1//===- Function.cpp - Implement the Global object classes -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the Function class for the IR library.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/IR/Function.h"
14#include "SymbolTableListTraitsImpl.h"
15#include "llvm/ADT/ArrayRef.h"
16#include "llvm/ADT/DenseSet.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallString.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringExtras.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/IR/AbstractCallSite.h"
23#include "llvm/IR/Argument.h"
24#include "llvm/IR/Attributes.h"
25#include "llvm/IR/BasicBlock.h"
26#include "llvm/IR/Constant.h"
27#include "llvm/IR/ConstantRange.h"
28#include "llvm/IR/Constants.h"
29#include "llvm/IR/DerivedTypes.h"
30#include "llvm/IR/GlobalValue.h"
31#include "llvm/IR/InstIterator.h"
32#include "llvm/IR/Instruction.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Intrinsics.h"
35#include "llvm/IR/IntrinsicsAArch64.h"
36#include "llvm/IR/IntrinsicsAMDGPU.h"
37#include "llvm/IR/IntrinsicsARM.h"
38#include "llvm/IR/IntrinsicsBPF.h"
39#include "llvm/IR/IntrinsicsDirectX.h"
40#include "llvm/IR/IntrinsicsHexagon.h"
41#include "llvm/IR/IntrinsicsLoongArch.h"
42#include "llvm/IR/IntrinsicsMips.h"
43#include "llvm/IR/IntrinsicsNVPTX.h"
44#include "llvm/IR/IntrinsicsPowerPC.h"
45#include "llvm/IR/IntrinsicsR600.h"
46#include "llvm/IR/IntrinsicsRISCV.h"
47#include "llvm/IR/IntrinsicsS390.h"
48#include "llvm/IR/IntrinsicsSPIRV.h"
49#include "llvm/IR/IntrinsicsVE.h"
50#include "llvm/IR/IntrinsicsWebAssembly.h"
51#include "llvm/IR/IntrinsicsX86.h"
52#include "llvm/IR/IntrinsicsXCore.h"
53#include "llvm/IR/LLVMContext.h"
54#include "llvm/IR/MDBuilder.h"
55#include "llvm/IR/Metadata.h"
56#include "llvm/IR/Module.h"
57#include "llvm/IR/Operator.h"
58#include "llvm/IR/SymbolTableListTraits.h"
59#include "llvm/IR/Type.h"
60#include "llvm/IR/Use.h"
61#include "llvm/IR/User.h"
62#include "llvm/IR/Value.h"
63#include "llvm/IR/ValueSymbolTable.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Compiler.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/ModRef.h"
69#include <cassert>
70#include <cstddef>
71#include <cstdint>
72#include <cstring>
73#include <string>
74
75using namespace llvm;
76using ProfileCount = Function::ProfileCount;
77
78// Explicit instantiations of SymbolTableListTraits since some of the methods
79// are not in the public header file...
80template class llvm::SymbolTableListTraits<BasicBlock>;
81
82static cl::opt<unsigned> NonGlobalValueMaxNameSize(
83 "non-global-value-max-name-size", cl::Hidden, cl::init(Val: 1024),
84 cl::desc("Maximum size for the name of non-global values."));
85
86void Function::convertToNewDbgValues() {
87 IsNewDbgInfoFormat = true;
88 for (auto &BB : *this) {
89 BB.convertToNewDbgValues();
90 }
91}
92
93void Function::convertFromNewDbgValues() {
94 IsNewDbgInfoFormat = false;
95 for (auto &BB : *this) {
96 BB.convertFromNewDbgValues();
97 }
98}
99
100void Function::setIsNewDbgInfoFormat(bool NewFlag) {
101 if (NewFlag && !IsNewDbgInfoFormat)
102 convertToNewDbgValues();
103 else if (!NewFlag && IsNewDbgInfoFormat)
104 convertFromNewDbgValues();
105}
106void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
107 for (auto &BB : *this) {
108 BB.setNewDbgInfoFormatFlag(NewFlag);
109 }
110 IsNewDbgInfoFormat = NewFlag;
111}
112
113//===----------------------------------------------------------------------===//
114// Argument Implementation
115//===----------------------------------------------------------------------===//
116
117Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
118 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
119 setName(Name);
120}
121
122void Argument::setParent(Function *parent) {
123 Parent = parent;
124}
125
126bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
127 if (!getType()->isPointerTy()) return false;
128 if (getParent()->hasParamAttribute(ArgNo: getArgNo(), Attribute::Kind: NonNull) &&
129 (AllowUndefOrPoison ||
130 getParent()->hasParamAttribute(ArgNo: getArgNo(), Attribute::Kind: NoUndef)))
131 return true;
132 else if (getDereferenceableBytes() > 0 &&
133 !NullPointerIsDefined(F: getParent(),
134 AS: getType()->getPointerAddressSpace()))
135 return true;
136 return false;
137}
138
139bool Argument::hasByValAttr() const {
140 if (!getType()->isPointerTy()) return false;
141 return hasAttribute(Attribute::Kind: ByVal);
142}
143
144bool Argument::hasByRefAttr() const {
145 if (!getType()->isPointerTy())
146 return false;
147 return hasAttribute(Attribute::Kind: ByRef);
148}
149
150bool Argument::hasSwiftSelfAttr() const {
151 return getParent()->hasParamAttribute(ArgNo: getArgNo(), Attribute::Kind: SwiftSelf);
152}
153
154bool Argument::hasSwiftErrorAttr() const {
155 return getParent()->hasParamAttribute(ArgNo: getArgNo(), Attribute::Kind: SwiftError);
156}
157
158bool Argument::hasInAllocaAttr() const {
159 if (!getType()->isPointerTy()) return false;
160 return hasAttribute(Attribute::Kind: InAlloca);
161}
162
163bool Argument::hasPreallocatedAttr() const {
164 if (!getType()->isPointerTy())
165 return false;
166 return hasAttribute(Attribute::Kind: Preallocated);
167}
168
169bool Argument::hasPassPointeeByValueCopyAttr() const {
170 if (!getType()->isPointerTy()) return false;
171 AttributeList Attrs = getParent()->getAttributes();
172 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
173 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
174 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
175}
176
177bool Argument::hasPointeeInMemoryValueAttr() const {
178 if (!getType()->isPointerTy())
179 return false;
180 AttributeList Attrs = getParent()->getAttributes();
181 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
182 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
183 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
184 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
185 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
186}
187
188/// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
189/// parameter type.
190static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
191 // FIXME: All the type carrying attributes are mutually exclusive, so there
192 // should be a single query to get the stored type that handles any of them.
193 if (Type *ByValTy = ParamAttrs.getByValType())
194 return ByValTy;
195 if (Type *ByRefTy = ParamAttrs.getByRefType())
196 return ByRefTy;
197 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
198 return PreAllocTy;
199 if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
200 return InAllocaTy;
201 if (Type *SRetTy = ParamAttrs.getStructRetType())
202 return SRetTy;
203
204 return nullptr;
205}
206
207uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
208 AttributeSet ParamAttrs =
209 getParent()->getAttributes().getParamAttrs(ArgNo: getArgNo());
210 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
211 return DL.getTypeAllocSize(Ty: MemTy);
212 return 0;
213}
214
215Type *Argument::getPointeeInMemoryValueType() const {
216 AttributeSet ParamAttrs =
217 getParent()->getAttributes().getParamAttrs(ArgNo: getArgNo());
218 return getMemoryParamAllocType(ParamAttrs);
219}
220
221MaybeAlign Argument::getParamAlign() const {
222 assert(getType()->isPointerTy() && "Only pointers have alignments");
223 return getParent()->getParamAlign(ArgNo: getArgNo());
224}
225
226MaybeAlign Argument::getParamStackAlign() const {
227 return getParent()->getParamStackAlign(ArgNo: getArgNo());
228}
229
230Type *Argument::getParamByValType() const {
231 assert(getType()->isPointerTy() && "Only pointers have byval types");
232 return getParent()->getParamByValType(ArgNo: getArgNo());
233}
234
235Type *Argument::getParamStructRetType() const {
236 assert(getType()->isPointerTy() && "Only pointers have sret types");
237 return getParent()->getParamStructRetType(ArgNo: getArgNo());
238}
239
240Type *Argument::getParamByRefType() const {
241 assert(getType()->isPointerTy() && "Only pointers have byref types");
242 return getParent()->getParamByRefType(ArgNo: getArgNo());
243}
244
245Type *Argument::getParamInAllocaType() const {
246 assert(getType()->isPointerTy() && "Only pointers have inalloca types");
247 return getParent()->getParamInAllocaType(ArgNo: getArgNo());
248}
249
250uint64_t Argument::getDereferenceableBytes() const {
251 assert(getType()->isPointerTy() &&
252 "Only pointers have dereferenceable bytes");
253 return getParent()->getParamDereferenceableBytes(ArgNo: getArgNo());
254}
255
256uint64_t Argument::getDereferenceableOrNullBytes() const {
257 assert(getType()->isPointerTy() &&
258 "Only pointers have dereferenceable bytes");
259 return getParent()->getParamDereferenceableOrNullBytes(ArgNo: getArgNo());
260}
261
262FPClassTest Argument::getNoFPClass() const {
263 return getParent()->getParamNoFPClass(ArgNo: getArgNo());
264}
265
266std::optional<ConstantRange> Argument::getRange() const {
267 const Attribute RangeAttr = getAttribute(llvm::Attribute::Kind: Range);
268 if (RangeAttr.isValid())
269 return RangeAttr.getRange();
270 return std::nullopt;
271}
272
273bool Argument::hasNestAttr() const {
274 if (!getType()->isPointerTy()) return false;
275 return hasAttribute(Attribute::Kind: Nest);
276}
277
278bool Argument::hasNoAliasAttr() const {
279 if (!getType()->isPointerTy()) return false;
280 return hasAttribute(Attribute::Kind: NoAlias);
281}
282
283bool Argument::hasNoCaptureAttr() const {
284 if (!getType()->isPointerTy()) return false;
285 return hasAttribute(Attribute::Kind: NoCapture);
286}
287
288bool Argument::hasNoFreeAttr() const {
289 if (!getType()->isPointerTy()) return false;
290 return hasAttribute(Attribute::Kind: NoFree);
291}
292
293bool Argument::hasStructRetAttr() const {
294 if (!getType()->isPointerTy()) return false;
295 return hasAttribute(Attribute::Kind: StructRet);
296}
297
298bool Argument::hasInRegAttr() const {
299 return hasAttribute(Attribute::Kind: InReg);
300}
301
302bool Argument::hasReturnedAttr() const {
303 return hasAttribute(Attribute::Kind: Returned);
304}
305
306bool Argument::hasZExtAttr() const {
307 return hasAttribute(Attribute::Kind: ZExt);
308}
309
310bool Argument::hasSExtAttr() const {
311 return hasAttribute(Attribute::Kind: SExt);
312}
313
314bool Argument::onlyReadsMemory() const {
315 AttributeList Attrs = getParent()->getAttributes();
316 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
317 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
318}
319
320void Argument::addAttrs(AttrBuilder &B) {
321 AttributeList AL = getParent()->getAttributes();
322 AL = AL.addParamAttributes(C&: Parent->getContext(), ArgNo: getArgNo(), B);
323 getParent()->setAttributes(AL);
324}
325
326void Argument::addAttr(Attribute::AttrKind Kind) {
327 getParent()->addParamAttr(ArgNo: getArgNo(), Kind);
328}
329
330void Argument::addAttr(Attribute Attr) {
331 getParent()->addParamAttr(ArgNo: getArgNo(), Attr);
332}
333
334void Argument::removeAttr(Attribute::AttrKind Kind) {
335 getParent()->removeParamAttr(ArgNo: getArgNo(), Kind);
336}
337
338void Argument::removeAttrs(const AttributeMask &AM) {
339 AttributeList AL = getParent()->getAttributes();
340 AL = AL.removeParamAttributes(C&: Parent->getContext(), ArgNo: getArgNo(), AttrsToRemove: AM);
341 getParent()->setAttributes(AL);
342}
343
344bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
345 return getParent()->hasParamAttribute(ArgNo: getArgNo(), Kind);
346}
347
348Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
349 return getParent()->getParamAttribute(ArgNo: getArgNo(), Kind);
350}
351
352//===----------------------------------------------------------------------===//
353// Helper Methods in Function
354//===----------------------------------------------------------------------===//
355
356LLVMContext &Function::getContext() const {
357 return getType()->getContext();
358}
359
360unsigned Function::getInstructionCount() const {
361 unsigned NumInstrs = 0;
362 for (const BasicBlock &BB : BasicBlocks)
363 NumInstrs += std::distance(first: BB.instructionsWithoutDebug().begin(),
364 last: BB.instructionsWithoutDebug().end());
365 return NumInstrs;
366}
367
368Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
369 const Twine &N, Module &M) {
370 return Create(Ty, Linkage, AddrSpace: M.getDataLayout().getProgramAddressSpace(), N, M: &M);
371}
372
373Function *Function::createWithDefaultAttr(FunctionType *Ty,
374 LinkageTypes Linkage,
375 unsigned AddrSpace, const Twine &N,
376 Module *M) {
377 auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
378 AttrBuilder B(F->getContext());
379 UWTableKind UWTable = M->getUwtable();
380 if (UWTable != UWTableKind::None)
381 B.addUWTableAttr(Kind: UWTable);
382 switch (M->getFramePointer()) {
383 case FramePointerKind::None:
384 // 0 ("none") is the default.
385 break;
386 case FramePointerKind::NonLeaf:
387 B.addAttribute(A: "frame-pointer", V: "non-leaf");
388 break;
389 case FramePointerKind::All:
390 B.addAttribute(A: "frame-pointer", V: "all");
391 break;
392 }
393 if (M->getModuleFlag(Key: "function_return_thunk_extern"))
394 B.addAttribute(Attribute::FnRetThunkExtern);
395 F->addFnAttrs(Attrs: B);
396 return F;
397}
398
399void Function::removeFromParent() {
400 getParent()->getFunctionList().remove(IT: getIterator());
401}
402
403void Function::eraseFromParent() {
404 getParent()->getFunctionList().erase(where: getIterator());
405}
406
407void Function::splice(Function::iterator ToIt, Function *FromF,
408 Function::iterator FromBeginIt,
409 Function::iterator FromEndIt) {
410#ifdef EXPENSIVE_CHECKS
411 // Check that FromBeginIt is before FromEndIt.
412 auto FromFEnd = FromF->end();
413 for (auto It = FromBeginIt; It != FromEndIt; ++It)
414 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
415#endif // EXPENSIVE_CHECKS
416 BasicBlocks.splice(where: ToIt, L2&: FromF->BasicBlocks, first: FromBeginIt, last: FromEndIt);
417}
418
419Function::iterator Function::erase(Function::iterator FromIt,
420 Function::iterator ToIt) {
421 return BasicBlocks.erase(first: FromIt, last: ToIt);
422}
423
424//===----------------------------------------------------------------------===//
425// Function Implementation
426//===----------------------------------------------------------------------===//
427
428static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
429 // If AS == -1 and we are passed a valid module pointer we place the function
430 // in the program address space. Otherwise we default to AS0.
431 if (AddrSpace == static_cast<unsigned>(-1))
432 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
433 return AddrSpace;
434}
435
436Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
437 const Twine &name, Module *ParentModule)
438 : GlobalObject(Ty, Value::FunctionVal,
439 OperandTraits<Function>::op_begin(U: this), 0, Linkage, name,
440 computeAddrSpace(AddrSpace, M: ParentModule)),
441 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) {
442 assert(FunctionType::isValidReturnType(getReturnType()) &&
443 "invalid return type");
444 setGlobalObjectSubClassData(0);
445
446 // We only need a symbol table for a function if the context keeps value names
447 if (!getContext().shouldDiscardValueNames())
448 SymTab = std::make_unique<ValueSymbolTable>(args&: NonGlobalValueMaxNameSize);
449
450 // If the function has arguments, mark them as lazily built.
451 if (Ty->getNumParams())
452 setValueSubclassData(1); // Set the "has lazy arguments" bit.
453
454 if (ParentModule) {
455 ParentModule->getFunctionList().push_back(val: this);
456 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
457 }
458
459 HasLLVMReservedName = getName().starts_with(Prefix: "llvm.");
460 // Ensure intrinsics have the right parameter attributes.
461 // Note, the IntID field will have been set in Value::setName if this function
462 // name is a valid intrinsic ID.
463 if (IntID)
464 setAttributes(Intrinsic::getAttributes(C&: getContext(), id: IntID));
465}
466
467Function::~Function() {
468 dropAllReferences(); // After this it is safe to delete instructions.
469
470 // Delete all of the method arguments and unlink from symbol table...
471 if (Arguments)
472 clearArguments();
473
474 // Remove the function from the on-the-side GC table.
475 clearGC();
476}
477
478void Function::BuildLazyArguments() const {
479 // Create the arguments vector, all arguments start out unnamed.
480 auto *FT = getFunctionType();
481 if (NumArgs > 0) {
482 Arguments = std::allocator<Argument>().allocate(n: NumArgs);
483 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
484 Type *ArgTy = FT->getParamType(i);
485 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
486 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
487 }
488 }
489
490 // Clear the lazy arguments bit.
491 unsigned SDC = getSubclassDataFromValue();
492 SDC &= ~(1 << 0);
493 const_cast<Function*>(this)->setValueSubclassData(SDC);
494 assert(!hasLazyArguments());
495}
496
497static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
498 return MutableArrayRef<Argument>(Args, Count);
499}
500
501bool Function::isConstrainedFPIntrinsic() const {
502 return Intrinsic::isConstrainedFPIntrinsic(QID: getIntrinsicID());
503}
504
505void Function::clearArguments() {
506 for (Argument &A : makeArgArray(Args: Arguments, Count: NumArgs)) {
507 A.setName("");
508 A.~Argument();
509 }
510 std::allocator<Argument>().deallocate(p: Arguments, t: NumArgs);
511 Arguments = nullptr;
512}
513
514void Function::stealArgumentListFrom(Function &Src) {
515 assert(isDeclaration() && "Expected no references to current arguments");
516
517 // Drop the current arguments, if any, and set the lazy argument bit.
518 if (!hasLazyArguments()) {
519 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
520 [](const Argument &A) { return A.use_empty(); }) &&
521 "Expected arguments to be unused in declaration");
522 clearArguments();
523 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
524 }
525
526 // Nothing to steal if Src has lazy arguments.
527 if (Src.hasLazyArguments())
528 return;
529
530 // Steal arguments from Src, and fix the lazy argument bits.
531 assert(arg_size() == Src.arg_size());
532 Arguments = Src.Arguments;
533 Src.Arguments = nullptr;
534 for (Argument &A : makeArgArray(Args: Arguments, Count: NumArgs)) {
535 // FIXME: This does the work of transferNodesFromList inefficiently.
536 SmallString<128> Name;
537 if (A.hasName())
538 Name = A.getName();
539 if (!Name.empty())
540 A.setName("");
541 A.setParent(this);
542 if (!Name.empty())
543 A.setName(Name);
544 }
545
546 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
547 assert(!hasLazyArguments());
548 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
549}
550
551void Function::deleteBodyImpl(bool ShouldDrop) {
552 setIsMaterializable(false);
553
554 for (BasicBlock &BB : *this)
555 BB.dropAllReferences();
556
557 // Delete all basic blocks. They are now unused, except possibly by
558 // blockaddresses, but BasicBlock's destructor takes care of those.
559 while (!BasicBlocks.empty())
560 BasicBlocks.begin()->eraseFromParent();
561
562 if (getNumOperands()) {
563 if (ShouldDrop) {
564 // Drop uses of any optional data (real or placeholder).
565 User::dropAllReferences();
566 setNumHungOffUseOperands(0);
567 } else {
568 // The code needs to match Function::allocHungoffUselist().
569 auto *CPN = ConstantPointerNull::get(T: PointerType::get(C&: getContext(), AddressSpace: 0));
570 Op<0>().set(CPN);
571 Op<1>().set(CPN);
572 Op<2>().set(CPN);
573 }
574 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
575 }
576
577 // Metadata is stored in a side-table.
578 clearMetadata();
579}
580
581void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
582 AttributeSets = AttributeSets.addAttributeAtIndex(C&: getContext(), Index: i, A: Attr);
583}
584
585void Function::addFnAttr(Attribute::AttrKind Kind) {
586 AttributeSets = AttributeSets.addFnAttribute(C&: getContext(), Kind);
587}
588
589void Function::addFnAttr(StringRef Kind, StringRef Val) {
590 AttributeSets = AttributeSets.addFnAttribute(C&: getContext(), Kind, Value: Val);
591}
592
593void Function::addFnAttr(Attribute Attr) {
594 AttributeSets = AttributeSets.addFnAttribute(C&: getContext(), Attr);
595}
596
597void Function::addFnAttrs(const AttrBuilder &Attrs) {
598 AttributeSets = AttributeSets.addFnAttributes(C&: getContext(), B: Attrs);
599}
600
601void Function::addRetAttr(Attribute::AttrKind Kind) {
602 AttributeSets = AttributeSets.addRetAttribute(C&: getContext(), Kind);
603}
604
605void Function::addRetAttr(Attribute Attr) {
606 AttributeSets = AttributeSets.addRetAttribute(C&: getContext(), Attr);
607}
608
609void Function::addRetAttrs(const AttrBuilder &Attrs) {
610 AttributeSets = AttributeSets.addRetAttributes(C&: getContext(), B: Attrs);
611}
612
613void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
614 AttributeSets = AttributeSets.addParamAttribute(C&: getContext(), ArgNo, Kind);
615}
616
617void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
618 AttributeSets = AttributeSets.addParamAttribute(C&: getContext(), ArgNos: ArgNo, A: Attr);
619}
620
621void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
622 AttributeSets = AttributeSets.addParamAttributes(C&: getContext(), ArgNo, B: Attrs);
623}
624
625void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
626 AttributeSets = AttributeSets.removeAttributeAtIndex(C&: getContext(), Index: i, Kind);
627}
628
629void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
630 AttributeSets = AttributeSets.removeAttributeAtIndex(C&: getContext(), Index: i, Kind);
631}
632
633void Function::removeFnAttr(Attribute::AttrKind Kind) {
634 AttributeSets = AttributeSets.removeFnAttribute(C&: getContext(), Kind);
635}
636
637void Function::removeFnAttr(StringRef Kind) {
638 AttributeSets = AttributeSets.removeFnAttribute(C&: getContext(), Kind);
639}
640
641void Function::removeFnAttrs(const AttributeMask &AM) {
642 AttributeSets = AttributeSets.removeFnAttributes(C&: getContext(), AttrsToRemove: AM);
643}
644
645void Function::removeRetAttr(Attribute::AttrKind Kind) {
646 AttributeSets = AttributeSets.removeRetAttribute(C&: getContext(), Kind);
647}
648
649void Function::removeRetAttr(StringRef Kind) {
650 AttributeSets = AttributeSets.removeRetAttribute(C&: getContext(), Kind);
651}
652
653void Function::removeRetAttrs(const AttributeMask &Attrs) {
654 AttributeSets = AttributeSets.removeRetAttributes(C&: getContext(), AttrsToRemove: Attrs);
655}
656
657void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
658 AttributeSets = AttributeSets.removeParamAttribute(C&: getContext(), ArgNo, Kind);
659}
660
661void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
662 AttributeSets = AttributeSets.removeParamAttribute(C&: getContext(), ArgNo, Kind);
663}
664
665void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
666 AttributeSets =
667 AttributeSets.removeParamAttributes(C&: getContext(), ArgNo, AttrsToRemove: Attrs);
668}
669
670void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
671 AttributeSets =
672 AttributeSets.addDereferenceableParamAttr(C&: getContext(), ArgNo, Bytes);
673}
674
675bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
676 return AttributeSets.hasFnAttr(Kind);
677}
678
679bool Function::hasFnAttribute(StringRef Kind) const {
680 return AttributeSets.hasFnAttr(Kind);
681}
682
683bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
684 return AttributeSets.hasRetAttr(Kind);
685}
686
687bool Function::hasParamAttribute(unsigned ArgNo,
688 Attribute::AttrKind Kind) const {
689 return AttributeSets.hasParamAttr(ArgNo, Kind);
690}
691
692Attribute Function::getAttributeAtIndex(unsigned i,
693 Attribute::AttrKind Kind) const {
694 return AttributeSets.getAttributeAtIndex(Index: i, Kind);
695}
696
697Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
698 return AttributeSets.getAttributeAtIndex(Index: i, Kind);
699}
700
701Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
702 return AttributeSets.getFnAttr(Kind);
703}
704
705Attribute Function::getFnAttribute(StringRef Kind) const {
706 return AttributeSets.getFnAttr(Kind);
707}
708
709Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
710 return AttributeSets.getRetAttr(Kind);
711}
712
713uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
714 uint64_t Default) const {
715 Attribute A = getFnAttribute(Kind: Name);
716 uint64_t Result = Default;
717 if (A.isStringAttribute()) {
718 StringRef Str = A.getValueAsString();
719 if (Str.getAsInteger(Radix: 0, Result))
720 getContext().emitError(ErrorStr: "cannot parse integer attribute " + Name);
721 }
722
723 return Result;
724}
725
726/// gets the specified attribute from the list of attributes.
727Attribute Function::getParamAttribute(unsigned ArgNo,
728 Attribute::AttrKind Kind) const {
729 return AttributeSets.getParamAttr(ArgNo, Kind);
730}
731
732void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
733 uint64_t Bytes) {
734 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(C&: getContext(),
735 ArgNo, Bytes);
736}
737
738DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
739 if (&FPType == &APFloat::IEEEsingle()) {
740 DenormalMode Mode = getDenormalModeF32Raw();
741 // If the f32 variant of the attribute isn't specified, try to use the
742 // generic one.
743 if (Mode.isValid())
744 return Mode;
745 }
746
747 return getDenormalModeRaw();
748}
749
750DenormalMode Function::getDenormalModeRaw() const {
751 Attribute Attr = getFnAttribute(Kind: "denormal-fp-math");
752 StringRef Val = Attr.getValueAsString();
753 return parseDenormalFPAttribute(Str: Val);
754}
755
756DenormalMode Function::getDenormalModeF32Raw() const {
757 Attribute Attr = getFnAttribute(Kind: "denormal-fp-math-f32");
758 if (Attr.isValid()) {
759 StringRef Val = Attr.getValueAsString();
760 return parseDenormalFPAttribute(Str: Val);
761 }
762
763 return DenormalMode::getInvalid();
764}
765
766const std::string &Function::getGC() const {
767 assert(hasGC() && "Function has no collector");
768 return getContext().getGC(Fn: *this);
769}
770
771void Function::setGC(std::string Str) {
772 setValueSubclassDataBit(Bit: 14, On: !Str.empty());
773 getContext().setGC(Fn: *this, GCName: std::move(Str));
774}
775
776void Function::clearGC() {
777 if (!hasGC())
778 return;
779 getContext().deleteGC(Fn: *this);
780 setValueSubclassDataBit(Bit: 14, On: false);
781}
782
783bool Function::hasStackProtectorFnAttr() const {
784 return hasFnAttribute(Attribute::StackProtect) ||
785 hasFnAttribute(Attribute::StackProtectStrong) ||
786 hasFnAttribute(Attribute::StackProtectReq);
787}
788
789/// Copy all additional attributes (those not needed to create a Function) from
790/// the Function Src to this one.
791void Function::copyAttributesFrom(const Function *Src) {
792 GlobalObject::copyAttributesFrom(Src);
793 setCallingConv(Src->getCallingConv());
794 setAttributes(Src->getAttributes());
795 if (Src->hasGC())
796 setGC(Src->getGC());
797 else
798 clearGC();
799 if (Src->hasPersonalityFn())
800 setPersonalityFn(Src->getPersonalityFn());
801 if (Src->hasPrefixData())
802 setPrefixData(Src->getPrefixData());
803 if (Src->hasPrologueData())
804 setPrologueData(Src->getPrologueData());
805}
806
807MemoryEffects Function::getMemoryEffects() const {
808 return getAttributes().getMemoryEffects();
809}
810void Function::setMemoryEffects(MemoryEffects ME) {
811 addFnAttr(Attr: Attribute::getWithMemoryEffects(Context&: getContext(), ME));
812}
813
814/// Determine if the function does not access memory.
815bool Function::doesNotAccessMemory() const {
816 return getMemoryEffects().doesNotAccessMemory();
817}
818void Function::setDoesNotAccessMemory() {
819 setMemoryEffects(MemoryEffects::none());
820}
821
822/// Determine if the function does not access or only reads memory.
823bool Function::onlyReadsMemory() const {
824 return getMemoryEffects().onlyReadsMemory();
825}
826void Function::setOnlyReadsMemory() {
827 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
828}
829
830/// Determine if the function does not access or only writes memory.
831bool Function::onlyWritesMemory() const {
832 return getMemoryEffects().onlyWritesMemory();
833}
834void Function::setOnlyWritesMemory() {
835 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
836}
837
838/// Determine if the call can access memmory only using pointers based
839/// on its arguments.
840bool Function::onlyAccessesArgMemory() const {
841 return getMemoryEffects().onlyAccessesArgPointees();
842}
843void Function::setOnlyAccessesArgMemory() {
844 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
845}
846
847/// Determine if the function may only access memory that is
848/// inaccessible from the IR.
849bool Function::onlyAccessesInaccessibleMemory() const {
850 return getMemoryEffects().onlyAccessesInaccessibleMem();
851}
852void Function::setOnlyAccessesInaccessibleMemory() {
853 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
854}
855
856/// Determine if the function may only access memory that is
857/// either inaccessible from the IR or pointed to by its arguments.
858bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
859 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
860}
861void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
862 setMemoryEffects(getMemoryEffects() &
863 MemoryEffects::inaccessibleOrArgMemOnly());
864}
865
866/// Table of string intrinsic names indexed by enum value.
867static const char * const IntrinsicNameTable[] = {
868 "not_intrinsic",
869#define GET_INTRINSIC_NAME_TABLE
870#include "llvm/IR/IntrinsicImpl.inc"
871#undef GET_INTRINSIC_NAME_TABLE
872};
873
874/// Table of per-target intrinsic name tables.
875#define GET_INTRINSIC_TARGET_DATA
876#include "llvm/IR/IntrinsicImpl.inc"
877#undef GET_INTRINSIC_TARGET_DATA
878
879bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
880 return IID > TargetInfos[0].Count;
881}
882
883bool Function::isTargetIntrinsic() const {
884 return isTargetIntrinsic(IID: IntID);
885}
886
887/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
888/// target as \c Name, or the generic table if \c Name is not target specific.
889///
890/// Returns the relevant slice of \c IntrinsicNameTable
891static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
892 assert(Name.starts_with("llvm."));
893
894 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
895 // Drop "llvm." and take the first dotted component. That will be the target
896 // if this is target specific.
897 StringRef Target = Name.drop_front(N: 5).split(Separator: '.').first;
898 auto It = partition_point(
899 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
900 // We've either found the target or just fall back to the generic set, which
901 // is always first.
902 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
903 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
904}
905
906/// This does the actual lookup of an intrinsic ID which
907/// matches the given function name.
908Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
909 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
910 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
911 if (Idx == -1)
912 return Intrinsic::not_intrinsic;
913
914 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
915 // an index into a sub-table.
916 int Adjust = NameTable.data() - IntrinsicNameTable;
917 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
918
919 // If the intrinsic is not overloaded, require an exact match. If it is
920 // overloaded, require either exact or prefix match.
921 const auto MatchSize = strlen(s: NameTable[Idx]);
922 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
923 bool IsExactMatch = Name.size() == MatchSize;
924 return IsExactMatch || Intrinsic::isOverloaded(id: ID) ? ID
925 : Intrinsic::not_intrinsic;
926}
927
928void Function::updateAfterNameChange() {
929 LibFuncCache = UnknownLibFunc;
930 StringRef Name = getName();
931 if (!Name.starts_with(Prefix: "llvm.")) {
932 HasLLVMReservedName = false;
933 IntID = Intrinsic::not_intrinsic;
934 return;
935 }
936 HasLLVMReservedName = true;
937 IntID = lookupIntrinsicID(Name);
938}
939
940/// Returns a stable mangling for the type specified for use in the name
941/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
942/// of named types is simply their name. Manglings for unnamed types consist
943/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
944/// combined with the mangling of their component types. A vararg function
945/// type will have a suffix of 'vararg'. Since function types can contain
946/// other function types, we close a function type mangling with suffix 'f'
947/// which can't be confused with it's prefix. This ensures we don't have
948/// collisions between two unrelated function types. Otherwise, you might
949/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
950/// The HasUnnamedType boolean is set if an unnamed type was encountered,
951/// indicating that extra care must be taken to ensure a unique name.
952static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
953 std::string Result;
954 if (PointerType *PTyp = dyn_cast<PointerType>(Val: Ty)) {
955 Result += "p" + utostr(X: PTyp->getAddressSpace());
956 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Val: Ty)) {
957 Result += "a" + utostr(X: ATyp->getNumElements()) +
958 getMangledTypeStr(Ty: ATyp->getElementType(), HasUnnamedType);
959 } else if (StructType *STyp = dyn_cast<StructType>(Val: Ty)) {
960 if (!STyp->isLiteral()) {
961 Result += "s_";
962 if (STyp->hasName())
963 Result += STyp->getName();
964 else
965 HasUnnamedType = true;
966 } else {
967 Result += "sl_";
968 for (auto *Elem : STyp->elements())
969 Result += getMangledTypeStr(Ty: Elem, HasUnnamedType);
970 }
971 // Ensure nested structs are distinguishable.
972 Result += "s";
973 } else if (FunctionType *FT = dyn_cast<FunctionType>(Val: Ty)) {
974 Result += "f_" + getMangledTypeStr(Ty: FT->getReturnType(), HasUnnamedType);
975 for (size_t i = 0; i < FT->getNumParams(); i++)
976 Result += getMangledTypeStr(Ty: FT->getParamType(i), HasUnnamedType);
977 if (FT->isVarArg())
978 Result += "vararg";
979 // Ensure nested function types are distinguishable.
980 Result += "f";
981 } else if (VectorType *VTy = dyn_cast<VectorType>(Val: Ty)) {
982 ElementCount EC = VTy->getElementCount();
983 if (EC.isScalable())
984 Result += "nx";
985 Result += "v" + utostr(X: EC.getKnownMinValue()) +
986 getMangledTypeStr(Ty: VTy->getElementType(), HasUnnamedType);
987 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Val: Ty)) {
988 Result += "t";
989 Result += TETy->getName();
990 for (Type *ParamTy : TETy->type_params())
991 Result += "_" + getMangledTypeStr(Ty: ParamTy, HasUnnamedType);
992 for (unsigned IntParam : TETy->int_params())
993 Result += "_" + utostr(X: IntParam);
994 // Ensure nested target extension types are distinguishable.
995 Result += "t";
996 } else if (Ty) {
997 switch (Ty->getTypeID()) {
998 default: llvm_unreachable("Unhandled type");
999 case Type::VoidTyID: Result += "isVoid"; break;
1000 case Type::MetadataTyID: Result += "Metadata"; break;
1001 case Type::HalfTyID: Result += "f16"; break;
1002 case Type::BFloatTyID: Result += "bf16"; break;
1003 case Type::FloatTyID: Result += "f32"; break;
1004 case Type::DoubleTyID: Result += "f64"; break;
1005 case Type::X86_FP80TyID: Result += "f80"; break;
1006 case Type::FP128TyID: Result += "f128"; break;
1007 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
1008 case Type::X86_MMXTyID: Result += "x86mmx"; break;
1009 case Type::X86_AMXTyID: Result += "x86amx"; break;
1010 case Type::IntegerTyID:
1011 Result += "i" + utostr(X: cast<IntegerType>(Val: Ty)->getBitWidth());
1012 break;
1013 }
1014 }
1015 return Result;
1016}
1017
1018StringRef Intrinsic::getBaseName(ID id) {
1019 assert(id < num_intrinsics && "Invalid intrinsic ID!");
1020 return IntrinsicNameTable[id];
1021}
1022
1023StringRef Intrinsic::getName(ID id) {
1024 assert(id < num_intrinsics && "Invalid intrinsic ID!");
1025 assert(!Intrinsic::isOverloaded(id) &&
1026 "This version of getName does not support overloading");
1027 return getBaseName(id);
1028}
1029
1030static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1031 Module *M, FunctionType *FT,
1032 bool EarlyModuleCheck) {
1033
1034 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1035 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1036 "This version of getName is for overloaded intrinsics only");
1037 (void)EarlyModuleCheck;
1038 assert((!EarlyModuleCheck || M ||
1039 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1040 "Intrinsic overloading on pointer types need to provide a Module");
1041 bool HasUnnamedType = false;
1042 std::string Result(Intrinsic::getBaseName(id: Id));
1043 for (Type *Ty : Tys)
1044 Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1045 if (HasUnnamedType) {
1046 assert(M && "unnamed types need a module");
1047 if (!FT)
1048 FT = Intrinsic::getType(Context&: M->getContext(), id: Id, Tys);
1049 else
1050 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1051 "Provided FunctionType must match arguments");
1052 return M->getUniqueIntrinsicName(BaseName: Result, Id, Proto: FT);
1053 }
1054 return Result;
1055}
1056
1057std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1058 FunctionType *FT) {
1059 assert(M && "We need to have a Module");
1060 return getIntrinsicNameImpl(Id, Tys, M, FT, EarlyModuleCheck: true);
1061}
1062
1063std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1064 return getIntrinsicNameImpl(Id, Tys, M: nullptr, FT: nullptr, EarlyModuleCheck: false);
1065}
1066
1067/// IIT_Info - These are enumerators that describe the entries returned by the
1068/// getIntrinsicInfoTableEntries function.
1069///
1070/// Defined in Intrinsics.td.
1071enum IIT_Info {
1072#define GET_INTRINSIC_IITINFO
1073#include "llvm/IR/IntrinsicImpl.inc"
1074#undef GET_INTRINSIC_IITINFO
1075};
1076
1077static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1078 IIT_Info LastInfo,
1079 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1080 using namespace Intrinsic;
1081
1082 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1083
1084 IIT_Info Info = IIT_Info(Infos[NextElt++]);
1085 unsigned StructElts = 2;
1086
1087 switch (Info) {
1088 case IIT_Done:
1089 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Void, Field: 0));
1090 return;
1091 case IIT_VARARG:
1092 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::VarArg, Field: 0));
1093 return;
1094 case IIT_MMX:
1095 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::MMX, Field: 0));
1096 return;
1097 case IIT_AMX:
1098 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::AMX, Field: 0));
1099 return;
1100 case IIT_TOKEN:
1101 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Token, Field: 0));
1102 return;
1103 case IIT_METADATA:
1104 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Metadata, Field: 0));
1105 return;
1106 case IIT_F16:
1107 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Half, Field: 0));
1108 return;
1109 case IIT_BF16:
1110 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::BFloat, Field: 0));
1111 return;
1112 case IIT_F32:
1113 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Float, Field: 0));
1114 return;
1115 case IIT_F64:
1116 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Double, Field: 0));
1117 return;
1118 case IIT_F128:
1119 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Quad, Field: 0));
1120 return;
1121 case IIT_PPCF128:
1122 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::PPCQuad, Field: 0));
1123 return;
1124 case IIT_I1:
1125 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 1));
1126 return;
1127 case IIT_I2:
1128 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 2));
1129 return;
1130 case IIT_I4:
1131 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 4));
1132 return;
1133 case IIT_AARCH64_SVCOUNT:
1134 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::AArch64Svcount, Field: 0));
1135 return;
1136 case IIT_I8:
1137 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 8));
1138 return;
1139 case IIT_I16:
1140 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer,Field: 16));
1141 return;
1142 case IIT_I32:
1143 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 32));
1144 return;
1145 case IIT_I64:
1146 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 64));
1147 return;
1148 case IIT_I128:
1149 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Integer, Field: 128));
1150 return;
1151 case IIT_V1:
1152 OutputTable.push_back(IITDescriptor::getVector(Width: 1, IsScalable: IsScalableVector));
1153 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1154 return;
1155 case IIT_V2:
1156 OutputTable.push_back(IITDescriptor::getVector(Width: 2, IsScalable: IsScalableVector));
1157 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1158 return;
1159 case IIT_V3:
1160 OutputTable.push_back(IITDescriptor::getVector(Width: 3, IsScalable: IsScalableVector));
1161 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1162 return;
1163 case IIT_V4:
1164 OutputTable.push_back(IITDescriptor::getVector(Width: 4, IsScalable: IsScalableVector));
1165 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1166 return;
1167 case IIT_V6:
1168 OutputTable.push_back(IITDescriptor::getVector(Width: 6, IsScalable: IsScalableVector));
1169 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1170 return;
1171 case IIT_V8:
1172 OutputTable.push_back(IITDescriptor::getVector(Width: 8, IsScalable: IsScalableVector));
1173 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1174 return;
1175 case IIT_V10:
1176 OutputTable.push_back(IITDescriptor::getVector(Width: 10, IsScalable: IsScalableVector));
1177 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1178 return;
1179 case IIT_V16:
1180 OutputTable.push_back(IITDescriptor::getVector(Width: 16, IsScalable: IsScalableVector));
1181 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1182 return;
1183 case IIT_V32:
1184 OutputTable.push_back(IITDescriptor::getVector(Width: 32, IsScalable: IsScalableVector));
1185 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1186 return;
1187 case IIT_V64:
1188 OutputTable.push_back(IITDescriptor::getVector(Width: 64, IsScalable: IsScalableVector));
1189 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1190 return;
1191 case IIT_V128:
1192 OutputTable.push_back(IITDescriptor::getVector(Width: 128, IsScalable: IsScalableVector));
1193 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1194 return;
1195 case IIT_V256:
1196 OutputTable.push_back(IITDescriptor::getVector(Width: 256, IsScalable: IsScalableVector));
1197 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1198 return;
1199 case IIT_V512:
1200 OutputTable.push_back(IITDescriptor::getVector(Width: 512, IsScalable: IsScalableVector));
1201 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1202 return;
1203 case IIT_V1024:
1204 OutputTable.push_back(IITDescriptor::getVector(Width: 1024, IsScalable: IsScalableVector));
1205 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1206 return;
1207 case IIT_EXTERNREF:
1208 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Pointer, Field: 10));
1209 return;
1210 case IIT_FUNCREF:
1211 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Pointer, Field: 20));
1212 return;
1213 case IIT_PTR:
1214 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Pointer, Field: 0));
1215 return;
1216 case IIT_ANYPTR: // [ANYPTR addrspace]
1217 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Pointer,
1218 Field: Infos[NextElt++]));
1219 return;
1220 case IIT_ARG: {
1221 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1222 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Argument, Field: ArgInfo));
1223 return;
1224 }
1225 case IIT_EXTEND_ARG: {
1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1227 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::ExtendArgument,
1228 Field: ArgInfo));
1229 return;
1230 }
1231 case IIT_TRUNC_ARG: {
1232 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1233 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::TruncArgument,
1234 Field: ArgInfo));
1235 return;
1236 }
1237 case IIT_HALF_VEC_ARG: {
1238 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1239 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::HalfVecArgument,
1240 Field: ArgInfo));
1241 return;
1242 }
1243 case IIT_SAME_VEC_WIDTH_ARG: {
1244 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1245 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::SameVecWidthArgument,
1246 Field: ArgInfo));
1247 return;
1248 }
1249 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1250 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1251 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1252 OutputTable.push_back(
1253 IITDescriptor::get(K: IITDescriptor::VecOfAnyPtrsToElt, Hi: ArgNo, Lo: RefNo));
1254 return;
1255 }
1256 case IIT_EMPTYSTRUCT:
1257 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Struct, Field: 0));
1258 return;
1259 case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1260 case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1261 case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1262 case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1263 case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1264 case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1265 case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1266 case IIT_STRUCT2: {
1267 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Struct,Field: StructElts));
1268
1269 for (unsigned i = 0; i != StructElts; ++i)
1270 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1271 return;
1272 }
1273 case IIT_SUBDIVIDE2_ARG: {
1274 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1275 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Subdivide2Argument,
1276 Field: ArgInfo));
1277 return;
1278 }
1279 case IIT_SUBDIVIDE4_ARG: {
1280 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1281 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::Subdivide4Argument,
1282 Field: ArgInfo));
1283 return;
1284 }
1285 case IIT_VEC_ELEMENT: {
1286 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1287 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::VecElementArgument,
1288 Field: ArgInfo));
1289 return;
1290 }
1291 case IIT_SCALABLE_VEC: {
1292 DecodeIITType(NextElt, Infos, LastInfo: Info, OutputTable);
1293 return;
1294 }
1295 case IIT_VEC_OF_BITCASTS_TO_INT: {
1296 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1297 OutputTable.push_back(IITDescriptor::get(K: IITDescriptor::VecOfBitcastsToInt,
1298 Field: ArgInfo));
1299 return;
1300 }
1301 }
1302 llvm_unreachable("unhandled");
1303}
1304
1305#define GET_INTRINSIC_GENERATOR_GLOBAL
1306#include "llvm/IR/IntrinsicImpl.inc"
1307#undef GET_INTRINSIC_GENERATOR_GLOBAL
1308
1309void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1310 SmallVectorImpl<IITDescriptor> &T){
1311 // Check to see if the intrinsic's type was expressible by the table.
1312 unsigned TableVal = IIT_Table[id-1];
1313
1314 // Decode the TableVal into an array of IITValues.
1315 SmallVector<unsigned char, 8> IITValues;
1316 ArrayRef<unsigned char> IITEntries;
1317 unsigned NextElt = 0;
1318 if ((TableVal >> 31) != 0) {
1319 // This is an offset into the IIT_LongEncodingTable.
1320 IITEntries = IIT_LongEncodingTable;
1321
1322 // Strip sentinel bit.
1323 NextElt = (TableVal << 1) >> 1;
1324 } else {
1325 // Decode the TableVal into an array of IITValues. If the entry was encoded
1326 // into a single word in the table itself, decode it now.
1327 do {
1328 IITValues.push_back(Elt: TableVal & 0xF);
1329 TableVal >>= 4;
1330 } while (TableVal);
1331
1332 IITEntries = IITValues;
1333 NextElt = 0;
1334 }
1335
1336 // Okay, decode the table into the output vector of IITDescriptors.
1337 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1338 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1339 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1340}
1341
1342static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1343 ArrayRef<Type*> Tys, LLVMContext &Context) {
1344 using namespace Intrinsic;
1345
1346 IITDescriptor D = Infos.front();
1347 Infos = Infos.slice(N: 1);
1348
1349 switch (D.Kind) {
1350 case IITDescriptor::Void: return Type::getVoidTy(C&: Context);
1351 case IITDescriptor::VarArg: return Type::getVoidTy(C&: Context);
1352 case IITDescriptor::MMX: return Type::getX86_MMXTy(C&: Context);
1353 case IITDescriptor::AMX: return Type::getX86_AMXTy(C&: Context);
1354 case IITDescriptor::Token: return Type::getTokenTy(C&: Context);
1355 case IITDescriptor::Metadata: return Type::getMetadataTy(C&: Context);
1356 case IITDescriptor::Half: return Type::getHalfTy(C&: Context);
1357 case IITDescriptor::BFloat: return Type::getBFloatTy(C&: Context);
1358 case IITDescriptor::Float: return Type::getFloatTy(C&: Context);
1359 case IITDescriptor::Double: return Type::getDoubleTy(C&: Context);
1360 case IITDescriptor::Quad: return Type::getFP128Ty(C&: Context);
1361 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(C&: Context);
1362 case IITDescriptor::AArch64Svcount:
1363 return TargetExtType::get(Context, Name: "aarch64.svcount");
1364
1365 case IITDescriptor::Integer:
1366 return IntegerType::get(C&: Context, NumBits: D.Integer_Width);
1367 case IITDescriptor::Vector:
1368 return VectorType::get(ElementType: DecodeFixedType(Infos, Tys, Context),
1369 EC: D.Vector_Width);
1370 case IITDescriptor::Pointer:
1371 return PointerType::get(C&: Context, AddressSpace: D.Pointer_AddressSpace);
1372 case IITDescriptor::Struct: {
1373 SmallVector<Type *, 8> Elts;
1374 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1375 Elts.push_back(Elt: DecodeFixedType(Infos, Tys, Context));
1376 return StructType::get(Context, Elements: Elts);
1377 }
1378 case IITDescriptor::Argument:
1379 return Tys[D.getArgumentNumber()];
1380 case IITDescriptor::ExtendArgument: {
1381 Type *Ty = Tys[D.getArgumentNumber()];
1382 if (VectorType *VTy = dyn_cast<VectorType>(Val: Ty))
1383 return VectorType::getExtendedElementVectorType(VTy);
1384
1385 return IntegerType::get(C&: Context, NumBits: 2 * cast<IntegerType>(Val: Ty)->getBitWidth());
1386 }
1387 case IITDescriptor::TruncArgument: {
1388 Type *Ty = Tys[D.getArgumentNumber()];
1389 if (VectorType *VTy = dyn_cast<VectorType>(Val: Ty))
1390 return VectorType::getTruncatedElementVectorType(VTy);
1391
1392 IntegerType *ITy = cast<IntegerType>(Val: Ty);
1393 assert(ITy->getBitWidth() % 2 == 0);
1394 return IntegerType::get(C&: Context, NumBits: ITy->getBitWidth() / 2);
1395 }
1396 case IITDescriptor::Subdivide2Argument:
1397 case IITDescriptor::Subdivide4Argument: {
1398 Type *Ty = Tys[D.getArgumentNumber()];
1399 VectorType *VTy = dyn_cast<VectorType>(Val: Ty);
1400 assert(VTy && "Expected an argument of Vector Type");
1401 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1402 return VectorType::getSubdividedVectorType(VTy, NumSubdivs: SubDivs);
1403 }
1404 case IITDescriptor::HalfVecArgument:
1405 return VectorType::getHalfElementsVectorType(VTy: cast<VectorType>(
1406 Val: Tys[D.getArgumentNumber()]));
1407 case IITDescriptor::SameVecWidthArgument: {
1408 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1409 Type *Ty = Tys[D.getArgumentNumber()];
1410 if (auto *VTy = dyn_cast<VectorType>(Val: Ty))
1411 return VectorType::get(ElementType: EltTy, EC: VTy->getElementCount());
1412 return EltTy;
1413 }
1414 case IITDescriptor::VecElementArgument: {
1415 Type *Ty = Tys[D.getArgumentNumber()];
1416 if (VectorType *VTy = dyn_cast<VectorType>(Val: Ty))
1417 return VTy->getElementType();
1418 llvm_unreachable("Expected an argument of Vector Type");
1419 }
1420 case IITDescriptor::VecOfBitcastsToInt: {
1421 Type *Ty = Tys[D.getArgumentNumber()];
1422 VectorType *VTy = dyn_cast<VectorType>(Val: Ty);
1423 assert(VTy && "Expected an argument of Vector Type");
1424 return VectorType::getInteger(VTy);
1425 }
1426 case IITDescriptor::VecOfAnyPtrsToElt:
1427 // Return the overloaded type (which determines the pointers address space)
1428 return Tys[D.getOverloadArgNumber()];
1429 }
1430 llvm_unreachable("unhandled");
1431}
1432
1433FunctionType *Intrinsic::getType(LLVMContext &Context,
1434 ID id, ArrayRef<Type*> Tys) {
1435 SmallVector<IITDescriptor, 8> Table;
1436 getIntrinsicInfoTableEntries(id, T&: Table);
1437
1438 ArrayRef<IITDescriptor> TableRef = Table;
1439 Type *ResultTy = DecodeFixedType(Infos&: TableRef, Tys, Context);
1440
1441 SmallVector<Type*, 8> ArgTys;
1442 while (!TableRef.empty())
1443 ArgTys.push_back(Elt: DecodeFixedType(Infos&: TableRef, Tys, Context));
1444
1445 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1446 // If we see void type as the type of the last argument, it is vararg intrinsic
1447 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1448 ArgTys.pop_back();
1449 return FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: true);
1450 }
1451 return FunctionType::get(Result: ResultTy, Params: ArgTys, isVarArg: false);
1452}
1453
1454bool Intrinsic::isOverloaded(ID id) {
1455#define GET_INTRINSIC_OVERLOAD_TABLE
1456#include "llvm/IR/IntrinsicImpl.inc"
1457#undef GET_INTRINSIC_OVERLOAD_TABLE
1458}
1459
1460/// This defines the "Intrinsic::getAttributes(ID id)" method.
1461#define GET_INTRINSIC_ATTRIBUTES
1462#include "llvm/IR/IntrinsicImpl.inc"
1463#undef GET_INTRINSIC_ATTRIBUTES
1464
1465Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1466 // There can never be multiple globals with the same name of different types,
1467 // because intrinsics must be a specific type.
1468 auto *FT = getType(Context&: M->getContext(), id, Tys);
1469 return cast<Function>(
1470 Val: M->getOrInsertFunction(
1471 Name: Tys.empty() ? getName(id) : getName(Id: id, Tys, M, FT), T: FT)
1472 .getCallee());
1473}
1474
1475// This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1476#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1477#include "llvm/IR/IntrinsicImpl.inc"
1478#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1479
1480// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1481#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1482#include "llvm/IR/IntrinsicImpl.inc"
1483#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1484
1485bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1486 switch (QID) {
1487#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
1488 case Intrinsic::INTRINSIC:
1489#include "llvm/IR/ConstrainedOps.def"
1490 return true;
1491#undef INSTRUCTION
1492 default:
1493 return false;
1494 }
1495}
1496
1497using DeferredIntrinsicMatchPair =
1498 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1499
1500static bool matchIntrinsicType(
1501 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1502 SmallVectorImpl<Type *> &ArgTys,
1503 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1504 bool IsDeferredCheck) {
1505 using namespace Intrinsic;
1506
1507 // If we ran out of descriptors, there are too many arguments.
1508 if (Infos.empty()) return true;
1509
1510 // Do this before slicing off the 'front' part
1511 auto InfosRef = Infos;
1512 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1513 DeferredChecks.emplace_back(Args&: T, Args&: InfosRef);
1514 return false;
1515 };
1516
1517 IITDescriptor D = Infos.front();
1518 Infos = Infos.slice(N: 1);
1519
1520 switch (D.Kind) {
1521 case IITDescriptor::Void: return !Ty->isVoidTy();
1522 case IITDescriptor::VarArg: return true;
1523 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1524 case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
1525 case IITDescriptor::Token: return !Ty->isTokenTy();
1526 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1527 case IITDescriptor::Half: return !Ty->isHalfTy();
1528 case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1529 case IITDescriptor::Float: return !Ty->isFloatTy();
1530 case IITDescriptor::Double: return !Ty->isDoubleTy();
1531 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1532 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1533 case IITDescriptor::Integer: return !Ty->isIntegerTy(Bitwidth: D.Integer_Width);
1534 case IITDescriptor::AArch64Svcount:
1535 return !isa<TargetExtType>(Val: Ty) ||
1536 cast<TargetExtType>(Val: Ty)->getName() != "aarch64.svcount";
1537 case IITDescriptor::Vector: {
1538 VectorType *VT = dyn_cast<VectorType>(Val: Ty);
1539 return !VT || VT->getElementCount() != D.Vector_Width ||
1540 matchIntrinsicType(Ty: VT->getElementType(), Infos, ArgTys,
1541 DeferredChecks, IsDeferredCheck);
1542 }
1543 case IITDescriptor::Pointer: {
1544 PointerType *PT = dyn_cast<PointerType>(Val: Ty);
1545 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1546 }
1547
1548 case IITDescriptor::Struct: {
1549 StructType *ST = dyn_cast<StructType>(Val: Ty);
1550 if (!ST || !ST->isLiteral() || ST->isPacked() ||
1551 ST->getNumElements() != D.Struct_NumElements)
1552 return true;
1553
1554 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1555 if (matchIntrinsicType(Ty: ST->getElementType(N: i), Infos, ArgTys,
1556 DeferredChecks, IsDeferredCheck))
1557 return true;
1558 return false;
1559 }
1560
1561 case IITDescriptor::Argument:
1562 // If this is the second occurrence of an argument,
1563 // verify that the later instance matches the previous instance.
1564 if (D.getArgumentNumber() < ArgTys.size())
1565 return Ty != ArgTys[D.getArgumentNumber()];
1566
1567 if (D.getArgumentNumber() > ArgTys.size() ||
1568 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1569 return IsDeferredCheck || DeferCheck(Ty);
1570
1571 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1572 "Table consistency error");
1573 ArgTys.push_back(Elt: Ty);
1574
1575 switch (D.getArgumentKind()) {
1576 case IITDescriptor::AK_Any: return false; // Success
1577 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1578 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1579 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Val: Ty);
1580 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Val: Ty);
1581 default: break;
1582 }
1583 llvm_unreachable("all argument kinds not covered");
1584
1585 case IITDescriptor::ExtendArgument: {
1586 // If this is a forward reference, defer the check for later.
1587 if (D.getArgumentNumber() >= ArgTys.size())
1588 return IsDeferredCheck || DeferCheck(Ty);
1589
1590 Type *NewTy = ArgTys[D.getArgumentNumber()];
1591 if (VectorType *VTy = dyn_cast<VectorType>(Val: NewTy))
1592 NewTy = VectorType::getExtendedElementVectorType(VTy);
1593 else if (IntegerType *ITy = dyn_cast<IntegerType>(Val: NewTy))
1594 NewTy = IntegerType::get(C&: ITy->getContext(), NumBits: 2 * ITy->getBitWidth());
1595 else
1596 return true;
1597
1598 return Ty != NewTy;
1599 }
1600 case IITDescriptor::TruncArgument: {
1601 // If this is a forward reference, defer the check for later.
1602 if (D.getArgumentNumber() >= ArgTys.size())
1603 return IsDeferredCheck || DeferCheck(Ty);
1604
1605 Type *NewTy = ArgTys[D.getArgumentNumber()];
1606 if (VectorType *VTy = dyn_cast<VectorType>(Val: NewTy))
1607 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1608 else if (IntegerType *ITy = dyn_cast<IntegerType>(Val: NewTy))
1609 NewTy = IntegerType::get(C&: ITy->getContext(), NumBits: ITy->getBitWidth() / 2);
1610 else
1611 return true;
1612
1613 return Ty != NewTy;
1614 }
1615 case IITDescriptor::HalfVecArgument:
1616 // If this is a forward reference, defer the check for later.
1617 if (D.getArgumentNumber() >= ArgTys.size())
1618 return IsDeferredCheck || DeferCheck(Ty);
1619 return !isa<VectorType>(Val: ArgTys[D.getArgumentNumber()]) ||
1620 VectorType::getHalfElementsVectorType(
1621 VTy: cast<VectorType>(Val: ArgTys[D.getArgumentNumber()])) != Ty;
1622 case IITDescriptor::SameVecWidthArgument: {
1623 if (D.getArgumentNumber() >= ArgTys.size()) {
1624 // Defer check and subsequent check for the vector element type.
1625 Infos = Infos.slice(N: 1);
1626 return IsDeferredCheck || DeferCheck(Ty);
1627 }
1628 auto *ReferenceType = dyn_cast<VectorType>(Val: ArgTys[D.getArgumentNumber()]);
1629 auto *ThisArgType = dyn_cast<VectorType>(Val: Ty);
1630 // Both must be vectors of the same number of elements or neither.
1631 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1632 return true;
1633 Type *EltTy = Ty;
1634 if (ThisArgType) {
1635 if (ReferenceType->getElementCount() !=
1636 ThisArgType->getElementCount())
1637 return true;
1638 EltTy = ThisArgType->getElementType();
1639 }
1640 return matchIntrinsicType(Ty: EltTy, Infos, ArgTys, DeferredChecks,
1641 IsDeferredCheck);
1642 }
1643 case IITDescriptor::VecOfAnyPtrsToElt: {
1644 unsigned RefArgNumber = D.getRefArgNumber();
1645 if (RefArgNumber >= ArgTys.size()) {
1646 if (IsDeferredCheck)
1647 return true;
1648 // If forward referencing, already add the pointer-vector type and
1649 // defer the checks for later.
1650 ArgTys.push_back(Elt: Ty);
1651 return DeferCheck(Ty);
1652 }
1653
1654 if (!IsDeferredCheck){
1655 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1656 "Table consistency error");
1657 ArgTys.push_back(Elt: Ty);
1658 }
1659
1660 // Verify the overloaded type "matches" the Ref type.
1661 // i.e. Ty is a vector with the same width as Ref.
1662 // Composed of pointers to the same element type as Ref.
1663 auto *ReferenceType = dyn_cast<VectorType>(Val: ArgTys[RefArgNumber]);
1664 auto *ThisArgVecTy = dyn_cast<VectorType>(Val: Ty);
1665 if (!ThisArgVecTy || !ReferenceType ||
1666 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1667 return true;
1668 return !ThisArgVecTy->getElementType()->isPointerTy();
1669 }
1670 case IITDescriptor::VecElementArgument: {
1671 if (D.getArgumentNumber() >= ArgTys.size())
1672 return IsDeferredCheck ? true : DeferCheck(Ty);
1673 auto *ReferenceType = dyn_cast<VectorType>(Val: ArgTys[D.getArgumentNumber()]);
1674 return !ReferenceType || Ty != ReferenceType->getElementType();
1675 }
1676 case IITDescriptor::Subdivide2Argument:
1677 case IITDescriptor::Subdivide4Argument: {
1678 // If this is a forward reference, defer the check for later.
1679 if (D.getArgumentNumber() >= ArgTys.size())
1680 return IsDeferredCheck || DeferCheck(Ty);
1681
1682 Type *NewTy = ArgTys[D.getArgumentNumber()];
1683 if (auto *VTy = dyn_cast<VectorType>(Val: NewTy)) {
1684 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1685 NewTy = VectorType::getSubdividedVectorType(VTy, NumSubdivs: SubDivs);
1686 return Ty != NewTy;
1687 }
1688 return true;
1689 }
1690 case IITDescriptor::VecOfBitcastsToInt: {
1691 if (D.getArgumentNumber() >= ArgTys.size())
1692 return IsDeferredCheck || DeferCheck(Ty);
1693 auto *ReferenceType = dyn_cast<VectorType>(Val: ArgTys[D.getArgumentNumber()]);
1694 auto *ThisArgVecTy = dyn_cast<VectorType>(Val: Ty);
1695 if (!ThisArgVecTy || !ReferenceType)
1696 return true;
1697 return ThisArgVecTy != VectorType::getInteger(VTy: ReferenceType);
1698 }
1699 }
1700 llvm_unreachable("unhandled");
1701}
1702
1703Intrinsic::MatchIntrinsicTypesResult
1704Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1705 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1706 SmallVectorImpl<Type *> &ArgTys) {
1707 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1708 if (matchIntrinsicType(Ty: FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1709 IsDeferredCheck: false))
1710 return MatchIntrinsicTypes_NoMatchRet;
1711
1712 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1713
1714 for (auto *Ty : FTy->params())
1715 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, IsDeferredCheck: false))
1716 return MatchIntrinsicTypes_NoMatchArg;
1717
1718 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1719 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1720 if (matchIntrinsicType(Ty: Check.first, Infos&: Check.second, ArgTys, DeferredChecks,
1721 IsDeferredCheck: true))
1722 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1723 : MatchIntrinsicTypes_NoMatchArg;
1724 }
1725
1726 return MatchIntrinsicTypes_Match;
1727}
1728
1729bool
1730Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1731 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1732 // If there are no descriptors left, then it can't be a vararg.
1733 if (Infos.empty())
1734 return isVarArg;
1735
1736 // There should be only one descriptor remaining at this point.
1737 if (Infos.size() != 1)
1738 return true;
1739
1740 // Check and verify the descriptor.
1741 IITDescriptor D = Infos.front();
1742 Infos = Infos.slice(N: 1);
1743 if (D.Kind == IITDescriptor::VarArg)
1744 return !isVarArg;
1745
1746 return true;
1747}
1748
1749bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1750 SmallVectorImpl<Type *> &ArgTys) {
1751 if (!ID)
1752 return false;
1753
1754 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1755 getIntrinsicInfoTableEntries(id: ID, T&: Table);
1756 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1757
1758 if (Intrinsic::matchIntrinsicSignature(FTy: FT, Infos&: TableRef, ArgTys) !=
1759 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1760 return false;
1761 }
1762 if (Intrinsic::matchIntrinsicVarArg(isVarArg: FT->isVarArg(), Infos&: TableRef))
1763 return false;
1764 return true;
1765}
1766
1767bool Intrinsic::getIntrinsicSignature(Function *F,
1768 SmallVectorImpl<Type *> &ArgTys) {
1769 return getIntrinsicSignature(ID: F->getIntrinsicID(), FT: F->getFunctionType(),
1770 ArgTys);
1771}
1772
1773std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1774 SmallVector<Type *, 4> ArgTys;
1775 if (!getIntrinsicSignature(F, ArgTys))
1776 return std::nullopt;
1777
1778 Intrinsic::ID ID = F->getIntrinsicID();
1779 StringRef Name = F->getName();
1780 std::string WantedName =
1781 Intrinsic::getName(Id: ID, Tys: ArgTys, M: F->getParent(), FT: F->getFunctionType());
1782 if (Name == WantedName)
1783 return std::nullopt;
1784
1785 Function *NewDecl = [&] {
1786 if (auto *ExistingGV = F->getParent()->getNamedValue(Name: WantedName)) {
1787 if (auto *ExistingF = dyn_cast<Function>(Val: ExistingGV))
1788 if (ExistingF->getFunctionType() == F->getFunctionType())
1789 return ExistingF;
1790
1791 // The name already exists, but is not a function or has the wrong
1792 // prototype. Make place for the new one by renaming the old version.
1793 // Either this old version will be removed later on or the module is
1794 // invalid and we'll get an error.
1795 ExistingGV->setName(WantedName + ".renamed");
1796 }
1797 return Intrinsic::getDeclaration(M: F->getParent(), id: ID, Tys: ArgTys);
1798 }();
1799
1800 NewDecl->setCallingConv(F->getCallingConv());
1801 assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1802 "Shouldn't change the signature");
1803 return NewDecl;
1804}
1805
1806/// hasAddressTaken - returns true if there are any uses of this function
1807/// other than direct calls or invokes to it. Optionally ignores callback
1808/// uses, assume like pointer annotation calls, and references in llvm.used
1809/// and llvm.compiler.used variables.
1810bool Function::hasAddressTaken(const User **PutOffender,
1811 bool IgnoreCallbackUses,
1812 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1813 bool IgnoreARCAttachedCall,
1814 bool IgnoreCastedDirectCall) const {
1815 for (const Use &U : uses()) {
1816 const User *FU = U.getUser();
1817 if (isa<BlockAddress>(Val: FU))
1818 continue;
1819
1820 if (IgnoreCallbackUses) {
1821 AbstractCallSite ACS(&U);
1822 if (ACS && ACS.isCallbackCall())
1823 continue;
1824 }
1825
1826 const auto *Call = dyn_cast<CallBase>(Val: FU);
1827 if (!Call) {
1828 if (IgnoreAssumeLikeCalls &&
1829 isa<BitCastOperator, AddrSpaceCastOperator>(Val: FU) &&
1830 all_of(Range: FU->users(), P: [](const User *U) {
1831 if (const auto *I = dyn_cast<IntrinsicInst>(Val: U))
1832 return I->isAssumeLikeIntrinsic();
1833 return false;
1834 })) {
1835 continue;
1836 }
1837
1838 if (IgnoreLLVMUsed && !FU->user_empty()) {
1839 const User *FUU = FU;
1840 if (isa<BitCastOperator, AddrSpaceCastOperator>(Val: FU) &&
1841 FU->hasOneUse() && !FU->user_begin()->user_empty())
1842 FUU = *FU->user_begin();
1843 if (llvm::all_of(Range: FUU->users(), P: [](const User *U) {
1844 if (const auto *GV = dyn_cast<GlobalVariable>(Val: U))
1845 return GV->hasName() &&
1846 (GV->getName().equals(RHS: "llvm.compiler.used") ||
1847 GV->getName().equals(RHS: "llvm.used"));
1848 return false;
1849 }))
1850 continue;
1851 }
1852 if (PutOffender)
1853 *PutOffender = FU;
1854 return true;
1855 }
1856
1857 if (IgnoreAssumeLikeCalls) {
1858 if (const auto *I = dyn_cast<IntrinsicInst>(Val: Call))
1859 if (I->isAssumeLikeIntrinsic())
1860 continue;
1861 }
1862
1863 if (!Call->isCallee(U: &U) || (!IgnoreCastedDirectCall &&
1864 Call->getFunctionType() != getFunctionType())) {
1865 if (IgnoreARCAttachedCall &&
1866 Call->isOperandBundleOfType(ID: LLVMContext::OB_clang_arc_attachedcall,
1867 Idx: U.getOperandNo()))
1868 continue;
1869
1870 if (PutOffender)
1871 *PutOffender = FU;
1872 return true;
1873 }
1874 }
1875 return false;
1876}
1877
1878bool Function::isDefTriviallyDead() const {
1879 // Check the linkage
1880 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1881 !hasAvailableExternallyLinkage())
1882 return false;
1883
1884 // Check if the function is used by anything other than a blockaddress.
1885 for (const User *U : users())
1886 if (!isa<BlockAddress>(Val: U))
1887 return false;
1888
1889 return true;
1890}
1891
1892/// callsFunctionThatReturnsTwice - Return true if the function has a call to
1893/// setjmp or other function that gcc recognizes as "returning twice".
1894bool Function::callsFunctionThatReturnsTwice() const {
1895 for (const Instruction &I : instructions(F: this))
1896 if (const auto *Call = dyn_cast<CallBase>(Val: &I))
1897 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1898 return true;
1899
1900 return false;
1901}
1902
1903Constant *Function::getPersonalityFn() const {
1904 assert(hasPersonalityFn() && getNumOperands());
1905 return cast<Constant>(Val: Op<0>());
1906}
1907
1908void Function::setPersonalityFn(Constant *Fn) {
1909 setHungoffOperand<0>(Fn);
1910 setValueSubclassDataBit(Bit: 3, On: Fn != nullptr);
1911}
1912
1913Constant *Function::getPrefixData() const {
1914 assert(hasPrefixData() && getNumOperands());
1915 return cast<Constant>(Val: Op<1>());
1916}
1917
1918void Function::setPrefixData(Constant *PrefixData) {
1919 setHungoffOperand<1>(PrefixData);
1920 setValueSubclassDataBit(Bit: 1, On: PrefixData != nullptr);
1921}
1922
1923Constant *Function::getPrologueData() const {
1924 assert(hasPrologueData() && getNumOperands());
1925 return cast<Constant>(Val: Op<2>());
1926}
1927
1928void Function::setPrologueData(Constant *PrologueData) {
1929 setHungoffOperand<2>(PrologueData);
1930 setValueSubclassDataBit(Bit: 2, On: PrologueData != nullptr);
1931}
1932
1933void Function::allocHungoffUselist() {
1934 // If we've already allocated a uselist, stop here.
1935 if (getNumOperands())
1936 return;
1937
1938 allocHungoffUses(N: 3, /*IsPhi=*/ false);
1939 setNumHungOffUseOperands(3);
1940
1941 // Initialize the uselist with placeholder operands to allow traversal.
1942 auto *CPN = ConstantPointerNull::get(T: PointerType::get(C&: getContext(), AddressSpace: 0));
1943 Op<0>().set(CPN);
1944 Op<1>().set(CPN);
1945 Op<2>().set(CPN);
1946}
1947
1948template <int Idx>
1949void Function::setHungoffOperand(Constant *C) {
1950 if (C) {
1951 allocHungoffUselist();
1952 Op<Idx>().set(C);
1953 } else if (getNumOperands()) {
1954 Op<Idx>().set(ConstantPointerNull::get(T: PointerType::get(C&: getContext(), AddressSpace: 0)));
1955 }
1956}
1957
1958void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1959 assert(Bit < 16 && "SubclassData contains only 16 bits");
1960 if (On)
1961 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1962 else
1963 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1964}
1965
1966void Function::setEntryCount(ProfileCount Count,
1967 const DenseSet<GlobalValue::GUID> *S) {
1968#if !defined(NDEBUG)
1969 auto PrevCount = getEntryCount();
1970 assert(!PrevCount || PrevCount->getType() == Count.getType());
1971#endif
1972
1973 auto ImportGUIDs = getImportGUIDs();
1974 if (S == nullptr && ImportGUIDs.size())
1975 S = &ImportGUIDs;
1976
1977 MDBuilder MDB(getContext());
1978 setMetadata(
1979 KindID: LLVMContext::MD_prof,
1980 Node: MDB.createFunctionEntryCount(Count: Count.getCount(), Synthetic: Count.isSynthetic(), Imports: S));
1981}
1982
1983void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1984 const DenseSet<GlobalValue::GUID> *Imports) {
1985 setEntryCount(Count: ProfileCount(Count, Type), S: Imports);
1986}
1987
1988std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1989 MDNode *MD = getMetadata(KindID: LLVMContext::MD_prof);
1990 if (MD && MD->getOperand(I: 0))
1991 if (MDString *MDS = dyn_cast<MDString>(Val: MD->getOperand(I: 0))) {
1992 if (MDS->getString().equals(RHS: "function_entry_count")) {
1993 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1));
1994 uint64_t Count = CI->getValue().getZExtValue();
1995 // A value of -1 is used for SamplePGO when there were no samples.
1996 // Treat this the same as unknown.
1997 if (Count == (uint64_t)-1)
1998 return std::nullopt;
1999 return ProfileCount(Count, PCT_Real);
2000 } else if (AllowSynthetic &&
2001 MDS->getString().equals(RHS: "synthetic_function_entry_count")) {
2002 ConstantInt *CI = mdconst::extract<ConstantInt>(MD: MD->getOperand(I: 1));
2003 uint64_t Count = CI->getValue().getZExtValue();
2004 return ProfileCount(Count, PCT_Synthetic);
2005 }
2006 }
2007 return std::nullopt;
2008}
2009
2010DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2011 DenseSet<GlobalValue::GUID> R;
2012 if (MDNode *MD = getMetadata(KindID: LLVMContext::MD_prof))
2013 if (MDString *MDS = dyn_cast<MDString>(Val: MD->getOperand(I: 0)))
2014 if (MDS->getString().equals(RHS: "function_entry_count"))
2015 for (unsigned i = 2; i < MD->getNumOperands(); i++)
2016 R.insert(V: mdconst::extract<ConstantInt>(MD: MD->getOperand(I: i))
2017 ->getValue()
2018 .getZExtValue());
2019 return R;
2020}
2021
2022void Function::setSectionPrefix(StringRef Prefix) {
2023 MDBuilder MDB(getContext());
2024 setMetadata(KindID: LLVMContext::MD_section_prefix,
2025 Node: MDB.createFunctionSectionPrefix(Prefix));
2026}
2027
2028std::optional<StringRef> Function::getSectionPrefix() const {
2029 if (MDNode *MD = getMetadata(KindID: LLVMContext::MD_section_prefix)) {
2030 assert(cast<MDString>(MD->getOperand(0))
2031 ->getString()
2032 .equals("function_section_prefix") &&
2033 "Metadata not match");
2034 return cast<MDString>(Val: MD->getOperand(I: 1))->getString();
2035 }
2036 return std::nullopt;
2037}
2038
2039bool Function::nullPointerIsDefined() const {
2040 return hasFnAttribute(Attribute::NullPointerIsValid);
2041}
2042
2043bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2044 if (F && F->nullPointerIsDefined())
2045 return true;
2046
2047 if (AS != 0)
2048 return true;
2049
2050 return false;
2051}
2052

source code of llvm/lib/IR/Function.cpp