1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2/*
3 * Copyright(c) 2015 - 2020 Intel Corporation.
4 * Copyright(c) 2021 Cornelis Networks.
5 */
6
7#include <linux/pci.h>
8#include <linux/netdevice.h>
9#include <linux/vmalloc.h>
10#include <linux/delay.h>
11#include <linux/xarray.h>
12#include <linux/module.h>
13#include <linux/printk.h>
14#include <linux/hrtimer.h>
15#include <linux/bitmap.h>
16#include <linux/numa.h>
17#include <rdma/rdma_vt.h>
18
19#include "hfi.h"
20#include "device.h"
21#include "common.h"
22#include "trace.h"
23#include "mad.h"
24#include "sdma.h"
25#include "debugfs.h"
26#include "verbs.h"
27#include "aspm.h"
28#include "affinity.h"
29#include "vnic.h"
30#include "exp_rcv.h"
31#include "netdev.h"
32
33#undef pr_fmt
34#define pr_fmt(fmt) DRIVER_NAME ": " fmt
35
36/*
37 * min buffers we want to have per context, after driver
38 */
39#define HFI1_MIN_USER_CTXT_BUFCNT 7
40
41#define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
42#define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
43
44#define NUM_IB_PORTS 1
45
46/*
47 * Number of user receive contexts we are configured to use (to allow for more
48 * pio buffers per ctxt, etc.) Zero means use one user context per CPU.
49 */
50int num_user_contexts = -1;
51module_param_named(num_user_contexts, num_user_contexts, int, 0444);
52MODULE_PARM_DESC(
53 num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
54
55uint krcvqs[RXE_NUM_DATA_VL];
56int krcvqsset;
57module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
58MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
59
60/* computed based on above array */
61unsigned long n_krcvqs;
62
63static unsigned hfi1_rcvarr_split = 25;
64module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
65MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
66
67static uint eager_buffer_size = (8 << 20); /* 8MB */
68module_param(eager_buffer_size, uint, S_IRUGO);
69MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
70
71static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
72module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
73MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
74
75static uint hfi1_hdrq_entsize = 32;
76module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
77MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
78
79unsigned int user_credit_return_threshold = 33; /* default is 33% */
80module_param(user_credit_return_threshold, uint, S_IRUGO);
81MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
82
83DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
84
85static int hfi1_create_kctxt(struct hfi1_devdata *dd,
86 struct hfi1_pportdata *ppd)
87{
88 struct hfi1_ctxtdata *rcd;
89 int ret;
90
91 /* Control context has to be always 0 */
92 BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
93
94 ret = hfi1_create_ctxtdata(ppd, numa: dd->node, rcd: &rcd);
95 if (ret < 0) {
96 dd_dev_err(dd, "Kernel receive context allocation failed\n");
97 return ret;
98 }
99
100 /*
101 * Set up the kernel context flags here and now because they use
102 * default values for all receive side memories. User contexts will
103 * be handled as they are created.
104 */
105 rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
106 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
107 HFI1_CAP_KGET(NODROP_EGR_FULL) |
108 HFI1_CAP_KGET(DMA_RTAIL);
109
110 /* Control context must use DMA_RTAIL */
111 if (rcd->ctxt == HFI1_CTRL_CTXT)
112 rcd->flags |= HFI1_CAP_DMA_RTAIL;
113 rcd->fast_handler = get_dma_rtail_setting(rcd) ?
114 handle_receive_interrupt_dma_rtail :
115 handle_receive_interrupt_nodma_rtail;
116
117 hfi1_set_seq_cnt(rcd, cnt: 1);
118
119 rcd->sc = sc_alloc(dd, SC_ACK, hdrqentsize: rcd->rcvhdrqentsize, numa: dd->node);
120 if (!rcd->sc) {
121 dd_dev_err(dd, "Kernel send context allocation failed\n");
122 return -ENOMEM;
123 }
124 hfi1_init_ctxt(sc: rcd->sc);
125
126 return 0;
127}
128
129/*
130 * Create the receive context array and one or more kernel contexts
131 */
132int hfi1_create_kctxts(struct hfi1_devdata *dd)
133{
134 u16 i;
135 int ret;
136
137 dd->rcd = kcalloc_node(n: dd->num_rcv_contexts, size: sizeof(*dd->rcd),
138 GFP_KERNEL, node: dd->node);
139 if (!dd->rcd)
140 return -ENOMEM;
141
142 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
143 ret = hfi1_create_kctxt(dd, ppd: dd->pport);
144 if (ret)
145 goto bail;
146 }
147
148 return 0;
149bail:
150 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
151 hfi1_free_ctxt(rcd: dd->rcd[i]);
152
153 /* All the contexts should be freed, free the array */
154 kfree(objp: dd->rcd);
155 dd->rcd = NULL;
156 return ret;
157}
158
159/*
160 * Helper routines for the receive context reference count (rcd and uctxt).
161 */
162static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
163{
164 kref_init(kref: &rcd->kref);
165}
166
167/**
168 * hfi1_rcd_free - When reference is zero clean up.
169 * @kref: pointer to an initialized rcd data structure
170 *
171 */
172static void hfi1_rcd_free(struct kref *kref)
173{
174 unsigned long flags;
175 struct hfi1_ctxtdata *rcd =
176 container_of(kref, struct hfi1_ctxtdata, kref);
177
178 spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
179 rcd->dd->rcd[rcd->ctxt] = NULL;
180 spin_unlock_irqrestore(lock: &rcd->dd->uctxt_lock, flags);
181
182 hfi1_free_ctxtdata(dd: rcd->dd, rcd);
183
184 kfree(objp: rcd);
185}
186
187/**
188 * hfi1_rcd_put - decrement reference for rcd
189 * @rcd: pointer to an initialized rcd data structure
190 *
191 * Use this to put a reference after the init.
192 */
193int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
194{
195 if (rcd)
196 return kref_put(kref: &rcd->kref, release: hfi1_rcd_free);
197
198 return 0;
199}
200
201/**
202 * hfi1_rcd_get - increment reference for rcd
203 * @rcd: pointer to an initialized rcd data structure
204 *
205 * Use this to get a reference after the init.
206 *
207 * Return : reflect kref_get_unless_zero(), which returns non-zero on
208 * increment, otherwise 0.
209 */
210int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
211{
212 return kref_get_unless_zero(kref: &rcd->kref);
213}
214
215/**
216 * allocate_rcd_index - allocate an rcd index from the rcd array
217 * @dd: pointer to a valid devdata structure
218 * @rcd: rcd data structure to assign
219 * @index: pointer to index that is allocated
220 *
221 * Find an empty index in the rcd array, and assign the given rcd to it.
222 * If the array is full, we are EBUSY.
223 *
224 */
225static int allocate_rcd_index(struct hfi1_devdata *dd,
226 struct hfi1_ctxtdata *rcd, u16 *index)
227{
228 unsigned long flags;
229 u16 ctxt;
230
231 spin_lock_irqsave(&dd->uctxt_lock, flags);
232 for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
233 if (!dd->rcd[ctxt])
234 break;
235
236 if (ctxt < dd->num_rcv_contexts) {
237 rcd->ctxt = ctxt;
238 dd->rcd[ctxt] = rcd;
239 hfi1_rcd_init(rcd);
240 }
241 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
242
243 if (ctxt >= dd->num_rcv_contexts)
244 return -EBUSY;
245
246 *index = ctxt;
247
248 return 0;
249}
250
251/**
252 * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
253 * array
254 * @dd: pointer to a valid devdata structure
255 * @ctxt: the index of an possilbe rcd
256 *
257 * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
258 * ctxt index is valid.
259 *
260 * The caller is responsible for making the _put().
261 *
262 */
263struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
264 u16 ctxt)
265{
266 if (ctxt < dd->num_rcv_contexts)
267 return hfi1_rcd_get_by_index(dd, ctxt);
268
269 return NULL;
270}
271
272/**
273 * hfi1_rcd_get_by_index - get by index
274 * @dd: pointer to a valid devdata structure
275 * @ctxt: the index of an possilbe rcd
276 *
277 * We need to protect access to the rcd array. If access is needed to
278 * one or more index, get the protecting spinlock and then increment the
279 * kref.
280 *
281 * The caller is responsible for making the _put().
282 *
283 */
284struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
285{
286 unsigned long flags;
287 struct hfi1_ctxtdata *rcd = NULL;
288
289 spin_lock_irqsave(&dd->uctxt_lock, flags);
290 if (dd->rcd[ctxt]) {
291 rcd = dd->rcd[ctxt];
292 if (!hfi1_rcd_get(rcd))
293 rcd = NULL;
294 }
295 spin_unlock_irqrestore(lock: &dd->uctxt_lock, flags);
296
297 return rcd;
298}
299
300/*
301 * Common code for user and kernel context create and setup.
302 * NOTE: the initial kref is done here (hf1_rcd_init()).
303 */
304int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
305 struct hfi1_ctxtdata **context)
306{
307 struct hfi1_devdata *dd = ppd->dd;
308 struct hfi1_ctxtdata *rcd;
309 unsigned kctxt_ngroups = 0;
310 u32 base;
311
312 if (dd->rcv_entries.nctxt_extra >
313 dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
314 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
315 (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
316 rcd = kzalloc_node(size: sizeof(*rcd), GFP_KERNEL, node: numa);
317 if (rcd) {
318 u32 rcvtids, max_entries;
319 u16 ctxt;
320 int ret;
321
322 ret = allocate_rcd_index(dd, rcd, index: &ctxt);
323 if (ret) {
324 *context = NULL;
325 kfree(objp: rcd);
326 return ret;
327 }
328
329 INIT_LIST_HEAD(list: &rcd->qp_wait_list);
330 hfi1_exp_tid_group_init(rcd);
331 rcd->ppd = ppd;
332 rcd->dd = dd;
333 rcd->numa_id = numa;
334 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
335 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
336 rcd->slow_handler = handle_receive_interrupt;
337 rcd->do_interrupt = rcd->slow_handler;
338 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
339
340 mutex_init(&rcd->exp_mutex);
341 spin_lock_init(&rcd->exp_lock);
342 INIT_LIST_HEAD(list: &rcd->flow_queue.queue_head);
343 INIT_LIST_HEAD(list: &rcd->rarr_queue.queue_head);
344
345 hfi1_cdbg(PROC, "setting up context %u", rcd->ctxt);
346
347 /*
348 * Calculate the context's RcvArray entry starting point.
349 * We do this here because we have to take into account all
350 * the RcvArray entries that previous context would have
351 * taken and we have to account for any extra groups assigned
352 * to the static (kernel) or dynamic (vnic/user) contexts.
353 */
354 if (ctxt < dd->first_dyn_alloc_ctxt) {
355 if (ctxt < kctxt_ngroups) {
356 base = ctxt * (dd->rcv_entries.ngroups + 1);
357 rcd->rcv_array_groups++;
358 } else {
359 base = kctxt_ngroups +
360 (ctxt * dd->rcv_entries.ngroups);
361 }
362 } else {
363 u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
364
365 base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
366 kctxt_ngroups);
367 if (ct < dd->rcv_entries.nctxt_extra) {
368 base += ct * (dd->rcv_entries.ngroups + 1);
369 rcd->rcv_array_groups++;
370 } else {
371 base += dd->rcv_entries.nctxt_extra +
372 (ct * dd->rcv_entries.ngroups);
373 }
374 }
375 rcd->eager_base = base * dd->rcv_entries.group_size;
376
377 rcd->rcvhdrq_cnt = rcvhdrcnt;
378 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
379 rcd->rhf_offset =
380 rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
381 /*
382 * Simple Eager buffer allocation: we have already pre-allocated
383 * the number of RcvArray entry groups. Each ctxtdata structure
384 * holds the number of groups for that context.
385 *
386 * To follow CSR requirements and maintain cacheline alignment,
387 * make sure all sizes and bases are multiples of group_size.
388 *
389 * The expected entry count is what is left after assigning
390 * eager.
391 */
392 max_entries = rcd->rcv_array_groups *
393 dd->rcv_entries.group_size;
394 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
395 rcd->egrbufs.count = round_down(rcvtids,
396 dd->rcv_entries.group_size);
397 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
398 dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
399 rcd->ctxt);
400 rcd->egrbufs.count = MAX_EAGER_ENTRIES;
401 }
402 hfi1_cdbg(PROC,
403 "ctxt%u: max Eager buffer RcvArray entries: %u",
404 rcd->ctxt, rcd->egrbufs.count);
405
406 /*
407 * Allocate array that will hold the eager buffer accounting
408 * data.
409 * This will allocate the maximum possible buffer count based
410 * on the value of the RcvArray split parameter.
411 * The resulting value will be rounded down to the closest
412 * multiple of dd->rcv_entries.group_size.
413 */
414 rcd->egrbufs.buffers =
415 kcalloc_node(n: rcd->egrbufs.count,
416 size: sizeof(*rcd->egrbufs.buffers),
417 GFP_KERNEL, node: numa);
418 if (!rcd->egrbufs.buffers)
419 goto bail;
420 rcd->egrbufs.rcvtids =
421 kcalloc_node(n: rcd->egrbufs.count,
422 size: sizeof(*rcd->egrbufs.rcvtids),
423 GFP_KERNEL, node: numa);
424 if (!rcd->egrbufs.rcvtids)
425 goto bail;
426 rcd->egrbufs.size = eager_buffer_size;
427 /*
428 * The size of the buffers programmed into the RcvArray
429 * entries needs to be big enough to handle the highest
430 * MTU supported.
431 */
432 if (rcd->egrbufs.size < hfi1_max_mtu) {
433 rcd->egrbufs.size = __roundup_pow_of_two(n: hfi1_max_mtu);
434 hfi1_cdbg(PROC,
435 "ctxt%u: eager bufs size too small. Adjusting to %u",
436 rcd->ctxt, rcd->egrbufs.size);
437 }
438 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
439
440 /* Applicable only for statically created kernel contexts */
441 if (ctxt < dd->first_dyn_alloc_ctxt) {
442 rcd->opstats = kzalloc_node(size: sizeof(*rcd->opstats),
443 GFP_KERNEL, node: numa);
444 if (!rcd->opstats)
445 goto bail;
446
447 /* Initialize TID flow generations for the context */
448 hfi1_kern_init_ctxt_generations(rcd);
449 }
450
451 *context = rcd;
452 return 0;
453 }
454
455bail:
456 *context = NULL;
457 hfi1_free_ctxt(rcd);
458 return -ENOMEM;
459}
460
461/**
462 * hfi1_free_ctxt - free context
463 * @rcd: pointer to an initialized rcd data structure
464 *
465 * This wrapper is the free function that matches hfi1_create_ctxtdata().
466 * When a context is done being used (kernel or user), this function is called
467 * for the "final" put to match the kref init from hfi1_create_ctxtdata().
468 * Other users of the context do a get/put sequence to make sure that the
469 * structure isn't removed while in use.
470 */
471void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
472{
473 hfi1_rcd_put(rcd);
474}
475
476/*
477 * Select the largest ccti value over all SLs to determine the intra-
478 * packet gap for the link.
479 *
480 * called with cca_timer_lock held (to protect access to cca_timer
481 * array), and rcu_read_lock() (to protect access to cc_state).
482 */
483void set_link_ipg(struct hfi1_pportdata *ppd)
484{
485 struct hfi1_devdata *dd = ppd->dd;
486 struct cc_state *cc_state;
487 int i;
488 u16 cce, ccti_limit, max_ccti = 0;
489 u16 shift, mult;
490 u64 src;
491 u32 current_egress_rate; /* Mbits /sec */
492 u64 max_pkt_time;
493 /*
494 * max_pkt_time is the maximum packet egress time in units
495 * of the fabric clock period 1/(805 MHz).
496 */
497
498 cc_state = get_cc_state(ppd);
499
500 if (!cc_state)
501 /*
502 * This should _never_ happen - rcu_read_lock() is held,
503 * and set_link_ipg() should not be called if cc_state
504 * is NULL.
505 */
506 return;
507
508 for (i = 0; i < OPA_MAX_SLS; i++) {
509 u16 ccti = ppd->cca_timer[i].ccti;
510
511 if (ccti > max_ccti)
512 max_ccti = ccti;
513 }
514
515 ccti_limit = cc_state->cct.ccti_limit;
516 if (max_ccti > ccti_limit)
517 max_ccti = ccti_limit;
518
519 cce = cc_state->cct.entries[max_ccti].entry;
520 shift = (cce & 0xc000) >> 14;
521 mult = (cce & 0x3fff);
522
523 current_egress_rate = active_egress_rate(ppd);
524
525 max_pkt_time = egress_cycles(len: ppd->ibmaxlen, rate: current_egress_rate);
526
527 src = (max_pkt_time >> shift) * mult;
528
529 src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
530 src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
531
532 write_csr(dd, SEND_STATIC_RATE_CONTROL, value: src);
533}
534
535static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
536{
537 struct cca_timer *cca_timer;
538 struct hfi1_pportdata *ppd;
539 int sl;
540 u16 ccti_timer, ccti_min;
541 struct cc_state *cc_state;
542 unsigned long flags;
543 enum hrtimer_restart ret = HRTIMER_NORESTART;
544
545 cca_timer = container_of(t, struct cca_timer, hrtimer);
546 ppd = cca_timer->ppd;
547 sl = cca_timer->sl;
548
549 rcu_read_lock();
550
551 cc_state = get_cc_state(ppd);
552
553 if (!cc_state) {
554 rcu_read_unlock();
555 return HRTIMER_NORESTART;
556 }
557
558 /*
559 * 1) decrement ccti for SL
560 * 2) calculate IPG for link (set_link_ipg())
561 * 3) restart timer, unless ccti is at min value
562 */
563
564 ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
565 ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
566
567 spin_lock_irqsave(&ppd->cca_timer_lock, flags);
568
569 if (cca_timer->ccti > ccti_min) {
570 cca_timer->ccti--;
571 set_link_ipg(ppd);
572 }
573
574 if (cca_timer->ccti > ccti_min) {
575 unsigned long nsec = 1024 * ccti_timer;
576 /* ccti_timer is in units of 1.024 usec */
577 hrtimer_forward_now(timer: t, interval: ns_to_ktime(ns: nsec));
578 ret = HRTIMER_RESTART;
579 }
580
581 spin_unlock_irqrestore(lock: &ppd->cca_timer_lock, flags);
582 rcu_read_unlock();
583 return ret;
584}
585
586/*
587 * Common code for initializing the physical port structure.
588 */
589void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
590 struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
591{
592 int i;
593 uint default_pkey_idx;
594 struct cc_state *cc_state;
595
596 ppd->dd = dd;
597 ppd->hw_pidx = hw_pidx;
598 ppd->port = port; /* IB port number, not index */
599 ppd->prev_link_width = LINK_WIDTH_DEFAULT;
600 /*
601 * There are C_VL_COUNT number of PortVLXmitWait counters.
602 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
603 */
604 for (i = 0; i < C_VL_COUNT + 1; i++) {
605 ppd->port_vl_xmit_wait_last[i] = 0;
606 ppd->vl_xmit_flit_cnt[i] = 0;
607 }
608
609 default_pkey_idx = 1;
610
611 ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
612 ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
613 ppd->pkeys[0] = 0x8001;
614
615 INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
616 INIT_WORK(&ppd->link_up_work, handle_link_up);
617 INIT_WORK(&ppd->link_down_work, handle_link_down);
618 INIT_WORK(&ppd->freeze_work, handle_freeze);
619 INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
620 INIT_WORK(&ppd->sma_message_work, handle_sma_message);
621 INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
622 INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
623 INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
624 INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
625
626 mutex_init(&ppd->hls_lock);
627 spin_lock_init(&ppd->qsfp_info.qsfp_lock);
628
629 ppd->qsfp_info.ppd = ppd;
630 ppd->sm_trap_qp = 0x0;
631 ppd->sa_qp = 0x1;
632
633 ppd->hfi1_wq = NULL;
634
635 spin_lock_init(&ppd->cca_timer_lock);
636
637 for (i = 0; i < OPA_MAX_SLS; i++) {
638 hrtimer_init(timer: &ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
639 mode: HRTIMER_MODE_REL);
640 ppd->cca_timer[i].ppd = ppd;
641 ppd->cca_timer[i].sl = i;
642 ppd->cca_timer[i].ccti = 0;
643 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
644 }
645
646 ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
647
648 spin_lock_init(&ppd->cc_state_lock);
649 spin_lock_init(&ppd->cc_log_lock);
650 cc_state = kzalloc(size: sizeof(*cc_state), GFP_KERNEL);
651 RCU_INIT_POINTER(ppd->cc_state, cc_state);
652 if (!cc_state)
653 goto bail;
654 return;
655
656bail:
657 dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
658}
659
660/*
661 * Do initialization for device that is only needed on
662 * first detect, not on resets.
663 */
664static int loadtime_init(struct hfi1_devdata *dd)
665{
666 return 0;
667}
668
669/**
670 * init_after_reset - re-initialize after a reset
671 * @dd: the hfi1_ib device
672 *
673 * sanity check at least some of the values after reset, and
674 * ensure no receive or transmit (explicitly, in case reset
675 * failed
676 */
677static int init_after_reset(struct hfi1_devdata *dd)
678{
679 int i;
680 struct hfi1_ctxtdata *rcd;
681 /*
682 * Ensure chip does no sends or receives, tail updates, or
683 * pioavail updates while we re-initialize. This is mostly
684 * for the driver data structures, not chip registers.
685 */
686 for (i = 0; i < dd->num_rcv_contexts; i++) {
687 rcd = hfi1_rcd_get_by_index(dd, ctxt: i);
688 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
689 HFI1_RCVCTRL_INTRAVAIL_DIS |
690 HFI1_RCVCTRL_TAILUPD_DIS, rcd);
691 hfi1_rcd_put(rcd);
692 }
693 pio_send_control(dd, PSC_GLOBAL_DISABLE);
694 for (i = 0; i < dd->num_send_contexts; i++)
695 sc_disable(sc: dd->send_contexts[i].sc);
696
697 return 0;
698}
699
700static void enable_chip(struct hfi1_devdata *dd)
701{
702 struct hfi1_ctxtdata *rcd;
703 u32 rcvmask;
704 u16 i;
705
706 /* enable PIO send */
707 pio_send_control(dd, PSC_GLOBAL_ENABLE);
708
709 /*
710 * Enable kernel ctxts' receive and receive interrupt.
711 * Other ctxts done as user opens and initializes them.
712 */
713 for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
714 rcd = hfi1_rcd_get_by_index(dd, ctxt: i);
715 if (!rcd)
716 continue;
717 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
718 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
719 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
720 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
721 rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
722 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
723 rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
724 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
725 rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
726 if (HFI1_CAP_IS_KSET(TID_RDMA))
727 rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
728 hfi1_rcvctrl(dd, op: rcvmask, rcd);
729 sc_enable(sc: rcd->sc);
730 hfi1_rcd_put(rcd);
731 }
732}
733
734/**
735 * create_workqueues - create per port workqueues
736 * @dd: the hfi1_ib device
737 */
738static int create_workqueues(struct hfi1_devdata *dd)
739{
740 int pidx;
741 struct hfi1_pportdata *ppd;
742
743 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
744 ppd = dd->pport + pidx;
745 if (!ppd->hfi1_wq) {
746 ppd->hfi1_wq =
747 alloc_workqueue(
748 fmt: "hfi%d_%d",
749 flags: WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
750 WQ_MEM_RECLAIM,
751 HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
752 dd->unit, pidx);
753 if (!ppd->hfi1_wq)
754 goto wq_error;
755 }
756 if (!ppd->link_wq) {
757 /*
758 * Make the link workqueue single-threaded to enforce
759 * serialization.
760 */
761 ppd->link_wq =
762 alloc_workqueue(
763 fmt: "hfi_link_%d_%d",
764 flags: WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
765 max_active: 1, /* max_active */
766 dd->unit, pidx);
767 if (!ppd->link_wq)
768 goto wq_error;
769 }
770 }
771 return 0;
772wq_error:
773 pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
774 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
775 ppd = dd->pport + pidx;
776 if (ppd->hfi1_wq) {
777 destroy_workqueue(wq: ppd->hfi1_wq);
778 ppd->hfi1_wq = NULL;
779 }
780 if (ppd->link_wq) {
781 destroy_workqueue(wq: ppd->link_wq);
782 ppd->link_wq = NULL;
783 }
784 }
785 return -ENOMEM;
786}
787
788/**
789 * destroy_workqueues - destroy per port workqueues
790 * @dd: the hfi1_ib device
791 */
792static void destroy_workqueues(struct hfi1_devdata *dd)
793{
794 int pidx;
795 struct hfi1_pportdata *ppd;
796
797 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
798 ppd = dd->pport + pidx;
799
800 if (ppd->hfi1_wq) {
801 destroy_workqueue(wq: ppd->hfi1_wq);
802 ppd->hfi1_wq = NULL;
803 }
804 if (ppd->link_wq) {
805 destroy_workqueue(wq: ppd->link_wq);
806 ppd->link_wq = NULL;
807 }
808 }
809}
810
811/**
812 * enable_general_intr() - Enable the IRQs that will be handled by the
813 * general interrupt handler.
814 * @dd: valid devdata
815 *
816 */
817static void enable_general_intr(struct hfi1_devdata *dd)
818{
819 set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, set: true);
820 set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, set: true);
821 set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, set: true);
822 set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, set: true);
823 set_intr_bits(dd, TCRIT_INT, TCRIT_INT, set: true);
824 set_intr_bits(dd, IS_DC_START, IS_DC_END, set: true);
825 set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, set: true);
826}
827
828/**
829 * hfi1_init - do the actual initialization sequence on the chip
830 * @dd: the hfi1_ib device
831 * @reinit: re-initializing, so don't allocate new memory
832 *
833 * Do the actual initialization sequence on the chip. This is done
834 * both from the init routine called from the PCI infrastructure, and
835 * when we reset the chip, or detect that it was reset internally,
836 * or it's administratively re-enabled.
837 *
838 * Memory allocation here and in called routines is only done in
839 * the first case (reinit == 0). We have to be careful, because even
840 * without memory allocation, we need to re-write all the chip registers
841 * TIDs, etc. after the reset or enable has completed.
842 */
843int hfi1_init(struct hfi1_devdata *dd, int reinit)
844{
845 int ret = 0, pidx, lastfail = 0;
846 unsigned long len;
847 u16 i;
848 struct hfi1_ctxtdata *rcd;
849 struct hfi1_pportdata *ppd;
850
851 /* Set up send low level handlers */
852 dd->process_pio_send = hfi1_verbs_send_pio;
853 dd->process_dma_send = hfi1_verbs_send_dma;
854 dd->pio_inline_send = pio_copy;
855 dd->process_vnic_dma_send = hfi1_vnic_send_dma;
856
857 if (is_ax(dd)) {
858 atomic_set(v: &dd->drop_packet, DROP_PACKET_ON);
859 dd->do_drop = true;
860 } else {
861 atomic_set(v: &dd->drop_packet, DROP_PACKET_OFF);
862 dd->do_drop = false;
863 }
864
865 /* make sure the link is not "up" */
866 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
867 ppd = dd->pport + pidx;
868 ppd->linkup = 0;
869 }
870
871 if (reinit)
872 ret = init_after_reset(dd);
873 else
874 ret = loadtime_init(dd);
875 if (ret)
876 goto done;
877
878 /* dd->rcd can be NULL if early initialization failed */
879 for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
880 /*
881 * Set up the (kernel) rcvhdr queue and egr TIDs. If doing
882 * re-init, the simplest way to handle this is to free
883 * existing, and re-allocate.
884 * Need to re-create rest of ctxt 0 ctxtdata as well.
885 */
886 rcd = hfi1_rcd_get_by_index(dd, ctxt: i);
887 if (!rcd)
888 continue;
889
890 lastfail = hfi1_create_rcvhdrq(dd, rcd);
891 if (!lastfail)
892 lastfail = hfi1_setup_eagerbufs(rcd);
893 if (!lastfail)
894 lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
895 if (lastfail) {
896 dd_dev_err(dd,
897 "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
898 ret = lastfail;
899 }
900 /* enable IRQ */
901 hfi1_rcd_put(rcd);
902 }
903
904 /* Allocate enough memory for user event notification. */
905 len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
906 sizeof(*dd->events));
907 dd->events = vmalloc_user(size: len);
908 if (!dd->events)
909 dd_dev_err(dd, "Failed to allocate user events page\n");
910 /*
911 * Allocate a page for device and port status.
912 * Page will be shared amongst all user processes.
913 */
914 dd->status = vmalloc_user(PAGE_SIZE);
915 if (!dd->status)
916 dd_dev_err(dd, "Failed to allocate dev status page\n");
917 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
918 ppd = dd->pport + pidx;
919 if (dd->status)
920 /* Currently, we only have one port */
921 ppd->statusp = &dd->status->port;
922
923 set_mtu(ppd);
924 }
925
926 /* enable chip even if we have an error, so we can debug cause */
927 enable_chip(dd);
928
929done:
930 /*
931 * Set status even if port serdes is not initialized
932 * so that diags will work.
933 */
934 if (dd->status)
935 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
936 HFI1_STATUS_INITTED;
937 if (!ret) {
938 /* enable all interrupts from the chip */
939 enable_general_intr(dd);
940 init_qsfp_int(dd);
941
942 /* chip is OK for user apps; mark it as initialized */
943 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
944 ppd = dd->pport + pidx;
945
946 /*
947 * start the serdes - must be after interrupts are
948 * enabled so we are notified when the link goes up
949 */
950 lastfail = bringup_serdes(ppd);
951 if (lastfail)
952 dd_dev_info(dd,
953 "Failed to bring up port %u\n",
954 ppd->port);
955
956 /*
957 * Set status even if port serdes is not initialized
958 * so that diags will work.
959 */
960 if (ppd->statusp)
961 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
962 HFI1_STATUS_INITTED;
963 if (!ppd->link_speed_enabled)
964 continue;
965 }
966 }
967
968 /* if ret is non-zero, we probably should do some cleanup here... */
969 return ret;
970}
971
972struct hfi1_devdata *hfi1_lookup(int unit)
973{
974 return xa_load(&hfi1_dev_table, index: unit);
975}
976
977/*
978 * Stop the timers during unit shutdown, or after an error late
979 * in initialization.
980 */
981static void stop_timers(struct hfi1_devdata *dd)
982{
983 struct hfi1_pportdata *ppd;
984 int pidx;
985
986 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
987 ppd = dd->pport + pidx;
988 if (ppd->led_override_timer.function) {
989 del_timer_sync(timer: &ppd->led_override_timer);
990 atomic_set(v: &ppd->led_override_timer_active, i: 0);
991 }
992 }
993}
994
995/**
996 * shutdown_device - shut down a device
997 * @dd: the hfi1_ib device
998 *
999 * This is called to make the device quiet when we are about to
1000 * unload the driver, and also when the device is administratively
1001 * disabled. It does not free any data structures.
1002 * Everything it does has to be setup again by hfi1_init(dd, 1)
1003 */
1004static void shutdown_device(struct hfi1_devdata *dd)
1005{
1006 struct hfi1_pportdata *ppd;
1007 struct hfi1_ctxtdata *rcd;
1008 unsigned pidx;
1009 int i;
1010
1011 if (dd->flags & HFI1_SHUTDOWN)
1012 return;
1013 dd->flags |= HFI1_SHUTDOWN;
1014
1015 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1016 ppd = dd->pport + pidx;
1017
1018 ppd->linkup = 0;
1019 if (ppd->statusp)
1020 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1021 HFI1_STATUS_IB_READY);
1022 }
1023 dd->flags &= ~HFI1_INITTED;
1024
1025 /* mask and clean up interrupts */
1026 set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, set: false);
1027 msix_clean_up_interrupts(dd);
1028
1029 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1030 for (i = 0; i < dd->num_rcv_contexts; i++) {
1031 rcd = hfi1_rcd_get_by_index(dd, ctxt: i);
1032 hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1033 HFI1_RCVCTRL_CTXT_DIS |
1034 HFI1_RCVCTRL_INTRAVAIL_DIS |
1035 HFI1_RCVCTRL_PKEY_DIS |
1036 HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1037 hfi1_rcd_put(rcd);
1038 }
1039 /*
1040 * Gracefully stop all sends allowing any in progress to
1041 * trickle out first.
1042 */
1043 for (i = 0; i < dd->num_send_contexts; i++)
1044 sc_flush(sc: dd->send_contexts[i].sc);
1045 }
1046
1047 /*
1048 * Enough for anything that's going to trickle out to have actually
1049 * done so.
1050 */
1051 udelay(20);
1052
1053 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1054 ppd = dd->pport + pidx;
1055
1056 /* disable all contexts */
1057 for (i = 0; i < dd->num_send_contexts; i++)
1058 sc_disable(sc: dd->send_contexts[i].sc);
1059 /* disable the send device */
1060 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1061
1062 shutdown_led_override(ppd);
1063
1064 /*
1065 * Clear SerdesEnable.
1066 * We can't count on interrupts since we are stopping.
1067 */
1068 hfi1_quiet_serdes(ppd);
1069 if (ppd->hfi1_wq)
1070 flush_workqueue(ppd->hfi1_wq);
1071 if (ppd->link_wq)
1072 flush_workqueue(ppd->link_wq);
1073 }
1074 sdma_exit(dd);
1075}
1076
1077/**
1078 * hfi1_free_ctxtdata - free a context's allocated data
1079 * @dd: the hfi1_ib device
1080 * @rcd: the ctxtdata structure
1081 *
1082 * free up any allocated data for a context
1083 * It should never change any chip state, or global driver state.
1084 */
1085void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1086{
1087 u32 e;
1088
1089 if (!rcd)
1090 return;
1091
1092 if (rcd->rcvhdrq) {
1093 dma_free_coherent(dev: &dd->pcidev->dev, size: rcvhdrq_size(rcd),
1094 cpu_addr: rcd->rcvhdrq, dma_handle: rcd->rcvhdrq_dma);
1095 rcd->rcvhdrq = NULL;
1096 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1097 dma_free_coherent(dev: &dd->pcidev->dev, PAGE_SIZE,
1098 cpu_addr: (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1099 dma_handle: rcd->rcvhdrqtailaddr_dma);
1100 rcd->rcvhdrtail_kvaddr = NULL;
1101 }
1102 }
1103
1104 /* all the RcvArray entries should have been cleared by now */
1105 kfree(objp: rcd->egrbufs.rcvtids);
1106 rcd->egrbufs.rcvtids = NULL;
1107
1108 for (e = 0; e < rcd->egrbufs.alloced; e++) {
1109 if (rcd->egrbufs.buffers[e].addr)
1110 dma_free_coherent(dev: &dd->pcidev->dev,
1111 size: rcd->egrbufs.buffers[e].len,
1112 cpu_addr: rcd->egrbufs.buffers[e].addr,
1113 dma_handle: rcd->egrbufs.buffers[e].dma);
1114 }
1115 kfree(objp: rcd->egrbufs.buffers);
1116 rcd->egrbufs.alloced = 0;
1117 rcd->egrbufs.buffers = NULL;
1118
1119 sc_free(sc: rcd->sc);
1120 rcd->sc = NULL;
1121
1122 vfree(addr: rcd->subctxt_uregbase);
1123 vfree(addr: rcd->subctxt_rcvegrbuf);
1124 vfree(addr: rcd->subctxt_rcvhdr_base);
1125 kfree(objp: rcd->opstats);
1126
1127 rcd->subctxt_uregbase = NULL;
1128 rcd->subctxt_rcvegrbuf = NULL;
1129 rcd->subctxt_rcvhdr_base = NULL;
1130 rcd->opstats = NULL;
1131}
1132
1133/*
1134 * Release our hold on the shared asic data. If we are the last one,
1135 * return the structure to be finalized outside the lock. Must be
1136 * holding hfi1_dev_table lock.
1137 */
1138static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1139{
1140 struct hfi1_asic_data *ad;
1141 int other;
1142
1143 if (!dd->asic_data)
1144 return NULL;
1145 dd->asic_data->dds[dd->hfi1_id] = NULL;
1146 other = dd->hfi1_id ? 0 : 1;
1147 ad = dd->asic_data;
1148 dd->asic_data = NULL;
1149 /* return NULL if the other dd still has a link */
1150 return ad->dds[other] ? NULL : ad;
1151}
1152
1153static void finalize_asic_data(struct hfi1_devdata *dd,
1154 struct hfi1_asic_data *ad)
1155{
1156 clean_up_i2c(dd, ad);
1157 kfree(objp: ad);
1158}
1159
1160/**
1161 * hfi1_free_devdata - cleans up and frees per-unit data structure
1162 * @dd: pointer to a valid devdata structure
1163 *
1164 * It cleans up and frees all data structures set up by
1165 * by hfi1_alloc_devdata().
1166 */
1167void hfi1_free_devdata(struct hfi1_devdata *dd)
1168{
1169 struct hfi1_asic_data *ad;
1170 unsigned long flags;
1171
1172 xa_lock_irqsave(&hfi1_dev_table, flags);
1173 __xa_erase(&hfi1_dev_table, index: dd->unit);
1174 ad = release_asic_data(dd);
1175 xa_unlock_irqrestore(&hfi1_dev_table, flags);
1176
1177 finalize_asic_data(dd, ad);
1178 free_platform_config(dd);
1179 rcu_barrier(); /* wait for rcu callbacks to complete */
1180 free_percpu(pdata: dd->int_counter);
1181 free_percpu(pdata: dd->rcv_limit);
1182 free_percpu(pdata: dd->send_schedule);
1183 free_percpu(pdata: dd->tx_opstats);
1184 dd->int_counter = NULL;
1185 dd->rcv_limit = NULL;
1186 dd->send_schedule = NULL;
1187 dd->tx_opstats = NULL;
1188 kfree(objp: dd->comp_vect);
1189 dd->comp_vect = NULL;
1190 if (dd->rcvhdrtail_dummy_kvaddr)
1191 dma_free_coherent(dev: &dd->pcidev->dev, size: sizeof(u64),
1192 cpu_addr: (void *)dd->rcvhdrtail_dummy_kvaddr,
1193 dma_handle: dd->rcvhdrtail_dummy_dma);
1194 dd->rcvhdrtail_dummy_kvaddr = NULL;
1195 sdma_clean(dd, num_engines: dd->num_sdma);
1196 rvt_dealloc_device(rdi: &dd->verbs_dev.rdi);
1197}
1198
1199/**
1200 * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1201 * @pdev: Valid PCI device
1202 * @extra: How many bytes to alloc past the default
1203 *
1204 * Must be done via verbs allocator, because the verbs cleanup process
1205 * both does cleanup and free of the data structure.
1206 * "extra" is for chip-specific data.
1207 */
1208static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1209 size_t extra)
1210{
1211 struct hfi1_devdata *dd;
1212 int ret, nports;
1213
1214 /* extra is * number of ports */
1215 nports = extra / sizeof(struct hfi1_pportdata);
1216
1217 dd = (struct hfi1_devdata *)rvt_alloc_device(size: sizeof(*dd) + extra,
1218 nports);
1219 if (!dd)
1220 return ERR_PTR(error: -ENOMEM);
1221 dd->num_pports = nports;
1222 dd->pport = (struct hfi1_pportdata *)(dd + 1);
1223 dd->pcidev = pdev;
1224 pci_set_drvdata(pdev, data: dd);
1225
1226 ret = xa_alloc_irq(xa: &hfi1_dev_table, id: &dd->unit, entry: dd, xa_limit_32b,
1227 GFP_KERNEL);
1228 if (ret < 0) {
1229 dev_err(&pdev->dev,
1230 "Could not allocate unit ID: error %d\n", -ret);
1231 goto bail;
1232 }
1233 rvt_set_ibdev_name(rdi: &dd->verbs_dev.rdi, fmt: "%s_%d", name: class_name(), unit: dd->unit);
1234 /*
1235 * If the BIOS does not have the NUMA node information set, select
1236 * NUMA 0 so we get consistent performance.
1237 */
1238 dd->node = pcibus_to_node(pdev->bus);
1239 if (dd->node == NUMA_NO_NODE) {
1240 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1241 dd->node = 0;
1242 }
1243
1244 /*
1245 * Initialize all locks for the device. This needs to be as early as
1246 * possible so locks are usable.
1247 */
1248 spin_lock_init(&dd->sc_lock);
1249 spin_lock_init(&dd->sendctrl_lock);
1250 spin_lock_init(&dd->rcvctrl_lock);
1251 spin_lock_init(&dd->uctxt_lock);
1252 spin_lock_init(&dd->hfi1_diag_trans_lock);
1253 spin_lock_init(&dd->sc_init_lock);
1254 spin_lock_init(&dd->dc8051_memlock);
1255 seqlock_init(&dd->sc2vl_lock);
1256 spin_lock_init(&dd->sde_map_lock);
1257 spin_lock_init(&dd->pio_map_lock);
1258 mutex_init(&dd->dc8051_lock);
1259 init_waitqueue_head(&dd->event_queue);
1260 spin_lock_init(&dd->irq_src_lock);
1261
1262 dd->int_counter = alloc_percpu(u64);
1263 if (!dd->int_counter) {
1264 ret = -ENOMEM;
1265 goto bail;
1266 }
1267
1268 dd->rcv_limit = alloc_percpu(u64);
1269 if (!dd->rcv_limit) {
1270 ret = -ENOMEM;
1271 goto bail;
1272 }
1273
1274 dd->send_schedule = alloc_percpu(u64);
1275 if (!dd->send_schedule) {
1276 ret = -ENOMEM;
1277 goto bail;
1278 }
1279
1280 dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1281 if (!dd->tx_opstats) {
1282 ret = -ENOMEM;
1283 goto bail;
1284 }
1285
1286 dd->comp_vect = kzalloc(size: sizeof(*dd->comp_vect), GFP_KERNEL);
1287 if (!dd->comp_vect) {
1288 ret = -ENOMEM;
1289 goto bail;
1290 }
1291
1292 /* allocate dummy tail memory for all receive contexts */
1293 dd->rcvhdrtail_dummy_kvaddr =
1294 dma_alloc_coherent(dev: &dd->pcidev->dev, size: sizeof(u64),
1295 dma_handle: &dd->rcvhdrtail_dummy_dma, GFP_KERNEL);
1296 if (!dd->rcvhdrtail_dummy_kvaddr) {
1297 ret = -ENOMEM;
1298 goto bail;
1299 }
1300
1301 atomic_set(v: &dd->ipoib_rsm_usr_num, i: 0);
1302 return dd;
1303
1304bail:
1305 hfi1_free_devdata(dd);
1306 return ERR_PTR(error: ret);
1307}
1308
1309/*
1310 * Called from freeze mode handlers, and from PCI error
1311 * reporting code. Should be paranoid about state of
1312 * system and data structures.
1313 */
1314void hfi1_disable_after_error(struct hfi1_devdata *dd)
1315{
1316 if (dd->flags & HFI1_INITTED) {
1317 u32 pidx;
1318
1319 dd->flags &= ~HFI1_INITTED;
1320 if (dd->pport)
1321 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1322 struct hfi1_pportdata *ppd;
1323
1324 ppd = dd->pport + pidx;
1325 if (dd->flags & HFI1_PRESENT)
1326 set_link_state(ppd, HLS_DN_DISABLE);
1327
1328 if (ppd->statusp)
1329 *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1330 }
1331 }
1332
1333 /*
1334 * Mark as having had an error for driver, and also
1335 * for /sys and status word mapped to user programs.
1336 * This marks unit as not usable, until reset.
1337 */
1338 if (dd->status)
1339 dd->status->dev |= HFI1_STATUS_HWERROR;
1340}
1341
1342static void remove_one(struct pci_dev *);
1343static int init_one(struct pci_dev *, const struct pci_device_id *);
1344static void shutdown_one(struct pci_dev *);
1345
1346#define DRIVER_LOAD_MSG "Cornelis " DRIVER_NAME " loaded: "
1347#define PFX DRIVER_NAME ": "
1348
1349const struct pci_device_id hfi1_pci_tbl[] = {
1350 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1351 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1352 { 0, }
1353};
1354
1355MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1356
1357static struct pci_driver hfi1_pci_driver = {
1358 .name = DRIVER_NAME,
1359 .probe = init_one,
1360 .remove = remove_one,
1361 .shutdown = shutdown_one,
1362 .id_table = hfi1_pci_tbl,
1363 .err_handler = &hfi1_pci_err_handler,
1364};
1365
1366static void __init compute_krcvqs(void)
1367{
1368 int i;
1369
1370 for (i = 0; i < krcvqsset; i++)
1371 n_krcvqs += krcvqs[i];
1372}
1373
1374/*
1375 * Do all the generic driver unit- and chip-independent memory
1376 * allocation and initialization.
1377 */
1378static int __init hfi1_mod_init(void)
1379{
1380 int ret;
1381
1382 ret = dev_init();
1383 if (ret)
1384 goto bail;
1385
1386 ret = node_affinity_init();
1387 if (ret)
1388 goto bail;
1389
1390 /* validate max MTU before any devices start */
1391 if (!valid_opa_max_mtu(mtu: hfi1_max_mtu)) {
1392 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1393 hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1394 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1395 }
1396 /* valid CUs run from 1-128 in powers of 2 */
1397 if (hfi1_cu > 128 || !is_power_of_2(n: hfi1_cu))
1398 hfi1_cu = 1;
1399 /* valid credit return threshold is 0-100, variable is unsigned */
1400 if (user_credit_return_threshold > 100)
1401 user_credit_return_threshold = 100;
1402
1403 compute_krcvqs();
1404 /*
1405 * sanitize receive interrupt count, time must wait until after
1406 * the hardware type is known
1407 */
1408 if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1409 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1410 /* reject invalid combinations */
1411 if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1412 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1413 rcv_intr_count = 1;
1414 }
1415 if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1416 /*
1417 * Avoid indefinite packet delivery by requiring a timeout
1418 * if count is > 1.
1419 */
1420 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1421 rcv_intr_timeout = 1;
1422 }
1423 if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1424 /*
1425 * The dynamic algorithm expects a non-zero timeout
1426 * and a count > 1.
1427 */
1428 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1429 rcv_intr_dynamic = 0;
1430 }
1431
1432 /* sanitize link CRC options */
1433 link_crc_mask &= SUPPORTED_CRCS;
1434
1435 ret = opfn_init();
1436 if (ret < 0) {
1437 pr_err("Failed to allocate opfn_wq");
1438 goto bail_dev;
1439 }
1440
1441 /*
1442 * These must be called before the driver is registered with
1443 * the PCI subsystem.
1444 */
1445 hfi1_dbg_init();
1446 ret = pci_register_driver(&hfi1_pci_driver);
1447 if (ret < 0) {
1448 pr_err("Unable to register driver: error %d\n", -ret);
1449 goto bail_dev;
1450 }
1451 goto bail; /* all OK */
1452
1453bail_dev:
1454 hfi1_dbg_exit();
1455 dev_cleanup();
1456bail:
1457 return ret;
1458}
1459
1460module_init(hfi1_mod_init);
1461
1462/*
1463 * Do the non-unit driver cleanup, memory free, etc. at unload.
1464 */
1465static void __exit hfi1_mod_cleanup(void)
1466{
1467 pci_unregister_driver(dev: &hfi1_pci_driver);
1468 opfn_exit();
1469 node_affinity_destroy_all();
1470 hfi1_dbg_exit();
1471
1472 WARN_ON(!xa_empty(&hfi1_dev_table));
1473 dispose_firmware(); /* asymmetric with obtain_firmware() */
1474 dev_cleanup();
1475}
1476
1477module_exit(hfi1_mod_cleanup);
1478
1479/* this can only be called after a successful initialization */
1480static void cleanup_device_data(struct hfi1_devdata *dd)
1481{
1482 int ctxt;
1483 int pidx;
1484
1485 /* users can't do anything more with chip */
1486 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1487 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1488 struct cc_state *cc_state;
1489 int i;
1490
1491 if (ppd->statusp)
1492 *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1493
1494 for (i = 0; i < OPA_MAX_SLS; i++)
1495 hrtimer_cancel(timer: &ppd->cca_timer[i].hrtimer);
1496
1497 spin_lock(lock: &ppd->cc_state_lock);
1498 cc_state = get_cc_state_protected(ppd);
1499 RCU_INIT_POINTER(ppd->cc_state, NULL);
1500 spin_unlock(lock: &ppd->cc_state_lock);
1501
1502 if (cc_state)
1503 kfree_rcu(cc_state, rcu);
1504 }
1505
1506 free_credit_return(dd);
1507
1508 /*
1509 * Free any resources still in use (usually just kernel contexts)
1510 * at unload; we do for ctxtcnt, because that's what we allocate.
1511 */
1512 for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1513 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1514
1515 if (rcd) {
1516 hfi1_free_ctxt_rcv_groups(rcd);
1517 hfi1_free_ctxt(rcd);
1518 }
1519 }
1520
1521 kfree(objp: dd->rcd);
1522 dd->rcd = NULL;
1523
1524 free_pio_map(dd);
1525 /* must follow rcv context free - need to remove rcv's hooks */
1526 for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1527 sc_free(sc: dd->send_contexts[ctxt].sc);
1528 dd->num_send_contexts = 0;
1529 kfree(objp: dd->send_contexts);
1530 dd->send_contexts = NULL;
1531 kfree(objp: dd->hw_to_sw);
1532 dd->hw_to_sw = NULL;
1533 kfree(objp: dd->boardname);
1534 vfree(addr: dd->events);
1535 vfree(addr: dd->status);
1536}
1537
1538/*
1539 * Clean up on unit shutdown, or error during unit load after
1540 * successful initialization.
1541 */
1542static void postinit_cleanup(struct hfi1_devdata *dd)
1543{
1544 hfi1_start_cleanup(dd);
1545 hfi1_comp_vectors_clean_up(dd);
1546 hfi1_dev_affinity_clean_up(dd);
1547
1548 hfi1_pcie_ddcleanup(dd);
1549 hfi1_pcie_cleanup(pdev: dd->pcidev);
1550
1551 cleanup_device_data(dd);
1552
1553 hfi1_free_devdata(dd);
1554}
1555
1556static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1557{
1558 int ret = 0, j, pidx, initfail;
1559 struct hfi1_devdata *dd;
1560 struct hfi1_pportdata *ppd;
1561
1562 /* First, lock the non-writable module parameters */
1563 HFI1_CAP_LOCK();
1564
1565 /* Validate dev ids */
1566 if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1567 ent->device == PCI_DEVICE_ID_INTEL1)) {
1568 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1569 ent->device);
1570 ret = -ENODEV;
1571 goto bail;
1572 }
1573
1574 /* Allocate the dd so we can get to work */
1575 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1576 sizeof(struct hfi1_pportdata));
1577 if (IS_ERR(ptr: dd)) {
1578 ret = PTR_ERR(ptr: dd);
1579 goto bail;
1580 }
1581
1582 /* Validate some global module parameters */
1583 ret = hfi1_validate_rcvhdrcnt(dd, thecnt: rcvhdrcnt);
1584 if (ret)
1585 goto bail;
1586
1587 /* use the encoding function as a sanitization check */
1588 if (!encode_rcv_header_entry_size(size: hfi1_hdrq_entsize)) {
1589 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1590 hfi1_hdrq_entsize);
1591 ret = -EINVAL;
1592 goto bail;
1593 }
1594
1595 /* The receive eager buffer size must be set before the receive
1596 * contexts are created.
1597 *
1598 * Set the eager buffer size. Validate that it falls in a range
1599 * allowed by the hardware - all powers of 2 between the min and
1600 * max. The maximum valid MTU is within the eager buffer range
1601 * so we do not need to cap the max_mtu by an eager buffer size
1602 * setting.
1603 */
1604 if (eager_buffer_size) {
1605 if (!is_power_of_2(n: eager_buffer_size))
1606 eager_buffer_size =
1607 roundup_pow_of_two(eager_buffer_size);
1608 eager_buffer_size =
1609 clamp_val(eager_buffer_size,
1610 MIN_EAGER_BUFFER * 8,
1611 MAX_EAGER_BUFFER_TOTAL);
1612 dd_dev_info(dd, "Eager buffer size %u\n",
1613 eager_buffer_size);
1614 } else {
1615 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1616 ret = -EINVAL;
1617 goto bail;
1618 }
1619
1620 /* restrict value of hfi1_rcvarr_split */
1621 hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1622
1623 ret = hfi1_pcie_init(dd);
1624 if (ret)
1625 goto bail;
1626
1627 /*
1628 * Do device-specific initialization, function table setup, dd
1629 * allocation, etc.
1630 */
1631 ret = hfi1_init_dd(dd);
1632 if (ret)
1633 goto clean_bail; /* error already printed */
1634
1635 ret = create_workqueues(dd);
1636 if (ret)
1637 goto clean_bail;
1638
1639 /* do the generic initialization */
1640 initfail = hfi1_init(dd, reinit: 0);
1641
1642 ret = hfi1_register_ib_device(dd);
1643
1644 /*
1645 * Now ready for use. this should be cleared whenever we
1646 * detect a reset, or initiate one. If earlier failure,
1647 * we still create devices, so diags, etc. can be used
1648 * to determine cause of problem.
1649 */
1650 if (!initfail && !ret) {
1651 dd->flags |= HFI1_INITTED;
1652 /* create debufs files after init and ib register */
1653 hfi1_dbg_ibdev_init(ibd: &dd->verbs_dev);
1654 }
1655
1656 j = hfi1_device_create(dd);
1657 if (j)
1658 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1659
1660 if (initfail || ret) {
1661 msix_clean_up_interrupts(dd);
1662 stop_timers(dd);
1663 flush_workqueue(ib_wq);
1664 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1665 hfi1_quiet_serdes(ppd: dd->pport + pidx);
1666 ppd = dd->pport + pidx;
1667 if (ppd->hfi1_wq) {
1668 destroy_workqueue(wq: ppd->hfi1_wq);
1669 ppd->hfi1_wq = NULL;
1670 }
1671 if (ppd->link_wq) {
1672 destroy_workqueue(wq: ppd->link_wq);
1673 ppd->link_wq = NULL;
1674 }
1675 }
1676 if (!j)
1677 hfi1_device_remove(dd);
1678 if (!ret)
1679 hfi1_unregister_ib_device(dd);
1680 postinit_cleanup(dd);
1681 if (initfail)
1682 ret = initfail;
1683 goto bail; /* everything already cleaned */
1684 }
1685
1686 sdma_start(dd);
1687
1688 return 0;
1689
1690clean_bail:
1691 hfi1_pcie_cleanup(pdev);
1692bail:
1693 return ret;
1694}
1695
1696static void wait_for_clients(struct hfi1_devdata *dd)
1697{
1698 /*
1699 * Remove the device init value and complete the device if there is
1700 * no clients or wait for active clients to finish.
1701 */
1702 if (refcount_dec_and_test(r: &dd->user_refcount))
1703 complete(&dd->user_comp);
1704
1705 wait_for_completion(&dd->user_comp);
1706}
1707
1708static void remove_one(struct pci_dev *pdev)
1709{
1710 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1711
1712 /* close debugfs files before ib unregister */
1713 hfi1_dbg_ibdev_exit(ibd: &dd->verbs_dev);
1714
1715 /* remove the /dev hfi1 interface */
1716 hfi1_device_remove(dd);
1717
1718 /* wait for existing user space clients to finish */
1719 wait_for_clients(dd);
1720
1721 /* unregister from IB core */
1722 hfi1_unregister_ib_device(dd);
1723
1724 /* free netdev data */
1725 hfi1_free_rx(dd);
1726
1727 /*
1728 * Disable the IB link, disable interrupts on the device,
1729 * clear dma engines, etc.
1730 */
1731 shutdown_device(dd);
1732 destroy_workqueues(dd);
1733
1734 stop_timers(dd);
1735
1736 /* wait until all of our (qsfp) queue_work() calls complete */
1737 flush_workqueue(ib_wq);
1738
1739 postinit_cleanup(dd);
1740}
1741
1742static void shutdown_one(struct pci_dev *pdev)
1743{
1744 struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1745
1746 shutdown_device(dd);
1747}
1748
1749/**
1750 * hfi1_create_rcvhdrq - create a receive header queue
1751 * @dd: the hfi1_ib device
1752 * @rcd: the context data
1753 *
1754 * This must be contiguous memory (from an i/o perspective), and must be
1755 * DMA'able (which means for some systems, it will go through an IOMMU,
1756 * or be forced into a low address range).
1757 */
1758int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1759{
1760 unsigned amt;
1761
1762 if (!rcd->rcvhdrq) {
1763 amt = rcvhdrq_size(rcd);
1764
1765 rcd->rcvhdrq = dma_alloc_coherent(dev: &dd->pcidev->dev, size: amt,
1766 dma_handle: &rcd->rcvhdrq_dma,
1767 GFP_KERNEL);
1768
1769 if (!rcd->rcvhdrq) {
1770 dd_dev_err(dd,
1771 "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1772 amt, rcd->ctxt);
1773 goto bail;
1774 }
1775
1776 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1777 HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1778 rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(dev: &dd->pcidev->dev,
1779 PAGE_SIZE,
1780 dma_handle: &rcd->rcvhdrqtailaddr_dma,
1781 GFP_KERNEL);
1782 if (!rcd->rcvhdrtail_kvaddr)
1783 goto bail_free;
1784 }
1785 }
1786
1787 set_hdrq_regs(dd: rcd->dd, ctxt: rcd->ctxt, entsize: rcd->rcvhdrqentsize,
1788 hdrcnt: rcd->rcvhdrq_cnt);
1789
1790 return 0;
1791
1792bail_free:
1793 dd_dev_err(dd,
1794 "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1795 rcd->ctxt);
1796 dma_free_coherent(dev: &dd->pcidev->dev, size: amt, cpu_addr: rcd->rcvhdrq,
1797 dma_handle: rcd->rcvhdrq_dma);
1798 rcd->rcvhdrq = NULL;
1799bail:
1800 return -ENOMEM;
1801}
1802
1803/**
1804 * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1805 * contexts.
1806 * @rcd: the context we are setting up.
1807 *
1808 * Allocate the eager TID buffers and program them into hip.
1809 * They are no longer completely contiguous, we do multiple allocation
1810 * calls. Otherwise we get the OOM code involved, by asking for too
1811 * much per call, with disastrous results on some kernels.
1812 */
1813int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1814{
1815 struct hfi1_devdata *dd = rcd->dd;
1816 u32 max_entries, egrtop, alloced_bytes = 0;
1817 u16 order, idx = 0;
1818 int ret = 0;
1819 u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1820
1821 /*
1822 * The minimum size of the eager buffers is a groups of MTU-sized
1823 * buffers.
1824 * The global eager_buffer_size parameter is checked against the
1825 * theoretical lower limit of the value. Here, we check against the
1826 * MTU.
1827 */
1828 if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1829 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1830 /*
1831 * If using one-pkt-per-egr-buffer, lower the eager buffer
1832 * size to the max MTU (page-aligned).
1833 */
1834 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1835 rcd->egrbufs.rcvtid_size = round_mtu;
1836
1837 /*
1838 * Eager buffers sizes of 1MB or less require smaller TID sizes
1839 * to satisfy the "multiple of 8 RcvArray entries" requirement.
1840 */
1841 if (rcd->egrbufs.size <= (1 << 20))
1842 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1843 rounddown_pow_of_two(rcd->egrbufs.size / 8));
1844
1845 while (alloced_bytes < rcd->egrbufs.size &&
1846 rcd->egrbufs.alloced < rcd->egrbufs.count) {
1847 rcd->egrbufs.buffers[idx].addr =
1848 dma_alloc_coherent(dev: &dd->pcidev->dev,
1849 size: rcd->egrbufs.rcvtid_size,
1850 dma_handle: &rcd->egrbufs.buffers[idx].dma,
1851 GFP_KERNEL);
1852 if (rcd->egrbufs.buffers[idx].addr) {
1853 rcd->egrbufs.buffers[idx].len =
1854 rcd->egrbufs.rcvtid_size;
1855 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1856 rcd->egrbufs.buffers[idx].addr;
1857 rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1858 rcd->egrbufs.buffers[idx].dma;
1859 rcd->egrbufs.alloced++;
1860 alloced_bytes += rcd->egrbufs.rcvtid_size;
1861 idx++;
1862 } else {
1863 u32 new_size, i, j;
1864 u64 offset = 0;
1865
1866 /*
1867 * Fail the eager buffer allocation if:
1868 * - we are already using the lowest acceptable size
1869 * - we are using one-pkt-per-egr-buffer (this implies
1870 * that we are accepting only one size)
1871 */
1872 if (rcd->egrbufs.rcvtid_size == round_mtu ||
1873 !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1874 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1875 rcd->ctxt);
1876 ret = -ENOMEM;
1877 goto bail_rcvegrbuf_phys;
1878 }
1879
1880 new_size = rcd->egrbufs.rcvtid_size / 2;
1881
1882 /*
1883 * If the first attempt to allocate memory failed, don't
1884 * fail everything but continue with the next lower
1885 * size.
1886 */
1887 if (idx == 0) {
1888 rcd->egrbufs.rcvtid_size = new_size;
1889 continue;
1890 }
1891
1892 /*
1893 * Re-partition already allocated buffers to a smaller
1894 * size.
1895 */
1896 rcd->egrbufs.alloced = 0;
1897 for (i = 0, j = 0, offset = 0; j < idx; i++) {
1898 if (i >= rcd->egrbufs.count)
1899 break;
1900 rcd->egrbufs.rcvtids[i].dma =
1901 rcd->egrbufs.buffers[j].dma + offset;
1902 rcd->egrbufs.rcvtids[i].addr =
1903 rcd->egrbufs.buffers[j].addr + offset;
1904 rcd->egrbufs.alloced++;
1905 if ((rcd->egrbufs.buffers[j].dma + offset +
1906 new_size) ==
1907 (rcd->egrbufs.buffers[j].dma +
1908 rcd->egrbufs.buffers[j].len)) {
1909 j++;
1910 offset = 0;
1911 } else {
1912 offset += new_size;
1913 }
1914 }
1915 rcd->egrbufs.rcvtid_size = new_size;
1916 }
1917 }
1918 rcd->egrbufs.numbufs = idx;
1919 rcd->egrbufs.size = alloced_bytes;
1920
1921 hfi1_cdbg(PROC,
1922 "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB",
1923 rcd->ctxt, rcd->egrbufs.alloced,
1924 rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1925
1926 /*
1927 * Set the contexts rcv array head update threshold to the closest
1928 * power of 2 (so we can use a mask instead of modulo) below half
1929 * the allocated entries.
1930 */
1931 rcd->egrbufs.threshold =
1932 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
1933 /*
1934 * Compute the expected RcvArray entry base. This is done after
1935 * allocating the eager buffers in order to maximize the
1936 * expected RcvArray entries for the context.
1937 */
1938 max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
1939 egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
1940 rcd->expected_count = max_entries - egrtop;
1941 if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
1942 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
1943
1944 rcd->expected_base = rcd->eager_base + egrtop;
1945 hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u",
1946 rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
1947 rcd->eager_base, rcd->expected_base);
1948
1949 if (!hfi1_rcvbuf_validate(size: rcd->egrbufs.rcvtid_size, PT_EAGER, encode: &order)) {
1950 hfi1_cdbg(PROC,
1951 "ctxt%u: current Eager buffer size is invalid %u",
1952 rcd->ctxt, rcd->egrbufs.rcvtid_size);
1953 ret = -EINVAL;
1954 goto bail_rcvegrbuf_phys;
1955 }
1956
1957 for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
1958 hfi1_put_tid(dd, index: rcd->eager_base + idx, PT_EAGER,
1959 pa: rcd->egrbufs.rcvtids[idx].dma, order);
1960 cond_resched();
1961 }
1962
1963 return 0;
1964
1965bail_rcvegrbuf_phys:
1966 for (idx = 0; idx < rcd->egrbufs.alloced &&
1967 rcd->egrbufs.buffers[idx].addr;
1968 idx++) {
1969 dma_free_coherent(dev: &dd->pcidev->dev,
1970 size: rcd->egrbufs.buffers[idx].len,
1971 cpu_addr: rcd->egrbufs.buffers[idx].addr,
1972 dma_handle: rcd->egrbufs.buffers[idx].dma);
1973 rcd->egrbufs.buffers[idx].addr = NULL;
1974 rcd->egrbufs.buffers[idx].dma = 0;
1975 rcd->egrbufs.buffers[idx].len = 0;
1976 }
1977
1978 return ret;
1979}
1980

source code of linux/drivers/infiniband/hw/hfi1/init.c