1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244#define pr_fmt(fmt) "TCP: " fmt
245
246#include <crypto/hash.h>
247#include <linux/kernel.h>
248#include <linux/module.h>
249#include <linux/types.h>
250#include <linux/fcntl.h>
251#include <linux/poll.h>
252#include <linux/inet_diag.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/memblock.h>
262#include <linux/highmem.h>
263#include <linux/cache.h>
264#include <linux/err.h>
265#include <linux/time.h>
266#include <linux/slab.h>
267#include <linux/errqueue.h>
268#include <linux/static_key.h>
269#include <linux/btf.h>
270
271#include <net/icmp.h>
272#include <net/inet_common.h>
273#include <net/tcp.h>
274#include <net/mptcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/sock.h>
278
279#include <linux/uaccess.h>
280#include <asm/ioctls.h>
281#include <net/busy_poll.h>
282
283/* Track pending CMSGs. */
284enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287};
288
289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292long sysctl_tcp_mem[3] __read_mostly;
293EXPORT_SYMBOL(sysctl_tcp_mem);
294
295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
296EXPORT_SYMBOL(tcp_memory_allocated);
297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300#if IS_ENABLED(CONFIG_SMC)
301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302EXPORT_SYMBOL(tcp_have_smc);
303#endif
304
305/*
306 * Current number of TCP sockets.
307 */
308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309EXPORT_SYMBOL(tcp_sockets_allocated);
310
311/*
312 * TCP splice context
313 */
314struct tcp_splice_state {
315 struct pipe_inode_info *pipe;
316 size_t len;
317 unsigned int flags;
318};
319
320/*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326unsigned long tcp_memory_pressure __read_mostly;
327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
329void tcp_enter_memory_pressure(struct sock *sk)
330{
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341}
342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
344void tcp_leave_memory_pressure(struct sock *sk)
345{
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354}
355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357/* Convert seconds to retransmits based on initial and max timeout */
358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359{
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375}
376
377/* Convert retransmits to seconds based on initial and max timeout */
378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379{
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392}
393
394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395{
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405}
406
407/* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
412void tcp_init_sock(struct sock *sk)
413{
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(list: &tp->tsq_node);
421 INIT_LIST_HEAD(list: &tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(m: &tp->rtt_min, tcp_jiffies32, meas: ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, flag: SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460 tcp_scaling_ratio_init(sk);
461
462 set_bit(SOCK_SUPPORT_ZC, addr: &sk->sk_socket->flags);
463 sk_sockets_allocated_inc(sk);
464}
465EXPORT_SYMBOL(tcp_init_sock);
466
467static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468{
469 struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471 if (tsflags && skb) {
472 struct skb_shared_info *shinfo = skb_shinfo(skb);
473 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475 sock_tx_timestamp(sk, tsflags, tx_flags: &shinfo->tx_flags);
476 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477 tcb->txstamp_ack = 1;
478 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480 }
481}
482
483static bool tcp_stream_is_readable(struct sock *sk, int target)
484{
485 if (tcp_epollin_ready(sk, target))
486 return true;
487 return sk_is_readable(sk);
488}
489
490/*
491 * Wait for a TCP event.
492 *
493 * Note that we don't need to lock the socket, as the upper poll layers
494 * take care of normal races (between the test and the event) and we don't
495 * go look at any of the socket buffers directly.
496 */
497__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498{
499 __poll_t mask;
500 struct sock *sk = sock->sk;
501 const struct tcp_sock *tp = tcp_sk(sk);
502 u8 shutdown;
503 int state;
504
505 sock_poll_wait(filp: file, sock, p: wait);
506
507 state = inet_sk_state_load(sk);
508 if (state == TCP_LISTEN)
509 return inet_csk_listen_poll(sk);
510
511 /* Socket is not locked. We are protected from async events
512 * by poll logic and correct handling of state changes
513 * made by other threads is impossible in any case.
514 */
515
516 mask = 0;
517
518 /*
519 * EPOLLHUP is certainly not done right. But poll() doesn't
520 * have a notion of HUP in just one direction, and for a
521 * socket the read side is more interesting.
522 *
523 * Some poll() documentation says that EPOLLHUP is incompatible
524 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525 * all. But careful, it tends to be safer to return too many
526 * bits than too few, and you can easily break real applications
527 * if you don't tell them that something has hung up!
528 *
529 * Check-me.
530 *
531 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532 * our fs/select.c). It means that after we received EOF,
533 * poll always returns immediately, making impossible poll() on write()
534 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535 * if and only if shutdown has been made in both directions.
536 * Actually, it is interesting to look how Solaris and DUX
537 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538 * then we could set it on SND_SHUTDOWN. BTW examples given
539 * in Stevens' books assume exactly this behaviour, it explains
540 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
541 *
542 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543 * blocking on fresh not-connected or disconnected socket. --ANK
544 */
545 shutdown = READ_ONCE(sk->sk_shutdown);
546 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547 mask |= EPOLLHUP;
548 if (shutdown & RCV_SHUTDOWN)
549 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551 /* Connected or passive Fast Open socket? */
552 if (state != TCP_SYN_SENT &&
553 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554 int target = sock_rcvlowat(sk, waitall: 0, INT_MAX);
555 u16 urg_data = READ_ONCE(tp->urg_data);
556
557 if (unlikely(urg_data) &&
558 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559 !sock_flag(sk, flag: SOCK_URGINLINE))
560 target++;
561
562 if (tcp_stream_is_readable(sk, target))
563 mask |= EPOLLIN | EPOLLRDNORM;
564
565 if (!(shutdown & SEND_SHUTDOWN)) {
566 if (__sk_stream_is_writeable(sk, wake: 1)) {
567 mask |= EPOLLOUT | EPOLLWRNORM;
568 } else { /* send SIGIO later */
569 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570 set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
571
572 /* Race breaker. If space is freed after
573 * wspace test but before the flags are set,
574 * IO signal will be lost. Memory barrier
575 * pairs with the input side.
576 */
577 smp_mb__after_atomic();
578 if (__sk_stream_is_writeable(sk, wake: 1))
579 mask |= EPOLLOUT | EPOLLWRNORM;
580 }
581 } else
582 mask |= EPOLLOUT | EPOLLWRNORM;
583
584 if (urg_data & TCP_URG_VALID)
585 mask |= EPOLLPRI;
586 } else if (state == TCP_SYN_SENT &&
587 inet_test_bit(DEFER_CONNECT, sk)) {
588 /* Active TCP fastopen socket with defer_connect
589 * Return EPOLLOUT so application can call write()
590 * in order for kernel to generate SYN+data
591 */
592 mask |= EPOLLOUT | EPOLLWRNORM;
593 }
594 /* This barrier is coupled with smp_wmb() in tcp_reset() */
595 smp_rmb();
596 if (READ_ONCE(sk->sk_err) ||
597 !skb_queue_empty_lockless(list: &sk->sk_error_queue))
598 mask |= EPOLLERR;
599
600 return mask;
601}
602EXPORT_SYMBOL(tcp_poll);
603
604int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605{
606 struct tcp_sock *tp = tcp_sk(sk);
607 int answ;
608 bool slow;
609
610 switch (cmd) {
611 case SIOCINQ:
612 if (sk->sk_state == TCP_LISTEN)
613 return -EINVAL;
614
615 slow = lock_sock_fast(sk);
616 answ = tcp_inq(sk);
617 unlock_sock_fast(sk, slow);
618 break;
619 case SIOCATMARK:
620 answ = READ_ONCE(tp->urg_data) &&
621 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622 break;
623 case SIOCOUTQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631 break;
632 case SIOCOUTQNSD:
633 if (sk->sk_state == TCP_LISTEN)
634 return -EINVAL;
635
636 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637 answ = 0;
638 else
639 answ = READ_ONCE(tp->write_seq) -
640 READ_ONCE(tp->snd_nxt);
641 break;
642 default:
643 return -ENOIOCTLCMD;
644 }
645
646 *karg = answ;
647 return 0;
648}
649EXPORT_SYMBOL(tcp_ioctl);
650
651void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652{
653 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654 tp->pushed_seq = tp->write_seq;
655}
656
657static inline bool forced_push(const struct tcp_sock *tp)
658{
659 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660}
661
662void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663{
664 struct tcp_sock *tp = tcp_sk(sk);
665 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667 tcb->seq = tcb->end_seq = tp->write_seq;
668 tcb->tcp_flags = TCPHDR_ACK;
669 __skb_header_release(skb);
670 tcp_add_write_queue_tail(sk, skb);
671 sk_wmem_queued_add(sk, val: skb->truesize);
672 sk_mem_charge(sk, size: skb->truesize);
673 if (tp->nonagle & TCP_NAGLE_PUSH)
674 tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676 tcp_slow_start_after_idle_check(sk);
677}
678
679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680{
681 if (flags & MSG_OOB)
682 tp->snd_up = tp->write_seq;
683}
684
685/* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696 int size_goal)
697{
698 return skb->len < size_goal &&
699 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700 !tcp_rtx_queue_empty(sk) &&
701 refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize &&
702 tcp_skb_can_collapse_to(skb);
703}
704
705void tcp_push(struct sock *sk, int flags, int mss_now,
706 int nonagle, int size_goal)
707{
708 struct tcp_sock *tp = tcp_sk(sk);
709 struct sk_buff *skb;
710
711 skb = tcp_write_queue_tail(sk);
712 if (!skb)
713 return;
714 if (!(flags & MSG_MORE) || forced_push(tp))
715 tcp_mark_push(tp, skb);
716
717 tcp_mark_urg(tp, flags);
718
719 if (tcp_should_autocork(sk, skb, size_goal)) {
720
721 /* avoid atomic op if TSQ_THROTTLED bit is already set */
722 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724 set_bit(nr: TSQ_THROTTLED, addr: &sk->sk_tsq_flags);
725 }
726 /* It is possible TX completion already happened
727 * before we set TSQ_THROTTLED.
728 */
729 if (refcount_read(r: &sk->sk_wmem_alloc) > skb->truesize)
730 return;
731 }
732
733 if (flags & MSG_MORE)
734 nonagle = TCP_NAGLE_CORK;
735
736 __tcp_push_pending_frames(sk, cur_mss: mss_now, nonagle);
737}
738
739static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
740 unsigned int offset, size_t len)
741{
742 struct tcp_splice_state *tss = rd_desc->arg.data;
743 int ret;
744
745 ret = skb_splice_bits(skb, sk: skb->sk, offset, pipe: tss->pipe,
746 min(rd_desc->count, len), flags: tss->flags);
747 if (ret > 0)
748 rd_desc->count -= ret;
749 return ret;
750}
751
752static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
753{
754 /* Store TCP splice context information in read_descriptor_t. */
755 read_descriptor_t rd_desc = {
756 .arg.data = tss,
757 .count = tss->len,
758 };
759
760 return tcp_read_sock(sk, desc: &rd_desc, recv_actor: tcp_splice_data_recv);
761}
762
763/**
764 * tcp_splice_read - splice data from TCP socket to a pipe
765 * @sock: socket to splice from
766 * @ppos: position (not valid)
767 * @pipe: pipe to splice to
768 * @len: number of bytes to splice
769 * @flags: splice modifier flags
770 *
771 * Description:
772 * Will read pages from given socket and fill them into a pipe.
773 *
774 **/
775ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
776 struct pipe_inode_info *pipe, size_t len,
777 unsigned int flags)
778{
779 struct sock *sk = sock->sk;
780 struct tcp_splice_state tss = {
781 .pipe = pipe,
782 .len = len,
783 .flags = flags,
784 };
785 long timeo;
786 ssize_t spliced;
787 int ret;
788
789 sock_rps_record_flow(sk);
790 /*
791 * We can't seek on a socket input
792 */
793 if (unlikely(*ppos))
794 return -ESPIPE;
795
796 ret = spliced = 0;
797
798 lock_sock(sk);
799
800 timeo = sock_rcvtimeo(sk, noblock: sock->file->f_flags & O_NONBLOCK);
801 while (tss.len) {
802 ret = __tcp_splice_read(sk, tss: &tss);
803 if (ret < 0)
804 break;
805 else if (!ret) {
806 if (spliced)
807 break;
808 if (sock_flag(sk, flag: SOCK_DONE))
809 break;
810 if (sk->sk_err) {
811 ret = sock_error(sk);
812 break;
813 }
814 if (sk->sk_shutdown & RCV_SHUTDOWN)
815 break;
816 if (sk->sk_state == TCP_CLOSE) {
817 /*
818 * This occurs when user tries to read
819 * from never connected socket.
820 */
821 ret = -ENOTCONN;
822 break;
823 }
824 if (!timeo) {
825 ret = -EAGAIN;
826 break;
827 }
828 /* if __tcp_splice_read() got nothing while we have
829 * an skb in receive queue, we do not want to loop.
830 * This might happen with URG data.
831 */
832 if (!skb_queue_empty(list: &sk->sk_receive_queue))
833 break;
834 ret = sk_wait_data(sk, timeo: &timeo, NULL);
835 if (ret < 0)
836 break;
837 if (signal_pending(current)) {
838 ret = sock_intr_errno(timeo);
839 break;
840 }
841 continue;
842 }
843 tss.len -= ret;
844 spliced += ret;
845
846 if (!tss.len || !timeo)
847 break;
848 release_sock(sk);
849 lock_sock(sk);
850
851 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
852 (sk->sk_shutdown & RCV_SHUTDOWN) ||
853 signal_pending(current))
854 break;
855 }
856
857 release_sock(sk);
858
859 if (spliced)
860 return spliced;
861
862 return ret;
863}
864EXPORT_SYMBOL(tcp_splice_read);
865
866struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
867 bool force_schedule)
868{
869 struct sk_buff *skb;
870
871 skb = alloc_skb_fclone(MAX_TCP_HEADER, priority: gfp);
872 if (likely(skb)) {
873 bool mem_scheduled;
874
875 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
876 if (force_schedule) {
877 mem_scheduled = true;
878 sk_forced_mem_schedule(sk, size: skb->truesize);
879 } else {
880 mem_scheduled = sk_wmem_schedule(sk, size: skb->truesize);
881 }
882 if (likely(mem_scheduled)) {
883 skb_reserve(skb, MAX_TCP_HEADER);
884 skb->ip_summed = CHECKSUM_PARTIAL;
885 INIT_LIST_HEAD(list: &skb->tcp_tsorted_anchor);
886 return skb;
887 }
888 __kfree_skb(skb);
889 } else {
890 sk->sk_prot->enter_memory_pressure(sk);
891 sk_stream_moderate_sndbuf(sk);
892 }
893 return NULL;
894}
895
896static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
897 int large_allowed)
898{
899 struct tcp_sock *tp = tcp_sk(sk);
900 u32 new_size_goal, size_goal;
901
902 if (!large_allowed)
903 return mss_now;
904
905 /* Note : tcp_tso_autosize() will eventually split this later */
906 new_size_goal = tcp_bound_to_half_wnd(tp, pktsize: sk->sk_gso_max_size);
907
908 /* We try hard to avoid divides here */
909 size_goal = tp->gso_segs * mss_now;
910 if (unlikely(new_size_goal < size_goal ||
911 new_size_goal >= size_goal + mss_now)) {
912 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
913 sk->sk_gso_max_segs);
914 size_goal = tp->gso_segs * mss_now;
915 }
916
917 return max(size_goal, mss_now);
918}
919
920int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
921{
922 int mss_now;
923
924 mss_now = tcp_current_mss(sk);
925 *size_goal = tcp_xmit_size_goal(sk, mss_now, large_allowed: !(flags & MSG_OOB));
926
927 return mss_now;
928}
929
930/* In some cases, sendmsg() could have added an skb to the write queue,
931 * but failed adding payload on it. We need to remove it to consume less
932 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
933 * epoll() users. Another reason is that tcp_write_xmit() does not like
934 * finding an empty skb in the write queue.
935 */
936void tcp_remove_empty_skb(struct sock *sk)
937{
938 struct sk_buff *skb = tcp_write_queue_tail(sk);
939
940 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
941 tcp_unlink_write_queue(skb, sk);
942 if (tcp_write_queue_empty(sk))
943 tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY);
944 tcp_wmem_free_skb(sk, skb);
945 }
946}
947
948/* skb changing from pure zc to mixed, must charge zc */
949static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
950{
951 if (unlikely(skb_zcopy_pure(skb))) {
952 u32 extra = skb->truesize -
953 SKB_TRUESIZE(skb_end_offset(skb));
954
955 if (!sk_wmem_schedule(sk, size: extra))
956 return -ENOMEM;
957
958 sk_mem_charge(sk, size: extra);
959 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
960 }
961 return 0;
962}
963
964
965int tcp_wmem_schedule(struct sock *sk, int copy)
966{
967 int left;
968
969 if (likely(sk_wmem_schedule(sk, copy)))
970 return copy;
971
972 /* We could be in trouble if we have nothing queued.
973 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
974 * to guarantee some progress.
975 */
976 left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
977 if (left > 0)
978 sk_forced_mem_schedule(sk, min(left, copy));
979 return min(copy, sk->sk_forward_alloc);
980}
981
982void tcp_free_fastopen_req(struct tcp_sock *tp)
983{
984 if (tp->fastopen_req) {
985 kfree(objp: tp->fastopen_req);
986 tp->fastopen_req = NULL;
987 }
988}
989
990int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
991 size_t size, struct ubuf_info *uarg)
992{
993 struct tcp_sock *tp = tcp_sk(sk);
994 struct inet_sock *inet = inet_sk(sk);
995 struct sockaddr *uaddr = msg->msg_name;
996 int err, flags;
997
998 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
999 TFO_CLIENT_ENABLE) ||
1000 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1001 uaddr->sa_family == AF_UNSPEC))
1002 return -EOPNOTSUPP;
1003 if (tp->fastopen_req)
1004 return -EALREADY; /* Another Fast Open is in progress */
1005
1006 tp->fastopen_req = kzalloc(size: sizeof(struct tcp_fastopen_request),
1007 flags: sk->sk_allocation);
1008 if (unlikely(!tp->fastopen_req))
1009 return -ENOBUFS;
1010 tp->fastopen_req->data = msg;
1011 tp->fastopen_req->size = size;
1012 tp->fastopen_req->uarg = uarg;
1013
1014 if (inet_test_bit(DEFER_CONNECT, sk)) {
1015 err = tcp_connect(sk);
1016 /* Same failure procedure as in tcp_v4/6_connect */
1017 if (err) {
1018 tcp_set_state(sk, state: TCP_CLOSE);
1019 inet->inet_dport = 0;
1020 sk->sk_route_caps = 0;
1021 }
1022 }
1023 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1024 err = __inet_stream_connect(sock: sk->sk_socket, uaddr,
1025 addr_len: msg->msg_namelen, flags, is_sendmsg: 1);
1026 /* fastopen_req could already be freed in __inet_stream_connect
1027 * if the connection times out or gets rst
1028 */
1029 if (tp->fastopen_req) {
1030 *copied = tp->fastopen_req->copied;
1031 tcp_free_fastopen_req(tp);
1032 inet_clear_bit(DEFER_CONNECT, sk);
1033 }
1034 return err;
1035}
1036
1037int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1038{
1039 struct tcp_sock *tp = tcp_sk(sk);
1040 struct ubuf_info *uarg = NULL;
1041 struct sk_buff *skb;
1042 struct sockcm_cookie sockc;
1043 int flags, err, copied = 0;
1044 int mss_now = 0, size_goal, copied_syn = 0;
1045 int process_backlog = 0;
1046 int zc = 0;
1047 long timeo;
1048
1049 flags = msg->msg_flags;
1050
1051 if ((flags & MSG_ZEROCOPY) && size) {
1052 if (msg->msg_ubuf) {
1053 uarg = msg->msg_ubuf;
1054 if (sk->sk_route_caps & NETIF_F_SG)
1055 zc = MSG_ZEROCOPY;
1056 } else if (sock_flag(sk, flag: SOCK_ZEROCOPY)) {
1057 skb = tcp_write_queue_tail(sk);
1058 uarg = msg_zerocopy_realloc(sk, size, uarg: skb_zcopy(skb));
1059 if (!uarg) {
1060 err = -ENOBUFS;
1061 goto out_err;
1062 }
1063 if (sk->sk_route_caps & NETIF_F_SG)
1064 zc = MSG_ZEROCOPY;
1065 else
1066 uarg_to_msgzc(uarg)->zerocopy = 0;
1067 }
1068 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1069 if (sk->sk_route_caps & NETIF_F_SG)
1070 zc = MSG_SPLICE_PAGES;
1071 }
1072
1073 if (unlikely(flags & MSG_FASTOPEN ||
1074 inet_test_bit(DEFER_CONNECT, sk)) &&
1075 !tp->repair) {
1076 err = tcp_sendmsg_fastopen(sk, msg, copied: &copied_syn, size, uarg);
1077 if (err == -EINPROGRESS && copied_syn > 0)
1078 goto out;
1079 else if (err)
1080 goto out_err;
1081 }
1082
1083 timeo = sock_sndtimeo(sk, noblock: flags & MSG_DONTWAIT);
1084
1085 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1086
1087 /* Wait for a connection to finish. One exception is TCP Fast Open
1088 * (passive side) where data is allowed to be sent before a connection
1089 * is fully established.
1090 */
1091 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1092 !tcp_passive_fastopen(sk)) {
1093 err = sk_stream_wait_connect(sk, timeo_p: &timeo);
1094 if (err != 0)
1095 goto do_error;
1096 }
1097
1098 if (unlikely(tp->repair)) {
1099 if (tp->repair_queue == TCP_RECV_QUEUE) {
1100 copied = tcp_send_rcvq(sk, msg, size);
1101 goto out_nopush;
1102 }
1103
1104 err = -EINVAL;
1105 if (tp->repair_queue == TCP_NO_QUEUE)
1106 goto out_err;
1107
1108 /* 'common' sending to sendq */
1109 }
1110
1111 sockcm_init(sockc: &sockc, sk);
1112 if (msg->msg_controllen) {
1113 err = sock_cmsg_send(sk, msg, sockc: &sockc);
1114 if (unlikely(err)) {
1115 err = -EINVAL;
1116 goto out_err;
1117 }
1118 }
1119
1120 /* This should be in poll */
1121 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1122
1123 /* Ok commence sending. */
1124 copied = 0;
1125
1126restart:
1127 mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags);
1128
1129 err = -EPIPE;
1130 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1131 goto do_error;
1132
1133 while (msg_data_left(msg)) {
1134 ssize_t copy = 0;
1135
1136 skb = tcp_write_queue_tail(sk);
1137 if (skb)
1138 copy = size_goal - skb->len;
1139
1140 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1141 bool first_skb;
1142
1143new_segment:
1144 if (!sk_stream_memory_free(sk))
1145 goto wait_for_space;
1146
1147 if (unlikely(process_backlog >= 16)) {
1148 process_backlog = 0;
1149 if (sk_flush_backlog(sk))
1150 goto restart;
1151 }
1152 first_skb = tcp_rtx_and_write_queues_empty(sk);
1153 skb = tcp_stream_alloc_skb(sk, gfp: sk->sk_allocation,
1154 force_schedule: first_skb);
1155 if (!skb)
1156 goto wait_for_space;
1157
1158 process_backlog++;
1159
1160 tcp_skb_entail(sk, skb);
1161 copy = size_goal;
1162
1163 /* All packets are restored as if they have
1164 * already been sent. skb_mstamp_ns isn't set to
1165 * avoid wrong rtt estimation.
1166 */
1167 if (tp->repair)
1168 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1169 }
1170
1171 /* Try to append data to the end of skb. */
1172 if (copy > msg_data_left(msg))
1173 copy = msg_data_left(msg);
1174
1175 if (zc == 0) {
1176 bool merge = true;
1177 int i = skb_shinfo(skb)->nr_frags;
1178 struct page_frag *pfrag = sk_page_frag(sk);
1179
1180 if (!sk_page_frag_refill(sk, pfrag))
1181 goto wait_for_space;
1182
1183 if (!skb_can_coalesce(skb, i, page: pfrag->page,
1184 off: pfrag->offset)) {
1185 if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1186 tcp_mark_push(tp, skb);
1187 goto new_segment;
1188 }
1189 merge = false;
1190 }
1191
1192 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1193
1194 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1195 if (tcp_downgrade_zcopy_pure(sk, skb))
1196 goto wait_for_space;
1197 skb_zcopy_downgrade_managed(skb);
1198 }
1199
1200 copy = tcp_wmem_schedule(sk, copy);
1201 if (!copy)
1202 goto wait_for_space;
1203
1204 err = skb_copy_to_page_nocache(sk, from: &msg->msg_iter, skb,
1205 page: pfrag->page,
1206 off: pfrag->offset,
1207 copy);
1208 if (err)
1209 goto do_error;
1210
1211 /* Update the skb. */
1212 if (merge) {
1213 skb_frag_size_add(frag: &skb_shinfo(skb)->frags[i - 1], delta: copy);
1214 } else {
1215 skb_fill_page_desc(skb, i, page: pfrag->page,
1216 off: pfrag->offset, size: copy);
1217 page_ref_inc(page: pfrag->page);
1218 }
1219 pfrag->offset += copy;
1220 } else if (zc == MSG_ZEROCOPY) {
1221 /* First append to a fragless skb builds initial
1222 * pure zerocopy skb
1223 */
1224 if (!skb->len)
1225 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1226
1227 if (!skb_zcopy_pure(skb)) {
1228 copy = tcp_wmem_schedule(sk, copy);
1229 if (!copy)
1230 goto wait_for_space;
1231 }
1232
1233 err = skb_zerocopy_iter_stream(sk, skb, msg, len: copy, uarg);
1234 if (err == -EMSGSIZE || err == -EEXIST) {
1235 tcp_mark_push(tp, skb);
1236 goto new_segment;
1237 }
1238 if (err < 0)
1239 goto do_error;
1240 copy = err;
1241 } else if (zc == MSG_SPLICE_PAGES) {
1242 /* Splice in data if we can; copy if we can't. */
1243 if (tcp_downgrade_zcopy_pure(sk, skb))
1244 goto wait_for_space;
1245 copy = tcp_wmem_schedule(sk, copy);
1246 if (!copy)
1247 goto wait_for_space;
1248
1249 err = skb_splice_from_iter(skb, iter: &msg->msg_iter, maxsize: copy,
1250 gfp: sk->sk_allocation);
1251 if (err < 0) {
1252 if (err == -EMSGSIZE) {
1253 tcp_mark_push(tp, skb);
1254 goto new_segment;
1255 }
1256 goto do_error;
1257 }
1258 copy = err;
1259
1260 if (!(flags & MSG_NO_SHARED_FRAGS))
1261 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1262
1263 sk_wmem_queued_add(sk, val: copy);
1264 sk_mem_charge(sk, size: copy);
1265 }
1266
1267 if (!copied)
1268 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1269
1270 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1271 TCP_SKB_CB(skb)->end_seq += copy;
1272 tcp_skb_pcount_set(skb, segs: 0);
1273
1274 copied += copy;
1275 if (!msg_data_left(msg)) {
1276 if (unlikely(flags & MSG_EOR))
1277 TCP_SKB_CB(skb)->eor = 1;
1278 goto out;
1279 }
1280
1281 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1282 continue;
1283
1284 if (forced_push(tp)) {
1285 tcp_mark_push(tp, skb);
1286 __tcp_push_pending_frames(sk, cur_mss: mss_now, TCP_NAGLE_PUSH);
1287 } else if (skb == tcp_send_head(sk))
1288 tcp_push_one(sk, mss_now);
1289 continue;
1290
1291wait_for_space:
1292 set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
1293 tcp_remove_empty_skb(sk);
1294 if (copied)
1295 tcp_push(sk, flags: flags & ~MSG_MORE, mss_now,
1296 TCP_NAGLE_PUSH, size_goal);
1297
1298 err = sk_stream_wait_memory(sk, timeo_p: &timeo);
1299 if (err != 0)
1300 goto do_error;
1301
1302 mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags);
1303 }
1304
1305out:
1306 if (copied) {
1307 tcp_tx_timestamp(sk, tsflags: sockc.tsflags);
1308 tcp_push(sk, flags, mss_now, nonagle: tp->nonagle, size_goal);
1309 }
1310out_nopush:
1311 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1312 if (uarg && !msg->msg_ubuf)
1313 net_zcopy_put(uarg);
1314 return copied + copied_syn;
1315
1316do_error:
1317 tcp_remove_empty_skb(sk);
1318
1319 if (copied + copied_syn)
1320 goto out;
1321out_err:
1322 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1323 if (uarg && !msg->msg_ubuf)
1324 net_zcopy_put_abort(uarg, have_uref: true);
1325 err = sk_stream_error(sk, flags, err);
1326 /* make sure we wake any epoll edge trigger waiter */
1327 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1328 sk->sk_write_space(sk);
1329 tcp_chrono_stop(sk, type: TCP_CHRONO_SNDBUF_LIMITED);
1330 }
1331 return err;
1332}
1333EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1334
1335int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1336{
1337 int ret;
1338
1339 lock_sock(sk);
1340 ret = tcp_sendmsg_locked(sk, msg, size);
1341 release_sock(sk);
1342
1343 return ret;
1344}
1345EXPORT_SYMBOL(tcp_sendmsg);
1346
1347void tcp_splice_eof(struct socket *sock)
1348{
1349 struct sock *sk = sock->sk;
1350 struct tcp_sock *tp = tcp_sk(sk);
1351 int mss_now, size_goal;
1352
1353 if (!tcp_write_queue_tail(sk))
1354 return;
1355
1356 lock_sock(sk);
1357 mss_now = tcp_send_mss(sk, size_goal: &size_goal, flags: 0);
1358 tcp_push(sk, flags: 0, mss_now, nonagle: tp->nonagle, size_goal);
1359 release_sock(sk);
1360}
1361EXPORT_SYMBOL_GPL(tcp_splice_eof);
1362
1363/*
1364 * Handle reading urgent data. BSD has very simple semantics for
1365 * this, no blocking and very strange errors 8)
1366 */
1367
1368static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1369{
1370 struct tcp_sock *tp = tcp_sk(sk);
1371
1372 /* No URG data to read. */
1373 if (sock_flag(sk, flag: SOCK_URGINLINE) || !tp->urg_data ||
1374 tp->urg_data == TCP_URG_READ)
1375 return -EINVAL; /* Yes this is right ! */
1376
1377 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, flag: SOCK_DONE))
1378 return -ENOTCONN;
1379
1380 if (tp->urg_data & TCP_URG_VALID) {
1381 int err = 0;
1382 char c = tp->urg_data;
1383
1384 if (!(flags & MSG_PEEK))
1385 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1386
1387 /* Read urgent data. */
1388 msg->msg_flags |= MSG_OOB;
1389
1390 if (len > 0) {
1391 if (!(flags & MSG_TRUNC))
1392 err = memcpy_to_msg(msg, data: &c, len: 1);
1393 len = 1;
1394 } else
1395 msg->msg_flags |= MSG_TRUNC;
1396
1397 return err ? -EFAULT : len;
1398 }
1399
1400 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1401 return 0;
1402
1403 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1404 * the available implementations agree in this case:
1405 * this call should never block, independent of the
1406 * blocking state of the socket.
1407 * Mike <pall@rz.uni-karlsruhe.de>
1408 */
1409 return -EAGAIN;
1410}
1411
1412static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1413{
1414 struct sk_buff *skb;
1415 int copied = 0, err = 0;
1416
1417 /* XXX -- need to support SO_PEEK_OFF */
1418
1419 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1420 err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len);
1421 if (err)
1422 return err;
1423 copied += skb->len;
1424 }
1425
1426 skb_queue_walk(&sk->sk_write_queue, skb) {
1427 err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: skb->len);
1428 if (err)
1429 break;
1430
1431 copied += skb->len;
1432 }
1433
1434 return err ?: copied;
1435}
1436
1437/* Clean up the receive buffer for full frames taken by the user,
1438 * then send an ACK if necessary. COPIED is the number of bytes
1439 * tcp_recvmsg has given to the user so far, it speeds up the
1440 * calculation of whether or not we must ACK for the sake of
1441 * a window update.
1442 */
1443void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1444{
1445 struct tcp_sock *tp = tcp_sk(sk);
1446 bool time_to_ack = false;
1447
1448 if (inet_csk_ack_scheduled(sk)) {
1449 const struct inet_connection_sock *icsk = inet_csk(sk);
1450
1451 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1452 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1453 /*
1454 * If this read emptied read buffer, we send ACK, if
1455 * connection is not bidirectional, user drained
1456 * receive buffer and there was a small segment
1457 * in queue.
1458 */
1459 (copied > 0 &&
1460 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1461 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1462 !inet_csk_in_pingpong_mode(sk))) &&
1463 !atomic_read(v: &sk->sk_rmem_alloc)))
1464 time_to_ack = true;
1465 }
1466
1467 /* We send an ACK if we can now advertise a non-zero window
1468 * which has been raised "significantly".
1469 *
1470 * Even if window raised up to infinity, do not send window open ACK
1471 * in states, where we will not receive more. It is useless.
1472 */
1473 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1474 __u32 rcv_window_now = tcp_receive_window(tp);
1475
1476 /* Optimize, __tcp_select_window() is not cheap. */
1477 if (2*rcv_window_now <= tp->window_clamp) {
1478 __u32 new_window = __tcp_select_window(sk);
1479
1480 /* Send ACK now, if this read freed lots of space
1481 * in our buffer. Certainly, new_window is new window.
1482 * We can advertise it now, if it is not less than current one.
1483 * "Lots" means "at least twice" here.
1484 */
1485 if (new_window && new_window >= 2 * rcv_window_now)
1486 time_to_ack = true;
1487 }
1488 }
1489 if (time_to_ack)
1490 tcp_send_ack(sk);
1491}
1492
1493void tcp_cleanup_rbuf(struct sock *sk, int copied)
1494{
1495 struct sk_buff *skb = skb_peek(list_: &sk->sk_receive_queue);
1496 struct tcp_sock *tp = tcp_sk(sk);
1497
1498 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1499 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1500 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1501 __tcp_cleanup_rbuf(sk, copied);
1502}
1503
1504static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1505{
1506 __skb_unlink(skb, list: &sk->sk_receive_queue);
1507 if (likely(skb->destructor == sock_rfree)) {
1508 sock_rfree(skb);
1509 skb->destructor = NULL;
1510 skb->sk = NULL;
1511 return skb_attempt_defer_free(skb);
1512 }
1513 __kfree_skb(skb);
1514}
1515
1516struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1517{
1518 struct sk_buff *skb;
1519 u32 offset;
1520
1521 while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) {
1522 offset = seq - TCP_SKB_CB(skb)->seq;
1523 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1524 pr_err_once("%s: found a SYN, please report !\n", __func__);
1525 offset--;
1526 }
1527 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1528 *off = offset;
1529 return skb;
1530 }
1531 /* This looks weird, but this can happen if TCP collapsing
1532 * splitted a fat GRO packet, while we released socket lock
1533 * in skb_splice_bits()
1534 */
1535 tcp_eat_recv_skb(sk, skb);
1536 }
1537 return NULL;
1538}
1539EXPORT_SYMBOL(tcp_recv_skb);
1540
1541/*
1542 * This routine provides an alternative to tcp_recvmsg() for routines
1543 * that would like to handle copying from skbuffs directly in 'sendfile'
1544 * fashion.
1545 * Note:
1546 * - It is assumed that the socket was locked by the caller.
1547 * - The routine does not block.
1548 * - At present, there is no support for reading OOB data
1549 * or for 'peeking' the socket using this routine
1550 * (although both would be easy to implement).
1551 */
1552int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1553 sk_read_actor_t recv_actor)
1554{
1555 struct sk_buff *skb;
1556 struct tcp_sock *tp = tcp_sk(sk);
1557 u32 seq = tp->copied_seq;
1558 u32 offset;
1559 int copied = 0;
1560
1561 if (sk->sk_state == TCP_LISTEN)
1562 return -ENOTCONN;
1563 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1564 if (offset < skb->len) {
1565 int used;
1566 size_t len;
1567
1568 len = skb->len - offset;
1569 /* Stop reading if we hit a patch of urgent data */
1570 if (unlikely(tp->urg_data)) {
1571 u32 urg_offset = tp->urg_seq - seq;
1572 if (urg_offset < len)
1573 len = urg_offset;
1574 if (!len)
1575 break;
1576 }
1577 used = recv_actor(desc, skb, offset, len);
1578 if (used <= 0) {
1579 if (!copied)
1580 copied = used;
1581 break;
1582 }
1583 if (WARN_ON_ONCE(used > len))
1584 used = len;
1585 seq += used;
1586 copied += used;
1587 offset += used;
1588
1589 /* If recv_actor drops the lock (e.g. TCP splice
1590 * receive) the skb pointer might be invalid when
1591 * getting here: tcp_collapse might have deleted it
1592 * while aggregating skbs from the socket queue.
1593 */
1594 skb = tcp_recv_skb(sk, seq - 1, &offset);
1595 if (!skb)
1596 break;
1597 /* TCP coalescing might have appended data to the skb.
1598 * Try to splice more frags
1599 */
1600 if (offset + 1 != skb->len)
1601 continue;
1602 }
1603 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1604 tcp_eat_recv_skb(sk, skb);
1605 ++seq;
1606 break;
1607 }
1608 tcp_eat_recv_skb(sk, skb);
1609 if (!desc->count)
1610 break;
1611 WRITE_ONCE(tp->copied_seq, seq);
1612 }
1613 WRITE_ONCE(tp->copied_seq, seq);
1614
1615 tcp_rcv_space_adjust(sk);
1616
1617 /* Clean up data we have read: This will do ACK frames. */
1618 if (copied > 0) {
1619 tcp_recv_skb(sk, seq, &offset);
1620 tcp_cleanup_rbuf(sk, copied);
1621 }
1622 return copied;
1623}
1624EXPORT_SYMBOL(tcp_read_sock);
1625
1626int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1627{
1628 struct sk_buff *skb;
1629 int copied = 0;
1630
1631 if (sk->sk_state == TCP_LISTEN)
1632 return -ENOTCONN;
1633
1634 while ((skb = skb_peek(list_: &sk->sk_receive_queue)) != NULL) {
1635 u8 tcp_flags;
1636 int used;
1637
1638 __skb_unlink(skb, list: &sk->sk_receive_queue);
1639 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1640 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1641 used = recv_actor(sk, skb);
1642 if (used < 0) {
1643 if (!copied)
1644 copied = used;
1645 break;
1646 }
1647 copied += used;
1648
1649 if (tcp_flags & TCPHDR_FIN)
1650 break;
1651 }
1652 return copied;
1653}
1654EXPORT_SYMBOL(tcp_read_skb);
1655
1656void tcp_read_done(struct sock *sk, size_t len)
1657{
1658 struct tcp_sock *tp = tcp_sk(sk);
1659 u32 seq = tp->copied_seq;
1660 struct sk_buff *skb;
1661 size_t left;
1662 u32 offset;
1663
1664 if (sk->sk_state == TCP_LISTEN)
1665 return;
1666
1667 left = len;
1668 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1669 int used;
1670
1671 used = min_t(size_t, skb->len - offset, left);
1672 seq += used;
1673 left -= used;
1674
1675 if (skb->len > offset + used)
1676 break;
1677
1678 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1679 tcp_eat_recv_skb(sk, skb);
1680 ++seq;
1681 break;
1682 }
1683 tcp_eat_recv_skb(sk, skb);
1684 }
1685 WRITE_ONCE(tp->copied_seq, seq);
1686
1687 tcp_rcv_space_adjust(sk);
1688
1689 /* Clean up data we have read: This will do ACK frames. */
1690 if (left != len)
1691 tcp_cleanup_rbuf(sk, copied: len - left);
1692}
1693EXPORT_SYMBOL(tcp_read_done);
1694
1695int tcp_peek_len(struct socket *sock)
1696{
1697 return tcp_inq(sk: sock->sk);
1698}
1699EXPORT_SYMBOL(tcp_peek_len);
1700
1701/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1702int tcp_set_rcvlowat(struct sock *sk, int val)
1703{
1704 int space, cap;
1705
1706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1707 cap = sk->sk_rcvbuf >> 1;
1708 else
1709 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1710 val = min(val, cap);
1711 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1712
1713 /* Check if we need to signal EPOLLIN right now */
1714 tcp_data_ready(sk);
1715
1716 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1717 return 0;
1718
1719 space = tcp_space_from_win(sk, win: val);
1720 if (space > sk->sk_rcvbuf) {
1721 WRITE_ONCE(sk->sk_rcvbuf, space);
1722 tcp_sk(sk)->window_clamp = val;
1723 }
1724 return 0;
1725}
1726EXPORT_SYMBOL(tcp_set_rcvlowat);
1727
1728void tcp_update_recv_tstamps(struct sk_buff *skb,
1729 struct scm_timestamping_internal *tss)
1730{
1731 if (skb->tstamp)
1732 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1733 else
1734 tss->ts[0] = (struct timespec64) {0};
1735
1736 if (skb_hwtstamps(skb)->hwtstamp)
1737 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1738 else
1739 tss->ts[2] = (struct timespec64) {0};
1740}
1741
1742#ifdef CONFIG_MMU
1743static const struct vm_operations_struct tcp_vm_ops = {
1744};
1745
1746int tcp_mmap(struct file *file, struct socket *sock,
1747 struct vm_area_struct *vma)
1748{
1749 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1750 return -EPERM;
1751 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1752
1753 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1754 vm_flags_set(vma, VM_MIXEDMAP);
1755
1756 vma->vm_ops = &tcp_vm_ops;
1757 return 0;
1758}
1759EXPORT_SYMBOL(tcp_mmap);
1760
1761static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1762 u32 *offset_frag)
1763{
1764 skb_frag_t *frag;
1765
1766 if (unlikely(offset_skb >= skb->len))
1767 return NULL;
1768
1769 offset_skb -= skb_headlen(skb);
1770 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1771 return NULL;
1772
1773 frag = skb_shinfo(skb)->frags;
1774 while (offset_skb) {
1775 if (skb_frag_size(frag) > offset_skb) {
1776 *offset_frag = offset_skb;
1777 return frag;
1778 }
1779 offset_skb -= skb_frag_size(frag);
1780 ++frag;
1781 }
1782 *offset_frag = 0;
1783 return frag;
1784}
1785
1786static bool can_map_frag(const skb_frag_t *frag)
1787{
1788 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1789}
1790
1791static int find_next_mappable_frag(const skb_frag_t *frag,
1792 int remaining_in_skb)
1793{
1794 int offset = 0;
1795
1796 if (likely(can_map_frag(frag)))
1797 return 0;
1798
1799 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1800 offset += skb_frag_size(frag);
1801 ++frag;
1802 }
1803 return offset;
1804}
1805
1806static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1807 struct tcp_zerocopy_receive *zc,
1808 struct sk_buff *skb, u32 offset)
1809{
1810 u32 frag_offset, partial_frag_remainder = 0;
1811 int mappable_offset;
1812 skb_frag_t *frag;
1813
1814 /* worst case: skip to next skb. try to improve on this case below */
1815 zc->recv_skip_hint = skb->len - offset;
1816
1817 /* Find the frag containing this offset (and how far into that frag) */
1818 frag = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &frag_offset);
1819 if (!frag)
1820 return;
1821
1822 if (frag_offset) {
1823 struct skb_shared_info *info = skb_shinfo(skb);
1824
1825 /* We read part of the last frag, must recvmsg() rest of skb. */
1826 if (frag == &info->frags[info->nr_frags - 1])
1827 return;
1828
1829 /* Else, we must at least read the remainder in this frag. */
1830 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1831 zc->recv_skip_hint -= partial_frag_remainder;
1832 ++frag;
1833 }
1834
1835 /* partial_frag_remainder: If part way through a frag, must read rest.
1836 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1837 * in partial_frag_remainder.
1838 */
1839 mappable_offset = find_next_mappable_frag(frag, remaining_in_skb: zc->recv_skip_hint);
1840 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1841}
1842
1843static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1844 int flags, struct scm_timestamping_internal *tss,
1845 int *cmsg_flags);
1846static int receive_fallback_to_copy(struct sock *sk,
1847 struct tcp_zerocopy_receive *zc, int inq,
1848 struct scm_timestamping_internal *tss)
1849{
1850 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1851 struct msghdr msg = {};
1852 struct iovec iov;
1853 int err;
1854
1855 zc->length = 0;
1856 zc->recv_skip_hint = 0;
1857
1858 if (copy_address != zc->copybuf_address)
1859 return -EINVAL;
1860
1861 err = import_single_range(ITER_DEST, buf: (void __user *)copy_address,
1862 len: inq, iov: &iov, i: &msg.msg_iter);
1863 if (err)
1864 return err;
1865
1866 err = tcp_recvmsg_locked(sk, msg: &msg, len: inq, MSG_DONTWAIT,
1867 tss, cmsg_flags: &zc->msg_flags);
1868 if (err < 0)
1869 return err;
1870
1871 zc->copybuf_len = err;
1872 if (likely(zc->copybuf_len)) {
1873 struct sk_buff *skb;
1874 u32 offset;
1875
1876 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1877 if (skb)
1878 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1879 }
1880 return 0;
1881}
1882
1883static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1884 struct sk_buff *skb, u32 copylen,
1885 u32 *offset, u32 *seq)
1886{
1887 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1888 struct msghdr msg = {};
1889 struct iovec iov;
1890 int err;
1891
1892 if (copy_address != zc->copybuf_address)
1893 return -EINVAL;
1894
1895 err = import_single_range(ITER_DEST, buf: (void __user *)copy_address,
1896 len: copylen, iov: &iov, i: &msg.msg_iter);
1897 if (err)
1898 return err;
1899 err = skb_copy_datagram_msg(from: skb, offset: *offset, msg: &msg, size: copylen);
1900 if (err)
1901 return err;
1902 zc->recv_skip_hint -= copylen;
1903 *offset += copylen;
1904 *seq += copylen;
1905 return (__s32)copylen;
1906}
1907
1908static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1909 struct sock *sk,
1910 struct sk_buff *skb,
1911 u32 *seq,
1912 s32 copybuf_len,
1913 struct scm_timestamping_internal *tss)
1914{
1915 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1916
1917 if (!copylen)
1918 return 0;
1919 /* skb is null if inq < PAGE_SIZE. */
1920 if (skb) {
1921 offset = *seq - TCP_SKB_CB(skb)->seq;
1922 } else {
1923 skb = tcp_recv_skb(sk, *seq, &offset);
1924 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1925 tcp_update_recv_tstamps(skb, tss);
1926 zc->msg_flags |= TCP_CMSG_TS;
1927 }
1928 }
1929
1930 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, offset: &offset,
1931 seq);
1932 return zc->copybuf_len < 0 ? 0 : copylen;
1933}
1934
1935static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1936 struct page **pending_pages,
1937 unsigned long pages_remaining,
1938 unsigned long *address,
1939 u32 *length,
1940 u32 *seq,
1941 struct tcp_zerocopy_receive *zc,
1942 u32 total_bytes_to_map,
1943 int err)
1944{
1945 /* At least one page did not map. Try zapping if we skipped earlier. */
1946 if (err == -EBUSY &&
1947 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1948 u32 maybe_zap_len;
1949
1950 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1951 *length + /* Mapped or pending */
1952 (pages_remaining * PAGE_SIZE); /* Failed map. */
1953 zap_page_range_single(vma, address: *address, size: maybe_zap_len, NULL);
1954 err = 0;
1955 }
1956
1957 if (!err) {
1958 unsigned long leftover_pages = pages_remaining;
1959 int bytes_mapped;
1960
1961 /* We called zap_page_range_single, try to reinsert. */
1962 err = vm_insert_pages(vma, addr: *address,
1963 pages: pending_pages,
1964 num: &pages_remaining);
1965 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1966 *seq += bytes_mapped;
1967 *address += bytes_mapped;
1968 }
1969 if (err) {
1970 /* Either we were unable to zap, OR we zapped, retried an
1971 * insert, and still had an issue. Either ways, pages_remaining
1972 * is the number of pages we were unable to map, and we unroll
1973 * some state we speculatively touched before.
1974 */
1975 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1976
1977 *length -= bytes_not_mapped;
1978 zc->recv_skip_hint += bytes_not_mapped;
1979 }
1980 return err;
1981}
1982
1983static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1984 struct page **pages,
1985 unsigned int pages_to_map,
1986 unsigned long *address,
1987 u32 *length,
1988 u32 *seq,
1989 struct tcp_zerocopy_receive *zc,
1990 u32 total_bytes_to_map)
1991{
1992 unsigned long pages_remaining = pages_to_map;
1993 unsigned int pages_mapped;
1994 unsigned int bytes_mapped;
1995 int err;
1996
1997 err = vm_insert_pages(vma, addr: *address, pages, num: &pages_remaining);
1998 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1999 bytes_mapped = PAGE_SIZE * pages_mapped;
2000 /* Even if vm_insert_pages fails, it may have partially succeeded in
2001 * mapping (some but not all of the pages).
2002 */
2003 *seq += bytes_mapped;
2004 *address += bytes_mapped;
2005
2006 if (likely(!err))
2007 return 0;
2008
2009 /* Error: maybe zap and retry + rollback state for failed inserts. */
2010 return tcp_zerocopy_vm_insert_batch_error(vma, pending_pages: pages + pages_mapped,
2011 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2012 err);
2013}
2014
2015#define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
2016static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2017 struct tcp_zerocopy_receive *zc,
2018 struct scm_timestamping_internal *tss)
2019{
2020 unsigned long msg_control_addr;
2021 struct msghdr cmsg_dummy;
2022
2023 msg_control_addr = (unsigned long)zc->msg_control;
2024 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2025 cmsg_dummy.msg_controllen =
2026 (__kernel_size_t)zc->msg_controllen;
2027 cmsg_dummy.msg_flags = in_compat_syscall()
2028 ? MSG_CMSG_COMPAT : 0;
2029 cmsg_dummy.msg_control_is_user = true;
2030 zc->msg_flags = 0;
2031 if (zc->msg_control == msg_control_addr &&
2032 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2033 tcp_recv_timestamp(msg: &cmsg_dummy, sk, tss);
2034 zc->msg_control = (__u64)
2035 ((uintptr_t)cmsg_dummy.msg_control_user);
2036 zc->msg_controllen =
2037 (__u64)cmsg_dummy.msg_controllen;
2038 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2039 }
2040}
2041
2042static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2043 unsigned long address,
2044 bool *mmap_locked)
2045{
2046 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2047
2048 if (vma) {
2049 if (vma->vm_ops != &tcp_vm_ops) {
2050 vma_end_read(vma);
2051 return NULL;
2052 }
2053 *mmap_locked = false;
2054 return vma;
2055 }
2056
2057 mmap_read_lock(mm);
2058 vma = vma_lookup(mm, addr: address);
2059 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2060 mmap_read_unlock(mm);
2061 return NULL;
2062 }
2063 *mmap_locked = true;
2064 return vma;
2065}
2066
2067#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2068static int tcp_zerocopy_receive(struct sock *sk,
2069 struct tcp_zerocopy_receive *zc,
2070 struct scm_timestamping_internal *tss)
2071{
2072 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2073 unsigned long address = (unsigned long)zc->address;
2074 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2075 s32 copybuf_len = zc->copybuf_len;
2076 struct tcp_sock *tp = tcp_sk(sk);
2077 const skb_frag_t *frags = NULL;
2078 unsigned int pages_to_map = 0;
2079 struct vm_area_struct *vma;
2080 struct sk_buff *skb = NULL;
2081 u32 seq = tp->copied_seq;
2082 u32 total_bytes_to_map;
2083 int inq = tcp_inq(sk);
2084 bool mmap_locked;
2085 int ret;
2086
2087 zc->copybuf_len = 0;
2088 zc->msg_flags = 0;
2089
2090 if (address & (PAGE_SIZE - 1) || address != zc->address)
2091 return -EINVAL;
2092
2093 if (sk->sk_state == TCP_LISTEN)
2094 return -ENOTCONN;
2095
2096 sock_rps_record_flow(sk);
2097
2098 if (inq && inq <= copybuf_len)
2099 return receive_fallback_to_copy(sk, zc, inq, tss);
2100
2101 if (inq < PAGE_SIZE) {
2102 zc->length = 0;
2103 zc->recv_skip_hint = inq;
2104 if (!inq && sock_flag(sk, flag: SOCK_DONE))
2105 return -EIO;
2106 return 0;
2107 }
2108
2109 vma = find_tcp_vma(current->mm, address, mmap_locked: &mmap_locked);
2110 if (!vma)
2111 return -EINVAL;
2112
2113 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2114 avail_len = min_t(u32, vma_len, inq);
2115 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2116 if (total_bytes_to_map) {
2117 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2118 zap_page_range_single(vma, address, size: total_bytes_to_map,
2119 NULL);
2120 zc->length = total_bytes_to_map;
2121 zc->recv_skip_hint = 0;
2122 } else {
2123 zc->length = avail_len;
2124 zc->recv_skip_hint = avail_len;
2125 }
2126 ret = 0;
2127 while (length + PAGE_SIZE <= zc->length) {
2128 int mappable_offset;
2129 struct page *page;
2130
2131 if (zc->recv_skip_hint < PAGE_SIZE) {
2132 u32 offset_frag;
2133
2134 if (skb) {
2135 if (zc->recv_skip_hint > 0)
2136 break;
2137 skb = skb->next;
2138 offset = seq - TCP_SKB_CB(skb)->seq;
2139 } else {
2140 skb = tcp_recv_skb(sk, seq, &offset);
2141 }
2142
2143 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2144 tcp_update_recv_tstamps(skb, tss);
2145 zc->msg_flags |= TCP_CMSG_TS;
2146 }
2147 zc->recv_skip_hint = skb->len - offset;
2148 frags = skb_advance_to_frag(skb, offset_skb: offset, offset_frag: &offset_frag);
2149 if (!frags || offset_frag)
2150 break;
2151 }
2152
2153 mappable_offset = find_next_mappable_frag(frag: frags,
2154 remaining_in_skb: zc->recv_skip_hint);
2155 if (mappable_offset) {
2156 zc->recv_skip_hint = mappable_offset;
2157 break;
2158 }
2159 page = skb_frag_page(frag: frags);
2160 prefetchw(x: page);
2161 pages[pages_to_map++] = page;
2162 length += PAGE_SIZE;
2163 zc->recv_skip_hint -= PAGE_SIZE;
2164 frags++;
2165 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2166 zc->recv_skip_hint < PAGE_SIZE) {
2167 /* Either full batch, or we're about to go to next skb
2168 * (and we cannot unroll failed ops across skbs).
2169 */
2170 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2171 pages_to_map,
2172 address: &address, length: &length,
2173 seq: &seq, zc,
2174 total_bytes_to_map);
2175 if (ret)
2176 goto out;
2177 pages_to_map = 0;
2178 }
2179 }
2180 if (pages_to_map) {
2181 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2182 address: &address, length: &length, seq: &seq,
2183 zc, total_bytes_to_map);
2184 }
2185out:
2186 if (mmap_locked)
2187 mmap_read_unlock(current->mm);
2188 else
2189 vma_end_read(vma);
2190 /* Try to copy straggler data. */
2191 if (!ret)
2192 copylen = tcp_zc_handle_leftover(zc, sk, skb, seq: &seq, copybuf_len, tss);
2193
2194 if (length + copylen) {
2195 WRITE_ONCE(tp->copied_seq, seq);
2196 tcp_rcv_space_adjust(sk);
2197
2198 /* Clean up data we have read: This will do ACK frames. */
2199 tcp_recv_skb(sk, seq, &offset);
2200 tcp_cleanup_rbuf(sk, copied: length + copylen);
2201 ret = 0;
2202 if (length == zc->length)
2203 zc->recv_skip_hint = 0;
2204 } else {
2205 if (!zc->recv_skip_hint && sock_flag(sk, flag: SOCK_DONE))
2206 ret = -EIO;
2207 }
2208 zc->length = length;
2209 return ret;
2210}
2211#endif
2212
2213/* Similar to __sock_recv_timestamp, but does not require an skb */
2214void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2215 struct scm_timestamping_internal *tss)
2216{
2217 int new_tstamp = sock_flag(sk, flag: SOCK_TSTAMP_NEW);
2218 bool has_timestamping = false;
2219
2220 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2221 if (sock_flag(sk, flag: SOCK_RCVTSTAMP)) {
2222 if (sock_flag(sk, flag: SOCK_RCVTSTAMPNS)) {
2223 if (new_tstamp) {
2224 struct __kernel_timespec kts = {
2225 .tv_sec = tss->ts[0].tv_sec,
2226 .tv_nsec = tss->ts[0].tv_nsec,
2227 };
2228 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2229 len: sizeof(kts), data: &kts);
2230 } else {
2231 struct __kernel_old_timespec ts_old = {
2232 .tv_sec = tss->ts[0].tv_sec,
2233 .tv_nsec = tss->ts[0].tv_nsec,
2234 };
2235 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2236 len: sizeof(ts_old), data: &ts_old);
2237 }
2238 } else {
2239 if (new_tstamp) {
2240 struct __kernel_sock_timeval stv = {
2241 .tv_sec = tss->ts[0].tv_sec,
2242 .tv_usec = tss->ts[0].tv_nsec / 1000,
2243 };
2244 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2245 len: sizeof(stv), data: &stv);
2246 } else {
2247 struct __kernel_old_timeval tv = {
2248 .tv_sec = tss->ts[0].tv_sec,
2249 .tv_usec = tss->ts[0].tv_nsec / 1000,
2250 };
2251 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2252 len: sizeof(tv), data: &tv);
2253 }
2254 }
2255 }
2256
2257 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2258 has_timestamping = true;
2259 else
2260 tss->ts[0] = (struct timespec64) {0};
2261 }
2262
2263 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2264 if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2265 has_timestamping = true;
2266 else
2267 tss->ts[2] = (struct timespec64) {0};
2268 }
2269
2270 if (has_timestamping) {
2271 tss->ts[1] = (struct timespec64) {0};
2272 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2273 put_cmsg_scm_timestamping64(msg, tss);
2274 else
2275 put_cmsg_scm_timestamping(msg, tss);
2276 }
2277}
2278
2279static int tcp_inq_hint(struct sock *sk)
2280{
2281 const struct tcp_sock *tp = tcp_sk(sk);
2282 u32 copied_seq = READ_ONCE(tp->copied_seq);
2283 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2284 int inq;
2285
2286 inq = rcv_nxt - copied_seq;
2287 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2288 lock_sock(sk);
2289 inq = tp->rcv_nxt - tp->copied_seq;
2290 release_sock(sk);
2291 }
2292 /* After receiving a FIN, tell the user-space to continue reading
2293 * by returning a non-zero inq.
2294 */
2295 if (inq == 0 && sock_flag(sk, flag: SOCK_DONE))
2296 inq = 1;
2297 return inq;
2298}
2299
2300/*
2301 * This routine copies from a sock struct into the user buffer.
2302 *
2303 * Technical note: in 2.3 we work on _locked_ socket, so that
2304 * tricks with *seq access order and skb->users are not required.
2305 * Probably, code can be easily improved even more.
2306 */
2307
2308static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2309 int flags, struct scm_timestamping_internal *tss,
2310 int *cmsg_flags)
2311{
2312 struct tcp_sock *tp = tcp_sk(sk);
2313 int copied = 0;
2314 u32 peek_seq;
2315 u32 *seq;
2316 unsigned long used;
2317 int err;
2318 int target; /* Read at least this many bytes */
2319 long timeo;
2320 struct sk_buff *skb, *last;
2321 u32 urg_hole = 0;
2322
2323 err = -ENOTCONN;
2324 if (sk->sk_state == TCP_LISTEN)
2325 goto out;
2326
2327 if (tp->recvmsg_inq) {
2328 *cmsg_flags = TCP_CMSG_INQ;
2329 msg->msg_get_inq = 1;
2330 }
2331 timeo = sock_rcvtimeo(sk, noblock: flags & MSG_DONTWAIT);
2332
2333 /* Urgent data needs to be handled specially. */
2334 if (flags & MSG_OOB)
2335 goto recv_urg;
2336
2337 if (unlikely(tp->repair)) {
2338 err = -EPERM;
2339 if (!(flags & MSG_PEEK))
2340 goto out;
2341
2342 if (tp->repair_queue == TCP_SEND_QUEUE)
2343 goto recv_sndq;
2344
2345 err = -EINVAL;
2346 if (tp->repair_queue == TCP_NO_QUEUE)
2347 goto out;
2348
2349 /* 'common' recv queue MSG_PEEK-ing */
2350 }
2351
2352 seq = &tp->copied_seq;
2353 if (flags & MSG_PEEK) {
2354 peek_seq = tp->copied_seq;
2355 seq = &peek_seq;
2356 }
2357
2358 target = sock_rcvlowat(sk, waitall: flags & MSG_WAITALL, len);
2359
2360 do {
2361 u32 offset;
2362
2363 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2364 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2365 if (copied)
2366 break;
2367 if (signal_pending(current)) {
2368 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2369 break;
2370 }
2371 }
2372
2373 /* Next get a buffer. */
2374
2375 last = skb_peek_tail(list_: &sk->sk_receive_queue);
2376 skb_queue_walk(&sk->sk_receive_queue, skb) {
2377 last = skb;
2378 /* Now that we have two receive queues this
2379 * shouldn't happen.
2380 */
2381 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2382 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2383 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2384 flags))
2385 break;
2386
2387 offset = *seq - TCP_SKB_CB(skb)->seq;
2388 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2389 pr_err_once("%s: found a SYN, please report !\n", __func__);
2390 offset--;
2391 }
2392 if (offset < skb->len)
2393 goto found_ok_skb;
2394 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2395 goto found_fin_ok;
2396 WARN(!(flags & MSG_PEEK),
2397 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2398 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2399 }
2400
2401 /* Well, if we have backlog, try to process it now yet. */
2402
2403 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2404 break;
2405
2406 if (copied) {
2407 if (!timeo ||
2408 sk->sk_err ||
2409 sk->sk_state == TCP_CLOSE ||
2410 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2411 signal_pending(current))
2412 break;
2413 } else {
2414 if (sock_flag(sk, flag: SOCK_DONE))
2415 break;
2416
2417 if (sk->sk_err) {
2418 copied = sock_error(sk);
2419 break;
2420 }
2421
2422 if (sk->sk_shutdown & RCV_SHUTDOWN)
2423 break;
2424
2425 if (sk->sk_state == TCP_CLOSE) {
2426 /* This occurs when user tries to read
2427 * from never connected socket.
2428 */
2429 copied = -ENOTCONN;
2430 break;
2431 }
2432
2433 if (!timeo) {
2434 copied = -EAGAIN;
2435 break;
2436 }
2437
2438 if (signal_pending(current)) {
2439 copied = sock_intr_errno(timeo);
2440 break;
2441 }
2442 }
2443
2444 if (copied >= target) {
2445 /* Do not sleep, just process backlog. */
2446 __sk_flush_backlog(sk);
2447 } else {
2448 tcp_cleanup_rbuf(sk, copied);
2449 err = sk_wait_data(sk, timeo: &timeo, skb: last);
2450 if (err < 0) {
2451 err = copied ? : err;
2452 goto out;
2453 }
2454 }
2455
2456 if ((flags & MSG_PEEK) &&
2457 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2458 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2459 current->comm,
2460 task_pid_nr(current));
2461 peek_seq = tp->copied_seq;
2462 }
2463 continue;
2464
2465found_ok_skb:
2466 /* Ok so how much can we use? */
2467 used = skb->len - offset;
2468 if (len < used)
2469 used = len;
2470
2471 /* Do we have urgent data here? */
2472 if (unlikely(tp->urg_data)) {
2473 u32 urg_offset = tp->urg_seq - *seq;
2474 if (urg_offset < used) {
2475 if (!urg_offset) {
2476 if (!sock_flag(sk, flag: SOCK_URGINLINE)) {
2477 WRITE_ONCE(*seq, *seq + 1);
2478 urg_hole++;
2479 offset++;
2480 used--;
2481 if (!used)
2482 goto skip_copy;
2483 }
2484 } else
2485 used = urg_offset;
2486 }
2487 }
2488
2489 if (!(flags & MSG_TRUNC)) {
2490 err = skb_copy_datagram_msg(from: skb, offset, msg, size: used);
2491 if (err) {
2492 /* Exception. Bailout! */
2493 if (!copied)
2494 copied = -EFAULT;
2495 break;
2496 }
2497 }
2498
2499 WRITE_ONCE(*seq, *seq + used);
2500 copied += used;
2501 len -= used;
2502
2503 tcp_rcv_space_adjust(sk);
2504
2505skip_copy:
2506 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2507 WRITE_ONCE(tp->urg_data, 0);
2508 tcp_fast_path_check(sk);
2509 }
2510
2511 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2512 tcp_update_recv_tstamps(skb, tss);
2513 *cmsg_flags |= TCP_CMSG_TS;
2514 }
2515
2516 if (used + offset < skb->len)
2517 continue;
2518
2519 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2520 goto found_fin_ok;
2521 if (!(flags & MSG_PEEK))
2522 tcp_eat_recv_skb(sk, skb);
2523 continue;
2524
2525found_fin_ok:
2526 /* Process the FIN. */
2527 WRITE_ONCE(*seq, *seq + 1);
2528 if (!(flags & MSG_PEEK))
2529 tcp_eat_recv_skb(sk, skb);
2530 break;
2531 } while (len > 0);
2532
2533 /* According to UNIX98, msg_name/msg_namelen are ignored
2534 * on connected socket. I was just happy when found this 8) --ANK
2535 */
2536
2537 /* Clean up data we have read: This will do ACK frames. */
2538 tcp_cleanup_rbuf(sk, copied);
2539 return copied;
2540
2541out:
2542 return err;
2543
2544recv_urg:
2545 err = tcp_recv_urg(sk, msg, len, flags);
2546 goto out;
2547
2548recv_sndq:
2549 err = tcp_peek_sndq(sk, msg, len);
2550 goto out;
2551}
2552
2553int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2554 int *addr_len)
2555{
2556 int cmsg_flags = 0, ret;
2557 struct scm_timestamping_internal tss;
2558
2559 if (unlikely(flags & MSG_ERRQUEUE))
2560 return inet_recv_error(sk, msg, len, addr_len);
2561
2562 if (sk_can_busy_loop(sk) &&
2563 skb_queue_empty_lockless(list: &sk->sk_receive_queue) &&
2564 sk->sk_state == TCP_ESTABLISHED)
2565 sk_busy_loop(sk, nonblock: flags & MSG_DONTWAIT);
2566
2567 lock_sock(sk);
2568 ret = tcp_recvmsg_locked(sk, msg, len, flags, tss: &tss, cmsg_flags: &cmsg_flags);
2569 release_sock(sk);
2570
2571 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2572 if (cmsg_flags & TCP_CMSG_TS)
2573 tcp_recv_timestamp(msg, sk, tss: &tss);
2574 if (msg->msg_get_inq) {
2575 msg->msg_inq = tcp_inq_hint(sk);
2576 if (cmsg_flags & TCP_CMSG_INQ)
2577 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2578 len: sizeof(msg->msg_inq), data: &msg->msg_inq);
2579 }
2580 }
2581 return ret;
2582}
2583EXPORT_SYMBOL(tcp_recvmsg);
2584
2585void tcp_set_state(struct sock *sk, int state)
2586{
2587 int oldstate = sk->sk_state;
2588
2589 /* We defined a new enum for TCP states that are exported in BPF
2590 * so as not force the internal TCP states to be frozen. The
2591 * following checks will detect if an internal state value ever
2592 * differs from the BPF value. If this ever happens, then we will
2593 * need to remap the internal value to the BPF value before calling
2594 * tcp_call_bpf_2arg.
2595 */
2596 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2597 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2598 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2599 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2600 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2601 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2602 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2603 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2604 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2605 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2606 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2607 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2608 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2609
2610 /* bpf uapi header bpf.h defines an anonymous enum with values
2611 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2612 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2613 * But clang built vmlinux does not have this enum in DWARF
2614 * since clang removes the above code before generating IR/debuginfo.
2615 * Let us explicitly emit the type debuginfo to ensure the
2616 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2617 * regardless of which compiler is used.
2618 */
2619 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2620
2621 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2622 tcp_call_bpf_2arg(sk, op: BPF_SOCK_OPS_STATE_CB, arg1: oldstate, arg2: state);
2623
2624 switch (state) {
2625 case TCP_ESTABLISHED:
2626 if (oldstate != TCP_ESTABLISHED)
2627 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2628 break;
2629
2630 case TCP_CLOSE:
2631 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2632 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2633
2634 sk->sk_prot->unhash(sk);
2635 if (inet_csk(sk)->icsk_bind_hash &&
2636 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2637 inet_put_port(sk);
2638 fallthrough;
2639 default:
2640 if (oldstate == TCP_ESTABLISHED)
2641 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2642 }
2643
2644 /* Change state AFTER socket is unhashed to avoid closed
2645 * socket sitting in hash tables.
2646 */
2647 inet_sk_state_store(sk, newstate: state);
2648}
2649EXPORT_SYMBOL_GPL(tcp_set_state);
2650
2651/*
2652 * State processing on a close. This implements the state shift for
2653 * sending our FIN frame. Note that we only send a FIN for some
2654 * states. A shutdown() may have already sent the FIN, or we may be
2655 * closed.
2656 */
2657
2658static const unsigned char new_state[16] = {
2659 /* current state: new state: action: */
2660 [0 /* (Invalid) */] = TCP_CLOSE,
2661 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2662 [TCP_SYN_SENT] = TCP_CLOSE,
2663 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2664 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2665 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2666 [TCP_TIME_WAIT] = TCP_CLOSE,
2667 [TCP_CLOSE] = TCP_CLOSE,
2668 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2669 [TCP_LAST_ACK] = TCP_LAST_ACK,
2670 [TCP_LISTEN] = TCP_CLOSE,
2671 [TCP_CLOSING] = TCP_CLOSING,
2672 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2673};
2674
2675static int tcp_close_state(struct sock *sk)
2676{
2677 int next = (int)new_state[sk->sk_state];
2678 int ns = next & TCP_STATE_MASK;
2679
2680 tcp_set_state(sk, ns);
2681
2682 return next & TCP_ACTION_FIN;
2683}
2684
2685/*
2686 * Shutdown the sending side of a connection. Much like close except
2687 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2688 */
2689
2690void tcp_shutdown(struct sock *sk, int how)
2691{
2692 /* We need to grab some memory, and put together a FIN,
2693 * and then put it into the queue to be sent.
2694 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2695 */
2696 if (!(how & SEND_SHUTDOWN))
2697 return;
2698
2699 /* If we've already sent a FIN, or it's a closed state, skip this. */
2700 if ((1 << sk->sk_state) &
2701 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2702 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2703 /* Clear out any half completed packets. FIN if needed. */
2704 if (tcp_close_state(sk))
2705 tcp_send_fin(sk);
2706 }
2707}
2708EXPORT_SYMBOL(tcp_shutdown);
2709
2710int tcp_orphan_count_sum(void)
2711{
2712 int i, total = 0;
2713
2714 for_each_possible_cpu(i)
2715 total += per_cpu(tcp_orphan_count, i);
2716
2717 return max(total, 0);
2718}
2719
2720static int tcp_orphan_cache;
2721static struct timer_list tcp_orphan_timer;
2722#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2723
2724static void tcp_orphan_update(struct timer_list *unused)
2725{
2726 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2727 mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD);
2728}
2729
2730static bool tcp_too_many_orphans(int shift)
2731{
2732 return READ_ONCE(tcp_orphan_cache) << shift >
2733 READ_ONCE(sysctl_tcp_max_orphans);
2734}
2735
2736bool tcp_check_oom(struct sock *sk, int shift)
2737{
2738 bool too_many_orphans, out_of_socket_memory;
2739
2740 too_many_orphans = tcp_too_many_orphans(shift);
2741 out_of_socket_memory = tcp_out_of_memory(sk);
2742
2743 if (too_many_orphans)
2744 net_info_ratelimited("too many orphaned sockets\n");
2745 if (out_of_socket_memory)
2746 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2747 return too_many_orphans || out_of_socket_memory;
2748}
2749
2750void __tcp_close(struct sock *sk, long timeout)
2751{
2752 struct sk_buff *skb;
2753 int data_was_unread = 0;
2754 int state;
2755
2756 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2757
2758 if (sk->sk_state == TCP_LISTEN) {
2759 tcp_set_state(sk, TCP_CLOSE);
2760
2761 /* Special case. */
2762 inet_csk_listen_stop(sk);
2763
2764 goto adjudge_to_death;
2765 }
2766
2767 /* We need to flush the recv. buffs. We do this only on the
2768 * descriptor close, not protocol-sourced closes, because the
2769 * reader process may not have drained the data yet!
2770 */
2771 while ((skb = __skb_dequeue(list: &sk->sk_receive_queue)) != NULL) {
2772 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2773
2774 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2775 len--;
2776 data_was_unread += len;
2777 __kfree_skb(skb);
2778 }
2779
2780 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2781 if (sk->sk_state == TCP_CLOSE)
2782 goto adjudge_to_death;
2783
2784 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2785 * data was lost. To witness the awful effects of the old behavior of
2786 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2787 * GET in an FTP client, suspend the process, wait for the client to
2788 * advertise a zero window, then kill -9 the FTP client, wheee...
2789 * Note: timeout is always zero in such a case.
2790 */
2791 if (unlikely(tcp_sk(sk)->repair)) {
2792 sk->sk_prot->disconnect(sk, 0);
2793 } else if (data_was_unread) {
2794 /* Unread data was tossed, zap the connection. */
2795 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2796 tcp_set_state(sk, TCP_CLOSE);
2797 tcp_send_active_reset(sk, priority: sk->sk_allocation);
2798 } else if (sock_flag(sk, flag: SOCK_LINGER) && !sk->sk_lingertime) {
2799 /* Check zero linger _after_ checking for unread data. */
2800 sk->sk_prot->disconnect(sk, 0);
2801 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2802 } else if (tcp_close_state(sk)) {
2803 /* We FIN if the application ate all the data before
2804 * zapping the connection.
2805 */
2806
2807 /* RED-PEN. Formally speaking, we have broken TCP state
2808 * machine. State transitions:
2809 *
2810 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2811 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2812 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2813 *
2814 * are legal only when FIN has been sent (i.e. in window),
2815 * rather than queued out of window. Purists blame.
2816 *
2817 * F.e. "RFC state" is ESTABLISHED,
2818 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2819 *
2820 * The visible declinations are that sometimes
2821 * we enter time-wait state, when it is not required really
2822 * (harmless), do not send active resets, when they are
2823 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2824 * they look as CLOSING or LAST_ACK for Linux)
2825 * Probably, I missed some more holelets.
2826 * --ANK
2827 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2828 * in a single packet! (May consider it later but will
2829 * probably need API support or TCP_CORK SYN-ACK until
2830 * data is written and socket is closed.)
2831 */
2832 tcp_send_fin(sk);
2833 }
2834
2835 sk_stream_wait_close(sk, timeo_p: timeout);
2836
2837adjudge_to_death:
2838 state = sk->sk_state;
2839 sock_hold(sk);
2840 sock_orphan(sk);
2841
2842 local_bh_disable();
2843 bh_lock_sock(sk);
2844 /* remove backlog if any, without releasing ownership. */
2845 __release_sock(sk);
2846
2847 this_cpu_inc(tcp_orphan_count);
2848
2849 /* Have we already been destroyed by a softirq or backlog? */
2850 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2851 goto out;
2852
2853 /* This is a (useful) BSD violating of the RFC. There is a
2854 * problem with TCP as specified in that the other end could
2855 * keep a socket open forever with no application left this end.
2856 * We use a 1 minute timeout (about the same as BSD) then kill
2857 * our end. If they send after that then tough - BUT: long enough
2858 * that we won't make the old 4*rto = almost no time - whoops
2859 * reset mistake.
2860 *
2861 * Nope, it was not mistake. It is really desired behaviour
2862 * f.e. on http servers, when such sockets are useless, but
2863 * consume significant resources. Let's do it with special
2864 * linger2 option. --ANK
2865 */
2866
2867 if (sk->sk_state == TCP_FIN_WAIT2) {
2868 struct tcp_sock *tp = tcp_sk(sk);
2869 if (READ_ONCE(tp->linger2) < 0) {
2870 tcp_set_state(sk, TCP_CLOSE);
2871 tcp_send_active_reset(sk, GFP_ATOMIC);
2872 __NET_INC_STATS(sock_net(sk),
2873 LINUX_MIB_TCPABORTONLINGER);
2874 } else {
2875 const int tmo = tcp_fin_time(sk);
2876
2877 if (tmo > TCP_TIMEWAIT_LEN) {
2878 inet_csk_reset_keepalive_timer(sk,
2879 timeout: tmo - TCP_TIMEWAIT_LEN);
2880 } else {
2881 tcp_time_wait(sk, state: TCP_FIN_WAIT2, timeo: tmo);
2882 goto out;
2883 }
2884 }
2885 }
2886 if (sk->sk_state != TCP_CLOSE) {
2887 if (tcp_check_oom(sk, shift: 0)) {
2888 tcp_set_state(sk, TCP_CLOSE);
2889 tcp_send_active_reset(sk, GFP_ATOMIC);
2890 __NET_INC_STATS(sock_net(sk),
2891 LINUX_MIB_TCPABORTONMEMORY);
2892 } else if (!check_net(net: sock_net(sk))) {
2893 /* Not possible to send reset; just close */
2894 tcp_set_state(sk, TCP_CLOSE);
2895 }
2896 }
2897
2898 if (sk->sk_state == TCP_CLOSE) {
2899 struct request_sock *req;
2900
2901 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2902 lockdep_sock_is_held(sk));
2903 /* We could get here with a non-NULL req if the socket is
2904 * aborted (e.g., closed with unread data) before 3WHS
2905 * finishes.
2906 */
2907 if (req)
2908 reqsk_fastopen_remove(sk, req, reset: false);
2909 inet_csk_destroy_sock(sk);
2910 }
2911 /* Otherwise, socket is reprieved until protocol close. */
2912
2913out:
2914 bh_unlock_sock(sk);
2915 local_bh_enable();
2916}
2917
2918void tcp_close(struct sock *sk, long timeout)
2919{
2920 lock_sock(sk);
2921 __tcp_close(sk, timeout);
2922 release_sock(sk);
2923 sock_put(sk);
2924}
2925EXPORT_SYMBOL(tcp_close);
2926
2927/* These states need RST on ABORT according to RFC793 */
2928
2929static inline bool tcp_need_reset(int state)
2930{
2931 return (1 << state) &
2932 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2933 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2934}
2935
2936static void tcp_rtx_queue_purge(struct sock *sk)
2937{
2938 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2939
2940 tcp_sk(sk)->highest_sack = NULL;
2941 while (p) {
2942 struct sk_buff *skb = rb_to_skb(p);
2943
2944 p = rb_next(p);
2945 /* Since we are deleting whole queue, no need to
2946 * list_del(&skb->tcp_tsorted_anchor)
2947 */
2948 tcp_rtx_queue_unlink(skb, sk);
2949 tcp_wmem_free_skb(sk, skb);
2950 }
2951}
2952
2953void tcp_write_queue_purge(struct sock *sk)
2954{
2955 struct sk_buff *skb;
2956
2957 tcp_chrono_stop(sk, type: TCP_CHRONO_BUSY);
2958 while ((skb = __skb_dequeue(list: &sk->sk_write_queue)) != NULL) {
2959 tcp_skb_tsorted_anchor_cleanup(skb);
2960 tcp_wmem_free_skb(sk, skb);
2961 }
2962 tcp_rtx_queue_purge(sk);
2963 INIT_LIST_HEAD(list: &tcp_sk(sk)->tsorted_sent_queue);
2964 tcp_clear_all_retrans_hints(tcp_sk(sk));
2965 tcp_sk(sk)->packets_out = 0;
2966 inet_csk(sk)->icsk_backoff = 0;
2967}
2968
2969int tcp_disconnect(struct sock *sk, int flags)
2970{
2971 struct inet_sock *inet = inet_sk(sk);
2972 struct inet_connection_sock *icsk = inet_csk(sk);
2973 struct tcp_sock *tp = tcp_sk(sk);
2974 int old_state = sk->sk_state;
2975 u32 seq;
2976
2977 if (old_state != TCP_CLOSE)
2978 tcp_set_state(sk, TCP_CLOSE);
2979
2980 /* ABORT function of RFC793 */
2981 if (old_state == TCP_LISTEN) {
2982 inet_csk_listen_stop(sk);
2983 } else if (unlikely(tp->repair)) {
2984 WRITE_ONCE(sk->sk_err, ECONNABORTED);
2985 } else if (tcp_need_reset(state: old_state) ||
2986 (tp->snd_nxt != tp->write_seq &&
2987 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2988 /* The last check adjusts for discrepancy of Linux wrt. RFC
2989 * states
2990 */
2991 tcp_send_active_reset(sk, priority: gfp_any());
2992 WRITE_ONCE(sk->sk_err, ECONNRESET);
2993 } else if (old_state == TCP_SYN_SENT)
2994 WRITE_ONCE(sk->sk_err, ECONNRESET);
2995
2996 tcp_clear_xmit_timers(sk);
2997 __skb_queue_purge(list: &sk->sk_receive_queue);
2998 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2999 WRITE_ONCE(tp->urg_data, 0);
3000 tcp_write_queue_purge(sk);
3001 tcp_fastopen_active_disable_ofo_check(sk);
3002 skb_rbtree_purge(root: &tp->out_of_order_queue);
3003
3004 inet->inet_dport = 0;
3005
3006 inet_bhash2_reset_saddr(sk);
3007
3008 WRITE_ONCE(sk->sk_shutdown, 0);
3009 sock_reset_flag(sk, flag: SOCK_DONE);
3010 tp->srtt_us = 0;
3011 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3012 tp->rcv_rtt_last_tsecr = 0;
3013
3014 seq = tp->write_seq + tp->max_window + 2;
3015 if (!seq)
3016 seq = 1;
3017 WRITE_ONCE(tp->write_seq, seq);
3018
3019 icsk->icsk_backoff = 0;
3020 icsk->icsk_probes_out = 0;
3021 icsk->icsk_probes_tstamp = 0;
3022 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3023 icsk->icsk_rto_min = TCP_RTO_MIN;
3024 icsk->icsk_delack_max = TCP_DELACK_MAX;
3025 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3026 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3027 tp->snd_cwnd_cnt = 0;
3028 tp->is_cwnd_limited = 0;
3029 tp->max_packets_out = 0;
3030 tp->window_clamp = 0;
3031 tp->delivered = 0;
3032 tp->delivered_ce = 0;
3033 if (icsk->icsk_ca_ops->release)
3034 icsk->icsk_ca_ops->release(sk);
3035 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3036 icsk->icsk_ca_initialized = 0;
3037 tcp_set_ca_state(sk, ca_state: TCP_CA_Open);
3038 tp->is_sack_reneg = 0;
3039 tcp_clear_retrans(tp);
3040 tp->total_retrans = 0;
3041 inet_csk_delack_init(sk);
3042 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3043 * issue in __tcp_select_window()
3044 */
3045 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3046 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3047 __sk_dst_reset(sk);
3048 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3049 tcp_saved_syn_free(tp);
3050 tp->compressed_ack = 0;
3051 tp->segs_in = 0;
3052 tp->segs_out = 0;
3053 tp->bytes_sent = 0;
3054 tp->bytes_acked = 0;
3055 tp->bytes_received = 0;
3056 tp->bytes_retrans = 0;
3057 tp->data_segs_in = 0;
3058 tp->data_segs_out = 0;
3059 tp->duplicate_sack[0].start_seq = 0;
3060 tp->duplicate_sack[0].end_seq = 0;
3061 tp->dsack_dups = 0;
3062 tp->reord_seen = 0;
3063 tp->retrans_out = 0;
3064 tp->sacked_out = 0;
3065 tp->tlp_high_seq = 0;
3066 tp->last_oow_ack_time = 0;
3067 tp->plb_rehash = 0;
3068 /* There's a bubble in the pipe until at least the first ACK. */
3069 tp->app_limited = ~0U;
3070 tp->rate_app_limited = 1;
3071 tp->rack.mstamp = 0;
3072 tp->rack.advanced = 0;
3073 tp->rack.reo_wnd_steps = 1;
3074 tp->rack.last_delivered = 0;
3075 tp->rack.reo_wnd_persist = 0;
3076 tp->rack.dsack_seen = 0;
3077 tp->syn_data_acked = 0;
3078 tp->rx_opt.saw_tstamp = 0;
3079 tp->rx_opt.dsack = 0;
3080 tp->rx_opt.num_sacks = 0;
3081 tp->rcv_ooopack = 0;
3082
3083
3084 /* Clean up fastopen related fields */
3085 tcp_free_fastopen_req(tp);
3086 inet_clear_bit(DEFER_CONNECT, sk);
3087 tp->fastopen_client_fail = 0;
3088
3089 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3090
3091 if (sk->sk_frag.page) {
3092 put_page(page: sk->sk_frag.page);
3093 sk->sk_frag.page = NULL;
3094 sk->sk_frag.offset = 0;
3095 }
3096 sk_error_report(sk);
3097 return 0;
3098}
3099EXPORT_SYMBOL(tcp_disconnect);
3100
3101static inline bool tcp_can_repair_sock(const struct sock *sk)
3102{
3103 return sockopt_ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3104 (sk->sk_state != TCP_LISTEN);
3105}
3106
3107static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3108{
3109 struct tcp_repair_window opt;
3110
3111 if (!tp->repair)
3112 return -EPERM;
3113
3114 if (len != sizeof(opt))
3115 return -EINVAL;
3116
3117 if (copy_from_sockptr(dst: &opt, src: optbuf, size: sizeof(opt)))
3118 return -EFAULT;
3119
3120 if (opt.max_window < opt.snd_wnd)
3121 return -EINVAL;
3122
3123 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3124 return -EINVAL;
3125
3126 if (after(opt.rcv_wup, tp->rcv_nxt))
3127 return -EINVAL;
3128
3129 tp->snd_wl1 = opt.snd_wl1;
3130 tp->snd_wnd = opt.snd_wnd;
3131 tp->max_window = opt.max_window;
3132
3133 tp->rcv_wnd = opt.rcv_wnd;
3134 tp->rcv_wup = opt.rcv_wup;
3135
3136 return 0;
3137}
3138
3139static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3140 unsigned int len)
3141{
3142 struct tcp_sock *tp = tcp_sk(sk);
3143 struct tcp_repair_opt opt;
3144 size_t offset = 0;
3145
3146 while (len >= sizeof(opt)) {
3147 if (copy_from_sockptr_offset(dst: &opt, src: optbuf, offset, size: sizeof(opt)))
3148 return -EFAULT;
3149
3150 offset += sizeof(opt);
3151 len -= sizeof(opt);
3152
3153 switch (opt.opt_code) {
3154 case TCPOPT_MSS:
3155 tp->rx_opt.mss_clamp = opt.opt_val;
3156 tcp_mtup_init(sk);
3157 break;
3158 case TCPOPT_WINDOW:
3159 {
3160 u16 snd_wscale = opt.opt_val & 0xFFFF;
3161 u16 rcv_wscale = opt.opt_val >> 16;
3162
3163 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3164 return -EFBIG;
3165
3166 tp->rx_opt.snd_wscale = snd_wscale;
3167 tp->rx_opt.rcv_wscale = rcv_wscale;
3168 tp->rx_opt.wscale_ok = 1;
3169 }
3170 break;
3171 case TCPOPT_SACK_PERM:
3172 if (opt.opt_val != 0)
3173 return -EINVAL;
3174
3175 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3176 break;
3177 case TCPOPT_TIMESTAMP:
3178 if (opt.opt_val != 0)
3179 return -EINVAL;
3180
3181 tp->rx_opt.tstamp_ok = 1;
3182 break;
3183 }
3184 }
3185
3186 return 0;
3187}
3188
3189DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3190EXPORT_SYMBOL(tcp_tx_delay_enabled);
3191
3192static void tcp_enable_tx_delay(void)
3193{
3194 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3195 static int __tcp_tx_delay_enabled = 0;
3196
3197 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3198 static_branch_enable(&tcp_tx_delay_enabled);
3199 pr_info("TCP_TX_DELAY enabled\n");
3200 }
3201 }
3202}
3203
3204/* When set indicates to always queue non-full frames. Later the user clears
3205 * this option and we transmit any pending partial frames in the queue. This is
3206 * meant to be used alongside sendfile() to get properly filled frames when the
3207 * user (for example) must write out headers with a write() call first and then
3208 * use sendfile to send out the data parts.
3209 *
3210 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3211 * TCP_NODELAY.
3212 */
3213void __tcp_sock_set_cork(struct sock *sk, bool on)
3214{
3215 struct tcp_sock *tp = tcp_sk(sk);
3216
3217 if (on) {
3218 tp->nonagle |= TCP_NAGLE_CORK;
3219 } else {
3220 tp->nonagle &= ~TCP_NAGLE_CORK;
3221 if (tp->nonagle & TCP_NAGLE_OFF)
3222 tp->nonagle |= TCP_NAGLE_PUSH;
3223 tcp_push_pending_frames(sk);
3224 }
3225}
3226
3227void tcp_sock_set_cork(struct sock *sk, bool on)
3228{
3229 lock_sock(sk);
3230 __tcp_sock_set_cork(sk, on);
3231 release_sock(sk);
3232}
3233EXPORT_SYMBOL(tcp_sock_set_cork);
3234
3235/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3236 * remembered, but it is not activated until cork is cleared.
3237 *
3238 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3239 * even TCP_CORK for currently queued segments.
3240 */
3241void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3242{
3243 if (on) {
3244 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3245 tcp_push_pending_frames(sk);
3246 } else {
3247 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3248 }
3249}
3250
3251void tcp_sock_set_nodelay(struct sock *sk)
3252{
3253 lock_sock(sk);
3254 __tcp_sock_set_nodelay(sk, on: true);
3255 release_sock(sk);
3256}
3257EXPORT_SYMBOL(tcp_sock_set_nodelay);
3258
3259static void __tcp_sock_set_quickack(struct sock *sk, int val)
3260{
3261 if (!val) {
3262 inet_csk_enter_pingpong_mode(sk);
3263 return;
3264 }
3265
3266 inet_csk_exit_pingpong_mode(sk);
3267 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3268 inet_csk_ack_scheduled(sk)) {
3269 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3270 tcp_cleanup_rbuf(sk, copied: 1);
3271 if (!(val & 1))
3272 inet_csk_enter_pingpong_mode(sk);
3273 }
3274}
3275
3276void tcp_sock_set_quickack(struct sock *sk, int val)
3277{
3278 lock_sock(sk);
3279 __tcp_sock_set_quickack(sk, val);
3280 release_sock(sk);
3281}
3282EXPORT_SYMBOL(tcp_sock_set_quickack);
3283
3284int tcp_sock_set_syncnt(struct sock *sk, int val)
3285{
3286 if (val < 1 || val > MAX_TCP_SYNCNT)
3287 return -EINVAL;
3288
3289 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3290 return 0;
3291}
3292EXPORT_SYMBOL(tcp_sock_set_syncnt);
3293
3294int tcp_sock_set_user_timeout(struct sock *sk, int val)
3295{
3296 /* Cap the max time in ms TCP will retry or probe the window
3297 * before giving up and aborting (ETIMEDOUT) a connection.
3298 */
3299 if (val < 0)
3300 return -EINVAL;
3301
3302 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3303 return 0;
3304}
3305EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3306
3307int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3308{
3309 struct tcp_sock *tp = tcp_sk(sk);
3310
3311 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3312 return -EINVAL;
3313
3314 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3315 WRITE_ONCE(tp->keepalive_time, val * HZ);
3316 if (sock_flag(sk, flag: SOCK_KEEPOPEN) &&
3317 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3318 u32 elapsed = keepalive_time_elapsed(tp);
3319
3320 if (tp->keepalive_time > elapsed)
3321 elapsed = tp->keepalive_time - elapsed;
3322 else
3323 elapsed = 0;
3324 inet_csk_reset_keepalive_timer(sk, timeout: elapsed);
3325 }
3326
3327 return 0;
3328}
3329
3330int tcp_sock_set_keepidle(struct sock *sk, int val)
3331{
3332 int err;
3333
3334 lock_sock(sk);
3335 err = tcp_sock_set_keepidle_locked(sk, val);
3336 release_sock(sk);
3337 return err;
3338}
3339EXPORT_SYMBOL(tcp_sock_set_keepidle);
3340
3341int tcp_sock_set_keepintvl(struct sock *sk, int val)
3342{
3343 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3344 return -EINVAL;
3345
3346 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3347 return 0;
3348}
3349EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3350
3351int tcp_sock_set_keepcnt(struct sock *sk, int val)
3352{
3353 if (val < 1 || val > MAX_TCP_KEEPCNT)
3354 return -EINVAL;
3355
3356 /* Paired with READ_ONCE() in keepalive_probes() */
3357 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3358 return 0;
3359}
3360EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3361
3362int tcp_set_window_clamp(struct sock *sk, int val)
3363{
3364 struct tcp_sock *tp = tcp_sk(sk);
3365
3366 if (!val) {
3367 if (sk->sk_state != TCP_CLOSE)
3368 return -EINVAL;
3369 tp->window_clamp = 0;
3370 } else {
3371 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3372 SOCK_MIN_RCVBUF / 2 : val;
3373 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3374 }
3375 return 0;
3376}
3377
3378/*
3379 * Socket option code for TCP.
3380 */
3381int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3382 sockptr_t optval, unsigned int optlen)
3383{
3384 struct tcp_sock *tp = tcp_sk(sk);
3385 struct inet_connection_sock *icsk = inet_csk(sk);
3386 struct net *net = sock_net(sk);
3387 int val;
3388 int err = 0;
3389
3390 /* These are data/string values, all the others are ints */
3391 switch (optname) {
3392 case TCP_CONGESTION: {
3393 char name[TCP_CA_NAME_MAX];
3394
3395 if (optlen < 1)
3396 return -EINVAL;
3397
3398 val = strncpy_from_sockptr(dst: name, src: optval,
3399 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3400 if (val < 0)
3401 return -EFAULT;
3402 name[val] = 0;
3403
3404 sockopt_lock_sock(sk);
3405 err = tcp_set_congestion_control(sk, name, load: !has_current_bpf_ctx(),
3406 cap_net_admin: sockopt_ns_capable(ns: sock_net(sk)->user_ns,
3407 CAP_NET_ADMIN));
3408 sockopt_release_sock(sk);
3409 return err;
3410 }
3411 case TCP_ULP: {
3412 char name[TCP_ULP_NAME_MAX];
3413
3414 if (optlen < 1)
3415 return -EINVAL;
3416
3417 val = strncpy_from_sockptr(dst: name, src: optval,
3418 min_t(long, TCP_ULP_NAME_MAX - 1,
3419 optlen));
3420 if (val < 0)
3421 return -EFAULT;
3422 name[val] = 0;
3423
3424 sockopt_lock_sock(sk);
3425 err = tcp_set_ulp(sk, name);
3426 sockopt_release_sock(sk);
3427 return err;
3428 }
3429 case TCP_FASTOPEN_KEY: {
3430 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3431 __u8 *backup_key = NULL;
3432
3433 /* Allow a backup key as well to facilitate key rotation
3434 * First key is the active one.
3435 */
3436 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3437 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3438 return -EINVAL;
3439
3440 if (copy_from_sockptr(dst: key, src: optval, size: optlen))
3441 return -EFAULT;
3442
3443 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3444 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3445
3446 return tcp_fastopen_reset_cipher(net, sk, primary_key: key, backup_key);
3447 }
3448 default:
3449 /* fallthru */
3450 break;
3451 }
3452
3453 if (optlen < sizeof(int))
3454 return -EINVAL;
3455
3456 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
3457 return -EFAULT;
3458
3459 /* Handle options that can be set without locking the socket. */
3460 switch (optname) {
3461 case TCP_SYNCNT:
3462 return tcp_sock_set_syncnt(sk, val);
3463 case TCP_USER_TIMEOUT:
3464 return tcp_sock_set_user_timeout(sk, val);
3465 case TCP_KEEPINTVL:
3466 return tcp_sock_set_keepintvl(sk, val);
3467 case TCP_KEEPCNT:
3468 return tcp_sock_set_keepcnt(sk, val);
3469 case TCP_LINGER2:
3470 if (val < 0)
3471 WRITE_ONCE(tp->linger2, -1);
3472 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3473 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3474 else
3475 WRITE_ONCE(tp->linger2, val * HZ);
3476 return 0;
3477 case TCP_DEFER_ACCEPT:
3478 /* Translate value in seconds to number of retransmits */
3479 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3480 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3481 TCP_RTO_MAX / HZ));
3482 return 0;
3483 }
3484
3485 sockopt_lock_sock(sk);
3486
3487 switch (optname) {
3488 case TCP_MAXSEG:
3489 /* Values greater than interface MTU won't take effect. However
3490 * at the point when this call is done we typically don't yet
3491 * know which interface is going to be used
3492 */
3493 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3494 err = -EINVAL;
3495 break;
3496 }
3497 tp->rx_opt.user_mss = val;
3498 break;
3499
3500 case TCP_NODELAY:
3501 __tcp_sock_set_nodelay(sk, on: val);
3502 break;
3503
3504 case TCP_THIN_LINEAR_TIMEOUTS:
3505 if (val < 0 || val > 1)
3506 err = -EINVAL;
3507 else
3508 tp->thin_lto = val;
3509 break;
3510
3511 case TCP_THIN_DUPACK:
3512 if (val < 0 || val > 1)
3513 err = -EINVAL;
3514 break;
3515
3516 case TCP_REPAIR:
3517 if (!tcp_can_repair_sock(sk))
3518 err = -EPERM;
3519 else if (val == TCP_REPAIR_ON) {
3520 tp->repair = 1;
3521 sk->sk_reuse = SK_FORCE_REUSE;
3522 tp->repair_queue = TCP_NO_QUEUE;
3523 } else if (val == TCP_REPAIR_OFF) {
3524 tp->repair = 0;
3525 sk->sk_reuse = SK_NO_REUSE;
3526 tcp_send_window_probe(sk);
3527 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3528 tp->repair = 0;
3529 sk->sk_reuse = SK_NO_REUSE;
3530 } else
3531 err = -EINVAL;
3532
3533 break;
3534
3535 case TCP_REPAIR_QUEUE:
3536 if (!tp->repair)
3537 err = -EPERM;
3538 else if ((unsigned int)val < TCP_QUEUES_NR)
3539 tp->repair_queue = val;
3540 else
3541 err = -EINVAL;
3542 break;
3543
3544 case TCP_QUEUE_SEQ:
3545 if (sk->sk_state != TCP_CLOSE) {
3546 err = -EPERM;
3547 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3548 if (!tcp_rtx_queue_empty(sk))
3549 err = -EPERM;
3550 else
3551 WRITE_ONCE(tp->write_seq, val);
3552 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3553 if (tp->rcv_nxt != tp->copied_seq) {
3554 err = -EPERM;
3555 } else {
3556 WRITE_ONCE(tp->rcv_nxt, val);
3557 WRITE_ONCE(tp->copied_seq, val);
3558 }
3559 } else {
3560 err = -EINVAL;
3561 }
3562 break;
3563
3564 case TCP_REPAIR_OPTIONS:
3565 if (!tp->repair)
3566 err = -EINVAL;
3567 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3568 err = tcp_repair_options_est(sk, optbuf: optval, len: optlen);
3569 else
3570 err = -EPERM;
3571 break;
3572
3573 case TCP_CORK:
3574 __tcp_sock_set_cork(sk, on: val);
3575 break;
3576
3577 case TCP_KEEPIDLE:
3578 err = tcp_sock_set_keepidle_locked(sk, val);
3579 break;
3580 case TCP_SAVE_SYN:
3581 /* 0: disable, 1: enable, 2: start from ether_header */
3582 if (val < 0 || val > 2)
3583 err = -EINVAL;
3584 else
3585 tp->save_syn = val;
3586 break;
3587
3588 case TCP_WINDOW_CLAMP:
3589 err = tcp_set_window_clamp(sk, val);
3590 break;
3591
3592 case TCP_QUICKACK:
3593 __tcp_sock_set_quickack(sk, val);
3594 break;
3595
3596 case TCP_AO_REPAIR:
3597 err = tcp_ao_set_repair(sk, optval, optlen);
3598 break;
3599#ifdef CONFIG_TCP_AO
3600 case TCP_AO_ADD_KEY:
3601 case TCP_AO_DEL_KEY:
3602 case TCP_AO_INFO: {
3603 /* If this is the first TCP-AO setsockopt() on the socket,
3604 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3605 * in any state.
3606 */
3607 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3608 goto ao_parse;
3609 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3610 lockdep_sock_is_held(sk)))
3611 goto ao_parse;
3612 if (tp->repair)
3613 goto ao_parse;
3614 err = -EISCONN;
3615 break;
3616ao_parse:
3617 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3618 break;
3619 }
3620#endif
3621#ifdef CONFIG_TCP_MD5SIG
3622 case TCP_MD5SIG:
3623 case TCP_MD5SIG_EXT:
3624 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3625 break;
3626#endif
3627 case TCP_FASTOPEN:
3628 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3629 TCPF_LISTEN))) {
3630 tcp_fastopen_init_key_once(net);
3631
3632 fastopen_queue_tune(sk, backlog: val);
3633 } else {
3634 err = -EINVAL;
3635 }
3636 break;
3637 case TCP_FASTOPEN_CONNECT:
3638 if (val > 1 || val < 0) {
3639 err = -EINVAL;
3640 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3641 TFO_CLIENT_ENABLE) {
3642 if (sk->sk_state == TCP_CLOSE)
3643 tp->fastopen_connect = val;
3644 else
3645 err = -EINVAL;
3646 } else {
3647 err = -EOPNOTSUPP;
3648 }
3649 break;
3650 case TCP_FASTOPEN_NO_COOKIE:
3651 if (val > 1 || val < 0)
3652 err = -EINVAL;
3653 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3654 err = -EINVAL;
3655 else
3656 tp->fastopen_no_cookie = val;
3657 break;
3658 case TCP_TIMESTAMP:
3659 if (!tp->repair) {
3660 err = -EPERM;
3661 break;
3662 }
3663 /* val is an opaque field,
3664 * and low order bit contains usec_ts enable bit.
3665 * Its a best effort, and we do not care if user makes an error.
3666 */
3667 tp->tcp_usec_ts = val & 1;
3668 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3669 break;
3670 case TCP_REPAIR_WINDOW:
3671 err = tcp_repair_set_window(tp, optbuf: optval, len: optlen);
3672 break;
3673 case TCP_NOTSENT_LOWAT:
3674 WRITE_ONCE(tp->notsent_lowat, val);
3675 sk->sk_write_space(sk);
3676 break;
3677 case TCP_INQ:
3678 if (val > 1 || val < 0)
3679 err = -EINVAL;
3680 else
3681 tp->recvmsg_inq = val;
3682 break;
3683 case TCP_TX_DELAY:
3684 if (val)
3685 tcp_enable_tx_delay();
3686 WRITE_ONCE(tp->tcp_tx_delay, val);
3687 break;
3688 default:
3689 err = -ENOPROTOOPT;
3690 break;
3691 }
3692
3693 sockopt_release_sock(sk);
3694 return err;
3695}
3696
3697int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3698 unsigned int optlen)
3699{
3700 const struct inet_connection_sock *icsk = inet_csk(sk);
3701
3702 if (level != SOL_TCP)
3703 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3704 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3705 optval, optlen);
3706 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3707}
3708EXPORT_SYMBOL(tcp_setsockopt);
3709
3710static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3711 struct tcp_info *info)
3712{
3713 u64 stats[__TCP_CHRONO_MAX], total = 0;
3714 enum tcp_chrono i;
3715
3716 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3717 stats[i] = tp->chrono_stat[i - 1];
3718 if (i == tp->chrono_type)
3719 stats[i] += tcp_jiffies32 - tp->chrono_start;
3720 stats[i] *= USEC_PER_SEC / HZ;
3721 total += stats[i];
3722 }
3723
3724 info->tcpi_busy_time = total;
3725 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3726 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3727}
3728
3729/* Return information about state of tcp endpoint in API format. */
3730void tcp_get_info(struct sock *sk, struct tcp_info *info)
3731{
3732 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3733 const struct inet_connection_sock *icsk = inet_csk(sk);
3734 unsigned long rate;
3735 u32 now;
3736 u64 rate64;
3737 bool slow;
3738
3739 memset(info, 0, sizeof(*info));
3740 if (sk->sk_type != SOCK_STREAM)
3741 return;
3742
3743 info->tcpi_state = inet_sk_state_load(sk);
3744
3745 /* Report meaningful fields for all TCP states, including listeners */
3746 rate = READ_ONCE(sk->sk_pacing_rate);
3747 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3748 info->tcpi_pacing_rate = rate64;
3749
3750 rate = READ_ONCE(sk->sk_max_pacing_rate);
3751 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3752 info->tcpi_max_pacing_rate = rate64;
3753
3754 info->tcpi_reordering = tp->reordering;
3755 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3756
3757 if (info->tcpi_state == TCP_LISTEN) {
3758 /* listeners aliased fields :
3759 * tcpi_unacked -> Number of children ready for accept()
3760 * tcpi_sacked -> max backlog
3761 */
3762 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3763 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3764 return;
3765 }
3766
3767 slow = lock_sock_fast(sk);
3768
3769 info->tcpi_ca_state = icsk->icsk_ca_state;
3770 info->tcpi_retransmits = icsk->icsk_retransmits;
3771 info->tcpi_probes = icsk->icsk_probes_out;
3772 info->tcpi_backoff = icsk->icsk_backoff;
3773
3774 if (tp->rx_opt.tstamp_ok)
3775 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3776 if (tcp_is_sack(tp))
3777 info->tcpi_options |= TCPI_OPT_SACK;
3778 if (tp->rx_opt.wscale_ok) {
3779 info->tcpi_options |= TCPI_OPT_WSCALE;
3780 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3781 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3782 }
3783
3784 if (tp->ecn_flags & TCP_ECN_OK)
3785 info->tcpi_options |= TCPI_OPT_ECN;
3786 if (tp->ecn_flags & TCP_ECN_SEEN)
3787 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3788 if (tp->syn_data_acked)
3789 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3790 if (tp->tcp_usec_ts)
3791 info->tcpi_options |= TCPI_OPT_USEC_TS;
3792
3793 info->tcpi_rto = jiffies_to_usecs(j: icsk->icsk_rto);
3794 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3795 tcp_delack_max(sk)));
3796 info->tcpi_snd_mss = tp->mss_cache;
3797 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3798
3799 info->tcpi_unacked = tp->packets_out;
3800 info->tcpi_sacked = tp->sacked_out;
3801
3802 info->tcpi_lost = tp->lost_out;
3803 info->tcpi_retrans = tp->retrans_out;
3804
3805 now = tcp_jiffies32;
3806 info->tcpi_last_data_sent = jiffies_to_msecs(j: now - tp->lsndtime);
3807 info->tcpi_last_data_recv = jiffies_to_msecs(j: now - icsk->icsk_ack.lrcvtime);
3808 info->tcpi_last_ack_recv = jiffies_to_msecs(j: now - tp->rcv_tstamp);
3809
3810 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3811 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3812 info->tcpi_rtt = tp->srtt_us >> 3;
3813 info->tcpi_rttvar = tp->mdev_us >> 2;
3814 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3815 info->tcpi_advmss = tp->advmss;
3816
3817 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3818 info->tcpi_rcv_space = tp->rcvq_space.space;
3819
3820 info->tcpi_total_retrans = tp->total_retrans;
3821
3822 info->tcpi_bytes_acked = tp->bytes_acked;
3823 info->tcpi_bytes_received = tp->bytes_received;
3824 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3825 tcp_get_info_chrono_stats(tp, info);
3826
3827 info->tcpi_segs_out = tp->segs_out;
3828
3829 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3830 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3831 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3832
3833 info->tcpi_min_rtt = tcp_min_rtt(tp);
3834 info->tcpi_data_segs_out = tp->data_segs_out;
3835
3836 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3837 rate64 = tcp_compute_delivery_rate(tp);
3838 if (rate64)
3839 info->tcpi_delivery_rate = rate64;
3840 info->tcpi_delivered = tp->delivered;
3841 info->tcpi_delivered_ce = tp->delivered_ce;
3842 info->tcpi_bytes_sent = tp->bytes_sent;
3843 info->tcpi_bytes_retrans = tp->bytes_retrans;
3844 info->tcpi_dsack_dups = tp->dsack_dups;
3845 info->tcpi_reord_seen = tp->reord_seen;
3846 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3847 info->tcpi_snd_wnd = tp->snd_wnd;
3848 info->tcpi_rcv_wnd = tp->rcv_wnd;
3849 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3850 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3851
3852 info->tcpi_total_rto = tp->total_rto;
3853 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3854 info->tcpi_total_rto_time = tp->total_rto_time;
3855 if (tp->rto_stamp)
3856 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3857
3858 unlock_sock_fast(sk, slow);
3859}
3860EXPORT_SYMBOL_GPL(tcp_get_info);
3861
3862static size_t tcp_opt_stats_get_size(void)
3863{
3864 return
3865 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BUSY */
3866 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3867 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3868 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3869 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3870 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3871 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3872 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_CWND */
3873 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORDERING */
3874 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3875 nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3876 nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3877 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3878 nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_CA_STATE */
3879 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3880 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED */
3881 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3882 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3883 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3884 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3885 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3886 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_SRTT */
3887 nla_total_size(payload: sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3888 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3889 nla_total_size_64bit(payload: sizeof(u64)) + /* TCP_NLA_EDT */
3890 nla_total_size(payload: sizeof(u8)) + /* TCP_NLA_TTL */
3891 nla_total_size(payload: sizeof(u32)) + /* TCP_NLA_REHASH */
3892 0;
3893}
3894
3895/* Returns TTL or hop limit of an incoming packet from skb. */
3896static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3897{
3898 if (skb->protocol == htons(ETH_P_IP))
3899 return ip_hdr(skb)->ttl;
3900 else if (skb->protocol == htons(ETH_P_IPV6))
3901 return ipv6_hdr(skb)->hop_limit;
3902 else
3903 return 0;
3904}
3905
3906struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3907 const struct sk_buff *orig_skb,
3908 const struct sk_buff *ack_skb)
3909{
3910 const struct tcp_sock *tp = tcp_sk(sk);
3911 struct sk_buff *stats;
3912 struct tcp_info info;
3913 unsigned long rate;
3914 u64 rate64;
3915
3916 stats = alloc_skb(size: tcp_opt_stats_get_size(), GFP_ATOMIC);
3917 if (!stats)
3918 return NULL;
3919
3920 tcp_get_info_chrono_stats(tp, info: &info);
3921 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BUSY,
3922 value: info.tcpi_busy_time, padattr: TCP_NLA_PAD);
3923 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_RWND_LIMITED,
3924 value: info.tcpi_rwnd_limited, padattr: TCP_NLA_PAD);
3925 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_SNDBUF_LIMITED,
3926 value: info.tcpi_sndbuf_limited, padattr: TCP_NLA_PAD);
3927 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DATA_SEGS_OUT,
3928 value: tp->data_segs_out, padattr: TCP_NLA_PAD);
3929 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_TOTAL_RETRANS,
3930 value: tp->total_retrans, padattr: TCP_NLA_PAD);
3931
3932 rate = READ_ONCE(sk->sk_pacing_rate);
3933 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3934 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_PACING_RATE, value: rate64, padattr: TCP_NLA_PAD);
3935
3936 rate64 = tcp_compute_delivery_rate(tp);
3937 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE, value: rate64, padattr: TCP_NLA_PAD);
3938
3939 nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_CWND, value: tcp_snd_cwnd(tp));
3940 nla_put_u32(skb: stats, attrtype: TCP_NLA_REORDERING, value: tp->reordering);
3941 nla_put_u32(skb: stats, attrtype: TCP_NLA_MIN_RTT, value: tcp_min_rtt(tp));
3942
3943 nla_put_u8(skb: stats, attrtype: TCP_NLA_RECUR_RETRANS, value: inet_csk(sk)->icsk_retransmits);
3944 nla_put_u8(skb: stats, attrtype: TCP_NLA_DELIVERY_RATE_APP_LMT, value: !!tp->rate_app_limited);
3945 nla_put_u32(skb: stats, attrtype: TCP_NLA_SND_SSTHRESH, value: tp->snd_ssthresh);
3946 nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED, value: tp->delivered);
3947 nla_put_u32(skb: stats, attrtype: TCP_NLA_DELIVERED_CE, value: tp->delivered_ce);
3948
3949 nla_put_u32(skb: stats, attrtype: TCP_NLA_SNDQ_SIZE, value: tp->write_seq - tp->snd_una);
3950 nla_put_u8(skb: stats, attrtype: TCP_NLA_CA_STATE, value: inet_csk(sk)->icsk_ca_state);
3951
3952 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_SENT, value: tp->bytes_sent,
3953 padattr: TCP_NLA_PAD);
3954 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_BYTES_RETRANS, value: tp->bytes_retrans,
3955 padattr: TCP_NLA_PAD);
3956 nla_put_u32(skb: stats, attrtype: TCP_NLA_DSACK_DUPS, value: tp->dsack_dups);
3957 nla_put_u32(skb: stats, attrtype: TCP_NLA_REORD_SEEN, value: tp->reord_seen);
3958 nla_put_u32(skb: stats, attrtype: TCP_NLA_SRTT, value: tp->srtt_us >> 3);
3959 nla_put_u16(skb: stats, attrtype: TCP_NLA_TIMEOUT_REHASH, value: tp->timeout_rehash);
3960 nla_put_u32(skb: stats, attrtype: TCP_NLA_BYTES_NOTSENT,
3961 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3962 nla_put_u64_64bit(skb: stats, attrtype: TCP_NLA_EDT, value: orig_skb->skb_mstamp_ns,
3963 padattr: TCP_NLA_PAD);
3964 if (ack_skb)
3965 nla_put_u8(skb: stats, attrtype: TCP_NLA_TTL,
3966 value: tcp_skb_ttl_or_hop_limit(skb: ack_skb));
3967
3968 nla_put_u32(skb: stats, attrtype: TCP_NLA_REHASH, value: tp->plb_rehash + tp->timeout_rehash);
3969 return stats;
3970}
3971
3972int do_tcp_getsockopt(struct sock *sk, int level,
3973 int optname, sockptr_t optval, sockptr_t optlen)
3974{
3975 struct inet_connection_sock *icsk = inet_csk(sk);
3976 struct tcp_sock *tp = tcp_sk(sk);
3977 struct net *net = sock_net(sk);
3978 int val, len;
3979
3980 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
3981 return -EFAULT;
3982
3983 len = min_t(unsigned int, len, sizeof(int));
3984
3985 if (len < 0)
3986 return -EINVAL;
3987
3988 switch (optname) {
3989 case TCP_MAXSEG:
3990 val = tp->mss_cache;
3991 if (tp->rx_opt.user_mss &&
3992 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3993 val = tp->rx_opt.user_mss;
3994 if (tp->repair)
3995 val = tp->rx_opt.mss_clamp;
3996 break;
3997 case TCP_NODELAY:
3998 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3999 break;
4000 case TCP_CORK:
4001 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4002 break;
4003 case TCP_KEEPIDLE:
4004 val = keepalive_time_when(tp) / HZ;
4005 break;
4006 case TCP_KEEPINTVL:
4007 val = keepalive_intvl_when(tp) / HZ;
4008 break;
4009 case TCP_KEEPCNT:
4010 val = keepalive_probes(tp);
4011 break;
4012 case TCP_SYNCNT:
4013 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4014 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4015 break;
4016 case TCP_LINGER2:
4017 val = READ_ONCE(tp->linger2);
4018 if (val >= 0)
4019 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4020 break;
4021 case TCP_DEFER_ACCEPT:
4022 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4023 val = retrans_to_secs(retrans: val, TCP_TIMEOUT_INIT / HZ,
4024 TCP_RTO_MAX / HZ);
4025 break;
4026 case TCP_WINDOW_CLAMP:
4027 val = tp->window_clamp;
4028 break;
4029 case TCP_INFO: {
4030 struct tcp_info info;
4031
4032 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4033 return -EFAULT;
4034
4035 tcp_get_info(sk, &info);
4036
4037 len = min_t(unsigned int, len, sizeof(info));
4038 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4039 return -EFAULT;
4040 if (copy_to_sockptr(dst: optval, src: &info, size: len))
4041 return -EFAULT;
4042 return 0;
4043 }
4044 case TCP_CC_INFO: {
4045 const struct tcp_congestion_ops *ca_ops;
4046 union tcp_cc_info info;
4047 size_t sz = 0;
4048 int attr;
4049
4050 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4051 return -EFAULT;
4052
4053 ca_ops = icsk->icsk_ca_ops;
4054 if (ca_ops && ca_ops->get_info)
4055 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4056
4057 len = min_t(unsigned int, len, sz);
4058 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4059 return -EFAULT;
4060 if (copy_to_sockptr(dst: optval, src: &info, size: len))
4061 return -EFAULT;
4062 return 0;
4063 }
4064 case TCP_QUICKACK:
4065 val = !inet_csk_in_pingpong_mode(sk);
4066 break;
4067
4068 case TCP_CONGESTION:
4069 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4070 return -EFAULT;
4071 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4072 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4073 return -EFAULT;
4074 if (copy_to_sockptr(dst: optval, src: icsk->icsk_ca_ops->name, size: len))
4075 return -EFAULT;
4076 return 0;
4077
4078 case TCP_ULP:
4079 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4080 return -EFAULT;
4081 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4082 if (!icsk->icsk_ulp_ops) {
4083 len = 0;
4084 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4085 return -EFAULT;
4086 return 0;
4087 }
4088 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4089 return -EFAULT;
4090 if (copy_to_sockptr(dst: optval, src: icsk->icsk_ulp_ops->name, size: len))
4091 return -EFAULT;
4092 return 0;
4093
4094 case TCP_FASTOPEN_KEY: {
4095 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4096 unsigned int key_len;
4097
4098 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4099 return -EFAULT;
4100
4101 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4102 TCP_FASTOPEN_KEY_LENGTH;
4103 len = min_t(unsigned int, len, key_len);
4104 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4105 return -EFAULT;
4106 if (copy_to_sockptr(dst: optval, src: key, size: len))
4107 return -EFAULT;
4108 return 0;
4109 }
4110 case TCP_THIN_LINEAR_TIMEOUTS:
4111 val = tp->thin_lto;
4112 break;
4113
4114 case TCP_THIN_DUPACK:
4115 val = 0;
4116 break;
4117
4118 case TCP_REPAIR:
4119 val = tp->repair;
4120 break;
4121
4122 case TCP_REPAIR_QUEUE:
4123 if (tp->repair)
4124 val = tp->repair_queue;
4125 else
4126 return -EINVAL;
4127 break;
4128
4129 case TCP_REPAIR_WINDOW: {
4130 struct tcp_repair_window opt;
4131
4132 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4133 return -EFAULT;
4134
4135 if (len != sizeof(opt))
4136 return -EINVAL;
4137
4138 if (!tp->repair)
4139 return -EPERM;
4140
4141 opt.snd_wl1 = tp->snd_wl1;
4142 opt.snd_wnd = tp->snd_wnd;
4143 opt.max_window = tp->max_window;
4144 opt.rcv_wnd = tp->rcv_wnd;
4145 opt.rcv_wup = tp->rcv_wup;
4146
4147 if (copy_to_sockptr(dst: optval, src: &opt, size: len))
4148 return -EFAULT;
4149 return 0;
4150 }
4151 case TCP_QUEUE_SEQ:
4152 if (tp->repair_queue == TCP_SEND_QUEUE)
4153 val = tp->write_seq;
4154 else if (tp->repair_queue == TCP_RECV_QUEUE)
4155 val = tp->rcv_nxt;
4156 else
4157 return -EINVAL;
4158 break;
4159
4160 case TCP_USER_TIMEOUT:
4161 val = READ_ONCE(icsk->icsk_user_timeout);
4162 break;
4163
4164 case TCP_FASTOPEN:
4165 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4166 break;
4167
4168 case TCP_FASTOPEN_CONNECT:
4169 val = tp->fastopen_connect;
4170 break;
4171
4172 case TCP_FASTOPEN_NO_COOKIE:
4173 val = tp->fastopen_no_cookie;
4174 break;
4175
4176 case TCP_TX_DELAY:
4177 val = READ_ONCE(tp->tcp_tx_delay);
4178 break;
4179
4180 case TCP_TIMESTAMP:
4181 val = tcp_clock_ts(usec_ts: tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4182 if (tp->tcp_usec_ts)
4183 val |= 1;
4184 else
4185 val &= ~1;
4186 break;
4187 case TCP_NOTSENT_LOWAT:
4188 val = READ_ONCE(tp->notsent_lowat);
4189 break;
4190 case TCP_INQ:
4191 val = tp->recvmsg_inq;
4192 break;
4193 case TCP_SAVE_SYN:
4194 val = tp->save_syn;
4195 break;
4196 case TCP_SAVED_SYN: {
4197 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4198 return -EFAULT;
4199
4200 sockopt_lock_sock(sk);
4201 if (tp->saved_syn) {
4202 if (len < tcp_saved_syn_len(saved_syn: tp->saved_syn)) {
4203 len = tcp_saved_syn_len(saved_syn: tp->saved_syn);
4204 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) {
4205 sockopt_release_sock(sk);
4206 return -EFAULT;
4207 }
4208 sockopt_release_sock(sk);
4209 return -EINVAL;
4210 }
4211 len = tcp_saved_syn_len(saved_syn: tp->saved_syn);
4212 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) {
4213 sockopt_release_sock(sk);
4214 return -EFAULT;
4215 }
4216 if (copy_to_sockptr(dst: optval, src: tp->saved_syn->data, size: len)) {
4217 sockopt_release_sock(sk);
4218 return -EFAULT;
4219 }
4220 tcp_saved_syn_free(tp);
4221 sockopt_release_sock(sk);
4222 } else {
4223 sockopt_release_sock(sk);
4224 len = 0;
4225 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4226 return -EFAULT;
4227 }
4228 return 0;
4229 }
4230#ifdef CONFIG_MMU
4231 case TCP_ZEROCOPY_RECEIVE: {
4232 struct scm_timestamping_internal tss;
4233 struct tcp_zerocopy_receive zc = {};
4234 int err;
4235
4236 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
4237 return -EFAULT;
4238 if (len < 0 ||
4239 len < offsetofend(struct tcp_zerocopy_receive, length))
4240 return -EINVAL;
4241 if (unlikely(len > sizeof(zc))) {
4242 err = check_zeroed_sockptr(src: optval, offset: sizeof(zc),
4243 size: len - sizeof(zc));
4244 if (err < 1)
4245 return err == 0 ? -EINVAL : err;
4246 len = sizeof(zc);
4247 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4248 return -EFAULT;
4249 }
4250 if (copy_from_sockptr(dst: &zc, src: optval, size: len))
4251 return -EFAULT;
4252 if (zc.reserved)
4253 return -EINVAL;
4254 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4255 return -EINVAL;
4256 sockopt_lock_sock(sk);
4257 err = tcp_zerocopy_receive(sk, zc: &zc, tss: &tss);
4258 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4259 &zc, &len, err);
4260 sockopt_release_sock(sk);
4261 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4262 goto zerocopy_rcv_cmsg;
4263 switch (len) {
4264 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4265 goto zerocopy_rcv_cmsg;
4266 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4267 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4268 case offsetofend(struct tcp_zerocopy_receive, flags):
4269 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4270 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4271 case offsetofend(struct tcp_zerocopy_receive, err):
4272 goto zerocopy_rcv_sk_err;
4273 case offsetofend(struct tcp_zerocopy_receive, inq):
4274 goto zerocopy_rcv_inq;
4275 case offsetofend(struct tcp_zerocopy_receive, length):
4276 default:
4277 goto zerocopy_rcv_out;
4278 }
4279zerocopy_rcv_cmsg:
4280 if (zc.msg_flags & TCP_CMSG_TS)
4281 tcp_zc_finalize_rx_tstamp(sk, zc: &zc, tss: &tss);
4282 else
4283 zc.msg_flags = 0;
4284zerocopy_rcv_sk_err:
4285 if (!err)
4286 zc.err = sock_error(sk);
4287zerocopy_rcv_inq:
4288 zc.inq = tcp_inq_hint(sk);
4289zerocopy_rcv_out:
4290 if (!err && copy_to_sockptr(dst: optval, src: &zc, size: len))
4291 err = -EFAULT;
4292 return err;
4293 }
4294#endif
4295 case TCP_AO_REPAIR:
4296 return tcp_ao_get_repair(sk, optval, optlen);
4297 case TCP_AO_GET_KEYS:
4298 case TCP_AO_INFO: {
4299 int err;
4300
4301 sockopt_lock_sock(sk);
4302 if (optname == TCP_AO_GET_KEYS)
4303 err = tcp_ao_get_mkts(sk, optval, optlen);
4304 else
4305 err = tcp_ao_get_sock_info(sk, optval, optlen);
4306 sockopt_release_sock(sk);
4307
4308 return err;
4309 }
4310 default:
4311 return -ENOPROTOOPT;
4312 }
4313
4314 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
4315 return -EFAULT;
4316 if (copy_to_sockptr(dst: optval, src: &val, size: len))
4317 return -EFAULT;
4318 return 0;
4319}
4320
4321bool tcp_bpf_bypass_getsockopt(int level, int optname)
4322{
4323 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4324 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4325 */
4326 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4327 return true;
4328
4329 return false;
4330}
4331EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4332
4333int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4334 int __user *optlen)
4335{
4336 struct inet_connection_sock *icsk = inet_csk(sk);
4337
4338 if (level != SOL_TCP)
4339 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4340 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4341 optval, optlen);
4342 return do_tcp_getsockopt(sk, level, optname, optval: USER_SOCKPTR(p: optval),
4343 optlen: USER_SOCKPTR(p: optlen));
4344}
4345EXPORT_SYMBOL(tcp_getsockopt);
4346
4347#ifdef CONFIG_TCP_MD5SIG
4348int tcp_md5_sigpool_id = -1;
4349EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
4350
4351int tcp_md5_alloc_sigpool(void)
4352{
4353 size_t scratch_size;
4354 int ret;
4355
4356 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4357 ret = tcp_sigpool_alloc_ahash(alg: "md5", scratch_size);
4358 if (ret >= 0) {
4359 /* As long as any md5 sigpool was allocated, the return
4360 * id would stay the same. Re-write the id only for the case
4361 * when previously all MD5 keys were deleted and this call
4362 * allocates the first MD5 key, which may return a different
4363 * sigpool id than was used previously.
4364 */
4365 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4366 return 0;
4367 }
4368 return ret;
4369}
4370
4371void tcp_md5_release_sigpool(void)
4372{
4373 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4374}
4375
4376void tcp_md5_add_sigpool(void)
4377{
4378 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4379}
4380
4381int tcp_md5_hash_key(struct tcp_sigpool *hp,
4382 const struct tcp_md5sig_key *key)
4383{
4384 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4385 struct scatterlist sg;
4386
4387 sg_init_one(&sg, key->key, keylen);
4388 ahash_request_set_crypt(req: hp->req, src: &sg, NULL, nbytes: keylen);
4389
4390 /* We use data_race() because tcp_md5_do_add() might change
4391 * key->key under us
4392 */
4393 return data_race(crypto_ahash_update(hp->req));
4394}
4395EXPORT_SYMBOL(tcp_md5_hash_key);
4396
4397/* Called with rcu_read_lock() */
4398enum skb_drop_reason
4399tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4400 const void *saddr, const void *daddr,
4401 int family, int l3index, const __u8 *hash_location)
4402{
4403 /* This gets called for each TCP segment that has TCP-MD5 option.
4404 * We have 3 drop cases:
4405 * o No MD5 hash and one expected.
4406 * o MD5 hash and we're not expecting one.
4407 * o MD5 hash and its wrong.
4408 */
4409 const struct tcp_sock *tp = tcp_sk(sk);
4410 struct tcp_md5sig_key *key;
4411 u8 newhash[16];
4412 int genhash;
4413
4414 key = tcp_md5_do_lookup(sk, l3index, addr: saddr, family);
4415
4416 if (!key && hash_location) {
4417 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4418 tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4419 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4420 }
4421
4422 /* Check the signature.
4423 * To support dual stack listeners, we need to handle
4424 * IPv4-mapped case.
4425 */
4426 if (family == AF_INET)
4427 genhash = tcp_v4_md5_hash_skb(md5_hash: newhash, key, NULL, skb);
4428 else
4429 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4430 NULL, skb);
4431 if (genhash || memcmp(p: hash_location, q: newhash, size: 16) != 0) {
4432 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4433 if (family == AF_INET) {
4434 tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4435 genhash ? "tcp_v4_calc_md5_hash failed"
4436 : "", l3index);
4437 } else {
4438 if (genhash) {
4439 tcp_hash_fail("MD5 Hash failed",
4440 AF_INET6, skb, "L3 index %d",
4441 l3index);
4442 } else {
4443 tcp_hash_fail("MD5 Hash mismatch",
4444 AF_INET6, skb, "L3 index %d",
4445 l3index);
4446 }
4447 }
4448 return SKB_DROP_REASON_TCP_MD5FAILURE;
4449 }
4450 return SKB_NOT_DROPPED_YET;
4451}
4452EXPORT_SYMBOL(tcp_inbound_md5_hash);
4453
4454#endif
4455
4456void tcp_done(struct sock *sk)
4457{
4458 struct request_sock *req;
4459
4460 /* We might be called with a new socket, after
4461 * inet_csk_prepare_forced_close() has been called
4462 * so we can not use lockdep_sock_is_held(sk)
4463 */
4464 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4465
4466 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4467 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4468
4469 tcp_set_state(sk, TCP_CLOSE);
4470 tcp_clear_xmit_timers(sk);
4471 if (req)
4472 reqsk_fastopen_remove(sk, req, reset: false);
4473
4474 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4475
4476 if (!sock_flag(sk, flag: SOCK_DEAD))
4477 sk->sk_state_change(sk);
4478 else
4479 inet_csk_destroy_sock(sk);
4480}
4481EXPORT_SYMBOL_GPL(tcp_done);
4482
4483int tcp_abort(struct sock *sk, int err)
4484{
4485 int state = inet_sk_state_load(sk);
4486
4487 if (state == TCP_NEW_SYN_RECV) {
4488 struct request_sock *req = inet_reqsk(sk);
4489
4490 local_bh_disable();
4491 inet_csk_reqsk_queue_drop(sk: req->rsk_listener, req);
4492 local_bh_enable();
4493 return 0;
4494 }
4495 if (state == TCP_TIME_WAIT) {
4496 struct inet_timewait_sock *tw = inet_twsk(sk);
4497
4498 refcount_inc(r: &tw->tw_refcnt);
4499 local_bh_disable();
4500 inet_twsk_deschedule_put(tw);
4501 local_bh_enable();
4502 return 0;
4503 }
4504
4505 /* BPF context ensures sock locking. */
4506 if (!has_current_bpf_ctx())
4507 /* Don't race with userspace socket closes such as tcp_close. */
4508 lock_sock(sk);
4509
4510 if (sk->sk_state == TCP_LISTEN) {
4511 tcp_set_state(sk, TCP_CLOSE);
4512 inet_csk_listen_stop(sk);
4513 }
4514
4515 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4516 local_bh_disable();
4517 bh_lock_sock(sk);
4518
4519 if (!sock_flag(sk, flag: SOCK_DEAD)) {
4520 WRITE_ONCE(sk->sk_err, err);
4521 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4522 smp_wmb();
4523 sk_error_report(sk);
4524 if (tcp_need_reset(state: sk->sk_state))
4525 tcp_send_active_reset(sk, GFP_ATOMIC);
4526 tcp_done(sk);
4527 }
4528
4529 bh_unlock_sock(sk);
4530 local_bh_enable();
4531 tcp_write_queue_purge(sk);
4532 if (!has_current_bpf_ctx())
4533 release_sock(sk);
4534 return 0;
4535}
4536EXPORT_SYMBOL_GPL(tcp_abort);
4537
4538extern struct tcp_congestion_ops tcp_reno;
4539
4540static __initdata unsigned long thash_entries;
4541static int __init set_thash_entries(char *str)
4542{
4543 ssize_t ret;
4544
4545 if (!str)
4546 return 0;
4547
4548 ret = kstrtoul(s: str, base: 0, res: &thash_entries);
4549 if (ret)
4550 return 0;
4551
4552 return 1;
4553}
4554__setup("thash_entries=", set_thash_entries);
4555
4556static void __init tcp_init_mem(void)
4557{
4558 unsigned long limit = nr_free_buffer_pages() / 16;
4559
4560 limit = max(limit, 128UL);
4561 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4562 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4563 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4564}
4565
4566void __init tcp_init(void)
4567{
4568 int max_rshare, max_wshare, cnt;
4569 unsigned long limit;
4570 unsigned int i;
4571
4572 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4573 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4574 sizeof_field(struct sk_buff, cb));
4575
4576 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4577
4578 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4579 mod_timer(timer: &tcp_orphan_timer, expires: jiffies + TCP_ORPHAN_TIMER_PERIOD);
4580
4581 inet_hashinfo2_init(h: &tcp_hashinfo, name: "tcp_listen_portaddr_hash",
4582 numentries: thash_entries, scale: 21, /* one slot per 2 MB*/
4583 low_limit: 0, high_limit: 64 * 1024);
4584 tcp_hashinfo.bind_bucket_cachep =
4585 kmem_cache_create(name: "tcp_bind_bucket",
4586 size: sizeof(struct inet_bind_bucket), align: 0,
4587 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4588 SLAB_ACCOUNT,
4589 NULL);
4590 tcp_hashinfo.bind2_bucket_cachep =
4591 kmem_cache_create(name: "tcp_bind2_bucket",
4592 size: sizeof(struct inet_bind2_bucket), align: 0,
4593 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4594 SLAB_ACCOUNT,
4595 NULL);
4596
4597 /* Size and allocate the main established and bind bucket
4598 * hash tables.
4599 *
4600 * The methodology is similar to that of the buffer cache.
4601 */
4602 tcp_hashinfo.ehash =
4603 alloc_large_system_hash(tablename: "TCP established",
4604 bucketsize: sizeof(struct inet_ehash_bucket),
4605 numentries: thash_entries,
4606 scale: 17, /* one slot per 128 KB of memory */
4607 flags: 0,
4608 NULL,
4609 hash_mask: &tcp_hashinfo.ehash_mask,
4610 low_limit: 0,
4611 high_limit: thash_entries ? 0 : 512 * 1024);
4612 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4613 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4614
4615 if (inet_ehash_locks_alloc(hashinfo: &tcp_hashinfo))
4616 panic(fmt: "TCP: failed to alloc ehash_locks");
4617 tcp_hashinfo.bhash =
4618 alloc_large_system_hash(tablename: "TCP bind",
4619 bucketsize: 2 * sizeof(struct inet_bind_hashbucket),
4620 numentries: tcp_hashinfo.ehash_mask + 1,
4621 scale: 17, /* one slot per 128 KB of memory */
4622 flags: 0,
4623 hash_shift: &tcp_hashinfo.bhash_size,
4624 NULL,
4625 low_limit: 0,
4626 high_limit: 64 * 1024);
4627 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4628 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4629 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4630 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4631 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4632 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4633 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4634 }
4635
4636 tcp_hashinfo.pernet = false;
4637
4638 cnt = tcp_hashinfo.ehash_mask + 1;
4639 sysctl_tcp_max_orphans = cnt / 2;
4640
4641 tcp_init_mem();
4642 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4643 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4644 max_wshare = min(4UL*1024*1024, limit);
4645 max_rshare = min(6UL*1024*1024, limit);
4646
4647 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4648 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4649 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4650
4651 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4652 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4653 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4654
4655 pr_info("Hash tables configured (established %u bind %u)\n",
4656 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4657
4658 tcp_v4_init();
4659 tcp_metrics_init();
4660 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4661 tcp_tasklet_init();
4662 mptcp_init();
4663}
4664

source code of linux/net/ipv4/tcp.c