1/* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2024 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "backend.h"
24#include "tree.h"
25#include "rtl.h"
26#include "df.h"
27#include "memmodel.h"
28#include "tm_p.h"
29#include "regs.h"
30#include "cfgbuild.h"
31#include "cfgcleanup.h"
32#include "insn-config.h"
33#include "insn-attr.h"
34#include "target.h"
35#include "sched-int.h"
36#include "rtlhooks-def.h"
37#include "ira.h"
38#include "ira-int.h"
39#include "rtl-iter.h"
40
41#ifdef INSN_SCHEDULING
42#include "regset.h"
43#include "cfgloop.h"
44#include "sel-sched-ir.h"
45#include "sel-sched-dump.h"
46#include "sel-sched.h"
47#include "dbgcnt.h"
48#include "function-abi.h"
49
50/* Implementation of selective scheduling approach.
51 The below implementation follows the original approach with the following
52 changes:
53
54 o the scheduler works after register allocation (but can be also tuned
55 to work before RA);
56 o some instructions are not copied or register renamed;
57 o conditional jumps are not moved with code duplication;
58 o several jumps in one parallel group are not supported;
59 o when pipelining outer loops, code motion through inner loops
60 is not supported;
61 o control and data speculation are supported;
62 o some improvements for better compile time/performance were made.
63
64 Terminology
65 ===========
66
67 A vinsn, or virtual insn, is an insn with additional data characterizing
68 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69 Vinsns also act as smart pointers to save memory by reusing them in
70 different expressions. A vinsn is described by vinsn_t type.
71
72 An expression is a vinsn with additional data characterizing its properties
73 at some point in the control flow graph. The data may be its usefulness,
74 priority, speculative status, whether it was renamed/subsituted, etc.
75 An expression is described by expr_t type.
76
77 Availability set (av_set) is a set of expressions at a given control flow
78 point. It is represented as av_set_t. The expressions in av sets are kept
79 sorted in the terms of expr_greater_p function. It allows to truncate
80 the set while leaving the best expressions.
81
82 A fence is a point through which code motion is prohibited. On each step,
83 we gather a parallel group of insns at a fence. It is possible to have
84 multiple fences. A fence is represented via fence_t.
85
86 A boundary is the border between the fence group and the rest of the code.
87 Currently, we never have more than one boundary per fence, as we finalize
88 the fence group when a jump is scheduled. A boundary is represented
89 via bnd_t.
90
91 High-level overview
92 ===================
93
94 The scheduler finds regions to schedule, schedules each one, and finalizes.
95 The regions are formed starting from innermost loops, so that when the inner
96 loop is pipelined, its prologue can be scheduled together with yet unprocessed
97 outer loop. The rest of acyclic regions are found using extend_rgns:
98 the blocks that are not yet allocated to any regions are traversed in top-down
99 order, and a block is added to a region to which all its predecessors belong;
100 otherwise, the block starts its own region.
101
102 The main scheduling loop (sel_sched_region_2) consists of just
103 scheduling on each fence and updating fences. For each fence,
104 we fill a parallel group of insns (fill_insns) until some insns can be added.
105 First, we compute available exprs (av-set) at the boundary of the current
106 group. Second, we choose the best expression from it. If the stall is
107 required to schedule any of the expressions, we advance the current cycle
108 appropriately. So, the final group does not exactly correspond to a VLIW
109 word. Third, we move the chosen expression to the boundary (move_op)
110 and update the intermediate av sets and liveness sets. We quit fill_insns
111 when either no insns left for scheduling or we have scheduled enough insns
112 so we feel like advancing a scheduling point.
113
114 Computing available expressions
115 ===============================
116
117 The computation (compute_av_set) is a bottom-up traversal. At each insn,
118 we're moving the union of its successors' sets through it via
119 moveup_expr_set. The dependent expressions are removed. Local
120 transformations (substitution, speculation) are applied to move more
121 exprs. Then the expr corresponding to the current insn is added.
122 The result is saved on each basic block header.
123
124 When traversing the CFG, we're moving down for no more than max_ws insns.
125 Also, we do not move down to ineligible successors (is_ineligible_successor),
126 which include moving along a back-edge, moving to already scheduled code,
127 and moving to another fence. The first two restrictions are lifted during
128 pipelining, which allows us to move insns along a back-edge. We always have
129 an acyclic region for scheduling because we forbid motion through fences.
130
131 Choosing the best expression
132 ============================
133
134 We sort the final availability set via sel_rank_for_schedule, then we remove
135 expressions which are not yet ready (tick_check_p) or which dest registers
136 cannot be used. For some of them, we choose another register via
137 find_best_reg. To do this, we run find_used_regs to calculate the set of
138 registers which cannot be used. The find_used_regs function performs
139 a traversal of code motion paths for an expr. We consider for renaming
140 only registers which are from the same regclass as the original one and
141 using which does not interfere with any live ranges. Finally, we convert
142 the resulting set to the ready list format and use max_issue and reorder*
143 hooks similarly to the Haifa scheduler.
144
145 Scheduling the best expression
146 ==============================
147
148 We run the move_op routine to perform the same type of code motion paths
149 traversal as in find_used_regs. (These are working via the same driver,
150 code_motion_path_driver.) When moving down the CFG, we look for original
151 instruction that gave birth to a chosen expression. We undo
152 the transformations performed on an expression via the history saved in it.
153 When found, we remove the instruction or leave a reg-reg copy/speculation
154 check if needed. On a way up, we insert bookkeeping copies at each join
155 point. If a copy is not needed, it will be removed later during this
156 traversal. We update the saved av sets and liveness sets on the way up, too.
157
158 Finalizing the schedule
159 =======================
160
161 When pipelining, we reschedule the blocks from which insns were pipelined
162 to get a tighter schedule. On Itanium, we also perform bundling via
163 the same routine from ia64.cc.
164
165 Dependence analysis changes
166 ===========================
167
168 We augmented the sched-deps.cc with hooks that get called when a particular
169 dependence is found in a particular part of an insn. Using these hooks, we
170 can do several actions such as: determine whether an insn can be moved through
171 another (has_dependence_p, moveup_expr); find out whether an insn can be
172 scheduled on the current cycle (tick_check_p); find out registers that
173 are set/used/clobbered by an insn and find out all the strange stuff that
174 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
175 init_global_and_expr_for_insn).
176
177 Initialization changes
178 ======================
179
180 There are parts of haifa-sched.cc, sched-deps.cc, and sched-rgn.cc that are
181 reused in all of the schedulers. We have split up the initialization of data
182 of such parts into different functions prefixed with scheduler type and
183 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
185 The same splitting is done with current_sched_info structure:
186 dependence-related parts are in sched_deps_info, common part is in
187 common_sched_info, and haifa/sel/etc part is in current_sched_info.
188
189 Target contexts
190 ===============
191
192 As we now have multiple-point scheduling, this would not work with backends
193 which save some of the scheduler state to use it in the target hooks.
194 For this purpose, we introduce a concept of target contexts, which
195 encapsulate such information. The backend should implement simple routines
196 of allocating/freeing/setting such a context. The scheduler calls these
197 as target hooks and handles the target context as an opaque pointer (similar
198 to the DFA state type, state_t).
199
200 Various speedups
201 ================
202
203 As the correct data dependence graph is not supported during scheduling (which
204 is to be changed in mid-term), we cache as much of the dependence analysis
205 results as possible to avoid reanalyzing. This includes: bitmap caches on
206 each insn in stream of the region saying yes/no for a query with a pair of
207 UIDs; hashtables with the previously done transformations on each insn in
208 stream; a vector keeping a history of transformations on each expr.
209
210 Also, we try to minimize the dependence context used on each fence to check
211 whether the given expression is ready for scheduling by removing from it
212 insns that are definitely completed the execution. The results of
213 tick_check_p checks are also cached in a vector on each fence.
214
215 We keep a valid liveness set on each insn in a region to avoid the high
216 cost of recomputation on large basic blocks.
217
218 Finally, we try to minimize the number of needed updates to the availability
219 sets. The updates happen in two cases: when fill_insns terminates,
220 we advance all fences and increase the stage number to show that the region
221 has changed and the sets are to be recomputed; and when the next iteration
222 of a loop in fill_insns happens (but this one reuses the saved av sets
223 on bb headers.) Thus, we try to break the fill_insns loop only when
224 "significant" number of insns from the current scheduling window was
225 scheduled. This should be made a target param.
226
227
228 TODO: correctly support the data dependence graph at all stages and get rid
229 of all caches. This should speed up the scheduler.
230 TODO: implement moving cond jumps with bookkeeping copies on both targets.
231 TODO: tune the scheduler before RA so it does not create too much pseudos.
232
233
234 References:
235 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
236 selective scheduling and software pipelining.
237 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
238
239 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
241 for GCC. In Proceedings of GCC Developers' Summit 2006.
242
243 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
244 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
245 http://rogue.colorado.edu/EPIC7/.
246
247*/
248
249/* True when pipelining is enabled. */
250bool pipelining_p;
251
252/* True if bookkeeping is enabled. */
253bool bookkeeping_p;
254
255/* Maximum number of insns that are eligible for renaming. */
256int max_insns_to_rename;
257
258
259/* Definitions of local types and macros. */
260
261/* Represents possible outcomes of moving an expression through an insn. */
262enum MOVEUP_EXPR_CODE
263 {
264 /* The expression is not changed. */
265 MOVEUP_EXPR_SAME,
266
267 /* Not changed, but requires a new destination register. */
268 MOVEUP_EXPR_AS_RHS,
269
270 /* Cannot be moved. */
271 MOVEUP_EXPR_NULL,
272
273 /* Changed (substituted or speculated). */
274 MOVEUP_EXPR_CHANGED
275 };
276
277/* The container to be passed into rtx search & replace functions. */
278struct rtx_search_arg
279{
280 /* What we are searching for. */
281 rtx x;
282
283 /* The occurrence counter. */
284 int n;
285};
286
287typedef struct rtx_search_arg *rtx_search_arg_p;
288
289/* This struct contains precomputed hard reg sets that are needed when
290 computing registers available for renaming. */
291struct hard_regs_data
292{
293 /* For every mode, this stores registers available for use with
294 that mode. */
295 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296
297 /* True when regs_for_mode[mode] is initialized. */
298 bool regs_for_mode_ok[NUM_MACHINE_MODES];
299
300 /* For every register, it has regs that are ok to rename into it.
301 The register in question is always set. If not, this means
302 that the whole set is not computed yet. */
303 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304
305 /* All registers that are used or call used. */
306 HARD_REG_SET regs_ever_used;
307
308#ifdef STACK_REGS
309 /* Stack registers. */
310 HARD_REG_SET stack_regs;
311#endif
312};
313
314/* Holds the results of computation of available for renaming and
315 unavailable hard registers. */
316struct reg_rename
317{
318 /* These are unavailable due to calls crossing, globalness, etc. */
319 HARD_REG_SET unavailable_hard_regs;
320
321 /* These are *available* for renaming. */
322 HARD_REG_SET available_for_renaming;
323
324 /* The set of ABIs used by calls that the code motion path crosses. */
325 unsigned int crossed_call_abis : NUM_ABI_IDS;
326};
327
328/* A global structure that contains the needed information about harg
329 regs. */
330static struct hard_regs_data sel_hrd;
331
332
333/* This structure holds local data used in code_motion_path_driver hooks on
334 the same or adjacent levels of recursion. Here we keep those parameters
335 that are not used in code_motion_path_driver routine itself, but only in
336 its hooks. Moreover, all parameters that can be modified in hooks are
337 in this structure, so all other parameters passed explicitly to hooks are
338 read-only. */
339struct cmpd_local_params
340{
341 /* Local params used in move_op_* functions. */
342
343 /* Edges for bookkeeping generation. */
344 edge e1, e2;
345
346 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
347 expr_t c_expr_merged, c_expr_local;
348
349 /* Local params used in fur_* functions. */
350 /* Copy of the ORIGINAL_INSN list, stores the original insns already
351 found before entering the current level of code_motion_path_driver. */
352 def_list_t old_original_insns;
353
354 /* Local params used in move_op_* functions. */
355 /* True when we have removed last insn in the block which was
356 also a boundary. Do not update anything or create bookkeeping copies. */
357 BOOL_BITFIELD removed_last_insn : 1;
358};
359
360/* Stores the static parameters for move_op_* calls. */
361struct moveop_static_params
362{
363 /* Destination register. */
364 rtx dest;
365
366 /* Current C_EXPR. */
367 expr_t c_expr;
368
369 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
370 they are to be removed. */
371 int uid;
372
373 /* This is initialized to the insn on which the driver stopped its traversal. */
374 insn_t failed_insn;
375
376 /* True if we scheduled an insn with different register. */
377 bool was_renamed;
378};
379
380/* Stores the static parameters for fur_* calls. */
381struct fur_static_params
382{
383 /* Set of registers unavailable on the code motion path. */
384 regset used_regs;
385
386 /* Pointer to the list of original insns definitions. */
387 def_list_t *original_insns;
388
389 /* The set of ABIs used by calls that the code motion path crosses. */
390 unsigned int crossed_call_abis : NUM_ABI_IDS;
391};
392
393typedef struct fur_static_params *fur_static_params_p;
394typedef struct cmpd_local_params *cmpd_local_params_p;
395typedef struct moveop_static_params *moveop_static_params_p;
396
397/* Set of hooks and parameters that determine behavior specific to
398 move_op or find_used_regs functions. */
399struct code_motion_path_driver_info_def
400{
401 /* Called on enter to the basic block. */
402 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
403
404 /* Called when original expr is found. */
405 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
406
407 /* Called while descending current basic block if current insn is not
408 the original EXPR we're searching for. */
409 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
410
411 /* Function to merge C_EXPRes from different successors. */
412 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
413
414 /* Function to finalize merge from different successors and possibly
415 deallocate temporary data structures used for merging. */
416 void (*after_merge_succs) (cmpd_local_params_p, void *);
417
418 /* Called on the backward stage of recursion to do moveup_expr.
419 Used only with move_op_*. */
420 void (*ascend) (insn_t, void *);
421
422 /* Called on the ascending pass, before returning from the current basic
423 block or from the whole traversal. */
424 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
425
426 /* When processing successors in move_op we need only descend into
427 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
428 int succ_flags;
429
430 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
431 const char *routine_name;
432};
433
434/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
435 FUR_HOOKS. */
436struct code_motion_path_driver_info_def *code_motion_path_driver_info;
437
438/* Set of hooks for performing move_op and find_used_regs routines with
439 code_motion_path_driver. */
440extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
441
442/* True if/when we want to emulate Haifa scheduler in the common code.
443 This is used in sched_rgn_local_init and in various places in
444 sched-deps.cc. */
445int sched_emulate_haifa_p;
446
447/* GLOBAL_LEVEL is used to discard information stored in basic block headers
448 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
449 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
450 scheduling window. */
451int global_level;
452
453/* Current fences. */
454flist_t fences;
455
456/* True when separable insns should be scheduled as RHSes. */
457static bool enable_schedule_as_rhs_p;
458
459/* Used in verify_target_availability to assert that target reg is reported
460 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
461 we haven't scheduled anything on the previous fence.
462 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
463 have more conservative value than the one returned by the
464 find_used_regs, thus we shouldn't assert that these values are equal. */
465static bool scheduled_something_on_previous_fence;
466
467/* All newly emitted insns will have their uids greater than this value. */
468static int first_emitted_uid;
469
470/* Set of basic blocks that are forced to start new ebbs. This is a subset
471 of all the ebb heads. */
472bitmap forced_ebb_heads;
473
474/* Blocks that need to be rescheduled after pipelining. */
475bitmap blocks_to_reschedule = NULL;
476
477/* True when the first lv set should be ignored when updating liveness. */
478static bool ignore_first = false;
479
480/* Number of insns max_issue has initialized data structures for. */
481static int max_issue_size = 0;
482
483/* Whether we can issue more instructions. */
484static int can_issue_more;
485
486/* Maximum software lookahead window size, reduced when rescheduling after
487 pipelining. */
488static int max_ws;
489
490/* Number of insns scheduled in current region. */
491static int num_insns_scheduled;
492
493/* A vector of expressions is used to be able to sort them. */
494static vec<expr_t> vec_av_set;
495
496/* A vector of vinsns is used to hold temporary lists of vinsns. */
497typedef vec<vinsn_t> vinsn_vec_t;
498
499/* This vector has the exprs which may still present in av_sets, but actually
500 can't be moved up due to bookkeeping created during code motion to another
501 fence. See comment near the call to update_and_record_unavailable_insns
502 for the detailed explanations. */
503static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
504
505/* This vector has vinsns which are scheduled with renaming on the first fence
506 and then seen on the second. For expressions with such vinsns, target
507 availability information may be wrong. */
508static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
509
510/* Vector to store temporary nops inserted in move_op to prevent removal
511 of empty bbs. */
512static vec<insn_t> vec_temp_moveop_nops;
513
514/* These bitmaps record original instructions scheduled on the current
515 iteration and bookkeeping copies created by them. */
516static bitmap current_originators = NULL;
517static bitmap current_copies = NULL;
518
519/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
520 visit them afterwards. */
521static bitmap code_motion_visited_blocks = NULL;
522
523/* Variables to accumulate different statistics. */
524
525/* The number of bookkeeping copies created. */
526static int stat_bookkeeping_copies;
527
528/* The number of insns that required bookkeeiping for their scheduling. */
529static int stat_insns_needed_bookkeeping;
530
531/* The number of insns that got renamed. */
532static int stat_renamed_scheduled;
533
534/* The number of substitutions made during scheduling. */
535static int stat_substitutions_total;
536
537
538/* Forward declarations of static functions. */
539static bool rtx_ok_for_substitution_p (rtx, rtx);
540static int sel_rank_for_schedule (const void *, const void *);
541static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
542static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
543
544static rtx get_dest_from_orig_ops (av_set_t);
545static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
546static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
547 def_list_t *);
548static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
549static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
550 cmpd_local_params_p, void *);
551static void sel_sched_region_1 (void);
552static void sel_sched_region_2 (int);
553static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
554
555static void debug_state (state_t);
556
557
558/* Functions that work with fences. */
559
560/* Advance one cycle on FENCE. */
561static void
562advance_one_cycle (fence_t fence)
563{
564 unsigned i;
565 int cycle;
566 rtx_insn *insn;
567
568 advance_state (FENCE_STATE (fence));
569 cycle = ++FENCE_CYCLE (fence);
570 FENCE_ISSUED_INSNS (fence) = 0;
571 FENCE_STARTS_CYCLE_P (fence) = 1;
572 can_issue_more = issue_rate;
573 FENCE_ISSUE_MORE (fence) = can_issue_more;
574
575 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), ix: i, ptr: &insn); )
576 {
577 if (INSN_READY_CYCLE (insn) < cycle)
578 {
579 remove_from_deps (FENCE_DC (fence), insn);
580 FENCE_EXECUTING_INSNS (fence)->unordered_remove (ix: i);
581 continue;
582 }
583 i++;
584 }
585 if (sched_verbose >= 2)
586 {
587 sel_print (fmt: "Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
588 debug_state (FENCE_STATE (fence));
589 }
590}
591
592/* Returns true when SUCC in a fallthru bb of INSN, possibly
593 skipping empty basic blocks. */
594static bool
595in_fallthru_bb_p (rtx_insn *insn, rtx succ)
596{
597 basic_block bb = BLOCK_FOR_INSN (insn);
598 edge e;
599
600 if (bb == BLOCK_FOR_INSN (insn: succ))
601 return true;
602
603 e = find_fallthru_edge_from (bb);
604 if (e)
605 bb = e->dest;
606 else
607 return false;
608
609 while (sel_bb_empty_p (bb))
610 bb = bb->next_bb;
611
612 return bb == BLOCK_FOR_INSN (insn: succ);
613}
614
615/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
616 When a successor will continue a ebb, transfer all parameters of a fence
617 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
618 of scheduling helping to distinguish between the old and the new code. */
619static void
620extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
621 int orig_max_seqno)
622{
623 bool was_here_p = false;
624 insn_t insn = NULL;
625 insn_t succ;
626 succ_iterator si;
627 ilist_iterator ii;
628 fence_t fence = FLIST_FENCE (old_fences);
629 basic_block bb;
630
631 /* Get the only element of FENCE_BNDS (fence). */
632 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
633 {
634 gcc_assert (!was_here_p);
635 was_here_p = true;
636 }
637 gcc_assert (was_here_p && insn != NULL_RTX);
638
639 /* When in the "middle" of the block, just move this fence
640 to the new list. */
641 bb = BLOCK_FOR_INSN (insn);
642 if (! sel_bb_end_p (insn)
643 || (single_succ_p (bb)
644 && single_pred_p (bb: single_succ (bb))))
645 {
646 insn_t succ;
647
648 succ = (sel_bb_end_p (insn)
649 ? sel_bb_head (single_succ (bb))
650 : NEXT_INSN (insn));
651
652 if (INSN_SEQNO (succ) > 0
653 && INSN_SEQNO (succ) <= orig_max_seqno
654 && INSN_SCHED_TIMES (succ) <= 0)
655 {
656 FENCE_INSN (fence) = succ;
657 move_fence_to_fences (old_fences, new_fences);
658
659 if (sched_verbose >= 1)
660 sel_print (fmt: "Fence %d continues as %d[%d] (state continue)\n",
661 INSN_UID (insn), INSN_UID (insn: succ), BLOCK_NUM (succ));
662 }
663 return;
664 }
665
666 /* Otherwise copy fence's structures to (possibly) multiple successors. */
667 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
668 {
669 int seqno = INSN_SEQNO (succ);
670
671 if (seqno > 0 && seqno <= orig_max_seqno
672 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
673 {
674 bool b = (in_same_ebb_p (insn, succ)
675 || in_fallthru_bb_p (insn, succ));
676
677 if (sched_verbose >= 1)
678 sel_print (fmt: "Fence %d continues as %d[%d] (state %s)\n",
679 INSN_UID (insn), INSN_UID (insn: succ),
680 BLOCK_NUM (succ), b ? "continue" : "reset");
681
682 if (b)
683 add_dirty_fence_to_fences (new_fences, succ, fence);
684 else
685 {
686 /* Mark block of the SUCC as head of the new ebb. */
687 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
688 add_clean_fence_to_fences (new_fences, succ, fence);
689 }
690 }
691 }
692}
693
694
695/* Functions to support substitution. */
696
697/* Returns whether INSN with dependence status DS is eligible for
698 substitution, i.e. it's a copy operation x := y, and RHS that is
699 moved up through this insn should be substituted. */
700static bool
701can_substitute_through_p (insn_t insn, ds_t ds)
702{
703 /* We can substitute only true dependencies. */
704 if ((ds & DEP_OUTPUT)
705 || (ds & DEP_ANTI)
706 || ! INSN_RHS (insn)
707 || ! INSN_LHS (insn))
708 return false;
709
710 /* Now we just need to make sure the INSN_RHS consists of only one
711 simple REG rtx. */
712 if (REG_P (INSN_LHS (insn))
713 && REG_P (INSN_RHS (insn)))
714 return true;
715 return false;
716}
717
718/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
719 source (if INSN is eligible for substitution). Returns TRUE if
720 substitution was actually performed, FALSE otherwise. Substitution might
721 be not performed because it's either EXPR' vinsn doesn't contain INSN's
722 destination or the resulting insn is invalid for the target machine.
723 When UNDO is true, perform unsubstitution instead (the difference is in
724 the part of rtx on which validate_replace_rtx is called). */
725static bool
726substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
727{
728 rtx *where;
729 bool new_insn_valid;
730 vinsn_t *vi = &EXPR_VINSN (expr);
731 bool has_rhs = VINSN_RHS (*vi) != NULL;
732 rtx old, new_rtx;
733
734 /* Do not try to replace in SET_DEST. Although we'll choose new
735 register for the RHS, we don't want to change RHS' original reg.
736 If the insn is not SET, we may still be able to substitute something
737 in it, and if we're here (don't have deps), it doesn't write INSN's
738 dest. */
739 where = (has_rhs
740 ? &VINSN_RHS (*vi)
741 : &PATTERN (VINSN_INSN_RTX (*vi)));
742 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
743
744 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
745 if (rtx_ok_for_substitution_p (old, *where))
746 {
747 rtx_insn *new_insn;
748 rtx *where_replace;
749
750 /* We should copy these rtxes before substitution. */
751 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
752 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
753
754 /* Where we'll replace.
755 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
756 used instead of SET_SRC. */
757 where_replace = (has_rhs
758 ? &SET_SRC (PATTERN (new_insn))
759 : &PATTERN (insn: new_insn));
760
761 new_insn_valid
762 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
763 new_insn);
764
765 /* ??? Actually, constrain_operands result depends upon choice of
766 destination register. E.g. if we allow single register to be an rhs,
767 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
768 in invalid insn dx=dx, so we'll loose this rhs here.
769 Just can't come up with significant testcase for this, so just
770 leaving it for now. */
771 if (new_insn_valid)
772 {
773 change_vinsn_in_expr (expr,
774 create_vinsn_from_insn_rtx (new_insn, false));
775
776 /* Do not allow clobbering the address register of speculative
777 insns. */
778 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
779 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
780 expr_dest_reg (expr)))
781 EXPR_TARGET_AVAILABLE (expr) = false;
782
783 return true;
784 }
785 else
786 return false;
787 }
788 else
789 return false;
790}
791
792/* Return the number of places WHAT appears within WHERE.
793 Bail out when we found a reference occupying several hard registers. */
794static int
795count_occurrences_equiv (const_rtx what, const_rtx where)
796{
797 int count = 0;
798 subrtx_iterator::array_type array;
799 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
800 {
801 const_rtx x = *iter;
802 if (REG_P (x) && REGNO (x) == REGNO (what))
803 {
804 /* Bail out if mode is different or more than one register is
805 used. */
806 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
807 return 0;
808 count += 1;
809 }
810 else if (GET_CODE (x) == SUBREG
811 && (!REG_P (SUBREG_REG (x))
812 || REGNO (SUBREG_REG (x)) == REGNO (what)))
813 /* ??? Do not support substituting regs inside subregs. In that case,
814 simplify_subreg will be called by validate_replace_rtx, and
815 unsubstitution will fail later. */
816 return 0;
817 }
818 return count;
819}
820
821/* Returns TRUE if WHAT is found in WHERE rtx tree. */
822static bool
823rtx_ok_for_substitution_p (rtx what, rtx where)
824{
825 return (count_occurrences_equiv (what, where) > 0);
826}
827
828
829/* Functions to support register renaming. */
830
831/* Substitute VI's set source with REGNO. Returns newly created pattern
832 that has REGNO as its source. */
833static rtx_insn *
834create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
835{
836 rtx lhs_rtx;
837 rtx pattern;
838 rtx_insn *insn_rtx;
839
840 lhs_rtx = copy_rtx (VINSN_LHS (vi));
841
842 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
843 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
844
845 return insn_rtx;
846}
847
848/* Returns whether INSN's src can be replaced with register number
849 NEW_SRC_REG. E.g. the following insn is valid for i386:
850
851 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
852 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
853 (reg:SI 0 ax [orig:770 c1 ] [770]))
854 (const_int 288 [0x120])) [0 str S1 A8])
855 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
856 (nil))
857
858 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
859 because of operand constraints:
860
861 (define_insn "*movqi_1"
862 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
863 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
864 )]
865
866 So do constrain_operands here, before choosing NEW_SRC_REG as best
867 reg for rhs. */
868
869static bool
870replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
871{
872 vinsn_t vi = INSN_VINSN (insn);
873 machine_mode mode;
874 rtx dst_loc;
875 bool res;
876
877 gcc_assert (VINSN_SEPARABLE_P (vi));
878
879 get_dest_and_mode (insn, &dst_loc, &mode);
880 gcc_assert (mode == GET_MODE (new_src_reg));
881
882 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
883 return true;
884
885 /* See whether SET_SRC can be replaced with this register. */
886 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
887 res = verify_changes (0);
888 cancel_changes (0);
889
890 return res;
891}
892
893/* Returns whether INSN still be valid after replacing it's DEST with
894 register NEW_REG. */
895static bool
896replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
897{
898 vinsn_t vi = INSN_VINSN (insn);
899 bool res;
900
901 /* We should deal here only with separable insns. */
902 gcc_assert (VINSN_SEPARABLE_P (vi));
903 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
904
905 /* See whether SET_DEST can be replaced with this register. */
906 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
907 res = verify_changes (0);
908 cancel_changes (0);
909
910 return res;
911}
912
913/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
914static rtx_insn *
915create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
916{
917 rtx rhs_rtx;
918 rtx pattern;
919 rtx_insn *insn_rtx;
920
921 rhs_rtx = copy_rtx (VINSN_RHS (vi));
922
923 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
924 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
925
926 return insn_rtx;
927}
928
929/* Substitute lhs in the given expression EXPR for the register with number
930 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
931static void
932replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
933{
934 rtx_insn *insn_rtx;
935 vinsn_t vinsn;
936
937 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), lhs_rtx: new_reg);
938 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
939
940 change_vinsn_in_expr (expr, vinsn);
941 EXPR_WAS_RENAMED (expr) = 1;
942 EXPR_TARGET_AVAILABLE (expr) = 1;
943}
944
945/* Returns whether VI writes either one of the USED_REGS registers or,
946 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
947static bool
948vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
949 HARD_REG_SET unavailable_hard_regs)
950{
951 unsigned regno;
952 reg_set_iterator rsi;
953
954 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
955 {
956 if (REGNO_REG_SET_P (used_regs, regno))
957 return true;
958 if (HARD_REGISTER_NUM_P (regno)
959 && TEST_HARD_REG_BIT (set: unavailable_hard_regs, bit: regno))
960 return true;
961 }
962
963 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
964 {
965 if (REGNO_REG_SET_P (used_regs, regno))
966 return true;
967 if (HARD_REGISTER_NUM_P (regno)
968 && TEST_HARD_REG_BIT (set: unavailable_hard_regs, bit: regno))
969 return true;
970 }
971
972 return false;
973}
974
975/* Returns register class of the output register in INSN.
976 Returns NO_REGS for call insns because some targets have constraints on
977 destination register of a call insn.
978
979 Code adopted from regrename.cc::build_def_use. */
980static enum reg_class
981get_reg_class (rtx_insn *insn)
982{
983 int i, n_ops;
984
985 extract_constrain_insn (insn);
986 preprocess_constraints (insn);
987 n_ops = recog_data.n_operands;
988
989 const operand_alternative *op_alt = which_op_alt ();
990 if (asm_noperands (PATTERN (insn)) > 0)
991 {
992 for (i = 0; i < n_ops; i++)
993 if (recog_data.operand_type[i] == OP_OUT)
994 {
995 rtx *loc = recog_data.operand_loc[i];
996 rtx op = *loc;
997 enum reg_class cl = alternative_class (alt: op_alt, i);
998
999 if (REG_P (op)
1000 && REGNO (op) == ORIGINAL_REGNO (op))
1001 continue;
1002
1003 return cl;
1004 }
1005 }
1006 else if (!CALL_P (insn))
1007 {
1008 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1009 {
1010 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1011 enum reg_class cl = alternative_class (alt: op_alt, i: opn);
1012
1013 if (recog_data.operand_type[opn] == OP_OUT ||
1014 recog_data.operand_type[opn] == OP_INOUT)
1015 return cl;
1016 }
1017 }
1018
1019/* Insns like
1020 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1021 may result in returning NO_REGS, cause flags is written implicitly through
1022 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1023 return NO_REGS;
1024}
1025
1026/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1027static void
1028init_hard_regno_rename (int regno)
1029{
1030 int cur_reg;
1031
1032 SET_HARD_REG_BIT (set&: sel_hrd.regs_for_rename[regno], bit: regno);
1033
1034 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1035 {
1036 /* We are not interested in renaming in other regs. */
1037 if (!TEST_HARD_REG_BIT (set: sel_hrd.regs_ever_used, bit: cur_reg))
1038 continue;
1039
1040 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1041 SET_HARD_REG_BIT (set&: sel_hrd.regs_for_rename[regno], bit: cur_reg);
1042 }
1043}
1044
1045/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1046 data first. */
1047static inline bool
1048sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1049{
1050 /* Check whether this is all calculated. */
1051 if (TEST_HARD_REG_BIT (set: sel_hrd.regs_for_rename[from], bit: from))
1052 return TEST_HARD_REG_BIT (set: sel_hrd.regs_for_rename[from], bit: to);
1053
1054 init_hard_regno_rename (regno: from);
1055
1056 return TEST_HARD_REG_BIT (set: sel_hrd.regs_for_rename[from], bit: to);
1057}
1058
1059/* Calculate set of registers that are capable of holding MODE. */
1060static void
1061init_regs_for_mode (machine_mode mode)
1062{
1063 int cur_reg;
1064
1065 CLEAR_HARD_REG_SET (set&: sel_hrd.regs_for_mode[mode]);
1066
1067 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1068 {
1069 int nregs;
1070 int i;
1071
1072 /* See whether it accepts all modes that occur in
1073 original insns. */
1074 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1075 continue;
1076
1077 nregs = hard_regno_nregs (regno: cur_reg, mode);
1078
1079 for (i = nregs - 1; i >= 0; --i)
1080 if (fixed_regs[cur_reg + i]
1081 || global_regs[cur_reg + i]
1082 /* Can't use regs which aren't saved by
1083 the prologue. */
1084 || !TEST_HARD_REG_BIT (set: sel_hrd.regs_ever_used, bit: cur_reg + i)
1085 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1086 it affects aliasing globally and invalidates all AV sets. */
1087 || get_reg_base_value (cur_reg + i)
1088#ifdef LEAF_REGISTERS
1089 /* We can't use a non-leaf register if we're in a
1090 leaf function. */
1091 || (crtl->is_leaf
1092 && !LEAF_REGISTERS[cur_reg + i])
1093#endif
1094 )
1095 break;
1096
1097 if (i >= 0)
1098 continue;
1099
1100 /* If the CUR_REG passed all the checks above,
1101 then it's ok. */
1102 SET_HARD_REG_BIT (set&: sel_hrd.regs_for_mode[mode], bit: cur_reg);
1103 }
1104
1105 sel_hrd.regs_for_mode_ok[mode] = true;
1106}
1107
1108/* Init all register sets gathered in HRD. */
1109static void
1110init_hard_regs_data (void)
1111{
1112 int cur_reg = 0;
1113 int cur_mode = 0;
1114
1115 CLEAR_HARD_REG_SET (set&: sel_hrd.regs_ever_used);
1116 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1117 if (df_regs_ever_live_p (cur_reg)
1118 || crtl->abi->clobbers_full_reg_p (regno: cur_reg))
1119 SET_HARD_REG_BIT (set&: sel_hrd.regs_ever_used, bit: cur_reg);
1120
1121 /* Initialize registers that are valid based on mode when this is
1122 really needed. */
1123 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1124 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1125
1126 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1127 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128 CLEAR_HARD_REG_SET (set&: sel_hrd.regs_for_rename[cur_reg]);
1129
1130#ifdef STACK_REGS
1131 CLEAR_HARD_REG_SET (set&: sel_hrd.stack_regs);
1132
1133 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1134 SET_HARD_REG_BIT (set&: sel_hrd.stack_regs, bit: cur_reg);
1135#endif
1136}
1137
1138/* Mark hardware regs in REG_RENAME_P that are not suitable
1139 for renaming rhs in INSN due to hardware restrictions (register class,
1140 modes compatibility etc). This doesn't affect original insn's dest reg,
1141 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1142 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1143 Registers that are in used_regs are always marked in
1144 unavailable_hard_regs as well. */
1145
1146static void
1147mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1148 regset used_regs ATTRIBUTE_UNUSED)
1149{
1150 machine_mode mode;
1151 enum reg_class cl = NO_REGS;
1152 rtx orig_dest;
1153 unsigned cur_reg, regno;
1154 hard_reg_set_iterator hrsi;
1155
1156 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1157 gcc_assert (reg_rename_p);
1158
1159 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1160
1161 /* We have decided not to rename 'mem = something;' insns, as 'something'
1162 is usually a register. */
1163 if (!REG_P (orig_dest))
1164 return;
1165
1166 regno = REGNO (orig_dest);
1167
1168 /* If before reload, don't try to work with pseudos. */
1169 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1170 return;
1171
1172 if (reload_completed)
1173 cl = get_reg_class (insn: def->orig_insn);
1174
1175 /* Stop if the original register is one of the fixed_regs, global_regs or
1176 frame pointer, or we could not discover its class. */
1177 if (fixed_regs[regno]
1178 || global_regs[regno]
1179 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1180 && regno == HARD_FRAME_POINTER_REGNUM)
1181 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1182 && regno == FRAME_POINTER_REGNUM)
1183 || (reload_completed && cl == NO_REGS))
1184 {
1185 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1186
1187 /* Give a chance for original register, if it isn't in used_regs. */
1188 if (!def->crossed_call_abis)
1189 CLEAR_HARD_REG_BIT (set&: reg_rename_p->unavailable_hard_regs, bit: regno);
1190
1191 return;
1192 }
1193
1194 /* If something allocated on stack in this function, mark frame pointer
1195 register unavailable, considering also modes.
1196 FIXME: it is enough to do this once per all original defs. */
1197 if (frame_pointer_needed)
1198 {
1199 add_to_hard_reg_set (regs: &reg_rename_p->unavailable_hard_regs,
1200 Pmode, FRAME_POINTER_REGNUM);
1201
1202 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1203 add_to_hard_reg_set (regs: &reg_rename_p->unavailable_hard_regs,
1204 Pmode, HARD_FRAME_POINTER_REGNUM);
1205 }
1206
1207#ifdef STACK_REGS
1208 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1209 is equivalent to as if all stack regs were in this set.
1210 I.e. no stack register can be renamed, and even if it's an original
1211 register here we make sure it won't be lifted over it's previous def
1212 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1213 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1214 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1215 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1216 reg_rename_p->unavailable_hard_regs |= sel_hrd.stack_regs;
1217#endif
1218
1219 mode = GET_MODE (orig_dest);
1220
1221 /* If there's a call on this path, make regs from full_reg_clobbers
1222 unavailable.
1223
1224 ??? It would be better to track the set of clobbered registers
1225 directly, but that would be quite expensive in a def_t. */
1226 if (def->crossed_call_abis)
1227 reg_rename_p->unavailable_hard_regs
1228 |= call_clobbers_in_region (def->crossed_call_abis,
1229 reg_class_contents[ALL_REGS], mode);
1230
1231 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and
1232 crossed_call_abis, but not register classes. */
1233 if (!reload_completed)
1234 return;
1235
1236 /* Leave regs as 'available' only from the current
1237 register class. */
1238 reg_rename_p->available_for_renaming = reg_class_contents[cl];
1239
1240 /* Leave only registers available for this mode. */
1241 if (!sel_hrd.regs_for_mode_ok[mode])
1242 init_regs_for_mode (mode);
1243 reg_rename_p->available_for_renaming &= sel_hrd.regs_for_mode[mode];
1244
1245 /* Leave only those that are ok to rename. */
1246 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1247 0, cur_reg, hrsi)
1248 {
1249 int nregs;
1250 int i;
1251
1252 nregs = hard_regno_nregs (regno: cur_reg, mode);
1253 gcc_assert (nregs > 0);
1254
1255 for (i = nregs - 1; i >= 0; --i)
1256 if (! sel_hard_regno_rename_ok (from: regno + i, to: cur_reg + i))
1257 break;
1258
1259 if (i >= 0)
1260 CLEAR_HARD_REG_BIT (set&: reg_rename_p->available_for_renaming,
1261 bit: cur_reg);
1262 }
1263
1264 reg_rename_p->available_for_renaming &= ~reg_rename_p->unavailable_hard_regs;
1265
1266 /* Regno is always ok from the renaming part of view, but it really
1267 could be in *unavailable_hard_regs already, so set it here instead
1268 of there. */
1269 SET_HARD_REG_BIT (set&: reg_rename_p->available_for_renaming, bit: regno);
1270}
1271
1272/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1273 best register more recently than REG2. */
1274static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1275
1276/* Indicates the number of times renaming happened before the current one. */
1277static int reg_rename_this_tick;
1278
1279/* Choose the register among free, that is suitable for storing
1280 the rhs value.
1281
1282 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1283 originally appears. There could be multiple original operations
1284 for single rhs since we moving it up and merging along different
1285 paths.
1286
1287 Some code is adapted from regrename.cc (regrename_optimize).
1288 If original register is available, function returns it.
1289 Otherwise it performs the checks, so the new register should
1290 comply with the following:
1291 - it should not violate any live ranges (such registers are in
1292 REG_RENAME_P->available_for_renaming set);
1293 - it should not be in the HARD_REGS_USED regset;
1294 - it should be in the class compatible with original uses;
1295 - it should not be clobbered through reference with different mode;
1296 - if we're in the leaf function, then the new register should
1297 not be in the LEAF_REGISTERS;
1298 - etc.
1299
1300 If several registers meet the conditions, the register with smallest
1301 tick is returned to achieve more even register allocation.
1302
1303 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1304
1305 If no register satisfies the above conditions, NULL_RTX is returned. */
1306static rtx
1307choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1308 struct reg_rename *reg_rename_p,
1309 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1310{
1311 int best_new_reg;
1312 unsigned cur_reg;
1313 machine_mode mode = VOIDmode;
1314 unsigned regno, i, n;
1315 hard_reg_set_iterator hrsi;
1316 def_list_iterator di;
1317 def_t def;
1318
1319 /* If original register is available, return it. */
1320 *is_orig_reg_p_ptr = true;
1321
1322 FOR_EACH_DEF (def, di, original_insns)
1323 {
1324 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1325
1326 gcc_assert (REG_P (orig_dest));
1327
1328 /* Check that all original operations have the same mode.
1329 This is done for the next loop; if we'd return from this
1330 loop, we'd check only part of them, but in this case
1331 it doesn't matter. */
1332 if (mode == VOIDmode)
1333 mode = GET_MODE (orig_dest);
1334 gcc_assert (mode == GET_MODE (orig_dest));
1335
1336 regno = REGNO (orig_dest);
1337 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1338 if (TEST_HARD_REG_BIT (set: hard_regs_used, bit: regno + i))
1339 break;
1340
1341 /* All hard registers are available. */
1342 if (i == n)
1343 {
1344 gcc_assert (mode != VOIDmode);
1345
1346 /* Hard registers should not be shared. */
1347 return gen_rtx_REG (mode, regno);
1348 }
1349 }
1350
1351 *is_orig_reg_p_ptr = false;
1352 best_new_reg = -1;
1353
1354 /* Among all available regs choose the register that was
1355 allocated earliest. */
1356 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1357 0, cur_reg, hrsi)
1358 if (! TEST_HARD_REG_BIT (set: hard_regs_used, bit: cur_reg))
1359 {
1360 /* Check that all hard regs for mode are available. */
1361 for (i = 1, n = hard_regno_nregs (regno: cur_reg, mode); i < n; i++)
1362 if (TEST_HARD_REG_BIT (set: hard_regs_used, bit: cur_reg + i)
1363 || !TEST_HARD_REG_BIT (set: reg_rename_p->available_for_renaming,
1364 bit: cur_reg + i))
1365 break;
1366
1367 if (i < n)
1368 continue;
1369
1370 /* All hard registers are available. */
1371 if (best_new_reg < 0
1372 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1373 {
1374 best_new_reg = cur_reg;
1375
1376 /* Return immediately when we know there's no better reg. */
1377 if (! reg_rename_tick[best_new_reg])
1378 break;
1379 }
1380 }
1381
1382 if (best_new_reg >= 0)
1383 {
1384 /* Use the check from the above loop. */
1385 gcc_assert (mode != VOIDmode);
1386 return gen_rtx_REG (mode, best_new_reg);
1387 }
1388
1389 return NULL_RTX;
1390}
1391
1392/* A wrapper around choose_best_reg_1 () to verify that we make correct
1393 assumptions about available registers in the function. */
1394static rtx
1395choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1396 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1397{
1398 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1399 original_insns, is_orig_reg_p_ptr);
1400
1401 /* FIXME loop over hard_regno_nregs here. */
1402 gcc_assert (best_reg == NULL_RTX
1403 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1404
1405 return best_reg;
1406}
1407
1408/* Choose the pseudo register for storing rhs value. As this is supposed
1409 to work before reload, we return either the original register or make
1410 the new one. The parameters are the same that in choose_nest_reg_1
1411 functions, except that USED_REGS may contain pseudos.
1412 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1413
1414 TODO: take into account register pressure while doing this. Up to this
1415 moment, this function would never return NULL for pseudos, but we should
1416 not rely on this. */
1417static rtx
1418choose_best_pseudo_reg (regset used_regs,
1419 struct reg_rename *reg_rename_p,
1420 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1421{
1422 def_list_iterator i;
1423 def_t def;
1424 machine_mode mode = VOIDmode;
1425 bool bad_hard_regs = false;
1426
1427 /* We should not use this after reload. */
1428 gcc_assert (!reload_completed);
1429
1430 /* If original register is available, return it. */
1431 *is_orig_reg_p_ptr = true;
1432
1433 FOR_EACH_DEF (def, i, original_insns)
1434 {
1435 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1436 int orig_regno;
1437
1438 gcc_assert (REG_P (dest));
1439
1440 /* Check that all original operations have the same mode. */
1441 if (mode == VOIDmode)
1442 mode = GET_MODE (dest);
1443 else
1444 gcc_assert (mode == GET_MODE (dest));
1445 orig_regno = REGNO (dest);
1446
1447 /* Check that nothing in used_regs intersects with orig_regno. When
1448 we have a hard reg here, still loop over hard_regno_nregs. */
1449 if (HARD_REGISTER_NUM_P (orig_regno))
1450 {
1451 int j, n;
1452 for (j = 0, n = REG_NREGS (dest); j < n; j++)
1453 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1454 break;
1455 if (j < n)
1456 continue;
1457 }
1458 else
1459 {
1460 if (REGNO_REG_SET_P (used_regs, orig_regno))
1461 continue;
1462 }
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1464 {
1465 gcc_assert (df_regs_ever_live_p (orig_regno));
1466
1467 /* For hard registers, we have to check hardware imposed
1468 limitations (frame/stack registers, calls crossed). */
1469 if (!TEST_HARD_REG_BIT (set: reg_rename_p->unavailable_hard_regs,
1470 bit: orig_regno))
1471 {
1472 /* Don't let register cross a call if it doesn't already
1473 cross one. This condition is written in accordance with
1474 that in sched-deps.cc sched_analyze_reg(). */
1475 if (!reg_rename_p->crossed_call_abis
1476 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1477 return gen_rtx_REG (mode, orig_regno);
1478 }
1479
1480 bad_hard_regs = true;
1481 }
1482 else
1483 return dest;
1484 }
1485
1486 *is_orig_reg_p_ptr = false;
1487
1488 /* We had some original hard registers that couldn't be used.
1489 Those were likely special. Don't try to create a pseudo. */
1490 if (bad_hard_regs)
1491 return NULL_RTX;
1492
1493 /* We haven't found a register from original operations. Get a new one.
1494 FIXME: control register pressure somehow. */
1495 {
1496 rtx new_reg = gen_reg_rtx (mode);
1497
1498 gcc_assert (mode != VOIDmode);
1499
1500 max_regno = max_reg_num ();
1501 maybe_extend_reg_info_p ();
1502 REG_N_CALLS_CROSSED (REGNO (new_reg))
1503 = reg_rename_p->crossed_call_abis ? 1 : 0;
1504
1505 return new_reg;
1506 }
1507}
1508
1509/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1510 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1511static void
1512verify_target_availability (expr_t expr, regset used_regs,
1513 struct reg_rename *reg_rename_p)
1514{
1515 unsigned n, i, regno;
1516 machine_mode mode;
1517 bool target_available, live_available, hard_available;
1518
1519 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1520 return;
1521
1522 regno = expr_dest_regno (expr);
1523 mode = GET_MODE (EXPR_LHS (expr));
1524 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1525 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1526
1527 live_available = hard_available = true;
1528 for (i = 0; i < n; i++)
1529 {
1530 if (bitmap_bit_p (used_regs, regno + i))
1531 live_available = false;
1532 if (TEST_HARD_REG_BIT (set: reg_rename_p->unavailable_hard_regs, bit: regno + i))
1533 hard_available = false;
1534 }
1535
1536 /* When target is not available, it may be due to hard register
1537 restrictions, e.g. crosses calls, so we check hard_available too. */
1538 if (target_available)
1539 gcc_assert (live_available);
1540 else
1541 /* Check only if we haven't scheduled something on the previous fence,
1542 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1543 and having more than one fence, we may end having targ_un in a block
1544 in which successors target register is actually available.
1545
1546 The last condition handles the case when a dependence from a call insn
1547 was created in sched-deps.cc for insns with destination registers that
1548 never crossed a call before, but do cross one after our code motion.
1549
1550 FIXME: in the latter case, we just uselessly called find_used_regs,
1551 because we can't move this expression with any other register
1552 as well. */
1553 gcc_assert (scheduled_something_on_previous_fence || !live_available
1554 || !hard_available
1555 || (!reload_completed
1556 && reg_rename_p->crossed_call_abis
1557 && REG_N_CALLS_CROSSED (regno) == 0));
1558}
1559
1560/* Collect unavailable registers due to liveness for EXPR from BNDS
1561 into USED_REGS. Save additional information about available
1562 registers and unavailable due to hardware restriction registers
1563 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1564 list. */
1565static void
1566collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1567 struct reg_rename *reg_rename_p,
1568 def_list_t *original_insns)
1569{
1570 for (; bnds; bnds = BLIST_NEXT (bnds))
1571 {
1572 bool res;
1573 av_set_t orig_ops = NULL;
1574 bnd_t bnd = BLIST_BND (bnds);
1575
1576 /* If the chosen best expr doesn't belong to current boundary,
1577 skip it. */
1578 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1579 continue;
1580
1581 /* Put in ORIG_OPS all exprs from this boundary that became
1582 RES on top. */
1583 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1584
1585 /* Compute used regs and OR it into the USED_REGS. */
1586 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1587 reg_rename_p, original_insns);
1588
1589 /* FIXME: the assert is true until we'd have several boundaries. */
1590 gcc_assert (res);
1591 av_set_clear (&orig_ops);
1592 }
1593}
1594
1595/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1596 If BEST_REG is valid, replace LHS of EXPR with it. */
1597static bool
1598try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1599{
1600 /* Try whether we'll be able to generate the insn
1601 'dest := best_reg' at the place of the original operation. */
1602 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1603 {
1604 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1605
1606 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1607
1608 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1609 && (! replace_src_with_reg_ok_p (insn: orig_insn, new_src_reg: best_reg)
1610 || ! replace_dest_with_reg_ok_p (insn: orig_insn, new_reg: best_reg)))
1611 return false;
1612 }
1613
1614 /* Make sure that EXPR has the right destination
1615 register. */
1616 if (expr_dest_regno (expr) != REGNO (best_reg))
1617 {
1618 rtx_insn *vinsn = EXPR_INSN_RTX (expr);
1619 validate_change (vinsn, &SET_DEST (PATTERN (vinsn)), best_reg, 1);
1620 bool res = verify_changes (0);
1621 cancel_changes (0);
1622 if (!res)
1623 return false;
1624 replace_dest_with_reg_in_expr (expr, new_reg: best_reg);
1625 }
1626 else
1627 EXPR_TARGET_AVAILABLE (expr) = 1;
1628
1629 return true;
1630}
1631
1632/* Select and assign best register to EXPR searching from BNDS.
1633 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1634 Return FALSE if no register can be chosen, which could happen when:
1635 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1636 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1637 that are used on the moving path. */
1638static bool
1639find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1640{
1641 static struct reg_rename reg_rename_data;
1642
1643 regset used_regs;
1644 def_list_t original_insns = NULL;
1645 bool reg_ok;
1646
1647 *is_orig_reg_p = false;
1648
1649 /* Don't bother to do anything if this insn doesn't set any registers. */
1650 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1651 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1652 return true;
1653
1654 used_regs = get_clear_regset_from_pool ();
1655 CLEAR_HARD_REG_SET (set&: reg_rename_data.unavailable_hard_regs);
1656
1657 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, reg_rename_p: &reg_rename_data,
1658 original_insns: &original_insns);
1659
1660 /* If after reload, make sure we're working with hard regs here. */
1661 if (flag_checking && reload_completed)
1662 {
1663 reg_set_iterator rsi;
1664 unsigned i;
1665
1666 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1667 gcc_unreachable ();
1668 }
1669
1670 if (EXPR_SEPARABLE_P (expr))
1671 {
1672 rtx best_reg = NULL_RTX;
1673 /* Check that we have computed availability of a target register
1674 correctly. */
1675 verify_target_availability (expr, used_regs, reg_rename_p: &reg_rename_data);
1676
1677 /* Turn everything in hard regs after reload. */
1678 if (reload_completed)
1679 {
1680 HARD_REG_SET hard_regs_used;
1681 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1682
1683 /* Join hard registers unavailable due to register class
1684 restrictions and live range intersection. */
1685 hard_regs_used |= reg_rename_data.unavailable_hard_regs;
1686
1687 best_reg = choose_best_reg (hard_regs_used, reg_rename_p: &reg_rename_data,
1688 original_insns, is_orig_reg_p_ptr: is_orig_reg_p);
1689 }
1690 else
1691 best_reg = choose_best_pseudo_reg (used_regs, reg_rename_p: &reg_rename_data,
1692 original_insns, is_orig_reg_p_ptr: is_orig_reg_p);
1693
1694 if (!best_reg)
1695 reg_ok = false;
1696 else if (*is_orig_reg_p)
1697 {
1698 /* In case of unification BEST_REG may be different from EXPR's LHS
1699 when EXPR's LHS is unavailable, and there is another LHS among
1700 ORIGINAL_INSNS. */
1701 reg_ok = try_replace_dest_reg (orig_insns: original_insns, best_reg, expr);
1702 }
1703 else
1704 {
1705 /* Forbid renaming of low-cost insns. */
1706 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1707 reg_ok = false;
1708 else
1709 reg_ok = try_replace_dest_reg (orig_insns: original_insns, best_reg, expr);
1710 }
1711 }
1712 else
1713 {
1714 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1715 any of the HARD_REGS_USED set. */
1716 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1717 unavailable_hard_regs: reg_rename_data.unavailable_hard_regs))
1718 {
1719 reg_ok = false;
1720 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1721 }
1722 else
1723 {
1724 reg_ok = true;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1726 }
1727 }
1728
1729 ilist_clear (&original_insns);
1730 return_regset_to_pool (used_regs);
1731
1732 return reg_ok;
1733}
1734
1735
1736/* Return true if dependence described by DS can be overcomed. */
1737static bool
1738can_speculate_dep_p (ds_t ds)
1739{
1740 if (spec_info == NULL)
1741 return false;
1742
1743 /* Leave only speculative data. */
1744 ds &= SPECULATIVE;
1745
1746 if (ds == 0)
1747 return false;
1748
1749 {
1750 /* FIXME: make sched-deps.cc produce only those non-hard dependencies,
1751 that we can overcome. */
1752 ds_t spec_mask = spec_info->mask;
1753
1754 if ((ds & spec_mask) != ds)
1755 return false;
1756 }
1757
1758 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1759 return false;
1760
1761 return true;
1762}
1763
1764/* Get a speculation check instruction.
1765 C_EXPR is a speculative expression,
1766 CHECK_DS describes speculations that should be checked,
1767 ORIG_INSN is the original non-speculative insn in the stream. */
1768static insn_t
1769create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1770{
1771 rtx check_pattern;
1772 rtx_insn *insn_rtx;
1773 insn_t insn;
1774 basic_block recovery_block;
1775 rtx_insn *label;
1776
1777 /* Create a recovery block if target is going to emit branchy check, or if
1778 ORIG_INSN was speculative already. */
1779 if (targetm.sched.needs_block_p (check_ds)
1780 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1781 {
1782 recovery_block = sel_create_recovery_block (orig_insn);
1783 label = BB_HEAD (recovery_block);
1784 }
1785 else
1786 {
1787 recovery_block = NULL;
1788 label = NULL;
1789 }
1790
1791 /* Get pattern of the check. */
1792 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1793 check_ds);
1794
1795 gcc_assert (check_pattern != NULL);
1796
1797 /* Emit check. */
1798 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1799
1800 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1801 INSN_SEQNO (orig_insn), orig_insn);
1802
1803 /* Make check to be non-speculative. */
1804 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1805 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1806
1807 /* Decrease priority of check by difference of load/check instruction
1808 latencies. */
1809 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1810 - sel_vinsn_cost (INSN_VINSN (insn)));
1811
1812 /* Emit copy of original insn (though with replaced target register,
1813 if needed) to the recovery block. */
1814 if (recovery_block != NULL)
1815 {
1816 rtx twin_rtx;
1817
1818 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1819 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1820 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1821 INSN_EXPR (orig_insn),
1822 INSN_SEQNO (insn),
1823 bb_note (recovery_block));
1824 }
1825
1826 /* If we've generated a data speculation check, make sure
1827 that all the bookkeeping instruction we'll create during
1828 this move_op () will allocate an ALAT entry so that the
1829 check won't fail.
1830 In case of control speculation we must convert C_EXPR to control
1831 speculative mode, because failing to do so will bring us an exception
1832 thrown by the non-control-speculative load. */
1833 check_ds = ds_get_max_dep_weak (check_ds);
1834 speculate_expr (c_expr, check_ds);
1835
1836 return insn;
1837}
1838
1839/* True when INSN is a "regN = regN" copy. */
1840static bool
1841identical_copy_p (rtx_insn *insn)
1842{
1843 rtx lhs, rhs, pat;
1844
1845 pat = PATTERN (insn);
1846
1847 if (GET_CODE (pat) != SET)
1848 return false;
1849
1850 lhs = SET_DEST (pat);
1851 if (!REG_P (lhs))
1852 return false;
1853
1854 rhs = SET_SRC (pat);
1855 if (!REG_P (rhs))
1856 return false;
1857
1858 return REGNO (lhs) == REGNO (rhs);
1859}
1860
1861/* Undo all transformations on *AV_PTR that were done when
1862 moving through INSN. */
1863static void
1864undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1865{
1866 av_set_iterator av_iter;
1867 expr_t expr;
1868 av_set_t new_set = NULL;
1869
1870 /* First, kill any EXPR that uses registers set by an insn. This is
1871 required for correctness. */
1872 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1873 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1874 && bitmap_intersect_p (INSN_REG_SETS (insn),
1875 VINSN_REG_USES (EXPR_VINSN (expr)))
1876 /* When an insn looks like 'r1 = r1', we could substitute through
1877 it, but the above condition will still hold. This happened with
1878 gcc.c-torture/execute/961125-1.c. */
1879 && !identical_copy_p (insn))
1880 {
1881 if (sched_verbose >= 6)
1882 sel_print (fmt: "Expr %d removed due to use/set conflict\n",
1883 INSN_UID (EXPR_INSN_RTX (expr)));
1884 av_set_iter_remove (&av_iter);
1885 }
1886
1887 /* Undo transformations looking at the history vector. */
1888 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1889 {
1890 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1891 insn, EXPR_VINSN (expr), true);
1892
1893 if (index >= 0)
1894 {
1895 expr_history_def *phist;
1896
1897 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1898
1899 switch (phist->type)
1900 {
1901 case TRANS_SPECULATION:
1902 {
1903 ds_t old_ds, new_ds;
1904
1905 /* Compute the difference between old and new speculative
1906 statuses: that's what we need to check.
1907 Earlier we used to assert that the status will really
1908 change. This no longer works because only the probability
1909 bits in the status may have changed during compute_av_set,
1910 and in the case of merging different probabilities of the
1911 same speculative status along different paths we do not
1912 record this in the history vector. */
1913 old_ds = phist->spec_ds;
1914 new_ds = EXPR_SPEC_DONE_DS (expr);
1915
1916 old_ds &= SPECULATIVE;
1917 new_ds &= SPECULATIVE;
1918 new_ds &= ~old_ds;
1919
1920 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1921 break;
1922 }
1923 case TRANS_SUBSTITUTION:
1924 {
1925 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1926 vinsn_t new_vi;
1927 bool add = true;
1928
1929 new_vi = phist->old_expr_vinsn;
1930
1931 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1932 == EXPR_SEPARABLE_P (expr));
1933 copy_expr (tmp_expr, expr);
1934
1935 if (vinsn_equal_p (phist->new_expr_vinsn,
1936 EXPR_VINSN (tmp_expr)))
1937 change_vinsn_in_expr (tmp_expr, new_vi);
1938 else
1939 /* This happens when we're unsubstituting on a bookkeeping
1940 copy, which was in turn substituted. The history is wrong
1941 in this case. Do it the hard way. */
1942 add = substitute_reg_in_expr (expr: tmp_expr, insn, undo: true);
1943 if (add)
1944 av_set_add (&new_set, tmp_expr);
1945 clear_expr (tmp_expr);
1946 break;
1947 }
1948 default:
1949 gcc_unreachable ();
1950 }
1951 }
1952
1953 }
1954
1955 av_set_union_and_clear (av_ptr, &new_set, NULL);
1956}
1957
1958
1959/* Moveup_* helpers for code motion and computing av sets. */
1960
1961/* Propagates EXPR inside an insn group through THROUGH_INSN.
1962 The difference from the below function is that only substitution is
1963 performed. */
1964static enum MOVEUP_EXPR_CODE
1965moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1966{
1967 vinsn_t vi = EXPR_VINSN (expr);
1968 ds_t *has_dep_p;
1969 ds_t full_ds;
1970
1971 /* Do this only inside insn group. */
1972 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1973
1974 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1975 if (full_ds == 0)
1976 return MOVEUP_EXPR_SAME;
1977
1978 /* Substitution is the possible choice in this case. */
1979 if (has_dep_p[DEPS_IN_RHS])
1980 {
1981 /* Can't substitute UNIQUE VINSNs. */
1982 gcc_assert (!VINSN_UNIQUE_P (vi));
1983
1984 if (can_substitute_through_p (insn: through_insn,
1985 ds: has_dep_p[DEPS_IN_RHS])
1986 && substitute_reg_in_expr (expr, insn: through_insn, undo: false))
1987 {
1988 EXPR_WAS_SUBSTITUTED (expr) = true;
1989 return MOVEUP_EXPR_CHANGED;
1990 }
1991
1992 /* Don't care about this, as even true dependencies may be allowed
1993 in an insn group. */
1994 return MOVEUP_EXPR_SAME;
1995 }
1996
1997 /* This can catch output dependencies in COND_EXECs. */
1998 if (has_dep_p[DEPS_IN_INSN])
1999 return MOVEUP_EXPR_NULL;
2000
2001 /* This is either an output or an anti dependence, which usually have
2002 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2003 will fix this. */
2004 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2005 return MOVEUP_EXPR_AS_RHS;
2006}
2007
2008/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2009#define CANT_MOVE_TRAPPING(expr, through_insn) \
2010 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2011 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2012 && !sel_insn_is_speculation_check (through_insn))
2013
2014/* True when a conflict on a target register was found during moveup_expr. */
2015static bool was_target_conflict = false;
2016
2017/* Return true when moving a debug INSN across THROUGH_INSN will
2018 create a bookkeeping block. We don't want to create such blocks,
2019 for they would cause codegen differences between compilations with
2020 and without debug info. */
2021
2022static bool
2023moving_insn_creates_bookkeeping_block_p (insn_t insn,
2024 insn_t through_insn)
2025{
2026 basic_block bbi, bbt;
2027 edge e1, e2;
2028 edge_iterator ei1, ei2;
2029
2030 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2031 {
2032 if (sched_verbose >= 9)
2033 sel_print (fmt: "no bookkeeping required: ");
2034 return false;
2035 }
2036
2037 bbi = BLOCK_FOR_INSN (insn);
2038
2039 if (EDGE_COUNT (bbi->preds) == 1)
2040 {
2041 if (sched_verbose >= 9)
2042 sel_print (fmt: "only one pred edge: ");
2043 return true;
2044 }
2045
2046 bbt = BLOCK_FOR_INSN (insn: through_insn);
2047
2048 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2049 {
2050 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2051 {
2052 if (find_block_for_bookkeeping (e1, e2, lax: true))
2053 {
2054 if (sched_verbose >= 9)
2055 sel_print (fmt: "found existing block: ");
2056 return false;
2057 }
2058 }
2059 }
2060
2061 if (sched_verbose >= 9)
2062 sel_print (fmt: "would create bookkeeping block: ");
2063
2064 return true;
2065}
2066
2067/* Return true when the conflict with newly created implicit clobbers
2068 between EXPR and THROUGH_INSN is found because of renaming. */
2069static bool
2070implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2071{
2072 HARD_REG_SET temp;
2073 rtx_insn *insn;
2074 rtx reg, rhs, pat;
2075 hard_reg_set_iterator hrsi;
2076 unsigned regno;
2077 bool valid;
2078
2079 /* Make a new pseudo register. */
2080 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2081 max_regno = max_reg_num ();
2082 maybe_extend_reg_info_p ();
2083
2084 /* Validate a change and bail out early. */
2085 insn = EXPR_INSN_RTX (expr);
2086 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2087 valid = verify_changes (0);
2088 cancel_changes (0);
2089 if (!valid)
2090 {
2091 if (sched_verbose >= 6)
2092 sel_print (fmt: "implicit clobbers failed validation, ");
2093 return true;
2094 }
2095
2096 /* Make a new insn with it. */
2097 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2098 pat = gen_rtx_SET (reg, rhs);
2099 start_sequence ();
2100 insn = emit_insn (pat);
2101 end_sequence ();
2102
2103 /* Calculate implicit clobbers. */
2104 extract_insn (insn);
2105 preprocess_constraints (insn);
2106 alternative_mask prefrred = get_preferred_alternatives (insn);
2107 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2108 temp &= ~ira_no_alloc_regs;
2109
2110 /* If any implicit clobber registers intersect with regular ones in
2111 through_insn, we have a dependency and thus bail out. */
2112 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2113 {
2114 vinsn_t vi = INSN_VINSN (through_insn);
2115 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2116 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2117 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2118 return true;
2119 }
2120
2121 return false;
2122}
2123
2124/* Modifies EXPR so it can be moved through the THROUGH_INSN,
2125 performing necessary transformations. Record the type of transformation
2126 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2127 permit all dependencies except true ones, and try to remove those
2128 too via forward substitution. All cases when a non-eliminable
2129 non-zero cost dependency exists inside an insn group will be fixed
2130 in tick_check_p instead. */
2131static enum MOVEUP_EXPR_CODE
2132moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2133 enum local_trans_type *ptrans_type)
2134{
2135 vinsn_t vi = EXPR_VINSN (expr);
2136 insn_t insn = VINSN_INSN_RTX (vi);
2137 bool was_changed = false;
2138 bool as_rhs = false;
2139 ds_t *has_dep_p;
2140 ds_t full_ds;
2141
2142 /* ??? We use dependencies of non-debug insns on debug insns to
2143 indicate that the debug insns need to be reset if the non-debug
2144 insn is pulled ahead of it. It's hard to figure out how to
2145 introduce such a notion in sel-sched, but it already fails to
2146 support debug insns in other ways, so we just go ahead and
2147 let the deug insns go corrupt for now. */
2148 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2149 return MOVEUP_EXPR_SAME;
2150
2151 /* When inside_insn_group, delegate to the helper. */
2152 if (inside_insn_group)
2153 return moveup_expr_inside_insn_group (expr, through_insn);
2154
2155 /* Deal with unique insns and control dependencies. */
2156 if (VINSN_UNIQUE_P (vi))
2157 {
2158 /* We can move jumps without side-effects or jumps that are
2159 mutually exclusive with instruction THROUGH_INSN (all in cases
2160 dependencies allow to do so and jump is not speculative). */
2161 if (control_flow_insn_p (insn))
2162 {
2163 basic_block fallthru_bb;
2164
2165 /* Do not move checks and do not move jumps through other
2166 jumps. */
2167 if (control_flow_insn_p (through_insn)
2168 || sel_insn_is_speculation_check (insn))
2169 return MOVEUP_EXPR_NULL;
2170
2171 /* Don't move jumps through CFG joins. */
2172 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2173 return MOVEUP_EXPR_NULL;
2174
2175 /* The jump should have a clear fallthru block, and
2176 this block should be in the current region. */
2177 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2178 || ! in_current_region_p (fallthru_bb))
2179 return MOVEUP_EXPR_NULL;
2180
2181 /* And it should be mutually exclusive with through_insn. */
2182 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2183 && ! DEBUG_INSN_P (through_insn))
2184 return MOVEUP_EXPR_NULL;
2185 }
2186
2187 /* Don't move what we can't move. */
2188 if (EXPR_CANT_MOVE (expr)
2189 && BLOCK_FOR_INSN (insn: through_insn) != BLOCK_FOR_INSN (insn))
2190 return MOVEUP_EXPR_NULL;
2191
2192 /* Don't move SCHED_GROUP instruction through anything.
2193 If we don't force this, then it will be possible to start
2194 scheduling a sched_group before all its dependencies are
2195 resolved.
2196 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2197 as late as possible through rank_for_schedule. */
2198 if (SCHED_GROUP_P (insn))
2199 return MOVEUP_EXPR_NULL;
2200 }
2201 else
2202 gcc_assert (!control_flow_insn_p (insn));
2203
2204 /* Don't move debug insns if this would require bookkeeping. */
2205 if (DEBUG_INSN_P (insn)
2206 && BLOCK_FOR_INSN (insn: through_insn) != BLOCK_FOR_INSN (insn)
2207 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2208 return MOVEUP_EXPR_NULL;
2209
2210 /* Deal with data dependencies. */
2211 was_target_conflict = false;
2212 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2213 if (full_ds == 0)
2214 {
2215 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2216 return MOVEUP_EXPR_SAME;
2217 }
2218 else
2219 {
2220 /* We can move UNIQUE insn up only as a whole and unchanged,
2221 so it shouldn't have any dependencies. */
2222 if (VINSN_UNIQUE_P (vi))
2223 return MOVEUP_EXPR_NULL;
2224 }
2225
2226 if (full_ds != 0 && can_speculate_dep_p (ds: full_ds))
2227 {
2228 int res;
2229
2230 res = speculate_expr (expr, full_ds);
2231 if (res >= 0)
2232 {
2233 /* Speculation was successful. */
2234 full_ds = 0;
2235 was_changed = (res > 0);
2236 if (res == 2)
2237 was_target_conflict = true;
2238 if (ptrans_type)
2239 *ptrans_type = TRANS_SPECULATION;
2240 sel_clear_has_dependence ();
2241 }
2242 }
2243
2244 if (has_dep_p[DEPS_IN_INSN])
2245 /* We have some dependency that cannot be discarded. */
2246 return MOVEUP_EXPR_NULL;
2247
2248 if (has_dep_p[DEPS_IN_LHS])
2249 {
2250 /* Only separable insns can be moved up with the new register.
2251 Anyways, we should mark that the original register is
2252 unavailable. */
2253 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2254 return MOVEUP_EXPR_NULL;
2255
2256 /* When renaming a hard register to a pseudo before reload, extra
2257 dependencies can occur from the implicit clobbers of the insn.
2258 Filter out such cases here. */
2259 if (!reload_completed && REG_P (EXPR_LHS (expr))
2260 && HARD_REGISTER_P (EXPR_LHS (expr))
2261 && implicit_clobber_conflict_p (through_insn, expr))
2262 {
2263 if (sched_verbose >= 6)
2264 sel_print (fmt: "implicit clobbers conflict detected, ");
2265 return MOVEUP_EXPR_NULL;
2266 }
2267 EXPR_TARGET_AVAILABLE (expr) = false;
2268 was_target_conflict = true;
2269 as_rhs = true;
2270 }
2271
2272 /* At this point we have either separable insns, that will be lifted
2273 up only as RHSes, or non-separable insns with no dependency in lhs.
2274 If dependency is in RHS, then try to perform substitution and move up
2275 substituted RHS:
2276
2277 Ex. 1: Ex.2
2278 y = x; y = x;
2279 z = y*2; y = y*2;
2280
2281 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2282 moved above y=x assignment as z=x*2.
2283
2284 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2285 side can be moved because of the output dependency. The operation was
2286 cropped to its rhs above. */
2287 if (has_dep_p[DEPS_IN_RHS])
2288 {
2289 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2290
2291 /* Can't substitute UNIQUE VINSNs. */
2292 gcc_assert (!VINSN_UNIQUE_P (vi));
2293
2294 if (can_speculate_dep_p (ds: *rhs_dsp))
2295 {
2296 int res;
2297
2298 res = speculate_expr (expr, *rhs_dsp);
2299 if (res >= 0)
2300 {
2301 /* Speculation was successful. */
2302 *rhs_dsp = 0;
2303 was_changed = (res > 0);
2304 if (res == 2)
2305 was_target_conflict = true;
2306 if (ptrans_type)
2307 *ptrans_type = TRANS_SPECULATION;
2308 }
2309 else
2310 return MOVEUP_EXPR_NULL;
2311 }
2312 else if (can_substitute_through_p (insn: through_insn,
2313 ds: *rhs_dsp)
2314 && substitute_reg_in_expr (expr, insn: through_insn, undo: false))
2315 {
2316 /* ??? We cannot perform substitution AND speculation on the same
2317 insn. */
2318 gcc_assert (!was_changed);
2319 was_changed = true;
2320 if (ptrans_type)
2321 *ptrans_type = TRANS_SUBSTITUTION;
2322 EXPR_WAS_SUBSTITUTED (expr) = true;
2323 }
2324 else
2325 return MOVEUP_EXPR_NULL;
2326 }
2327
2328 /* Don't move trapping insns through jumps.
2329 This check should be at the end to give a chance to control speculation
2330 to perform its duties. */
2331 if (CANT_MOVE_TRAPPING (expr, through_insn))
2332 return MOVEUP_EXPR_NULL;
2333
2334 return (was_changed
2335 ? MOVEUP_EXPR_CHANGED
2336 : (as_rhs
2337 ? MOVEUP_EXPR_AS_RHS
2338 : MOVEUP_EXPR_SAME));
2339}
2340
2341/* Try to look at bitmap caches for EXPR and INSN pair, return true
2342 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2343 that can exist within a parallel group. Write to RES the resulting
2344 code for moveup_expr. */
2345static bool
2346try_bitmap_cache (expr_t expr, insn_t insn,
2347 bool inside_insn_group,
2348 enum MOVEUP_EXPR_CODE *res)
2349{
2350 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2351
2352 /* First check whether we've analyzed this situation already. */
2353 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2354 {
2355 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2356 {
2357 if (sched_verbose >= 6)
2358 sel_print (fmt: "removed (cached)\n");
2359 *res = MOVEUP_EXPR_NULL;
2360 return true;
2361 }
2362 else
2363 {
2364 if (sched_verbose >= 6)
2365 sel_print (fmt: "unchanged (cached)\n");
2366 *res = MOVEUP_EXPR_SAME;
2367 return true;
2368 }
2369 }
2370 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2371 {
2372 if (inside_insn_group)
2373 {
2374 if (sched_verbose >= 6)
2375 sel_print (fmt: "unchanged (as RHS, cached, inside insn group)\n");
2376 *res = MOVEUP_EXPR_SAME;
2377 return true;
2378
2379 }
2380 else
2381 EXPR_TARGET_AVAILABLE (expr) = false;
2382
2383 /* This is the only case when propagation result can change over time,
2384 as we can dynamically switch off scheduling as RHS. In this case,
2385 just check the flag to reach the correct decision. */
2386 if (enable_schedule_as_rhs_p)
2387 {
2388 if (sched_verbose >= 6)
2389 sel_print (fmt: "unchanged (as RHS, cached)\n");
2390 *res = MOVEUP_EXPR_AS_RHS;
2391 return true;
2392 }
2393 else
2394 {
2395 if (sched_verbose >= 6)
2396 sel_print (fmt: "removed (cached as RHS, but renaming"
2397 " is now disabled)\n");
2398 *res = MOVEUP_EXPR_NULL;
2399 return true;
2400 }
2401 }
2402
2403 return false;
2404}
2405
2406/* Try to look at bitmap caches for EXPR and INSN pair, return true
2407 if successful. Write to RES the resulting code for moveup_expr. */
2408static bool
2409try_transformation_cache (expr_t expr, insn_t insn,
2410 enum MOVEUP_EXPR_CODE *res)
2411{
2412 struct transformed_insns *pti
2413 = (struct transformed_insns *)
2414 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2415 &EXPR_VINSN (expr),
2416 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2417 if (pti)
2418 {
2419 /* This EXPR was already moved through this insn and was
2420 changed as a result. Fetch the proper data from
2421 the hashtable. */
2422 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2423 INSN_UID (insn), pti->type,
2424 pti->vinsn_old, pti->vinsn_new,
2425 EXPR_SPEC_DONE_DS (expr));
2426
2427 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2428 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2429 change_vinsn_in_expr (expr, pti->vinsn_new);
2430 if (pti->was_target_conflict)
2431 EXPR_TARGET_AVAILABLE (expr) = false;
2432 if (pti->type == TRANS_SPECULATION)
2433 {
2434 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2435 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2436 }
2437
2438 if (sched_verbose >= 6)
2439 {
2440 sel_print (fmt: "changed (cached): ");
2441 dump_expr (expr);
2442 sel_print (fmt: "\n");
2443 }
2444
2445 *res = MOVEUP_EXPR_CHANGED;
2446 return true;
2447 }
2448
2449 return false;
2450}
2451
2452/* Update bitmap caches on INSN with result RES of propagating EXPR. */
2453static void
2454update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2455 enum MOVEUP_EXPR_CODE res)
2456{
2457 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2458
2459 /* Do not cache result of propagating jumps through an insn group,
2460 as it is always true, which is not useful outside the group. */
2461 if (inside_insn_group)
2462 return;
2463
2464 if (res == MOVEUP_EXPR_NULL)
2465 {
2466 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2467 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2468 }
2469 else if (res == MOVEUP_EXPR_SAME)
2470 {
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2473 }
2474 else if (res == MOVEUP_EXPR_AS_RHS)
2475 {
2476 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2478 }
2479 else
2480 gcc_unreachable ();
2481}
2482
2483/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2484 and transformation type TRANS_TYPE. */
2485static void
2486update_transformation_cache (expr_t expr, insn_t insn,
2487 bool inside_insn_group,
2488 enum local_trans_type trans_type,
2489 vinsn_t expr_old_vinsn)
2490{
2491 struct transformed_insns *pti;
2492
2493 if (inside_insn_group)
2494 return;
2495
2496 pti = XNEW (struct transformed_insns);
2497 pti->vinsn_old = expr_old_vinsn;
2498 pti->vinsn_new = EXPR_VINSN (expr);
2499 pti->type = trans_type;
2500 pti->was_target_conflict = was_target_conflict;
2501 pti->ds = EXPR_SPEC_DONE_DS (expr);
2502 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2503 vinsn_attach (pti->vinsn_old);
2504 vinsn_attach (pti->vinsn_new);
2505 *((struct transformed_insns **)
2506 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2507 pti, VINSN_HASH_RTX (expr_old_vinsn),
2508 INSERT)) = pti;
2509}
2510
2511/* Same as moveup_expr, but first looks up the result of
2512 transformation in caches. */
2513static enum MOVEUP_EXPR_CODE
2514moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2515{
2516 enum MOVEUP_EXPR_CODE res;
2517 bool got_answer = false;
2518
2519 if (sched_verbose >= 6)
2520 {
2521 sel_print (fmt: "Moving ");
2522 dump_expr (expr);
2523 sel_print (fmt: " through %d: ", INSN_UID (insn));
2524 }
2525
2526 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2527 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2528 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2529 == EXPR_INSN_RTX (expr)))
2530 /* Don't use cached information for debug insns that are heads of
2531 basic blocks. */;
2532 else if (try_bitmap_cache (expr, insn, inside_insn_group, res: &res))
2533 /* When inside insn group, we do not want remove stores conflicting
2534 with previosly issued loads. */
2535 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2536 else if (try_transformation_cache (expr, insn, res: &res))
2537 got_answer = true;
2538
2539 if (! got_answer)
2540 {
2541 /* Invoke moveup_expr and record the results. */
2542 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2543 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2544 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2545 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2546 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2547
2548 /* ??? Invent something better than this. We can't allow old_vinsn
2549 to go, we need it for the history vector. */
2550 vinsn_attach (expr_old_vinsn);
2551
2552 res = moveup_expr (expr, through_insn: insn, inside_insn_group,
2553 ptrans_type: &trans_type);
2554 switch (res)
2555 {
2556 case MOVEUP_EXPR_NULL:
2557 update_bitmap_cache (expr, insn, inside_insn_group, res);
2558 if (sched_verbose >= 6)
2559 sel_print (fmt: "removed\n");
2560 break;
2561
2562 case MOVEUP_EXPR_SAME:
2563 update_bitmap_cache (expr, insn, inside_insn_group, res);
2564 if (sched_verbose >= 6)
2565 sel_print (fmt: "unchanged\n");
2566 break;
2567
2568 case MOVEUP_EXPR_AS_RHS:
2569 gcc_assert (!unique_p || inside_insn_group);
2570 update_bitmap_cache (expr, insn, inside_insn_group, res);
2571 if (sched_verbose >= 6)
2572 sel_print (fmt: "unchanged (as RHS)\n");
2573 break;
2574
2575 case MOVEUP_EXPR_CHANGED:
2576 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2577 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2578 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2579 INSN_UID (insn), trans_type,
2580 expr_old_vinsn, EXPR_VINSN (expr),
2581 expr_old_spec_ds);
2582 update_transformation_cache (expr, insn, inside_insn_group,
2583 trans_type, expr_old_vinsn);
2584 if (sched_verbose >= 6)
2585 {
2586 sel_print (fmt: "changed: ");
2587 dump_expr (expr);
2588 sel_print (fmt: "\n");
2589 }
2590 break;
2591 default:
2592 gcc_unreachable ();
2593 }
2594
2595 vinsn_detach (expr_old_vinsn);
2596 }
2597
2598 return res;
2599}
2600
2601/* Moves an av set AVP up through INSN, performing necessary
2602 transformations. */
2603static void
2604moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2605{
2606 av_set_iterator i;
2607 expr_t expr;
2608
2609 FOR_EACH_EXPR_1 (expr, i, avp)
2610 {
2611
2612 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2613 {
2614 case MOVEUP_EXPR_SAME:
2615 case MOVEUP_EXPR_AS_RHS:
2616 break;
2617
2618 case MOVEUP_EXPR_NULL:
2619 av_set_iter_remove (&i);
2620 break;
2621
2622 case MOVEUP_EXPR_CHANGED:
2623 expr = merge_with_other_exprs (avp, &i, expr);
2624 break;
2625
2626 default:
2627 gcc_unreachable ();
2628 }
2629 }
2630}
2631
2632/* Moves AVP set along PATH. */
2633static void
2634moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2635{
2636 int last_cycle;
2637
2638 if (sched_verbose >= 6)
2639 sel_print (fmt: "Moving expressions up in the insn group...\n");
2640 if (! path)
2641 return;
2642 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2643 while (path
2644 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2645 {
2646 moveup_set_expr (avp, ILIST_INSN (path), inside_insn_group: true);
2647 path = ILIST_NEXT (path);
2648 }
2649}
2650
2651/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2652static bool
2653equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2654{
2655 expr_def _tmp, *tmp = &_tmp;
2656 int last_cycle;
2657 bool res = true;
2658
2659 copy_expr_onside (tmp, expr);
2660 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2661 while (path
2662 && res
2663 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2664 {
2665 res = (moveup_expr_cached (expr: tmp, ILIST_INSN (path), inside_insn_group: true)
2666 != MOVEUP_EXPR_NULL);
2667 path = ILIST_NEXT (path);
2668 }
2669
2670 if (res)
2671 {
2672 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2673 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2674
2675 if (tmp_vinsn != expr_vliw_vinsn)
2676 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2677 }
2678
2679 clear_expr (tmp);
2680 return res;
2681}
2682
2683
2684/* Functions that compute av and lv sets. */
2685
2686/* Returns true if INSN is not a downward continuation of the given path P in
2687 the current stage. */
2688static bool
2689is_ineligible_successor (insn_t insn, ilist_t p)
2690{
2691 insn_t prev_insn;
2692
2693 /* Check if insn is not deleted. */
2694 if (PREV_INSN (insn) && NEXT_INSN (insn: PREV_INSN (insn)) != insn)
2695 gcc_unreachable ();
2696 else if (NEXT_INSN (insn) && PREV_INSN (insn: NEXT_INSN (insn)) != insn)
2697 gcc_unreachable ();
2698
2699 /* If it's the first insn visited, then the successor is ok. */
2700 if (!p)
2701 return false;
2702
2703 prev_insn = ILIST_INSN (p);
2704
2705 if (/* a backward edge. */
2706 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2707 /* is already visited. */
2708 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2709 && (ilist_is_in_p (l: p, insn)
2710 /* We can reach another fence here and still seqno of insn
2711 would be equal to seqno of prev_insn. This is possible
2712 when prev_insn is a previously created bookkeeping copy.
2713 In that case it'd get a seqno of insn. Thus, check here
2714 whether insn is in current fence too. */
2715 || IN_CURRENT_FENCE_P (insn)))
2716 /* Was already scheduled on this round. */
2717 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2718 && IN_CURRENT_FENCE_P (insn))
2719 /* An insn from another fence could also be
2720 scheduled earlier even if this insn is not in
2721 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2722 || (!pipelining_p
2723 && INSN_SCHED_TIMES (insn) > 0))
2724 return true;
2725 else
2726 return false;
2727}
2728
2729/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2730 of handling multiple successors and properly merging its av_sets. P is
2731 the current path traversed. WS is the size of lookahead window.
2732 Return the av set computed. */
2733static av_set_t
2734compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2735{
2736 struct succs_info *sinfo;
2737 av_set_t expr_in_all_succ_branches = NULL;
2738 int is;
2739 insn_t succ, zero_succ = NULL;
2740 av_set_t av1 = NULL;
2741
2742 gcc_assert (sel_bb_end_p (insn));
2743
2744 /* Find different kind of successors needed for correct computing of
2745 SPEC and TARGET_AVAILABLE attributes. */
2746 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2747
2748 /* Debug output. */
2749 if (sched_verbose >= 6)
2750 {
2751 sel_print (fmt: "successors of bb end (%d): ", INSN_UID (insn));
2752 dump_insn_vector (sinfo->succs_ok);
2753 sel_print (fmt: "\n");
2754 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2755 sel_print (fmt: "real successors num: %d\n", sinfo->all_succs_n);
2756 }
2757
2758 /* Add insn to the tail of current path. */
2759 ilist_add (lp: &p, insn);
2760
2761 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2762 {
2763 av_set_t succ_set;
2764
2765 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2766 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2767
2768 av_set_split_usefulness (succ_set,
2769 sinfo->probs_ok[is],
2770 sinfo->all_prob);
2771
2772 if (sinfo->all_succs_n > 1)
2773 {
2774 /* Find EXPR'es that came from *all* successors and save them
2775 into expr_in_all_succ_branches. This set will be used later
2776 for calculating speculation attributes of EXPR'es. */
2777 if (is == 0)
2778 {
2779 expr_in_all_succ_branches = av_set_copy (succ_set);
2780
2781 /* Remember the first successor for later. */
2782 zero_succ = succ;
2783 }
2784 else
2785 {
2786 av_set_iterator i;
2787 expr_t expr;
2788
2789 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2790 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2791 av_set_iter_remove (&i);
2792 }
2793 }
2794
2795 /* Union the av_sets. Check liveness restrictions on target registers
2796 in special case of two successors. */
2797 if (sinfo->succs_ok_n == 2 && is == 1)
2798 {
2799 basic_block bb0 = BLOCK_FOR_INSN (insn: zero_succ);
2800 basic_block bb1 = BLOCK_FOR_INSN (insn: succ);
2801
2802 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2803 av_set_union_and_live (&av1, &succ_set,
2804 BB_LV_SET (bb0),
2805 BB_LV_SET (bb1),
2806 insn);
2807 }
2808 else
2809 av_set_union_and_clear (&av1, &succ_set, insn);
2810 }
2811
2812 /* Check liveness restrictions via hard way when there are more than
2813 two successors. */
2814 if (sinfo->succs_ok_n > 2)
2815 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2816 {
2817 basic_block succ_bb = BLOCK_FOR_INSN (insn: succ);
2818 av_set_t av_succ = (is_ineligible_successor (insn: succ, p)
2819 ? NULL
2820 : BB_AV_SET (succ_bb));
2821
2822 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2823 mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
2824 }
2825
2826 /* Finally, check liveness restrictions on paths leaving the region. */
2827 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2828 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2829 mark_unavailable_targets
2830 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2831
2832 if (sinfo->all_succs_n > 1)
2833 {
2834 av_set_iterator i;
2835 expr_t expr;
2836
2837 /* Increase the spec attribute of all EXPR'es that didn't come
2838 from all successors. */
2839 FOR_EACH_EXPR (expr, i, av1)
2840 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2841 EXPR_SPEC (expr)++;
2842
2843 av_set_clear (&expr_in_all_succ_branches);
2844
2845 /* Do not move conditional branches through other
2846 conditional branches. So, remove all conditional
2847 branches from av_set if current operator is a conditional
2848 branch. */
2849 av_set_substract_cond_branches (&av1);
2850 }
2851
2852 ilist_remove (&p);
2853 free_succs_info (sinfo);
2854
2855 if (sched_verbose >= 6)
2856 {
2857 sel_print (fmt: "av_succs (%d): ", INSN_UID (insn));
2858 dump_av_set (av1);
2859 sel_print (fmt: "\n");
2860 }
2861
2862 return av1;
2863}
2864
2865/* This function computes av_set for the FIRST_INSN by dragging valid
2866 av_set through all basic block insns either from the end of basic block
2867 (computed using compute_av_set_at_bb_end) or from the insn on which
2868 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2869 below the basic block and handling conditional branches.
2870 FIRST_INSN - the basic block head, P - path consisting of the insns
2871 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2872 and bb ends are added to the path), WS - current window size,
2873 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2874static av_set_t
2875compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2876 bool need_copy_p)
2877{
2878 insn_t cur_insn;
2879 int end_ws = ws;
2880 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (insn: first_insn));
2881 insn_t after_bb_end = NEXT_INSN (insn: bb_end);
2882 insn_t last_insn;
2883 av_set_t av = NULL;
2884 basic_block cur_bb = BLOCK_FOR_INSN (insn: first_insn);
2885
2886 /* Return NULL if insn is not on the legitimate downward path. */
2887 if (is_ineligible_successor (insn: first_insn, p))
2888 {
2889 if (sched_verbose >= 6)
2890 sel_print (fmt: "Insn %d is ineligible_successor\n", INSN_UID (insn: first_insn));
2891
2892 return NULL;
2893 }
2894
2895 /* If insn already has valid av(insn) computed, just return it. */
2896 if (AV_SET_VALID_P (first_insn))
2897 {
2898 av_set_t av_set;
2899
2900 if (sel_bb_head_p (first_insn))
2901 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2902 else
2903 av_set = NULL;
2904
2905 if (sched_verbose >= 6)
2906 {
2907 sel_print (fmt: "Insn %d has a valid av set: ", INSN_UID (insn: first_insn));
2908 dump_av_set (av_set);
2909 sel_print (fmt: "\n");
2910 }
2911
2912 return need_copy_p ? av_set_copy (av_set) : av_set;
2913 }
2914
2915 ilist_add (lp: &p, insn: first_insn);
2916
2917 /* As the result after this loop have completed, in LAST_INSN we'll
2918 have the insn which has valid av_set to start backward computation
2919 from: it either will be NULL because on it the window size was exceeded
2920 or other valid av_set as returned by compute_av_set for the last insn
2921 of the basic block. */
2922 for (last_insn = first_insn; last_insn != after_bb_end;
2923 last_insn = NEXT_INSN (insn: last_insn))
2924 {
2925 /* We may encounter valid av_set not only on bb_head, but also on
2926 those insns on which previously MAX_WS was exceeded. */
2927 if (AV_SET_VALID_P (last_insn))
2928 {
2929 if (sched_verbose >= 6)
2930 sel_print (fmt: "Insn %d has a valid empty av set\n", INSN_UID (insn: last_insn));
2931 break;
2932 }
2933
2934 /* The special case: the last insn of the BB may be an
2935 ineligible_successor due to its SEQ_NO that was set on
2936 it as a bookkeeping. */
2937 if (last_insn != first_insn
2938 && is_ineligible_successor (insn: last_insn, p))
2939 {
2940 if (sched_verbose >= 6)
2941 sel_print (fmt: "Insn %d is ineligible_successor\n", INSN_UID (insn: last_insn));
2942 break;
2943 }
2944
2945 if (DEBUG_INSN_P (last_insn))
2946 continue;
2947
2948 if (end_ws > max_ws)
2949 {
2950 /* We can reach max lookahead size at bb_header, so clean av_set
2951 first. */
2952 INSN_WS_LEVEL (last_insn) = global_level;
2953
2954 if (sched_verbose >= 6)
2955 sel_print (fmt: "Insn %d is beyond the software lookahead window size\n",
2956 INSN_UID (insn: last_insn));
2957 break;
2958 }
2959
2960 end_ws++;
2961 }
2962
2963 /* Get the valid av_set into AV above the LAST_INSN to start backward
2964 computation from. It either will be empty av_set or av_set computed from
2965 the successors on the last insn of the current bb. */
2966 if (last_insn != after_bb_end)
2967 {
2968 av = NULL;
2969
2970 /* This is needed only to obtain av_sets that are identical to
2971 those computed by the old compute_av_set version. */
2972 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2973 av_set_add (&av, INSN_EXPR (last_insn));
2974 }
2975 else
2976 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2977 av = compute_av_set_at_bb_end (insn: bb_end, p, ws: end_ws);
2978
2979 /* Compute av_set in AV starting from below the LAST_INSN up to
2980 location above the FIRST_INSN. */
2981 for (cur_insn = PREV_INSN (insn: last_insn); cur_insn != PREV_INSN (insn: first_insn);
2982 cur_insn = PREV_INSN (insn: cur_insn))
2983 if (!INSN_NOP_P (cur_insn))
2984 {
2985 expr_t expr;
2986
2987 moveup_set_expr (avp: &av, insn: cur_insn, inside_insn_group: false);
2988
2989 /* If the expression for CUR_INSN is already in the set,
2990 replace it by the new one. */
2991 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2992 if (expr != NULL)
2993 {
2994 clear_expr (expr);
2995 copy_expr (expr, INSN_EXPR (cur_insn));
2996 }
2997 else
2998 av_set_add (&av, INSN_EXPR (cur_insn));
2999 }
3000
3001 /* Clear stale bb_av_set. */
3002 if (sel_bb_head_p (first_insn))
3003 {
3004 av_set_clear (&BB_AV_SET (cur_bb));
3005 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3006 BB_AV_LEVEL (cur_bb) = global_level;
3007 }
3008
3009 if (sched_verbose >= 6)
3010 {
3011 sel_print (fmt: "Computed av set for insn %d: ", INSN_UID (insn: first_insn));
3012 dump_av_set (av);
3013 sel_print (fmt: "\n");
3014 }
3015
3016 ilist_remove (&p);
3017 return av;
3018}
3019
3020/* Compute av set before INSN.
3021 INSN - the current operation (actual rtx INSN)
3022 P - the current path, which is list of insns visited so far
3023 WS - software lookahead window size.
3024 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3025 if we want to save computed av_set in s_i_d, we should make a copy of it.
3026
3027 In the resulting set we will have only expressions that don't have delay
3028 stalls and nonsubstitutable dependences. */
3029static av_set_t
3030compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3031{
3032 return compute_av_set_inside_bb (first_insn: insn, p, ws, need_copy_p: unique_p);
3033}
3034
3035/* Propagate a liveness set LV through INSN. */
3036static void
3037propagate_lv_set (regset lv, insn_t insn)
3038{
3039 gcc_assert (INSN_P (insn));
3040
3041 if (INSN_NOP_P (insn))
3042 return;
3043
3044 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3045}
3046
3047/* Return livness set at the end of BB. */
3048static regset
3049compute_live_after_bb (basic_block bb)
3050{
3051 edge e;
3052 edge_iterator ei;
3053 regset lv = get_clear_regset_from_pool ();
3054
3055 gcc_assert (!ignore_first);
3056
3057 FOR_EACH_EDGE (e, ei, bb->succs)
3058 if (sel_bb_empty_p (e->dest))
3059 {
3060 if (! BB_LV_SET_VALID_P (e->dest))
3061 {
3062 gcc_unreachable ();
3063 gcc_assert (BB_LV_SET (e->dest) == NULL);
3064 BB_LV_SET (e->dest) = compute_live_after_bb (bb: e->dest);
3065 BB_LV_SET_VALID_P (e->dest) = true;
3066 }
3067 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3068 }
3069 else
3070 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3071
3072 return lv;
3073}
3074
3075/* Compute the set of all live registers at the point before INSN and save
3076 it at INSN if INSN is bb header. */
3077regset
3078compute_live (insn_t insn)
3079{
3080 basic_block bb = BLOCK_FOR_INSN (insn);
3081 insn_t final, temp;
3082 regset lv;
3083
3084 /* Return the valid set if we're already on it. */
3085 if (!ignore_first)
3086 {
3087 regset src = NULL;
3088
3089 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3090 src = BB_LV_SET (bb);
3091 else
3092 {
3093 gcc_assert (in_current_region_p (bb));
3094 if (INSN_LIVE_VALID_P (insn))
3095 src = INSN_LIVE (insn);
3096 }
3097
3098 if (src)
3099 {
3100 lv = get_regset_from_pool ();
3101 COPY_REG_SET (lv, src);
3102
3103 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3104 {
3105 COPY_REG_SET (BB_LV_SET (bb), lv);
3106 BB_LV_SET_VALID_P (bb) = true;
3107 }
3108
3109 return_regset_to_pool (lv);
3110 return lv;
3111 }
3112 }
3113
3114 /* We've skipped the wrong lv_set. Don't skip the right one. */
3115 ignore_first = false;
3116 gcc_assert (in_current_region_p (bb));
3117
3118 /* Find a valid LV set in this block or below, if needed.
3119 Start searching from the next insn: either ignore_first is true, or
3120 INSN doesn't have a correct live set. */
3121 temp = NEXT_INSN (insn);
3122 final = NEXT_INSN (BB_END (bb));
3123 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3124 temp = NEXT_INSN (insn: temp);
3125 if (temp == final)
3126 {
3127 lv = compute_live_after_bb (bb);
3128 temp = PREV_INSN (insn: temp);
3129 }
3130 else
3131 {
3132 lv = get_regset_from_pool ();
3133 COPY_REG_SET (lv, INSN_LIVE (temp));
3134 }
3135
3136 /* Put correct lv sets on the insns which have bad sets. */
3137 final = PREV_INSN (insn);
3138 while (temp != final)
3139 {
3140 propagate_lv_set (lv, insn: temp);
3141 COPY_REG_SET (INSN_LIVE (temp), lv);
3142 INSN_LIVE_VALID_P (temp) = true;
3143 temp = PREV_INSN (insn: temp);
3144 }
3145
3146 /* Also put it in a BB. */
3147 if (sel_bb_head_p (insn))
3148 {
3149 basic_block bb = BLOCK_FOR_INSN (insn);
3150
3151 COPY_REG_SET (BB_LV_SET (bb), lv);
3152 BB_LV_SET_VALID_P (bb) = true;
3153 }
3154
3155 /* We return LV to the pool, but will not clear it there. Thus we can
3156 legimatelly use LV till the next use of regset_pool_get (). */
3157 return_regset_to_pool (lv);
3158 return lv;
3159}
3160
3161/* Update liveness sets for INSN. */
3162static inline void
3163update_liveness_on_insn (rtx_insn *insn)
3164{
3165 ignore_first = true;
3166 compute_live (insn);
3167}
3168
3169/* Compute liveness below INSN and write it into REGS. */
3170static inline void
3171compute_live_below_insn (rtx_insn *insn, regset regs)
3172{
3173 rtx_insn *succ;
3174 succ_iterator si;
3175
3176 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3177 IOR_REG_SET (regs, compute_live (succ));
3178}
3179
3180/* Update the data gathered in av and lv sets starting from INSN. */
3181static void
3182update_data_sets (rtx_insn *insn)
3183{
3184 update_liveness_on_insn (insn);
3185 if (sel_bb_head_p (insn))
3186 {
3187 gcc_assert (AV_LEVEL (insn) != 0);
3188 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3189 compute_av_set (insn, NULL, ws: 0, unique_p: 0);
3190 }
3191}
3192
3193
3194/* Helper for move_op () and find_used_regs ().
3195 Return speculation type for which a check should be created on the place
3196 of INSN. EXPR is one of the original ops we are searching for. */
3197static ds_t
3198get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3199{
3200 ds_t to_check_ds;
3201 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3202
3203 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3204
3205 if (targetm.sched.get_insn_checked_ds)
3206 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3207
3208 if (spec_info != NULL
3209 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3210 already_checked_ds |= BEGIN_CONTROL;
3211
3212 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3213
3214 to_check_ds &= ~already_checked_ds;
3215
3216 return to_check_ds;
3217}
3218
3219/* Find the set of registers that are unavailable for storing expres
3220 while moving ORIG_OPS up on the path starting from INSN due to
3221 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3222
3223 All the original operations found during the traversal are saved in the
3224 ORIGINAL_INSNS list.
3225
3226 REG_RENAME_P denotes the set of hardware registers that
3227 cannot be used with renaming due to the register class restrictions,
3228 mode restrictions and other (the register we'll choose should be
3229 compatible class with the original uses, shouldn't be in call_used_regs,
3230 should be HARD_REGNO_RENAME_OK etc).
3231
3232 Returns TRUE if we've found all original insns, FALSE otherwise.
3233
3234 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3235 to traverse the code motion paths. This helper function finds registers
3236 that are not available for storing expres while moving ORIG_OPS up on the
3237 path starting from INSN. A register considered as used on the moving path,
3238 if one of the following conditions is not satisfied:
3239
3240 (1) a register not set or read on any path from xi to an instance of
3241 the original operation,
3242 (2) not among the live registers of the point immediately following the
3243 first original operation on a given downward path, except for the
3244 original target register of the operation,
3245 (3) not live on the other path of any conditional branch that is passed
3246 by the operation, in case original operations are not present on
3247 both paths of the conditional branch.
3248
3249 All the original operations found during the traversal are saved in the
3250 ORIGINAL_INSNS list.
3251
3252 REG_RENAME_P->CROSSED_CALL_ABIS is true, if there is a call insn on the path
3253 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3254 to unavailable hard regs at the point original operation is found. */
3255
3256static bool
3257find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3258 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3259{
3260 def_list_iterator i;
3261 def_t def;
3262 int res;
3263 bool needs_spec_check_p = false;
3264 expr_t expr;
3265 av_set_iterator expr_iter;
3266 struct fur_static_params sparams;
3267 struct cmpd_local_params lparams;
3268
3269 /* We haven't visited any blocks yet. */
3270 bitmap_clear (code_motion_visited_blocks);
3271
3272 /* Init parameters for code_motion_path_driver. */
3273 sparams.crossed_call_abis = 0;
3274 sparams.original_insns = original_insns;
3275 sparams.used_regs = used_regs;
3276
3277 /* Set the appropriate hooks and data. */
3278 code_motion_path_driver_info = &fur_hooks;
3279
3280 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3281
3282 reg_rename_p->crossed_call_abis |= sparams.crossed_call_abis;
3283
3284 gcc_assert (res == 1);
3285 gcc_assert (original_insns && *original_insns);
3286
3287 /* ??? We calculate whether an expression needs a check when computing
3288 av sets. This information is not as precise as it could be due to
3289 merging this bit in merge_expr. We can do better in find_used_regs,
3290 but we want to avoid multiple traversals of the same code motion
3291 paths. */
3292 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3293 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3294
3295 /* Mark hardware regs in REG_RENAME_P that are not suitable
3296 for renaming expr in INSN due to hardware restrictions (register class,
3297 modes compatibility etc). */
3298 FOR_EACH_DEF (def, i, *original_insns)
3299 {
3300 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3301
3302 if (VINSN_SEPARABLE_P (vinsn))
3303 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3304
3305 /* Do not allow clobbering of ld.[sa] address in case some of the
3306 original operations need a check. */
3307 if (needs_spec_check_p)
3308 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3309 }
3310
3311 return true;
3312}
3313
3314
3315/* Functions to choose the best insn from available ones. */
3316
3317/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3318static int
3319sel_target_adjust_priority (expr_t expr)
3320{
3321 int priority = EXPR_PRIORITY (expr);
3322 int new_priority;
3323
3324 if (targetm.sched.adjust_priority)
3325 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3326 else
3327 new_priority = priority;
3328
3329 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3330 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3331
3332 if (sched_verbose >= 4)
3333 sel_print (fmt: "sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3334 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3335 EXPR_PRIORITY_ADJ (expr), new_priority);
3336
3337 return new_priority;
3338}
3339
3340/* Rank two available exprs for schedule. Never return 0 here. */
3341static int
3342sel_rank_for_schedule (const void *x, const void *y)
3343{
3344 expr_t tmp = *(const expr_t *) y;
3345 expr_t tmp2 = *(const expr_t *) x;
3346 insn_t tmp_insn, tmp2_insn;
3347 vinsn_t tmp_vinsn, tmp2_vinsn;
3348 int val;
3349
3350 tmp_vinsn = EXPR_VINSN (tmp);
3351 tmp2_vinsn = EXPR_VINSN (tmp2);
3352 tmp_insn = EXPR_INSN_RTX (tmp);
3353 tmp2_insn = EXPR_INSN_RTX (tmp2);
3354
3355 /* Schedule debug insns as early as possible. */
3356 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3357 return -1;
3358 else if (DEBUG_INSN_P (tmp2_insn))
3359 return 1;
3360
3361 /* Prefer SCHED_GROUP_P insns to any others. */
3362 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3363 {
3364 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3365 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3366
3367 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3368 cannot be cloned. */
3369 if (VINSN_UNIQUE_P (tmp2_vinsn))
3370 return 1;
3371 return -1;
3372 }
3373
3374 /* Discourage scheduling of speculative checks. */
3375 val = (sel_insn_is_speculation_check (tmp_insn)
3376 - sel_insn_is_speculation_check (tmp2_insn));
3377 if (val)
3378 return val;
3379
3380 /* Prefer not scheduled insn over scheduled one. */
3381 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3382 {
3383 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3384 if (val)
3385 return val;
3386 }
3387
3388 /* Prefer jump over non-jump instruction. */
3389 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3390 return -1;
3391 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3392 return 1;
3393
3394 /* Prefer an expr with non-zero usefulness. */
3395 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3396
3397 if (u1 == 0)
3398 {
3399 if (u2 == 0)
3400 u1 = u2 = 1;
3401 else
3402 return 1;
3403 }
3404 else if (u2 == 0)
3405 return -1;
3406
3407 /* Prefer an expr with greater priority. */
3408 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3409 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3410 if (val)
3411 return val;
3412
3413 if (spec_info != NULL && spec_info->mask != 0)
3414 /* This code was taken from haifa-sched.cc: rank_for_schedule (). */
3415 {
3416 ds_t ds1, ds2;
3417 dw_t dw1, dw2;
3418 int dw;
3419
3420 ds1 = EXPR_SPEC_DONE_DS (tmp);
3421 if (ds1)
3422 dw1 = ds_weak (ds1);
3423 else
3424 dw1 = NO_DEP_WEAK;
3425
3426 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3427 if (ds2)
3428 dw2 = ds_weak (ds2);
3429 else
3430 dw2 = NO_DEP_WEAK;
3431
3432 dw = dw2 - dw1;
3433 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3434 return dw;
3435 }
3436
3437 /* Prefer an old insn to a bookkeeping insn. */
3438 if (INSN_UID (insn: tmp_insn) < first_emitted_uid
3439 && INSN_UID (insn: tmp2_insn) >= first_emitted_uid)
3440 return -1;
3441 if (INSN_UID (insn: tmp_insn) >= first_emitted_uid
3442 && INSN_UID (insn: tmp2_insn) < first_emitted_uid)
3443 return 1;
3444
3445 /* Prefer an insn with smaller UID, as a last resort.
3446 We can't safely use INSN_LUID as it is defined only for those insns
3447 that are in the stream. */
3448 return INSN_UID (insn: tmp_insn) - INSN_UID (insn: tmp2_insn);
3449}
3450
3451/* Filter out expressions from av set pointed to by AV_PTR
3452 that are pipelined too many times. */
3453static void
3454process_pipelined_exprs (av_set_t *av_ptr)
3455{
3456 expr_t expr;
3457 av_set_iterator si;
3458
3459 /* Don't pipeline already pipelined code as that would increase
3460 number of unnecessary register moves. */
3461 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3462 {
3463 if (EXPR_SCHED_TIMES (expr)
3464 >= param_selsched_max_sched_times)
3465 av_set_iter_remove (&si);
3466 }
3467}
3468
3469/* Filter speculative insns from AV_PTR if we don't want them. */
3470static void
3471process_spec_exprs (av_set_t *av_ptr)
3472{
3473 expr_t expr;
3474 av_set_iterator si;
3475
3476 if (spec_info == NULL)
3477 return;
3478
3479 /* Scan *AV_PTR to find out if we want to consider speculative
3480 instructions for scheduling. */
3481 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 {
3483 ds_t ds;
3484
3485 ds = EXPR_SPEC_DONE_DS (expr);
3486
3487 /* The probability of a success is too low - don't speculate. */
3488 if ((ds & SPECULATIVE)
3489 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3490 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3491 || (pipelining_p && false
3492 && (ds & DATA_SPEC)
3493 && (ds & CONTROL_SPEC))))
3494 {
3495 av_set_iter_remove (&si);
3496 continue;
3497 }
3498 }
3499}
3500
3501/* Search for any use-like insns in AV_PTR and decide on scheduling
3502 them. Return one when found, and NULL otherwise.
3503 Note that we check here whether a USE could be scheduled to avoid
3504 an infinite loop later. */
3505static expr_t
3506process_use_exprs (av_set_t *av_ptr)
3507{
3508 expr_t expr;
3509 av_set_iterator si;
3510 bool uses_present_p = false;
3511 bool try_uses_p = true;
3512
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3514 {
3515 /* This will also initialize INSN_CODE for later use. */
3516 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3517 {
3518 /* If we have a USE in *AV_PTR that was not scheduled yet,
3519 do so because it will do good only. */
3520 if (EXPR_SCHED_TIMES (expr) <= 0)
3521 {
3522 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3523 return expr;
3524
3525 av_set_iter_remove (&si);
3526 }
3527 else
3528 {
3529 gcc_assert (pipelining_p);
3530
3531 uses_present_p = true;
3532 }
3533 }
3534 else
3535 try_uses_p = false;
3536 }
3537
3538 if (uses_present_p)
3539 {
3540 /* If we don't want to schedule any USEs right now and we have some
3541 in *AV_PTR, remove them, else just return the first one found. */
3542 if (!try_uses_p)
3543 {
3544 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3545 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3546 av_set_iter_remove (&si);
3547 }
3548 else
3549 {
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 {
3552 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3553
3554 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3555 return expr;
3556
3557 av_set_iter_remove (&si);
3558 }
3559 }
3560 }
3561
3562 return NULL;
3563}
3564
3565/* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3566 EXPR's history of changes. */
3567static bool
3568vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3569{
3570 vinsn_t vinsn, expr_vinsn;
3571 int n;
3572 unsigned i;
3573
3574 /* Start with checking expr itself and then proceed with all the old forms
3575 of expr taken from its history vector. */
3576 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3577 expr_vinsn;
3578 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3579 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3580 : NULL))
3581 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3582 if (VINSN_SEPARABLE_P (vinsn))
3583 {
3584 if (vinsn_equal_p (vinsn, expr_vinsn))
3585 return true;
3586 }
3587 else
3588 {
3589 /* For non-separable instructions, the blocking insn can have
3590 another pattern due to substitution, and we can't choose
3591 different register as in the above case. Check all registers
3592 being written instead. */
3593 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3594 VINSN_REG_SETS (expr_vinsn)))
3595 return true;
3596 }
3597
3598 return false;
3599}
3600
3601/* Return true if either of expressions from ORIG_OPS can be blocked
3602 by previously created bookkeeping code. STATIC_PARAMS points to static
3603 parameters of move_op. */
3604static bool
3605av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3606{
3607 expr_t expr;
3608 av_set_iterator iter;
3609 moveop_static_params_p sparams;
3610
3611 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3612 created while scheduling on another fence. */
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (vinsn_vec_has_expr_p (vinsn_vec: vec_bookkeeping_blocked_vinsns, expr))
3615 return true;
3616
3617 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3618 sparams = (moveop_static_params_p) static_params;
3619
3620 /* Expressions can be also blocked by bookkeeping created during current
3621 move_op. */
3622 if (bitmap_bit_p (current_copies, INSN_UID (insn: sparams->failed_insn)))
3623 FOR_EACH_EXPR (expr, iter, orig_ops)
3624 if (moveup_expr_cached (expr, insn: sparams->failed_insn, inside_insn_group: false) != MOVEUP_EXPR_NULL)
3625 return true;
3626
3627 /* Expressions in ORIG_OPS may have wrong destination register due to
3628 renaming. Check with the right register instead. */
3629 if (sparams->dest && REG_P (sparams->dest))
3630 {
3631 rtx reg = sparams->dest;
3632 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3633
3634 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3635 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3636 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3637 return true;
3638 }
3639
3640 return false;
3641}
3642
3643/* Clear VINSN_VEC and detach vinsns. */
3644static void
3645vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3646{
3647 unsigned len = vinsn_vec->length ();
3648 if (len > 0)
3649 {
3650 vinsn_t vinsn;
3651 int n;
3652
3653 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3654 vinsn_detach (vinsn);
3655 vinsn_vec->block_remove (ix: 0, len);
3656 }
3657}
3658
3659/* Add the vinsn of EXPR to the VINSN_VEC. */
3660static void
3661vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3662{
3663 vinsn_attach (EXPR_VINSN (expr));
3664 vinsn_vec->safe_push (EXPR_VINSN (expr));
3665}
3666
3667/* Free the vector representing blocked expressions. */
3668static void
3669vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3670{
3671 vinsn_vec.release ();
3672}
3673
3674/* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675
3676void sel_add_to_insn_priority (rtx insn, int amount)
3677{
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679
3680 if (sched_verbose >= 2)
3681 sel_print (fmt: "sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684}
3685
3686/* Turn AV into a vector, filter inappropriate insns and sort it. Return
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
3689 before an expr from AV would become available, write this number to
3690 *PNEED_STALL. */
3691static bool
3692fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693 int *pneed_stall)
3694{
3695 av_set_iterator si;
3696 expr_t expr;
3697 int sched_next_worked = 0, stalled, n;
3698 static int av_max_prio, est_ticks_till_branch;
3699 int min_need_stall = -1;
3700 deps_t dc = BND_DC (BLIST_BND (bnds));
3701
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3704 if (av == NULL)
3705 return false;
3706
3707 /* Empty vector from the previous stuff. */
3708 if (vec_av_set.length () > 0)
3709 vec_av_set.block_remove (ix: 0, len: vec_av_set.length ());
3710
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712 for each insn. */
3713 gcc_assert (vec_av_set.is_empty ());
3714 FOR_EACH_EXPR (expr, si, av)
3715 {
3716 vec_av_set.safe_push (obj: expr);
3717
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr);
3722 }
3723
3724 /* Sort the vector. */
3725 vec_av_set.qsort (sel_rank_for_schedule);
3726
3727 /* We record maximal priority of insns in av set for current instruction
3728 group. */
3729 if (FENCE_STARTS_CYCLE_P (fence))
3730 av_max_prio = est_ticks_till_branch = INT_MIN;
3731
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
3733 visit "best" instructions first. We assume that vec::unordered_remove
3734 moves last element in place of one being deleted. */
3735 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3736 {
3737 expr_t expr = vec_av_set[n];
3738 insn_t insn = EXPR_INSN_RTX (expr);
3739 signed char target_available;
3740 bool is_orig_reg_p = true;
3741 int need_cycles, new_prio;
3742 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3743
3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3745 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3746 {
3747 vec_av_set.unordered_remove (ix: n);
3748 continue;
3749 }
3750
3751 /* Set number of sched_next insns (just in case there
3752 could be several). */
3753 if (FENCE_SCHED_NEXT (fence))
3754 sched_next_worked++;
3755
3756 /* Check all liveness requirements and try renaming.
3757 FIXME: try to minimize calls to this. */
3758 target_available = EXPR_TARGET_AVAILABLE (expr);
3759
3760 /* If insn was already scheduled on the current fence,
3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3762 if (vinsn_vec_has_expr_p (vinsn_vec: vec_target_unavailable_vinsns, expr)
3763 && !fence_insn_p)
3764 target_available = -1;
3765
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vinsn_vec: vec_bookkeeping_blocked_vinsns, expr))
3771 {
3772 vec_av_set.unordered_remove (ix: n);
3773 if (sched_verbose >= 4)
3774 sel_print (fmt: "Expr %d is blocked by bookkeeping inserted earlier\n",
3775 INSN_UID (insn));
3776 continue;
3777 }
3778
3779 if (target_available == true)
3780 {
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3783 }
3784 else if (/* Non-separable instruction will never
3785 get another register. */
3786 (target_available == false
3787 && !EXPR_SEPARABLE_P (expr))
3788 /* Don't try to find a register for low-priority expression. */
3789 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3792 || ! find_best_reg_for_expr (expr, bnds, is_orig_reg_p: &is_orig_reg_p))
3793 {
3794 vec_av_set.unordered_remove (ix: n);
3795 if (sched_verbose >= 4)
3796 sel_print (fmt: "Expr %d has no suitable target register\n",
3797 INSN_UID (insn));
3798
3799 /* A fence insn should not get here. */
3800 gcc_assert (!fence_insn_p);
3801 continue;
3802 }
3803
3804 /* At this point a fence insn should always be available. */
3805 gcc_assert (!fence_insn_p
3806 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3807
3808 /* Filter expressions that need to be renamed or speculated when
3809 pipelining, because compensating register copies or speculation
3810 checks are likely to be placed near the beginning of the loop,
3811 causing a stall. */
3812 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3813 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3814 {
3815 /* Estimation of number of cycles until loop branch for
3816 renaming/speculation to be successful. */
3817 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3818
3819 if ((int) current_loop_nest->ninsns < 9)
3820 {
3821 vec_av_set.unordered_remove (ix: n);
3822 if (sched_verbose >= 4)
3823 sel_print (fmt: "Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827
3828 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3829 < need_n_ticks_till_branch * issue_rate / 2
3830 && est_ticks_till_branch < need_n_ticks_till_branch)
3831 {
3832 vec_av_set.unordered_remove (ix: n);
3833 if (sched_verbose >= 4)
3834 sel_print (fmt: "Pipelining expr %d will likely cause stall\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838 }
3839
3840 /* We want to schedule speculation checks as late as possible. Discard
3841 them from av set if there are instructions with higher priority. */
3842 if (sel_insn_is_speculation_check (insn)
3843 && EXPR_PRIORITY (expr) < av_max_prio)
3844 {
3845 stalled++;
3846 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3847 vec_av_set.unordered_remove (ix: n);
3848 if (sched_verbose >= 4)
3849 sel_print (fmt: "Delaying speculation check %d until its first use\n",
3850 INSN_UID (insn));
3851 continue;
3852 }
3853
3854 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3855 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3856 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3857
3858 /* Don't allow any insns whose data is not yet ready.
3859 Check first whether we've already tried them and failed. */
3860 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3861 {
3862 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3863 - FENCE_CYCLE (fence));
3864 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3865 est_ticks_till_branch = MAX (est_ticks_till_branch,
3866 EXPR_PRIORITY (expr) + need_cycles);
3867
3868 if (need_cycles > 0)
3869 {
3870 stalled++;
3871 min_need_stall = (min_need_stall < 0
3872 ? need_cycles
3873 : MIN (min_need_stall, need_cycles));
3874 vec_av_set.unordered_remove (ix: n);
3875
3876 if (sched_verbose >= 4)
3877 sel_print (fmt: "Expr %d is not ready until cycle %d (cached)\n",
3878 INSN_UID (insn),
3879 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3880 continue;
3881 }
3882 }
3883
3884 /* Now resort to dependence analysis to find whether EXPR might be
3885 stalled due to dependencies from FENCE's context. */
3886 need_cycles = tick_check_p (expr, dc, fence);
3887 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3888
3889 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3890 est_ticks_till_branch = MAX (est_ticks_till_branch,
3891 new_prio);
3892
3893 if (need_cycles > 0)
3894 {
3895 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3896 {
3897 int new_size = INSN_UID (insn) * 3 / 2;
3898
3899 FENCE_READY_TICKS (fence)
3900 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3901 new_size, FENCE_READY_TICKS_SIZE (fence),
3902 sizeof (int));
3903 }
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3905 = FENCE_CYCLE (fence) + need_cycles;
3906
3907 stalled++;
3908 min_need_stall = (min_need_stall < 0
3909 ? need_cycles
3910 : MIN (min_need_stall, need_cycles));
3911
3912 vec_av_set.unordered_remove (ix: n);
3913
3914 if (sched_verbose >= 4)
3915 sel_print (fmt: "Expr %d is not ready yet until cycle %d\n",
3916 INSN_UID (insn),
3917 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3918 continue;
3919 }
3920
3921 if (sched_verbose >= 4)
3922 sel_print (fmt: "Expr %d is ok\n", INSN_UID (insn));
3923 min_need_stall = 0;
3924 }
3925
3926 /* Clear SCHED_NEXT. */
3927 if (FENCE_SCHED_NEXT (fence))
3928 {
3929 gcc_assert (sched_next_worked == 1);
3930 FENCE_SCHED_NEXT (fence) = NULL;
3931 }
3932
3933 /* No need to stall if this variable was not initialized. */
3934 if (min_need_stall < 0)
3935 min_need_stall = 0;
3936
3937 if (vec_av_set.is_empty ())
3938 {
3939 /* We need to set *pneed_stall here, because later we skip this code
3940 when ready list is empty. */
3941 *pneed_stall = min_need_stall;
3942 return false;
3943 }
3944 else
3945 gcc_assert (min_need_stall == 0);
3946
3947 /* Sort the vector. */
3948 vec_av_set.qsort (sel_rank_for_schedule);
3949
3950 if (sched_verbose >= 4)
3951 {
3952 sel_print (fmt: "Total ready exprs: %d, stalled: %d\n",
3953 vec_av_set.length (), stalled);
3954 sel_print (fmt: "Sorted av set (%d): ", vec_av_set.length ());
3955 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3956 dump_expr (expr);
3957 sel_print (fmt: "\n");
3958 }
3959
3960 *pneed_stall = 0;
3961 return true;
3962}
3963
3964/* Convert a vectored and sorted av set to the ready list that
3965 the rest of the backend wants to see. */
3966static void
3967convert_vec_av_set_to_ready (void)
3968{
3969 int n;
3970 expr_t expr;
3971
3972 /* Allocate and fill the ready list from the sorted vector. */
3973 ready.n_ready = vec_av_set.length ();
3974 ready.first = ready.n_ready - 1;
3975
3976 gcc_assert (ready.n_ready > 0);
3977
3978 if (ready.n_ready > max_issue_size)
3979 {
3980 max_issue_size = ready.n_ready;
3981 sched_extend_ready_list (ready.n_ready);
3982 }
3983
3984 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3985 {
3986 vinsn_t vi = EXPR_VINSN (expr);
3987 insn_t insn = VINSN_INSN_RTX (vi);
3988
3989 ready_try[n] = 0;
3990 ready.vec[n] = insn;
3991 }
3992}
3993
3994/* Initialize ready list from *AV_PTR for the max_issue () call.
3995 If any unrecognizable insn found in *AV_PTR, return it (and skip
3996 max_issue). BND and FENCE are current boundary and fence,
3997 respectively. If we need to stall for some cycles before an expr
3998 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3999static expr_t
4000fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4001 int *pneed_stall)
4002{
4003 expr_t expr;
4004
4005 /* We do not support multiple boundaries per fence. */
4006 gcc_assert (BLIST_NEXT (bnds) == NULL);
4007
4008 /* Process expressions required special handling, i.e. pipelined,
4009 speculative and recog() < 0 expressions first. */
4010 process_pipelined_exprs (av_ptr);
4011 process_spec_exprs (av_ptr);
4012
4013 /* A USE could be scheduled immediately. */
4014 expr = process_use_exprs (av_ptr);
4015 if (expr)
4016 {
4017 *pneed_stall = 0;
4018 return expr;
4019 }
4020
4021 /* Turn the av set to a vector for sorting. */
4022 if (! fill_vec_av_set (av: *av_ptr, bnds, fence, pneed_stall))
4023 {
4024 ready.n_ready = 0;
4025 return NULL;
4026 }
4027
4028 /* Build the final ready list. */
4029 convert_vec_av_set_to_ready ();
4030 return NULL;
4031}
4032
4033/* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4034static bool
4035sel_dfa_new_cycle (insn_t insn, fence_t fence)
4036{
4037 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4038 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4039 : FENCE_CYCLE (fence) - 1;
4040 bool res = false;
4041 int sort_p = 0;
4042
4043 if (!targetm.sched.dfa_new_cycle)
4044 return false;
4045
4046 memcpy (dest: curr_state, FENCE_STATE (fence), n: dfa_state_size);
4047
4048 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4049 insn, last_scheduled_cycle,
4050 FENCE_CYCLE (fence), &sort_p))
4051 {
4052 memcpy (FENCE_STATE (fence), src: curr_state, n: dfa_state_size);
4053 advance_one_cycle (fence);
4054 memcpy (dest: curr_state, FENCE_STATE (fence), n: dfa_state_size);
4055 res = true;
4056 }
4057
4058 return res;
4059}
4060
4061/* Invoke reorder* target hooks on the ready list. Return the number of insns
4062 we can issue. FENCE is the current fence. */
4063static int
4064invoke_reorder_hooks (fence_t fence)
4065{
4066 int issue_more;
4067 bool ran_hook = false;
4068
4069 /* Call the reorder hook at the beginning of the cycle, and call
4070 the reorder2 hook in the middle of the cycle. */
4071 if (FENCE_ISSUED_INSNS (fence) == 0)
4072 {
4073 if (targetm.sched.reorder
4074 && !SCHED_GROUP_P (ready_element (&ready, 0))
4075 && ready.n_ready > 1)
4076 {
4077 /* Don't give reorder the most prioritized insn as it can break
4078 pipelining. */
4079 if (pipelining_p)
4080 --ready.n_ready;
4081
4082 issue_more
4083 = targetm.sched.reorder (sched_dump, sched_verbose,
4084 ready_lastpos (&ready),
4085 &ready.n_ready, FENCE_CYCLE (fence));
4086
4087 if (pipelining_p)
4088 ++ready.n_ready;
4089
4090 ran_hook = true;
4091 }
4092 else
4093 /* Initialize can_issue_more for variable_issue. */
4094 issue_more = issue_rate;
4095 }
4096 else if (targetm.sched.reorder2
4097 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4098 {
4099 if (ready.n_ready == 1)
4100 issue_more =
4101 targetm.sched.reorder2 (sched_dump, sched_verbose,
4102 ready_lastpos (&ready),
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104 else
4105 {
4106 if (pipelining_p)
4107 --ready.n_ready;
4108
4109 issue_more =
4110 targetm.sched.reorder2 (sched_dump, sched_verbose,
4111 ready.n_ready
4112 ? ready_lastpos (&ready) : NULL,
4113 &ready.n_ready, FENCE_CYCLE (fence));
4114
4115 if (pipelining_p)
4116 ++ready.n_ready;
4117 }
4118
4119 ran_hook = true;
4120 }
4121 else
4122 issue_more = FENCE_ISSUE_MORE (fence);
4123
4124 /* Ensure that ready list and vec_av_set are in line with each other,
4125 i.e. vec_av_set[i] == ready_element (&ready, i). */
4126 if (issue_more && ran_hook)
4127 {
4128 int i, j, n;
4129 rtx_insn **arr = ready.vec;
4130 expr_t *vec = vec_av_set.address ();
4131
4132 for (i = 0, n = ready.n_ready; i < n; i++)
4133 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4134 {
4135 for (j = i; j < n; j++)
4136 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4137 break;
4138 gcc_assert (j < n);
4139
4140 std::swap (a&: vec[i], b&: vec[j]);
4141 }
4142 }
4143
4144 return issue_more;
4145}
4146
4147/* Return an EXPR corresponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151static inline expr_t
4152find_expr_for_ready (int index, bool follow_ready_element)
4153{
4154 expr_t expr;
4155 int real_index;
4156
4157 real_index = follow_ready_element ? ready.first - index : index;
4158
4159 expr = vec_av_set[real_index];
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4161
4162 return expr;
4163}
4164
4165/* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167static int
4168invoke_dfa_lookahead_guard (void)
4169{
4170 int i, n;
4171 bool have_hook
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4173
4174 if (sched_verbose >= 2)
4175 sel_print (fmt: "ready after reorder: ");
4176
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4178 {
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4182
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
4186
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4190 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4191
4192 gcc_assert (INSN_CODE (insn) >= 0);
4193
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4200
4201 expr = find_expr_for_ready (index: i, follow_ready_element: true);
4202
4203 if (sched_verbose >= 2)
4204 {
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (fmt: ":%d; ", ready_try[i]);
4207 }
4208 }
4209
4210 if (sched_verbose >= 2)
4211 sel_print (fmt: "\n");
4212 return n;
4213}
4214
4215/* Calculate the number of privileged insns and return it. */
4216static int
4217calculate_privileged_insns (void)
4218{
4219 expr_t cur_expr, min_spec_expr = NULL;
4220 int privileged_n = 0, i;
4221
4222 for (i = 0; i < ready.n_ready; i++)
4223 {
4224 if (ready_try[i])
4225 continue;
4226
4227 if (! min_spec_expr)
4228 min_spec_expr = find_expr_for_ready (index: i, follow_ready_element: true);
4229
4230 cur_expr = find_expr_for_ready (index: i, follow_ready_element: true);
4231
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4234
4235 ++privileged_n;
4236 }
4237
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4240
4241 if (sched_verbose >= 2)
4242 sel_print (fmt: "privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4245}
4246
4247/* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251static int
4252invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4253{
4254 gcc_assert (INSN_P (best_insn));
4255
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (insn: best_insn, fence);
4258
4259 if (targetm.sched.variable_issue)
4260 {
4261 memcpy (dest: curr_state, FENCE_STATE (fence), n: dfa_state_size);
4262 issue_more =
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), src: curr_state, n: dfa_state_size);
4266 }
4267 else if (!DEBUG_INSN_P (best_insn)
4268 && GET_CODE (PATTERN (best_insn)) != USE
4269 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4270 issue_more--;
4271
4272 return issue_more;
4273}
4274
4275/* Estimate the cost of issuing INSN on DFA state STATE. */
4276static int
4277estimate_insn_cost (rtx_insn *insn, state_t state)
4278{
4279 static state_t temp = NULL;
4280 int cost;
4281
4282 if (!temp)
4283 temp = xmalloc (dfa_state_size);
4284
4285 memcpy (dest: temp, src: state, n: dfa_state_size);
4286 cost = state_transition (temp, insn);
4287
4288 if (cost < 0)
4289 return 0;
4290 else if (cost == 0)
4291 return 1;
4292 return cost;
4293}
4294
4295/* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4296 This function properly handles ASMs, USEs etc. */
4297static int
4298get_expr_cost (expr_t expr, fence_t fence)
4299{
4300 rtx_insn *insn = EXPR_INSN_RTX (expr);
4301
4302 if (recog_memoized (insn) < 0)
4303 {
4304 if (!FENCE_STARTS_CYCLE_P (fence)
4305 && INSN_ASM_P (insn))
4306 /* This is asm insn which is tryed to be issued on the
4307 cycle not first. Issue it on the next cycle. */
4308 return 1;
4309 else
4310 /* A USE insn, or something else we don't need to
4311 understand. We can't pass these directly to
4312 state_transition because it will trigger a
4313 fatal error for unrecognizable insns. */
4314 return 0;
4315 }
4316 else
4317 return estimate_insn_cost (insn, FENCE_STATE (fence));
4318}
4319
4320/* Find the best insn for scheduling, either via max_issue or just take
4321 the most prioritized available. */
4322static int
4323choose_best_insn (fence_t fence, int privileged_n, int *index)
4324{
4325 int can_issue = 0;
4326
4327 if (dfa_lookahead > 0)
4328 {
4329 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4330 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4331 can_issue = max_issue (&ready, privileged_n,
4332 FENCE_STATE (fence), true, index);
4333 if (sched_verbose >= 2)
4334 sel_print (fmt: "max_issue: we can issue %d insns, already did %d insns\n",
4335 can_issue, FENCE_ISSUED_INSNS (fence));
4336 }
4337 else
4338 {
4339 /* We can't use max_issue; just return the first available element. */
4340 int i;
4341
4342 for (i = 0; i < ready.n_ready; i++)
4343 {
4344 expr_t expr = find_expr_for_ready (index: i, follow_ready_element: true);
4345
4346 if (get_expr_cost (expr, fence) < 1)
4347 {
4348 can_issue = can_issue_more;
4349 *index = i;
4350
4351 if (sched_verbose >= 2)
4352 sel_print (fmt: "using %dth insn from the ready list\n", i + 1);
4353
4354 break;
4355 }
4356 }
4357
4358 if (i == ready.n_ready)
4359 {
4360 can_issue = 0;
4361 *index = -1;
4362 }
4363 }
4364
4365 return can_issue;
4366}
4367
4368/* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4369 BNDS and FENCE are current boundaries and scheduling fence respectively.
4370 Return the expr found and NULL if nothing can be issued atm.
4371 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4372static expr_t
4373find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4374 int *pneed_stall)
4375{
4376 expr_t best;
4377
4378 /* Choose the best insn for scheduling via:
4379 1) sorting the ready list based on priority;
4380 2) calling the reorder hook;
4381 3) calling max_issue. */
4382 best = fill_ready_list (av_ptr: av_vliw_ptr, bnds, fence, pneed_stall);
4383 if (best == NULL && ready.n_ready > 0)
4384 {
4385 int privileged_n, index;
4386
4387 can_issue_more = invoke_reorder_hooks (fence);
4388 if (can_issue_more > 0)
4389 {
4390 /* Try choosing the best insn until we find one that is could be
4391 scheduled due to liveness restrictions on its destination register.
4392 In the future, we'd like to choose once and then just probe insns
4393 in the order of their priority. */
4394 invoke_dfa_lookahead_guard ();
4395 privileged_n = calculate_privileged_insns ();
4396 can_issue_more = choose_best_insn (fence, privileged_n, index: &index);
4397 if (can_issue_more)
4398 best = find_expr_for_ready (index, follow_ready_element: true);
4399 }
4400 /* We had some available insns, so if we can't issue them,
4401 we have a stall. */
4402 if (can_issue_more == 0)
4403 {
4404 best = NULL;
4405 *pneed_stall = 1;
4406 }
4407 }
4408
4409 if (best != NULL)
4410 {
4411 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4412 issue_more: can_issue_more);
4413 if (targetm.sched.variable_issue
4414 && can_issue_more == 0)
4415 *pneed_stall = 1;
4416 }
4417
4418 if (sched_verbose >= 2)
4419 {
4420 if (best != NULL)
4421 {
4422 sel_print (fmt: "Best expression (vliw form): ");
4423 dump_expr (best);
4424 sel_print (fmt: "; cycle %d\n", FENCE_CYCLE (fence));
4425 }
4426 else
4427 sel_print (fmt: "No best expr found!\n");
4428 }
4429
4430 return best;
4431}
4432
4433
4434/* Functions that implement the core of the scheduler. */
4435
4436
4437/* Emit an instruction from EXPR with SEQNO and VINSN after
4438 PLACE_TO_INSERT. */
4439static insn_t
4440emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4441 insn_t place_to_insert)
4442{
4443 /* This assert fails when we have identical instructions
4444 one of which dominates the other. In this case move_op ()
4445 finds the first instruction and doesn't search for second one.
4446 The solution would be to compute av_set after the first found
4447 insn and, if insn present in that set, continue searching.
4448 For now we workaround this issue in move_op. */
4449 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4450
4451 if (EXPR_WAS_RENAMED (expr))
4452 {
4453 unsigned regno = expr_dest_regno (expr);
4454
4455 if (HARD_REGISTER_NUM_P (regno))
4456 {
4457 df_set_regs_ever_live (regno, true);
4458 reg_rename_tick[regno] = ++reg_rename_this_tick;
4459 }
4460 }
4461
4462 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4463 place_to_insert);
4464}
4465
4466/* Return TRUE if BB can hold bookkeeping code. */
4467static bool
4468block_valid_for_bookkeeping_p (basic_block bb)
4469{
4470 insn_t bb_end = BB_END (bb);
4471
4472 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4473 return false;
4474
4475 if (INSN_P (bb_end))
4476 {
4477 if (INSN_SCHED_TIMES (bb_end) > 0)
4478 return false;
4479 }
4480 else
4481 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4482
4483 return true;
4484}
4485
4486/* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4487 into E2->dest, except from E1->src (there may be a sequence of empty basic
4488 blocks between E1->src and E2->dest). Return found block, or NULL if new
4489 one must be created. If LAX holds, don't assume there is a simple path
4490 from E1->src to E2->dest. */
4491static basic_block
4492find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4493{
4494 basic_block candidate_block = NULL;
4495 edge e;
4496
4497 /* Loop over edges from E1 to E2, inclusive. */
4498 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4499 EDGE_SUCC (e->dest, 0))
4500 {
4501 if (EDGE_COUNT (e->dest->preds) == 2)
4502 {
4503 if (candidate_block == NULL)
4504 candidate_block = (EDGE_PRED (e->dest, 0) == e
4505 ? EDGE_PRED (e->dest, 1)->src
4506 : EDGE_PRED (e->dest, 0)->src);
4507 else
4508 /* Found additional edge leading to path from e1 to e2
4509 from aside. */
4510 return NULL;
4511 }
4512 else if (EDGE_COUNT (e->dest->preds) > 2)
4513 /* Several edges leading to path from e1 to e2 from aside. */
4514 return NULL;
4515
4516 if (e == e2)
4517 return ((!lax || candidate_block)
4518 && block_valid_for_bookkeeping_p (bb: candidate_block)
4519 ? candidate_block
4520 : NULL);
4521
4522 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4523 return NULL;
4524 }
4525
4526 if (lax)
4527 return NULL;
4528
4529 gcc_unreachable ();
4530}
4531
4532/* Create new basic block for bookkeeping code for path(s) incoming into
4533 E2->dest, except from E1->src. Return created block. */
4534static basic_block
4535create_block_for_bookkeeping (edge e1, edge e2)
4536{
4537 basic_block new_bb, bb = e2->dest;
4538
4539 /* Check that we don't spoil the loop structure. */
4540 if (current_loop_nest)
4541 {
4542 basic_block latch = current_loop_nest->latch;
4543
4544 /* We do not split header. */
4545 gcc_assert (e2->dest != current_loop_nest->header);
4546
4547 /* We do not redirect the only edge to the latch block. */
4548 gcc_assert (e1->dest != latch
4549 || !single_pred_p (latch)
4550 || e1 != single_pred_edge (latch));
4551 }
4552
4553 /* Split BB to insert BOOK_INSN there. */
4554 new_bb = sched_split_block (bb, NULL);
4555
4556 /* Move note_list from the upper bb. */
4557 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4558 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4559 BB_NOTE_LIST (bb) = NULL;
4560
4561 gcc_assert (e2->dest == bb);
4562
4563 /* Skip block for bookkeeping copy when leaving E1->src. */
4564 if (e1->flags & EDGE_FALLTHRU)
4565 sel_redirect_edge_and_branch_force (e1, new_bb);
4566 else
4567 sel_redirect_edge_and_branch (e1, new_bb);
4568
4569 gcc_assert (e1->dest == new_bb);
4570 gcc_assert (sel_bb_empty_p (bb));
4571
4572 /* To keep basic block numbers in sync between debug and non-debug
4573 compilations, we have to rotate blocks here. Consider that we
4574 started from (a,b)->d, (c,d)->e, and d contained only debug
4575 insns. It would have been removed before if the debug insns
4576 weren't there, so we'd have split e rather than d. So what we do
4577 now is to swap the block numbers of new_bb and
4578 single_succ(new_bb) == e, so that the insns that were in e before
4579 get the new block number. */
4580
4581 if (MAY_HAVE_DEBUG_INSNS)
4582 {
4583 basic_block succ;
4584 insn_t insn = sel_bb_head (new_bb);
4585 insn_t last;
4586
4587 if (DEBUG_INSN_P (insn)
4588 && single_succ_p (bb: new_bb)
4589 && (succ = single_succ (bb: new_bb))
4590 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4591 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4592 {
4593 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4594 insn = NEXT_INSN (insn);
4595
4596 if (insn == last)
4597 {
4598 sel_global_bb_info_def gbi;
4599 sel_region_bb_info_def rbi;
4600
4601 if (sched_verbose >= 2)
4602 sel_print (fmt: "Swapping block ids %i and %i\n",
4603 new_bb->index, succ->index);
4604
4605 std::swap (a&: new_bb->index, b&: succ->index);
4606
4607 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4608 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4609
4610 memcpy (dest: &gbi, SEL_GLOBAL_BB_INFO (new_bb), n: sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4612 n: sizeof (gbi));
4613 memcpy (SEL_GLOBAL_BB_INFO (succ), src: &gbi, n: sizeof (gbi));
4614
4615 memcpy (dest: &rbi, SEL_REGION_BB_INFO (new_bb), n: sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4617 n: sizeof (rbi));
4618 memcpy (SEL_REGION_BB_INFO (succ), src: &rbi, n: sizeof (rbi));
4619
4620 std::swap (BLOCK_TO_BB (new_bb->index),
4621 BLOCK_TO_BB (succ->index));
4622
4623 std::swap (CONTAINING_RGN (new_bb->index),
4624 CONTAINING_RGN (succ->index));
4625
4626 for (int i = 0; i < current_nr_blocks; i++)
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4631
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4645
4646 if (sched_verbose >= 4)
4647 sel_print (fmt: "Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650
4651 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4653 }
4654 }
4655 }
4656
4657 return bb;
4658}
4659
4660/* Return insn after which we must insert bookkeeping code for path(s) incoming
4661 into E2->dest, except from E1->src. If the returned insn immediately
4662 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4663static insn_t
4664find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4665{
4666 insn_t place_to_insert;
4667 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4668 create new basic block, but insert bookkeeping there. */
4669 basic_block book_block = find_block_for_bookkeeping (e1, e2, lax: false);
4670
4671 if (book_block)
4672 {
4673 place_to_insert = BB_END (book_block);
4674
4675 /* Don't use a block containing only debug insns for
4676 bookkeeping, this causes scheduling differences between debug
4677 and non-debug compilations, for the block would have been
4678 removed already. */
4679 if (DEBUG_INSN_P (place_to_insert))
4680 {
4681 rtx_insn *insn = sel_bb_head (book_block);
4682
4683 while (insn != place_to_insert &&
4684 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4685 insn = NEXT_INSN (insn);
4686
4687 if (insn == place_to_insert)
4688 book_block = NULL;
4689 }
4690 }
4691
4692 if (!book_block)
4693 {
4694 book_block = create_block_for_bookkeeping (e1, e2);
4695 place_to_insert = BB_END (book_block);
4696 if (sched_verbose >= 9)
4697 sel_print (fmt: "New block is %i, split from bookkeeping block %i\n",
4698 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4699 }
4700 else
4701 {
4702 if (sched_verbose >= 9)
4703 sel_print (fmt: "Pre-existing bookkeeping block is %i\n", book_block->index);
4704 }
4705
4706 *fence_to_rewind = NULL;
4707 /* If basic block ends with a jump, insert bookkeeping code right before it.
4708 Notice if we are crossing a fence when taking PREV_INSN. */
4709 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4710 {
4711 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4712 place_to_insert = PREV_INSN (insn: place_to_insert);
4713 }
4714
4715 return place_to_insert;
4716}
4717
4718/* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4719 for JOIN_POINT. */
4720static int
4721find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4722{
4723 int seqno;
4724
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 rtx_insn *next = NEXT_INSN (insn: place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (insn: next) == BLOCK_FOR_INSN (insn: place_to_insert))
4731 {
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4734 }
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4738 {
4739 seqno = get_seqno_by_preds (place_to_insert);
4740
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4747 {
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4750 }
4751 }
4752
4753 gcc_assert (seqno > 0);
4754 return seqno;
4755}
4756
4757/* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759static insn_t
4760emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761{
4762 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767
4768 insn_t new_insn = emit_insn_from_expr_after (expr: c_expr, vinsn: new_vinsn, seqno: new_seqno,
4769 place_to_insert);
4770
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (insn: new_insn));
4773
4774 return new_insn;
4775}
4776
4777/* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781static basic_block
4782generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783{
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4787 fence_t fence_to_rewind;
4788
4789 if (sched_verbose >= 4)
4790 sel_print (fmt: "Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4792
4793 join_point = sel_bb_head (e2->dest);
4794 place_to_insert = find_place_for_bookkeeping (e1, e2, fence_to_rewind: &fence_to_rewind);
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (insn: place_to_insert));
4798
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4803
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (insn: new_insn),
4814 BLOCK_FOR_INSN (insn: join_point));
4815
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (insn: new_insn);
4818}
4819
4820/* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4821 on FENCE, but we are unable to copy them. */
4822static void
4823remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4824{
4825 expr_t expr;
4826 av_set_iterator i;
4827
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
4833 any path, EXPR_SPEC will be positive). */
4834
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4836 {
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
4842 BASIC_BLOCK_FOR_FN (cfun,
4843 EXPR_ORIG_BB_INDEX (expr)),
4844 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4845 {
4846 if (sched_verbose >= 4)
4847 sel_print (fmt: "Expr %d removed because it would need bookkeeping, which "
4848 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4849 av_set_iter_remove (&i);
4850 }
4851 }
4852}
4853
4854/* Moving conditional jump through some instructions.
4855
4856 Consider example:
4857
4858 ... <- current scheduling point
4859 NOTE BASIC BLOCK: <- bb header
4860 (p8) add r14=r14+0x9;;
4861 (p8) mov [r14]=r23
4862 (!p8) jump L1;;
4863 NOTE BASIC BLOCK:
4864 ...
4865
4866 We can schedule jump one cycle earlier, than mov, because they cannot be
4867 executed together as their predicates are mutually exclusive.
4868
4869 This is done in this way: first, new fallthrough basic block is created
4870 after jump (it is always can be done, because there already should be a
4871 fallthrough block, where control flow goes in case of predicate being true -
4872 in our example; otherwise there should be a dependence between those
4873 instructions and jump and we cannot schedule jump right now);
4874 next, all instructions between jump and current scheduling point are moved
4875 to this new block. And the result is this:
4876
4877 NOTE BASIC BLOCK:
4878 (!p8) jump L1 <- current scheduling point
4879 NOTE BASIC BLOCK: <- bb header
4880 (p8) add r14=r14+0x9;;
4881 (p8) mov [r14]=r23
4882 NOTE BASIC BLOCK:
4883 ...
4884*/
4885static void
4886move_cond_jump (rtx_insn *insn, bnd_t bnd)
4887{
4888 edge ft_edge;
4889 basic_block block_from, block_next, block_new, block_bnd, bb;
4890 rtx_insn *next, *prev, *link, *head;
4891
4892 block_from = BLOCK_FOR_INSN (insn);
4893 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4894 prev = BND_TO (bnd);
4895
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (flag_checking && block_from != block_bnd)
4900 {
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (insn: prev);
4903 link = PREV_INSN (insn: link))
4904 {
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (insn: link) && BLOCK_FOR_INSN (insn: link) != bb)
4908 {
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (insn: link);
4911 }
4912 }
4913 }
4914
4915 /* Jump is moved to the boundary. */
4916 next = PREV_INSN (insn);
4917 BND_TO (bnd) = insn;
4918
4919 ft_edge = find_fallthru_edge_from (block_from);
4920 block_next = ft_edge->dest;
4921 /* There must be a fallthrough block (or where should go
4922 control flow in case of false jump predicate otherwise?). */
4923 gcc_assert (block_next);
4924
4925 /* Create new empty basic block after source block. */
4926 block_new = sel_split_edge (ft_edge);
4927 gcc_assert (block_new->next_bb == block_next
4928 && block_from->next_bb == block_new);
4929
4930 /* Move all instructions except INSN to BLOCK_NEW. */
4931 bb = block_bnd;
4932 head = BB_HEAD (block_new);
4933 while (bb != block_from->next_bb)
4934 {
4935 rtx_insn *from, *to;
4936 from = bb == block_bnd ? prev : sel_bb_head (bb);
4937 to = bb == block_from ? next : sel_bb_end (bb);
4938
4939 /* The jump being moved can be the first insn in the block.
4940 In this case we don't have to move anything in this block. */
4941 if (NEXT_INSN (insn: to) != from)
4942 {
4943 reorder_insns (from, to, head);
4944
4945 for (link = to; link != head; link = PREV_INSN (insn: link))
4946 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4947 head = to;
4948 }
4949
4950 /* Cleanup possibly empty blocks left. */
4951 block_next = bb->next_bb;
4952 if (bb != block_from)
4953 tidy_control_flow (bb, false);
4954 bb = block_next;
4955 }
4956
4957 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4958 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4959
4960 gcc_assert (!sel_bb_empty_p (block_from)
4961 && !sel_bb_empty_p (block_new));
4962
4963 /* Update data sets for BLOCK_NEW to represent that INSN and
4964 instructions from the other branch of INSN is no longer
4965 available at BLOCK_NEW. */
4966 BB_AV_LEVEL (block_new) = global_level;
4967 gcc_assert (BB_LV_SET (block_new) == NULL);
4968 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4969 update_data_sets (insn: sel_bb_head (block_new));
4970
4971 /* INSN is a new basic block header - so prepare its data
4972 structures and update availability and liveness sets. */
4973 update_data_sets (insn);
4974
4975 if (sched_verbose >= 4)
4976 sel_print (fmt: "Moving jump %d\n", INSN_UID (insn));
4977}
4978
4979/* Remove nops generated during move_op for preventing removal of empty
4980 basic blocks. */
4981static void
4982remove_temp_moveop_nops (bool full_tidying)
4983{
4984 int i;
4985 insn_t insn;
4986
4987 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4988 {
4989 gcc_assert (INSN_NOP_P (insn));
4990 return_nop_to_pool (insn, full_tidying);
4991 }
4992
4993 /* Empty the vector. */
4994 if (vec_temp_moveop_nops.length () > 0)
4995 vec_temp_moveop_nops.block_remove (ix: 0, len: vec_temp_moveop_nops.length ());
4996}
4997
4998/* Records the maximal UID before moving up an instruction. Used for
4999 distinguishing between bookkeeping copies and original insns. */
5000static int max_uid_before_move_op = 0;
5001
5002/* When true, we're always scheduling next insn on the already scheduled code
5003 to get the right insn data for the following bundling or other passes. */
5004static int force_next_insn = 0;
5005
5006/* Remove from AV_VLIW_P all instructions but next when debug counter
5007 tells us so. Next instruction is fetched from BNDS. */
5008static void
5009remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5010{
5011 if (! dbg_cnt (index: sel_sched_insn_cnt) || force_next_insn)
5012 /* Leave only the next insn in av_vliw. */
5013 {
5014 av_set_iterator av_it;
5015 expr_t expr;
5016 bnd_t bnd = BLIST_BND (bnds);
5017 insn_t next = BND_TO (bnd);
5018
5019 gcc_assert (BLIST_NEXT (bnds) == NULL);
5020
5021 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5022 if (EXPR_INSN_RTX (expr) != next)
5023 av_set_iter_remove (&av_it);
5024 }
5025}
5026
5027/* Compute available instructions on BNDS. FENCE is the current fence. Write
5028 the computed set to *AV_VLIW_P. */
5029static void
5030compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5031{
5032 if (sched_verbose >= 2)
5033 {
5034 sel_print (fmt: "Boundaries: ");
5035 dump_blist (bnds);
5036 sel_print (fmt: "\n");
5037 }
5038
5039 for (; bnds; bnds = BLIST_NEXT (bnds))
5040 {
5041 bnd_t bnd = BLIST_BND (bnds);
5042 av_set_t av1_copy;
5043 insn_t bnd_to = BND_TO (bnd);
5044
5045 /* Rewind BND->TO to the basic block header in case some bookkeeping
5046 instructions were inserted before BND->TO and it needs to be
5047 adjusted. */
5048 if (sel_bb_head_p (bnd_to))
5049 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5050 else
5051 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5052 {
5053 bnd_to = PREV_INSN (insn: bnd_to);
5054 if (sel_bb_head_p (bnd_to))
5055 break;
5056 }
5057
5058 if (BND_TO (bnd) != bnd_to)
5059 {
5060 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5061 FENCE_INSN (fence) = bnd_to;
5062 BND_TO (bnd) = bnd_to;
5063 }
5064
5065 av_set_clear (&BND_AV (bnd));
5066 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, ws: 0, unique_p: true);
5067
5068 av_set_clear (&BND_AV1 (bnd));
5069 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5070
5071 moveup_set_inside_insn_group (avp: &BND_AV1 (bnd), NULL);
5072
5073 av1_copy = av_set_copy (BND_AV1 (bnd));
5074 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5075 }
5076
5077 if (sched_verbose >= 2)
5078 {
5079 sel_print (fmt: "Available exprs (vliw form): ");
5080 dump_av_set (*av_vliw_p);
5081 sel_print (fmt: "\n");
5082 }
5083}
5084
5085/* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5086 expression. When FOR_MOVEOP is true, also replace the register of
5087 expressions found with the register from EXPR_VLIW. */
5088static av_set_t
5089find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5090{
5091 av_set_t expr_seq = NULL;
5092 expr_t expr;
5093 av_set_iterator i;
5094
5095 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5096 {
5097 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5098 {
5099 if (for_moveop)
5100 {
5101 /* The sequential expression has the right form to pass
5102 to move_op except when renaming happened. Put the
5103 correct register in EXPR then. */
5104 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5105 {
5106 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5107 {
5108 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5109 stat_renamed_scheduled++;
5110 }
5111 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5112 This is needed when renaming came up with original
5113 register. */
5114 else if (EXPR_TARGET_AVAILABLE (expr)
5115 != EXPR_TARGET_AVAILABLE (expr_vliw))
5116 {
5117 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5118 EXPR_TARGET_AVAILABLE (expr) = 1;
5119 }
5120 }
5121 if (EXPR_WAS_SUBSTITUTED (expr))
5122 stat_substitutions_total++;
5123 }
5124
5125 av_set_add (&expr_seq, expr);
5126
5127 /* With substitution inside insn group, it is possible
5128 that more than one expression in expr_seq will correspond
5129 to expr_vliw. In this case, choose one as the attempt to
5130 move both leads to miscompiles. */
5131 break;
5132 }
5133 }
5134
5135 if (for_moveop && sched_verbose >= 2)
5136 {
5137 sel_print (fmt: "Best expression(s) (sequential form): ");
5138 dump_av_set (expr_seq);
5139 sel_print (fmt: "\n");
5140 }
5141
5142 return expr_seq;
5143}
5144
5145
5146/* Move nop to previous block. */
5147static void ATTRIBUTE_UNUSED
5148move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5149{
5150 insn_t prev_insn, next_insn;
5151
5152 gcc_assert (sel_bb_head_p (nop)
5153 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5154 rtx_note *note = bb_note (BLOCK_FOR_INSN (insn: nop));
5155 prev_insn = sel_bb_end (prev_bb);
5156 next_insn = NEXT_INSN (insn: nop);
5157 gcc_assert (prev_insn != NULL_RTX
5158 && PREV_INSN (note) == prev_insn);
5159
5160 SET_NEXT_INSN (prev_insn) = nop;
5161 SET_PREV_INSN (nop) = prev_insn;
5162
5163 SET_PREV_INSN (note) = nop;
5164 SET_NEXT_INSN (note) = next_insn;
5165
5166 SET_NEXT_INSN (nop) = note;
5167 SET_PREV_INSN (next_insn) = note;
5168
5169 BB_END (prev_bb) = nop;
5170 BLOCK_FOR_INSN (insn: nop) = prev_bb;
5171}
5172
5173/* Prepare a place to insert the chosen expression on BND. */
5174static insn_t
5175prepare_place_to_insert (bnd_t bnd)
5176{
5177 insn_t place_to_insert;
5178
5179 /* Init place_to_insert before calling move_op, as the later
5180 can possibly remove BND_TO (bnd). */
5181 if (/* If this is not the first insn scheduled. */
5182 BND_PTR (bnd))
5183 {
5184 /* Add it after last scheduled. */
5185 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5186 if (DEBUG_INSN_P (place_to_insert))
5187 {
5188 ilist_t l = BND_PTR (bnd);
5189 while ((l = ILIST_NEXT (l)) &&
5190 DEBUG_INSN_P (ILIST_INSN (l)))
5191 ;
5192 if (!l)
5193 place_to_insert = NULL;
5194 }
5195 }
5196 else
5197 place_to_insert = NULL;
5198
5199 if (!place_to_insert)
5200 {
5201 /* Add it before BND_TO. The difference is in the
5202 basic block, where INSN will be added. */
5203 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5204 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5205 == BLOCK_FOR_INSN (BND_TO (bnd)));
5206 }
5207
5208 return place_to_insert;
5209}
5210
5211/* Find original instructions for EXPR_SEQ and move it to BND boundary.
5212 Return the expression to emit in C_EXPR. */
5213static bool
5214move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5215 av_set_t expr_seq, expr_t c_expr)
5216{
5217 bool b, should_move;
5218 unsigned book_uid;
5219 bitmap_iterator bi;
5220 int n_bookkeeping_copies_before_moveop;
5221
5222 /* Make a move. This call will remove the original operation,
5223 insert all necessary bookkeeping instructions and update the
5224 data sets. After that all we have to do is add the operation
5225 at before BND_TO (BND). */
5226 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5227 max_uid_before_move_op = get_max_uid ();
5228 bitmap_clear (current_copies);
5229 bitmap_clear (current_originators);
5230
5231 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5232 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5233
5234 /* We should be able to find the expression we've chosen for
5235 scheduling. */
5236 gcc_assert (b);
5237
5238 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5239 stat_insns_needed_bookkeeping++;
5240
5241 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5242 {
5243 unsigned uid;
5244 bitmap_iterator bi;
5245
5246 /* We allocate these bitmaps lazily. */
5247 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5248 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5249
5250 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5251 current_originators);
5252
5253 /* Transitively add all originators' originators. */
5254 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5255 if (INSN_ORIGINATORS_BY_UID (uid))
5256 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5257 INSN_ORIGINATORS_BY_UID (uid));
5258 }
5259
5260 return should_move;
5261}
5262
5263
5264/* Debug a DFA state as an array of bytes. */
5265static void
5266debug_state (state_t state)
5267{
5268 unsigned char *p;
5269 unsigned int i, size = dfa_state_size;
5270
5271 sel_print (fmt: "state (%u):", size);
5272 for (i = 0, p = (unsigned char *) state; i < size; i++)
5273 sel_print (fmt: " %d", p[i]);
5274 sel_print (fmt: "\n");
5275}
5276
5277/* Advance state on FENCE with INSN. Return true if INSN is
5278 an ASM, and we should advance state once more. */
5279static bool
5280advance_state_on_fence (fence_t fence, insn_t insn)
5281{
5282 bool asm_p;
5283
5284 if (recog_memoized (insn) >= 0)
5285 {
5286 int res;
5287 state_t temp_state = alloca (dfa_state_size);
5288
5289 gcc_assert (!INSN_ASM_P (insn));
5290 asm_p = false;
5291
5292 memcpy (dest: temp_state, FENCE_STATE (fence), n: dfa_state_size);
5293 res = state_transition (FENCE_STATE (fence), insn);
5294 gcc_assert (res < 0);
5295
5296 if (memcmp (s1: temp_state, FENCE_STATE (fence), n: dfa_state_size))
5297 {
5298 FENCE_ISSUED_INSNS (fence)++;
5299
5300 /* We should never issue more than issue_rate insns. */
5301 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5302 gcc_unreachable ();
5303 }
5304 }
5305 else
5306 {
5307 /* This could be an ASM insn which we'd like to schedule
5308 on the next cycle. */
5309 asm_p = INSN_ASM_P (insn);
5310 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5311 advance_one_cycle (fence);
5312 }
5313
5314 if (sched_verbose >= 2)
5315 debug_state (FENCE_STATE (fence));
5316 if (!DEBUG_INSN_P (insn))
5317 FENCE_STARTS_CYCLE_P (fence) = 0;
5318 FENCE_ISSUE_MORE (fence) = can_issue_more;
5319 return asm_p;
5320}
5321
5322/* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5323 is nonzero if we need to stall after issuing INSN. */
5324static void
5325update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5326{
5327 bool asm_p;
5328
5329 /* First, reflect that something is scheduled on this fence. */
5330 asm_p = advance_state_on_fence (fence, insn);
5331 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5332 vec_safe_push (FENCE_EXECUTING_INSNS (fence), obj: insn);
5333 if (SCHED_GROUP_P (insn))
5334 {
5335 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5336 SCHED_GROUP_P (insn) = 0;
5337 }
5338 else
5339 FENCE_SCHED_NEXT (fence) = NULL;
5340 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5341 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5342
5343 /* Set instruction scheduling info. This will be used in bundling,
5344 pipelining, tick computations etc. */
5345 ++INSN_SCHED_TIMES (insn);
5346 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5347 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5348 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5349 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5350
5351 /* This does not account for adjust_cost hooks, just add the biggest
5352 constant the hook may add to the latency. TODO: make this
5353 a target dependent constant. */
5354 INSN_READY_CYCLE (insn)
5355 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5356 ? 1
5357 : maximal_insn_latency (insn) + 1);
5358
5359 /* Change these fields last, as they're used above. */
5360 FENCE_AFTER_STALL_P (fence) = 0;
5361 if (asm_p || need_stall)
5362 advance_one_cycle (fence);
5363
5364 /* Indicate that we've scheduled something on this fence. */
5365 FENCE_SCHEDULED_P (fence) = true;
5366 scheduled_something_on_previous_fence = true;
5367
5368 /* Print debug information when insn's fields are updated. */
5369 if (sched_verbose >= 2)
5370 {
5371 sel_print (fmt: "Scheduling insn: ");
5372 dump_insn_1 (insn, 1);
5373 sel_print (fmt: "\n");
5374 }
5375}
5376
5377/* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5378 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5379 return it. */
5380static blist_t *
5381update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5382 blist_t *bnds_tailp)
5383{
5384 succ_iterator si;
5385 insn_t succ;
5386
5387 advance_deps_context (BND_DC (bnd), insn);
5388 FOR_EACH_SUCC_1 (succ, si, insn,
5389 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5390 {
5391 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5392
5393 ilist_add (lp: &ptr, insn);
5394
5395 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5396 && is_ineligible_successor (insn: succ, p: ptr))
5397 {
5398 ilist_clear (&ptr);
5399 continue;
5400 }
5401
5402 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5403 {
5404 if (sched_verbose >= 9)
5405 sel_print (fmt: "Updating fence insn from %i to %i\n",
5406 INSN_UID (insn), INSN_UID (insn: succ));
5407 FENCE_INSN (fence) = succ;
5408 }
5409 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5410 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5411 }
5412
5413 blist_remove (bndsp);
5414 return bnds_tailp;
5415}
5416
5417/* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5418static insn_t
5419schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5420{
5421 av_set_t expr_seq;
5422 expr_t c_expr = XALLOCA (expr_def);
5423 insn_t place_to_insert;
5424 insn_t insn;
5425 bool should_move;
5426
5427 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, for_moveop: true);
5428
5429 /* In case of scheduling a jump skipping some other instructions,
5430 prepare CFG. After this, jump is at the boundary and can be
5431 scheduled as usual insn by MOVE_OP. */
5432 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5433 {
5434 insn = EXPR_INSN_RTX (expr_vliw);
5435
5436 /* Speculative jumps are not handled. */
5437 if (insn != BND_TO (bnd)
5438 && !sel_insn_is_speculation_check (insn))
5439 move_cond_jump (insn, bnd);
5440 }
5441
5442 /* Find a place for C_EXPR to schedule. */
5443 place_to_insert = prepare_place_to_insert (bnd);
5444 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5445 clear_expr (c_expr);
5446
5447 /* Add the instruction. The corner case to care about is when
5448 the expr_seq set has more than one expr, and we chose the one that
5449 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5450 we can't use it. Generate the new vinsn. */
5451 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5452 {
5453 vinsn_t vinsn_new;
5454
5455 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5456 change_vinsn_in_expr (expr_vliw, vinsn_new);
5457 should_move = false;
5458 }
5459 if (should_move)
5460 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5461 else
5462 insn = emit_insn_from_expr_after (expr: expr_vliw, NULL, seqno,
5463 place_to_insert);
5464
5465 /* Return the nops generated for preserving of data sets back
5466 into pool. */
5467 if (INSN_NOP_P (place_to_insert))
5468 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5469 remove_temp_moveop_nops (full_tidying: !DEBUG_INSN_P (insn));
5470
5471 av_set_clear (&expr_seq);
5472
5473 /* Save the expression scheduled so to reset target availability if we'll
5474 meet it later on the same fence. */
5475 if (EXPR_WAS_RENAMED (expr_vliw))
5476 vinsn_vec_add (vinsn_vec: &vec_target_unavailable_vinsns, INSN_EXPR (insn));
5477
5478 /* Check that the recent movement didn't destroyed loop
5479 structure. */
5480 gcc_assert (!pipelining_p
5481 || current_loop_nest == NULL
5482 || loop_latch_edge (current_loop_nest));
5483 return insn;
5484}
5485
5486/* Stall for N cycles on FENCE. */
5487static void
5488stall_for_cycles (fence_t fence, int n)
5489{
5490 int could_more;
5491
5492 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5493 while (n--)
5494 advance_one_cycle (fence);
5495 if (could_more)
5496 FENCE_AFTER_STALL_P (fence) = 1;
5497}
5498
5499/* Gather a parallel group of insns at FENCE and assign their seqno
5500 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5501 list for later recalculation of seqnos. */
5502static void
5503fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5504{
5505 blist_t bnds = NULL, *bnds_tailp;
5506 av_set_t av_vliw = NULL;
5507 insn_t insn = FENCE_INSN (fence);
5508
5509 if (sched_verbose >= 2)
5510 sel_print (fmt: "Starting fill_insns for insn %d, cycle %d\n",
5511 INSN_UID (insn), FENCE_CYCLE (fence));
5512
5513 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5514 bnds_tailp = &BLIST_NEXT (bnds);
5515 set_target_context (FENCE_TC (fence));
5516 can_issue_more = FENCE_ISSUE_MORE (fence);
5517 target_bb = INSN_BB (insn);
5518
5519 /* Do while we can add any operation to the current group. */
5520 do
5521 {
5522 blist_t *bnds_tailp1, *bndsp;
5523 expr_t expr_vliw;
5524 int need_stall = false;
5525 int was_stall = 0, scheduled_insns = 0;
5526 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5527 int max_stall = pipelining_p ? 1 : 3;
5528 bool last_insn_was_debug = false;
5529 bool was_debug_bb_end_p = false;
5530
5531 compute_av_set_on_boundaries (fence, bnds, av_vliw_p: &av_vliw);
5532 remove_insns_that_need_bookkeeping (fence, av_ptr: &av_vliw);
5533 remove_insns_for_debug (bnds, av_vliw_p: &av_vliw);
5534
5535 /* Return early if we have nothing to schedule. */
5536 if (av_vliw == NULL)
5537 break;
5538
5539 /* Choose the best expression and, if needed, destination register
5540 for it. */
5541 do
5542 {
5543 expr_vliw = find_best_expr (av_vliw_ptr: &av_vliw, bnds, fence, pneed_stall: &need_stall);
5544 if (! expr_vliw && need_stall)
5545 {
5546 /* All expressions required a stall. Do not recompute av sets
5547 as we'll get the same answer (modulo the insns between
5548 the fence and its boundary, which will not be available for
5549 pipelining).
5550 If we are going to stall for too long, break to recompute av
5551 sets and bring more insns for pipelining. */
5552 was_stall++;
5553 if (need_stall <= 3)
5554 stall_for_cycles (fence, n: need_stall);
5555 else
5556 {
5557 stall_for_cycles (fence, n: 1);
5558 break;
5559 }
5560 }
5561 }
5562 while (! expr_vliw && need_stall);
5563
5564 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5565 if (!expr_vliw)
5566 {
5567 av_set_clear (&av_vliw);
5568 break;
5569 }
5570
5571 bndsp = &bnds;
5572 bnds_tailp1 = bnds_tailp;
5573
5574 do
5575 /* This code will be executed only once until we'd have several
5576 boundaries per fence. */
5577 {
5578 bnd_t bnd = BLIST_BND (*bndsp);
5579
5580 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5581 {
5582 bndsp = &BLIST_NEXT (*bndsp);
5583 continue;
5584 }
5585
5586 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5587 last_insn_was_debug = DEBUG_INSN_P (insn);
5588 if (last_insn_was_debug)
5589 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5590 update_fence_and_insn (fence, insn, need_stall);
5591 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5592
5593 /* Add insn to the list of scheduled on this cycle instructions. */
5594 ilist_add (lp: *scheduled_insns_tailpp, insn);
5595 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5596 }
5597 while (*bndsp != *bnds_tailp1);
5598
5599 av_set_clear (&av_vliw);
5600 if (!last_insn_was_debug)
5601 scheduled_insns++;
5602
5603 /* We currently support information about candidate blocks only for
5604 one 'target_bb' block. Hence we can't schedule after jump insn,
5605 as this will bring two boundaries and, hence, necessity to handle
5606 information for two or more blocks concurrently. */
5607 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5608 || (was_stall
5609 && (was_stall >= max_stall
5610 || scheduled_insns >= max_insns)))
5611 break;
5612 }
5613 while (bnds);
5614
5615 gcc_assert (!FENCE_BNDS (fence));
5616
5617 /* Update boundaries of the FENCE. */
5618 while (bnds)
5619 {
5620 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5621
5622 if (ptr)
5623 {
5624 insn = ILIST_INSN (ptr);
5625
5626 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5627 ilist_add (lp: &FENCE_BNDS (fence), insn);
5628 }
5629
5630 blist_remove (&bnds);
5631 }
5632
5633 /* Update target context on the fence. */
5634 reset_target_context (FENCE_TC (fence), false);
5635}
5636
5637/* All exprs in ORIG_OPS must have the same destination register or memory.
5638 Return that destination. */
5639static rtx
5640get_dest_from_orig_ops (av_set_t orig_ops)
5641{
5642 rtx dest = NULL_RTX;
5643 av_set_iterator av_it;
5644 expr_t expr;
5645 bool first_p = true;
5646
5647 FOR_EACH_EXPR (expr, av_it, orig_ops)
5648 {
5649 rtx x = EXPR_LHS (expr);
5650
5651 if (first_p)
5652 {
5653 first_p = false;
5654 dest = x;
5655 }
5656 else
5657 gcc_assert (dest == x
5658 || (dest != NULL_RTX && x != NULL_RTX
5659 && rtx_equal_p (dest, x)));
5660 }
5661
5662 return dest;
5663}
5664
5665/* Update data sets for the bookkeeping block and record those expressions
5666 which become no longer available after inserting this bookkeeping. */
5667static void
5668update_and_record_unavailable_insns (basic_block book_block)
5669{
5670 av_set_iterator i;
5671 av_set_t old_av_set = NULL;
5672 expr_t cur_expr;
5673 rtx_insn *bb_end = sel_bb_end (book_block);
5674
5675 /* First, get correct liveness in the bookkeeping block. The problem is
5676 the range between the bookeeping insn and the end of block. */
5677 update_liveness_on_insn (insn: bb_end);
5678 if (control_flow_insn_p (bb_end))
5679 update_liveness_on_insn (insn: PREV_INSN (insn: bb_end));
5680
5681 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5682 fence above, where we may choose to schedule an insn which is
5683 actually blocked from moving up with the bookkeeping we create here. */
5684 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5685 {
5686 old_av_set = av_set_copy (BB_AV_SET (book_block));
5687 update_data_sets (insn: sel_bb_head (book_block));
5688
5689 /* Traverse all the expressions in the old av_set and check whether
5690 CUR_EXPR is in new AV_SET. */
5691 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5692 {
5693 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5694 EXPR_VINSN (cur_expr));
5695
5696 if (! new_expr
5697 /* In this case, we can just turn off the E_T_A bit, but we can't
5698 represent this information with the current vector. */
5699 || EXPR_TARGET_AVAILABLE (new_expr)
5700 != EXPR_TARGET_AVAILABLE (cur_expr))
5701 /* Unfortunately, the below code could be also fired up on
5702 separable insns, e.g. when moving insns through the new
5703 speculation check as in PR 53701. */
5704 vinsn_vec_add (vinsn_vec: &vec_bookkeeping_blocked_vinsns, expr: cur_expr);
5705 }
5706
5707 av_set_clear (&old_av_set);
5708 }
5709}
5710
5711/* The main effect of this function is that sparams->c_expr is merged
5712 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5713 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5714 lparams->c_expr_merged is copied back to sparams->c_expr after all
5715 successors has been traversed. lparams->c_expr_local is an expr allocated
5716 on stack in the caller function, and is used if there is more than one
5717 successor.
5718
5719 SUCC is one of the SUCCS_NORMAL successors of INSN,
5720 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5721 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5722static void
5723move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5724 insn_t succ ATTRIBUTE_UNUSED,
5725 int moveop_drv_call_res,
5726 cmpd_local_params_p lparams, void *static_params)
5727{
5728 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5729
5730 /* Nothing to do, if original expr wasn't found below. */
5731 if (moveop_drv_call_res != 1)
5732 return;
5733
5734 /* If this is a first successor. */
5735 if (!lparams->c_expr_merged)
5736 {
5737 lparams->c_expr_merged = sparams->c_expr;
5738 sparams->c_expr = lparams->c_expr_local;
5739 }
5740 else
5741 {
5742 /* We must merge all found expressions to get reasonable
5743 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5744 do so then we can first find the expr with epsilon
5745 speculation success probability and only then with the
5746 good probability. As a result the insn will get epsilon
5747 probability and will never be scheduled because of
5748 weakness_cutoff in find_best_expr.
5749
5750 We call merge_expr_data here instead of merge_expr
5751 because due to speculation C_EXPR and X may have the
5752 same insns with different speculation types. And as of
5753 now such insns are considered non-equal.
5754
5755 However, EXPR_SCHED_TIMES is different -- we must get
5756 SCHED_TIMES from a real insn, not a bookkeeping copy.
5757 We force this here. Instead, we may consider merging
5758 SCHED_TIMES to the maximum instead of minimum in the
5759 below function. */
5760 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5761
5762 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5763 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5764 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5765
5766 clear_expr (sparams->c_expr);
5767 }
5768}
5769
5770/* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5771
5772 SUCC is one of the SUCCS_NORMAL successors of INSN,
5773 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5774 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5775 STATIC_PARAMS contain USED_REGS set. */
5776static void
5777fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5778 int moveop_drv_call_res,
5779 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5780 void *static_params)
5781{
5782 regset succ_live;
5783 fur_static_params_p sparams = (fur_static_params_p) static_params;
5784
5785 /* Here we compute live regsets only for branches that do not lie
5786 on the code motion paths. These branches correspond to value
5787 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5788 for such branches code_motion_path_driver is not called. */
5789 if (moveop_drv_call_res != 0)
5790 return;
5791
5792 /* Mark all registers that do not meet the following condition:
5793 (3) not live on the other path of any conditional branch
5794 that is passed by the operation, in case original
5795 operations are not present on both paths of the
5796 conditional branch. */
5797 succ_live = compute_live (insn: succ);
5798 IOR_REG_SET (sparams->used_regs, succ_live);
5799}
5800
5801/* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5802 into SP->CEXPR. */
5803static void
5804move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5805{
5806 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5807
5808 sp->c_expr = lp->c_expr_merged;
5809}
5810
5811/* Track bookkeeping copies created, insns scheduled, and blocks for
5812 rescheduling when INSN is found by move_op. */
5813static void
5814track_scheduled_insns_and_blocks (rtx_insn *insn)
5815{
5816 /* Even if this insn can be a copy that will be removed during current move_op,
5817 we still need to count it as an originator. */
5818 bitmap_set_bit (current_originators, INSN_UID (insn));
5819
5820 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5821 {
5822 /* Note that original block needs to be rescheduled, as we pulled an
5823 instruction out of it. */
5824 if (INSN_SCHED_TIMES (insn) > 0)
5825 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5826 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5827 num_insns_scheduled++;
5828 }
5829
5830 /* For instructions we must immediately remove insn from the
5831 stream, so subsequent update_data_sets () won't include this
5832 insn into av_set.
5833 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5834 if (INSN_UID (insn) > max_uid_before_move_op)
5835 stat_bookkeeping_copies--;
5836}
5837
5838/* Emit a register-register copy for INSN if needed. Return true if
5839 emitted one. PARAMS is the move_op static parameters. */
5840static bool
5841maybe_emit_renaming_copy (rtx_insn *insn,
5842 moveop_static_params_p params)
5843{
5844 bool insn_emitted = false;
5845 rtx cur_reg;
5846
5847 /* Bail out early when expression cannot be renamed at all. */
5848 if (!EXPR_SEPARABLE_P (params->c_expr))
5849 return false;
5850
5851 cur_reg = expr_dest_reg (params->c_expr);
5852 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5853
5854 /* If original operation has expr and the register chosen for
5855 that expr is not original operation's dest reg, substitute
5856 operation's right hand side with the register chosen. */
5857 if (REGNO (params->dest) != REGNO (cur_reg))
5858 {
5859 insn_t reg_move_insn, reg_move_insn_rtx;
5860
5861 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5862 rhs_rtx: params->dest);
5863 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5864 INSN_EXPR (insn),
5865 INSN_SEQNO (insn),
5866 insn);
5867 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5868 replace_dest_with_reg_in_expr (expr: params->c_expr, new_reg: params->dest);
5869
5870 insn_emitted = true;
5871 params->was_renamed = true;
5872 }
5873
5874 return insn_emitted;
5875}
5876
5877/* Emit a speculative check for INSN speculated as EXPR if needed.
5878 Return true if we've emitted one. PARAMS is the move_op static
5879 parameters. */
5880static bool
5881maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5882 moveop_static_params_p params)
5883{
5884 bool insn_emitted = false;
5885 insn_t x;
5886 ds_t check_ds;
5887
5888 check_ds = get_spec_check_type_for_insn (insn, expr);
5889 if (check_ds != 0)
5890 {
5891 /* A speculation check should be inserted. */
5892 x = create_speculation_check (c_expr: params->c_expr, check_ds, orig_insn: insn);
5893 insn_emitted = true;
5894 }
5895 else
5896 {
5897 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5898 x = insn;
5899 }
5900
5901 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5902 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5903 return insn_emitted;
5904}
5905
5906/* Handle transformations that leave an insn in place of original
5907 insn such as renaming/speculation. Return true if one of such
5908 transformations actually happened, and we have emitted this insn. */
5909static bool
5910handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5911 moveop_static_params_p params)
5912{
5913 bool insn_emitted = false;
5914
5915 insn_emitted = maybe_emit_renaming_copy (insn, params);
5916 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5917
5918 return insn_emitted;
5919}
5920
5921/* If INSN is the only insn in the basic block (not counting JUMP,
5922 which may be a jump to next insn, and DEBUG_INSNs), we want to
5923 leave a NOP there till the return to fill_insns. */
5924
5925static bool
5926need_nop_to_preserve_insn_bb (rtx_insn *insn)
5927{
5928 insn_t bb_head, bb_end, bb_next, in_next;
5929 basic_block bb = BLOCK_FOR_INSN (insn);
5930
5931 bb_head = sel_bb_head (bb);
5932 bb_end = sel_bb_end (bb);
5933
5934 if (bb_head == bb_end)
5935 return true;
5936
5937 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5938 bb_head = NEXT_INSN (insn: bb_head);
5939
5940 if (bb_head == bb_end)
5941 return true;
5942
5943 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5944 bb_end = PREV_INSN (insn: bb_end);
5945
5946 if (bb_head == bb_end)
5947 return true;
5948
5949 bb_next = NEXT_INSN (insn: bb_head);
5950 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5951 bb_next = NEXT_INSN (insn: bb_next);
5952
5953 if (bb_next == bb_end && JUMP_P (bb_end))
5954 return true;
5955
5956 in_next = NEXT_INSN (insn);
5957 while (DEBUG_INSN_P (in_next))
5958 in_next = NEXT_INSN (insn: in_next);
5959
5960 if (IN_CURRENT_FENCE_P (in_next))
5961 return true;
5962
5963 return false;
5964}
5965
5966/* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5967 is not removed but reused when INSN is re-emitted. */
5968static void
5969remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5970{
5971 /* If there's only one insn in the BB, make sure that a nop is
5972 inserted into it, so the basic block won't disappear when we'll
5973 delete INSN below with sel_remove_insn. It should also survive
5974 till the return to fill_insns. */
5975 if (need_nop_to_preserve_insn_bb (insn))
5976 {
5977 insn_t nop = get_nop_from_pool (insn);
5978 gcc_assert (INSN_NOP_P (nop));
5979 vec_temp_moveop_nops.safe_push (obj: nop);
5980 }
5981
5982 sel_remove_insn (insn, only_disconnect, false);
5983}
5984
5985/* This function is called when original expr is found.
5986 INSN - current insn traversed, EXPR - the corresponding expr found.
5987 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5988 is static parameters of move_op. */
5989static void
5990move_op_orig_expr_found (insn_t insn, expr_t expr,
5991 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5992 void *static_params)
5993{
5994 bool only_disconnect;
5995 moveop_static_params_p params = (moveop_static_params_p) static_params;
5996
5997 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5998 track_scheduled_insns_and_blocks (insn);
5999 handle_emitting_transformations (insn, expr, params);
6000 only_disconnect = params->uid == INSN_UID (insn);
6001
6002 /* Mark that we've disconnected an insn. */
6003 if (only_disconnect)
6004 params->uid = -1;
6005 remove_insn_from_stream (insn, only_disconnect);
6006}
6007
6008/* The function is called when original expr is found.
6009 INSN - current insn traversed, EXPR - the corresponding expr found,
6010 crossed_call_abis and original_insns in STATIC_PARAMS are updated. */
6011static void
6012fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6013 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6014 void *static_params)
6015{
6016 fur_static_params_p params = (fur_static_params_p) static_params;
6017 regset tmp;
6018
6019 if (CALL_P (insn))
6020 params->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6021
6022 def_list_add (params->original_insns, insn, params->crossed_call_abis);
6023
6024 /* Mark the registers that do not meet the following condition:
6025 (2) not among the live registers of the point
6026 immediately following the first original operation on
6027 a given downward path, except for the original target
6028 register of the operation. */
6029 tmp = get_clear_regset_from_pool ();
6030 compute_live_below_insn (insn, regs: tmp);
6031 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6032 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6033 IOR_REG_SET (params->used_regs, tmp);
6034 return_regset_to_pool (tmp);
6035
6036 /* (*1) We need to add to USED_REGS registers that are read by
6037 INSN's lhs. This may lead to choosing wrong src register.
6038 E.g. (scheduling const expr enabled):
6039
6040 429: ax=0x0 <- Can't use AX for this expr (0x0)
6041 433: dx=[bp-0x18]
6042 427: [ax+dx+0x1]=ax
6043 REG_DEAD: ax
6044 168: di=dx
6045 REG_DEAD: dx
6046 */
6047 /* FIXME: see comment above and enable MEM_P
6048 in vinsn_separable_p. */
6049 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6050 || !MEM_P (INSN_LHS (insn)));
6051}
6052
6053/* This function is called on the ascending pass, before returning from
6054 current basic block. */
6055static void
6056move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6057 void *static_params)
6058{
6059 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6060 basic_block book_block = NULL;
6061
6062 /* When we have removed the boundary insn for scheduling, which also
6063 happened to be the end insn in its bb, we don't need to update sets. */
6064 if (!lparams->removed_last_insn
6065 && lparams->e1
6066 && sel_bb_head_p (insn))
6067 {
6068 /* We should generate bookkeeping code only if we are not at the
6069 top level of the move_op. */
6070 if (sel_num_cfg_preds_gt_1 (insn))
6071 book_block = generate_bookkeeping_insn (c_expr: sparams->c_expr,
6072 e1: lparams->e1, e2: lparams->e2);
6073 /* Update data sets for the current insn. */
6074 update_data_sets (insn);
6075 }
6076
6077 /* If bookkeeping code was inserted, we need to update av sets of basic
6078 block that received bookkeeping. After generation of bookkeeping insn,
6079 bookkeeping block does not contain valid av set because we are not following
6080 the original algorithm in every detail with regards to e.g. renaming
6081 simple reg-reg copies. Consider example:
6082
6083 bookkeeping block scheduling fence
6084 \ /
6085 \ join /
6086 ----------
6087 | |
6088 ----------
6089 / \
6090 / \
6091 r1 := r2 r1 := r3
6092
6093 We try to schedule insn "r1 := r3" on the current
6094 scheduling fence. Also, note that av set of bookkeeping block
6095 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6096 been scheduled, the CFG is as follows:
6097
6098 r1 := r3 r1 := r3
6099 bookkeeping block scheduling fence
6100 \ /
6101 \ join /
6102 ----------
6103 | |
6104 ----------
6105 / \
6106 / \
6107 r1 := r2
6108
6109 Here, insn "r1 := r3" was scheduled at the current scheduling point
6110 and bookkeeping code was generated at the bookeeping block. This
6111 way insn "r1 := r2" is no longer available as a whole instruction
6112 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6113 This situation is handled by calling update_data_sets.
6114
6115 Since update_data_sets is called only on the bookkeeping block, and
6116 it also may have predecessors with av_sets, containing instructions that
6117 are no longer available, we save all such expressions that become
6118 unavailable during data sets update on the bookkeeping block in
6119 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6120 expressions for scheduling. This allows us to avoid recomputation of
6121 av_sets outside the code motion path. */
6122
6123 if (book_block)
6124 update_and_record_unavailable_insns (book_block);
6125
6126 /* If INSN was previously marked for deletion, it's time to do it. */
6127 if (lparams->removed_last_insn)
6128 insn = PREV_INSN (insn);
6129
6130 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6131 kill a block with a single nop in which the insn should be emitted. */
6132 if (lparams->e1)
6133 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6134}
6135
6136/* This function is called on the ascending pass, before returning from the
6137 current basic block. */
6138static void
6139fur_at_first_insn (insn_t insn,
6140 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6141 void *static_params ATTRIBUTE_UNUSED)
6142{
6143 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6144 || AV_LEVEL (insn) == -1);
6145}
6146
6147/* Called on the backward stage of recursion to call moveup_expr for insn
6148 and sparams->c_expr. */
6149static void
6150move_op_ascend (insn_t insn, void *static_params)
6151{
6152 enum MOVEUP_EXPR_CODE res;
6153 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6154
6155 if (! INSN_NOP_P (insn))
6156 {
6157 res = moveup_expr_cached (expr: sparams->c_expr, insn, inside_insn_group: false);
6158 gcc_assert (res != MOVEUP_EXPR_NULL);
6159 }
6160
6161 /* Update liveness for this insn as it was invalidated. */
6162 update_liveness_on_insn (insn);
6163}
6164
6165/* This function is called on enter to the basic block.
6166 Returns TRUE if this block already have been visited and
6167 code_motion_path_driver should return 1, FALSE otherwise. */
6168static int
6169fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6170 void *static_params, bool visited_p)
6171{
6172 fur_static_params_p sparams = (fur_static_params_p) static_params;
6173
6174 if (visited_p)
6175 {
6176 /* If we have found something below this block, there should be at
6177 least one insn in ORIGINAL_INSNS. */
6178 gcc_assert (*sparams->original_insns);
6179
6180 /* Adjust CROSSED_CALL_ABIS, since we may have come to this block along
6181 different path. */
6182 DEF_LIST_DEF (*sparams->original_insns)->crossed_call_abis
6183 |= sparams->crossed_call_abis;
6184 }
6185 else
6186 local_params->old_original_insns = *sparams->original_insns;
6187
6188 return 1;
6189}
6190
6191/* Same as above but for move_op. */
6192static int
6193move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6194 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6195 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6196{
6197 if (visited_p)
6198 return -1;
6199 return 1;
6200}
6201
6202/* This function is called while descending current basic block if current
6203 insn is not the original EXPR we're searching for.
6204
6205 Return value: FALSE, if code_motion_path_driver should perform a local
6206 cleanup and return 0 itself;
6207 TRUE, if code_motion_path_driver should continue. */
6208static bool
6209move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6210 void *static_params)
6211{
6212 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6213
6214 sparams->failed_insn = insn;
6215
6216 /* If we're scheduling separate expr, in order to generate correct code
6217 we need to stop the search at bookkeeping code generated with the
6218 same destination register or memory. */
6219 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6220 return false;
6221 return true;
6222}
6223
6224/* This function is called while descending current basic block if current
6225 insn is not the original EXPR we're searching for.
6226
6227 Return value: TRUE (code_motion_path_driver should continue). */
6228static bool
6229fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6230{
6231 bool mutexed;
6232 expr_t r;
6233 av_set_iterator avi;
6234 fur_static_params_p sparams = (fur_static_params_p) static_params;
6235
6236 if (CALL_P (insn))
6237 sparams->crossed_call_abis |= 1 << insn_callee_abi (insn).id ();
6238 else if (DEBUG_INSN_P (insn))
6239 return true;
6240
6241 /* If current insn we are looking at cannot be executed together
6242 with original insn, then we can skip it safely.
6243
6244 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6245 INSN = (!p6) r14 = r14 + 1;
6246
6247 Here we can schedule ORIG_OP with lhs = r14, though only
6248 looking at the set of used and set registers of INSN we must
6249 forbid it. So, add set/used in INSN registers to the
6250 untouchable set only if there is an insn in ORIG_OPS that can
6251 affect INSN. */
6252 mutexed = true;
6253 FOR_EACH_EXPR (r, avi, orig_ops)
6254 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6255 {
6256 mutexed = false;
6257 break;
6258 }
6259
6260 /* Mark all registers that do not meet the following condition:
6261 (1) Not set or read on any path from xi to an instance of the
6262 original operation. */
6263 if (!mutexed)
6264 {
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6267 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6268 }
6269
6270 return true;
6271}
6272
6273/* Hooks and data to perform move_op operations with code_motion_path_driver. */
6274struct code_motion_path_driver_info_def move_op_hooks = {
6275 .on_enter: move_op_on_enter,
6276 .orig_expr_found: move_op_orig_expr_found,
6277 .orig_expr_not_found: move_op_orig_expr_not_found,
6278 .merge_succs: move_op_merge_succs,
6279 .after_merge_succs: move_op_after_merge_succs,
6280 .ascend: move_op_ascend,
6281 .at_first_insn: move_op_at_first_insn,
6282 SUCCS_NORMAL,
6283 .routine_name: "move_op"
6284};
6285
6286/* Hooks and data to perform find_used_regs operations
6287 with code_motion_path_driver. */
6288struct code_motion_path_driver_info_def fur_hooks = {
6289 .on_enter: fur_on_enter,
6290 .orig_expr_found: fur_orig_expr_found,
6291 .orig_expr_not_found: fur_orig_expr_not_found,
6292 .merge_succs: fur_merge_succs,
6293 NULL, /* fur_after_merge_succs */
6294 NULL, /* fur_ascend */
6295 .at_first_insn: fur_at_first_insn,
6296 SUCCS_ALL,
6297 .routine_name: "find_used_regs"
6298};
6299
6300/* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6301 code_motion_path_driver is called recursively. Original operation
6302 was found at least on one path that is starting with one of INSN's
6303 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6304 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6305 of either move_op or find_used_regs depending on the caller.
6306
6307 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6308 know for sure at this point. */
6309static int
6310code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6311 ilist_t path, void *static_params)
6312{
6313 int res = 0;
6314 succ_iterator succ_i;
6315 insn_t succ;
6316 basic_block bb;
6317 int old_index;
6318 unsigned old_succs;
6319
6320 struct cmpd_local_params lparams;
6321 expr_def _x;
6322
6323 lparams.c_expr_local = &_x;
6324 lparams.c_expr_merged = NULL;
6325
6326 /* We need to process only NORMAL succs for move_op, and collect live
6327 registers from ALL branches (including those leading out of the
6328 region) for find_used_regs.
6329
6330 In move_op, there can be a case when insn's bb number has changed
6331 due to created bookkeeping. This happens very rare, as we need to
6332 move expression from the beginning to the end of the same block.
6333 Rescan successors in this case. */
6334
6335 rescan:
6336 bb = BLOCK_FOR_INSN (insn);
6337 old_index = bb->index;
6338 old_succs = EDGE_COUNT (bb->succs);
6339
6340 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6341 {
6342 int b;
6343
6344 lparams.e1 = succ_i.e1;
6345 lparams.e2 = succ_i.e2;
6346
6347 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6348 current region). */
6349 if (succ_i.current_flags == SUCCS_NORMAL)
6350 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6351 static_params);
6352 else
6353 b = 0;
6354
6355 /* Merge c_expres found or unify live register sets from different
6356 successors. */
6357 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6358 static_params);
6359 if (b == 1)
6360 res = b;
6361 else if (b == -1 && res != 1)
6362 res = b;
6363
6364 /* We have simplified the control flow below this point. In this case,
6365 the iterator becomes invalid. We need to try again.
6366 If we have removed the insn itself, it could be only an
6367 unconditional jump. Thus, do not rescan but break immediately --
6368 we have already visited the only successor block. */
6369 if (!BLOCK_FOR_INSN (insn))
6370 {
6371 if (sched_verbose >= 6)
6372 sel_print (fmt: "Not doing rescan: already visited the only successor"
6373 " of block %d\n", old_index);
6374 break;
6375 }
6376 if (BLOCK_FOR_INSN (insn)->index != old_index
6377 || EDGE_COUNT (bb->succs) != old_succs)
6378 {
6379 if (sched_verbose >= 6)
6380 sel_print (fmt: "Rescan: CFG was simplified below insn %d, block %d\n",
6381 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6382 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6383 goto rescan;
6384 }
6385 }
6386
6387 /* Here, RES==1 if original expr was found at least for one of the
6388 successors. After the loop, RES may happen to have zero value
6389 only if at some point the expr searched is present in av_set, but is
6390 not found below. In most cases, this situation is an error.
6391 The exception is when the original operation is blocked by
6392 bookkeeping generated for another fence or for another path in current
6393 move_op. */
6394 gcc_checking_assert (res == 1
6395 || (res == 0
6396 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6397 || res == -1);
6398
6399 /* Merge data, clean up, etc. */
6400 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6401 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6402
6403 return res;
6404}
6405
6406
6407/* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6408 is the pointer to the av set with expressions we were looking for,
6409 PATH_P is the pointer to the traversed path. */
6410static inline void
6411code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6412{
6413 ilist_remove (path_p);
6414 av_set_clear (orig_ops_p);
6415}
6416
6417/* The driver function that implements move_op or find_used_regs
6418 functionality dependent whether code_motion_path_driver_INFO is set to
6419 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6420 of code (CFG traversal etc) that are shared among both functions. INSN
6421 is the insn we're starting the search from, ORIG_OPS are the expressions
6422 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6423 parameters of the driver, and STATIC_PARAMS are static parameters of
6424 the caller.
6425
6426 Returns whether original instructions were found. Note that top-level
6427 code_motion_path_driver always returns true. */
6428static int
6429code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6430 cmpd_local_params_p local_params_in,
6431 void *static_params)
6432{
6433 expr_t expr = NULL;
6434 basic_block bb = BLOCK_FOR_INSN (insn);
6435 insn_t first_insn, original_insn, bb_tail, before_first;
6436 bool removed_last_insn = false;
6437
6438 if (sched_verbose >= 6)
6439 {
6440 sel_print (fmt: "%s (", code_motion_path_driver_info->routine_name);
6441 dump_insn (insn);
6442 sel_print (fmt: ",");
6443 dump_av_set (orig_ops);
6444 sel_print (fmt: ")\n");
6445 }
6446
6447 gcc_assert (orig_ops);
6448
6449 /* If no original operations exist below this insn, return immediately. */
6450 if (is_ineligible_successor (insn, p: path))
6451 {
6452 if (sched_verbose >= 6)
6453 sel_print (fmt: "Insn %d is ineligible successor\n", INSN_UID (insn));
6454 return false;
6455 }
6456
6457 /* The block can have invalid av set, in which case it was created earlier
6458 during move_op. Return immediately. */
6459 if (sel_bb_head_p (insn))
6460 {
6461 if (! AV_SET_VALID_P (insn))
6462 {
6463 if (sched_verbose >= 6)
6464 sel_print (fmt: "Returned from block %d as it had invalid av set\n",
6465 bb->index);
6466 return false;
6467 }
6468
6469 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6470 {
6471 /* We have already found an original operation on this branch, do not
6472 go any further and just return TRUE here. If we don't stop here,
6473 function can have exponential behavior even on the small code
6474 with many different paths (e.g. with data speculation and
6475 recovery blocks). */
6476 if (sched_verbose >= 6)
6477 sel_print (fmt: "Block %d already visited in this traversal\n", bb->index);
6478 if (code_motion_path_driver_info->on_enter)
6479 return code_motion_path_driver_info->on_enter (insn,
6480 local_params_in,
6481 static_params,
6482 true);
6483 }
6484 }
6485
6486 if (code_motion_path_driver_info->on_enter)
6487 code_motion_path_driver_info->on_enter (insn, local_params_in,
6488 static_params, false);
6489 orig_ops = av_set_copy (orig_ops);
6490
6491 /* Filter the orig_ops set. */
6492 if (AV_SET_VALID_P (insn))
6493 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6494
6495 /* If no more original ops, return immediately. */
6496 if (!orig_ops)
6497 {
6498 if (sched_verbose >= 6)
6499 sel_print (fmt: "No intersection with av set of block %d\n", bb->index);
6500 return false;
6501 }
6502
6503 /* For non-speculative insns we have to leave only one form of the
6504 original operation, because if we don't, we may end up with
6505 different C_EXPRes and, consequently, with bookkeepings for different
6506 expression forms along the same code motion path. That may lead to
6507 generation of incorrect code. So for each code motion we stick to
6508 the single form of the instruction, except for speculative insns
6509 which we need to keep in different forms with all speculation
6510 types. */
6511 av_set_leave_one_nonspec (&orig_ops);
6512
6513 /* It is not possible that all ORIG_OPS are filtered out. */
6514 gcc_assert (orig_ops);
6515
6516 /* It is enough to place only heads and tails of visited basic blocks into
6517 the PATH. */
6518 ilist_add (lp: &path, insn);
6519 first_insn = original_insn = insn;
6520 bb_tail = sel_bb_end (bb);
6521
6522 /* Descend the basic block in search of the original expr; this part
6523 corresponds to the part of the original move_op procedure executed
6524 before the recursive call. */
6525 for (;;)
6526 {
6527 /* Look at the insn and decide if it could be an ancestor of currently
6528 scheduling operation. If it is so, then the insn "dest = op" could
6529 either be replaced with "dest = reg", because REG now holds the result
6530 of OP, or just removed, if we've scheduled the insn as a whole.
6531
6532 If this insn doesn't contain currently scheduling OP, then proceed
6533 with searching and look at its successors. Operations we're searching
6534 for could have changed when moving up through this insn via
6535 substituting. In this case, perform unsubstitution on them first.
6536
6537 When traversing the DAG below this insn is finished, insert
6538 bookkeeping code, if the insn is a joint point, and remove
6539 leftovers. */
6540
6541 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6542 if (expr)
6543 {
6544 insn_t last_insn = PREV_INSN (insn);
6545
6546 /* We have found the original operation. */
6547 if (sched_verbose >= 6)
6548 sel_print (fmt: "Found original operation at insn %d\n", INSN_UID (insn));
6549
6550 code_motion_path_driver_info->orig_expr_found
6551 (insn, expr, local_params_in, static_params);
6552
6553 /* Step back, so on the way back we'll start traversing from the
6554 previous insn (or we'll see that it's bb_note and skip that
6555 loop). */
6556 if (insn == first_insn)
6557 {
6558 first_insn = NEXT_INSN (insn: last_insn);
6559 removed_last_insn = sel_bb_end_p (last_insn);
6560 }
6561 insn = last_insn;
6562 break;
6563 }
6564 else
6565 {
6566 /* We haven't found the original expr, continue descending the basic
6567 block. */
6568 if (code_motion_path_driver_info->orig_expr_not_found
6569 (insn, orig_ops, static_params))
6570 {
6571 /* Av set ops could have been changed when moving through this
6572 insn. To find them below it, we have to un-substitute them. */
6573 undo_transformations (av_ptr: &orig_ops, insn);
6574 }
6575 else
6576 {
6577 /* Clean up and return, if the hook tells us to do so. It may
6578 happen if we've encountered the previously created
6579 bookkeeping. */
6580 code_motion_path_driver_cleanup (orig_ops_p: &orig_ops, path_p: &path);
6581 return -1;
6582 }
6583
6584 gcc_assert (orig_ops);
6585 }
6586
6587 /* Stop at insn if we got to the end of BB. */
6588 if (insn == bb_tail)
6589 break;
6590
6591 insn = NEXT_INSN (insn);
6592 }
6593
6594 /* Here INSN either points to the insn before the original insn (may be
6595 bb_note, if original insn was a bb_head) or to the bb_end. */
6596 if (!expr)
6597 {
6598 int res;
6599 rtx_insn *last_insn = PREV_INSN (insn);
6600 bool added_to_path;
6601
6602 gcc_assert (insn == sel_bb_end (bb));
6603
6604 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6605 it's already in PATH then). */
6606 if (insn != first_insn)
6607 {
6608 ilist_add (lp: &path, insn);
6609 added_to_path = true;
6610 }
6611 else
6612 added_to_path = false;
6613
6614 /* Process_successors should be able to find at least one
6615 successor for which code_motion_path_driver returns TRUE. */
6616 res = code_motion_process_successors (insn, orig_ops,
6617 path, static_params);
6618
6619 /* Jump in the end of basic block could have been removed or replaced
6620 during code_motion_process_successors, so recompute insn as the
6621 last insn in bb. */
6622 if (NEXT_INSN (insn: last_insn) != insn)
6623 {
6624 insn = sel_bb_end (bb);
6625 first_insn = sel_bb_head (bb);
6626 if (first_insn != original_insn)
6627 first_insn = original_insn;
6628 }
6629
6630 /* Remove bb tail from path. */
6631 if (added_to_path)
6632 ilist_remove (&path);
6633
6634 if (res != 1)
6635 {
6636 /* This is the case when one of the original expr is no longer available
6637 due to bookkeeping created on this branch with the same register.
6638 In the original algorithm, which doesn't have update_data_sets call
6639 on a bookkeeping block, it would simply result in returning
6640 FALSE when we've encountered a previously generated bookkeeping
6641 insn in moveop_orig_expr_not_found. */
6642 code_motion_path_driver_cleanup (orig_ops_p: &orig_ops, path_p: &path);
6643 return res;
6644 }
6645 }
6646
6647 /* Don't need it any more. */
6648 av_set_clear (&orig_ops);
6649
6650 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6651 the beginning of the basic block. */
6652 before_first = PREV_INSN (insn: first_insn);
6653 while (insn != before_first)
6654 {
6655 if (code_motion_path_driver_info->ascend)
6656 code_motion_path_driver_info->ascend (insn, static_params);
6657
6658 insn = PREV_INSN (insn);
6659 }
6660
6661 /* Now we're at the bb head. */
6662 insn = first_insn;
6663 ilist_remove (&path);
6664 local_params_in->removed_last_insn = removed_last_insn;
6665 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6666
6667 /* This should be the very last operation as at bb head we could change
6668 the numbering by creating bookkeeping blocks. */
6669 if (removed_last_insn)
6670 insn = PREV_INSN (insn);
6671
6672 /* If we have simplified the control flow and removed the first jump insn,
6673 there's no point in marking this block in the visited blocks bitmap. */
6674 if (BLOCK_FOR_INSN (insn))
6675 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6676 return true;
6677}
6678
6679/* Move up the operations from ORIG_OPS set traversing the dag starting
6680 from INSN. PATH represents the edges traversed so far.
6681 DEST is the register chosen for scheduling the current expr. Insert
6682 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6683 C_EXPR is how it looks like at the given cfg point.
6684 Set *SHOULD_MOVE to indicate whether we have only disconnected
6685 one of the insns found.
6686
6687 Returns whether original instructions were found, which is asserted
6688 to be true in the caller. */
6689static bool
6690move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6691 rtx dest, expr_t c_expr, bool *should_move)
6692{
6693 struct moveop_static_params sparams;
6694 struct cmpd_local_params lparams;
6695 int res;
6696
6697 /* Init params for code_motion_path_driver. */
6698 sparams.dest = dest;
6699 sparams.c_expr = c_expr;
6700 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6701 sparams.failed_insn = NULL;
6702 sparams.was_renamed = false;
6703 lparams.e1 = NULL;
6704
6705 /* We haven't visited any blocks yet. */
6706 bitmap_clear (code_motion_visited_blocks);
6707
6708 /* Set appropriate hooks and data. */
6709 code_motion_path_driver_info = &move_op_hooks;
6710 res = code_motion_path_driver (insn, orig_ops, NULL, local_params_in: &lparams, static_params: &sparams);
6711
6712 gcc_assert (res != -1);
6713
6714 if (sparams.was_renamed)
6715 EXPR_WAS_RENAMED (expr_vliw) = true;
6716
6717 *should_move = (sparams.uid == -1);
6718
6719 return res;
6720}
6721
6722
6723/* Functions that work with regions. */
6724
6725/* Current number of seqno used in init_seqno and init_seqno_1. */
6726static int cur_seqno;
6727
6728/* A helper for init_seqno. Traverse the region starting from BB and
6729 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6730 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6731static void
6732init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6733{
6734 int bbi = BLOCK_TO_BB (bb->index);
6735 insn_t insn;
6736 insn_t succ_insn;
6737 succ_iterator si;
6738
6739 rtx_note *note = bb_note (bb);
6740 bitmap_set_bit (map: visited_bbs, bitno: bbi);
6741 if (blocks_to_reschedule)
6742 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6743
6744 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6745 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6746 {
6747 basic_block succ = BLOCK_FOR_INSN (insn: succ_insn);
6748 int succ_bbi = BLOCK_TO_BB (succ->index);
6749
6750 gcc_assert (in_current_region_p (succ));
6751
6752 if (!bitmap_bit_p (map: visited_bbs, bitno: succ_bbi))
6753 {
6754 gcc_assert (succ_bbi > bbi);
6755
6756 init_seqno_1 (bb: succ, visited_bbs, blocks_to_reschedule);
6757 }
6758 else if (blocks_to_reschedule)
6759 bitmap_set_bit (forced_ebb_heads, succ->index);
6760 }
6761
6762 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6763 INSN_SEQNO (insn) = cur_seqno--;
6764}
6765
6766/* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6767 blocks on which we're rescheduling when pipelining, FROM is the block where
6768 traversing region begins (it may not be the head of the region when
6769 pipelining, but the head of the loop instead).
6770
6771 Returns the maximal seqno found. */
6772static int
6773init_seqno (bitmap blocks_to_reschedule, basic_block from)
6774{
6775 bitmap_iterator bi;
6776 unsigned bbi;
6777
6778 auto_sbitmap visited_bbs (current_nr_blocks);
6779
6780 if (blocks_to_reschedule)
6781 {
6782 bitmap_ones (visited_bbs);
6783 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6784 {
6785 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6786 bitmap_clear_bit (map: visited_bbs, BLOCK_TO_BB (bbi));
6787 }
6788 }
6789 else
6790 {
6791 bitmap_clear (visited_bbs);
6792 from = EBB_FIRST_BB (0);
6793 }
6794
6795 cur_seqno = sched_max_luid - 1;
6796 init_seqno_1 (bb: from, visited_bbs, blocks_to_reschedule);
6797
6798 /* cur_seqno may be positive if the number of instructions is less than
6799 sched_max_luid - 1 (when rescheduling or if some instructions have been
6800 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6801 gcc_assert (cur_seqno >= 0);
6802
6803 return sched_max_luid - 1;
6804}
6805
6806/* Initialize scheduling parameters for current region. */
6807static void
6808sel_setup_region_sched_flags (void)
6809{
6810 enable_schedule_as_rhs_p = 1;
6811 bookkeeping_p = 1;
6812 pipelining_p = (bookkeeping_p
6813 && (flag_sel_sched_pipelining != 0)
6814 && current_loop_nest != NULL
6815 && loop_has_exit_edges (loop: current_loop_nest));
6816 max_insns_to_rename = param_selsched_insns_to_rename;
6817 max_ws = MAX_WS;
6818}
6819
6820/* Return true if all basic blocks of current region are empty. */
6821static bool
6822current_region_empty_p (void)
6823{
6824 int i;
6825 for (i = 0; i < current_nr_blocks; i++)
6826 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6827 return false;
6828
6829 return true;
6830}
6831
6832/* Prepare and verify loop nest for pipelining. */
6833static void
6834setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6835{
6836 current_loop_nest = get_loop_nest_for_rgn (rgn);
6837
6838 if (!current_loop_nest)
6839 return;
6840
6841 /* If this loop has any saved loop preheaders from nested loops,
6842 add these basic blocks to the current region. */
6843 sel_add_loop_preheaders (bbs);
6844
6845 /* Check that we're starting with a valid information. */
6846 gcc_assert (loop_latch_edge (current_loop_nest));
6847 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6848}
6849
6850/* Compute instruction priorities for current region. */
6851static void
6852sel_compute_priorities (int rgn)
6853{
6854 sched_rgn_compute_dependencies (rgn);
6855
6856 /* Compute insn priorities in haifa style. Then free haifa style
6857 dependencies that we've calculated for this. */
6858 compute_priorities ();
6859
6860 if (sched_verbose >= 5)
6861 debug_rgn_dependencies (0);
6862
6863 free_rgn_deps ();
6864}
6865
6866/* Init scheduling data for RGN. Returns true when this region should not
6867 be scheduled. */
6868static bool
6869sel_region_init (int rgn)
6870{
6871 int i;
6872 bb_vec_t bbs;
6873
6874 rgn_setup_region (rgn);
6875
6876 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6877 do region initialization here so the region can be bundled correctly,
6878 but we'll skip the scheduling in sel_sched_region (). */
6879 if (current_region_empty_p ())
6880 return true;
6881
6882 bbs.create (nelems: current_nr_blocks);
6883
6884 for (i = 0; i < current_nr_blocks; i++)
6885 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6886
6887 sel_init_bbs (bbs);
6888
6889 if (flag_sel_sched_pipelining)
6890 setup_current_loop_nest (rgn, bbs: &bbs);
6891
6892 sel_setup_region_sched_flags ();
6893
6894 /* Initialize luids and dependence analysis which both sel-sched and haifa
6895 need. */
6896 sched_init_luids (bbs);
6897 sched_deps_init (false);
6898
6899 /* Initialize haifa data. */
6900 rgn_setup_sched_infos ();
6901 sel_set_sched_flags ();
6902 haifa_init_h_i_d (bbs);
6903
6904 sel_compute_priorities (rgn);
6905 init_deps_global ();
6906
6907 /* Main initialization. */
6908 sel_setup_sched_infos ();
6909 sel_init_global_and_expr (bbs);
6910
6911 bbs.release ();
6912
6913 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6914
6915 /* Init correct liveness sets on each instruction of a single-block loop.
6916 This is the only situation when we can't update liveness when calling
6917 compute_live for the first insn of the loop. */
6918 if (current_loop_nest)
6919 {
6920 int header =
6921 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6922 ? 1
6923 : 0);
6924
6925 if (current_nr_blocks == header + 1)
6926 update_liveness_on_insn
6927 (insn: sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6928 }
6929
6930 /* Set hooks so that no newly generated insn will go out unnoticed. */
6931 sel_register_cfg_hooks ();
6932
6933 /* !!! We call target.sched.init () for the whole region, but we invoke
6934 targetm.sched.finish () for every ebb. */
6935 if (targetm.sched.init)
6936 /* None of the arguments are actually used in any target. */
6937 targetm.sched.init (sched_dump, sched_verbose, -1);
6938
6939 first_emitted_uid = get_max_uid () + 1;
6940 preheader_removed = false;
6941
6942 /* Reset register allocation ticks array. */
6943 memset (s: reg_rename_tick, c: 0, n: sizeof reg_rename_tick);
6944 reg_rename_this_tick = 0;
6945
6946 forced_ebb_heads = BITMAP_ALLOC (NULL);
6947
6948 setup_nop_vinsn ();
6949 current_copies = BITMAP_ALLOC (NULL);
6950 current_originators = BITMAP_ALLOC (NULL);
6951 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6952
6953 return false;
6954}
6955
6956/* Simplify insns after the scheduling. */
6957static void
6958simplify_changed_insns (void)
6959{
6960 int i;
6961
6962 for (i = 0; i < current_nr_blocks; i++)
6963 {
6964 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6965 rtx_insn *insn;
6966
6967 FOR_BB_INSNS (bb, insn)
6968 if (INSN_P (insn))
6969 {
6970 expr_t expr = INSN_EXPR (insn);
6971
6972 if (EXPR_WAS_SUBSTITUTED (expr))
6973 validate_simplify_insn (insn);
6974 }
6975 }
6976}
6977
6978/* Find boundaries of the EBB starting from basic block BB, marking blocks of
6979 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6980 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6981static void
6982find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6983{
6984 rtx_insn *head, *tail;
6985 basic_block bb1 = bb;
6986 if (sched_verbose >= 2)
6987 sel_print (fmt: "Finishing schedule in bbs: ");
6988
6989 do
6990 {
6991 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6992
6993 if (sched_verbose >= 2)
6994 sel_print (fmt: "%d; ", bb1->index);
6995 }
6996 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb: bb1)));
6997
6998 if (sched_verbose >= 2)
6999 sel_print (fmt: "\n");
7000
7001 get_ebb_head_tail (bb, bb1, &head, &tail);
7002
7003 current_sched_info->head = head;
7004 current_sched_info->tail = tail;
7005 current_sched_info->prev_head = PREV_INSN (insn: head);
7006 current_sched_info->next_tail = NEXT_INSN (insn: tail);
7007}
7008
7009/* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7010static void
7011reset_sched_cycles_in_current_ebb (void)
7012{
7013 int last_clock = 0;
7014 int haifa_last_clock = -1;
7015 int haifa_clock = 0;
7016 int issued_insns = 0;
7017 insn_t insn;
7018
7019 if (targetm.sched.init)
7020 {
7021 /* None of the arguments are actually used in any target.
7022 NB: We should have md_reset () hook for cases like this. */
7023 targetm.sched.init (sched_dump, sched_verbose, -1);
7024 }
7025
7026 state_reset (curr_state);
7027 advance_state (curr_state);
7028
7029 for (insn = current_sched_info->head;
7030 insn != current_sched_info->next_tail;
7031 insn = NEXT_INSN (insn))
7032 {
7033 int cost, haifa_cost;
7034 int sort_p;
7035 bool asm_p, real_insn, after_stall, all_issued;
7036 int clock;
7037
7038 if (!INSN_P (insn))
7039 continue;
7040
7041 asm_p = false;
7042 real_insn = recog_memoized (insn) >= 0;
7043 clock = INSN_SCHED_CYCLE (insn);
7044
7045 cost = clock - last_clock;
7046
7047 /* Initialize HAIFA_COST. */
7048 if (! real_insn)
7049 {
7050 asm_p = INSN_ASM_P (insn);
7051
7052 if (asm_p)
7053 /* This is asm insn which *had* to be scheduled first
7054 on the cycle. */
7055 haifa_cost = 1;
7056 else
7057 /* This is a use/clobber insn. It should not change
7058 cost. */
7059 haifa_cost = 0;
7060 }
7061 else
7062 haifa_cost = estimate_insn_cost (insn, state: curr_state);
7063
7064 /* Stall for whatever cycles we've stalled before. */
7065 after_stall = 0;
7066 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7067 {
7068 haifa_cost = cost;
7069 after_stall = 1;
7070 }
7071 all_issued = issued_insns == issue_rate;
7072 if (haifa_cost == 0 && all_issued)
7073 haifa_cost = 1;
7074 if (haifa_cost > 0)
7075 {
7076 int i = 0;
7077
7078 while (haifa_cost--)
7079 {
7080 advance_state (curr_state);
7081 issued_insns = 0;
7082 i++;
7083
7084 if (sched_verbose >= 2)
7085 {
7086 sel_print (fmt: "advance_state (state_transition)\n");
7087 debug_state (state: curr_state);
7088 }
7089
7090 /* The DFA may report that e.g. insn requires 2 cycles to be
7091 issued, but on the next cycle it says that insn is ready
7092 to go. Check this here. */
7093 if (!after_stall
7094 && real_insn
7095 && haifa_cost > 0
7096 && estimate_insn_cost (insn, state: curr_state) == 0)
7097 break;
7098
7099 /* When the data dependency stall is longer than the DFA stall,
7100 and when we have issued exactly issue_rate insns and stalled,
7101 it could be that after this longer stall the insn will again
7102 become unavailable to the DFA restrictions. Looks strange
7103 but happens e.g. on x86-64. So recheck DFA on the last
7104 iteration. */
7105 if ((after_stall || all_issued)
7106 && real_insn
7107 && haifa_cost == 0)
7108 haifa_cost = estimate_insn_cost (insn, state: curr_state);
7109 }
7110
7111 haifa_clock += i;
7112 if (sched_verbose >= 2)
7113 sel_print (fmt: "haifa clock: %d\n", haifa_clock);
7114 }
7115 else
7116 gcc_assert (haifa_cost == 0);
7117
7118 if (sched_verbose >= 2)
7119 sel_print (fmt: "Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7120
7121 if (targetm.sched.dfa_new_cycle)
7122 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7123 haifa_last_clock, haifa_clock,
7124 &sort_p))
7125 {
7126 advance_state (curr_state);
7127 issued_insns = 0;
7128 haifa_clock++;
7129 if (sched_verbose >= 2)
7130 {
7131 sel_print (fmt: "advance_state (dfa_new_cycle)\n");
7132 debug_state (state: curr_state);
7133 sel_print (fmt: "haifa clock: %d\n", haifa_clock + 1);
7134 }
7135 }
7136
7137 if (real_insn)
7138 {
7139 static state_t temp = NULL;
7140
7141 if (!temp)
7142 temp = xmalloc (dfa_state_size);
7143 memcpy (dest: temp, src: curr_state, n: dfa_state_size);
7144
7145 cost = state_transition (curr_state, insn);
7146 if (memcmp (s1: temp, s2: curr_state, n: dfa_state_size))
7147 issued_insns++;
7148
7149 if (sched_verbose >= 2)
7150 {
7151 sel_print (fmt: "scheduled insn %d, clock %d\n", INSN_UID (insn),
7152 haifa_clock + 1);
7153 debug_state (state: curr_state);
7154 }
7155 gcc_assert (cost < 0);
7156 }
7157
7158 if (targetm.sched.variable_issue)
7159 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7160
7161 INSN_SCHED_CYCLE (insn) = haifa_clock;
7162
7163 last_clock = clock;
7164 haifa_last_clock = haifa_clock;
7165 }
7166}
7167
7168/* Put TImode markers on insns starting a new issue group. */
7169static void
7170put_TImodes (void)
7171{
7172 int last_clock = -1;
7173 insn_t insn;
7174
7175 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7176 insn = NEXT_INSN (insn))
7177 {
7178 int cost, clock;
7179
7180 if (!INSN_P (insn))
7181 continue;
7182
7183 clock = INSN_SCHED_CYCLE (insn);
7184 cost = (last_clock == -1) ? 1 : clock - last_clock;
7185
7186 gcc_assert (cost >= 0);
7187
7188 if (issue_rate > 1
7189 && GET_CODE (PATTERN (insn)) != USE
7190 && GET_CODE (PATTERN (insn)) != CLOBBER)
7191 {
7192 if (reload_completed && cost > 0)
7193 PUT_MODE (x: insn, TImode);
7194
7195 last_clock = clock;
7196 }
7197
7198 if (sched_verbose >= 2)
7199 sel_print (fmt: "Cost for insn %d is %d\n", INSN_UID (insn), cost);
7200 }
7201}
7202
7203/* Perform MD_FINISH on EBBs comprising current region. When
7204 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7205 to produce correct sched cycles on insns. */
7206static void
7207sel_region_target_finish (bool reset_sched_cycles_p)
7208{
7209 int i;
7210 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7211
7212 for (i = 0; i < current_nr_blocks; i++)
7213 {
7214 if (bitmap_bit_p (scheduled_blocks, i))
7215 continue;
7216
7217 /* While pipelining outer loops, skip bundling for loop
7218 preheaders. Those will be rescheduled in the outer loop. */
7219 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7220 continue;
7221
7222 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7223
7224 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7225 continue;
7226
7227 if (reset_sched_cycles_p)
7228 reset_sched_cycles_in_current_ebb ();
7229
7230 if (targetm.sched.init)
7231 targetm.sched.init (sched_dump, sched_verbose, -1);
7232
7233 put_TImodes ();
7234
7235 if (targetm.sched.finish)
7236 {
7237 targetm.sched.finish (sched_dump, sched_verbose);
7238
7239 /* Extend luids so that insns generated by the target will
7240 get zero luid. */
7241 sched_extend_luids ();
7242 }
7243 }
7244
7245 BITMAP_FREE (scheduled_blocks);
7246}
7247
7248/* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7249 is true, make an additional pass emulating scheduler to get correct insn
7250 cycles for md_finish calls. */
7251static void
7252sel_region_finish (bool reset_sched_cycles_p)
7253{
7254 simplify_changed_insns ();
7255 sched_finish_ready_list ();
7256 free_nop_pool ();
7257
7258 /* Free the vectors. */
7259 vec_av_set.release ();
7260 BITMAP_FREE (current_copies);
7261 BITMAP_FREE (current_originators);
7262 BITMAP_FREE (code_motion_visited_blocks);
7263 vinsn_vec_free (vinsn_vec&: vec_bookkeeping_blocked_vinsns);
7264 vinsn_vec_free (vinsn_vec&: vec_target_unavailable_vinsns);
7265
7266 /* If LV_SET of the region head should be updated, do it now because
7267 there will be no other chance. */
7268 {
7269 succ_iterator si;
7270 insn_t insn;
7271
7272 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7273 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7274 {
7275 basic_block bb = BLOCK_FOR_INSN (insn);
7276
7277 if (!BB_LV_SET_VALID_P (bb))
7278 compute_live (insn);
7279 }
7280 }
7281
7282 /* Emulate the Haifa scheduler for bundling. */
7283 if (reload_completed)
7284 sel_region_target_finish (reset_sched_cycles_p);
7285
7286 sel_finish_global_and_expr ();
7287
7288 BITMAP_FREE (forced_ebb_heads);
7289
7290 free_nop_vinsn ();
7291
7292 finish_deps_global ();
7293 sched_finish_luids ();
7294 h_d_i_d.release ();
7295
7296 sel_finish_bbs ();
7297 BITMAP_FREE (blocks_to_reschedule);
7298
7299 sel_unregister_cfg_hooks ();
7300
7301 max_issue_size = 0;
7302}
7303
7304
7305/* Functions that implement the scheduler driver. */
7306
7307/* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7308 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7309 of insns scheduled -- these would be postprocessed later. */
7310static void
7311schedule_on_fences (flist_t fences, int max_seqno,
7312 ilist_t **scheduled_insns_tailpp)
7313{
7314 flist_t old_fences = fences;
7315
7316 if (sched_verbose >= 1)
7317 {
7318 sel_print (fmt: "\nScheduling on fences: ");
7319 dump_flist (fences);
7320 sel_print (fmt: "\n");
7321 }
7322
7323 scheduled_something_on_previous_fence = false;
7324 for (; fences; fences = FLIST_NEXT (fences))
7325 {
7326 fence_t fence = NULL;
7327 int seqno = 0;
7328 flist_t fences2;
7329 bool first_p = true;
7330
7331 /* Choose the next fence group to schedule.
7332 The fact that insn can be scheduled only once
7333 on the cycle is guaranteed by two properties:
7334 1. seqnos of parallel groups decrease with each iteration.
7335 2. If is_ineligible_successor () sees the larger seqno, it
7336 checks if candidate insn is_in_current_fence_p (). */
7337 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7338 {
7339 fence_t f = FLIST_FENCE (fences2);
7340
7341 if (!FENCE_PROCESSED_P (f))
7342 {
7343 int i = INSN_SEQNO (FENCE_INSN (f));
7344
7345 if (first_p || i > seqno)
7346 {
7347 seqno = i;
7348 fence = f;
7349 first_p = false;
7350 }
7351 else
7352 /* ??? Seqnos of different groups should be different. */
7353 gcc_assert (1 || i != seqno);
7354 }
7355 }
7356
7357 gcc_assert (fence);
7358
7359 /* As FENCE is nonnull, SEQNO is initialized. */
7360 seqno -= max_seqno + 1;
7361 fill_insns (fence, seqno, scheduled_insns_tailpp);
7362 FENCE_PROCESSED_P (fence) = true;
7363 }
7364
7365 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7366 don't need to keep bookkeeping-invalidated and target-unavailable
7367 vinsns any more. */
7368 vinsn_vec_clear (vinsn_vec: &vec_bookkeeping_blocked_vinsns);
7369 vinsn_vec_clear (vinsn_vec: &vec_target_unavailable_vinsns);
7370}
7371
7372/* Calculate MIN_SEQNO and MAX_SEQNO. */
7373static void
7374find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7375{
7376 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7377
7378 /* The first element is already processed. */
7379 while ((fences = FLIST_NEXT (fences)))
7380 {
7381 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7382
7383 if (*min_seqno > seqno)
7384 *min_seqno = seqno;
7385 else if (*max_seqno < seqno)
7386 *max_seqno = seqno;
7387 }
7388}
7389
7390/* Calculate new fences from FENCES. Write the current time to PTIME. */
7391static flist_t
7392calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7393{
7394 flist_t old_fences = fences;
7395 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7396 int max_time = 0;
7397
7398 flist_tail_init (new_fences);
7399 for (; fences; fences = FLIST_NEXT (fences))
7400 {
7401 fence_t fence = FLIST_FENCE (fences);
7402 insn_t insn;
7403
7404 if (!FENCE_BNDS (fence))
7405 {
7406 /* This fence doesn't have any successors. */
7407 if (!FENCE_SCHEDULED_P (fence))
7408 {
7409 /* Nothing was scheduled on this fence. */
7410 int seqno;
7411
7412 insn = FENCE_INSN (fence);
7413 seqno = INSN_SEQNO (insn);
7414 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7415
7416 if (sched_verbose >= 1)
7417 sel_print (fmt: "Fence %d[%d] has not changed\n",
7418 INSN_UID (insn),
7419 BLOCK_NUM (insn));
7420 move_fence_to_fences (fences, new_fences);
7421 }
7422 }
7423 else
7424 extract_new_fences_from (old_fences: fences, new_fences, orig_max_seqno);
7425 max_time = MAX (max_time, FENCE_CYCLE (fence));
7426 }
7427
7428 flist_clear (&old_fences);
7429 *ptime = max_time;
7430 return FLIST_TAIL_HEAD (new_fences);
7431}
7432
7433/* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7434 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7435 the highest seqno used in a region. Return the updated highest seqno. */
7436static int
7437update_seqnos_and_stage (int min_seqno, int max_seqno,
7438 int highest_seqno_in_use,
7439 ilist_t *pscheduled_insns)
7440{
7441 int new_hs;
7442 ilist_iterator ii;
7443 insn_t insn;
7444
7445 /* Actually, new_hs is the seqno of the instruction, that was
7446 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7447 if (*pscheduled_insns)
7448 {
7449 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7450 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7451 gcc_assert (new_hs > highest_seqno_in_use);
7452 }
7453 else
7454 new_hs = highest_seqno_in_use;
7455
7456 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7457 {
7458 gcc_assert (INSN_SEQNO (insn) < 0);
7459 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7460 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7461
7462 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7463 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7464 require > 1GB of memory e.g. on limit-fnargs.c. */
7465 if (! pipelining_p)
7466 free_data_for_scheduled_insn (insn);
7467 }
7468
7469 ilist_clear (pscheduled_insns);
7470 global_level++;
7471
7472 return new_hs;
7473}
7474
7475/* The main driver for scheduling a region. This function is responsible
7476 for correct propagation of fences (i.e. scheduling points) and creating
7477 a group of parallel insns at each of them. It also supports
7478 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7479 of scheduling. */
7480static void
7481sel_sched_region_2 (int orig_max_seqno)
7482{
7483 int highest_seqno_in_use = orig_max_seqno;
7484 int max_time = 0;
7485
7486 stat_bookkeeping_copies = 0;
7487 stat_insns_needed_bookkeeping = 0;
7488 stat_renamed_scheduled = 0;
7489 stat_substitutions_total = 0;
7490 num_insns_scheduled = 0;
7491
7492 while (fences)
7493 {
7494 int min_seqno, max_seqno;
7495 ilist_t scheduled_insns = NULL;
7496 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7497
7498 find_min_max_seqno (fences, min_seqno: &min_seqno, max_seqno: &max_seqno);
7499 schedule_on_fences (fences, max_seqno, scheduled_insns_tailpp: &scheduled_insns_tailp);
7500 fences = calculate_new_fences (fences, orig_max_seqno, ptime: &max_time);
7501 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7502 highest_seqno_in_use,
7503 pscheduled_insns: &scheduled_insns);
7504 }
7505
7506 if (sched_verbose >= 1)
7507 {
7508 sel_print (fmt: "Total scheduling time: %d cycles\n", max_time);
7509 sel_print (fmt: "Scheduled %d bookkeeping copies, %d insns needed "
7510 "bookkeeping, %d insns renamed, %d insns substituted\n",
7511 stat_bookkeeping_copies,
7512 stat_insns_needed_bookkeeping,
7513 stat_renamed_scheduled,
7514 stat_substitutions_total);
7515 }
7516}
7517
7518/* Schedule a region. When pipelining, search for possibly never scheduled
7519 bookkeeping code and schedule it. Reschedule pipelined code without
7520 pipelining after. */
7521static void
7522sel_sched_region_1 (void)
7523{
7524 int orig_max_seqno;
7525
7526 /* Remove empty blocks that might be in the region from the beginning. */
7527 purge_empty_blocks ();
7528
7529 orig_max_seqno = init_seqno (NULL, NULL);
7530 gcc_assert (orig_max_seqno >= 1);
7531
7532 /* When pipelining outer loops, create fences on the loop header,
7533 not preheader. */
7534 fences = NULL;
7535 if (current_loop_nest)
7536 init_fences (BB_END (EBB_FIRST_BB (0)));
7537 else
7538 init_fences (bb_note (EBB_FIRST_BB (0)));
7539 global_level = 1;
7540
7541 sel_sched_region_2 (orig_max_seqno);
7542
7543 gcc_assert (fences == NULL);
7544
7545 if (pipelining_p)
7546 {
7547 int i;
7548 basic_block bb;
7549 struct flist_tail_def _new_fences;
7550 flist_tail_t new_fences = &_new_fences;
7551 bool do_p = true;
7552
7553 pipelining_p = false;
7554 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7555 bookkeeping_p = false;
7556 enable_schedule_as_rhs_p = false;
7557
7558 /* Schedule newly created code, that has not been scheduled yet. */
7559 do_p = true;
7560
7561 while (do_p)
7562 {
7563 do_p = false;
7564
7565 for (i = 0; i < current_nr_blocks; i++)
7566 {
7567 basic_block bb = EBB_FIRST_BB (i);
7568
7569 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7570 {
7571 if (! bb_ends_ebb_p (bb))
7572 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7573 if (sel_bb_empty_p (bb))
7574 {
7575 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7576 continue;
7577 }
7578 clear_outdated_rtx_info (bb);
7579 if (sel_insn_is_speculation_check (BB_END (bb))
7580 && JUMP_P (BB_END (bb)))
7581 bitmap_set_bit (blocks_to_reschedule,
7582 BRANCH_EDGE (bb)->dest->index);
7583 }
7584 else if (! sel_bb_empty_p (bb)
7585 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7586 bitmap_set_bit (blocks_to_reschedule, bb->index);
7587 }
7588
7589 for (i = 0; i < current_nr_blocks; i++)
7590 {
7591 bb = EBB_FIRST_BB (i);
7592
7593 /* While pipelining outer loops, skip bundling for loop
7594 preheaders. Those will be rescheduled in the outer
7595 loop. */
7596 if (sel_is_loop_preheader_p (bb))
7597 {
7598 clear_outdated_rtx_info (bb);
7599 continue;
7600 }
7601
7602 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7603 {
7604 flist_tail_init (new_fences);
7605
7606 orig_max_seqno = init_seqno (blocks_to_reschedule, from: bb);
7607
7608 /* Mark BB as head of the new ebb. */
7609 bitmap_set_bit (forced_ebb_heads, bb->index);
7610
7611 gcc_assert (fences == NULL);
7612
7613 init_fences (bb_note (bb));
7614
7615 sel_sched_region_2 (orig_max_seqno);
7616
7617 do_p = true;
7618 break;
7619 }
7620 }
7621 }
7622 }
7623}
7624
7625/* Schedule the RGN region. */
7626void
7627sel_sched_region (int rgn)
7628{
7629 bool schedule_p;
7630 bool reset_sched_cycles_p;
7631
7632 if (sel_region_init (rgn))
7633 return;
7634
7635 if (sched_verbose >= 1)
7636 sel_print (fmt: "Scheduling region %d\n", rgn);
7637
7638 schedule_p = (!sched_is_disabled_for_current_region_p ()
7639 && dbg_cnt (index: sel_sched_region_cnt));
7640 reset_sched_cycles_p = pipelining_p;
7641 if (schedule_p)
7642 sel_sched_region_1 ();
7643 else
7644 {
7645 /* Schedule always selecting the next insn to make the correct data
7646 for bundling or other later passes. */
7647 pipelining_p = false;
7648 reset_sched_cycles_p = false;
7649 force_next_insn = 1;
7650 sel_sched_region_1 ();
7651 force_next_insn = 0;
7652 }
7653 sel_region_finish (reset_sched_cycles_p);
7654}
7655
7656/* Perform global init for the scheduler. */
7657static void
7658sel_global_init (void)
7659{
7660 /* Remove empty blocks: their presence can break assumptions elsewhere,
7661 e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
7662 cleanup_cfg (0);
7663
7664 calculate_dominance_info (CDI_DOMINATORS);
7665 alloc_sched_pools ();
7666
7667 /* Setup the infos for sched_init. */
7668 sel_setup_sched_infos ();
7669 setup_sched_dump ();
7670
7671 sched_rgn_init (false);
7672 sched_init ();
7673
7674 sched_init_bbs ();
7675 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7676 after_recovery = 0;
7677 can_issue_more = issue_rate;
7678
7679 sched_extend_target ();
7680 sched_deps_init (true);
7681 setup_nop_and_exit_insns ();
7682 sel_extend_global_bb_info ();
7683 init_lv_sets ();
7684 init_hard_regs_data ();
7685}
7686
7687/* Free the global data of the scheduler. */
7688static void
7689sel_global_finish (void)
7690{
7691 free_bb_note_pool ();
7692 free_lv_sets ();
7693 sel_finish_global_bb_info ();
7694
7695 free_regset_pool ();
7696 free_nop_and_exit_insns ();
7697
7698 sched_rgn_finish ();
7699 sched_deps_finish ();
7700 sched_finish ();
7701
7702 if (current_loops)
7703 sel_finish_pipelining ();
7704
7705 free_sched_pools ();
7706 free_dominance_info (CDI_DOMINATORS);
7707}
7708
7709/* Return true when we need to skip selective scheduling. Used for debugging. */
7710bool
7711maybe_skip_selective_scheduling (void)
7712{
7713 return ! dbg_cnt (index: sel_sched_cnt);
7714}
7715
7716/* The entry point. */
7717void
7718run_selective_scheduling (void)
7719{
7720 int rgn;
7721
7722 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7723 return;
7724
7725 sel_global_init ();
7726
7727 for (rgn = 0; rgn < nr_regions; rgn++)
7728 sel_sched_region (rgn);
7729
7730 sel_global_finish ();
7731}
7732
7733#endif
7734

source code of gcc/sel-sched.cc