1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38#define pr_fmt(fmt) "TCP: " fmt
39
40#include <net/tcp.h>
41#include <net/mptcp.h>
42
43#include <linux/compiler.h>
44#include <linux/gfp.h>
45#include <linux/module.h>
46#include <linux/static_key.h>
47
48#include <trace/events/tcp.h>
49
50/* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
53void tcp_mstamp_refresh(struct tcp_sock *tp)
54{
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(dividend: val, NSEC_PER_USEC);
59}
60
61static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64/* Account for new data that has been sent to the network. */
65static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66{
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, list: &sk->sk_write_queue);
74 tcp_rbtree_insert(root: &sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86}
87
88/* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
95static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96{
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(seq1: tcp_wnd_end(tp), seq2: tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105}
106
107/* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
121static __u16 tcp_advertise_mss(struct sock *sk)
122{
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137}
138
139/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
142void tcp_cwnd_restart(struct sock *sk, s32 delta)
143{
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, dst: __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, event: CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158}
159
160/* Congestion state accounting after a packet has been sent. */
161static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163{
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, event: CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, increase pingpong count.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_inc_pingpong_cnt(sk);
177}
178
179/* Account for an ACK we sent. */
180static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181{
182 struct tcp_sock *tp = tcp_sk(sk);
183
184 if (unlikely(tp->compressed_ack)) {
185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 tp->compressed_ack);
187 tp->compressed_ack = 0;
188 if (hrtimer_try_to_cancel(timer: &tp->compressed_ack_timer) == 1)
189 __sock_put(sk);
190 }
191
192 if (unlikely(rcv_nxt != tp->rcv_nxt))
193 return; /* Special ACK sent by DCTCP to reflect ECN */
194 tcp_dec_quickack_mode(sk);
195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196}
197
198/* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
205void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209{
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = rounddown(space, mss);
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows))
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = min_t(u32, space, U16_MAX);
233
234 if (init_rcv_wnd)
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236
237 *rcv_wscale = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window */
240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 space = min_t(u32, space, *window_clamp);
243 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 0, TCP_MAX_WSCALE);
245 }
246 /* Set the clamp no higher than max representable value */
247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248}
249EXPORT_SYMBOL(tcp_select_initial_window);
250
251/* Chose a new window to advertise, update state in tcp_sock for the
252 * socket, and return result with RFC1323 scaling applied. The return
253 * value can be stuffed directly into th->window for an outgoing
254 * frame.
255 */
256static u16 tcp_select_window(struct sock *sk)
257{
258 struct tcp_sock *tp = tcp_sk(sk);
259 struct net *net = sock_net(sk);
260 u32 old_win = tp->rcv_wnd;
261 u32 cur_win, new_win;
262
263 /* Make the window 0 if we failed to queue the data because we
264 * are out of memory. The window is temporary, so we don't store
265 * it on the socket.
266 */
267 if (unlikely(inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOMEM))
268 return 0;
269
270 cur_win = tcp_receive_window(tp);
271 new_win = __tcp_select_window(sk);
272 if (new_win < cur_win) {
273 /* Danger Will Robinson!
274 * Don't update rcv_wup/rcv_wnd here or else
275 * we will not be able to advertise a zero
276 * window in time. --DaveM
277 *
278 * Relax Will Robinson.
279 */
280 if (!READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) || !tp->rx_opt.rcv_wscale) {
281 /* Never shrink the offered window */
282 if (new_win == 0)
283 NET_INC_STATS(net, LINUX_MIB_TCPWANTZEROWINDOWADV);
284 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
285 }
286 }
287
288 tp->rcv_wnd = new_win;
289 tp->rcv_wup = tp->rcv_nxt;
290
291 /* Make sure we do not exceed the maximum possible
292 * scaled window.
293 */
294 if (!tp->rx_opt.rcv_wscale &&
295 READ_ONCE(net->ipv4.sysctl_tcp_workaround_signed_windows))
296 new_win = min(new_win, MAX_TCP_WINDOW);
297 else
298 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
299
300 /* RFC1323 scaling applied */
301 new_win >>= tp->rx_opt.rcv_wscale;
302
303 /* If we advertise zero window, disable fast path. */
304 if (new_win == 0) {
305 tp->pred_flags = 0;
306 if (old_win)
307 NET_INC_STATS(net, LINUX_MIB_TCPTOZEROWINDOWADV);
308 } else if (old_win == 0) {
309 NET_INC_STATS(net, LINUX_MIB_TCPFROMZEROWINDOWADV);
310 }
311
312 return new_win;
313}
314
315/* Packet ECN state for a SYN-ACK */
316static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
317{
318 const struct tcp_sock *tp = tcp_sk(sk);
319
320 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
321 if (!(tp->ecn_flags & TCP_ECN_OK))
322 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
323 else if (tcp_ca_needs_ecn(sk) ||
324 tcp_bpf_ca_needs_ecn(sk))
325 INET_ECN_xmit(sk);
326}
327
328/* Packet ECN state for a SYN. */
329static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
330{
331 struct tcp_sock *tp = tcp_sk(sk);
332 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
333 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
334 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
335
336 if (!use_ecn) {
337 const struct dst_entry *dst = __sk_dst_get(sk);
338
339 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
340 use_ecn = true;
341 }
342
343 tp->ecn_flags = 0;
344
345 if (use_ecn) {
346 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
347 tp->ecn_flags = TCP_ECN_OK;
348 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
349 INET_ECN_xmit(sk);
350 }
351}
352
353static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
354{
355 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
356 /* tp->ecn_flags are cleared at a later point in time when
357 * SYN ACK is ultimatively being received.
358 */
359 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
360}
361
362static void
363tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
364{
365 if (inet_rsk(sk: req)->ecn_ok)
366 th->ece = 1;
367}
368
369/* Set up ECN state for a packet on a ESTABLISHED socket that is about to
370 * be sent.
371 */
372static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
373 struct tcphdr *th, int tcp_header_len)
374{
375 struct tcp_sock *tp = tcp_sk(sk);
376
377 if (tp->ecn_flags & TCP_ECN_OK) {
378 /* Not-retransmitted data segment: set ECT and inject CWR. */
379 if (skb->len != tcp_header_len &&
380 !before(TCP_SKB_CB(skb)->seq, seq2: tp->snd_nxt)) {
381 INET_ECN_xmit(sk);
382 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
383 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
384 th->cwr = 1;
385 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
386 }
387 } else if (!tcp_ca_needs_ecn(sk)) {
388 /* ACK or retransmitted segment: clear ECT|CE */
389 INET_ECN_dontxmit(sk);
390 }
391 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
392 th->ece = 1;
393 }
394}
395
396/* Constructs common control bits of non-data skb. If SYN/FIN is present,
397 * auto increment end seqno.
398 */
399static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
400{
401 skb->ip_summed = CHECKSUM_PARTIAL;
402
403 TCP_SKB_CB(skb)->tcp_flags = flags;
404
405 tcp_skb_pcount_set(skb, segs: 1);
406
407 TCP_SKB_CB(skb)->seq = seq;
408 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
409 seq++;
410 TCP_SKB_CB(skb)->end_seq = seq;
411}
412
413static inline bool tcp_urg_mode(const struct tcp_sock *tp)
414{
415 return tp->snd_una != tp->snd_up;
416}
417
418#define OPTION_SACK_ADVERTISE BIT(0)
419#define OPTION_TS BIT(1)
420#define OPTION_MD5 BIT(2)
421#define OPTION_WSCALE BIT(3)
422#define OPTION_FAST_OPEN_COOKIE BIT(8)
423#define OPTION_SMC BIT(9)
424#define OPTION_MPTCP BIT(10)
425#define OPTION_AO BIT(11)
426
427static void smc_options_write(__be32 *ptr, u16 *options)
428{
429#if IS_ENABLED(CONFIG_SMC)
430 if (static_branch_unlikely(&tcp_have_smc)) {
431 if (unlikely(OPTION_SMC & *options)) {
432 *ptr++ = htonl((TCPOPT_NOP << 24) |
433 (TCPOPT_NOP << 16) |
434 (TCPOPT_EXP << 8) |
435 (TCPOLEN_EXP_SMC_BASE));
436 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
437 }
438 }
439#endif
440}
441
442struct tcp_out_options {
443 u16 options; /* bit field of OPTION_* */
444 u16 mss; /* 0 to disable */
445 u8 ws; /* window scale, 0 to disable */
446 u8 num_sack_blocks; /* number of SACK blocks to include */
447 u8 hash_size; /* bytes in hash_location */
448 u8 bpf_opt_len; /* length of BPF hdr option */
449 __u8 *hash_location; /* temporary pointer, overloaded */
450 __u32 tsval, tsecr; /* need to include OPTION_TS */
451 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
452 struct mptcp_out_options mptcp;
453};
454
455static void mptcp_options_write(struct tcphdr *th, __be32 *ptr,
456 struct tcp_sock *tp,
457 struct tcp_out_options *opts)
458{
459#if IS_ENABLED(CONFIG_MPTCP)
460 if (unlikely(OPTION_MPTCP & opts->options))
461 mptcp_write_options(th, ptr, tp, opts: &opts->mptcp);
462#endif
463}
464
465#ifdef CONFIG_CGROUP_BPF
466static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
467 enum tcp_synack_type synack_type)
468{
469 if (unlikely(!skb))
470 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
471
472 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
473 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
474
475 return 0;
476}
477
478/* req, syn_skb and synack_type are used when writing synack */
479static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
480 struct request_sock *req,
481 struct sk_buff *syn_skb,
482 enum tcp_synack_type synack_type,
483 struct tcp_out_options *opts,
484 unsigned int *remaining)
485{
486 struct bpf_sock_ops_kern sock_ops;
487 int err;
488
489 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
490 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
491 !*remaining)
492 return;
493
494 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
495
496 /* init sock_ops */
497 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
498
499 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
500
501 if (req) {
502 /* The listen "sk" cannot be passed here because
503 * it is not locked. It would not make too much
504 * sense to do bpf_setsockopt(listen_sk) based
505 * on individual connection request also.
506 *
507 * Thus, "req" is passed here and the cgroup-bpf-progs
508 * of the listen "sk" will be run.
509 *
510 * "req" is also used here for fastopen even the "sk" here is
511 * a fullsock "child" sk. It is to keep the behavior
512 * consistent between fastopen and non-fastopen on
513 * the bpf programming side.
514 */
515 sock_ops.sk = (struct sock *)req;
516 sock_ops.syn_skb = syn_skb;
517 } else {
518 sock_owned_by_me(sk);
519
520 sock_ops.is_fullsock = 1;
521 sock_ops.sk = sk;
522 }
523
524 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
525 sock_ops.remaining_opt_len = *remaining;
526 /* tcp_current_mss() does not pass a skb */
527 if (skb)
528 bpf_skops_init_skb(skops: &sock_ops, skb, end_offset: 0);
529
530 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
531
532 if (err || sock_ops.remaining_opt_len == *remaining)
533 return;
534
535 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
536 /* round up to 4 bytes */
537 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
538
539 *remaining -= opts->bpf_opt_len;
540}
541
542static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
543 struct request_sock *req,
544 struct sk_buff *syn_skb,
545 enum tcp_synack_type synack_type,
546 struct tcp_out_options *opts)
547{
548 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
549 struct bpf_sock_ops_kern sock_ops;
550 int err;
551
552 if (likely(!max_opt_len))
553 return;
554
555 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
556
557 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
558
559 if (req) {
560 sock_ops.sk = (struct sock *)req;
561 sock_ops.syn_skb = syn_skb;
562 } else {
563 sock_owned_by_me(sk);
564
565 sock_ops.is_fullsock = 1;
566 sock_ops.sk = sk;
567 }
568
569 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
570 sock_ops.remaining_opt_len = max_opt_len;
571 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
572 bpf_skops_init_skb(skops: &sock_ops, skb, end_offset: first_opt_off);
573
574 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
575
576 if (err)
577 nr_written = 0;
578 else
579 nr_written = max_opt_len - sock_ops.remaining_opt_len;
580
581 if (nr_written < max_opt_len)
582 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
583 max_opt_len - nr_written);
584}
585#else
586static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
587 struct request_sock *req,
588 struct sk_buff *syn_skb,
589 enum tcp_synack_type synack_type,
590 struct tcp_out_options *opts,
591 unsigned int *remaining)
592{
593}
594
595static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
596 struct request_sock *req,
597 struct sk_buff *syn_skb,
598 enum tcp_synack_type synack_type,
599 struct tcp_out_options *opts)
600{
601}
602#endif
603
604/* Write previously computed TCP options to the packet.
605 *
606 * Beware: Something in the Internet is very sensitive to the ordering of
607 * TCP options, we learned this through the hard way, so be careful here.
608 * Luckily we can at least blame others for their non-compliance but from
609 * inter-operability perspective it seems that we're somewhat stuck with
610 * the ordering which we have been using if we want to keep working with
611 * those broken things (not that it currently hurts anybody as there isn't
612 * particular reason why the ordering would need to be changed).
613 *
614 * At least SACK_PERM as the first option is known to lead to a disaster
615 * (but it may well be that other scenarios fail similarly).
616 */
617static void tcp_options_write(struct tcphdr *th, struct tcp_sock *tp,
618 const struct tcp_request_sock *tcprsk,
619 struct tcp_out_options *opts,
620 struct tcp_key *key)
621{
622 __be32 *ptr = (__be32 *)(th + 1);
623 u16 options = opts->options; /* mungable copy */
624
625 if (tcp_key_is_md5(key)) {
626 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
627 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
628 /* overload cookie hash location */
629 opts->hash_location = (__u8 *)ptr;
630 ptr += 4;
631 } else if (tcp_key_is_ao(key)) {
632#ifdef CONFIG_TCP_AO
633 u8 maclen = tcp_ao_maclen(key: key->ao_key);
634
635 if (tcprsk) {
636 u8 aolen = maclen + sizeof(struct tcp_ao_hdr);
637
638 *ptr++ = htonl((TCPOPT_AO << 24) | (aolen << 16) |
639 (tcprsk->ao_keyid << 8) |
640 (tcprsk->ao_rcv_next));
641 } else {
642 struct tcp_ao_key *rnext_key;
643 struct tcp_ao_info *ao_info;
644
645 ao_info = rcu_dereference_check(tp->ao_info,
646 lockdep_sock_is_held(&tp->inet_conn.icsk_inet.sk));
647 rnext_key = READ_ONCE(ao_info->rnext_key);
648 if (WARN_ON_ONCE(!rnext_key))
649 goto out_ao;
650 *ptr++ = htonl((TCPOPT_AO << 24) |
651 (tcp_ao_len(key->ao_key) << 16) |
652 (key->ao_key->sndid << 8) |
653 (rnext_key->rcvid));
654 }
655 opts->hash_location = (__u8 *)ptr;
656 ptr += maclen / sizeof(*ptr);
657 if (unlikely(maclen % sizeof(*ptr))) {
658 memset(ptr, TCPOPT_NOP, sizeof(*ptr));
659 ptr++;
660 }
661out_ao:
662#endif
663 }
664 if (unlikely(opts->mss)) {
665 *ptr++ = htonl((TCPOPT_MSS << 24) |
666 (TCPOLEN_MSS << 16) |
667 opts->mss);
668 }
669
670 if (likely(OPTION_TS & options)) {
671 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
672 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
673 (TCPOLEN_SACK_PERM << 16) |
674 (TCPOPT_TIMESTAMP << 8) |
675 TCPOLEN_TIMESTAMP);
676 options &= ~OPTION_SACK_ADVERTISE;
677 } else {
678 *ptr++ = htonl((TCPOPT_NOP << 24) |
679 (TCPOPT_NOP << 16) |
680 (TCPOPT_TIMESTAMP << 8) |
681 TCPOLEN_TIMESTAMP);
682 }
683 *ptr++ = htonl(opts->tsval);
684 *ptr++ = htonl(opts->tsecr);
685 }
686
687 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
688 *ptr++ = htonl((TCPOPT_NOP << 24) |
689 (TCPOPT_NOP << 16) |
690 (TCPOPT_SACK_PERM << 8) |
691 TCPOLEN_SACK_PERM);
692 }
693
694 if (unlikely(OPTION_WSCALE & options)) {
695 *ptr++ = htonl((TCPOPT_NOP << 24) |
696 (TCPOPT_WINDOW << 16) |
697 (TCPOLEN_WINDOW << 8) |
698 opts->ws);
699 }
700
701 if (unlikely(opts->num_sack_blocks)) {
702 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
703 tp->duplicate_sack : tp->selective_acks;
704 int this_sack;
705
706 *ptr++ = htonl((TCPOPT_NOP << 24) |
707 (TCPOPT_NOP << 16) |
708 (TCPOPT_SACK << 8) |
709 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
710 TCPOLEN_SACK_PERBLOCK)));
711
712 for (this_sack = 0; this_sack < opts->num_sack_blocks;
713 ++this_sack) {
714 *ptr++ = htonl(sp[this_sack].start_seq);
715 *ptr++ = htonl(sp[this_sack].end_seq);
716 }
717
718 tp->rx_opt.dsack = 0;
719 }
720
721 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
722 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
723 u8 *p = (u8 *)ptr;
724 u32 len; /* Fast Open option length */
725
726 if (foc->exp) {
727 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
728 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
729 TCPOPT_FASTOPEN_MAGIC);
730 p += TCPOLEN_EXP_FASTOPEN_BASE;
731 } else {
732 len = TCPOLEN_FASTOPEN_BASE + foc->len;
733 *p++ = TCPOPT_FASTOPEN;
734 *p++ = len;
735 }
736
737 memcpy(p, foc->val, foc->len);
738 if ((len & 3) == 2) {
739 p[foc->len] = TCPOPT_NOP;
740 p[foc->len + 1] = TCPOPT_NOP;
741 }
742 ptr += (len + 3) >> 2;
743 }
744
745 smc_options_write(ptr, options: &options);
746
747 mptcp_options_write(th, ptr, tp, opts);
748}
749
750static void smc_set_option(const struct tcp_sock *tp,
751 struct tcp_out_options *opts,
752 unsigned int *remaining)
753{
754#if IS_ENABLED(CONFIG_SMC)
755 if (static_branch_unlikely(&tcp_have_smc)) {
756 if (tp->syn_smc) {
757 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
758 opts->options |= OPTION_SMC;
759 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
760 }
761 }
762 }
763#endif
764}
765
766static void smc_set_option_cond(const struct tcp_sock *tp,
767 const struct inet_request_sock *ireq,
768 struct tcp_out_options *opts,
769 unsigned int *remaining)
770{
771#if IS_ENABLED(CONFIG_SMC)
772 if (static_branch_unlikely(&tcp_have_smc)) {
773 if (tp->syn_smc && ireq->smc_ok) {
774 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
775 opts->options |= OPTION_SMC;
776 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
777 }
778 }
779 }
780#endif
781}
782
783static void mptcp_set_option_cond(const struct request_sock *req,
784 struct tcp_out_options *opts,
785 unsigned int *remaining)
786{
787 if (rsk_is_mptcp(req)) {
788 unsigned int size;
789
790 if (mptcp_synack_options(req, size: &size, opts: &opts->mptcp)) {
791 if (*remaining >= size) {
792 opts->options |= OPTION_MPTCP;
793 *remaining -= size;
794 }
795 }
796 }
797}
798
799/* Compute TCP options for SYN packets. This is not the final
800 * network wire format yet.
801 */
802static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
803 struct tcp_out_options *opts,
804 struct tcp_key *key)
805{
806 struct tcp_sock *tp = tcp_sk(sk);
807 unsigned int remaining = MAX_TCP_OPTION_SPACE;
808 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
809 bool timestamps;
810
811 /* Better than switch (key.type) as it has static branches */
812 if (tcp_key_is_md5(key)) {
813 timestamps = false;
814 opts->options |= OPTION_MD5;
815 remaining -= TCPOLEN_MD5SIG_ALIGNED;
816 } else {
817 timestamps = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps);
818 if (tcp_key_is_ao(key)) {
819 opts->options |= OPTION_AO;
820 remaining -= tcp_ao_len(key: key->ao_key);
821 }
822 }
823
824 /* We always get an MSS option. The option bytes which will be seen in
825 * normal data packets should timestamps be used, must be in the MSS
826 * advertised. But we subtract them from tp->mss_cache so that
827 * calculations in tcp_sendmsg are simpler etc. So account for this
828 * fact here if necessary. If we don't do this correctly, as a
829 * receiver we won't recognize data packets as being full sized when we
830 * should, and thus we won't abide by the delayed ACK rules correctly.
831 * SACKs don't matter, we never delay an ACK when we have any of those
832 * going out. */
833 opts->mss = tcp_advertise_mss(sk);
834 remaining -= TCPOLEN_MSS_ALIGNED;
835
836 if (likely(timestamps)) {
837 opts->options |= OPTION_TS;
838 opts->tsval = tcp_skb_timestamp_ts(usec_ts: tp->tcp_usec_ts, skb) + tp->tsoffset;
839 opts->tsecr = tp->rx_opt.ts_recent;
840 remaining -= TCPOLEN_TSTAMP_ALIGNED;
841 }
842 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
843 opts->ws = tp->rx_opt.rcv_wscale;
844 opts->options |= OPTION_WSCALE;
845 remaining -= TCPOLEN_WSCALE_ALIGNED;
846 }
847 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
848 opts->options |= OPTION_SACK_ADVERTISE;
849 if (unlikely(!(OPTION_TS & opts->options)))
850 remaining -= TCPOLEN_SACKPERM_ALIGNED;
851 }
852
853 if (fastopen && fastopen->cookie.len >= 0) {
854 u32 need = fastopen->cookie.len;
855
856 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
857 TCPOLEN_FASTOPEN_BASE;
858 need = (need + 3) & ~3U; /* Align to 32 bits */
859 if (remaining >= need) {
860 opts->options |= OPTION_FAST_OPEN_COOKIE;
861 opts->fastopen_cookie = &fastopen->cookie;
862 remaining -= need;
863 tp->syn_fastopen = 1;
864 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
865 }
866 }
867
868 smc_set_option(tp, opts, remaining: &remaining);
869
870 if (sk_is_mptcp(sk)) {
871 unsigned int size;
872
873 if (mptcp_syn_options(sk, skb, size: &size, opts: &opts->mptcp)) {
874 opts->options |= OPTION_MPTCP;
875 remaining -= size;
876 }
877 }
878
879 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, synack_type: 0, opts, remaining: &remaining);
880
881 return MAX_TCP_OPTION_SPACE - remaining;
882}
883
884/* Set up TCP options for SYN-ACKs. */
885static unsigned int tcp_synack_options(const struct sock *sk,
886 struct request_sock *req,
887 unsigned int mss, struct sk_buff *skb,
888 struct tcp_out_options *opts,
889 const struct tcp_key *key,
890 struct tcp_fastopen_cookie *foc,
891 enum tcp_synack_type synack_type,
892 struct sk_buff *syn_skb)
893{
894 struct inet_request_sock *ireq = inet_rsk(sk: req);
895 unsigned int remaining = MAX_TCP_OPTION_SPACE;
896
897 if (tcp_key_is_md5(key)) {
898 opts->options |= OPTION_MD5;
899 remaining -= TCPOLEN_MD5SIG_ALIGNED;
900
901 /* We can't fit any SACK blocks in a packet with MD5 + TS
902 * options. There was discussion about disabling SACK
903 * rather than TS in order to fit in better with old,
904 * buggy kernels, but that was deemed to be unnecessary.
905 */
906 if (synack_type != TCP_SYNACK_COOKIE)
907 ireq->tstamp_ok &= !ireq->sack_ok;
908 } else if (tcp_key_is_ao(key)) {
909 opts->options |= OPTION_AO;
910 remaining -= tcp_ao_len(key: key->ao_key);
911 ireq->tstamp_ok &= !ireq->sack_ok;
912 }
913
914 /* We always send an MSS option. */
915 opts->mss = mss;
916 remaining -= TCPOLEN_MSS_ALIGNED;
917
918 if (likely(ireq->wscale_ok)) {
919 opts->ws = ireq->rcv_wscale;
920 opts->options |= OPTION_WSCALE;
921 remaining -= TCPOLEN_WSCALE_ALIGNED;
922 }
923 if (likely(ireq->tstamp_ok)) {
924 opts->options |= OPTION_TS;
925 opts->tsval = tcp_skb_timestamp_ts(usec_ts: tcp_rsk(req)->req_usec_ts, skb) +
926 tcp_rsk(req)->ts_off;
927 opts->tsecr = READ_ONCE(req->ts_recent);
928 remaining -= TCPOLEN_TSTAMP_ALIGNED;
929 }
930 if (likely(ireq->sack_ok)) {
931 opts->options |= OPTION_SACK_ADVERTISE;
932 if (unlikely(!ireq->tstamp_ok))
933 remaining -= TCPOLEN_SACKPERM_ALIGNED;
934 }
935 if (foc != NULL && foc->len >= 0) {
936 u32 need = foc->len;
937
938 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
939 TCPOLEN_FASTOPEN_BASE;
940 need = (need + 3) & ~3U; /* Align to 32 bits */
941 if (remaining >= need) {
942 opts->options |= OPTION_FAST_OPEN_COOKIE;
943 opts->fastopen_cookie = foc;
944 remaining -= need;
945 }
946 }
947
948 mptcp_set_option_cond(req, opts, remaining: &remaining);
949
950 smc_set_option_cond(tcp_sk(sk), ireq, opts, remaining: &remaining);
951
952 bpf_skops_hdr_opt_len(sk: (struct sock *)sk, skb, req, syn_skb,
953 synack_type, opts, remaining: &remaining);
954
955 return MAX_TCP_OPTION_SPACE - remaining;
956}
957
958/* Compute TCP options for ESTABLISHED sockets. This is not the
959 * final wire format yet.
960 */
961static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
962 struct tcp_out_options *opts,
963 struct tcp_key *key)
964{
965 struct tcp_sock *tp = tcp_sk(sk);
966 unsigned int size = 0;
967 unsigned int eff_sacks;
968
969 opts->options = 0;
970
971 /* Better than switch (key.type) as it has static branches */
972 if (tcp_key_is_md5(key)) {
973 opts->options |= OPTION_MD5;
974 size += TCPOLEN_MD5SIG_ALIGNED;
975 } else if (tcp_key_is_ao(key)) {
976 opts->options |= OPTION_AO;
977 size += tcp_ao_len(key: key->ao_key);
978 }
979
980 if (likely(tp->rx_opt.tstamp_ok)) {
981 opts->options |= OPTION_TS;
982 opts->tsval = skb ? tcp_skb_timestamp_ts(usec_ts: tp->tcp_usec_ts, skb) +
983 tp->tsoffset : 0;
984 opts->tsecr = tp->rx_opt.ts_recent;
985 size += TCPOLEN_TSTAMP_ALIGNED;
986 }
987
988 /* MPTCP options have precedence over SACK for the limited TCP
989 * option space because a MPTCP connection would be forced to
990 * fall back to regular TCP if a required multipath option is
991 * missing. SACK still gets a chance to use whatever space is
992 * left.
993 */
994 if (sk_is_mptcp(sk)) {
995 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
996 unsigned int opt_size = 0;
997
998 if (mptcp_established_options(sk, skb, size: &opt_size, remaining,
999 opts: &opts->mptcp)) {
1000 opts->options |= OPTION_MPTCP;
1001 size += opt_size;
1002 }
1003 }
1004
1005 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
1006 if (unlikely(eff_sacks)) {
1007 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1008 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
1009 TCPOLEN_SACK_PERBLOCK))
1010 return size;
1011
1012 opts->num_sack_blocks =
1013 min_t(unsigned int, eff_sacks,
1014 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
1015 TCPOLEN_SACK_PERBLOCK);
1016
1017 size += TCPOLEN_SACK_BASE_ALIGNED +
1018 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
1019 }
1020
1021 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
1022 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
1023 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
1024
1025 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, synack_type: 0, opts, remaining: &remaining);
1026
1027 size = MAX_TCP_OPTION_SPACE - remaining;
1028 }
1029
1030 return size;
1031}
1032
1033
1034/* TCP SMALL QUEUES (TSQ)
1035 *
1036 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
1037 * to reduce RTT and bufferbloat.
1038 * We do this using a special skb destructor (tcp_wfree).
1039 *
1040 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
1041 * needs to be reallocated in a driver.
1042 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
1043 *
1044 * Since transmit from skb destructor is forbidden, we use a tasklet
1045 * to process all sockets that eventually need to send more skbs.
1046 * We use one tasklet per cpu, with its own queue of sockets.
1047 */
1048struct tsq_tasklet {
1049 struct tasklet_struct tasklet;
1050 struct list_head head; /* queue of tcp sockets */
1051};
1052static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1053
1054static void tcp_tsq_write(struct sock *sk)
1055{
1056 if ((1 << sk->sk_state) &
1057 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1058 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1059 struct tcp_sock *tp = tcp_sk(sk);
1060
1061 if (tp->lost_out > tp->retrans_out &&
1062 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1063 tcp_mstamp_refresh(tp);
1064 tcp_xmit_retransmit_queue(sk);
1065 }
1066
1067 tcp_write_xmit(sk, mss_now: tcp_current_mss(sk), nonagle: tp->nonagle,
1068 push_one: 0, GFP_ATOMIC);
1069 }
1070}
1071
1072static void tcp_tsq_handler(struct sock *sk)
1073{
1074 bh_lock_sock(sk);
1075 if (!sock_owned_by_user(sk))
1076 tcp_tsq_write(sk);
1077 else if (!test_and_set_bit(nr: TCP_TSQ_DEFERRED, addr: &sk->sk_tsq_flags))
1078 sock_hold(sk);
1079 bh_unlock_sock(sk);
1080}
1081/*
1082 * One tasklet per cpu tries to send more skbs.
1083 * We run in tasklet context but need to disable irqs when
1084 * transferring tsq->head because tcp_wfree() might
1085 * interrupt us (non NAPI drivers)
1086 */
1087static void tcp_tasklet_func(struct tasklet_struct *t)
1088{
1089 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1090 LIST_HEAD(list);
1091 unsigned long flags;
1092 struct list_head *q, *n;
1093 struct tcp_sock *tp;
1094 struct sock *sk;
1095
1096 local_irq_save(flags);
1097 list_splice_init(list: &tsq->head, head: &list);
1098 local_irq_restore(flags);
1099
1100 list_for_each_safe(q, n, &list) {
1101 tp = list_entry(q, struct tcp_sock, tsq_node);
1102 list_del(entry: &tp->tsq_node);
1103
1104 sk = (struct sock *)tp;
1105 smp_mb__before_atomic();
1106 clear_bit(nr: TSQ_QUEUED, addr: &sk->sk_tsq_flags);
1107
1108 tcp_tsq_handler(sk);
1109 sk_free(sk);
1110 }
1111}
1112
1113#define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1114 TCPF_WRITE_TIMER_DEFERRED | \
1115 TCPF_DELACK_TIMER_DEFERRED | \
1116 TCPF_MTU_REDUCED_DEFERRED | \
1117 TCPF_ACK_DEFERRED)
1118/**
1119 * tcp_release_cb - tcp release_sock() callback
1120 * @sk: socket
1121 *
1122 * called from release_sock() to perform protocol dependent
1123 * actions before socket release.
1124 */
1125void tcp_release_cb(struct sock *sk)
1126{
1127 unsigned long flags = smp_load_acquire(&sk->sk_tsq_flags);
1128 unsigned long nflags;
1129
1130 /* perform an atomic operation only if at least one flag is set */
1131 do {
1132 if (!(flags & TCP_DEFERRED_ALL))
1133 return;
1134 nflags = flags & ~TCP_DEFERRED_ALL;
1135 } while (!try_cmpxchg(&sk->sk_tsq_flags, &flags, nflags));
1136
1137 if (flags & TCPF_TSQ_DEFERRED) {
1138 tcp_tsq_write(sk);
1139 __sock_put(sk);
1140 }
1141
1142 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1143 tcp_write_timer_handler(sk);
1144 __sock_put(sk);
1145 }
1146 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1147 tcp_delack_timer_handler(sk);
1148 __sock_put(sk);
1149 }
1150 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1151 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1152 __sock_put(sk);
1153 }
1154 if ((flags & TCPF_ACK_DEFERRED) && inet_csk_ack_scheduled(sk))
1155 tcp_send_ack(sk);
1156}
1157EXPORT_SYMBOL(tcp_release_cb);
1158
1159void __init tcp_tasklet_init(void)
1160{
1161 int i;
1162
1163 for_each_possible_cpu(i) {
1164 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1165
1166 INIT_LIST_HEAD(list: &tsq->head);
1167 tasklet_setup(t: &tsq->tasklet, callback: tcp_tasklet_func);
1168 }
1169}
1170
1171/*
1172 * Write buffer destructor automatically called from kfree_skb.
1173 * We can't xmit new skbs from this context, as we might already
1174 * hold qdisc lock.
1175 */
1176void tcp_wfree(struct sk_buff *skb)
1177{
1178 struct sock *sk = skb->sk;
1179 struct tcp_sock *tp = tcp_sk(sk);
1180 unsigned long flags, nval, oval;
1181 struct tsq_tasklet *tsq;
1182 bool empty;
1183
1184 /* Keep one reference on sk_wmem_alloc.
1185 * Will be released by sk_free() from here or tcp_tasklet_func()
1186 */
1187 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1188
1189 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1190 * Wait until our queues (qdisc + devices) are drained.
1191 * This gives :
1192 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1193 * - chance for incoming ACK (processed by another cpu maybe)
1194 * to migrate this flow (skb->ooo_okay will be eventually set)
1195 */
1196 if (refcount_read(r: &sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1197 goto out;
1198
1199 oval = smp_load_acquire(&sk->sk_tsq_flags);
1200 do {
1201 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1202 goto out;
1203
1204 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1205 } while (!try_cmpxchg(&sk->sk_tsq_flags, &oval, nval));
1206
1207 /* queue this socket to tasklet queue */
1208 local_irq_save(flags);
1209 tsq = this_cpu_ptr(&tsq_tasklet);
1210 empty = list_empty(head: &tsq->head);
1211 list_add(new: &tp->tsq_node, head: &tsq->head);
1212 if (empty)
1213 tasklet_schedule(t: &tsq->tasklet);
1214 local_irq_restore(flags);
1215 return;
1216out:
1217 sk_free(sk);
1218}
1219
1220/* Note: Called under soft irq.
1221 * We can call TCP stack right away, unless socket is owned by user.
1222 */
1223enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1224{
1225 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1226 struct sock *sk = (struct sock *)tp;
1227
1228 tcp_tsq_handler(sk);
1229 sock_put(sk);
1230
1231 return HRTIMER_NORESTART;
1232}
1233
1234static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1235 u64 prior_wstamp)
1236{
1237 struct tcp_sock *tp = tcp_sk(sk);
1238
1239 if (sk->sk_pacing_status != SK_PACING_NONE) {
1240 unsigned long rate = READ_ONCE(sk->sk_pacing_rate);
1241
1242 /* Original sch_fq does not pace first 10 MSS
1243 * Note that tp->data_segs_out overflows after 2^32 packets,
1244 * this is a minor annoyance.
1245 */
1246 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1247 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1248 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1249
1250 /* take into account OS jitter */
1251 len_ns -= min_t(u64, len_ns / 2, credit);
1252 tp->tcp_wstamp_ns += len_ns;
1253 }
1254 }
1255 list_move_tail(list: &skb->tcp_tsorted_anchor, head: &tp->tsorted_sent_queue);
1256}
1257
1258INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1259INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1260INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1261
1262/* This routine actually transmits TCP packets queued in by
1263 * tcp_do_sendmsg(). This is used by both the initial
1264 * transmission and possible later retransmissions.
1265 * All SKB's seen here are completely headerless. It is our
1266 * job to build the TCP header, and pass the packet down to
1267 * IP so it can do the same plus pass the packet off to the
1268 * device.
1269 *
1270 * We are working here with either a clone of the original
1271 * SKB, or a fresh unique copy made by the retransmit engine.
1272 */
1273static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1274 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1275{
1276 const struct inet_connection_sock *icsk = inet_csk(sk);
1277 struct inet_sock *inet;
1278 struct tcp_sock *tp;
1279 struct tcp_skb_cb *tcb;
1280 struct tcp_out_options opts;
1281 unsigned int tcp_options_size, tcp_header_size;
1282 struct sk_buff *oskb = NULL;
1283 struct tcp_key key;
1284 struct tcphdr *th;
1285 u64 prior_wstamp;
1286 int err;
1287
1288 BUG_ON(!skb || !tcp_skb_pcount(skb));
1289 tp = tcp_sk(sk);
1290 prior_wstamp = tp->tcp_wstamp_ns;
1291 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1292 skb_set_delivery_time(skb, kt: tp->tcp_wstamp_ns, mono: true);
1293 if (clone_it) {
1294 oskb = skb;
1295
1296 tcp_skb_tsorted_save(oskb) {
1297 if (unlikely(skb_cloned(oskb)))
1298 skb = pskb_copy(skb: oskb, gfp_mask);
1299 else
1300 skb = skb_clone(skb: oskb, priority: gfp_mask);
1301 } tcp_skb_tsorted_restore(oskb);
1302
1303 if (unlikely(!skb))
1304 return -ENOBUFS;
1305 /* retransmit skbs might have a non zero value in skb->dev
1306 * because skb->dev is aliased with skb->rbnode.rb_left
1307 */
1308 skb->dev = NULL;
1309 }
1310
1311 inet = inet_sk(sk);
1312 tcb = TCP_SKB_CB(skb);
1313 memset(&opts, 0, sizeof(opts));
1314
1315 tcp_get_current_key(sk, out: &key);
1316 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1317 tcp_options_size = tcp_syn_options(sk, skb, opts: &opts, key: &key);
1318 } else {
1319 tcp_options_size = tcp_established_options(sk, skb, opts: &opts, key: &key);
1320 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1321 * at receiver : This slightly improve GRO performance.
1322 * Note that we do not force the PSH flag for non GSO packets,
1323 * because they might be sent under high congestion events,
1324 * and in this case it is better to delay the delivery of 1-MSS
1325 * packets and thus the corresponding ACK packet that would
1326 * release the following packet.
1327 */
1328 if (tcp_skb_pcount(skb) > 1)
1329 tcb->tcp_flags |= TCPHDR_PSH;
1330 }
1331 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1332
1333 /* We set skb->ooo_okay to one if this packet can select
1334 * a different TX queue than prior packets of this flow,
1335 * to avoid self inflicted reorders.
1336 * The 'other' queue decision is based on current cpu number
1337 * if XPS is enabled, or sk->sk_txhash otherwise.
1338 * We can switch to another (and better) queue if:
1339 * 1) No packet with payload is in qdisc/device queues.
1340 * Delays in TX completion can defeat the test
1341 * even if packets were already sent.
1342 * 2) Or rtx queue is empty.
1343 * This mitigates above case if ACK packets for
1344 * all prior packets were already processed.
1345 */
1346 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1) ||
1347 tcp_rtx_queue_empty(sk);
1348
1349 /* If we had to use memory reserve to allocate this skb,
1350 * this might cause drops if packet is looped back :
1351 * Other socket might not have SOCK_MEMALLOC.
1352 * Packets not looped back do not care about pfmemalloc.
1353 */
1354 skb->pfmemalloc = 0;
1355
1356 skb_push(skb, len: tcp_header_size);
1357 skb_reset_transport_header(skb);
1358
1359 skb_orphan(skb);
1360 skb->sk = sk;
1361 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1362 refcount_add(i: skb->truesize, r: &sk->sk_wmem_alloc);
1363
1364 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1365
1366 /* Build TCP header and checksum it. */
1367 th = (struct tcphdr *)skb->data;
1368 th->source = inet->inet_sport;
1369 th->dest = inet->inet_dport;
1370 th->seq = htonl(tcb->seq);
1371 th->ack_seq = htonl(rcv_nxt);
1372 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1373 tcb->tcp_flags);
1374
1375 th->check = 0;
1376 th->urg_ptr = 0;
1377
1378 /* The urg_mode check is necessary during a below snd_una win probe */
1379 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1380 if (before(seq1: tp->snd_up, seq2: tcb->seq + 0x10000)) {
1381 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1382 th->urg = 1;
1383 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1384 th->urg_ptr = htons(0xFFFF);
1385 th->urg = 1;
1386 }
1387 }
1388
1389 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1390 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1391 th->window = htons(tcp_select_window(sk));
1392 tcp_ecn_send(sk, skb, th, tcp_header_len: tcp_header_size);
1393 } else {
1394 /* RFC1323: The window in SYN & SYN/ACK segments
1395 * is never scaled.
1396 */
1397 th->window = htons(min(tp->rcv_wnd, 65535U));
1398 }
1399
1400 tcp_options_write(th, tp, NULL, opts: &opts, key: &key);
1401
1402 if (tcp_key_is_md5(key: &key)) {
1403#ifdef CONFIG_TCP_MD5SIG
1404 /* Calculate the MD5 hash, as we have all we need now */
1405 sk_gso_disable(sk);
1406 tp->af_specific->calc_md5_hash(opts.hash_location,
1407 key.md5_key, sk, skb);
1408#endif
1409 } else if (tcp_key_is_ao(key: &key)) {
1410 int err;
1411
1412 err = tcp_ao_transmit_skb(sk, skb, key: key.ao_key, th,
1413 hash_location: opts.hash_location);
1414 if (err) {
1415 kfree_skb_reason(skb, reason: SKB_DROP_REASON_NOT_SPECIFIED);
1416 return -ENOMEM;
1417 }
1418 }
1419
1420 /* BPF prog is the last one writing header option */
1421 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, synack_type: 0, opts: &opts);
1422
1423 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1424 tcp_v6_send_check, tcp_v4_send_check,
1425 sk, skb);
1426
1427 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1428 tcp_event_ack_sent(sk, rcv_nxt);
1429
1430 if (skb->len != tcp_header_size) {
1431 tcp_event_data_sent(tp, sk);
1432 tp->data_segs_out += tcp_skb_pcount(skb);
1433 tp->bytes_sent += skb->len - tcp_header_size;
1434 }
1435
1436 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1437 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1438 tcp_skb_pcount(skb));
1439
1440 tp->segs_out += tcp_skb_pcount(skb);
1441 skb_set_hash_from_sk(skb, sk);
1442 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1443 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1444 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1445
1446 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1447
1448 /* Cleanup our debris for IP stacks */
1449 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1450 sizeof(struct inet6_skb_parm)));
1451
1452 tcp_add_tx_delay(skb, tp);
1453
1454 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1455 inet6_csk_xmit, ip_queue_xmit,
1456 sk, skb, &inet->cork.fl);
1457
1458 if (unlikely(err > 0)) {
1459 tcp_enter_cwr(sk);
1460 err = net_xmit_eval(err);
1461 }
1462 if (!err && oskb) {
1463 tcp_update_skb_after_send(sk, skb: oskb, prior_wstamp);
1464 tcp_rate_skb_sent(sk, skb: oskb);
1465 }
1466 return err;
1467}
1468
1469static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1470 gfp_t gfp_mask)
1471{
1472 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1473 tcp_sk(sk)->rcv_nxt);
1474}
1475
1476/* This routine just queues the buffer for sending.
1477 *
1478 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1479 * otherwise socket can stall.
1480 */
1481static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1482{
1483 struct tcp_sock *tp = tcp_sk(sk);
1484
1485 /* Advance write_seq and place onto the write_queue. */
1486 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1487 __skb_header_release(skb);
1488 tcp_add_write_queue_tail(sk, skb);
1489 sk_wmem_queued_add(sk, val: skb->truesize);
1490 sk_mem_charge(sk, size: skb->truesize);
1491}
1492
1493/* Initialize TSO segments for a packet. */
1494static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1495{
1496 if (skb->len <= mss_now) {
1497 /* Avoid the costly divide in the normal
1498 * non-TSO case.
1499 */
1500 tcp_skb_pcount_set(skb, segs: 1);
1501 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1502 } else {
1503 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1504 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1505 }
1506}
1507
1508/* Pcount in the middle of the write queue got changed, we need to do various
1509 * tweaks to fix counters
1510 */
1511static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1512{
1513 struct tcp_sock *tp = tcp_sk(sk);
1514
1515 tp->packets_out -= decr;
1516
1517 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1518 tp->sacked_out -= decr;
1519 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1520 tp->retrans_out -= decr;
1521 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1522 tp->lost_out -= decr;
1523
1524 /* Reno case is special. Sigh... */
1525 if (tcp_is_reno(tp) && decr > 0)
1526 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1527
1528 if (tp->lost_skb_hint &&
1529 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1530 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1531 tp->lost_cnt_hint -= decr;
1532
1533 tcp_verify_left_out(tp);
1534}
1535
1536static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1537{
1538 return TCP_SKB_CB(skb)->txstamp_ack ||
1539 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1540}
1541
1542static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1543{
1544 struct skb_shared_info *shinfo = skb_shinfo(skb);
1545
1546 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1547 !before(seq1: shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1548 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1549 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1550
1551 shinfo->tx_flags &= ~tsflags;
1552 shinfo2->tx_flags |= tsflags;
1553 swap(shinfo->tskey, shinfo2->tskey);
1554 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1555 TCP_SKB_CB(skb)->txstamp_ack = 0;
1556 }
1557}
1558
1559static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1560{
1561 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1562 TCP_SKB_CB(skb)->eor = 0;
1563}
1564
1565/* Insert buff after skb on the write or rtx queue of sk. */
1566static void tcp_insert_write_queue_after(struct sk_buff *skb,
1567 struct sk_buff *buff,
1568 struct sock *sk,
1569 enum tcp_queue tcp_queue)
1570{
1571 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1572 __skb_queue_after(list: &sk->sk_write_queue, prev: skb, newsk: buff);
1573 else
1574 tcp_rbtree_insert(root: &sk->tcp_rtx_queue, skb: buff);
1575}
1576
1577/* Function to create two new TCP segments. Shrinks the given segment
1578 * to the specified size and appends a new segment with the rest of the
1579 * packet to the list. This won't be called frequently, I hope.
1580 * Remember, these are still headerless SKBs at this point.
1581 */
1582int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1583 struct sk_buff *skb, u32 len,
1584 unsigned int mss_now, gfp_t gfp)
1585{
1586 struct tcp_sock *tp = tcp_sk(sk);
1587 struct sk_buff *buff;
1588 int old_factor;
1589 long limit;
1590 int nlen;
1591 u8 flags;
1592
1593 if (WARN_ON(len > skb->len))
1594 return -EINVAL;
1595
1596 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1597
1598 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1599 * We need some allowance to not penalize applications setting small
1600 * SO_SNDBUF values.
1601 * Also allow first and last skb in retransmit queue to be split.
1602 */
1603 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_LEGACY_MAX_SIZE);
1604 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1605 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1606 skb != tcp_rtx_queue_head(sk) &&
1607 skb != tcp_rtx_queue_tail(sk))) {
1608 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1609 return -ENOMEM;
1610 }
1611
1612 if (skb_unclone_keeptruesize(skb, pri: gfp))
1613 return -ENOMEM;
1614
1615 /* Get a new skb... force flag on. */
1616 buff = tcp_stream_alloc_skb(sk, gfp, force_schedule: true);
1617 if (!buff)
1618 return -ENOMEM; /* We'll just try again later. */
1619 skb_copy_decrypted(to: buff, from: skb);
1620 mptcp_skb_ext_copy(to: buff, from: skb);
1621
1622 sk_wmem_queued_add(sk, val: buff->truesize);
1623 sk_mem_charge(sk, size: buff->truesize);
1624 nlen = skb->len - len;
1625 buff->truesize += nlen;
1626 skb->truesize -= nlen;
1627
1628 /* Correct the sequence numbers. */
1629 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1630 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1631 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1632
1633 /* PSH and FIN should only be set in the second packet. */
1634 flags = TCP_SKB_CB(skb)->tcp_flags;
1635 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1636 TCP_SKB_CB(buff)->tcp_flags = flags;
1637 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1638 tcp_skb_fragment_eor(skb, skb2: buff);
1639
1640 skb_split(skb, skb1: buff, len);
1641
1642 skb_set_delivery_time(skb: buff, kt: skb->tstamp, mono: true);
1643 tcp_fragment_tstamp(skb, skb2: buff);
1644
1645 old_factor = tcp_skb_pcount(skb);
1646
1647 /* Fix up tso_factor for both original and new SKB. */
1648 tcp_set_skb_tso_segs(skb, mss_now);
1649 tcp_set_skb_tso_segs(skb: buff, mss_now);
1650
1651 /* Update delivered info for the new segment */
1652 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1653
1654 /* If this packet has been sent out already, we must
1655 * adjust the various packet counters.
1656 */
1657 if (!before(seq1: tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1658 int diff = old_factor - tcp_skb_pcount(skb) -
1659 tcp_skb_pcount(skb: buff);
1660
1661 if (diff)
1662 tcp_adjust_pcount(sk, skb, decr: diff);
1663 }
1664
1665 /* Link BUFF into the send queue. */
1666 __skb_header_release(skb: buff);
1667 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1668 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1669 list_add(new: &buff->tcp_tsorted_anchor, head: &skb->tcp_tsorted_anchor);
1670
1671 return 0;
1672}
1673
1674/* This is similar to __pskb_pull_tail(). The difference is that pulled
1675 * data is not copied, but immediately discarded.
1676 */
1677static int __pskb_trim_head(struct sk_buff *skb, int len)
1678{
1679 struct skb_shared_info *shinfo;
1680 int i, k, eat;
1681
1682 DEBUG_NET_WARN_ON_ONCE(skb_headlen(skb));
1683 eat = len;
1684 k = 0;
1685 shinfo = skb_shinfo(skb);
1686 for (i = 0; i < shinfo->nr_frags; i++) {
1687 int size = skb_frag_size(frag: &shinfo->frags[i]);
1688
1689 if (size <= eat) {
1690 skb_frag_unref(skb, f: i);
1691 eat -= size;
1692 } else {
1693 shinfo->frags[k] = shinfo->frags[i];
1694 if (eat) {
1695 skb_frag_off_add(frag: &shinfo->frags[k], delta: eat);
1696 skb_frag_size_sub(frag: &shinfo->frags[k], delta: eat);
1697 eat = 0;
1698 }
1699 k++;
1700 }
1701 }
1702 shinfo->nr_frags = k;
1703
1704 skb->data_len -= len;
1705 skb->len = skb->data_len;
1706 return len;
1707}
1708
1709/* Remove acked data from a packet in the transmit queue. */
1710int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1711{
1712 u32 delta_truesize;
1713
1714 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1715 return -ENOMEM;
1716
1717 delta_truesize = __pskb_trim_head(skb, len);
1718
1719 TCP_SKB_CB(skb)->seq += len;
1720
1721 skb->truesize -= delta_truesize;
1722 sk_wmem_queued_add(sk, val: -delta_truesize);
1723 if (!skb_zcopy_pure(skb))
1724 sk_mem_uncharge(sk, size: delta_truesize);
1725
1726 /* Any change of skb->len requires recalculation of tso factor. */
1727 if (tcp_skb_pcount(skb) > 1)
1728 tcp_set_skb_tso_segs(skb, mss_now: tcp_skb_mss(skb));
1729
1730 return 0;
1731}
1732
1733/* Calculate MSS not accounting any TCP options. */
1734static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1735{
1736 const struct tcp_sock *tp = tcp_sk(sk);
1737 const struct inet_connection_sock *icsk = inet_csk(sk);
1738 int mss_now;
1739
1740 /* Calculate base mss without TCP options:
1741 It is MMS_S - sizeof(tcphdr) of rfc1122
1742 */
1743 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1744
1745 /* Clamp it (mss_clamp does not include tcp options) */
1746 if (mss_now > tp->rx_opt.mss_clamp)
1747 mss_now = tp->rx_opt.mss_clamp;
1748
1749 /* Now subtract optional transport overhead */
1750 mss_now -= icsk->icsk_ext_hdr_len;
1751
1752 /* Then reserve room for full set of TCP options and 8 bytes of data */
1753 mss_now = max(mss_now,
1754 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1755 return mss_now;
1756}
1757
1758/* Calculate MSS. Not accounting for SACKs here. */
1759int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1760{
1761 /* Subtract TCP options size, not including SACKs */
1762 return __tcp_mtu_to_mss(sk, pmtu) -
1763 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1764}
1765EXPORT_SYMBOL(tcp_mtu_to_mss);
1766
1767/* Inverse of above */
1768int tcp_mss_to_mtu(struct sock *sk, int mss)
1769{
1770 const struct tcp_sock *tp = tcp_sk(sk);
1771 const struct inet_connection_sock *icsk = inet_csk(sk);
1772
1773 return mss +
1774 tp->tcp_header_len +
1775 icsk->icsk_ext_hdr_len +
1776 icsk->icsk_af_ops->net_header_len;
1777}
1778EXPORT_SYMBOL(tcp_mss_to_mtu);
1779
1780/* MTU probing init per socket */
1781void tcp_mtup_init(struct sock *sk)
1782{
1783 struct tcp_sock *tp = tcp_sk(sk);
1784 struct inet_connection_sock *icsk = inet_csk(sk);
1785 struct net *net = sock_net(sk);
1786
1787 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1788 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1789 icsk->icsk_af_ops->net_header_len;
1790 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1791 icsk->icsk_mtup.probe_size = 0;
1792 if (icsk->icsk_mtup.enabled)
1793 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1794}
1795EXPORT_SYMBOL(tcp_mtup_init);
1796
1797/* This function synchronize snd mss to current pmtu/exthdr set.
1798
1799 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1800 for TCP options, but includes only bare TCP header.
1801
1802 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1803 It is minimum of user_mss and mss received with SYN.
1804 It also does not include TCP options.
1805
1806 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1807
1808 tp->mss_cache is current effective sending mss, including
1809 all tcp options except for SACKs. It is evaluated,
1810 taking into account current pmtu, but never exceeds
1811 tp->rx_opt.mss_clamp.
1812
1813 NOTE1. rfc1122 clearly states that advertised MSS
1814 DOES NOT include either tcp or ip options.
1815
1816 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1817 are READ ONLY outside this function. --ANK (980731)
1818 */
1819unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1820{
1821 struct tcp_sock *tp = tcp_sk(sk);
1822 struct inet_connection_sock *icsk = inet_csk(sk);
1823 int mss_now;
1824
1825 if (icsk->icsk_mtup.search_high > pmtu)
1826 icsk->icsk_mtup.search_high = pmtu;
1827
1828 mss_now = tcp_mtu_to_mss(sk, pmtu);
1829 mss_now = tcp_bound_to_half_wnd(tp, pktsize: mss_now);
1830
1831 /* And store cached results */
1832 icsk->icsk_pmtu_cookie = pmtu;
1833 if (icsk->icsk_mtup.enabled)
1834 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1835 tp->mss_cache = mss_now;
1836
1837 return mss_now;
1838}
1839EXPORT_SYMBOL(tcp_sync_mss);
1840
1841/* Compute the current effective MSS, taking SACKs and IP options,
1842 * and even PMTU discovery events into account.
1843 */
1844unsigned int tcp_current_mss(struct sock *sk)
1845{
1846 const struct tcp_sock *tp = tcp_sk(sk);
1847 const struct dst_entry *dst = __sk_dst_get(sk);
1848 u32 mss_now;
1849 unsigned int header_len;
1850 struct tcp_out_options opts;
1851 struct tcp_key key;
1852
1853 mss_now = tp->mss_cache;
1854
1855 if (dst) {
1856 u32 mtu = dst_mtu(dst);
1857 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1858 mss_now = tcp_sync_mss(sk, mtu);
1859 }
1860 tcp_get_current_key(sk, out: &key);
1861 header_len = tcp_established_options(sk, NULL, opts: &opts, key: &key) +
1862 sizeof(struct tcphdr);
1863 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1864 * some common options. If this is an odd packet (because we have SACK
1865 * blocks etc) then our calculated header_len will be different, and
1866 * we have to adjust mss_now correspondingly */
1867 if (header_len != tp->tcp_header_len) {
1868 int delta = (int) header_len - tp->tcp_header_len;
1869 mss_now -= delta;
1870 }
1871
1872 return mss_now;
1873}
1874
1875/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1876 * As additional protections, we do not touch cwnd in retransmission phases,
1877 * and if application hit its sndbuf limit recently.
1878 */
1879static void tcp_cwnd_application_limited(struct sock *sk)
1880{
1881 struct tcp_sock *tp = tcp_sk(sk);
1882
1883 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1884 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1885 /* Limited by application or receiver window. */
1886 u32 init_win = tcp_init_cwnd(tp, dst: __sk_dst_get(sk));
1887 u32 win_used = max(tp->snd_cwnd_used, init_win);
1888 if (win_used < tcp_snd_cwnd(tp)) {
1889 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1890 tcp_snd_cwnd_set(tp, val: (tcp_snd_cwnd(tp) + win_used) >> 1);
1891 }
1892 tp->snd_cwnd_used = 0;
1893 }
1894 tp->snd_cwnd_stamp = tcp_jiffies32;
1895}
1896
1897static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1898{
1899 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1900 struct tcp_sock *tp = tcp_sk(sk);
1901
1902 /* Track the strongest available signal of the degree to which the cwnd
1903 * is fully utilized. If cwnd-limited then remember that fact for the
1904 * current window. If not cwnd-limited then track the maximum number of
1905 * outstanding packets in the current window. (If cwnd-limited then we
1906 * chose to not update tp->max_packets_out to avoid an extra else
1907 * clause with no functional impact.)
1908 */
1909 if (!before(seq1: tp->snd_una, seq2: tp->cwnd_usage_seq) ||
1910 is_cwnd_limited ||
1911 (!tp->is_cwnd_limited &&
1912 tp->packets_out > tp->max_packets_out)) {
1913 tp->is_cwnd_limited = is_cwnd_limited;
1914 tp->max_packets_out = tp->packets_out;
1915 tp->cwnd_usage_seq = tp->snd_nxt;
1916 }
1917
1918 if (tcp_is_cwnd_limited(sk)) {
1919 /* Network is feed fully. */
1920 tp->snd_cwnd_used = 0;
1921 tp->snd_cwnd_stamp = tcp_jiffies32;
1922 } else {
1923 /* Network starves. */
1924 if (tp->packets_out > tp->snd_cwnd_used)
1925 tp->snd_cwnd_used = tp->packets_out;
1926
1927 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1928 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1929 !ca_ops->cong_control)
1930 tcp_cwnd_application_limited(sk);
1931
1932 /* The following conditions together indicate the starvation
1933 * is caused by insufficient sender buffer:
1934 * 1) just sent some data (see tcp_write_xmit)
1935 * 2) not cwnd limited (this else condition)
1936 * 3) no more data to send (tcp_write_queue_empty())
1937 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1938 */
1939 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1940 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1941 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1942 tcp_chrono_start(sk, type: TCP_CHRONO_SNDBUF_LIMITED);
1943 }
1944}
1945
1946/* Minshall's variant of the Nagle send check. */
1947static bool tcp_minshall_check(const struct tcp_sock *tp)
1948{
1949 return after(tp->snd_sml, tp->snd_una) &&
1950 !after(tp->snd_sml, tp->snd_nxt);
1951}
1952
1953/* Update snd_sml if this skb is under mss
1954 * Note that a TSO packet might end with a sub-mss segment
1955 * The test is really :
1956 * if ((skb->len % mss) != 0)
1957 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1958 * But we can avoid doing the divide again given we already have
1959 * skb_pcount = skb->len / mss_now
1960 */
1961static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1962 const struct sk_buff *skb)
1963{
1964 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1965 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1966}
1967
1968/* Return false, if packet can be sent now without violation Nagle's rules:
1969 * 1. It is full sized. (provided by caller in %partial bool)
1970 * 2. Or it contains FIN. (already checked by caller)
1971 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1972 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1973 * With Minshall's modification: all sent small packets are ACKed.
1974 */
1975static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1976 int nonagle)
1977{
1978 return partial &&
1979 ((nonagle & TCP_NAGLE_CORK) ||
1980 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1981}
1982
1983/* Return how many segs we'd like on a TSO packet,
1984 * depending on current pacing rate, and how close the peer is.
1985 *
1986 * Rationale is:
1987 * - For close peers, we rather send bigger packets to reduce
1988 * cpu costs, because occasional losses will be repaired fast.
1989 * - For long distance/rtt flows, we would like to get ACK clocking
1990 * with 1 ACK per ms.
1991 *
1992 * Use min_rtt to help adapt TSO burst size, with smaller min_rtt resulting
1993 * in bigger TSO bursts. We we cut the RTT-based allowance in half
1994 * for every 2^9 usec (aka 512 us) of RTT, so that the RTT-based allowance
1995 * is below 1500 bytes after 6 * ~500 usec = 3ms.
1996 */
1997static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1998 int min_tso_segs)
1999{
2000 unsigned long bytes;
2001 u32 r;
2002
2003 bytes = READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift);
2004
2005 r = tcp_min_rtt(tcp_sk(sk)) >> READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_rtt_log);
2006 if (r < BITS_PER_TYPE(sk->sk_gso_max_size))
2007 bytes += sk->sk_gso_max_size >> r;
2008
2009 bytes = min_t(unsigned long, bytes, sk->sk_gso_max_size);
2010
2011 return max_t(u32, bytes / mss_now, min_tso_segs);
2012}
2013
2014/* Return the number of segments we want in the skb we are transmitting.
2015 * See if congestion control module wants to decide; otherwise, autosize.
2016 */
2017static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
2018{
2019 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2020 u32 min_tso, tso_segs;
2021
2022 min_tso = ca_ops->min_tso_segs ?
2023 ca_ops->min_tso_segs(sk) :
2024 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
2025
2026 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso_segs: min_tso);
2027 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
2028}
2029
2030/* Returns the portion of skb which can be sent right away */
2031static unsigned int tcp_mss_split_point(const struct sock *sk,
2032 const struct sk_buff *skb,
2033 unsigned int mss_now,
2034 unsigned int max_segs,
2035 int nonagle)
2036{
2037 const struct tcp_sock *tp = tcp_sk(sk);
2038 u32 partial, needed, window, max_len;
2039
2040 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2041 max_len = mss_now * max_segs;
2042
2043 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2044 return max_len;
2045
2046 needed = min(skb->len, window);
2047
2048 if (max_len <= needed)
2049 return max_len;
2050
2051 partial = needed % mss_now;
2052 /* If last segment is not a full MSS, check if Nagle rules allow us
2053 * to include this last segment in this skb.
2054 * Otherwise, we'll split the skb at last MSS boundary
2055 */
2056 if (tcp_nagle_check(partial: partial != 0, tp, nonagle))
2057 return needed - partial;
2058
2059 return needed;
2060}
2061
2062/* Can at least one segment of SKB be sent right now, according to the
2063 * congestion window rules? If so, return how many segments are allowed.
2064 */
2065static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2066 const struct sk_buff *skb)
2067{
2068 u32 in_flight, cwnd, halfcwnd;
2069
2070 /* Don't be strict about the congestion window for the final FIN. */
2071 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2072 tcp_skb_pcount(skb) == 1)
2073 return 1;
2074
2075 in_flight = tcp_packets_in_flight(tp);
2076 cwnd = tcp_snd_cwnd(tp);
2077 if (in_flight >= cwnd)
2078 return 0;
2079
2080 /* For better scheduling, ensure we have at least
2081 * 2 GSO packets in flight.
2082 */
2083 halfcwnd = max(cwnd >> 1, 1U);
2084 return min(halfcwnd, cwnd - in_flight);
2085}
2086
2087/* Initialize TSO state of a skb.
2088 * This must be invoked the first time we consider transmitting
2089 * SKB onto the wire.
2090 */
2091static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2092{
2093 int tso_segs = tcp_skb_pcount(skb);
2094
2095 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2096 tcp_set_skb_tso_segs(skb, mss_now);
2097 tso_segs = tcp_skb_pcount(skb);
2098 }
2099 return tso_segs;
2100}
2101
2102
2103/* Return true if the Nagle test allows this packet to be
2104 * sent now.
2105 */
2106static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2107 unsigned int cur_mss, int nonagle)
2108{
2109 /* Nagle rule does not apply to frames, which sit in the middle of the
2110 * write_queue (they have no chances to get new data).
2111 *
2112 * This is implemented in the callers, where they modify the 'nonagle'
2113 * argument based upon the location of SKB in the send queue.
2114 */
2115 if (nonagle & TCP_NAGLE_PUSH)
2116 return true;
2117
2118 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2119 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2120 return true;
2121
2122 if (!tcp_nagle_check(partial: skb->len < cur_mss, tp, nonagle))
2123 return true;
2124
2125 return false;
2126}
2127
2128/* Does at least the first segment of SKB fit into the send window? */
2129static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2130 const struct sk_buff *skb,
2131 unsigned int cur_mss)
2132{
2133 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2134
2135 if (skb->len > cur_mss)
2136 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2137
2138 return !after(end_seq, tcp_wnd_end(tp));
2139}
2140
2141/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2142 * which is put after SKB on the list. It is very much like
2143 * tcp_fragment() except that it may make several kinds of assumptions
2144 * in order to speed up the splitting operation. In particular, we
2145 * know that all the data is in scatter-gather pages, and that the
2146 * packet has never been sent out before (and thus is not cloned).
2147 */
2148static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2149 unsigned int mss_now, gfp_t gfp)
2150{
2151 int nlen = skb->len - len;
2152 struct sk_buff *buff;
2153 u8 flags;
2154
2155 /* All of a TSO frame must be composed of paged data. */
2156 DEBUG_NET_WARN_ON_ONCE(skb->len != skb->data_len);
2157
2158 buff = tcp_stream_alloc_skb(sk, gfp, force_schedule: true);
2159 if (unlikely(!buff))
2160 return -ENOMEM;
2161 skb_copy_decrypted(to: buff, from: skb);
2162 mptcp_skb_ext_copy(to: buff, from: skb);
2163
2164 sk_wmem_queued_add(sk, val: buff->truesize);
2165 sk_mem_charge(sk, size: buff->truesize);
2166 buff->truesize += nlen;
2167 skb->truesize -= nlen;
2168
2169 /* Correct the sequence numbers. */
2170 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2171 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2172 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2173
2174 /* PSH and FIN should only be set in the second packet. */
2175 flags = TCP_SKB_CB(skb)->tcp_flags;
2176 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2177 TCP_SKB_CB(buff)->tcp_flags = flags;
2178
2179 tcp_skb_fragment_eor(skb, skb2: buff);
2180
2181 skb_split(skb, skb1: buff, len);
2182 tcp_fragment_tstamp(skb, skb2: buff);
2183
2184 /* Fix up tso_factor for both original and new SKB. */
2185 tcp_set_skb_tso_segs(skb, mss_now);
2186 tcp_set_skb_tso_segs(skb: buff, mss_now);
2187
2188 /* Link BUFF into the send queue. */
2189 __skb_header_release(skb: buff);
2190 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue: TCP_FRAG_IN_WRITE_QUEUE);
2191
2192 return 0;
2193}
2194
2195/* Try to defer sending, if possible, in order to minimize the amount
2196 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2197 *
2198 * This algorithm is from John Heffner.
2199 */
2200static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2201 bool *is_cwnd_limited,
2202 bool *is_rwnd_limited,
2203 u32 max_segs)
2204{
2205 const struct inet_connection_sock *icsk = inet_csk(sk);
2206 u32 send_win, cong_win, limit, in_flight;
2207 struct tcp_sock *tp = tcp_sk(sk);
2208 struct sk_buff *head;
2209 int win_divisor;
2210 s64 delta;
2211
2212 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2213 goto send_now;
2214
2215 /* Avoid bursty behavior by allowing defer
2216 * only if the last write was recent (1 ms).
2217 * Note that tp->tcp_wstamp_ns can be in the future if we have
2218 * packets waiting in a qdisc or device for EDT delivery.
2219 */
2220 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2221 if (delta > 0)
2222 goto send_now;
2223
2224 in_flight = tcp_packets_in_flight(tp);
2225
2226 BUG_ON(tcp_skb_pcount(skb) <= 1);
2227 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2228
2229 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2230
2231 /* From in_flight test above, we know that cwnd > in_flight. */
2232 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2233
2234 limit = min(send_win, cong_win);
2235
2236 /* If a full-sized TSO skb can be sent, do it. */
2237 if (limit >= max_segs * tp->mss_cache)
2238 goto send_now;
2239
2240 /* Middle in queue won't get any more data, full sendable already? */
2241 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2242 goto send_now;
2243
2244 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2245 if (win_divisor) {
2246 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2247
2248 /* If at least some fraction of a window is available,
2249 * just use it.
2250 */
2251 chunk /= win_divisor;
2252 if (limit >= chunk)
2253 goto send_now;
2254 } else {
2255 /* Different approach, try not to defer past a single
2256 * ACK. Receiver should ACK every other full sized
2257 * frame, so if we have space for more than 3 frames
2258 * then send now.
2259 */
2260 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2261 goto send_now;
2262 }
2263
2264 /* TODO : use tsorted_sent_queue ? */
2265 head = tcp_rtx_queue_head(sk);
2266 if (!head)
2267 goto send_now;
2268 delta = tp->tcp_clock_cache - head->tstamp;
2269 /* If next ACK is likely to come too late (half srtt), do not defer */
2270 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2271 goto send_now;
2272
2273 /* Ok, it looks like it is advisable to defer.
2274 * Three cases are tracked :
2275 * 1) We are cwnd-limited
2276 * 2) We are rwnd-limited
2277 * 3) We are application limited.
2278 */
2279 if (cong_win < send_win) {
2280 if (cong_win <= skb->len) {
2281 *is_cwnd_limited = true;
2282 return true;
2283 }
2284 } else {
2285 if (send_win <= skb->len) {
2286 *is_rwnd_limited = true;
2287 return true;
2288 }
2289 }
2290
2291 /* If this packet won't get more data, do not wait. */
2292 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2293 TCP_SKB_CB(skb)->eor)
2294 goto send_now;
2295
2296 return true;
2297
2298send_now:
2299 return false;
2300}
2301
2302static inline void tcp_mtu_check_reprobe(struct sock *sk)
2303{
2304 struct inet_connection_sock *icsk = inet_csk(sk);
2305 struct tcp_sock *tp = tcp_sk(sk);
2306 struct net *net = sock_net(sk);
2307 u32 interval;
2308 s32 delta;
2309
2310 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2311 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2312 if (unlikely(delta >= interval * HZ)) {
2313 int mss = tcp_current_mss(sk);
2314
2315 /* Update current search range */
2316 icsk->icsk_mtup.probe_size = 0;
2317 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2318 sizeof(struct tcphdr) +
2319 icsk->icsk_af_ops->net_header_len;
2320 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2321
2322 /* Update probe time stamp */
2323 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2324 }
2325}
2326
2327static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2328{
2329 struct sk_buff *skb, *next;
2330
2331 skb = tcp_send_head(sk);
2332 tcp_for_write_queue_from_safe(skb, next, sk) {
2333 if (len <= skb->len)
2334 break;
2335
2336 if (unlikely(TCP_SKB_CB(skb)->eor) ||
2337 tcp_has_tx_tstamp(skb) ||
2338 !skb_pure_zcopy_same(skb1: skb, skb2: next))
2339 return false;
2340
2341 len -= skb->len;
2342 }
2343
2344 return true;
2345}
2346
2347static int tcp_clone_payload(struct sock *sk, struct sk_buff *to,
2348 int probe_size)
2349{
2350 skb_frag_t *lastfrag = NULL, *fragto = skb_shinfo(to)->frags;
2351 int i, todo, len = 0, nr_frags = 0;
2352 const struct sk_buff *skb;
2353
2354 if (!sk_wmem_schedule(sk, size: to->truesize + probe_size))
2355 return -ENOMEM;
2356
2357 skb_queue_walk(&sk->sk_write_queue, skb) {
2358 const skb_frag_t *fragfrom = skb_shinfo(skb)->frags;
2359
2360 if (skb_headlen(skb))
2361 return -EINVAL;
2362
2363 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, fragfrom++) {
2364 if (len >= probe_size)
2365 goto commit;
2366 todo = min_t(int, skb_frag_size(fragfrom),
2367 probe_size - len);
2368 len += todo;
2369 if (lastfrag &&
2370 skb_frag_page(frag: fragfrom) == skb_frag_page(frag: lastfrag) &&
2371 skb_frag_off(frag: fragfrom) == skb_frag_off(frag: lastfrag) +
2372 skb_frag_size(frag: lastfrag)) {
2373 skb_frag_size_add(frag: lastfrag, delta: todo);
2374 continue;
2375 }
2376 if (unlikely(nr_frags == MAX_SKB_FRAGS))
2377 return -E2BIG;
2378 skb_frag_page_copy(fragto, fragfrom);
2379 skb_frag_off_copy(fragto, fragfrom);
2380 skb_frag_size_set(frag: fragto, size: todo);
2381 nr_frags++;
2382 lastfrag = fragto++;
2383 }
2384 }
2385commit:
2386 WARN_ON_ONCE(len != probe_size);
2387 for (i = 0; i < nr_frags; i++)
2388 skb_frag_ref(skb: to, f: i);
2389
2390 skb_shinfo(to)->nr_frags = nr_frags;
2391 to->truesize += probe_size;
2392 to->len += probe_size;
2393 to->data_len += probe_size;
2394 __skb_header_release(skb: to);
2395 return 0;
2396}
2397
2398/* Create a new MTU probe if we are ready.
2399 * MTU probe is regularly attempting to increase the path MTU by
2400 * deliberately sending larger packets. This discovers routing
2401 * changes resulting in larger path MTUs.
2402 *
2403 * Returns 0 if we should wait to probe (no cwnd available),
2404 * 1 if a probe was sent,
2405 * -1 otherwise
2406 */
2407static int tcp_mtu_probe(struct sock *sk)
2408{
2409 struct inet_connection_sock *icsk = inet_csk(sk);
2410 struct tcp_sock *tp = tcp_sk(sk);
2411 struct sk_buff *skb, *nskb, *next;
2412 struct net *net = sock_net(sk);
2413 int probe_size;
2414 int size_needed;
2415 int copy, len;
2416 int mss_now;
2417 int interval;
2418
2419 /* Not currently probing/verifying,
2420 * not in recovery,
2421 * have enough cwnd, and
2422 * not SACKing (the variable headers throw things off)
2423 */
2424 if (likely(!icsk->icsk_mtup.enabled ||
2425 icsk->icsk_mtup.probe_size ||
2426 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2427 tcp_snd_cwnd(tp) < 11 ||
2428 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2429 return -1;
2430
2431 /* Use binary search for probe_size between tcp_mss_base,
2432 * and current mss_clamp. if (search_high - search_low)
2433 * smaller than a threshold, backoff from probing.
2434 */
2435 mss_now = tcp_current_mss(sk);
2436 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2437 icsk->icsk_mtup.search_low) >> 1);
2438 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2439 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2440 /* When misfortune happens, we are reprobing actively,
2441 * and then reprobe timer has expired. We stick with current
2442 * probing process by not resetting search range to its orignal.
2443 */
2444 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2445 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2446 /* Check whether enough time has elaplased for
2447 * another round of probing.
2448 */
2449 tcp_mtu_check_reprobe(sk);
2450 return -1;
2451 }
2452
2453 /* Have enough data in the send queue to probe? */
2454 if (tp->write_seq - tp->snd_nxt < size_needed)
2455 return -1;
2456
2457 if (tp->snd_wnd < size_needed)
2458 return -1;
2459 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2460 return 0;
2461
2462 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2463 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2464 if (!tcp_packets_in_flight(tp))
2465 return -1;
2466 else
2467 return 0;
2468 }
2469
2470 if (!tcp_can_coalesce_send_queue_head(sk, len: probe_size))
2471 return -1;
2472
2473 /* We're allowed to probe. Build it now. */
2474 nskb = tcp_stream_alloc_skb(sk, GFP_ATOMIC, force_schedule: false);
2475 if (!nskb)
2476 return -1;
2477
2478 /* build the payload, and be prepared to abort if this fails. */
2479 if (tcp_clone_payload(sk, to: nskb, probe_size)) {
2480 tcp_skb_tsorted_anchor_cleanup(skb: nskb);
2481 consume_skb(skb: nskb);
2482 return -1;
2483 }
2484 sk_wmem_queued_add(sk, val: nskb->truesize);
2485 sk_mem_charge(sk, size: nskb->truesize);
2486
2487 skb = tcp_send_head(sk);
2488 skb_copy_decrypted(to: nskb, from: skb);
2489 mptcp_skb_ext_copy(to: nskb, from: skb);
2490
2491 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2492 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2493 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2494
2495 tcp_insert_write_queue_before(new: nskb, skb, sk);
2496 tcp_highest_sack_replace(sk, old: skb, new: nskb);
2497
2498 len = 0;
2499 tcp_for_write_queue_from_safe(skb, next, sk) {
2500 copy = min_t(int, skb->len, probe_size - len);
2501
2502 if (skb->len <= copy) {
2503 /* We've eaten all the data from this skb.
2504 * Throw it away. */
2505 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2506 /* If this is the last SKB we copy and eor is set
2507 * we need to propagate it to the new skb.
2508 */
2509 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2510 tcp_skb_collapse_tstamp(skb: nskb, next_skb: skb);
2511 tcp_unlink_write_queue(skb, sk);
2512 tcp_wmem_free_skb(sk, skb);
2513 } else {
2514 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2515 ~(TCPHDR_FIN|TCPHDR_PSH);
2516 __pskb_trim_head(skb, len: copy);
2517 tcp_set_skb_tso_segs(skb, mss_now);
2518 TCP_SKB_CB(skb)->seq += copy;
2519 }
2520
2521 len += copy;
2522
2523 if (len >= probe_size)
2524 break;
2525 }
2526 tcp_init_tso_segs(skb: nskb, mss_now: nskb->len);
2527
2528 /* We're ready to send. If this fails, the probe will
2529 * be resegmented into mss-sized pieces by tcp_write_xmit().
2530 */
2531 if (!tcp_transmit_skb(sk, skb: nskb, clone_it: 1, GFP_ATOMIC)) {
2532 /* Decrement cwnd here because we are sending
2533 * effectively two packets. */
2534 tcp_snd_cwnd_set(tp, val: tcp_snd_cwnd(tp) - 1);
2535 tcp_event_new_data_sent(sk, skb: nskb);
2536
2537 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2538 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2539 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2540
2541 return 1;
2542 }
2543
2544 return -1;
2545}
2546
2547static bool tcp_pacing_check(struct sock *sk)
2548{
2549 struct tcp_sock *tp = tcp_sk(sk);
2550
2551 if (!tcp_needs_internal_pacing(sk))
2552 return false;
2553
2554 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2555 return false;
2556
2557 if (!hrtimer_is_queued(timer: &tp->pacing_timer)) {
2558 hrtimer_start(timer: &tp->pacing_timer,
2559 tim: ns_to_ktime(ns: tp->tcp_wstamp_ns),
2560 mode: HRTIMER_MODE_ABS_PINNED_SOFT);
2561 sock_hold(sk);
2562 }
2563 return true;
2564}
2565
2566static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2567{
2568 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2569
2570 /* No skb in the rtx queue. */
2571 if (!node)
2572 return true;
2573
2574 /* Only one skb in rtx queue. */
2575 return !node->rb_left && !node->rb_right;
2576}
2577
2578/* TCP Small Queues :
2579 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2580 * (These limits are doubled for retransmits)
2581 * This allows for :
2582 * - better RTT estimation and ACK scheduling
2583 * - faster recovery
2584 * - high rates
2585 * Alas, some drivers / subsystems require a fair amount
2586 * of queued bytes to ensure line rate.
2587 * One example is wifi aggregation (802.11 AMPDU)
2588 */
2589static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2590 unsigned int factor)
2591{
2592 unsigned long limit;
2593
2594 limit = max_t(unsigned long,
2595 2 * skb->truesize,
2596 READ_ONCE(sk->sk_pacing_rate) >> READ_ONCE(sk->sk_pacing_shift));
2597 if (sk->sk_pacing_status == SK_PACING_NONE)
2598 limit = min_t(unsigned long, limit,
2599 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2600 limit <<= factor;
2601
2602 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2603 tcp_sk(sk)->tcp_tx_delay) {
2604 u64 extra_bytes = (u64)READ_ONCE(sk->sk_pacing_rate) *
2605 tcp_sk(sk)->tcp_tx_delay;
2606
2607 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2608 * approximate our needs assuming an ~100% skb->truesize overhead.
2609 * USEC_PER_SEC is approximated by 2^20.
2610 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2611 */
2612 extra_bytes >>= (20 - 1);
2613 limit += extra_bytes;
2614 }
2615 if (refcount_read(r: &sk->sk_wmem_alloc) > limit) {
2616 /* Always send skb if rtx queue is empty or has one skb.
2617 * No need to wait for TX completion to call us back,
2618 * after softirq/tasklet schedule.
2619 * This helps when TX completions are delayed too much.
2620 */
2621 if (tcp_rtx_queue_empty_or_single_skb(sk))
2622 return false;
2623
2624 set_bit(nr: TSQ_THROTTLED, addr: &sk->sk_tsq_flags);
2625 /* It is possible TX completion already happened
2626 * before we set TSQ_THROTTLED, so we must
2627 * test again the condition.
2628 */
2629 smp_mb__after_atomic();
2630 if (refcount_read(r: &sk->sk_wmem_alloc) > limit)
2631 return true;
2632 }
2633 return false;
2634}
2635
2636static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2637{
2638 const u32 now = tcp_jiffies32;
2639 enum tcp_chrono old = tp->chrono_type;
2640
2641 if (old > TCP_CHRONO_UNSPEC)
2642 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2643 tp->chrono_start = now;
2644 tp->chrono_type = new;
2645}
2646
2647void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2648{
2649 struct tcp_sock *tp = tcp_sk(sk);
2650
2651 /* If there are multiple conditions worthy of tracking in a
2652 * chronograph then the highest priority enum takes precedence
2653 * over the other conditions. So that if something "more interesting"
2654 * starts happening, stop the previous chrono and start a new one.
2655 */
2656 if (type > tp->chrono_type)
2657 tcp_chrono_set(tp, new: type);
2658}
2659
2660void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2661{
2662 struct tcp_sock *tp = tcp_sk(sk);
2663
2664
2665 /* There are multiple conditions worthy of tracking in a
2666 * chronograph, so that the highest priority enum takes
2667 * precedence over the other conditions (see tcp_chrono_start).
2668 * If a condition stops, we only stop chrono tracking if
2669 * it's the "most interesting" or current chrono we are
2670 * tracking and starts busy chrono if we have pending data.
2671 */
2672 if (tcp_rtx_and_write_queues_empty(sk))
2673 tcp_chrono_set(tp, new: TCP_CHRONO_UNSPEC);
2674 else if (type == tp->chrono_type)
2675 tcp_chrono_set(tp, new: TCP_CHRONO_BUSY);
2676}
2677
2678/* This routine writes packets to the network. It advances the
2679 * send_head. This happens as incoming acks open up the remote
2680 * window for us.
2681 *
2682 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2683 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2684 * account rare use of URG, this is not a big flaw.
2685 *
2686 * Send at most one packet when push_one > 0. Temporarily ignore
2687 * cwnd limit to force at most one packet out when push_one == 2.
2688
2689 * Returns true, if no segments are in flight and we have queued segments,
2690 * but cannot send anything now because of SWS or another problem.
2691 */
2692static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2693 int push_one, gfp_t gfp)
2694{
2695 struct tcp_sock *tp = tcp_sk(sk);
2696 struct sk_buff *skb;
2697 unsigned int tso_segs, sent_pkts;
2698 int cwnd_quota;
2699 int result;
2700 bool is_cwnd_limited = false, is_rwnd_limited = false;
2701 u32 max_segs;
2702
2703 sent_pkts = 0;
2704
2705 tcp_mstamp_refresh(tp);
2706 if (!push_one) {
2707 /* Do MTU probing. */
2708 result = tcp_mtu_probe(sk);
2709 if (!result) {
2710 return false;
2711 } else if (result > 0) {
2712 sent_pkts = 1;
2713 }
2714 }
2715
2716 max_segs = tcp_tso_segs(sk, mss_now);
2717 while ((skb = tcp_send_head(sk))) {
2718 unsigned int limit;
2719
2720 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2721 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2722 tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2723 skb_set_delivery_time(skb, kt: tp->tcp_wstamp_ns, mono: true);
2724 list_move_tail(list: &skb->tcp_tsorted_anchor, head: &tp->tsorted_sent_queue);
2725 tcp_init_tso_segs(skb, mss_now);
2726 goto repair; /* Skip network transmission */
2727 }
2728
2729 if (tcp_pacing_check(sk))
2730 break;
2731
2732 tso_segs = tcp_init_tso_segs(skb, mss_now);
2733 BUG_ON(!tso_segs);
2734
2735 cwnd_quota = tcp_cwnd_test(tp, skb);
2736 if (!cwnd_quota) {
2737 if (push_one == 2)
2738 /* Force out a loss probe pkt. */
2739 cwnd_quota = 1;
2740 else
2741 break;
2742 }
2743
2744 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2745 is_rwnd_limited = true;
2746 break;
2747 }
2748
2749 if (tso_segs == 1) {
2750 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2751 (tcp_skb_is_last(sk, skb) ?
2752 nonagle : TCP_NAGLE_PUSH))))
2753 break;
2754 } else {
2755 if (!push_one &&
2756 tcp_tso_should_defer(sk, skb, is_cwnd_limited: &is_cwnd_limited,
2757 is_rwnd_limited: &is_rwnd_limited, max_segs))
2758 break;
2759 }
2760
2761 limit = mss_now;
2762 if (tso_segs > 1 && !tcp_urg_mode(tp))
2763 limit = tcp_mss_split_point(sk, skb, mss_now,
2764 min_t(unsigned int,
2765 cwnd_quota,
2766 max_segs),
2767 nonagle);
2768
2769 if (skb->len > limit &&
2770 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2771 break;
2772
2773 if (tcp_small_queue_check(sk, skb, factor: 0))
2774 break;
2775
2776 /* Argh, we hit an empty skb(), presumably a thread
2777 * is sleeping in sendmsg()/sk_stream_wait_memory().
2778 * We do not want to send a pure-ack packet and have
2779 * a strange looking rtx queue with empty packet(s).
2780 */
2781 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2782 break;
2783
2784 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2785 break;
2786
2787repair:
2788 /* Advance the send_head. This one is sent out.
2789 * This call will increment packets_out.
2790 */
2791 tcp_event_new_data_sent(sk, skb);
2792
2793 tcp_minshall_update(tp, mss_now, skb);
2794 sent_pkts += tcp_skb_pcount(skb);
2795
2796 if (push_one)
2797 break;
2798 }
2799
2800 if (is_rwnd_limited)
2801 tcp_chrono_start(sk, type: TCP_CHRONO_RWND_LIMITED);
2802 else
2803 tcp_chrono_stop(sk, type: TCP_CHRONO_RWND_LIMITED);
2804
2805 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2806 if (likely(sent_pkts || is_cwnd_limited))
2807 tcp_cwnd_validate(sk, is_cwnd_limited);
2808
2809 if (likely(sent_pkts)) {
2810 if (tcp_in_cwnd_reduction(sk))
2811 tp->prr_out += sent_pkts;
2812
2813 /* Send one loss probe per tail loss episode. */
2814 if (push_one != 2)
2815 tcp_schedule_loss_probe(sk, advancing_rto: false);
2816 return false;
2817 }
2818 return !tp->packets_out && !tcp_write_queue_empty(sk);
2819}
2820
2821bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2822{
2823 struct inet_connection_sock *icsk = inet_csk(sk);
2824 struct tcp_sock *tp = tcp_sk(sk);
2825 u32 timeout, timeout_us, rto_delta_us;
2826 int early_retrans;
2827
2828 /* Don't do any loss probe on a Fast Open connection before 3WHS
2829 * finishes.
2830 */
2831 if (rcu_access_pointer(tp->fastopen_rsk))
2832 return false;
2833
2834 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2835 /* Schedule a loss probe in 2*RTT for SACK capable connections
2836 * not in loss recovery, that are either limited by cwnd or application.
2837 */
2838 if ((early_retrans != 3 && early_retrans != 4) ||
2839 !tp->packets_out || !tcp_is_sack(tp) ||
2840 (icsk->icsk_ca_state != TCP_CA_Open &&
2841 icsk->icsk_ca_state != TCP_CA_CWR))
2842 return false;
2843
2844 /* Probe timeout is 2*rtt. Add minimum RTO to account
2845 * for delayed ack when there's one outstanding packet. If no RTT
2846 * sample is available then probe after TCP_TIMEOUT_INIT.
2847 */
2848 if (tp->srtt_us) {
2849 timeout_us = tp->srtt_us >> 2;
2850 if (tp->packets_out == 1)
2851 timeout_us += tcp_rto_min_us(sk);
2852 else
2853 timeout_us += TCP_TIMEOUT_MIN_US;
2854 timeout = usecs_to_jiffies(u: timeout_us);
2855 } else {
2856 timeout = TCP_TIMEOUT_INIT;
2857 }
2858
2859 /* If the RTO formula yields an earlier time, then use that time. */
2860 rto_delta_us = advancing_rto ?
2861 jiffies_to_usecs(j: inet_csk(sk)->icsk_rto) :
2862 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2863 if (rto_delta_us > 0)
2864 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2865
2866 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, when: timeout, TCP_RTO_MAX);
2867 return true;
2868}
2869
2870/* Thanks to skb fast clones, we can detect if a prior transmit of
2871 * a packet is still in a qdisc or driver queue.
2872 * In this case, there is very little point doing a retransmit !
2873 */
2874static bool skb_still_in_host_queue(struct sock *sk,
2875 const struct sk_buff *skb)
2876{
2877 if (unlikely(skb_fclone_busy(sk, skb))) {
2878 set_bit(nr: TSQ_THROTTLED, addr: &sk->sk_tsq_flags);
2879 smp_mb__after_atomic();
2880 if (skb_fclone_busy(sk, skb)) {
2881 NET_INC_STATS(sock_net(sk),
2882 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2883 return true;
2884 }
2885 }
2886 return false;
2887}
2888
2889/* When probe timeout (PTO) fires, try send a new segment if possible, else
2890 * retransmit the last segment.
2891 */
2892void tcp_send_loss_probe(struct sock *sk)
2893{
2894 struct tcp_sock *tp = tcp_sk(sk);
2895 struct sk_buff *skb;
2896 int pcount;
2897 int mss = tcp_current_mss(sk);
2898
2899 /* At most one outstanding TLP */
2900 if (tp->tlp_high_seq)
2901 goto rearm_timer;
2902
2903 tp->tlp_retrans = 0;
2904 skb = tcp_send_head(sk);
2905 if (skb && tcp_snd_wnd_test(tp, skb, cur_mss: mss)) {
2906 pcount = tp->packets_out;
2907 tcp_write_xmit(sk, mss_now: mss, TCP_NAGLE_OFF, push_one: 2, GFP_ATOMIC);
2908 if (tp->packets_out > pcount)
2909 goto probe_sent;
2910 goto rearm_timer;
2911 }
2912 skb = skb_rb_last(&sk->tcp_rtx_queue);
2913 if (unlikely(!skb)) {
2914 WARN_ONCE(tp->packets_out,
2915 "invalid inflight: %u state %u cwnd %u mss %d\n",
2916 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2917 inet_csk(sk)->icsk_pending = 0;
2918 return;
2919 }
2920
2921 if (skb_still_in_host_queue(sk, skb))
2922 goto rearm_timer;
2923
2924 pcount = tcp_skb_pcount(skb);
2925 if (WARN_ON(!pcount))
2926 goto rearm_timer;
2927
2928 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2929 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2930 (pcount - 1) * mss, mss,
2931 GFP_ATOMIC)))
2932 goto rearm_timer;
2933 skb = skb_rb_next(skb);
2934 }
2935
2936 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2937 goto rearm_timer;
2938
2939 if (__tcp_retransmit_skb(sk, skb, segs: 1))
2940 goto rearm_timer;
2941
2942 tp->tlp_retrans = 1;
2943
2944probe_sent:
2945 /* Record snd_nxt for loss detection. */
2946 tp->tlp_high_seq = tp->snd_nxt;
2947
2948 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2949 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2950 inet_csk(sk)->icsk_pending = 0;
2951rearm_timer:
2952 tcp_rearm_rto(sk);
2953}
2954
2955/* Push out any pending frames which were held back due to
2956 * TCP_CORK or attempt at coalescing tiny packets.
2957 * The socket must be locked by the caller.
2958 */
2959void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2960 int nonagle)
2961{
2962 /* If we are closed, the bytes will have to remain here.
2963 * In time closedown will finish, we empty the write queue and
2964 * all will be happy.
2965 */
2966 if (unlikely(sk->sk_state == TCP_CLOSE))
2967 return;
2968
2969 if (tcp_write_xmit(sk, mss_now: cur_mss, nonagle, push_one: 0,
2970 gfp: sk_gfp_mask(sk, GFP_ATOMIC)))
2971 tcp_check_probe_timer(sk);
2972}
2973
2974/* Send _single_ skb sitting at the send head. This function requires
2975 * true push pending frames to setup probe timer etc.
2976 */
2977void tcp_push_one(struct sock *sk, unsigned int mss_now)
2978{
2979 struct sk_buff *skb = tcp_send_head(sk);
2980
2981 BUG_ON(!skb || skb->len < mss_now);
2982
2983 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, push_one: 1, gfp: sk->sk_allocation);
2984}
2985
2986/* This function returns the amount that we can raise the
2987 * usable window based on the following constraints
2988 *
2989 * 1. The window can never be shrunk once it is offered (RFC 793)
2990 * 2. We limit memory per socket
2991 *
2992 * RFC 1122:
2993 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2994 * RECV.NEXT + RCV.WIN fixed until:
2995 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2996 *
2997 * i.e. don't raise the right edge of the window until you can raise
2998 * it at least MSS bytes.
2999 *
3000 * Unfortunately, the recommended algorithm breaks header prediction,
3001 * since header prediction assumes th->window stays fixed.
3002 *
3003 * Strictly speaking, keeping th->window fixed violates the receiver
3004 * side SWS prevention criteria. The problem is that under this rule
3005 * a stream of single byte packets will cause the right side of the
3006 * window to always advance by a single byte.
3007 *
3008 * Of course, if the sender implements sender side SWS prevention
3009 * then this will not be a problem.
3010 *
3011 * BSD seems to make the following compromise:
3012 *
3013 * If the free space is less than the 1/4 of the maximum
3014 * space available and the free space is less than 1/2 mss,
3015 * then set the window to 0.
3016 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
3017 * Otherwise, just prevent the window from shrinking
3018 * and from being larger than the largest representable value.
3019 *
3020 * This prevents incremental opening of the window in the regime
3021 * where TCP is limited by the speed of the reader side taking
3022 * data out of the TCP receive queue. It does nothing about
3023 * those cases where the window is constrained on the sender side
3024 * because the pipeline is full.
3025 *
3026 * BSD also seems to "accidentally" limit itself to windows that are a
3027 * multiple of MSS, at least until the free space gets quite small.
3028 * This would appear to be a side effect of the mbuf implementation.
3029 * Combining these two algorithms results in the observed behavior
3030 * of having a fixed window size at almost all times.
3031 *
3032 * Below we obtain similar behavior by forcing the offered window to
3033 * a multiple of the mss when it is feasible to do so.
3034 *
3035 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
3036 * Regular options like TIMESTAMP are taken into account.
3037 */
3038u32 __tcp_select_window(struct sock *sk)
3039{
3040 struct inet_connection_sock *icsk = inet_csk(sk);
3041 struct tcp_sock *tp = tcp_sk(sk);
3042 struct net *net = sock_net(sk);
3043 /* MSS for the peer's data. Previous versions used mss_clamp
3044 * here. I don't know if the value based on our guesses
3045 * of peer's MSS is better for the performance. It's more correct
3046 * but may be worse for the performance because of rcv_mss
3047 * fluctuations. --SAW 1998/11/1
3048 */
3049 int mss = icsk->icsk_ack.rcv_mss;
3050 int free_space = tcp_space(sk);
3051 int allowed_space = tcp_full_space(sk);
3052 int full_space, window;
3053
3054 if (sk_is_mptcp(sk))
3055 mptcp_space(ssk: sk, space: &free_space, full_space: &allowed_space);
3056
3057 full_space = min_t(int, tp->window_clamp, allowed_space);
3058
3059 if (unlikely(mss > full_space)) {
3060 mss = full_space;
3061 if (mss <= 0)
3062 return 0;
3063 }
3064
3065 /* Only allow window shrink if the sysctl is enabled and we have
3066 * a non-zero scaling factor in effect.
3067 */
3068 if (READ_ONCE(net->ipv4.sysctl_tcp_shrink_window) && tp->rx_opt.rcv_wscale)
3069 goto shrink_window_allowed;
3070
3071 /* do not allow window to shrink */
3072
3073 if (free_space < (full_space >> 1)) {
3074 icsk->icsk_ack.quick = 0;
3075
3076 if (tcp_under_memory_pressure(sk))
3077 tcp_adjust_rcv_ssthresh(sk);
3078
3079 /* free_space might become our new window, make sure we don't
3080 * increase it due to wscale.
3081 */
3082 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3083
3084 /* if free space is less than mss estimate, or is below 1/16th
3085 * of the maximum allowed, try to move to zero-window, else
3086 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
3087 * new incoming data is dropped due to memory limits.
3088 * With large window, mss test triggers way too late in order
3089 * to announce zero window in time before rmem limit kicks in.
3090 */
3091 if (free_space < (allowed_space >> 4) || free_space < mss)
3092 return 0;
3093 }
3094
3095 if (free_space > tp->rcv_ssthresh)
3096 free_space = tp->rcv_ssthresh;
3097
3098 /* Don't do rounding if we are using window scaling, since the
3099 * scaled window will not line up with the MSS boundary anyway.
3100 */
3101 if (tp->rx_opt.rcv_wscale) {
3102 window = free_space;
3103
3104 /* Advertise enough space so that it won't get scaled away.
3105 * Import case: prevent zero window announcement if
3106 * 1<<rcv_wscale > mss.
3107 */
3108 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3109 } else {
3110 window = tp->rcv_wnd;
3111 /* Get the largest window that is a nice multiple of mss.
3112 * Window clamp already applied above.
3113 * If our current window offering is within 1 mss of the
3114 * free space we just keep it. This prevents the divide
3115 * and multiply from happening most of the time.
3116 * We also don't do any window rounding when the free space
3117 * is too small.
3118 */
3119 if (window <= free_space - mss || window > free_space)
3120 window = rounddown(free_space, mss);
3121 else if (mss == full_space &&
3122 free_space > window + (full_space >> 1))
3123 window = free_space;
3124 }
3125
3126 return window;
3127
3128shrink_window_allowed:
3129 /* new window should always be an exact multiple of scaling factor */
3130 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
3131
3132 if (free_space < (full_space >> 1)) {
3133 icsk->icsk_ack.quick = 0;
3134
3135 if (tcp_under_memory_pressure(sk))
3136 tcp_adjust_rcv_ssthresh(sk);
3137
3138 /* if free space is too low, return a zero window */
3139 if (free_space < (allowed_space >> 4) || free_space < mss ||
3140 free_space < (1 << tp->rx_opt.rcv_wscale))
3141 return 0;
3142 }
3143
3144 if (free_space > tp->rcv_ssthresh) {
3145 free_space = tp->rcv_ssthresh;
3146 /* new window should always be an exact multiple of scaling factor
3147 *
3148 * For this case, we ALIGN "up" (increase free_space) because
3149 * we know free_space is not zero here, it has been reduced from
3150 * the memory-based limit, and rcv_ssthresh is not a hard limit
3151 * (unlike sk_rcvbuf).
3152 */
3153 free_space = ALIGN(free_space, (1 << tp->rx_opt.rcv_wscale));
3154 }
3155
3156 return free_space;
3157}
3158
3159void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3160 const struct sk_buff *next_skb)
3161{
3162 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3163 const struct skb_shared_info *next_shinfo =
3164 skb_shinfo(next_skb);
3165 struct skb_shared_info *shinfo = skb_shinfo(skb);
3166
3167 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3168 shinfo->tskey = next_shinfo->tskey;
3169 TCP_SKB_CB(skb)->txstamp_ack |=
3170 TCP_SKB_CB(next_skb)->txstamp_ack;
3171 }
3172}
3173
3174/* Collapses two adjacent SKB's during retransmission. */
3175static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3176{
3177 struct tcp_sock *tp = tcp_sk(sk);
3178 struct sk_buff *next_skb = skb_rb_next(skb);
3179 int next_skb_size;
3180
3181 next_skb_size = next_skb->len;
3182
3183 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3184
3185 if (next_skb_size && !tcp_skb_shift(to: skb, from: next_skb, pcount: 1, shiftlen: next_skb_size))
3186 return false;
3187
3188 tcp_highest_sack_replace(sk, old: next_skb, new: skb);
3189
3190 /* Update sequence range on original skb. */
3191 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3192
3193 /* Merge over control information. This moves PSH/FIN etc. over */
3194 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3195
3196 /* All done, get rid of second SKB and account for it so
3197 * packet counting does not break.
3198 */
3199 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3200 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3201
3202 /* changed transmit queue under us so clear hints */
3203 tcp_clear_retrans_hints_partial(tp);
3204 if (next_skb == tp->retransmit_skb_hint)
3205 tp->retransmit_skb_hint = skb;
3206
3207 tcp_adjust_pcount(sk, skb: next_skb, decr: tcp_skb_pcount(skb: next_skb));
3208
3209 tcp_skb_collapse_tstamp(skb, next_skb);
3210
3211 tcp_rtx_queue_unlink_and_free(skb: next_skb, sk);
3212 return true;
3213}
3214
3215/* Check if coalescing SKBs is legal. */
3216static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3217{
3218 if (tcp_skb_pcount(skb) > 1)
3219 return false;
3220 if (skb_cloned(skb))
3221 return false;
3222 /* Some heuristics for collapsing over SACK'd could be invented */
3223 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3224 return false;
3225
3226 return true;
3227}
3228
3229/* Collapse packets in the retransmit queue to make to create
3230 * less packets on the wire. This is only done on retransmission.
3231 */
3232static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3233 int space)
3234{
3235 struct tcp_sock *tp = tcp_sk(sk);
3236 struct sk_buff *skb = to, *tmp;
3237 bool first = true;
3238
3239 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3240 return;
3241 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3242 return;
3243
3244 skb_rbtree_walk_from_safe(skb, tmp) {
3245 if (!tcp_can_collapse(sk, skb))
3246 break;
3247
3248 if (!tcp_skb_can_collapse(to, from: skb))
3249 break;
3250
3251 space -= skb->len;
3252
3253 if (first) {
3254 first = false;
3255 continue;
3256 }
3257
3258 if (space < 0)
3259 break;
3260
3261 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3262 break;
3263
3264 if (!tcp_collapse_retrans(sk, skb: to))
3265 break;
3266 }
3267}
3268
3269/* This retransmits one SKB. Policy decisions and retransmit queue
3270 * state updates are done by the caller. Returns non-zero if an
3271 * error occurred which prevented the send.
3272 */
3273int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3274{
3275 struct inet_connection_sock *icsk = inet_csk(sk);
3276 struct tcp_sock *tp = tcp_sk(sk);
3277 unsigned int cur_mss;
3278 int diff, len, err;
3279 int avail_wnd;
3280
3281 /* Inconclusive MTU probe */
3282 if (icsk->icsk_mtup.probe_size)
3283 icsk->icsk_mtup.probe_size = 0;
3284
3285 if (skb_still_in_host_queue(sk, skb))
3286 return -EBUSY;
3287
3288 if (before(TCP_SKB_CB(skb)->seq, seq2: tp->snd_una)) {
3289 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3290 WARN_ON_ONCE(1);
3291 return -EINVAL;
3292 }
3293 if (tcp_trim_head(sk, skb, len: tp->snd_una - TCP_SKB_CB(skb)->seq))
3294 return -ENOMEM;
3295 }
3296
3297 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3298 return -EHOSTUNREACH; /* Routing failure or similar. */
3299
3300 cur_mss = tcp_current_mss(sk);
3301 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3302
3303 /* If receiver has shrunk his window, and skb is out of
3304 * new window, do not retransmit it. The exception is the
3305 * case, when window is shrunk to zero. In this case
3306 * our retransmit of one segment serves as a zero window probe.
3307 */
3308 if (avail_wnd <= 0) {
3309 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3310 return -EAGAIN;
3311 avail_wnd = cur_mss;
3312 }
3313
3314 len = cur_mss * segs;
3315 if (len > avail_wnd) {
3316 len = rounddown(avail_wnd, cur_mss);
3317 if (!len)
3318 len = avail_wnd;
3319 }
3320 if (skb->len > len) {
3321 if (tcp_fragment(sk, tcp_queue: TCP_FRAG_IN_RTX_QUEUE, skb, len,
3322 mss_now: cur_mss, GFP_ATOMIC))
3323 return -ENOMEM; /* We'll try again later. */
3324 } else {
3325 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3326 return -ENOMEM;
3327
3328 diff = tcp_skb_pcount(skb);
3329 tcp_set_skb_tso_segs(skb, mss_now: cur_mss);
3330 diff -= tcp_skb_pcount(skb);
3331 if (diff)
3332 tcp_adjust_pcount(sk, skb, decr: diff);
3333 avail_wnd = min_t(int, avail_wnd, cur_mss);
3334 if (skb->len < avail_wnd)
3335 tcp_retrans_try_collapse(sk, to: skb, space: avail_wnd);
3336 }
3337
3338 /* RFC3168, section 6.1.1.1. ECN fallback */
3339 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3340 tcp_ecn_clear_syn(sk, skb);
3341
3342 /* Update global and local TCP statistics. */
3343 segs = tcp_skb_pcount(skb);
3344 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3345 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3346 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3347 tp->total_retrans += segs;
3348 tp->bytes_retrans += skb->len;
3349
3350 /* make sure skb->data is aligned on arches that require it
3351 * and check if ack-trimming & collapsing extended the headroom
3352 * beyond what csum_start can cover.
3353 */
3354 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3355 skb_headroom(skb) >= 0xFFFF)) {
3356 struct sk_buff *nskb;
3357
3358 tcp_skb_tsorted_save(skb) {
3359 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3360 if (nskb) {
3361 nskb->dev = NULL;
3362 err = tcp_transmit_skb(sk, skb: nskb, clone_it: 0, GFP_ATOMIC);
3363 } else {
3364 err = -ENOBUFS;
3365 }
3366 } tcp_skb_tsorted_restore(skb);
3367
3368 if (!err) {
3369 tcp_update_skb_after_send(sk, skb, prior_wstamp: tp->tcp_wstamp_ns);
3370 tcp_rate_skb_sent(sk, skb);
3371 }
3372 } else {
3373 err = tcp_transmit_skb(sk, skb, clone_it: 1, GFP_ATOMIC);
3374 }
3375
3376 /* To avoid taking spuriously low RTT samples based on a timestamp
3377 * for a transmit that never happened, always mark EVER_RETRANS
3378 */
3379 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3380
3381 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3382 tcp_call_bpf_3arg(sk, op: BPF_SOCK_OPS_RETRANS_CB,
3383 TCP_SKB_CB(skb)->seq, arg2: segs, arg3: err);
3384
3385 if (likely(!err)) {
3386 trace_tcp_retransmit_skb(sk, skb);
3387 } else if (err != -EBUSY) {
3388 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3389 }
3390 return err;
3391}
3392
3393int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3394{
3395 struct tcp_sock *tp = tcp_sk(sk);
3396 int err = __tcp_retransmit_skb(sk, skb, segs);
3397
3398 if (err == 0) {
3399#if FASTRETRANS_DEBUG > 0
3400 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3401 net_dbg_ratelimited("retrans_out leaked\n");
3402 }
3403#endif
3404 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3405 tp->retrans_out += tcp_skb_pcount(skb);
3406 }
3407
3408 /* Save stamp of the first (attempted) retransmit. */
3409 if (!tp->retrans_stamp)
3410 tp->retrans_stamp = tcp_skb_timestamp_ts(usec_ts: tp->tcp_usec_ts, skb);
3411
3412 if (tp->undo_retrans < 0)
3413 tp->undo_retrans = 0;
3414 tp->undo_retrans += tcp_skb_pcount(skb);
3415 return err;
3416}
3417
3418/* This gets called after a retransmit timeout, and the initially
3419 * retransmitted data is acknowledged. It tries to continue
3420 * resending the rest of the retransmit queue, until either
3421 * we've sent it all or the congestion window limit is reached.
3422 */
3423void tcp_xmit_retransmit_queue(struct sock *sk)
3424{
3425 const struct inet_connection_sock *icsk = inet_csk(sk);
3426 struct sk_buff *skb, *rtx_head, *hole = NULL;
3427 struct tcp_sock *tp = tcp_sk(sk);
3428 bool rearm_timer = false;
3429 u32 max_segs;
3430 int mib_idx;
3431
3432 if (!tp->packets_out)
3433 return;
3434
3435 rtx_head = tcp_rtx_queue_head(sk);
3436 skb = tp->retransmit_skb_hint ?: rtx_head;
3437 max_segs = tcp_tso_segs(sk, mss_now: tcp_current_mss(sk));
3438 skb_rbtree_walk_from(skb) {
3439 __u8 sacked;
3440 int segs;
3441
3442 if (tcp_pacing_check(sk))
3443 break;
3444
3445 /* we could do better than to assign each time */
3446 if (!hole)
3447 tp->retransmit_skb_hint = skb;
3448
3449 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3450 if (segs <= 0)
3451 break;
3452 sacked = TCP_SKB_CB(skb)->sacked;
3453 /* In case tcp_shift_skb_data() have aggregated large skbs,
3454 * we need to make sure not sending too bigs TSO packets
3455 */
3456 segs = min_t(int, segs, max_segs);
3457
3458 if (tp->retrans_out >= tp->lost_out) {
3459 break;
3460 } else if (!(sacked & TCPCB_LOST)) {
3461 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3462 hole = skb;
3463 continue;
3464
3465 } else {
3466 if (icsk->icsk_ca_state != TCP_CA_Loss)
3467 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3468 else
3469 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3470 }
3471
3472 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3473 continue;
3474
3475 if (tcp_small_queue_check(sk, skb, factor: 1))
3476 break;
3477
3478 if (tcp_retransmit_skb(sk, skb, segs))
3479 break;
3480
3481 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3482
3483 if (tcp_in_cwnd_reduction(sk))
3484 tp->prr_out += tcp_skb_pcount(skb);
3485
3486 if (skb == rtx_head &&
3487 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3488 rearm_timer = true;
3489
3490 }
3491 if (rearm_timer)
3492 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3493 when: inet_csk(sk)->icsk_rto,
3494 TCP_RTO_MAX);
3495}
3496
3497/* We allow to exceed memory limits for FIN packets to expedite
3498 * connection tear down and (memory) recovery.
3499 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3500 * or even be forced to close flow without any FIN.
3501 * In general, we want to allow one skb per socket to avoid hangs
3502 * with edge trigger epoll()
3503 */
3504void sk_forced_mem_schedule(struct sock *sk, int size)
3505{
3506 int delta, amt;
3507
3508 delta = size - sk->sk_forward_alloc;
3509 if (delta <= 0)
3510 return;
3511 amt = sk_mem_pages(amt: delta);
3512 sk_forward_alloc_add(sk, val: amt << PAGE_SHIFT);
3513 sk_memory_allocated_add(sk, amt);
3514
3515 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3516 mem_cgroup_charge_skmem(memcg: sk->sk_memcg, nr_pages: amt,
3517 gfp_mask: gfp_memcg_charge() | __GFP_NOFAIL);
3518}
3519
3520/* Send a FIN. The caller locks the socket for us.
3521 * We should try to send a FIN packet really hard, but eventually give up.
3522 */
3523void tcp_send_fin(struct sock *sk)
3524{
3525 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3526 struct tcp_sock *tp = tcp_sk(sk);
3527
3528 /* Optimization, tack on the FIN if we have one skb in write queue and
3529 * this skb was not yet sent, or we are under memory pressure.
3530 * Note: in the latter case, FIN packet will be sent after a timeout,
3531 * as TCP stack thinks it has already been transmitted.
3532 */
3533 tskb = tail;
3534 if (!tskb && tcp_under_memory_pressure(sk))
3535 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3536
3537 if (tskb) {
3538 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3539 TCP_SKB_CB(tskb)->end_seq++;
3540 tp->write_seq++;
3541 if (!tail) {
3542 /* This means tskb was already sent.
3543 * Pretend we included the FIN on previous transmit.
3544 * We need to set tp->snd_nxt to the value it would have
3545 * if FIN had been sent. This is because retransmit path
3546 * does not change tp->snd_nxt.
3547 */
3548 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3549 return;
3550 }
3551 } else {
3552 skb = alloc_skb_fclone(MAX_TCP_HEADER, priority: sk->sk_allocation);
3553 if (unlikely(!skb))
3554 return;
3555
3556 INIT_LIST_HEAD(list: &skb->tcp_tsorted_anchor);
3557 skb_reserve(skb, MAX_TCP_HEADER);
3558 sk_forced_mem_schedule(sk, size: skb->truesize);
3559 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3560 tcp_init_nondata_skb(skb, seq: tp->write_seq,
3561 TCPHDR_ACK | TCPHDR_FIN);
3562 tcp_queue_skb(sk, skb);
3563 }
3564 __tcp_push_pending_frames(sk, cur_mss: tcp_current_mss(sk), TCP_NAGLE_OFF);
3565}
3566
3567/* We get here when a process closes a file descriptor (either due to
3568 * an explicit close() or as a byproduct of exit()'ing) and there
3569 * was unread data in the receive queue. This behavior is recommended
3570 * by RFC 2525, section 2.17. -DaveM
3571 */
3572void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3573{
3574 struct sk_buff *skb;
3575
3576 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3577
3578 /* NOTE: No TCP options attached and we never retransmit this. */
3579 skb = alloc_skb(MAX_TCP_HEADER, priority);
3580 if (!skb) {
3581 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3582 return;
3583 }
3584
3585 /* Reserve space for headers and prepare control bits. */
3586 skb_reserve(skb, MAX_TCP_HEADER);
3587 tcp_init_nondata_skb(skb, seq: tcp_acceptable_seq(sk),
3588 TCPHDR_ACK | TCPHDR_RST);
3589 tcp_mstamp_refresh(tcp_sk(sk));
3590 /* Send it off. */
3591 if (tcp_transmit_skb(sk, skb, clone_it: 0, gfp_mask: priority))
3592 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3593
3594 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3595 * skb here is different to the troublesome skb, so use NULL
3596 */
3597 trace_tcp_send_reset(sk, NULL);
3598}
3599
3600/* Send a crossed SYN-ACK during socket establishment.
3601 * WARNING: This routine must only be called when we have already sent
3602 * a SYN packet that crossed the incoming SYN that caused this routine
3603 * to get called. If this assumption fails then the initial rcv_wnd
3604 * and rcv_wscale values will not be correct.
3605 */
3606int tcp_send_synack(struct sock *sk)
3607{
3608 struct sk_buff *skb;
3609
3610 skb = tcp_rtx_queue_head(sk);
3611 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3612 pr_err("%s: wrong queue state\n", __func__);
3613 return -EFAULT;
3614 }
3615 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3616 if (skb_cloned(skb)) {
3617 struct sk_buff *nskb;
3618
3619 tcp_skb_tsorted_save(skb) {
3620 nskb = skb_copy(skb, GFP_ATOMIC);
3621 } tcp_skb_tsorted_restore(skb);
3622 if (!nskb)
3623 return -ENOMEM;
3624 INIT_LIST_HEAD(list: &nskb->tcp_tsorted_anchor);
3625 tcp_highest_sack_replace(sk, old: skb, new: nskb);
3626 tcp_rtx_queue_unlink_and_free(skb, sk);
3627 __skb_header_release(skb: nskb);
3628 tcp_rbtree_insert(root: &sk->tcp_rtx_queue, skb: nskb);
3629 sk_wmem_queued_add(sk, val: nskb->truesize);
3630 sk_mem_charge(sk, size: nskb->truesize);
3631 skb = nskb;
3632 }
3633
3634 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3635 tcp_ecn_send_synack(sk, skb);
3636 }
3637 return tcp_transmit_skb(sk, skb, clone_it: 1, GFP_ATOMIC);
3638}
3639
3640/**
3641 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3642 * @sk: listener socket
3643 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3644 * should not use it again.
3645 * @req: request_sock pointer
3646 * @foc: cookie for tcp fast open
3647 * @synack_type: Type of synack to prepare
3648 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3649 */
3650struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3651 struct request_sock *req,
3652 struct tcp_fastopen_cookie *foc,
3653 enum tcp_synack_type synack_type,
3654 struct sk_buff *syn_skb)
3655{
3656 struct inet_request_sock *ireq = inet_rsk(sk: req);
3657 const struct tcp_sock *tp = tcp_sk(sk);
3658 struct tcp_out_options opts;
3659 struct tcp_key key = {};
3660 struct sk_buff *skb;
3661 int tcp_header_size;
3662 struct tcphdr *th;
3663 int mss;
3664 u64 now;
3665
3666 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3667 if (unlikely(!skb)) {
3668 dst_release(dst);
3669 return NULL;
3670 }
3671 /* Reserve space for headers. */
3672 skb_reserve(skb, MAX_TCP_HEADER);
3673
3674 switch (synack_type) {
3675 case TCP_SYNACK_NORMAL:
3676 skb_set_owner_w(skb, sk: req_to_sk(req));
3677 break;
3678 case TCP_SYNACK_COOKIE:
3679 /* Under synflood, we do not attach skb to a socket,
3680 * to avoid false sharing.
3681 */
3682 break;
3683 case TCP_SYNACK_FASTOPEN:
3684 /* sk is a const pointer, because we want to express multiple
3685 * cpu might call us concurrently.
3686 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3687 */
3688 skb_set_owner_w(skb, sk: (struct sock *)sk);
3689 break;
3690 }
3691 skb_dst_set(skb, dst);
3692
3693 mss = tcp_mss_clamp(tp, mss: dst_metric_advmss(dst));
3694
3695 memset(&opts, 0, sizeof(opts));
3696 if (tcp_rsk(req)->req_usec_ts < 0)
3697 tcp_rsk(req)->req_usec_ts = dst_tcp_usec_ts(dst);
3698 now = tcp_clock_ns();
3699#ifdef CONFIG_SYN_COOKIES
3700 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3701 skb_set_delivery_time(skb, kt: cookie_init_timestamp(req, now),
3702 mono: true);
3703 else
3704#endif
3705 {
3706 skb_set_delivery_time(skb, kt: now, mono: true);
3707 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3708 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3709 }
3710
3711#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3712 rcu_read_lock();
3713#endif
3714 if (tcp_rsk_used_ao(req)) {
3715#ifdef CONFIG_TCP_AO
3716 struct tcp_ao_key *ao_key = NULL;
3717 u8 maclen = tcp_rsk(req)->maclen;
3718 u8 keyid = tcp_rsk(req)->ao_keyid;
3719
3720 ao_key = tcp_sk(sk)->af_specific->ao_lookup(sk, req_to_sk(req),
3721 keyid, -1);
3722 /* If there is no matching key - avoid sending anything,
3723 * especially usigned segments. It could try harder and lookup
3724 * for another peer-matching key, but the peer has requested
3725 * ao_keyid (RFC5925 RNextKeyID), so let's keep it simple here.
3726 */
3727 if (unlikely(!ao_key || tcp_ao_maclen(ao_key) != maclen)) {
3728 u8 key_maclen = ao_key ? tcp_ao_maclen(key: ao_key) : 0;
3729
3730 rcu_read_unlock();
3731 kfree_skb(skb);
3732 net_warn_ratelimited("TCP-AO: the keyid %u with maclen %u|%u from SYN packet is not present - not sending SYNACK\n",
3733 keyid, maclen, key_maclen);
3734 return NULL;
3735 }
3736 key.ao_key = ao_key;
3737 key.type = TCP_KEY_AO;
3738#endif
3739 } else {
3740#ifdef CONFIG_TCP_MD5SIG
3741 key.md5_key = tcp_rsk(req)->af_specific->req_md5_lookup(sk,
3742 req_to_sk(req));
3743 if (key.md5_key)
3744 key.type = TCP_KEY_MD5;
3745#endif
3746 }
3747 skb_set_hash(skb, READ_ONCE(tcp_rsk(req)->txhash), type: PKT_HASH_TYPE_L4);
3748 /* bpf program will be interested in the tcp_flags */
3749 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3750 tcp_header_size = tcp_synack_options(sk, req, mss, skb, opts: &opts,
3751 key: &key, foc, synack_type, syn_skb)
3752 + sizeof(*th);
3753
3754 skb_push(skb, len: tcp_header_size);
3755 skb_reset_transport_header(skb);
3756
3757 th = (struct tcphdr *)skb->data;
3758 memset(th, 0, sizeof(struct tcphdr));
3759 th->syn = 1;
3760 th->ack = 1;
3761 tcp_ecn_make_synack(req, th);
3762 th->source = htons(ireq->ir_num);
3763 th->dest = ireq->ir_rmt_port;
3764 skb->mark = ireq->ir_mark;
3765 skb->ip_summed = CHECKSUM_PARTIAL;
3766 th->seq = htonl(tcp_rsk(req)->snt_isn);
3767 /* XXX data is queued and acked as is. No buffer/window check */
3768 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3769
3770 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3771 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3772 tcp_options_write(th, NULL, tcprsk: tcp_rsk(req), opts: &opts, key: &key);
3773 th->doff = (tcp_header_size >> 2);
3774 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3775
3776 /* Okay, we have all we need - do the md5 hash if needed */
3777 if (tcp_key_is_md5(key: &key)) {
3778#ifdef CONFIG_TCP_MD5SIG
3779 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3780 key.md5_key, req_to_sk(req), skb);
3781#endif
3782 } else if (tcp_key_is_ao(key: &key)) {
3783#ifdef CONFIG_TCP_AO
3784 tcp_rsk(req)->af_specific->ao_synack_hash(opts.hash_location,
3785 key.ao_key, req, skb,
3786 opts.hash_location - (u8 *)th, 0);
3787#endif
3788 }
3789#if defined(CONFIG_TCP_MD5SIG) || defined(CONFIG_TCP_AO)
3790 rcu_read_unlock();
3791#endif
3792
3793 bpf_skops_write_hdr_opt(sk: (struct sock *)sk, skb, req, syn_skb,
3794 synack_type, opts: &opts);
3795
3796 skb_set_delivery_time(skb, kt: now, mono: true);
3797 tcp_add_tx_delay(skb, tp);
3798
3799 return skb;
3800}
3801EXPORT_SYMBOL(tcp_make_synack);
3802
3803static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3804{
3805 struct inet_connection_sock *icsk = inet_csk(sk);
3806 const struct tcp_congestion_ops *ca;
3807 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3808
3809 if (ca_key == TCP_CA_UNSPEC)
3810 return;
3811
3812 rcu_read_lock();
3813 ca = tcp_ca_find_key(key: ca_key);
3814 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3815 bpf_module_put(data: icsk->icsk_ca_ops, owner: icsk->icsk_ca_ops->owner);
3816 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3817 icsk->icsk_ca_ops = ca;
3818 }
3819 rcu_read_unlock();
3820}
3821
3822/* Do all connect socket setups that can be done AF independent. */
3823static void tcp_connect_init(struct sock *sk)
3824{
3825 const struct dst_entry *dst = __sk_dst_get(sk);
3826 struct tcp_sock *tp = tcp_sk(sk);
3827 __u8 rcv_wscale;
3828 u32 rcv_wnd;
3829
3830 /* We'll fix this up when we get a response from the other end.
3831 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3832 */
3833 tp->tcp_header_len = sizeof(struct tcphdr);
3834 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3835 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3836
3837 tcp_ao_connect_init(sk);
3838
3839 /* If user gave his TCP_MAXSEG, record it to clamp */
3840 if (tp->rx_opt.user_mss)
3841 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3842 tp->max_window = 0;
3843 tcp_mtup_init(sk);
3844 tcp_sync_mss(sk, dst_mtu(dst));
3845
3846 tcp_ca_dst_init(sk, dst);
3847
3848 if (!tp->window_clamp)
3849 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3850 tp->advmss = tcp_mss_clamp(tp, mss: dst_metric_advmss(dst));
3851
3852 tcp_initialize_rcv_mss(sk);
3853
3854 /* limit the window selection if the user enforce a smaller rx buffer */
3855 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3856 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3857 tp->window_clamp = tcp_full_space(sk);
3858
3859 rcv_wnd = tcp_rwnd_init_bpf(sk);
3860 if (rcv_wnd == 0)
3861 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3862
3863 tcp_select_initial_window(sk, tcp_full_space(sk),
3864 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3865 &tp->rcv_wnd,
3866 &tp->window_clamp,
3867 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3868 &rcv_wscale,
3869 rcv_wnd);
3870
3871 tp->rx_opt.rcv_wscale = rcv_wscale;
3872 tp->rcv_ssthresh = tp->rcv_wnd;
3873
3874 WRITE_ONCE(sk->sk_err, 0);
3875 sock_reset_flag(sk, flag: SOCK_DONE);
3876 tp->snd_wnd = 0;
3877 tcp_init_wl(tp, seq: 0);
3878 tcp_write_queue_purge(sk);
3879 tp->snd_una = tp->write_seq;
3880 tp->snd_sml = tp->write_seq;
3881 tp->snd_up = tp->write_seq;
3882 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3883
3884 if (likely(!tp->repair))
3885 tp->rcv_nxt = 0;
3886 else
3887 tp->rcv_tstamp = tcp_jiffies32;
3888 tp->rcv_wup = tp->rcv_nxt;
3889 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3890
3891 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3892 inet_csk(sk)->icsk_retransmits = 0;
3893 tcp_clear_retrans(tp);
3894}
3895
3896static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3897{
3898 struct tcp_sock *tp = tcp_sk(sk);
3899 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3900
3901 tcb->end_seq += skb->len;
3902 __skb_header_release(skb);
3903 sk_wmem_queued_add(sk, val: skb->truesize);
3904 sk_mem_charge(sk, size: skb->truesize);
3905 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3906 tp->packets_out += tcp_skb_pcount(skb);
3907}
3908
3909/* Build and send a SYN with data and (cached) Fast Open cookie. However,
3910 * queue a data-only packet after the regular SYN, such that regular SYNs
3911 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3912 * only the SYN sequence, the data are retransmitted in the first ACK.
3913 * If cookie is not cached or other error occurs, falls back to send a
3914 * regular SYN with Fast Open cookie request option.
3915 */
3916static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3917{
3918 struct inet_connection_sock *icsk = inet_csk(sk);
3919 struct tcp_sock *tp = tcp_sk(sk);
3920 struct tcp_fastopen_request *fo = tp->fastopen_req;
3921 struct page_frag *pfrag = sk_page_frag(sk);
3922 struct sk_buff *syn_data;
3923 int space, err = 0;
3924
3925 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3926 if (!tcp_fastopen_cookie_check(sk, mss: &tp->rx_opt.mss_clamp, cookie: &fo->cookie))
3927 goto fallback;
3928
3929 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3930 * user-MSS. Reserve maximum option space for middleboxes that add
3931 * private TCP options. The cost is reduced data space in SYN :(
3932 */
3933 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, mss: tp->rx_opt.mss_clamp);
3934 /* Sync mss_cache after updating the mss_clamp */
3935 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3936
3937 space = __tcp_mtu_to_mss(sk, pmtu: icsk->icsk_pmtu_cookie) -
3938 MAX_TCP_OPTION_SPACE;
3939
3940 space = min_t(size_t, space, fo->size);
3941
3942 if (space &&
3943 !skb_page_frag_refill(min_t(size_t, space, PAGE_SIZE),
3944 pfrag, prio: sk->sk_allocation))
3945 goto fallback;
3946 syn_data = tcp_stream_alloc_skb(sk, gfp: sk->sk_allocation, force_schedule: false);
3947 if (!syn_data)
3948 goto fallback;
3949 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3950 if (space) {
3951 space = min_t(size_t, space, pfrag->size - pfrag->offset);
3952 space = tcp_wmem_schedule(sk, copy: space);
3953 }
3954 if (space) {
3955 space = copy_page_from_iter(page: pfrag->page, offset: pfrag->offset,
3956 bytes: space, i: &fo->data->msg_iter);
3957 if (unlikely(!space)) {
3958 tcp_skb_tsorted_anchor_cleanup(skb: syn_data);
3959 kfree_skb(skb: syn_data);
3960 goto fallback;
3961 }
3962 skb_fill_page_desc(skb: syn_data, i: 0, page: pfrag->page,
3963 off: pfrag->offset, size: space);
3964 page_ref_inc(page: pfrag->page);
3965 pfrag->offset += space;
3966 skb_len_add(skb: syn_data, delta: space);
3967 skb_zcopy_set(skb: syn_data, uarg: fo->uarg, NULL);
3968 }
3969 /* No more data pending in inet_wait_for_connect() */
3970 if (space == fo->size)
3971 fo->data = NULL;
3972 fo->copied = space;
3973
3974 tcp_connect_queue_skb(sk, skb: syn_data);
3975 if (syn_data->len)
3976 tcp_chrono_start(sk, type: TCP_CHRONO_BUSY);
3977
3978 err = tcp_transmit_skb(sk, skb: syn_data, clone_it: 1, gfp_mask: sk->sk_allocation);
3979
3980 skb_set_delivery_time(skb: syn, kt: syn_data->skb_mstamp_ns, mono: true);
3981
3982 /* Now full SYN+DATA was cloned and sent (or not),
3983 * remove the SYN from the original skb (syn_data)
3984 * we keep in write queue in case of a retransmit, as we
3985 * also have the SYN packet (with no data) in the same queue.
3986 */
3987 TCP_SKB_CB(syn_data)->seq++;
3988 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3989 if (!err) {
3990 tp->syn_data = (fo->copied > 0);
3991 tcp_rbtree_insert(root: &sk->tcp_rtx_queue, skb: syn_data);
3992 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3993 goto done;
3994 }
3995
3996 /* data was not sent, put it in write_queue */
3997 __skb_queue_tail(list: &sk->sk_write_queue, newsk: syn_data);
3998 tp->packets_out -= tcp_skb_pcount(skb: syn_data);
3999
4000fallback:
4001 /* Send a regular SYN with Fast Open cookie request option */
4002 if (fo->cookie.len > 0)
4003 fo->cookie.len = 0;
4004 err = tcp_transmit_skb(sk, skb: syn, clone_it: 1, gfp_mask: sk->sk_allocation);
4005 if (err)
4006 tp->syn_fastopen = 0;
4007done:
4008 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
4009 return err;
4010}
4011
4012/* Build a SYN and send it off. */
4013int tcp_connect(struct sock *sk)
4014{
4015 struct tcp_sock *tp = tcp_sk(sk);
4016 struct sk_buff *buff;
4017 int err;
4018
4019 tcp_call_bpf(sk, op: BPF_SOCK_OPS_TCP_CONNECT_CB, nargs: 0, NULL);
4020
4021#if defined(CONFIG_TCP_MD5SIG) && defined(CONFIG_TCP_AO)
4022 /* Has to be checked late, after setting daddr/saddr/ops.
4023 * Return error if the peer has both a md5 and a tcp-ao key
4024 * configured as this is ambiguous.
4025 */
4026 if (unlikely(rcu_dereference_protected(tp->md5sig_info,
4027 lockdep_sock_is_held(sk)))) {
4028 bool needs_ao = !!tp->af_specific->ao_lookup(sk, sk, -1, -1);
4029 bool needs_md5 = !!tp->af_specific->md5_lookup(sk, sk);
4030 struct tcp_ao_info *ao_info;
4031
4032 ao_info = rcu_dereference_check(tp->ao_info,
4033 lockdep_sock_is_held(sk));
4034 if (ao_info) {
4035 /* This is an extra check: tcp_ao_required() in
4036 * tcp_v{4,6}_parse_md5_keys() should prevent adding
4037 * md5 keys on ao_required socket.
4038 */
4039 needs_ao |= ao_info->ao_required;
4040 WARN_ON_ONCE(ao_info->ao_required && needs_md5);
4041 }
4042 if (needs_md5 && needs_ao)
4043 return -EKEYREJECTED;
4044
4045 /* If we have a matching md5 key and no matching tcp-ao key
4046 * then free up ao_info if allocated.
4047 */
4048 if (needs_md5) {
4049 tcp_ao_destroy_sock(sk, twsk: false);
4050 } else if (needs_ao) {
4051 tcp_clear_md5_list(sk);
4052 kfree(rcu_replace_pointer(tp->md5sig_info, NULL,
4053 lockdep_sock_is_held(sk)));
4054 }
4055 }
4056#endif
4057#ifdef CONFIG_TCP_AO
4058 if (unlikely(rcu_dereference_protected(tp->ao_info,
4059 lockdep_sock_is_held(sk)))) {
4060 /* Don't allow connecting if ao is configured but no
4061 * matching key is found.
4062 */
4063 if (!tp->af_specific->ao_lookup(sk, sk, -1, -1))
4064 return -EKEYREJECTED;
4065 }
4066#endif
4067
4068 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
4069 return -EHOSTUNREACH; /* Routing failure or similar. */
4070
4071 tcp_connect_init(sk);
4072
4073 if (unlikely(tp->repair)) {
4074 tcp_finish_connect(sk, NULL);
4075 return 0;
4076 }
4077
4078 buff = tcp_stream_alloc_skb(sk, gfp: sk->sk_allocation, force_schedule: true);
4079 if (unlikely(!buff))
4080 return -ENOBUFS;
4081
4082 tcp_init_nondata_skb(skb: buff, seq: tp->write_seq++, TCPHDR_SYN);
4083 tcp_mstamp_refresh(tp);
4084 tp->retrans_stamp = tcp_time_stamp_ts(tp);
4085 tcp_connect_queue_skb(sk, skb: buff);
4086 tcp_ecn_send_syn(sk, skb: buff);
4087 tcp_rbtree_insert(root: &sk->tcp_rtx_queue, skb: buff);
4088
4089 /* Send off SYN; include data in Fast Open. */
4090 err = tp->fastopen_req ? tcp_send_syn_data(sk, syn: buff) :
4091 tcp_transmit_skb(sk, skb: buff, clone_it: 1, gfp_mask: sk->sk_allocation);
4092 if (err == -ECONNREFUSED)
4093 return err;
4094
4095 /* We change tp->snd_nxt after the tcp_transmit_skb() call
4096 * in order to make this packet get counted in tcpOutSegs.
4097 */
4098 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
4099 tp->pushed_seq = tp->write_seq;
4100 buff = tcp_send_head(sk);
4101 if (unlikely(buff)) {
4102 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
4103 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
4104 }
4105 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
4106
4107 /* Timer for repeating the SYN until an answer. */
4108 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
4109 when: inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
4110 return 0;
4111}
4112EXPORT_SYMBOL(tcp_connect);
4113
4114u32 tcp_delack_max(const struct sock *sk)
4115{
4116 const struct dst_entry *dst = __sk_dst_get(sk);
4117 u32 delack_max = inet_csk(sk)->icsk_delack_max;
4118
4119 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN)) {
4120 u32 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
4121 u32 delack_from_rto_min = max_t(int, 1, rto_min - 1);
4122
4123 delack_max = min_t(u32, delack_max, delack_from_rto_min);
4124 }
4125 return delack_max;
4126}
4127
4128/* Send out a delayed ack, the caller does the policy checking
4129 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
4130 * for details.
4131 */
4132void tcp_send_delayed_ack(struct sock *sk)
4133{
4134 struct inet_connection_sock *icsk = inet_csk(sk);
4135 int ato = icsk->icsk_ack.ato;
4136 unsigned long timeout;
4137
4138 if (ato > TCP_DELACK_MIN) {
4139 const struct tcp_sock *tp = tcp_sk(sk);
4140 int max_ato = HZ / 2;
4141
4142 if (inet_csk_in_pingpong_mode(sk) ||
4143 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
4144 max_ato = TCP_DELACK_MAX;
4145
4146 /* Slow path, intersegment interval is "high". */
4147
4148 /* If some rtt estimate is known, use it to bound delayed ack.
4149 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
4150 * directly.
4151 */
4152 if (tp->srtt_us) {
4153 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
4154 TCP_DELACK_MIN);
4155
4156 if (rtt < max_ato)
4157 max_ato = rtt;
4158 }
4159
4160 ato = min(ato, max_ato);
4161 }
4162
4163 ato = min_t(u32, ato, tcp_delack_max(sk));
4164
4165 /* Stay within the limit we were given */
4166 timeout = jiffies + ato;
4167
4168 /* Use new timeout only if there wasn't a older one earlier. */
4169 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
4170 /* If delack timer is about to expire, send ACK now. */
4171 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
4172 tcp_send_ack(sk);
4173 return;
4174 }
4175
4176 if (!time_before(timeout, icsk->icsk_ack.timeout))
4177 timeout = icsk->icsk_ack.timeout;
4178 }
4179 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
4180 icsk->icsk_ack.timeout = timeout;
4181 sk_reset_timer(sk, timer: &icsk->icsk_delack_timer, expires: timeout);
4182}
4183
4184/* This routine sends an ack and also updates the window. */
4185void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
4186{
4187 struct sk_buff *buff;
4188
4189 /* If we have been reset, we may not send again. */
4190 if (sk->sk_state == TCP_CLOSE)
4191 return;
4192
4193 /* We are not putting this on the write queue, so
4194 * tcp_transmit_skb() will set the ownership to this
4195 * sock.
4196 */
4197 buff = alloc_skb(MAX_TCP_HEADER,
4198 priority: sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4199 if (unlikely(!buff)) {
4200 struct inet_connection_sock *icsk = inet_csk(sk);
4201 unsigned long delay;
4202
4203 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
4204 if (delay < TCP_RTO_MAX)
4205 icsk->icsk_ack.retry++;
4206 inet_csk_schedule_ack(sk);
4207 icsk->icsk_ack.ato = TCP_ATO_MIN;
4208 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, when: delay, TCP_RTO_MAX);
4209 return;
4210 }
4211
4212 /* Reserve space for headers and prepare control bits. */
4213 skb_reserve(skb: buff, MAX_TCP_HEADER);
4214 tcp_init_nondata_skb(skb: buff, seq: tcp_acceptable_seq(sk), TCPHDR_ACK);
4215
4216 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4217 * too much.
4218 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4219 */
4220 skb_set_tcp_pure_ack(skb: buff);
4221
4222 /* Send it off, this clears delayed acks for us. */
4223 __tcp_transmit_skb(sk, skb: buff, clone_it: 0, gfp_mask: (__force gfp_t)0, rcv_nxt);
4224}
4225EXPORT_SYMBOL_GPL(__tcp_send_ack);
4226
4227void tcp_send_ack(struct sock *sk)
4228{
4229 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4230}
4231
4232/* This routine sends a packet with an out of date sequence
4233 * number. It assumes the other end will try to ack it.
4234 *
4235 * Question: what should we make while urgent mode?
4236 * 4.4BSD forces sending single byte of data. We cannot send
4237 * out of window data, because we have SND.NXT==SND.MAX...
4238 *
4239 * Current solution: to send TWO zero-length segments in urgent mode:
4240 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4241 * out-of-date with SND.UNA-1 to probe window.
4242 */
4243static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4244{
4245 struct tcp_sock *tp = tcp_sk(sk);
4246 struct sk_buff *skb;
4247
4248 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4249 skb = alloc_skb(MAX_TCP_HEADER,
4250 priority: sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4251 if (!skb)
4252 return -1;
4253
4254 /* Reserve space for headers and set control bits. */
4255 skb_reserve(skb, MAX_TCP_HEADER);
4256 /* Use a previous sequence. This should cause the other
4257 * end to send an ack. Don't queue or clone SKB, just
4258 * send it.
4259 */
4260 tcp_init_nondata_skb(skb, seq: tp->snd_una - !urgent, TCPHDR_ACK);
4261 NET_INC_STATS(sock_net(sk), mib);
4262 return tcp_transmit_skb(sk, skb, clone_it: 0, gfp_mask: (__force gfp_t)0);
4263}
4264
4265/* Called from setsockopt( ... TCP_REPAIR ) */
4266void tcp_send_window_probe(struct sock *sk)
4267{
4268 if (sk->sk_state == TCP_ESTABLISHED) {
4269 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4270 tcp_mstamp_refresh(tcp_sk(sk));
4271 tcp_xmit_probe_skb(sk, urgent: 0, mib: LINUX_MIB_TCPWINPROBE);
4272 }
4273}
4274
4275/* Initiate keepalive or window probe from timer. */
4276int tcp_write_wakeup(struct sock *sk, int mib)
4277{
4278 struct tcp_sock *tp = tcp_sk(sk);
4279 struct sk_buff *skb;
4280
4281 if (sk->sk_state == TCP_CLOSE)
4282 return -1;
4283
4284 skb = tcp_send_head(sk);
4285 if (skb && before(TCP_SKB_CB(skb)->seq, seq2: tcp_wnd_end(tp))) {
4286 int err;
4287 unsigned int mss = tcp_current_mss(sk);
4288 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4289
4290 if (before(seq1: tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4291 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4292
4293 /* We are probing the opening of a window
4294 * but the window size is != 0
4295 * must have been a result SWS avoidance ( sender )
4296 */
4297 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4298 skb->len > mss) {
4299 seg_size = min(seg_size, mss);
4300 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4301 if (tcp_fragment(sk, tcp_queue: TCP_FRAG_IN_WRITE_QUEUE,
4302 skb, len: seg_size, mss_now: mss, GFP_ATOMIC))
4303 return -1;
4304 } else if (!tcp_skb_pcount(skb))
4305 tcp_set_skb_tso_segs(skb, mss_now: mss);
4306
4307 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4308 err = tcp_transmit_skb(sk, skb, clone_it: 1, GFP_ATOMIC);
4309 if (!err)
4310 tcp_event_new_data_sent(sk, skb);
4311 return err;
4312 } else {
4313 if (between(seq1: tp->snd_up, seq2: tp->snd_una + 1, seq3: tp->snd_una + 0xFFFF))
4314 tcp_xmit_probe_skb(sk, urgent: 1, mib);
4315 return tcp_xmit_probe_skb(sk, urgent: 0, mib);
4316 }
4317}
4318
4319/* A window probe timeout has occurred. If window is not closed send
4320 * a partial packet else a zero probe.
4321 */
4322void tcp_send_probe0(struct sock *sk)
4323{
4324 struct inet_connection_sock *icsk = inet_csk(sk);
4325 struct tcp_sock *tp = tcp_sk(sk);
4326 struct net *net = sock_net(sk);
4327 unsigned long timeout;
4328 int err;
4329
4330 err = tcp_write_wakeup(sk, mib: LINUX_MIB_TCPWINPROBE);
4331
4332 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4333 /* Cancel probe timer, if it is not required. */
4334 icsk->icsk_probes_out = 0;
4335 icsk->icsk_backoff = 0;
4336 icsk->icsk_probes_tstamp = 0;
4337 return;
4338 }
4339
4340 icsk->icsk_probes_out++;
4341 if (err <= 0) {
4342 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4343 icsk->icsk_backoff++;
4344 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4345 } else {
4346 /* If packet was not sent due to local congestion,
4347 * Let senders fight for local resources conservatively.
4348 */
4349 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4350 }
4351
4352 timeout = tcp_clamp_probe0_to_user_timeout(sk, when: timeout);
4353 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when: timeout, TCP_RTO_MAX);
4354}
4355
4356int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4357{
4358 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4359 struct flowi fl;
4360 int res;
4361
4362 /* Paired with WRITE_ONCE() in sock_setsockopt() */
4363 if (READ_ONCE(sk->sk_txrehash) == SOCK_TXREHASH_ENABLED)
4364 WRITE_ONCE(tcp_rsk(req)->txhash, net_tx_rndhash());
4365 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4366 NULL);
4367 if (!res) {
4368 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4369 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4370 if (unlikely(tcp_passive_fastopen(sk))) {
4371 /* sk has const attribute because listeners are lockless.
4372 * However in this case, we are dealing with a passive fastopen
4373 * socket thus we can change total_retrans value.
4374 */
4375 tcp_sk_rw(sk)->total_retrans++;
4376 }
4377 trace_tcp_retransmit_synack(sk, req);
4378 }
4379 return res;
4380}
4381EXPORT_SYMBOL(tcp_rtx_synack);
4382

source code of linux/net/ipv4/tcp_output.c