw_mac_power_on(rtwdev);
1883 if (ret) {
1884 rtw_err(rtwdev, "failed to power on mac\n");
1885 goto err;
1886 }
1887
1888 rtw_write8(rtwdev, REG_C2HEVT, val: C2H_HW_FEATURE_DUMP);
1889
1890 wait_for_completion(&fw->completion);
1891 if (!fw->firmware) {
1892 ret = -EINVAL;
1893 rtw_err(rtwdev, "failed to load firmware\n");
1894 goto err;
1895 }
1896
1897 ret = rtw_download_firmware(rtwdev, fw);
1898 if (ret) {
1899 rtw_err(rtwdev, "failed to download firmware\n");
1900 goto err_off;
1901 }
1902
1903 return 0;
1904
1905err_off:
1906 rtw_mac_power_off(rtwdev);
1907
1908err:
1909 return ret;
1910}
1911
1912static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1913{
1914 struct rtw_efuse *efuse = &rtwdev->efuse;
1915 u8 hw_feature[HW_FEATURE_LEN];
1916 u8 id;
1917 u8 bw;
1918 int i;
1919
1920 id = rtw_read8(rtwdev, REG_C2HEVT);
1921 if (id != C2H_HW_FEATURE_REPORT) {
1922 rtw_err(rtwdev, "failed to read hw feature report\n");
1923 return -EBUSY;
1924 }
1925
1926 for (i = 0; i < HW_FEATURE_LEN; i++)
1927 hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1928
1929 rtw_write8(rtwdev, REG_C2HEVT, val: 0);
1930
1931 bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1932 efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw_cap: bw);
1933 efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1934 efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1935 efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1936 efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1937
1938 rtw_hw_config_rf_ant_num(rtwdev, hw_ant_num: efuse->hw_cap.ant_num);
1939
1940 if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1941 efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1942 efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1943
1944 rtw_dbg(rtwdev, mask: RTW_DBG_EFUSE,
1945 fmt: "hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1946 efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1947 efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1948
1949 return 0;
1950}
1951
1952static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1953{
1954 rtw_hci_stop(rtwdev);
1955 rtw_mac_power_off(rtwdev);
1956}
1957
1958static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1959{
1960 struct rtw_efuse *efuse = &rtwdev->efuse;
1961 int ret;
1962
1963 mutex_lock(&rtwdev->mutex);
1964
1965 /* power on mac to read efuse */
1966 ret = rtw_chip_efuse_enable(rtwdev);
1967 if (ret)
1968 goto out_unlock;
1969
1970 ret = rtw_parse_efuse_map(rtwdev);
1971 if (ret)
1972 goto out_disable;
1973
1974 ret = rtw_dump_hw_feature(rtwdev);
1975 if (ret)
1976 goto out_disable;
1977
1978 ret = rtw_check_supported_rfe(rtwdev);
1979 if (ret)
1980 goto out_disable;
1981
1982 if (efuse->crystal_cap == 0xff)
1983 efuse->crystal_cap = 0;
1984 if (efuse->pa_type_2g == 0xff)
1985 efuse->pa_type_2g = 0;
1986 if (efuse->pa_type_5g == 0xff)
1987 efuse->pa_type_5g = 0;
1988 if (efuse->lna_type_2g == 0xff)
1989 efuse->lna_type_2g = 0;
1990 if (efuse->lna_type_5g == 0xff)
1991 efuse->lna_type_5g = 0;
1992 if (efuse->channel_plan == 0xff)
1993 efuse->channel_plan = 0x7f;
1994 if (efuse->rf_board_option == 0xff)
1995 efuse->rf_board_option = 0;
1996 if (efuse->bt_setting & BIT(0))
1997 efuse->share_ant = true;
1998 if (efuse->regd == 0xff)
1999 efuse->regd = 0;
2000 if (efuse->tx_bb_swing_setting_2g == 0xff)
2001 efuse->tx_bb_swing_setting_2g = 0;
2002 if (efuse->tx_bb_swing_setting_5g == 0xff)
2003 efuse->tx_bb_swing_setting_5g = 0;
2004
2005 efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2006 efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2007 efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2008 efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2009 efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2010
2011 if (!is_valid_ether_addr(addr: efuse->addr)) {
2012 eth_random_addr(addr: efuse->addr);
2013 dev_warn(rtwdev->dev, "efuse MAC invalid, using random\n");
2014 }
2015
2016out_disable:
2017 rtw_chip_efuse_disable(rtwdev);
2018
2019out_unlock:
2020 mutex_unlock(lock: &rtwdev->mutex);
2021 return ret;
2022}
2023
2024static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2025{
2026 struct rtw_hal *hal = &rtwdev->hal;
2027 const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2028
2029 if (!rfe_def)
2030 return -ENODEV;
2031
2032 rtw_phy_setup_phy_cond(rtwdev, pkg: hal->pkg_type);
2033
2034 rtw_phy_init_tx_power(rtwdev);
2035 rtw_load_table(rtwdev, tbl: rfe_def->phy_pg_tbl);
2036 rtw_load_table(rtwdev, tbl: rfe_def->txpwr_lmt_tbl);
2037 rtw_phy_tx_power_by_rate_config(hal);
2038 rtw_phy_tx_power_limit_config(hal);
2039
2040 return 0;
2041}
2042
2043int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2044{
2045 int ret;
2046
2047 ret = rtw_chip_parameter_setup(rtwdev);
2048 if (ret) {
2049 rtw_err(rtwdev, "failed to setup chip parameters\n");
2050 goto err_out;
2051 }
2052
2053 ret = rtw_chip_efuse_info_setup(rtwdev);
2054 if (ret) {
2055 rtw_err(rtwdev, "failed to setup chip efuse info\n");
2056 goto err_out;
2057 }
2058
2059 ret = rtw_chip_board_info_setup(rtwdev);
2060 if (ret) {
2061 rtw_err(rtwdev, "failed to setup chip board info\n");
2062 goto err_out;
2063 }
2064
2065 return 0;
2066
2067err_out:
2068 return ret;
2069}
2070EXPORT_SYMBOL(rtw_chip_info_setup);
2071
2072static void rtw_stats_init(struct rtw_dev *rtwdev)
2073{
2074 struct rtw_traffic_stats *stats = &rtwdev->stats;
2075 struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2076 int i;
2077
2078 ewma_tp_init(e: &stats->tx_ewma_tp);
2079 ewma_tp_init(e: &stats->rx_ewma_tp);
2080
2081 for (i = 0; i < RTW_EVM_NUM; i++)
2082 ewma_evm_init(e: &dm_info->ewma_evm[i]);
2083 for (i = 0; i < RTW_SNR_NUM; i++)
2084 ewma_snr_init(e: &dm_info->ewma_snr[i]);
2085}
2086
2087int rtw_core_init(struct rtw_dev *rtwdev)
2088{
2089 const struct rtw_chip_info *chip = rtwdev->chip;
2090 struct rtw_coex *coex = &rtwdev->coex;
2091 int ret;
2092
2093 INIT_LIST_HEAD(list: &rtwdev->rsvd_page_list);
2094 INIT_LIST_HEAD(list: &rtwdev->txqs);
2095
2096 timer_setup(&rtwdev->tx_report.purge_timer,
2097 rtw_tx_report_purge_timer, 0);
2098 rtwdev->tx_wq = alloc_workqueue(fmt: "rtw_tx_wq", flags: WQ_UNBOUND | WQ_HIGHPRI, max_active: 0);
2099 if (!rtwdev->tx_wq) {
2100 rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2101 return -ENOMEM;
2102 }
2103
2104 INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2105 INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2106 INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2107 INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2108 INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2109 INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2110 INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2111 INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2112 rtw_coex_bt_multi_link_remain_work);
2113 INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2114 INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2115 INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2116 INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2117 INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2118 INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2119 INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2120 skb_queue_head_init(list: &rtwdev->c2h_queue);
2121 skb_queue_head_init(list: &rtwdev->coex.queue);
2122 skb_queue_head_init(list: &rtwdev->tx_report.queue);
2123
2124 spin_lock_init(&rtwdev->txq_lock);
2125 spin_lock_init(&rtwdev->tx_report.q_lock);
2126
2127 mutex_init(&rtwdev->mutex);
2128 mutex_init(&rtwdev->hal.tx_power_mutex);
2129
2130 init_waitqueue_head(&rtwdev->coex.wait);
2131 init_completion(x: &rtwdev->lps_leave_check);
2132 init_completion(x: &rtwdev->fw_scan_density);
2133
2134 rtwdev->sec.total_cam_num = 32;
2135 rtwdev->hal.current_channel = 1;
2136 rtwdev->dm_info.fix_rate = U8_MAX;
2137 set_bit(RTW_BC_MC_MACID, addr: rtwdev->mac_id_map);
2138
2139 rtw_stats_init(rtwdev);
2140
2141 /* default rx filter setting */
2142 rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2143 BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2144 BIT_AB | BIT_AM | BIT_APM;
2145
2146 ret = rtw_load_firmware(rtwdev, type: RTW_NORMAL_FW);
2147 if (ret) {
2148 rtw_warn(rtwdev, "no firmware loaded\n");
2149 goto out;
2150 }
2151
2152 if (chip->wow_fw_name) {
2153 ret = rtw_load_firmware(rtwdev, type: RTW_WOWLAN_FW);
2154 if (ret) {
2155 rtw_warn(rtwdev, "no wow firmware loaded\n");
2156 wait_for_completion(&rtwdev->fw.completion);
2157 if (rtwdev->fw.firmware)
2158 release_firmware(fw: rtwdev->fw.firmware);
2159 goto out;
2160 }
2161 }
2162
2163 return 0;
2164
2165out:
2166 destroy_workqueue(wq: rtwdev->tx_wq);
2167 return ret;
2168}
2169EXPORT_SYMBOL(rtw_core_init);
2170
2171void rtw_core_deinit(struct rtw_dev *rtwdev)
2172{
2173 struct rtw_fw_state *fw = &rtwdev->fw;
2174 struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2175 struct rtw_rsvd_page *rsvd_pkt, *tmp;
2176 unsigned long flags;
2177
2178 rtw_wait_firmware_completion(rtwdev);
2179
2180 if (fw->firmware)
2181 release_firmware(fw: fw->firmware);
2182
2183 if (wow_fw->firmware)
2184 release_firmware(fw: wow_fw->firmware);
2185
2186 destroy_workqueue(wq: rtwdev->tx_wq);
2187 timer_delete_sync(timer: &rtwdev->tx_report.purge_timer);
2188 spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2189 skb_queue_purge(list: &rtwdev->tx_report.queue);
2190 spin_unlock_irqrestore(lock: &rtwdev->tx_report.q_lock, flags);
2191 skb_queue_purge(list: &rtwdev->coex.queue);
2192 skb_queue_purge(list: &rtwdev->c2h_queue);
2193
2194 list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2195 build_list) {
2196 list_del(entry: &rsvd_pkt->build_list);
2197 kfree(objp: rsvd_pkt);
2198 }
2199
2200 mutex_destroy(lock: &rtwdev->mutex);
2201 mutex_destroy(lock: &rtwdev->hal.tx_power_mutex);
2202}
2203EXPORT_SYMBOL(rtw_core_deinit);
2204
2205int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2206{
2207 struct rtw_hal *hal = &rtwdev->hal;
2208 int max_tx_headroom = 0;
2209 int ret;
2210
2211 max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2212
2213 if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2214 max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2215
2216 hw->extra_tx_headroom = max_tx_headroom;
2217 hw->queues = IEEE80211_NUM_ACS;
2218 hw->txq_data_size = sizeof(struct rtw_txq);
2219 hw->sta_data_size = sizeof(struct rtw_sta_info);
2220 hw->vif_data_size = sizeof(struct rtw_vif);
2221
2222 ieee80211_hw_set(hw, SIGNAL_DBM);
2223 ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2224 ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2225 ieee80211_hw_set(hw, MFP_CAPABLE);
2226 ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2227 ieee80211_hw_set(hw, SUPPORTS_PS);
2228 ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2229 ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2230 ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2231 ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2232 ieee80211_hw_set(hw, TX_AMSDU);
2233 ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2234
2235 hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2236 BIT(NL80211_IFTYPE_AP) |
2237 BIT(NL80211_IFTYPE_ADHOC) |
2238 BIT(NL80211_IFTYPE_MESH_POINT);
2239 hw->wiphy->available_antennas_tx = hal->antenna_tx;
2240 hw->wiphy->available_antennas_rx = hal->antenna_rx;
2241
2242 hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2243 WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2244
2245 hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2246 hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2247 hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2248
2249 if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2250 hw->wiphy->iface_combinations = rtw_iface_combs;
2251 hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2252 }
2253
2254 wiphy_ext_feature_set(wiphy: hw->wiphy, ftidx: NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2255 wiphy_ext_feature_set(wiphy: hw->wiphy, ftidx: NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2256 wiphy_ext_feature_set(wiphy: hw->wiphy, ftidx: NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2257
2258#ifdef CONFIG_PM
2259 hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2260 hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2261#endif
2262 rtw_set_supported_band(hw, chip: rtwdev->chip);
2263 SET_IEEE80211_PERM_ADDR(hw, addr: rtwdev->efuse.addr);
2264
2265 hw->wiphy->sar_capa = &rtw_sar_capa;
2266
2267 ret = rtw_regd_init(rtwdev);
2268 if (ret) {
2269 rtw_err(rtwdev, "failed to init regd\n");
2270 return ret;
2271 }
2272
2273 ret = ieee80211_register_hw(hw);
2274 if (ret) {
2275 rtw_err(rtwdev, "failed to register hw\n");
2276 return ret;
2277 }
2278
2279 ret = rtw_regd_hint(rtwdev);
2280 if (ret) {
2281 rtw_err(rtwdev, "failed to hint regd\n");
2282 return ret;
2283 }
2284
2285 rtw_debugfs_init(rtwdev);
2286
2287 rtwdev->bf_info.bfer_mu_cnt = 0;
2288 rtwdev->bf_info.bfer_su_cnt = 0;
2289
2290 return 0;
2291}
2292EXPORT_SYMBOL(rtw_register_hw);
2293
2294void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2295{
2296 const struct rtw_chip_info *chip = rtwdev->chip;
2297
2298 ieee80211_unregister_hw(hw);
2299 rtw_unset_supported_band(hw, chip);
2300}
2301EXPORT_SYMBOL(rtw_unregister_hw);
2302
2303static
2304void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2305 const struct rtw_hw_reg *reg2, u8 nbytes)
2306{
2307 u8 i;
2308
2309 for (i = 0; i < nbytes; i++) {
2310 u8 v1 = rtw_read8(rtwdev, addr: reg1->addr + i);
2311 u8 v2 = rtw_read8(rtwdev, addr: reg2->addr + i);
2312
2313 rtw_write8(rtwdev, addr: reg1->addr + i, val: v2);
2314 rtw_write8(rtwdev, addr: reg2->addr + i, val: v1);
2315 }
2316}
2317
2318static
2319void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2320 const struct rtw_hw_reg *reg2)
2321{
2322 u32 v1, v2;
2323
2324 v1 = rtw_read32_mask(rtwdev, addr: reg1->addr, mask: reg1->mask);
2325 v2 = rtw_read32_mask(rtwdev, addr: reg2->addr, mask: reg2->mask);
2326 rtw_write32_mask(rtwdev, addr: reg2->addr, mask: reg2->mask, data: v1);
2327 rtw_write32_mask(rtwdev, addr: reg1->addr, mask: reg1->mask, data: v2);
2328}
2329
2330struct rtw_iter_port_switch_data {
2331 struct rtw_dev *rtwdev;
2332 struct rtw_vif *rtwvif_ap;
2333};
2334
2335static void rtw_port_switch_iter(void *data, struct ieee80211_vif *vif)
2336{
2337 struct rtw_iter_port_switch_data *iter_data = data;
2338 struct rtw_dev *rtwdev = iter_data->rtwdev;
2339 struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2340 struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2341 const struct rtw_hw_reg *reg1, *reg2;
2342
2343 if (rtwvif_target->port != RTW_PORT_0)
2344 return;
2345
2346 rtw_dbg(rtwdev, mask: RTW_DBG_STATE, fmt: "AP port switch from %d -> %d\n",
2347 rtwvif_ap->port, rtwvif_target->port);
2348
2349 /* Leave LPS so the value swapped are not in PS mode */
2350 rtw_leave_lps(rtwdev);
2351
2352 reg1 = &rtwvif_ap->conf->net_type;
2353 reg2 = &rtwvif_target->conf->net_type;
2354 rtw_swap_reg_mask(rtwdev, reg1, reg2);
2355
2356 reg1 = &rtwvif_ap->conf->mac_addr;
2357 reg2 = &rtwvif_target->conf->mac_addr;
2358 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2359
2360 reg1 = &rtwvif_ap->conf->bssid;
2361 reg2 = &rtwvif_target->conf->bssid;
2362 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2363
2364 reg1 = &rtwvif_ap->conf->bcn_ctrl;
2365 reg2 = &rtwvif_target->conf->bcn_ctrl;
2366 rtw_swap_reg_nbytes(rtwdev, reg1, reg2, nbytes: 1);
2367
2368 swap(rtwvif_target->port, rtwvif_ap->port);
2369 swap(rtwvif_target->conf, rtwvif_ap->conf);
2370
2371 rtw_fw_default_port(rtwdev, rtwvif: rtwvif_target);
2372}
2373
2374void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2375{
2376 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2377 struct rtw_iter_port_switch_data iter_data;
2378
2379 if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2380 return;
2381
2382 iter_data.rtwdev = rtwdev;
2383 iter_data.rtwvif_ap = rtwvif;
2384 rtw_iterate_vifs(rtwdev, iterator: rtw_port_switch_iter, data: &iter_data);
2385}
2386
2387static void rtw_check_sta_active_iter(void *data, struct ieee80211_vif *vif)
2388{
2389 struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2390 bool *active = data;
2391
2392 if (*active)
2393 return;
2394
2395 if (vif->type != NL80211_IFTYPE_STATION)
2396 return;
2397
2398 if (vif->cfg.assoc || !is_zero_ether_addr(addr: rtwvif->bssid))
2399 *active = true;
2400}
2401
2402bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2403{
2404 bool sta_active = false;
2405
2406 rtw_iterate_vifs(rtwdev, iterator: rtw_check_sta_active_iter, data: &sta_active);
2407
2408 return rtwdev->ap_active || sta_active;
2409}
2410
2411void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2412{
2413 if (!rtwdev->ap_active)
2414 return;
2415
2416 if (enable) {
2417 rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2418 rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2419 } else {
2420 rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2421 rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2422 }
2423}
2424
2425MODULE_AUTHOR("Realtek Corporation");
2426MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2427MODULE_LICENSE("Dual BSD/GPL");
2428

source code of linux/drivers/net/wireless/realtek/rtw88/main.c