1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Generic socket support routines. Memory allocators, socket lock/release
8 * handler for protocols to use and generic option handler.
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
14 *
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
82 *
83 * To Fix:
84 */
85
86#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
87
88#include <asm/unaligned.h>
89#include <linux/capability.h>
90#include <linux/errno.h>
91#include <linux/errqueue.h>
92#include <linux/types.h>
93#include <linux/socket.h>
94#include <linux/in.h>
95#include <linux/kernel.h>
96#include <linux/module.h>
97#include <linux/proc_fs.h>
98#include <linux/seq_file.h>
99#include <linux/sched.h>
100#include <linux/sched/mm.h>
101#include <linux/timer.h>
102#include <linux/string.h>
103#include <linux/sockios.h>
104#include <linux/net.h>
105#include <linux/mm.h>
106#include <linux/slab.h>
107#include <linux/interrupt.h>
108#include <linux/poll.h>
109#include <linux/tcp.h>
110#include <linux/init.h>
111#include <linux/highmem.h>
112#include <linux/user_namespace.h>
113#include <linux/static_key.h>
114#include <linux/memcontrol.h>
115#include <linux/prefetch.h>
116#include <linux/compat.h>
117#include <linux/mroute.h>
118#include <linux/mroute6.h>
119#include <linux/icmpv6.h>
120
121#include <linux/uaccess.h>
122
123#include <linux/netdevice.h>
124#include <net/protocol.h>
125#include <linux/skbuff.h>
126#include <net/net_namespace.h>
127#include <net/request_sock.h>
128#include <net/sock.h>
129#include <linux/net_tstamp.h>
130#include <net/xfrm.h>
131#include <linux/ipsec.h>
132#include <net/cls_cgroup.h>
133#include <net/netprio_cgroup.h>
134#include <linux/sock_diag.h>
135
136#include <linux/filter.h>
137#include <net/sock_reuseport.h>
138#include <net/bpf_sk_storage.h>
139
140#include <trace/events/sock.h>
141
142#include <net/tcp.h>
143#include <net/busy_poll.h>
144#include <net/phonet/phonet.h>
145
146#include <linux/ethtool.h>
147
148#include "dev.h"
149
150static DEFINE_MUTEX(proto_list_mutex);
151static LIST_HEAD(proto_list);
152
153static void sock_def_write_space_wfree(struct sock *sk);
154static void sock_def_write_space(struct sock *sk);
155
156/**
157 * sk_ns_capable - General socket capability test
158 * @sk: Socket to use a capability on or through
159 * @user_ns: The user namespace of the capability to use
160 * @cap: The capability to use
161 *
162 * Test to see if the opener of the socket had when the socket was
163 * created and the current process has the capability @cap in the user
164 * namespace @user_ns.
165 */
166bool sk_ns_capable(const struct sock *sk,
167 struct user_namespace *user_ns, int cap)
168{
169 return file_ns_capable(file: sk->sk_socket->file, ns: user_ns, cap) &&
170 ns_capable(ns: user_ns, cap);
171}
172EXPORT_SYMBOL(sk_ns_capable);
173
174/**
175 * sk_capable - Socket global capability test
176 * @sk: Socket to use a capability on or through
177 * @cap: The global capability to use
178 *
179 * Test to see if the opener of the socket had when the socket was
180 * created and the current process has the capability @cap in all user
181 * namespaces.
182 */
183bool sk_capable(const struct sock *sk, int cap)
184{
185 return sk_ns_capable(sk, &init_user_ns, cap);
186}
187EXPORT_SYMBOL(sk_capable);
188
189/**
190 * sk_net_capable - Network namespace socket capability test
191 * @sk: Socket to use a capability on or through
192 * @cap: The capability to use
193 *
194 * Test to see if the opener of the socket had when the socket was created
195 * and the current process has the capability @cap over the network namespace
196 * the socket is a member of.
197 */
198bool sk_net_capable(const struct sock *sk, int cap)
199{
200 return sk_ns_capable(sk, sock_net(sk)->user_ns, cap);
201}
202EXPORT_SYMBOL(sk_net_capable);
203
204/*
205 * Each address family might have different locking rules, so we have
206 * one slock key per address family and separate keys for internal and
207 * userspace sockets.
208 */
209static struct lock_class_key af_family_keys[AF_MAX];
210static struct lock_class_key af_family_kern_keys[AF_MAX];
211static struct lock_class_key af_family_slock_keys[AF_MAX];
212static struct lock_class_key af_family_kern_slock_keys[AF_MAX];
213
214/*
215 * Make lock validator output more readable. (we pre-construct these
216 * strings build-time, so that runtime initialization of socket
217 * locks is fast):
218 */
219
220#define _sock_locks(x) \
221 x "AF_UNSPEC", x "AF_UNIX" , x "AF_INET" , \
222 x "AF_AX25" , x "AF_IPX" , x "AF_APPLETALK", \
223 x "AF_NETROM", x "AF_BRIDGE" , x "AF_ATMPVC" , \
224 x "AF_X25" , x "AF_INET6" , x "AF_ROSE" , \
225 x "AF_DECnet", x "AF_NETBEUI" , x "AF_SECURITY" , \
226 x "AF_KEY" , x "AF_NETLINK" , x "AF_PACKET" , \
227 x "AF_ASH" , x "AF_ECONET" , x "AF_ATMSVC" , \
228 x "AF_RDS" , x "AF_SNA" , x "AF_IRDA" , \
229 x "AF_PPPOX" , x "AF_WANPIPE" , x "AF_LLC" , \
230 x "27" , x "28" , x "AF_CAN" , \
231 x "AF_TIPC" , x "AF_BLUETOOTH", x "IUCV" , \
232 x "AF_RXRPC" , x "AF_ISDN" , x "AF_PHONET" , \
233 x "AF_IEEE802154", x "AF_CAIF" , x "AF_ALG" , \
234 x "AF_NFC" , x "AF_VSOCK" , x "AF_KCM" , \
235 x "AF_QIPCRTR", x "AF_SMC" , x "AF_XDP" , \
236 x "AF_MCTP" , \
237 x "AF_MAX"
238
239static const char *const af_family_key_strings[AF_MAX+1] = {
240 _sock_locks("sk_lock-")
241};
242static const char *const af_family_slock_key_strings[AF_MAX+1] = {
243 _sock_locks("slock-")
244};
245static const char *const af_family_clock_key_strings[AF_MAX+1] = {
246 _sock_locks("clock-")
247};
248
249static const char *const af_family_kern_key_strings[AF_MAX+1] = {
250 _sock_locks("k-sk_lock-")
251};
252static const char *const af_family_kern_slock_key_strings[AF_MAX+1] = {
253 _sock_locks("k-slock-")
254};
255static const char *const af_family_kern_clock_key_strings[AF_MAX+1] = {
256 _sock_locks("k-clock-")
257};
258static const char *const af_family_rlock_key_strings[AF_MAX+1] = {
259 _sock_locks("rlock-")
260};
261static const char *const af_family_wlock_key_strings[AF_MAX+1] = {
262 _sock_locks("wlock-")
263};
264static const char *const af_family_elock_key_strings[AF_MAX+1] = {
265 _sock_locks("elock-")
266};
267
268/*
269 * sk_callback_lock and sk queues locking rules are per-address-family,
270 * so split the lock classes by using a per-AF key:
271 */
272static struct lock_class_key af_callback_keys[AF_MAX];
273static struct lock_class_key af_rlock_keys[AF_MAX];
274static struct lock_class_key af_wlock_keys[AF_MAX];
275static struct lock_class_key af_elock_keys[AF_MAX];
276static struct lock_class_key af_kern_callback_keys[AF_MAX];
277
278/* Run time adjustable parameters. */
279__u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
280EXPORT_SYMBOL(sysctl_wmem_max);
281__u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
282EXPORT_SYMBOL(sysctl_rmem_max);
283__u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
284__u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
285
286/* Maximal space eaten by iovec or ancillary data plus some space */
287int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
288EXPORT_SYMBOL(sysctl_optmem_max);
289
290int sysctl_tstamp_allow_data __read_mostly = 1;
291
292DEFINE_STATIC_KEY_FALSE(memalloc_socks_key);
293EXPORT_SYMBOL_GPL(memalloc_socks_key);
294
295/**
296 * sk_set_memalloc - sets %SOCK_MEMALLOC
297 * @sk: socket to set it on
298 *
299 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
300 * It's the responsibility of the admin to adjust min_free_kbytes
301 * to meet the requirements
302 */
303void sk_set_memalloc(struct sock *sk)
304{
305 sock_set_flag(sk, flag: SOCK_MEMALLOC);
306 sk->sk_allocation |= __GFP_MEMALLOC;
307 static_branch_inc(&memalloc_socks_key);
308}
309EXPORT_SYMBOL_GPL(sk_set_memalloc);
310
311void sk_clear_memalloc(struct sock *sk)
312{
313 sock_reset_flag(sk, flag: SOCK_MEMALLOC);
314 sk->sk_allocation &= ~__GFP_MEMALLOC;
315 static_branch_dec(&memalloc_socks_key);
316
317 /*
318 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
319 * progress of swapping. SOCK_MEMALLOC may be cleared while
320 * it has rmem allocations due to the last swapfile being deactivated
321 * but there is a risk that the socket is unusable due to exceeding
322 * the rmem limits. Reclaim the reserves and obey rmem limits again.
323 */
324 sk_mem_reclaim(sk);
325}
326EXPORT_SYMBOL_GPL(sk_clear_memalloc);
327
328int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
329{
330 int ret;
331 unsigned int noreclaim_flag;
332
333 /* these should have been dropped before queueing */
334 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
335
336 noreclaim_flag = memalloc_noreclaim_save();
337 ret = INDIRECT_CALL_INET(sk->sk_backlog_rcv,
338 tcp_v6_do_rcv,
339 tcp_v4_do_rcv,
340 sk, skb);
341 memalloc_noreclaim_restore(flags: noreclaim_flag);
342
343 return ret;
344}
345EXPORT_SYMBOL(__sk_backlog_rcv);
346
347void sk_error_report(struct sock *sk)
348{
349 sk->sk_error_report(sk);
350
351 switch (sk->sk_family) {
352 case AF_INET:
353 fallthrough;
354 case AF_INET6:
355 trace_inet_sk_error_report(sk);
356 break;
357 default:
358 break;
359 }
360}
361EXPORT_SYMBOL(sk_error_report);
362
363int sock_get_timeout(long timeo, void *optval, bool old_timeval)
364{
365 struct __kernel_sock_timeval tv;
366
367 if (timeo == MAX_SCHEDULE_TIMEOUT) {
368 tv.tv_sec = 0;
369 tv.tv_usec = 0;
370 } else {
371 tv.tv_sec = timeo / HZ;
372 tv.tv_usec = ((timeo % HZ) * USEC_PER_SEC) / HZ;
373 }
374
375 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
376 struct old_timeval32 tv32 = { tv.tv_sec, tv.tv_usec };
377 *(struct old_timeval32 *)optval = tv32;
378 return sizeof(tv32);
379 }
380
381 if (old_timeval) {
382 struct __kernel_old_timeval old_tv;
383 old_tv.tv_sec = tv.tv_sec;
384 old_tv.tv_usec = tv.tv_usec;
385 *(struct __kernel_old_timeval *)optval = old_tv;
386 return sizeof(old_tv);
387 }
388
389 *(struct __kernel_sock_timeval *)optval = tv;
390 return sizeof(tv);
391}
392EXPORT_SYMBOL(sock_get_timeout);
393
394int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
395 sockptr_t optval, int optlen, bool old_timeval)
396{
397 if (old_timeval && in_compat_syscall() && !COMPAT_USE_64BIT_TIME) {
398 struct old_timeval32 tv32;
399
400 if (optlen < sizeof(tv32))
401 return -EINVAL;
402
403 if (copy_from_sockptr(dst: &tv32, src: optval, size: sizeof(tv32)))
404 return -EFAULT;
405 tv->tv_sec = tv32.tv_sec;
406 tv->tv_usec = tv32.tv_usec;
407 } else if (old_timeval) {
408 struct __kernel_old_timeval old_tv;
409
410 if (optlen < sizeof(old_tv))
411 return -EINVAL;
412 if (copy_from_sockptr(dst: &old_tv, src: optval, size: sizeof(old_tv)))
413 return -EFAULT;
414 tv->tv_sec = old_tv.tv_sec;
415 tv->tv_usec = old_tv.tv_usec;
416 } else {
417 if (optlen < sizeof(*tv))
418 return -EINVAL;
419 if (copy_from_sockptr(dst: tv, src: optval, size: sizeof(*tv)))
420 return -EFAULT;
421 }
422
423 return 0;
424}
425EXPORT_SYMBOL(sock_copy_user_timeval);
426
427static int sock_set_timeout(long *timeo_p, sockptr_t optval, int optlen,
428 bool old_timeval)
429{
430 struct __kernel_sock_timeval tv;
431 int err = sock_copy_user_timeval(&tv, optval, optlen, old_timeval);
432 long val;
433
434 if (err)
435 return err;
436
437 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
438 return -EDOM;
439
440 if (tv.tv_sec < 0) {
441 static int warned __read_mostly;
442
443 WRITE_ONCE(*timeo_p, 0);
444 if (warned < 10 && net_ratelimit()) {
445 warned++;
446 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
447 __func__, current->comm, task_pid_nr(current));
448 }
449 return 0;
450 }
451 val = MAX_SCHEDULE_TIMEOUT;
452 if ((tv.tv_sec || tv.tv_usec) &&
453 (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)))
454 val = tv.tv_sec * HZ + DIV_ROUND_UP((unsigned long)tv.tv_usec,
455 USEC_PER_SEC / HZ);
456 WRITE_ONCE(*timeo_p, val);
457 return 0;
458}
459
460static bool sock_needs_netstamp(const struct sock *sk)
461{
462 switch (sk->sk_family) {
463 case AF_UNSPEC:
464 case AF_UNIX:
465 return false;
466 default:
467 return true;
468 }
469}
470
471static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
472{
473 if (sk->sk_flags & flags) {
474 sk->sk_flags &= ~flags;
475 if (sock_needs_netstamp(sk) &&
476 !(sk->sk_flags & SK_FLAGS_TIMESTAMP))
477 net_disable_timestamp();
478 }
479}
480
481
482int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
483{
484 unsigned long flags;
485 struct sk_buff_head *list = &sk->sk_receive_queue;
486
487 if (atomic_read(v: &sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
488 atomic_inc(v: &sk->sk_drops);
489 trace_sock_rcvqueue_full(sk, skb);
490 return -ENOMEM;
491 }
492
493 if (!sk_rmem_schedule(sk, skb, size: skb->truesize)) {
494 atomic_inc(v: &sk->sk_drops);
495 return -ENOBUFS;
496 }
497
498 skb->dev = NULL;
499 skb_set_owner_r(skb, sk);
500
501 /* we escape from rcu protected region, make sure we dont leak
502 * a norefcounted dst
503 */
504 skb_dst_force(skb);
505
506 spin_lock_irqsave(&list->lock, flags);
507 sock_skb_set_dropcount(sk, skb);
508 __skb_queue_tail(list, newsk: skb);
509 spin_unlock_irqrestore(lock: &list->lock, flags);
510
511 if (!sock_flag(sk, flag: SOCK_DEAD))
512 sk->sk_data_ready(sk);
513 return 0;
514}
515EXPORT_SYMBOL(__sock_queue_rcv_skb);
516
517int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
518 enum skb_drop_reason *reason)
519{
520 enum skb_drop_reason drop_reason;
521 int err;
522
523 err = sk_filter(sk, skb);
524 if (err) {
525 drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
526 goto out;
527 }
528 err = __sock_queue_rcv_skb(sk, skb);
529 switch (err) {
530 case -ENOMEM:
531 drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
532 break;
533 case -ENOBUFS:
534 drop_reason = SKB_DROP_REASON_PROTO_MEM;
535 break;
536 default:
537 drop_reason = SKB_NOT_DROPPED_YET;
538 break;
539 }
540out:
541 if (reason)
542 *reason = drop_reason;
543 return err;
544}
545EXPORT_SYMBOL(sock_queue_rcv_skb_reason);
546
547int __sk_receive_skb(struct sock *sk, struct sk_buff *skb,
548 const int nested, unsigned int trim_cap, bool refcounted)
549{
550 int rc = NET_RX_SUCCESS;
551
552 if (sk_filter_trim_cap(sk, skb, cap: trim_cap))
553 goto discard_and_relse;
554
555 skb->dev = NULL;
556
557 if (sk_rcvqueues_full(sk, limit: sk->sk_rcvbuf)) {
558 atomic_inc(v: &sk->sk_drops);
559 goto discard_and_relse;
560 }
561 if (nested)
562 bh_lock_sock_nested(sk);
563 else
564 bh_lock_sock(sk);
565 if (!sock_owned_by_user(sk)) {
566 /*
567 * trylock + unlock semantics:
568 */
569 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
570
571 rc = sk_backlog_rcv(sk, skb);
572
573 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
574 } else if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) {
575 bh_unlock_sock(sk);
576 atomic_inc(v: &sk->sk_drops);
577 goto discard_and_relse;
578 }
579
580 bh_unlock_sock(sk);
581out:
582 if (refcounted)
583 sock_put(sk);
584 return rc;
585discard_and_relse:
586 kfree_skb(skb);
587 goto out;
588}
589EXPORT_SYMBOL(__sk_receive_skb);
590
591INDIRECT_CALLABLE_DECLARE(struct dst_entry *ip6_dst_check(struct dst_entry *,
592 u32));
593INDIRECT_CALLABLE_DECLARE(struct dst_entry *ipv4_dst_check(struct dst_entry *,
594 u32));
595struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
596{
597 struct dst_entry *dst = __sk_dst_get(sk);
598
599 if (dst && dst->obsolete &&
600 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
601 dst, cookie) == NULL) {
602 sk_tx_queue_clear(sk);
603 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
604 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
605 dst_release(dst);
606 return NULL;
607 }
608
609 return dst;
610}
611EXPORT_SYMBOL(__sk_dst_check);
612
613struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
614{
615 struct dst_entry *dst = sk_dst_get(sk);
616
617 if (dst && dst->obsolete &&
618 INDIRECT_CALL_INET(dst->ops->check, ip6_dst_check, ipv4_dst_check,
619 dst, cookie) == NULL) {
620 sk_dst_reset(sk);
621 dst_release(dst);
622 return NULL;
623 }
624
625 return dst;
626}
627EXPORT_SYMBOL(sk_dst_check);
628
629static int sock_bindtoindex_locked(struct sock *sk, int ifindex)
630{
631 int ret = -ENOPROTOOPT;
632#ifdef CONFIG_NETDEVICES
633 struct net *net = sock_net(sk);
634
635 /* Sorry... */
636 ret = -EPERM;
637 if (sk->sk_bound_dev_if && !ns_capable(ns: net->user_ns, CAP_NET_RAW))
638 goto out;
639
640 ret = -EINVAL;
641 if (ifindex < 0)
642 goto out;
643
644 /* Paired with all READ_ONCE() done locklessly. */
645 WRITE_ONCE(sk->sk_bound_dev_if, ifindex);
646
647 if (sk->sk_prot->rehash)
648 sk->sk_prot->rehash(sk);
649 sk_dst_reset(sk);
650
651 ret = 0;
652
653out:
654#endif
655
656 return ret;
657}
658
659int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk)
660{
661 int ret;
662
663 if (lock_sk)
664 lock_sock(sk);
665 ret = sock_bindtoindex_locked(sk, ifindex);
666 if (lock_sk)
667 release_sock(sk);
668
669 return ret;
670}
671EXPORT_SYMBOL(sock_bindtoindex);
672
673static int sock_setbindtodevice(struct sock *sk, sockptr_t optval, int optlen)
674{
675 int ret = -ENOPROTOOPT;
676#ifdef CONFIG_NETDEVICES
677 struct net *net = sock_net(sk);
678 char devname[IFNAMSIZ];
679 int index;
680
681 ret = -EINVAL;
682 if (optlen < 0)
683 goto out;
684
685 /* Bind this socket to a particular device like "eth0",
686 * as specified in the passed interface name. If the
687 * name is "" or the option length is zero the socket
688 * is not bound.
689 */
690 if (optlen > IFNAMSIZ - 1)
691 optlen = IFNAMSIZ - 1;
692 memset(devname, 0, sizeof(devname));
693
694 ret = -EFAULT;
695 if (copy_from_sockptr(dst: devname, src: optval, size: optlen))
696 goto out;
697
698 index = 0;
699 if (devname[0] != '\0') {
700 struct net_device *dev;
701
702 rcu_read_lock();
703 dev = dev_get_by_name_rcu(net, name: devname);
704 if (dev)
705 index = dev->ifindex;
706 rcu_read_unlock();
707 ret = -ENODEV;
708 if (!dev)
709 goto out;
710 }
711
712 sockopt_lock_sock(sk);
713 ret = sock_bindtoindex_locked(sk, ifindex: index);
714 sockopt_release_sock(sk);
715out:
716#endif
717
718 return ret;
719}
720
721static int sock_getbindtodevice(struct sock *sk, sockptr_t optval,
722 sockptr_t optlen, int len)
723{
724 int ret = -ENOPROTOOPT;
725#ifdef CONFIG_NETDEVICES
726 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
727 struct net *net = sock_net(sk);
728 char devname[IFNAMSIZ];
729
730 if (bound_dev_if == 0) {
731 len = 0;
732 goto zero;
733 }
734
735 ret = -EINVAL;
736 if (len < IFNAMSIZ)
737 goto out;
738
739 ret = netdev_get_name(net, name: devname, ifindex: bound_dev_if);
740 if (ret)
741 goto out;
742
743 len = strlen(devname) + 1;
744
745 ret = -EFAULT;
746 if (copy_to_sockptr(dst: optval, src: devname, size: len))
747 goto out;
748
749zero:
750 ret = -EFAULT;
751 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
752 goto out;
753
754 ret = 0;
755
756out:
757#endif
758
759 return ret;
760}
761
762bool sk_mc_loop(const struct sock *sk)
763{
764 if (dev_recursion_level())
765 return false;
766 if (!sk)
767 return true;
768 /* IPV6_ADDRFORM can change sk->sk_family under us. */
769 switch (READ_ONCE(sk->sk_family)) {
770 case AF_INET:
771 return inet_test_bit(MC_LOOP, sk);
772#if IS_ENABLED(CONFIG_IPV6)
773 case AF_INET6:
774 return inet6_test_bit(MC6_LOOP, sk);
775#endif
776 }
777 WARN_ON_ONCE(1);
778 return true;
779}
780EXPORT_SYMBOL(sk_mc_loop);
781
782void sock_set_reuseaddr(struct sock *sk)
783{
784 lock_sock(sk);
785 sk->sk_reuse = SK_CAN_REUSE;
786 release_sock(sk);
787}
788EXPORT_SYMBOL(sock_set_reuseaddr);
789
790void sock_set_reuseport(struct sock *sk)
791{
792 lock_sock(sk);
793 sk->sk_reuseport = true;
794 release_sock(sk);
795}
796EXPORT_SYMBOL(sock_set_reuseport);
797
798void sock_no_linger(struct sock *sk)
799{
800 lock_sock(sk);
801 WRITE_ONCE(sk->sk_lingertime, 0);
802 sock_set_flag(sk, flag: SOCK_LINGER);
803 release_sock(sk);
804}
805EXPORT_SYMBOL(sock_no_linger);
806
807void sock_set_priority(struct sock *sk, u32 priority)
808{
809 WRITE_ONCE(sk->sk_priority, priority);
810}
811EXPORT_SYMBOL(sock_set_priority);
812
813void sock_set_sndtimeo(struct sock *sk, s64 secs)
814{
815 lock_sock(sk);
816 if (secs && secs < MAX_SCHEDULE_TIMEOUT / HZ - 1)
817 WRITE_ONCE(sk->sk_sndtimeo, secs * HZ);
818 else
819 WRITE_ONCE(sk->sk_sndtimeo, MAX_SCHEDULE_TIMEOUT);
820 release_sock(sk);
821}
822EXPORT_SYMBOL(sock_set_sndtimeo);
823
824static void __sock_set_timestamps(struct sock *sk, bool val, bool new, bool ns)
825{
826 if (val) {
827 sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: new);
828 sock_valbool_flag(sk, bit: SOCK_RCVTSTAMPNS, valbool: ns);
829 sock_set_flag(sk, flag: SOCK_RCVTSTAMP);
830 sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP);
831 } else {
832 sock_reset_flag(sk, flag: SOCK_RCVTSTAMP);
833 sock_reset_flag(sk, flag: SOCK_RCVTSTAMPNS);
834 }
835}
836
837void sock_enable_timestamps(struct sock *sk)
838{
839 lock_sock(sk);
840 __sock_set_timestamps(sk, val: true, new: false, ns: true);
841 release_sock(sk);
842}
843EXPORT_SYMBOL(sock_enable_timestamps);
844
845void sock_set_timestamp(struct sock *sk, int optname, bool valbool)
846{
847 switch (optname) {
848 case SO_TIMESTAMP_OLD:
849 __sock_set_timestamps(sk, val: valbool, new: false, ns: false);
850 break;
851 case SO_TIMESTAMP_NEW:
852 __sock_set_timestamps(sk, val: valbool, new: true, ns: false);
853 break;
854 case SO_TIMESTAMPNS_OLD:
855 __sock_set_timestamps(sk, val: valbool, new: false, ns: true);
856 break;
857 case SO_TIMESTAMPNS_NEW:
858 __sock_set_timestamps(sk, val: valbool, new: true, ns: true);
859 break;
860 }
861}
862
863static int sock_timestamping_bind_phc(struct sock *sk, int phc_index)
864{
865 struct net *net = sock_net(sk);
866 struct net_device *dev = NULL;
867 bool match = false;
868 int *vclock_index;
869 int i, num;
870
871 if (sk->sk_bound_dev_if)
872 dev = dev_get_by_index(net, ifindex: sk->sk_bound_dev_if);
873
874 if (!dev) {
875 pr_err("%s: sock not bind to device\n", __func__);
876 return -EOPNOTSUPP;
877 }
878
879 num = ethtool_get_phc_vclocks(dev, vclock_index: &vclock_index);
880 dev_put(dev);
881
882 for (i = 0; i < num; i++) {
883 if (*(vclock_index + i) == phc_index) {
884 match = true;
885 break;
886 }
887 }
888
889 if (num > 0)
890 kfree(objp: vclock_index);
891
892 if (!match)
893 return -EINVAL;
894
895 WRITE_ONCE(sk->sk_bind_phc, phc_index);
896
897 return 0;
898}
899
900int sock_set_timestamping(struct sock *sk, int optname,
901 struct so_timestamping timestamping)
902{
903 int val = timestamping.flags;
904 int ret;
905
906 if (val & ~SOF_TIMESTAMPING_MASK)
907 return -EINVAL;
908
909 if (val & SOF_TIMESTAMPING_OPT_ID_TCP &&
910 !(val & SOF_TIMESTAMPING_OPT_ID))
911 return -EINVAL;
912
913 if (val & SOF_TIMESTAMPING_OPT_ID &&
914 !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID)) {
915 if (sk_is_tcp(sk)) {
916 if ((1 << sk->sk_state) &
917 (TCPF_CLOSE | TCPF_LISTEN))
918 return -EINVAL;
919 if (val & SOF_TIMESTAMPING_OPT_ID_TCP)
920 atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->write_seq);
921 else
922 atomic_set(v: &sk->sk_tskey, tcp_sk(sk)->snd_una);
923 } else {
924 atomic_set(v: &sk->sk_tskey, i: 0);
925 }
926 }
927
928 if (val & SOF_TIMESTAMPING_OPT_STATS &&
929 !(val & SOF_TIMESTAMPING_OPT_TSONLY))
930 return -EINVAL;
931
932 if (val & SOF_TIMESTAMPING_BIND_PHC) {
933 ret = sock_timestamping_bind_phc(sk, phc_index: timestamping.bind_phc);
934 if (ret)
935 return ret;
936 }
937
938 WRITE_ONCE(sk->sk_tsflags, val);
939 sock_valbool_flag(sk, bit: SOCK_TSTAMP_NEW, valbool: optname == SO_TIMESTAMPING_NEW);
940
941 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
942 sock_enable_timestamp(sk,
943 flag: SOCK_TIMESTAMPING_RX_SOFTWARE);
944 else
945 sock_disable_timestamp(sk,
946 flags: (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
947 return 0;
948}
949
950void sock_set_keepalive(struct sock *sk)
951{
952 lock_sock(sk);
953 if (sk->sk_prot->keepalive)
954 sk->sk_prot->keepalive(sk, true);
955 sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool: true);
956 release_sock(sk);
957}
958EXPORT_SYMBOL(sock_set_keepalive);
959
960static void __sock_set_rcvbuf(struct sock *sk, int val)
961{
962 /* Ensure val * 2 fits into an int, to prevent max_t() from treating it
963 * as a negative value.
964 */
965 val = min_t(int, val, INT_MAX / 2);
966 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
967
968 /* We double it on the way in to account for "struct sk_buff" etc.
969 * overhead. Applications assume that the SO_RCVBUF setting they make
970 * will allow that much actual data to be received on that socket.
971 *
972 * Applications are unaware that "struct sk_buff" and other overheads
973 * allocate from the receive buffer during socket buffer allocation.
974 *
975 * And after considering the possible alternatives, returning the value
976 * we actually used in getsockopt is the most desirable behavior.
977 */
978 WRITE_ONCE(sk->sk_rcvbuf, max_t(int, val * 2, SOCK_MIN_RCVBUF));
979}
980
981void sock_set_rcvbuf(struct sock *sk, int val)
982{
983 lock_sock(sk);
984 __sock_set_rcvbuf(sk, val);
985 release_sock(sk);
986}
987EXPORT_SYMBOL(sock_set_rcvbuf);
988
989static void __sock_set_mark(struct sock *sk, u32 val)
990{
991 if (val != sk->sk_mark) {
992 WRITE_ONCE(sk->sk_mark, val);
993 sk_dst_reset(sk);
994 }
995}
996
997void sock_set_mark(struct sock *sk, u32 val)
998{
999 lock_sock(sk);
1000 __sock_set_mark(sk, val);
1001 release_sock(sk);
1002}
1003EXPORT_SYMBOL(sock_set_mark);
1004
1005static void sock_release_reserved_memory(struct sock *sk, int bytes)
1006{
1007 /* Round down bytes to multiple of pages */
1008 bytes = round_down(bytes, PAGE_SIZE);
1009
1010 WARN_ON(bytes > sk->sk_reserved_mem);
1011 WRITE_ONCE(sk->sk_reserved_mem, sk->sk_reserved_mem - bytes);
1012 sk_mem_reclaim(sk);
1013}
1014
1015static int sock_reserve_memory(struct sock *sk, int bytes)
1016{
1017 long allocated;
1018 bool charged;
1019 int pages;
1020
1021 if (!mem_cgroup_sockets_enabled || !sk->sk_memcg || !sk_has_account(sk))
1022 return -EOPNOTSUPP;
1023
1024 if (!bytes)
1025 return 0;
1026
1027 pages = sk_mem_pages(amt: bytes);
1028
1029 /* pre-charge to memcg */
1030 charged = mem_cgroup_charge_skmem(memcg: sk->sk_memcg, nr_pages: pages,
1031 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
1032 if (!charged)
1033 return -ENOMEM;
1034
1035 /* pre-charge to forward_alloc */
1036 sk_memory_allocated_add(sk, amt: pages);
1037 allocated = sk_memory_allocated(sk);
1038 /* If the system goes into memory pressure with this
1039 * precharge, give up and return error.
1040 */
1041 if (allocated > sk_prot_mem_limits(sk, index: 1)) {
1042 sk_memory_allocated_sub(sk, amt: pages);
1043 mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: pages);
1044 return -ENOMEM;
1045 }
1046 sk_forward_alloc_add(sk, val: pages << PAGE_SHIFT);
1047
1048 WRITE_ONCE(sk->sk_reserved_mem,
1049 sk->sk_reserved_mem + (pages << PAGE_SHIFT));
1050
1051 return 0;
1052}
1053
1054void sockopt_lock_sock(struct sock *sk)
1055{
1056 /* When current->bpf_ctx is set, the setsockopt is called from
1057 * a bpf prog. bpf has ensured the sk lock has been
1058 * acquired before calling setsockopt().
1059 */
1060 if (has_current_bpf_ctx())
1061 return;
1062
1063 lock_sock(sk);
1064}
1065EXPORT_SYMBOL(sockopt_lock_sock);
1066
1067void sockopt_release_sock(struct sock *sk)
1068{
1069 if (has_current_bpf_ctx())
1070 return;
1071
1072 release_sock(sk);
1073}
1074EXPORT_SYMBOL(sockopt_release_sock);
1075
1076bool sockopt_ns_capable(struct user_namespace *ns, int cap)
1077{
1078 return has_current_bpf_ctx() || ns_capable(ns, cap);
1079}
1080EXPORT_SYMBOL(sockopt_ns_capable);
1081
1082bool sockopt_capable(int cap)
1083{
1084 return has_current_bpf_ctx() || capable(cap);
1085}
1086EXPORT_SYMBOL(sockopt_capable);
1087
1088/*
1089 * This is meant for all protocols to use and covers goings on
1090 * at the socket level. Everything here is generic.
1091 */
1092
1093int sk_setsockopt(struct sock *sk, int level, int optname,
1094 sockptr_t optval, unsigned int optlen)
1095{
1096 struct so_timestamping timestamping;
1097 struct socket *sock = sk->sk_socket;
1098 struct sock_txtime sk_txtime;
1099 int val;
1100 int valbool;
1101 struct linger ling;
1102 int ret = 0;
1103
1104 /*
1105 * Options without arguments
1106 */
1107
1108 if (optname == SO_BINDTODEVICE)
1109 return sock_setbindtodevice(sk, optval, optlen);
1110
1111 if (optlen < sizeof(int))
1112 return -EINVAL;
1113
1114 if (copy_from_sockptr(dst: &val, src: optval, size: sizeof(val)))
1115 return -EFAULT;
1116
1117 valbool = val ? 1 : 0;
1118
1119 /* handle options which do not require locking the socket. */
1120 switch (optname) {
1121 case SO_PRIORITY:
1122 if ((val >= 0 && val <= 6) ||
1123 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) ||
1124 sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1125 sock_set_priority(sk, val);
1126 return 0;
1127 }
1128 return -EPERM;
1129 case SO_PASSSEC:
1130 assign_bit(SOCK_PASSSEC, addr: &sock->flags, value: valbool);
1131 return 0;
1132 case SO_PASSCRED:
1133 assign_bit(SOCK_PASSCRED, addr: &sock->flags, value: valbool);
1134 return 0;
1135 case SO_PASSPIDFD:
1136 assign_bit(SOCK_PASSPIDFD, addr: &sock->flags, value: valbool);
1137 return 0;
1138 case SO_TYPE:
1139 case SO_PROTOCOL:
1140 case SO_DOMAIN:
1141 case SO_ERROR:
1142 return -ENOPROTOOPT;
1143#ifdef CONFIG_NET_RX_BUSY_POLL
1144 case SO_BUSY_POLL:
1145 if (val < 0)
1146 return -EINVAL;
1147 WRITE_ONCE(sk->sk_ll_usec, val);
1148 return 0;
1149 case SO_PREFER_BUSY_POLL:
1150 if (valbool && !sockopt_capable(CAP_NET_ADMIN))
1151 return -EPERM;
1152 WRITE_ONCE(sk->sk_prefer_busy_poll, valbool);
1153 return 0;
1154 case SO_BUSY_POLL_BUDGET:
1155 if (val > READ_ONCE(sk->sk_busy_poll_budget) &&
1156 !sockopt_capable(CAP_NET_ADMIN))
1157 return -EPERM;
1158 if (val < 0 || val > U16_MAX)
1159 return -EINVAL;
1160 WRITE_ONCE(sk->sk_busy_poll_budget, val);
1161 return 0;
1162#endif
1163 case SO_MAX_PACING_RATE:
1164 {
1165 unsigned long ulval = (val == ~0U) ? ~0UL : (unsigned int)val;
1166 unsigned long pacing_rate;
1167
1168 if (sizeof(ulval) != sizeof(val) &&
1169 optlen >= sizeof(ulval) &&
1170 copy_from_sockptr(dst: &ulval, src: optval, size: sizeof(ulval))) {
1171 return -EFAULT;
1172 }
1173 if (ulval != ~0UL)
1174 cmpxchg(&sk->sk_pacing_status,
1175 SK_PACING_NONE,
1176 SK_PACING_NEEDED);
1177 /* Pairs with READ_ONCE() from sk_getsockopt() */
1178 WRITE_ONCE(sk->sk_max_pacing_rate, ulval);
1179 pacing_rate = READ_ONCE(sk->sk_pacing_rate);
1180 if (ulval < pacing_rate)
1181 WRITE_ONCE(sk->sk_pacing_rate, ulval);
1182 return 0;
1183 }
1184 case SO_TXREHASH:
1185 if (val < -1 || val > 1)
1186 return -EINVAL;
1187 if ((u8)val == SOCK_TXREHASH_DEFAULT)
1188 val = READ_ONCE(sock_net(sk)->core.sysctl_txrehash);
1189 /* Paired with READ_ONCE() in tcp_rtx_synack()
1190 * and sk_getsockopt().
1191 */
1192 WRITE_ONCE(sk->sk_txrehash, (u8)val);
1193 return 0;
1194 }
1195
1196 sockopt_lock_sock(sk);
1197
1198 switch (optname) {
1199 case SO_DEBUG:
1200 if (val && !sockopt_capable(CAP_NET_ADMIN))
1201 ret = -EACCES;
1202 else
1203 sock_valbool_flag(sk, bit: SOCK_DBG, valbool);
1204 break;
1205 case SO_REUSEADDR:
1206 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
1207 break;
1208 case SO_REUSEPORT:
1209 sk->sk_reuseport = valbool;
1210 break;
1211 case SO_DONTROUTE:
1212 sock_valbool_flag(sk, bit: SOCK_LOCALROUTE, valbool);
1213 sk_dst_reset(sk);
1214 break;
1215 case SO_BROADCAST:
1216 sock_valbool_flag(sk, bit: SOCK_BROADCAST, valbool);
1217 break;
1218 case SO_SNDBUF:
1219 /* Don't error on this BSD doesn't and if you think
1220 * about it this is right. Otherwise apps have to
1221 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1222 * are treated in BSD as hints
1223 */
1224 val = min_t(u32, val, READ_ONCE(sysctl_wmem_max));
1225set_sndbuf:
1226 /* Ensure val * 2 fits into an int, to prevent max_t()
1227 * from treating it as a negative value.
1228 */
1229 val = min_t(int, val, INT_MAX / 2);
1230 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
1231 WRITE_ONCE(sk->sk_sndbuf,
1232 max_t(int, val * 2, SOCK_MIN_SNDBUF));
1233 /* Wake up sending tasks if we upped the value. */
1234 sk->sk_write_space(sk);
1235 break;
1236
1237 case SO_SNDBUFFORCE:
1238 if (!sockopt_capable(CAP_NET_ADMIN)) {
1239 ret = -EPERM;
1240 break;
1241 }
1242
1243 /* No negative values (to prevent underflow, as val will be
1244 * multiplied by 2).
1245 */
1246 if (val < 0)
1247 val = 0;
1248 goto set_sndbuf;
1249
1250 case SO_RCVBUF:
1251 /* Don't error on this BSD doesn't and if you think
1252 * about it this is right. Otherwise apps have to
1253 * play 'guess the biggest size' games. RCVBUF/SNDBUF
1254 * are treated in BSD as hints
1255 */
1256 __sock_set_rcvbuf(sk, min_t(u32, val, READ_ONCE(sysctl_rmem_max)));
1257 break;
1258
1259 case SO_RCVBUFFORCE:
1260 if (!sockopt_capable(CAP_NET_ADMIN)) {
1261 ret = -EPERM;
1262 break;
1263 }
1264
1265 /* No negative values (to prevent underflow, as val will be
1266 * multiplied by 2).
1267 */
1268 __sock_set_rcvbuf(sk, max(val, 0));
1269 break;
1270
1271 case SO_KEEPALIVE:
1272 if (sk->sk_prot->keepalive)
1273 sk->sk_prot->keepalive(sk, valbool);
1274 sock_valbool_flag(sk, bit: SOCK_KEEPOPEN, valbool);
1275 break;
1276
1277 case SO_OOBINLINE:
1278 sock_valbool_flag(sk, bit: SOCK_URGINLINE, valbool);
1279 break;
1280
1281 case SO_NO_CHECK:
1282 sk->sk_no_check_tx = valbool;
1283 break;
1284
1285 case SO_LINGER:
1286 if (optlen < sizeof(ling)) {
1287 ret = -EINVAL; /* 1003.1g */
1288 break;
1289 }
1290 if (copy_from_sockptr(dst: &ling, src: optval, size: sizeof(ling))) {
1291 ret = -EFAULT;
1292 break;
1293 }
1294 if (!ling.l_onoff) {
1295 sock_reset_flag(sk, flag: SOCK_LINGER);
1296 } else {
1297 unsigned long t_sec = ling.l_linger;
1298
1299 if (t_sec >= MAX_SCHEDULE_TIMEOUT / HZ)
1300 WRITE_ONCE(sk->sk_lingertime, MAX_SCHEDULE_TIMEOUT);
1301 else
1302 WRITE_ONCE(sk->sk_lingertime, t_sec * HZ);
1303 sock_set_flag(sk, flag: SOCK_LINGER);
1304 }
1305 break;
1306
1307 case SO_BSDCOMPAT:
1308 break;
1309
1310 case SO_TIMESTAMP_OLD:
1311 case SO_TIMESTAMP_NEW:
1312 case SO_TIMESTAMPNS_OLD:
1313 case SO_TIMESTAMPNS_NEW:
1314 sock_set_timestamp(sk, optname, valbool);
1315 break;
1316
1317 case SO_TIMESTAMPING_NEW:
1318 case SO_TIMESTAMPING_OLD:
1319 if (optlen == sizeof(timestamping)) {
1320 if (copy_from_sockptr(dst: &timestamping, src: optval,
1321 size: sizeof(timestamping))) {
1322 ret = -EFAULT;
1323 break;
1324 }
1325 } else {
1326 memset(&timestamping, 0, sizeof(timestamping));
1327 timestamping.flags = val;
1328 }
1329 ret = sock_set_timestamping(sk, optname, timestamping);
1330 break;
1331
1332 case SO_RCVLOWAT:
1333 {
1334 int (*set_rcvlowat)(struct sock *sk, int val) = NULL;
1335
1336 if (val < 0)
1337 val = INT_MAX;
1338 if (sock)
1339 set_rcvlowat = READ_ONCE(sock->ops)->set_rcvlowat;
1340 if (set_rcvlowat)
1341 ret = set_rcvlowat(sk, val);
1342 else
1343 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1344 break;
1345 }
1346 case SO_RCVTIMEO_OLD:
1347 case SO_RCVTIMEO_NEW:
1348 ret = sock_set_timeout(timeo_p: &sk->sk_rcvtimeo, optval,
1349 optlen, old_timeval: optname == SO_RCVTIMEO_OLD);
1350 break;
1351
1352 case SO_SNDTIMEO_OLD:
1353 case SO_SNDTIMEO_NEW:
1354 ret = sock_set_timeout(timeo_p: &sk->sk_sndtimeo, optval,
1355 optlen, old_timeval: optname == SO_SNDTIMEO_OLD);
1356 break;
1357
1358 case SO_ATTACH_FILTER: {
1359 struct sock_fprog fprog;
1360
1361 ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen);
1362 if (!ret)
1363 ret = sk_attach_filter(fprog: &fprog, sk);
1364 break;
1365 }
1366 case SO_ATTACH_BPF:
1367 ret = -EINVAL;
1368 if (optlen == sizeof(u32)) {
1369 u32 ufd;
1370
1371 ret = -EFAULT;
1372 if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd)))
1373 break;
1374
1375 ret = sk_attach_bpf(ufd, sk);
1376 }
1377 break;
1378
1379 case SO_ATTACH_REUSEPORT_CBPF: {
1380 struct sock_fprog fprog;
1381
1382 ret = copy_bpf_fprog_from_user(dst: &fprog, src: optval, len: optlen);
1383 if (!ret)
1384 ret = sk_reuseport_attach_filter(fprog: &fprog, sk);
1385 break;
1386 }
1387 case SO_ATTACH_REUSEPORT_EBPF:
1388 ret = -EINVAL;
1389 if (optlen == sizeof(u32)) {
1390 u32 ufd;
1391
1392 ret = -EFAULT;
1393 if (copy_from_sockptr(dst: &ufd, src: optval, size: sizeof(ufd)))
1394 break;
1395
1396 ret = sk_reuseport_attach_bpf(ufd, sk);
1397 }
1398 break;
1399
1400 case SO_DETACH_REUSEPORT_BPF:
1401 ret = reuseport_detach_prog(sk);
1402 break;
1403
1404 case SO_DETACH_FILTER:
1405 ret = sk_detach_filter(sk);
1406 break;
1407
1408 case SO_LOCK_FILTER:
1409 if (sock_flag(sk, flag: SOCK_FILTER_LOCKED) && !valbool)
1410 ret = -EPERM;
1411 else
1412 sock_valbool_flag(sk, bit: SOCK_FILTER_LOCKED, valbool);
1413 break;
1414
1415 case SO_MARK:
1416 if (!sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_RAW) &&
1417 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1418 ret = -EPERM;
1419 break;
1420 }
1421
1422 __sock_set_mark(sk, val);
1423 break;
1424 case SO_RCVMARK:
1425 sock_valbool_flag(sk, bit: SOCK_RCVMARK, valbool);
1426 break;
1427
1428 case SO_RXQ_OVFL:
1429 sock_valbool_flag(sk, bit: SOCK_RXQ_OVFL, valbool);
1430 break;
1431
1432 case SO_WIFI_STATUS:
1433 sock_valbool_flag(sk, bit: SOCK_WIFI_STATUS, valbool);
1434 break;
1435
1436 case SO_PEEK_OFF:
1437 {
1438 int (*set_peek_off)(struct sock *sk, int val);
1439
1440 set_peek_off = READ_ONCE(sock->ops)->set_peek_off;
1441 if (set_peek_off)
1442 ret = set_peek_off(sk, val);
1443 else
1444 ret = -EOPNOTSUPP;
1445 break;
1446 }
1447
1448 case SO_NOFCS:
1449 sock_valbool_flag(sk, bit: SOCK_NOFCS, valbool);
1450 break;
1451
1452 case SO_SELECT_ERR_QUEUE:
1453 sock_valbool_flag(sk, bit: SOCK_SELECT_ERR_QUEUE, valbool);
1454 break;
1455
1456
1457 case SO_INCOMING_CPU:
1458 reuseport_update_incoming_cpu(sk, val);
1459 break;
1460
1461 case SO_CNX_ADVICE:
1462 if (val == 1)
1463 dst_negative_advice(sk);
1464 break;
1465
1466 case SO_ZEROCOPY:
1467 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6) {
1468 if (!(sk_is_tcp(sk) ||
1469 (sk->sk_type == SOCK_DGRAM &&
1470 sk->sk_protocol == IPPROTO_UDP)))
1471 ret = -EOPNOTSUPP;
1472 } else if (sk->sk_family != PF_RDS) {
1473 ret = -EOPNOTSUPP;
1474 }
1475 if (!ret) {
1476 if (val < 0 || val > 1)
1477 ret = -EINVAL;
1478 else
1479 sock_valbool_flag(sk, bit: SOCK_ZEROCOPY, valbool);
1480 }
1481 break;
1482
1483 case SO_TXTIME:
1484 if (optlen != sizeof(struct sock_txtime)) {
1485 ret = -EINVAL;
1486 break;
1487 } else if (copy_from_sockptr(dst: &sk_txtime, src: optval,
1488 size: sizeof(struct sock_txtime))) {
1489 ret = -EFAULT;
1490 break;
1491 } else if (sk_txtime.flags & ~SOF_TXTIME_FLAGS_MASK) {
1492 ret = -EINVAL;
1493 break;
1494 }
1495 /* CLOCK_MONOTONIC is only used by sch_fq, and this packet
1496 * scheduler has enough safe guards.
1497 */
1498 if (sk_txtime.clockid != CLOCK_MONOTONIC &&
1499 !sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN)) {
1500 ret = -EPERM;
1501 break;
1502 }
1503 sock_valbool_flag(sk, bit: SOCK_TXTIME, valbool: true);
1504 sk->sk_clockid = sk_txtime.clockid;
1505 sk->sk_txtime_deadline_mode =
1506 !!(sk_txtime.flags & SOF_TXTIME_DEADLINE_MODE);
1507 sk->sk_txtime_report_errors =
1508 !!(sk_txtime.flags & SOF_TXTIME_REPORT_ERRORS);
1509 break;
1510
1511 case SO_BINDTOIFINDEX:
1512 ret = sock_bindtoindex_locked(sk, ifindex: val);
1513 break;
1514
1515 case SO_BUF_LOCK:
1516 if (val & ~SOCK_BUF_LOCK_MASK) {
1517 ret = -EINVAL;
1518 break;
1519 }
1520 sk->sk_userlocks = val | (sk->sk_userlocks &
1521 ~SOCK_BUF_LOCK_MASK);
1522 break;
1523
1524 case SO_RESERVE_MEM:
1525 {
1526 int delta;
1527
1528 if (val < 0) {
1529 ret = -EINVAL;
1530 break;
1531 }
1532
1533 delta = val - sk->sk_reserved_mem;
1534 if (delta < 0)
1535 sock_release_reserved_memory(sk, bytes: -delta);
1536 else
1537 ret = sock_reserve_memory(sk, bytes: delta);
1538 break;
1539 }
1540
1541 default:
1542 ret = -ENOPROTOOPT;
1543 break;
1544 }
1545 sockopt_release_sock(sk);
1546 return ret;
1547}
1548
1549int sock_setsockopt(struct socket *sock, int level, int optname,
1550 sockptr_t optval, unsigned int optlen)
1551{
1552 return sk_setsockopt(sk: sock->sk, level, optname,
1553 optval, optlen);
1554}
1555EXPORT_SYMBOL(sock_setsockopt);
1556
1557static const struct cred *sk_get_peer_cred(struct sock *sk)
1558{
1559 const struct cred *cred;
1560
1561 spin_lock(lock: &sk->sk_peer_lock);
1562 cred = get_cred(cred: sk->sk_peer_cred);
1563 spin_unlock(lock: &sk->sk_peer_lock);
1564
1565 return cred;
1566}
1567
1568static void cred_to_ucred(struct pid *pid, const struct cred *cred,
1569 struct ucred *ucred)
1570{
1571 ucred->pid = pid_vnr(pid);
1572 ucred->uid = ucred->gid = -1;
1573 if (cred) {
1574 struct user_namespace *current_ns = current_user_ns();
1575
1576 ucred->uid = from_kuid_munged(to: current_ns, uid: cred->euid);
1577 ucred->gid = from_kgid_munged(to: current_ns, gid: cred->egid);
1578 }
1579}
1580
1581static int groups_to_user(sockptr_t dst, const struct group_info *src)
1582{
1583 struct user_namespace *user_ns = current_user_ns();
1584 int i;
1585
1586 for (i = 0; i < src->ngroups; i++) {
1587 gid_t gid = from_kgid_munged(to: user_ns, gid: src->gid[i]);
1588
1589 if (copy_to_sockptr_offset(dst, offset: i * sizeof(gid), src: &gid, size: sizeof(gid)))
1590 return -EFAULT;
1591 }
1592
1593 return 0;
1594}
1595
1596int sk_getsockopt(struct sock *sk, int level, int optname,
1597 sockptr_t optval, sockptr_t optlen)
1598{
1599 struct socket *sock = sk->sk_socket;
1600
1601 union {
1602 int val;
1603 u64 val64;
1604 unsigned long ulval;
1605 struct linger ling;
1606 struct old_timeval32 tm32;
1607 struct __kernel_old_timeval tm;
1608 struct __kernel_sock_timeval stm;
1609 struct sock_txtime txtime;
1610 struct so_timestamping timestamping;
1611 } v;
1612
1613 int lv = sizeof(int);
1614 int len;
1615
1616 if (copy_from_sockptr(dst: &len, src: optlen, size: sizeof(int)))
1617 return -EFAULT;
1618 if (len < 0)
1619 return -EINVAL;
1620
1621 memset(&v, 0, sizeof(v));
1622
1623 switch (optname) {
1624 case SO_DEBUG:
1625 v.val = sock_flag(sk, flag: SOCK_DBG);
1626 break;
1627
1628 case SO_DONTROUTE:
1629 v.val = sock_flag(sk, flag: SOCK_LOCALROUTE);
1630 break;
1631
1632 case SO_BROADCAST:
1633 v.val = sock_flag(sk, flag: SOCK_BROADCAST);
1634 break;
1635
1636 case SO_SNDBUF:
1637 v.val = READ_ONCE(sk->sk_sndbuf);
1638 break;
1639
1640 case SO_RCVBUF:
1641 v.val = READ_ONCE(sk->sk_rcvbuf);
1642 break;
1643
1644 case SO_REUSEADDR:
1645 v.val = sk->sk_reuse;
1646 break;
1647
1648 case SO_REUSEPORT:
1649 v.val = sk->sk_reuseport;
1650 break;
1651
1652 case SO_KEEPALIVE:
1653 v.val = sock_flag(sk, flag: SOCK_KEEPOPEN);
1654 break;
1655
1656 case SO_TYPE:
1657 v.val = sk->sk_type;
1658 break;
1659
1660 case SO_PROTOCOL:
1661 v.val = sk->sk_protocol;
1662 break;
1663
1664 case SO_DOMAIN:
1665 v.val = sk->sk_family;
1666 break;
1667
1668 case SO_ERROR:
1669 v.val = -sock_error(sk);
1670 if (v.val == 0)
1671 v.val = xchg(&sk->sk_err_soft, 0);
1672 break;
1673
1674 case SO_OOBINLINE:
1675 v.val = sock_flag(sk, flag: SOCK_URGINLINE);
1676 break;
1677
1678 case SO_NO_CHECK:
1679 v.val = sk->sk_no_check_tx;
1680 break;
1681
1682 case SO_PRIORITY:
1683 v.val = READ_ONCE(sk->sk_priority);
1684 break;
1685
1686 case SO_LINGER:
1687 lv = sizeof(v.ling);
1688 v.ling.l_onoff = sock_flag(sk, flag: SOCK_LINGER);
1689 v.ling.l_linger = READ_ONCE(sk->sk_lingertime) / HZ;
1690 break;
1691
1692 case SO_BSDCOMPAT:
1693 break;
1694
1695 case SO_TIMESTAMP_OLD:
1696 v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) &&
1697 !sock_flag(sk, flag: SOCK_TSTAMP_NEW) &&
1698 !sock_flag(sk, flag: SOCK_RCVTSTAMPNS);
1699 break;
1700
1701 case SO_TIMESTAMPNS_OLD:
1702 v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && !sock_flag(sk, flag: SOCK_TSTAMP_NEW);
1703 break;
1704
1705 case SO_TIMESTAMP_NEW:
1706 v.val = sock_flag(sk, flag: SOCK_RCVTSTAMP) && sock_flag(sk, flag: SOCK_TSTAMP_NEW);
1707 break;
1708
1709 case SO_TIMESTAMPNS_NEW:
1710 v.val = sock_flag(sk, flag: SOCK_RCVTSTAMPNS) && sock_flag(sk, flag: SOCK_TSTAMP_NEW);
1711 break;
1712
1713 case SO_TIMESTAMPING_OLD:
1714 lv = sizeof(v.timestamping);
1715 v.timestamping.flags = READ_ONCE(sk->sk_tsflags);
1716 v.timestamping.bind_phc = READ_ONCE(sk->sk_bind_phc);
1717 break;
1718
1719 case SO_RCVTIMEO_OLD:
1720 case SO_RCVTIMEO_NEW:
1721 lv = sock_get_timeout(READ_ONCE(sk->sk_rcvtimeo), &v,
1722 SO_RCVTIMEO_OLD == optname);
1723 break;
1724
1725 case SO_SNDTIMEO_OLD:
1726 case SO_SNDTIMEO_NEW:
1727 lv = sock_get_timeout(READ_ONCE(sk->sk_sndtimeo), &v,
1728 SO_SNDTIMEO_OLD == optname);
1729 break;
1730
1731 case SO_RCVLOWAT:
1732 v.val = READ_ONCE(sk->sk_rcvlowat);
1733 break;
1734
1735 case SO_SNDLOWAT:
1736 v.val = 1;
1737 break;
1738
1739 case SO_PASSCRED:
1740 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1741 break;
1742
1743 case SO_PASSPIDFD:
1744 v.val = !!test_bit(SOCK_PASSPIDFD, &sock->flags);
1745 break;
1746
1747 case SO_PEERCRED:
1748 {
1749 struct ucred peercred;
1750 if (len > sizeof(peercred))
1751 len = sizeof(peercred);
1752
1753 spin_lock(lock: &sk->sk_peer_lock);
1754 cred_to_ucred(pid: sk->sk_peer_pid, cred: sk->sk_peer_cred, ucred: &peercred);
1755 spin_unlock(lock: &sk->sk_peer_lock);
1756
1757 if (copy_to_sockptr(dst: optval, src: &peercred, size: len))
1758 return -EFAULT;
1759 goto lenout;
1760 }
1761
1762 case SO_PEERPIDFD:
1763 {
1764 struct pid *peer_pid;
1765 struct file *pidfd_file = NULL;
1766 int pidfd;
1767
1768 if (len > sizeof(pidfd))
1769 len = sizeof(pidfd);
1770
1771 spin_lock(lock: &sk->sk_peer_lock);
1772 peer_pid = get_pid(pid: sk->sk_peer_pid);
1773 spin_unlock(lock: &sk->sk_peer_lock);
1774
1775 if (!peer_pid)
1776 return -ENODATA;
1777
1778 pidfd = pidfd_prepare(pid: peer_pid, flags: 0, ret: &pidfd_file);
1779 put_pid(pid: peer_pid);
1780 if (pidfd < 0)
1781 return pidfd;
1782
1783 if (copy_to_sockptr(dst: optval, src: &pidfd, size: len) ||
1784 copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int))) {
1785 put_unused_fd(fd: pidfd);
1786 fput(pidfd_file);
1787
1788 return -EFAULT;
1789 }
1790
1791 fd_install(fd: pidfd, file: pidfd_file);
1792 return 0;
1793 }
1794
1795 case SO_PEERGROUPS:
1796 {
1797 const struct cred *cred;
1798 int ret, n;
1799
1800 cred = sk_get_peer_cred(sk);
1801 if (!cred)
1802 return -ENODATA;
1803
1804 n = cred->group_info->ngroups;
1805 if (len < n * sizeof(gid_t)) {
1806 len = n * sizeof(gid_t);
1807 put_cred(cred);
1808 return copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)) ? -EFAULT : -ERANGE;
1809 }
1810 len = n * sizeof(gid_t);
1811
1812 ret = groups_to_user(dst: optval, src: cred->group_info);
1813 put_cred(cred);
1814 if (ret)
1815 return ret;
1816 goto lenout;
1817 }
1818
1819 case SO_PEERNAME:
1820 {
1821 struct sockaddr_storage address;
1822
1823 lv = READ_ONCE(sock->ops)->getname(sock, (struct sockaddr *)&address, 2);
1824 if (lv < 0)
1825 return -ENOTCONN;
1826 if (lv < len)
1827 return -EINVAL;
1828 if (copy_to_sockptr(dst: optval, src: &address, size: len))
1829 return -EFAULT;
1830 goto lenout;
1831 }
1832
1833 /* Dubious BSD thing... Probably nobody even uses it, but
1834 * the UNIX standard wants it for whatever reason... -DaveM
1835 */
1836 case SO_ACCEPTCONN:
1837 v.val = sk->sk_state == TCP_LISTEN;
1838 break;
1839
1840 case SO_PASSSEC:
1841 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1842 break;
1843
1844 case SO_PEERSEC:
1845 return security_socket_getpeersec_stream(sock,
1846 optval, optlen, len);
1847
1848 case SO_MARK:
1849 v.val = READ_ONCE(sk->sk_mark);
1850 break;
1851
1852 case SO_RCVMARK:
1853 v.val = sock_flag(sk, flag: SOCK_RCVMARK);
1854 break;
1855
1856 case SO_RXQ_OVFL:
1857 v.val = sock_flag(sk, flag: SOCK_RXQ_OVFL);
1858 break;
1859
1860 case SO_WIFI_STATUS:
1861 v.val = sock_flag(sk, flag: SOCK_WIFI_STATUS);
1862 break;
1863
1864 case SO_PEEK_OFF:
1865 if (!READ_ONCE(sock->ops)->set_peek_off)
1866 return -EOPNOTSUPP;
1867
1868 v.val = READ_ONCE(sk->sk_peek_off);
1869 break;
1870 case SO_NOFCS:
1871 v.val = sock_flag(sk, flag: SOCK_NOFCS);
1872 break;
1873
1874 case SO_BINDTODEVICE:
1875 return sock_getbindtodevice(sk, optval, optlen, len);
1876
1877 case SO_GET_FILTER:
1878 len = sk_get_filter(sk, optval, len);
1879 if (len < 0)
1880 return len;
1881
1882 goto lenout;
1883
1884 case SO_LOCK_FILTER:
1885 v.val = sock_flag(sk, flag: SOCK_FILTER_LOCKED);
1886 break;
1887
1888 case SO_BPF_EXTENSIONS:
1889 v.val = bpf_tell_extensions();
1890 break;
1891
1892 case SO_SELECT_ERR_QUEUE:
1893 v.val = sock_flag(sk, flag: SOCK_SELECT_ERR_QUEUE);
1894 break;
1895
1896#ifdef CONFIG_NET_RX_BUSY_POLL
1897 case SO_BUSY_POLL:
1898 v.val = READ_ONCE(sk->sk_ll_usec);
1899 break;
1900 case SO_PREFER_BUSY_POLL:
1901 v.val = READ_ONCE(sk->sk_prefer_busy_poll);
1902 break;
1903#endif
1904
1905 case SO_MAX_PACING_RATE:
1906 /* The READ_ONCE() pair with the WRITE_ONCE() in sk_setsockopt() */
1907 if (sizeof(v.ulval) != sizeof(v.val) && len >= sizeof(v.ulval)) {
1908 lv = sizeof(v.ulval);
1909 v.ulval = READ_ONCE(sk->sk_max_pacing_rate);
1910 } else {
1911 /* 32bit version */
1912 v.val = min_t(unsigned long, ~0U,
1913 READ_ONCE(sk->sk_max_pacing_rate));
1914 }
1915 break;
1916
1917 case SO_INCOMING_CPU:
1918 v.val = READ_ONCE(sk->sk_incoming_cpu);
1919 break;
1920
1921 case SO_MEMINFO:
1922 {
1923 u32 meminfo[SK_MEMINFO_VARS];
1924
1925 sk_get_meminfo(sk, meminfo);
1926
1927 len = min_t(unsigned int, len, sizeof(meminfo));
1928 if (copy_to_sockptr(dst: optval, src: &meminfo, size: len))
1929 return -EFAULT;
1930
1931 goto lenout;
1932 }
1933
1934#ifdef CONFIG_NET_RX_BUSY_POLL
1935 case SO_INCOMING_NAPI_ID:
1936 v.val = READ_ONCE(sk->sk_napi_id);
1937
1938 /* aggregate non-NAPI IDs down to 0 */
1939 if (v.val < MIN_NAPI_ID)
1940 v.val = 0;
1941
1942 break;
1943#endif
1944
1945 case SO_COOKIE:
1946 lv = sizeof(u64);
1947 if (len < lv)
1948 return -EINVAL;
1949 v.val64 = sock_gen_cookie(sk);
1950 break;
1951
1952 case SO_ZEROCOPY:
1953 v.val = sock_flag(sk, flag: SOCK_ZEROCOPY);
1954 break;
1955
1956 case SO_TXTIME:
1957 lv = sizeof(v.txtime);
1958 v.txtime.clockid = sk->sk_clockid;
1959 v.txtime.flags |= sk->sk_txtime_deadline_mode ?
1960 SOF_TXTIME_DEADLINE_MODE : 0;
1961 v.txtime.flags |= sk->sk_txtime_report_errors ?
1962 SOF_TXTIME_REPORT_ERRORS : 0;
1963 break;
1964
1965 case SO_BINDTOIFINDEX:
1966 v.val = READ_ONCE(sk->sk_bound_dev_if);
1967 break;
1968
1969 case SO_NETNS_COOKIE:
1970 lv = sizeof(u64);
1971 if (len != lv)
1972 return -EINVAL;
1973 v.val64 = sock_net(sk)->net_cookie;
1974 break;
1975
1976 case SO_BUF_LOCK:
1977 v.val = sk->sk_userlocks & SOCK_BUF_LOCK_MASK;
1978 break;
1979
1980 case SO_RESERVE_MEM:
1981 v.val = READ_ONCE(sk->sk_reserved_mem);
1982 break;
1983
1984 case SO_TXREHASH:
1985 /* Paired with WRITE_ONCE() in sk_setsockopt() */
1986 v.val = READ_ONCE(sk->sk_txrehash);
1987 break;
1988
1989 default:
1990 /* We implement the SO_SNDLOWAT etc to not be settable
1991 * (1003.1g 7).
1992 */
1993 return -ENOPROTOOPT;
1994 }
1995
1996 if (len > lv)
1997 len = lv;
1998 if (copy_to_sockptr(dst: optval, src: &v, size: len))
1999 return -EFAULT;
2000lenout:
2001 if (copy_to_sockptr(dst: optlen, src: &len, size: sizeof(int)))
2002 return -EFAULT;
2003 return 0;
2004}
2005
2006/*
2007 * Initialize an sk_lock.
2008 *
2009 * (We also register the sk_lock with the lock validator.)
2010 */
2011static inline void sock_lock_init(struct sock *sk)
2012{
2013 if (sk->sk_kern_sock)
2014 sock_lock_init_class_and_name(
2015 sk,
2016 af_family_kern_slock_key_strings[sk->sk_family],
2017 af_family_kern_slock_keys + sk->sk_family,
2018 af_family_kern_key_strings[sk->sk_family],
2019 af_family_kern_keys + sk->sk_family);
2020 else
2021 sock_lock_init_class_and_name(
2022 sk,
2023 af_family_slock_key_strings[sk->sk_family],
2024 af_family_slock_keys + sk->sk_family,
2025 af_family_key_strings[sk->sk_family],
2026 af_family_keys + sk->sk_family);
2027}
2028
2029/*
2030 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
2031 * even temporarly, because of RCU lookups. sk_node should also be left as is.
2032 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
2033 */
2034static void sock_copy(struct sock *nsk, const struct sock *osk)
2035{
2036 const struct proto *prot = READ_ONCE(osk->sk_prot);
2037#ifdef CONFIG_SECURITY_NETWORK
2038 void *sptr = nsk->sk_security;
2039#endif
2040
2041 /* If we move sk_tx_queue_mapping out of the private section,
2042 * we must check if sk_tx_queue_clear() is called after
2043 * sock_copy() in sk_clone_lock().
2044 */
2045 BUILD_BUG_ON(offsetof(struct sock, sk_tx_queue_mapping) <
2046 offsetof(struct sock, sk_dontcopy_begin) ||
2047 offsetof(struct sock, sk_tx_queue_mapping) >=
2048 offsetof(struct sock, sk_dontcopy_end));
2049
2050 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
2051
2052 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
2053 prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
2054
2055#ifdef CONFIG_SECURITY_NETWORK
2056 nsk->sk_security = sptr;
2057 security_sk_clone(sk: osk, newsk: nsk);
2058#endif
2059}
2060
2061static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
2062 int family)
2063{
2064 struct sock *sk;
2065 struct kmem_cache *slab;
2066
2067 slab = prot->slab;
2068 if (slab != NULL) {
2069 sk = kmem_cache_alloc(cachep: slab, flags: priority & ~__GFP_ZERO);
2070 if (!sk)
2071 return sk;
2072 if (want_init_on_alloc(flags: priority))
2073 sk_prot_clear_nulls(sk, size: prot->obj_size);
2074 } else
2075 sk = kmalloc(size: prot->obj_size, flags: priority);
2076
2077 if (sk != NULL) {
2078 if (security_sk_alloc(sk, family, priority))
2079 goto out_free;
2080
2081 if (!try_module_get(module: prot->owner))
2082 goto out_free_sec;
2083 }
2084
2085 return sk;
2086
2087out_free_sec:
2088 security_sk_free(sk);
2089out_free:
2090 if (slab != NULL)
2091 kmem_cache_free(s: slab, objp: sk);
2092 else
2093 kfree(objp: sk);
2094 return NULL;
2095}
2096
2097static void sk_prot_free(struct proto *prot, struct sock *sk)
2098{
2099 struct kmem_cache *slab;
2100 struct module *owner;
2101
2102 owner = prot->owner;
2103 slab = prot->slab;
2104
2105 cgroup_sk_free(skcd: &sk->sk_cgrp_data);
2106 mem_cgroup_sk_free(sk);
2107 security_sk_free(sk);
2108 if (slab != NULL)
2109 kmem_cache_free(s: slab, objp: sk);
2110 else
2111 kfree(objp: sk);
2112 module_put(module: owner);
2113}
2114
2115/**
2116 * sk_alloc - All socket objects are allocated here
2117 * @net: the applicable net namespace
2118 * @family: protocol family
2119 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2120 * @prot: struct proto associated with this new sock instance
2121 * @kern: is this to be a kernel socket?
2122 */
2123struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
2124 struct proto *prot, int kern)
2125{
2126 struct sock *sk;
2127
2128 sk = sk_prot_alloc(prot, priority: priority | __GFP_ZERO, family);
2129 if (sk) {
2130 sk->sk_family = family;
2131 /*
2132 * See comment in struct sock definition to understand
2133 * why we need sk_prot_creator -acme
2134 */
2135 sk->sk_prot = sk->sk_prot_creator = prot;
2136 sk->sk_kern_sock = kern;
2137 sock_lock_init(sk);
2138 sk->sk_net_refcnt = kern ? 0 : 1;
2139 if (likely(sk->sk_net_refcnt)) {
2140 get_net_track(net, tracker: &sk->ns_tracker, gfp: priority);
2141 sock_inuse_add(net, val: 1);
2142 } else {
2143 __netns_tracker_alloc(net, tracker: &sk->ns_tracker,
2144 refcounted: false, gfp: priority);
2145 }
2146
2147 sock_net_set(sk, net);
2148 refcount_set(r: &sk->sk_wmem_alloc, n: 1);
2149
2150 mem_cgroup_sk_alloc(sk);
2151 cgroup_sk_alloc(skcd: &sk->sk_cgrp_data);
2152 sock_update_classid(skcd: &sk->sk_cgrp_data);
2153 sock_update_netprioidx(skcd: &sk->sk_cgrp_data);
2154 sk_tx_queue_clear(sk);
2155 }
2156
2157 return sk;
2158}
2159EXPORT_SYMBOL(sk_alloc);
2160
2161/* Sockets having SOCK_RCU_FREE will call this function after one RCU
2162 * grace period. This is the case for UDP sockets and TCP listeners.
2163 */
2164static void __sk_destruct(struct rcu_head *head)
2165{
2166 struct sock *sk = container_of(head, struct sock, sk_rcu);
2167 struct sk_filter *filter;
2168
2169 if (sk->sk_destruct)
2170 sk->sk_destruct(sk);
2171
2172 filter = rcu_dereference_check(sk->sk_filter,
2173 refcount_read(&sk->sk_wmem_alloc) == 0);
2174 if (filter) {
2175 sk_filter_uncharge(sk, fp: filter);
2176 RCU_INIT_POINTER(sk->sk_filter, NULL);
2177 }
2178
2179 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
2180
2181#ifdef CONFIG_BPF_SYSCALL
2182 bpf_sk_storage_free(sk);
2183#endif
2184
2185 if (atomic_read(v: &sk->sk_omem_alloc))
2186 pr_debug("%s: optmem leakage (%d bytes) detected\n",
2187 __func__, atomic_read(&sk->sk_omem_alloc));
2188
2189 if (sk->sk_frag.page) {
2190 put_page(page: sk->sk_frag.page);
2191 sk->sk_frag.page = NULL;
2192 }
2193
2194 /* We do not need to acquire sk->sk_peer_lock, we are the last user. */
2195 put_cred(cred: sk->sk_peer_cred);
2196 put_pid(pid: sk->sk_peer_pid);
2197
2198 if (likely(sk->sk_net_refcnt))
2199 put_net_track(net: sock_net(sk), tracker: &sk->ns_tracker);
2200 else
2201 __netns_tracker_free(net: sock_net(sk), tracker: &sk->ns_tracker, refcounted: false);
2202
2203 sk_prot_free(prot: sk->sk_prot_creator, sk);
2204}
2205
2206void sk_destruct(struct sock *sk)
2207{
2208 bool use_call_rcu = sock_flag(sk, flag: SOCK_RCU_FREE);
2209
2210 if (rcu_access_pointer(sk->sk_reuseport_cb)) {
2211 reuseport_detach_sock(sk);
2212 use_call_rcu = true;
2213 }
2214
2215 if (use_call_rcu)
2216 call_rcu(head: &sk->sk_rcu, func: __sk_destruct);
2217 else
2218 __sk_destruct(head: &sk->sk_rcu);
2219}
2220
2221static void __sk_free(struct sock *sk)
2222{
2223 if (likely(sk->sk_net_refcnt))
2224 sock_inuse_add(net: sock_net(sk), val: -1);
2225
2226 if (unlikely(sk->sk_net_refcnt && sock_diag_has_destroy_listeners(sk)))
2227 sock_diag_broadcast_destroy(sk);
2228 else
2229 sk_destruct(sk);
2230}
2231
2232void sk_free(struct sock *sk)
2233{
2234 /*
2235 * We subtract one from sk_wmem_alloc and can know if
2236 * some packets are still in some tx queue.
2237 * If not null, sock_wfree() will call __sk_free(sk) later
2238 */
2239 if (refcount_dec_and_test(r: &sk->sk_wmem_alloc))
2240 __sk_free(sk);
2241}
2242EXPORT_SYMBOL(sk_free);
2243
2244static void sk_init_common(struct sock *sk)
2245{
2246 skb_queue_head_init(list: &sk->sk_receive_queue);
2247 skb_queue_head_init(list: &sk->sk_write_queue);
2248 skb_queue_head_init(list: &sk->sk_error_queue);
2249
2250 rwlock_init(&sk->sk_callback_lock);
2251 lockdep_set_class_and_name(&sk->sk_receive_queue.lock,
2252 af_rlock_keys + sk->sk_family,
2253 af_family_rlock_key_strings[sk->sk_family]);
2254 lockdep_set_class_and_name(&sk->sk_write_queue.lock,
2255 af_wlock_keys + sk->sk_family,
2256 af_family_wlock_key_strings[sk->sk_family]);
2257 lockdep_set_class_and_name(&sk->sk_error_queue.lock,
2258 af_elock_keys + sk->sk_family,
2259 af_family_elock_key_strings[sk->sk_family]);
2260 lockdep_set_class_and_name(&sk->sk_callback_lock,
2261 af_callback_keys + sk->sk_family,
2262 af_family_clock_key_strings[sk->sk_family]);
2263}
2264
2265/**
2266 * sk_clone_lock - clone a socket, and lock its clone
2267 * @sk: the socket to clone
2268 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
2269 *
2270 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
2271 */
2272struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
2273{
2274 struct proto *prot = READ_ONCE(sk->sk_prot);
2275 struct sk_filter *filter;
2276 bool is_charged = true;
2277 struct sock *newsk;
2278
2279 newsk = sk_prot_alloc(prot, priority, family: sk->sk_family);
2280 if (!newsk)
2281 goto out;
2282
2283 sock_copy(nsk: newsk, osk: sk);
2284
2285 newsk->sk_prot_creator = prot;
2286
2287 /* SANITY */
2288 if (likely(newsk->sk_net_refcnt)) {
2289 get_net_track(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker, gfp: priority);
2290 sock_inuse_add(net: sock_net(sk: newsk), val: 1);
2291 } else {
2292 /* Kernel sockets are not elevating the struct net refcount.
2293 * Instead, use a tracker to more easily detect if a layer
2294 * is not properly dismantling its kernel sockets at netns
2295 * destroy time.
2296 */
2297 __netns_tracker_alloc(net: sock_net(sk: newsk), tracker: &newsk->ns_tracker,
2298 refcounted: false, gfp: priority);
2299 }
2300 sk_node_init(node: &newsk->sk_node);
2301 sock_lock_init(sk: newsk);
2302 bh_lock_sock(newsk);
2303 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
2304 newsk->sk_backlog.len = 0;
2305
2306 atomic_set(v: &newsk->sk_rmem_alloc, i: 0);
2307
2308 /* sk_wmem_alloc set to one (see sk_free() and sock_wfree()) */
2309 refcount_set(r: &newsk->sk_wmem_alloc, n: 1);
2310
2311 atomic_set(v: &newsk->sk_omem_alloc, i: 0);
2312 sk_init_common(sk: newsk);
2313
2314 newsk->sk_dst_cache = NULL;
2315 newsk->sk_dst_pending_confirm = 0;
2316 newsk->sk_wmem_queued = 0;
2317 newsk->sk_forward_alloc = 0;
2318 newsk->sk_reserved_mem = 0;
2319 atomic_set(v: &newsk->sk_drops, i: 0);
2320 newsk->sk_send_head = NULL;
2321 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
2322 atomic_set(v: &newsk->sk_zckey, i: 0);
2323
2324 sock_reset_flag(sk: newsk, flag: SOCK_DONE);
2325
2326 /* sk->sk_memcg will be populated at accept() time */
2327 newsk->sk_memcg = NULL;
2328
2329 cgroup_sk_clone(skcd: &newsk->sk_cgrp_data);
2330
2331 rcu_read_lock();
2332 filter = rcu_dereference(sk->sk_filter);
2333 if (filter != NULL)
2334 /* though it's an empty new sock, the charging may fail
2335 * if sysctl_optmem_max was changed between creation of
2336 * original socket and cloning
2337 */
2338 is_charged = sk_filter_charge(sk: newsk, fp: filter);
2339 RCU_INIT_POINTER(newsk->sk_filter, filter);
2340 rcu_read_unlock();
2341
2342 if (unlikely(!is_charged || xfrm_sk_clone_policy(newsk, sk))) {
2343 /* We need to make sure that we don't uncharge the new
2344 * socket if we couldn't charge it in the first place
2345 * as otherwise we uncharge the parent's filter.
2346 */
2347 if (!is_charged)
2348 RCU_INIT_POINTER(newsk->sk_filter, NULL);
2349 sk_free_unlock_clone(sk: newsk);
2350 newsk = NULL;
2351 goto out;
2352 }
2353 RCU_INIT_POINTER(newsk->sk_reuseport_cb, NULL);
2354
2355 if (bpf_sk_storage_clone(sk, newsk)) {
2356 sk_free_unlock_clone(sk: newsk);
2357 newsk = NULL;
2358 goto out;
2359 }
2360
2361 /* Clear sk_user_data if parent had the pointer tagged
2362 * as not suitable for copying when cloning.
2363 */
2364 if (sk_user_data_is_nocopy(sk: newsk))
2365 newsk->sk_user_data = NULL;
2366
2367 newsk->sk_err = 0;
2368 newsk->sk_err_soft = 0;
2369 newsk->sk_priority = 0;
2370 newsk->sk_incoming_cpu = raw_smp_processor_id();
2371
2372 /* Before updating sk_refcnt, we must commit prior changes to memory
2373 * (Documentation/RCU/rculist_nulls.rst for details)
2374 */
2375 smp_wmb();
2376 refcount_set(r: &newsk->sk_refcnt, n: 2);
2377
2378 sk_set_socket(sk: newsk, NULL);
2379 sk_tx_queue_clear(sk: newsk);
2380 RCU_INIT_POINTER(newsk->sk_wq, NULL);
2381
2382 if (newsk->sk_prot->sockets_allocated)
2383 sk_sockets_allocated_inc(sk: newsk);
2384
2385 if (sock_needs_netstamp(sk) && newsk->sk_flags & SK_FLAGS_TIMESTAMP)
2386 net_enable_timestamp();
2387out:
2388 return newsk;
2389}
2390EXPORT_SYMBOL_GPL(sk_clone_lock);
2391
2392void sk_free_unlock_clone(struct sock *sk)
2393{
2394 /* It is still raw copy of parent, so invalidate
2395 * destructor and make plain sk_free() */
2396 sk->sk_destruct = NULL;
2397 bh_unlock_sock(sk);
2398 sk_free(sk);
2399}
2400EXPORT_SYMBOL_GPL(sk_free_unlock_clone);
2401
2402static u32 sk_dst_gso_max_size(struct sock *sk, struct dst_entry *dst)
2403{
2404 bool is_ipv6 = false;
2405 u32 max_size;
2406
2407#if IS_ENABLED(CONFIG_IPV6)
2408 is_ipv6 = (sk->sk_family == AF_INET6 &&
2409 !ipv6_addr_v4mapped(a: &sk->sk_v6_rcv_saddr));
2410#endif
2411 /* pairs with the WRITE_ONCE() in netif_set_gso(_ipv4)_max_size() */
2412 max_size = is_ipv6 ? READ_ONCE(dst->dev->gso_max_size) :
2413 READ_ONCE(dst->dev->gso_ipv4_max_size);
2414 if (max_size > GSO_LEGACY_MAX_SIZE && !sk_is_tcp(sk))
2415 max_size = GSO_LEGACY_MAX_SIZE;
2416
2417 return max_size - (MAX_TCP_HEADER + 1);
2418}
2419
2420void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
2421{
2422 u32 max_segs = 1;
2423
2424 sk->sk_route_caps = dst->dev->features;
2425 if (sk_is_tcp(sk))
2426 sk->sk_route_caps |= NETIF_F_GSO;
2427 if (sk->sk_route_caps & NETIF_F_GSO)
2428 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
2429 if (unlikely(sk->sk_gso_disabled))
2430 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2431 if (sk_can_gso(sk)) {
2432 if (dst->header_len && !xfrm_dst_offload_ok(dst)) {
2433 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2434 } else {
2435 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
2436 sk->sk_gso_max_size = sk_dst_gso_max_size(sk, dst);
2437 /* pairs with the WRITE_ONCE() in netif_set_gso_max_segs() */
2438 max_segs = max_t(u32, READ_ONCE(dst->dev->gso_max_segs), 1);
2439 }
2440 }
2441 sk->sk_gso_max_segs = max_segs;
2442 sk_dst_set(sk, dst);
2443}
2444EXPORT_SYMBOL_GPL(sk_setup_caps);
2445
2446/*
2447 * Simple resource managers for sockets.
2448 */
2449
2450
2451/*
2452 * Write buffer destructor automatically called from kfree_skb.
2453 */
2454void sock_wfree(struct sk_buff *skb)
2455{
2456 struct sock *sk = skb->sk;
2457 unsigned int len = skb->truesize;
2458 bool free;
2459
2460 if (!sock_flag(sk, flag: SOCK_USE_WRITE_QUEUE)) {
2461 if (sock_flag(sk, flag: SOCK_RCU_FREE) &&
2462 sk->sk_write_space == sock_def_write_space) {
2463 rcu_read_lock();
2464 free = refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc);
2465 sock_def_write_space_wfree(sk);
2466 rcu_read_unlock();
2467 if (unlikely(free))
2468 __sk_free(sk);
2469 return;
2470 }
2471
2472 /*
2473 * Keep a reference on sk_wmem_alloc, this will be released
2474 * after sk_write_space() call
2475 */
2476 WARN_ON(refcount_sub_and_test(len - 1, &sk->sk_wmem_alloc));
2477 sk->sk_write_space(sk);
2478 len = 1;
2479 }
2480 /*
2481 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
2482 * could not do because of in-flight packets
2483 */
2484 if (refcount_sub_and_test(i: len, r: &sk->sk_wmem_alloc))
2485 __sk_free(sk);
2486}
2487EXPORT_SYMBOL(sock_wfree);
2488
2489/* This variant of sock_wfree() is used by TCP,
2490 * since it sets SOCK_USE_WRITE_QUEUE.
2491 */
2492void __sock_wfree(struct sk_buff *skb)
2493{
2494 struct sock *sk = skb->sk;
2495
2496 if (refcount_sub_and_test(i: skb->truesize, r: &sk->sk_wmem_alloc))
2497 __sk_free(sk);
2498}
2499
2500void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
2501{
2502 skb_orphan(skb);
2503 skb->sk = sk;
2504#ifdef CONFIG_INET
2505 if (unlikely(!sk_fullsock(sk))) {
2506 skb->destructor = sock_edemux;
2507 sock_hold(sk);
2508 return;
2509 }
2510#endif
2511 skb->destructor = sock_wfree;
2512 skb_set_hash_from_sk(skb, sk);
2513 /*
2514 * We used to take a refcount on sk, but following operation
2515 * is enough to guarantee sk_free() wont free this sock until
2516 * all in-flight packets are completed
2517 */
2518 refcount_add(i: skb->truesize, r: &sk->sk_wmem_alloc);
2519}
2520EXPORT_SYMBOL(skb_set_owner_w);
2521
2522static bool can_skb_orphan_partial(const struct sk_buff *skb)
2523{
2524#ifdef CONFIG_TLS_DEVICE
2525 /* Drivers depend on in-order delivery for crypto offload,
2526 * partial orphan breaks out-of-order-OK logic.
2527 */
2528 if (skb->decrypted)
2529 return false;
2530#endif
2531 return (skb->destructor == sock_wfree ||
2532 (IS_ENABLED(CONFIG_INET) && skb->destructor == tcp_wfree));
2533}
2534
2535/* This helper is used by netem, as it can hold packets in its
2536 * delay queue. We want to allow the owner socket to send more
2537 * packets, as if they were already TX completed by a typical driver.
2538 * But we also want to keep skb->sk set because some packet schedulers
2539 * rely on it (sch_fq for example).
2540 */
2541void skb_orphan_partial(struct sk_buff *skb)
2542{
2543 if (skb_is_tcp_pure_ack(skb))
2544 return;
2545
2546 if (can_skb_orphan_partial(skb) && skb_set_owner_sk_safe(skb, sk: skb->sk))
2547 return;
2548
2549 skb_orphan(skb);
2550}
2551EXPORT_SYMBOL(skb_orphan_partial);
2552
2553/*
2554 * Read buffer destructor automatically called from kfree_skb.
2555 */
2556void sock_rfree(struct sk_buff *skb)
2557{
2558 struct sock *sk = skb->sk;
2559 unsigned int len = skb->truesize;
2560
2561 atomic_sub(i: len, v: &sk->sk_rmem_alloc);
2562 sk_mem_uncharge(sk, size: len);
2563}
2564EXPORT_SYMBOL(sock_rfree);
2565
2566/*
2567 * Buffer destructor for skbs that are not used directly in read or write
2568 * path, e.g. for error handler skbs. Automatically called from kfree_skb.
2569 */
2570void sock_efree(struct sk_buff *skb)
2571{
2572 sock_put(sk: skb->sk);
2573}
2574EXPORT_SYMBOL(sock_efree);
2575
2576/* Buffer destructor for prefetch/receive path where reference count may
2577 * not be held, e.g. for listen sockets.
2578 */
2579#ifdef CONFIG_INET
2580void sock_pfree(struct sk_buff *skb)
2581{
2582 if (sk_is_refcounted(sk: skb->sk))
2583 sock_gen_put(sk: skb->sk);
2584}
2585EXPORT_SYMBOL(sock_pfree);
2586#endif /* CONFIG_INET */
2587
2588kuid_t sock_i_uid(struct sock *sk)
2589{
2590 kuid_t uid;
2591
2592 read_lock_bh(&sk->sk_callback_lock);
2593 uid = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
2594 read_unlock_bh(&sk->sk_callback_lock);
2595 return uid;
2596}
2597EXPORT_SYMBOL(sock_i_uid);
2598
2599unsigned long __sock_i_ino(struct sock *sk)
2600{
2601 unsigned long ino;
2602
2603 read_lock(&sk->sk_callback_lock);
2604 ino = sk->sk_socket ? SOCK_INODE(socket: sk->sk_socket)->i_ino : 0;
2605 read_unlock(&sk->sk_callback_lock);
2606 return ino;
2607}
2608EXPORT_SYMBOL(__sock_i_ino);
2609
2610unsigned long sock_i_ino(struct sock *sk)
2611{
2612 unsigned long ino;
2613
2614 local_bh_disable();
2615 ino = __sock_i_ino(sk);
2616 local_bh_enable();
2617 return ino;
2618}
2619EXPORT_SYMBOL(sock_i_ino);
2620
2621/*
2622 * Allocate a skb from the socket's send buffer.
2623 */
2624struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
2625 gfp_t priority)
2626{
2627 if (force ||
2628 refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf)) {
2629 struct sk_buff *skb = alloc_skb(size, priority);
2630
2631 if (skb) {
2632 skb_set_owner_w(skb, sk);
2633 return skb;
2634 }
2635 }
2636 return NULL;
2637}
2638EXPORT_SYMBOL(sock_wmalloc);
2639
2640static void sock_ofree(struct sk_buff *skb)
2641{
2642 struct sock *sk = skb->sk;
2643
2644 atomic_sub(i: skb->truesize, v: &sk->sk_omem_alloc);
2645}
2646
2647struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
2648 gfp_t priority)
2649{
2650 struct sk_buff *skb;
2651
2652 /* small safe race: SKB_TRUESIZE may differ from final skb->truesize */
2653 if (atomic_read(v: &sk->sk_omem_alloc) + SKB_TRUESIZE(size) >
2654 READ_ONCE(sysctl_optmem_max))
2655 return NULL;
2656
2657 skb = alloc_skb(size, priority);
2658 if (!skb)
2659 return NULL;
2660
2661 atomic_add(i: skb->truesize, v: &sk->sk_omem_alloc);
2662 skb->sk = sk;
2663 skb->destructor = sock_ofree;
2664 return skb;
2665}
2666
2667/*
2668 * Allocate a memory block from the socket's option memory buffer.
2669 */
2670void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
2671{
2672 int optmem_max = READ_ONCE(sysctl_optmem_max);
2673
2674 if ((unsigned int)size <= optmem_max &&
2675 atomic_read(v: &sk->sk_omem_alloc) + size < optmem_max) {
2676 void *mem;
2677 /* First do the add, to avoid the race if kmalloc
2678 * might sleep.
2679 */
2680 atomic_add(i: size, v: &sk->sk_omem_alloc);
2681 mem = kmalloc(size, flags: priority);
2682 if (mem)
2683 return mem;
2684 atomic_sub(i: size, v: &sk->sk_omem_alloc);
2685 }
2686 return NULL;
2687}
2688EXPORT_SYMBOL(sock_kmalloc);
2689
2690/* Free an option memory block. Note, we actually want the inline
2691 * here as this allows gcc to detect the nullify and fold away the
2692 * condition entirely.
2693 */
2694static inline void __sock_kfree_s(struct sock *sk, void *mem, int size,
2695 const bool nullify)
2696{
2697 if (WARN_ON_ONCE(!mem))
2698 return;
2699 if (nullify)
2700 kfree_sensitive(objp: mem);
2701 else
2702 kfree(objp: mem);
2703 atomic_sub(i: size, v: &sk->sk_omem_alloc);
2704}
2705
2706void sock_kfree_s(struct sock *sk, void *mem, int size)
2707{
2708 __sock_kfree_s(sk, mem, size, nullify: false);
2709}
2710EXPORT_SYMBOL(sock_kfree_s);
2711
2712void sock_kzfree_s(struct sock *sk, void *mem, int size)
2713{
2714 __sock_kfree_s(sk, mem, size, nullify: true);
2715}
2716EXPORT_SYMBOL(sock_kzfree_s);
2717
2718/* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
2719 I think, these locks should be removed for datagram sockets.
2720 */
2721static long sock_wait_for_wmem(struct sock *sk, long timeo)
2722{
2723 DEFINE_WAIT(wait);
2724
2725 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2726 for (;;) {
2727 if (!timeo)
2728 break;
2729 if (signal_pending(current))
2730 break;
2731 set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
2732 prepare_to_wait(wq_head: sk_sleep(sk), wq_entry: &wait, TASK_INTERRUPTIBLE);
2733 if (refcount_read(r: &sk->sk_wmem_alloc) < READ_ONCE(sk->sk_sndbuf))
2734 break;
2735 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2736 break;
2737 if (READ_ONCE(sk->sk_err))
2738 break;
2739 timeo = schedule_timeout(timeout: timeo);
2740 }
2741 finish_wait(wq_head: sk_sleep(sk), wq_entry: &wait);
2742 return timeo;
2743}
2744
2745
2746/*
2747 * Generic send/receive buffer handlers
2748 */
2749
2750struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
2751 unsigned long data_len, int noblock,
2752 int *errcode, int max_page_order)
2753{
2754 struct sk_buff *skb;
2755 long timeo;
2756 int err;
2757
2758 timeo = sock_sndtimeo(sk, noblock);
2759 for (;;) {
2760 err = sock_error(sk);
2761 if (err != 0)
2762 goto failure;
2763
2764 err = -EPIPE;
2765 if (READ_ONCE(sk->sk_shutdown) & SEND_SHUTDOWN)
2766 goto failure;
2767
2768 if (sk_wmem_alloc_get(sk) < READ_ONCE(sk->sk_sndbuf))
2769 break;
2770
2771 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
2772 set_bit(SOCK_NOSPACE, addr: &sk->sk_socket->flags);
2773 err = -EAGAIN;
2774 if (!timeo)
2775 goto failure;
2776 if (signal_pending(current))
2777 goto interrupted;
2778 timeo = sock_wait_for_wmem(sk, timeo);
2779 }
2780 skb = alloc_skb_with_frags(header_len, data_len, max_page_order,
2781 errcode, gfp_mask: sk->sk_allocation);
2782 if (skb)
2783 skb_set_owner_w(skb, sk);
2784 return skb;
2785
2786interrupted:
2787 err = sock_intr_errno(timeo);
2788failure:
2789 *errcode = err;
2790 return NULL;
2791}
2792EXPORT_SYMBOL(sock_alloc_send_pskb);
2793
2794int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
2795 struct sockcm_cookie *sockc)
2796{
2797 u32 tsflags;
2798
2799 switch (cmsg->cmsg_type) {
2800 case SO_MARK:
2801 if (!ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_RAW) &&
2802 !ns_capable(ns: sock_net(sk)->user_ns, CAP_NET_ADMIN))
2803 return -EPERM;
2804 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2805 return -EINVAL;
2806 sockc->mark = *(u32 *)CMSG_DATA(cmsg);
2807 break;
2808 case SO_TIMESTAMPING_OLD:
2809 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u32)))
2810 return -EINVAL;
2811
2812 tsflags = *(u32 *)CMSG_DATA(cmsg);
2813 if (tsflags & ~SOF_TIMESTAMPING_TX_RECORD_MASK)
2814 return -EINVAL;
2815
2816 sockc->tsflags &= ~SOF_TIMESTAMPING_TX_RECORD_MASK;
2817 sockc->tsflags |= tsflags;
2818 break;
2819 case SCM_TXTIME:
2820 if (!sock_flag(sk, flag: SOCK_TXTIME))
2821 return -EINVAL;
2822 if (cmsg->cmsg_len != CMSG_LEN(sizeof(u64)))
2823 return -EINVAL;
2824 sockc->transmit_time = get_unaligned((u64 *)CMSG_DATA(cmsg));
2825 break;
2826 /* SCM_RIGHTS and SCM_CREDENTIALS are semantically in SOL_UNIX. */
2827 case SCM_RIGHTS:
2828 case SCM_CREDENTIALS:
2829 break;
2830 default:
2831 return -EINVAL;
2832 }
2833 return 0;
2834}
2835EXPORT_SYMBOL(__sock_cmsg_send);
2836
2837int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
2838 struct sockcm_cookie *sockc)
2839{
2840 struct cmsghdr *cmsg;
2841 int ret;
2842
2843 for_each_cmsghdr(cmsg, msg) {
2844 if (!CMSG_OK(msg, cmsg))
2845 return -EINVAL;
2846 if (cmsg->cmsg_level != SOL_SOCKET)
2847 continue;
2848 ret = __sock_cmsg_send(sk, cmsg, sockc);
2849 if (ret)
2850 return ret;
2851 }
2852 return 0;
2853}
2854EXPORT_SYMBOL(sock_cmsg_send);
2855
2856static void sk_enter_memory_pressure(struct sock *sk)
2857{
2858 if (!sk->sk_prot->enter_memory_pressure)
2859 return;
2860
2861 sk->sk_prot->enter_memory_pressure(sk);
2862}
2863
2864static void sk_leave_memory_pressure(struct sock *sk)
2865{
2866 if (sk->sk_prot->leave_memory_pressure) {
2867 INDIRECT_CALL_INET_1(sk->sk_prot->leave_memory_pressure,
2868 tcp_leave_memory_pressure, sk);
2869 } else {
2870 unsigned long *memory_pressure = sk->sk_prot->memory_pressure;
2871
2872 if (memory_pressure && READ_ONCE(*memory_pressure))
2873 WRITE_ONCE(*memory_pressure, 0);
2874 }
2875}
2876
2877DEFINE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2878
2879/**
2880 * skb_page_frag_refill - check that a page_frag contains enough room
2881 * @sz: minimum size of the fragment we want to get
2882 * @pfrag: pointer to page_frag
2883 * @gfp: priority for memory allocation
2884 *
2885 * Note: While this allocator tries to use high order pages, there is
2886 * no guarantee that allocations succeed. Therefore, @sz MUST be
2887 * less or equal than PAGE_SIZE.
2888 */
2889bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t gfp)
2890{
2891 if (pfrag->page) {
2892 if (page_ref_count(page: pfrag->page) == 1) {
2893 pfrag->offset = 0;
2894 return true;
2895 }
2896 if (pfrag->offset + sz <= pfrag->size)
2897 return true;
2898 put_page(page: pfrag->page);
2899 }
2900
2901 pfrag->offset = 0;
2902 if (SKB_FRAG_PAGE_ORDER &&
2903 !static_branch_unlikely(&net_high_order_alloc_disable_key)) {
2904 /* Avoid direct reclaim but allow kswapd to wake */
2905 pfrag->page = alloc_pages(gfp: (gfp & ~__GFP_DIRECT_RECLAIM) |
2906 __GFP_COMP | __GFP_NOWARN |
2907 __GFP_NORETRY,
2908 SKB_FRAG_PAGE_ORDER);
2909 if (likely(pfrag->page)) {
2910 pfrag->size = PAGE_SIZE << SKB_FRAG_PAGE_ORDER;
2911 return true;
2912 }
2913 }
2914 pfrag->page = alloc_page(gfp);
2915 if (likely(pfrag->page)) {
2916 pfrag->size = PAGE_SIZE;
2917 return true;
2918 }
2919 return false;
2920}
2921EXPORT_SYMBOL(skb_page_frag_refill);
2922
2923bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
2924{
2925 if (likely(skb_page_frag_refill(32U, pfrag, sk->sk_allocation)))
2926 return true;
2927
2928 sk_enter_memory_pressure(sk);
2929 sk_stream_moderate_sndbuf(sk);
2930 return false;
2931}
2932EXPORT_SYMBOL(sk_page_frag_refill);
2933
2934void __lock_sock(struct sock *sk)
2935 __releases(&sk->sk_lock.slock)
2936 __acquires(&sk->sk_lock.slock)
2937{
2938 DEFINE_WAIT(wait);
2939
2940 for (;;) {
2941 prepare_to_wait_exclusive(wq_head: &sk->sk_lock.wq, wq_entry: &wait,
2942 TASK_UNINTERRUPTIBLE);
2943 spin_unlock_bh(lock: &sk->sk_lock.slock);
2944 schedule();
2945 spin_lock_bh(lock: &sk->sk_lock.slock);
2946 if (!sock_owned_by_user(sk))
2947 break;
2948 }
2949 finish_wait(wq_head: &sk->sk_lock.wq, wq_entry: &wait);
2950}
2951
2952void __release_sock(struct sock *sk)
2953 __releases(&sk->sk_lock.slock)
2954 __acquires(&sk->sk_lock.slock)
2955{
2956 struct sk_buff *skb, *next;
2957
2958 while ((skb = sk->sk_backlog.head) != NULL) {
2959 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
2960
2961 spin_unlock_bh(lock: &sk->sk_lock.slock);
2962
2963 do {
2964 next = skb->next;
2965 prefetch(next);
2966 DEBUG_NET_WARN_ON_ONCE(skb_dst_is_noref(skb));
2967 skb_mark_not_on_list(skb);
2968 sk_backlog_rcv(sk, skb);
2969
2970 cond_resched();
2971
2972 skb = next;
2973 } while (skb != NULL);
2974
2975 spin_lock_bh(lock: &sk->sk_lock.slock);
2976 }
2977
2978 /*
2979 * Doing the zeroing here guarantee we can not loop forever
2980 * while a wild producer attempts to flood us.
2981 */
2982 sk->sk_backlog.len = 0;
2983}
2984
2985void __sk_flush_backlog(struct sock *sk)
2986{
2987 spin_lock_bh(lock: &sk->sk_lock.slock);
2988 __release_sock(sk);
2989
2990 if (sk->sk_prot->release_cb)
2991 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
2992 tcp_release_cb, sk);
2993
2994 spin_unlock_bh(lock: &sk->sk_lock.slock);
2995}
2996EXPORT_SYMBOL_GPL(__sk_flush_backlog);
2997
2998/**
2999 * sk_wait_data - wait for data to arrive at sk_receive_queue
3000 * @sk: sock to wait on
3001 * @timeo: for how long
3002 * @skb: last skb seen on sk_receive_queue
3003 *
3004 * Now socket state including sk->sk_err is changed only under lock,
3005 * hence we may omit checks after joining wait queue.
3006 * We check receive queue before schedule() only as optimization;
3007 * it is very likely that release_sock() added new data.
3008 */
3009int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb)
3010{
3011 DEFINE_WAIT_FUNC(wait, woken_wake_function);
3012 int rc;
3013
3014 add_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
3015 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3016 rc = sk_wait_event(sk, timeo, skb_peek_tail(&sk->sk_receive_queue) != skb, &wait);
3017 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
3018 remove_wait_queue(wq_head: sk_sleep(sk), wq_entry: &wait);
3019 return rc;
3020}
3021EXPORT_SYMBOL(sk_wait_data);
3022
3023/**
3024 * __sk_mem_raise_allocated - increase memory_allocated
3025 * @sk: socket
3026 * @size: memory size to allocate
3027 * @amt: pages to allocate
3028 * @kind: allocation type
3029 *
3030 * Similar to __sk_mem_schedule(), but does not update sk_forward_alloc.
3031 *
3032 * Unlike the globally shared limits among the sockets under same protocol,
3033 * consuming the budget of a memcg won't have direct effect on other ones.
3034 * So be optimistic about memcg's tolerance, and leave the callers to decide
3035 * whether or not to raise allocated through sk_under_memory_pressure() or
3036 * its variants.
3037 */
3038int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind)
3039{
3040 struct mem_cgroup *memcg = mem_cgroup_sockets_enabled ? sk->sk_memcg : NULL;
3041 struct proto *prot = sk->sk_prot;
3042 bool charged = false;
3043 long allocated;
3044
3045 sk_memory_allocated_add(sk, amt);
3046 allocated = sk_memory_allocated(sk);
3047
3048 if (memcg) {
3049 if (!mem_cgroup_charge_skmem(memcg, nr_pages: amt, gfp_mask: gfp_memcg_charge()))
3050 goto suppress_allocation;
3051 charged = true;
3052 }
3053
3054 /* Under limit. */
3055 if (allocated <= sk_prot_mem_limits(sk, index: 0)) {
3056 sk_leave_memory_pressure(sk);
3057 return 1;
3058 }
3059
3060 /* Under pressure. */
3061 if (allocated > sk_prot_mem_limits(sk, index: 1))
3062 sk_enter_memory_pressure(sk);
3063
3064 /* Over hard limit. */
3065 if (allocated > sk_prot_mem_limits(sk, index: 2))
3066 goto suppress_allocation;
3067
3068 /* Guarantee minimum buffer size under pressure (either global
3069 * or memcg) to make sure features described in RFC 7323 (TCP
3070 * Extensions for High Performance) work properly.
3071 *
3072 * This rule does NOT stand when exceeds global or memcg's hard
3073 * limit, or else a DoS attack can be taken place by spawning
3074 * lots of sockets whose usage are under minimum buffer size.
3075 */
3076 if (kind == SK_MEM_RECV) {
3077 if (atomic_read(v: &sk->sk_rmem_alloc) < sk_get_rmem0(sk, proto: prot))
3078 return 1;
3079
3080 } else { /* SK_MEM_SEND */
3081 int wmem0 = sk_get_wmem0(sk, proto: prot);
3082
3083 if (sk->sk_type == SOCK_STREAM) {
3084 if (sk->sk_wmem_queued < wmem0)
3085 return 1;
3086 } else if (refcount_read(r: &sk->sk_wmem_alloc) < wmem0) {
3087 return 1;
3088 }
3089 }
3090
3091 if (sk_has_memory_pressure(sk)) {
3092 u64 alloc;
3093
3094 /* The following 'average' heuristic is within the
3095 * scope of global accounting, so it only makes
3096 * sense for global memory pressure.
3097 */
3098 if (!sk_under_global_memory_pressure(sk))
3099 return 1;
3100
3101 /* Try to be fair among all the sockets under global
3102 * pressure by allowing the ones that below average
3103 * usage to raise.
3104 */
3105 alloc = sk_sockets_allocated_read_positive(sk);
3106 if (sk_prot_mem_limits(sk, index: 2) > alloc *
3107 sk_mem_pages(amt: sk->sk_wmem_queued +
3108 atomic_read(v: &sk->sk_rmem_alloc) +
3109 sk->sk_forward_alloc))
3110 return 1;
3111 }
3112
3113suppress_allocation:
3114
3115 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
3116 sk_stream_moderate_sndbuf(sk);
3117
3118 /* Fail only if socket is _under_ its sndbuf.
3119 * In this case we cannot block, so that we have to fail.
3120 */
3121 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf) {
3122 /* Force charge with __GFP_NOFAIL */
3123 if (memcg && !charged) {
3124 mem_cgroup_charge_skmem(memcg, nr_pages: amt,
3125 gfp_mask: gfp_memcg_charge() | __GFP_NOFAIL);
3126 }
3127 return 1;
3128 }
3129 }
3130
3131 if (kind == SK_MEM_SEND || (kind == SK_MEM_RECV && charged))
3132 trace_sock_exceed_buf_limit(sk, prot, allocated, kind);
3133
3134 sk_memory_allocated_sub(sk, amt);
3135
3136 if (charged)
3137 mem_cgroup_uncharge_skmem(memcg, nr_pages: amt);
3138
3139 return 0;
3140}
3141
3142/**
3143 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
3144 * @sk: socket
3145 * @size: memory size to allocate
3146 * @kind: allocation type
3147 *
3148 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
3149 * rmem allocation. This function assumes that protocols which have
3150 * memory_pressure use sk_wmem_queued as write buffer accounting.
3151 */
3152int __sk_mem_schedule(struct sock *sk, int size, int kind)
3153{
3154 int ret, amt = sk_mem_pages(amt: size);
3155
3156 sk_forward_alloc_add(sk, val: amt << PAGE_SHIFT);
3157 ret = __sk_mem_raise_allocated(sk, size, amt, kind);
3158 if (!ret)
3159 sk_forward_alloc_add(sk, val: -(amt << PAGE_SHIFT));
3160 return ret;
3161}
3162EXPORT_SYMBOL(__sk_mem_schedule);
3163
3164/**
3165 * __sk_mem_reduce_allocated - reclaim memory_allocated
3166 * @sk: socket
3167 * @amount: number of quanta
3168 *
3169 * Similar to __sk_mem_reclaim(), but does not update sk_forward_alloc
3170 */
3171void __sk_mem_reduce_allocated(struct sock *sk, int amount)
3172{
3173 sk_memory_allocated_sub(sk, amt: amount);
3174
3175 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3176 mem_cgroup_uncharge_skmem(memcg: sk->sk_memcg, nr_pages: amount);
3177
3178 if (sk_under_global_memory_pressure(sk) &&
3179 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, index: 0)))
3180 sk_leave_memory_pressure(sk);
3181}
3182
3183/**
3184 * __sk_mem_reclaim - reclaim sk_forward_alloc and memory_allocated
3185 * @sk: socket
3186 * @amount: number of bytes (rounded down to a PAGE_SIZE multiple)
3187 */
3188void __sk_mem_reclaim(struct sock *sk, int amount)
3189{
3190 amount >>= PAGE_SHIFT;
3191 sk_forward_alloc_add(sk, val: -(amount << PAGE_SHIFT));
3192 __sk_mem_reduce_allocated(sk, amount);
3193}
3194EXPORT_SYMBOL(__sk_mem_reclaim);
3195
3196int sk_set_peek_off(struct sock *sk, int val)
3197{
3198 WRITE_ONCE(sk->sk_peek_off, val);
3199 return 0;
3200}
3201EXPORT_SYMBOL_GPL(sk_set_peek_off);
3202
3203/*
3204 * Set of default routines for initialising struct proto_ops when
3205 * the protocol does not support a particular function. In certain
3206 * cases where it makes no sense for a protocol to have a "do nothing"
3207 * function, some default processing is provided.
3208 */
3209
3210int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
3211{
3212 return -EOPNOTSUPP;
3213}
3214EXPORT_SYMBOL(sock_no_bind);
3215
3216int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
3217 int len, int flags)
3218{
3219 return -EOPNOTSUPP;
3220}
3221EXPORT_SYMBOL(sock_no_connect);
3222
3223int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
3224{
3225 return -EOPNOTSUPP;
3226}
3227EXPORT_SYMBOL(sock_no_socketpair);
3228
3229int sock_no_accept(struct socket *sock, struct socket *newsock, int flags,
3230 bool kern)
3231{
3232 return -EOPNOTSUPP;
3233}
3234EXPORT_SYMBOL(sock_no_accept);
3235
3236int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
3237 int peer)
3238{
3239 return -EOPNOTSUPP;
3240}
3241EXPORT_SYMBOL(sock_no_getname);
3242
3243int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
3244{
3245 return -EOPNOTSUPP;
3246}
3247EXPORT_SYMBOL(sock_no_ioctl);
3248
3249int sock_no_listen(struct socket *sock, int backlog)
3250{
3251 return -EOPNOTSUPP;
3252}
3253EXPORT_SYMBOL(sock_no_listen);
3254
3255int sock_no_shutdown(struct socket *sock, int how)
3256{
3257 return -EOPNOTSUPP;
3258}
3259EXPORT_SYMBOL(sock_no_shutdown);
3260
3261int sock_no_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
3262{
3263 return -EOPNOTSUPP;
3264}
3265EXPORT_SYMBOL(sock_no_sendmsg);
3266
3267int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *m, size_t len)
3268{
3269 return -EOPNOTSUPP;
3270}
3271EXPORT_SYMBOL(sock_no_sendmsg_locked);
3272
3273int sock_no_recvmsg(struct socket *sock, struct msghdr *m, size_t len,
3274 int flags)
3275{
3276 return -EOPNOTSUPP;
3277}
3278EXPORT_SYMBOL(sock_no_recvmsg);
3279
3280int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
3281{
3282 /* Mirror missing mmap method error code */
3283 return -ENODEV;
3284}
3285EXPORT_SYMBOL(sock_no_mmap);
3286
3287/*
3288 * When a file is received (via SCM_RIGHTS, etc), we must bump the
3289 * various sock-based usage counts.
3290 */
3291void __receive_sock(struct file *file)
3292{
3293 struct socket *sock;
3294
3295 sock = sock_from_file(file);
3296 if (sock) {
3297 sock_update_netprioidx(skcd: &sock->sk->sk_cgrp_data);
3298 sock_update_classid(skcd: &sock->sk->sk_cgrp_data);
3299 }
3300}
3301
3302/*
3303 * Default Socket Callbacks
3304 */
3305
3306static void sock_def_wakeup(struct sock *sk)
3307{
3308 struct socket_wq *wq;
3309
3310 rcu_read_lock();
3311 wq = rcu_dereference(sk->sk_wq);
3312 if (skwq_has_sleeper(wq))
3313 wake_up_interruptible_all(&wq->wait);
3314 rcu_read_unlock();
3315}
3316
3317static void sock_def_error_report(struct sock *sk)
3318{
3319 struct socket_wq *wq;
3320
3321 rcu_read_lock();
3322 wq = rcu_dereference(sk->sk_wq);
3323 if (skwq_has_sleeper(wq))
3324 wake_up_interruptible_poll(&wq->wait, EPOLLERR);
3325 sk_wake_async(sk, how: SOCK_WAKE_IO, POLL_ERR);
3326 rcu_read_unlock();
3327}
3328
3329void sock_def_readable(struct sock *sk)
3330{
3331 struct socket_wq *wq;
3332
3333 trace_sk_data_ready(sk);
3334
3335 rcu_read_lock();
3336 wq = rcu_dereference(sk->sk_wq);
3337 if (skwq_has_sleeper(wq))
3338 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN | EPOLLPRI |
3339 EPOLLRDNORM | EPOLLRDBAND);
3340 sk_wake_async(sk, how: SOCK_WAKE_WAITD, POLL_IN);
3341 rcu_read_unlock();
3342}
3343
3344static void sock_def_write_space(struct sock *sk)
3345{
3346 struct socket_wq *wq;
3347
3348 rcu_read_lock();
3349
3350 /* Do not wake up a writer until he can make "significant"
3351 * progress. --DaveM
3352 */
3353 if (sock_writeable(sk)) {
3354 wq = rcu_dereference(sk->sk_wq);
3355 if (skwq_has_sleeper(wq))
3356 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3357 EPOLLWRNORM | EPOLLWRBAND);
3358
3359 /* Should agree with poll, otherwise some programs break */
3360 sk_wake_async(sk, how: SOCK_WAKE_SPACE, POLL_OUT);
3361 }
3362
3363 rcu_read_unlock();
3364}
3365
3366/* An optimised version of sock_def_write_space(), should only be called
3367 * for SOCK_RCU_FREE sockets under RCU read section and after putting
3368 * ->sk_wmem_alloc.
3369 */
3370static void sock_def_write_space_wfree(struct sock *sk)
3371{
3372 /* Do not wake up a writer until he can make "significant"
3373 * progress. --DaveM
3374 */
3375 if (sock_writeable(sk)) {
3376 struct socket_wq *wq = rcu_dereference(sk->sk_wq);
3377
3378 /* rely on refcount_sub from sock_wfree() */
3379 smp_mb__after_atomic();
3380 if (wq && waitqueue_active(wq_head: &wq->wait))
3381 wake_up_interruptible_sync_poll(&wq->wait, EPOLLOUT |
3382 EPOLLWRNORM | EPOLLWRBAND);
3383
3384 /* Should agree with poll, otherwise some programs break */
3385 sk_wake_async(sk, how: SOCK_WAKE_SPACE, POLL_OUT);
3386 }
3387}
3388
3389static void sock_def_destruct(struct sock *sk)
3390{
3391}
3392
3393void sk_send_sigurg(struct sock *sk)
3394{
3395 if (sk->sk_socket && sk->sk_socket->file)
3396 if (send_sigurg(fown: &sk->sk_socket->file->f_owner))
3397 sk_wake_async(sk, how: SOCK_WAKE_URG, POLL_PRI);
3398}
3399EXPORT_SYMBOL(sk_send_sigurg);
3400
3401void sk_reset_timer(struct sock *sk, struct timer_list* timer,
3402 unsigned long expires)
3403{
3404 if (!mod_timer(timer, expires))
3405 sock_hold(sk);
3406}
3407EXPORT_SYMBOL(sk_reset_timer);
3408
3409void sk_stop_timer(struct sock *sk, struct timer_list* timer)
3410{
3411 if (del_timer(timer))
3412 __sock_put(sk);
3413}
3414EXPORT_SYMBOL(sk_stop_timer);
3415
3416void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer)
3417{
3418 if (del_timer_sync(timer))
3419 __sock_put(sk);
3420}
3421EXPORT_SYMBOL(sk_stop_timer_sync);
3422
3423void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid)
3424{
3425 sk_init_common(sk);
3426 sk->sk_send_head = NULL;
3427
3428 timer_setup(&sk->sk_timer, NULL, 0);
3429
3430 sk->sk_allocation = GFP_KERNEL;
3431 sk->sk_rcvbuf = READ_ONCE(sysctl_rmem_default);
3432 sk->sk_sndbuf = READ_ONCE(sysctl_wmem_default);
3433 sk->sk_state = TCP_CLOSE;
3434 sk->sk_use_task_frag = true;
3435 sk_set_socket(sk, sock);
3436
3437 sock_set_flag(sk, flag: SOCK_ZAPPED);
3438
3439 if (sock) {
3440 sk->sk_type = sock->type;
3441 RCU_INIT_POINTER(sk->sk_wq, &sock->wq);
3442 sock->sk = sk;
3443 } else {
3444 RCU_INIT_POINTER(sk->sk_wq, NULL);
3445 }
3446 sk->sk_uid = uid;
3447
3448 rwlock_init(&sk->sk_callback_lock);
3449 if (sk->sk_kern_sock)
3450 lockdep_set_class_and_name(
3451 &sk->sk_callback_lock,
3452 af_kern_callback_keys + sk->sk_family,
3453 af_family_kern_clock_key_strings[sk->sk_family]);
3454 else
3455 lockdep_set_class_and_name(
3456 &sk->sk_callback_lock,
3457 af_callback_keys + sk->sk_family,
3458 af_family_clock_key_strings[sk->sk_family]);
3459
3460 sk->sk_state_change = sock_def_wakeup;
3461 sk->sk_data_ready = sock_def_readable;
3462 sk->sk_write_space = sock_def_write_space;
3463 sk->sk_error_report = sock_def_error_report;
3464 sk->sk_destruct = sock_def_destruct;
3465
3466 sk->sk_frag.page = NULL;
3467 sk->sk_frag.offset = 0;
3468 sk->sk_peek_off = -1;
3469
3470 sk->sk_peer_pid = NULL;
3471 sk->sk_peer_cred = NULL;
3472 spin_lock_init(&sk->sk_peer_lock);
3473
3474 sk->sk_write_pending = 0;
3475 sk->sk_rcvlowat = 1;
3476 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
3477 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
3478
3479 sk->sk_stamp = SK_DEFAULT_STAMP;
3480#if BITS_PER_LONG==32
3481 seqlock_init(&sk->sk_stamp_seq);
3482#endif
3483 atomic_set(v: &sk->sk_zckey, i: 0);
3484
3485#ifdef CONFIG_NET_RX_BUSY_POLL
3486 sk->sk_napi_id = 0;
3487 sk->sk_ll_usec = READ_ONCE(sysctl_net_busy_read);
3488#endif
3489
3490 sk->sk_max_pacing_rate = ~0UL;
3491 sk->sk_pacing_rate = ~0UL;
3492 WRITE_ONCE(sk->sk_pacing_shift, 10);
3493 sk->sk_incoming_cpu = -1;
3494
3495 sk_rx_queue_clear(sk);
3496 /*
3497 * Before updating sk_refcnt, we must commit prior changes to memory
3498 * (Documentation/RCU/rculist_nulls.rst for details)
3499 */
3500 smp_wmb();
3501 refcount_set(r: &sk->sk_refcnt, n: 1);
3502 atomic_set(v: &sk->sk_drops, i: 0);
3503}
3504EXPORT_SYMBOL(sock_init_data_uid);
3505
3506void sock_init_data(struct socket *sock, struct sock *sk)
3507{
3508 kuid_t uid = sock ?
3509 SOCK_INODE(socket: sock)->i_uid :
3510 make_kuid(from: sock_net(sk)->user_ns, uid: 0);
3511
3512 sock_init_data_uid(sock, sk, uid);
3513}
3514EXPORT_SYMBOL(sock_init_data);
3515
3516void lock_sock_nested(struct sock *sk, int subclass)
3517{
3518 /* The sk_lock has mutex_lock() semantics here. */
3519 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
3520
3521 might_sleep();
3522 spin_lock_bh(lock: &sk->sk_lock.slock);
3523 if (sock_owned_by_user_nocheck(sk))
3524 __lock_sock(sk);
3525 sk->sk_lock.owned = 1;
3526 spin_unlock_bh(lock: &sk->sk_lock.slock);
3527}
3528EXPORT_SYMBOL(lock_sock_nested);
3529
3530void release_sock(struct sock *sk)
3531{
3532 spin_lock_bh(lock: &sk->sk_lock.slock);
3533 if (sk->sk_backlog.tail)
3534 __release_sock(sk);
3535
3536 if (sk->sk_prot->release_cb)
3537 INDIRECT_CALL_INET_1(sk->sk_prot->release_cb,
3538 tcp_release_cb, sk);
3539
3540 sock_release_ownership(sk);
3541 if (waitqueue_active(wq_head: &sk->sk_lock.wq))
3542 wake_up(&sk->sk_lock.wq);
3543 spin_unlock_bh(lock: &sk->sk_lock.slock);
3544}
3545EXPORT_SYMBOL(release_sock);
3546
3547bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock)
3548{
3549 might_sleep();
3550 spin_lock_bh(lock: &sk->sk_lock.slock);
3551
3552 if (!sock_owned_by_user_nocheck(sk)) {
3553 /*
3554 * Fast path return with bottom halves disabled and
3555 * sock::sk_lock.slock held.
3556 *
3557 * The 'mutex' is not contended and holding
3558 * sock::sk_lock.slock prevents all other lockers to
3559 * proceed so the corresponding unlock_sock_fast() can
3560 * avoid the slow path of release_sock() completely and
3561 * just release slock.
3562 *
3563 * From a semantical POV this is equivalent to 'acquiring'
3564 * the 'mutex', hence the corresponding lockdep
3565 * mutex_release() has to happen in the fast path of
3566 * unlock_sock_fast().
3567 */
3568 return false;
3569 }
3570
3571 __lock_sock(sk);
3572 sk->sk_lock.owned = 1;
3573 __acquire(&sk->sk_lock.slock);
3574 spin_unlock_bh(lock: &sk->sk_lock.slock);
3575 return true;
3576}
3577EXPORT_SYMBOL(__lock_sock_fast);
3578
3579int sock_gettstamp(struct socket *sock, void __user *userstamp,
3580 bool timeval, bool time32)
3581{
3582 struct sock *sk = sock->sk;
3583 struct timespec64 ts;
3584
3585 sock_enable_timestamp(sk, flag: SOCK_TIMESTAMP);
3586 ts = ktime_to_timespec64(sock_read_timestamp(sk));
3587 if (ts.tv_sec == -1)
3588 return -ENOENT;
3589 if (ts.tv_sec == 0) {
3590 ktime_t kt = ktime_get_real();
3591 sock_write_timestamp(sk, kt);
3592 ts = ktime_to_timespec64(kt);
3593 }
3594
3595 if (timeval)
3596 ts.tv_nsec /= 1000;
3597
3598#ifdef CONFIG_COMPAT_32BIT_TIME
3599 if (time32)
3600 return put_old_timespec32(&ts, userstamp);
3601#endif
3602#ifdef CONFIG_SPARC64
3603 /* beware of padding in sparc64 timeval */
3604 if (timeval && !in_compat_syscall()) {
3605 struct __kernel_old_timeval __user tv = {
3606 .tv_sec = ts.tv_sec,
3607 .tv_usec = ts.tv_nsec,
3608 };
3609 if (copy_to_user(userstamp, &tv, sizeof(tv)))
3610 return -EFAULT;
3611 return 0;
3612 }
3613#endif
3614 return put_timespec64(ts: &ts, uts: userstamp);
3615}
3616EXPORT_SYMBOL(sock_gettstamp);
3617
3618void sock_enable_timestamp(struct sock *sk, enum sock_flags flag)
3619{
3620 if (!sock_flag(sk, flag)) {
3621 unsigned long previous_flags = sk->sk_flags;
3622
3623 sock_set_flag(sk, flag);
3624 /*
3625 * we just set one of the two flags which require net
3626 * time stamping, but time stamping might have been on
3627 * already because of the other one
3628 */
3629 if (sock_needs_netstamp(sk) &&
3630 !(previous_flags & SK_FLAGS_TIMESTAMP))
3631 net_enable_timestamp();
3632 }
3633}
3634
3635int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
3636 int level, int type)
3637{
3638 struct sock_exterr_skb *serr;
3639 struct sk_buff *skb;
3640 int copied, err;
3641
3642 err = -EAGAIN;
3643 skb = sock_dequeue_err_skb(sk);
3644 if (skb == NULL)
3645 goto out;
3646
3647 copied = skb->len;
3648 if (copied > len) {
3649 msg->msg_flags |= MSG_TRUNC;
3650 copied = len;
3651 }
3652 err = skb_copy_datagram_msg(from: skb, offset: 0, msg, size: copied);
3653 if (err)
3654 goto out_free_skb;
3655
3656 sock_recv_timestamp(msg, sk, skb);
3657
3658 serr = SKB_EXT_ERR(skb);
3659 put_cmsg(msg, level, type, len: sizeof(serr->ee), data: &serr->ee);
3660
3661 msg->msg_flags |= MSG_ERRQUEUE;
3662 err = copied;
3663
3664out_free_skb:
3665 kfree_skb(skb);
3666out:
3667 return err;
3668}
3669EXPORT_SYMBOL(sock_recv_errqueue);
3670
3671/*
3672 * Get a socket option on an socket.
3673 *
3674 * FIX: POSIX 1003.1g is very ambiguous here. It states that
3675 * asynchronous errors should be reported by getsockopt. We assume
3676 * this means if you specify SO_ERROR (otherwise whats the point of it).
3677 */
3678int sock_common_getsockopt(struct socket *sock, int level, int optname,
3679 char __user *optval, int __user *optlen)
3680{
3681 struct sock *sk = sock->sk;
3682
3683 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3684 return READ_ONCE(sk->sk_prot)->getsockopt(sk, level, optname, optval, optlen);
3685}
3686EXPORT_SYMBOL(sock_common_getsockopt);
3687
3688int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
3689 int flags)
3690{
3691 struct sock *sk = sock->sk;
3692 int addr_len = 0;
3693 int err;
3694
3695 err = sk->sk_prot->recvmsg(sk, msg, size, flags, &addr_len);
3696 if (err >= 0)
3697 msg->msg_namelen = addr_len;
3698 return err;
3699}
3700EXPORT_SYMBOL(sock_common_recvmsg);
3701
3702/*
3703 * Set socket options on an inet socket.
3704 */
3705int sock_common_setsockopt(struct socket *sock, int level, int optname,
3706 sockptr_t optval, unsigned int optlen)
3707{
3708 struct sock *sk = sock->sk;
3709
3710 /* IPV6_ADDRFORM can change sk->sk_prot under us. */
3711 return READ_ONCE(sk->sk_prot)->setsockopt(sk, level, optname, optval, optlen);
3712}
3713EXPORT_SYMBOL(sock_common_setsockopt);
3714
3715void sk_common_release(struct sock *sk)
3716{
3717 if (sk->sk_prot->destroy)
3718 sk->sk_prot->destroy(sk);
3719
3720 /*
3721 * Observation: when sk_common_release is called, processes have
3722 * no access to socket. But net still has.
3723 * Step one, detach it from networking:
3724 *
3725 * A. Remove from hash tables.
3726 */
3727
3728 sk->sk_prot->unhash(sk);
3729
3730 /*
3731 * In this point socket cannot receive new packets, but it is possible
3732 * that some packets are in flight because some CPU runs receiver and
3733 * did hash table lookup before we unhashed socket. They will achieve
3734 * receive queue and will be purged by socket destructor.
3735 *
3736 * Also we still have packets pending on receive queue and probably,
3737 * our own packets waiting in device queues. sock_destroy will drain
3738 * receive queue, but transmitted packets will delay socket destruction
3739 * until the last reference will be released.
3740 */
3741
3742 sock_orphan(sk);
3743
3744 xfrm_sk_free_policy(sk);
3745
3746 sock_put(sk);
3747}
3748EXPORT_SYMBOL(sk_common_release);
3749
3750void sk_get_meminfo(const struct sock *sk, u32 *mem)
3751{
3752 memset(mem, 0, sizeof(*mem) * SK_MEMINFO_VARS);
3753
3754 mem[SK_MEMINFO_RMEM_ALLOC] = sk_rmem_alloc_get(sk);
3755 mem[SK_MEMINFO_RCVBUF] = READ_ONCE(sk->sk_rcvbuf);
3756 mem[SK_MEMINFO_WMEM_ALLOC] = sk_wmem_alloc_get(sk);
3757 mem[SK_MEMINFO_SNDBUF] = READ_ONCE(sk->sk_sndbuf);
3758 mem[SK_MEMINFO_FWD_ALLOC] = sk_forward_alloc_get(sk);
3759 mem[SK_MEMINFO_WMEM_QUEUED] = READ_ONCE(sk->sk_wmem_queued);
3760 mem[SK_MEMINFO_OPTMEM] = atomic_read(v: &sk->sk_omem_alloc);
3761 mem[SK_MEMINFO_BACKLOG] = READ_ONCE(sk->sk_backlog.len);
3762 mem[SK_MEMINFO_DROPS] = atomic_read(v: &sk->sk_drops);
3763}
3764
3765#ifdef CONFIG_PROC_FS
3766static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
3767
3768int sock_prot_inuse_get(struct net *net, struct proto *prot)
3769{
3770 int cpu, idx = prot->inuse_idx;
3771 int res = 0;
3772
3773 for_each_possible_cpu(cpu)
3774 res += per_cpu_ptr(net->core.prot_inuse, cpu)->val[idx];
3775
3776 return res >= 0 ? res : 0;
3777}
3778EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
3779
3780int sock_inuse_get(struct net *net)
3781{
3782 int cpu, res = 0;
3783
3784 for_each_possible_cpu(cpu)
3785 res += per_cpu_ptr(net->core.prot_inuse, cpu)->all;
3786
3787 return res;
3788}
3789
3790EXPORT_SYMBOL_GPL(sock_inuse_get);
3791
3792static int __net_init sock_inuse_init_net(struct net *net)
3793{
3794 net->core.prot_inuse = alloc_percpu(struct prot_inuse);
3795 if (net->core.prot_inuse == NULL)
3796 return -ENOMEM;
3797 return 0;
3798}
3799
3800static void __net_exit sock_inuse_exit_net(struct net *net)
3801{
3802 free_percpu(pdata: net->core.prot_inuse);
3803}
3804
3805static struct pernet_operations net_inuse_ops = {
3806 .init = sock_inuse_init_net,
3807 .exit = sock_inuse_exit_net,
3808};
3809
3810static __init int net_inuse_init(void)
3811{
3812 if (register_pernet_subsys(&net_inuse_ops))
3813 panic(fmt: "Cannot initialize net inuse counters");
3814
3815 return 0;
3816}
3817
3818core_initcall(net_inuse_init);
3819
3820static int assign_proto_idx(struct proto *prot)
3821{
3822 prot->inuse_idx = find_first_zero_bit(addr: proto_inuse_idx, PROTO_INUSE_NR);
3823
3824 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
3825 pr_err("PROTO_INUSE_NR exhausted\n");
3826 return -ENOSPC;
3827 }
3828
3829 set_bit(nr: prot->inuse_idx, addr: proto_inuse_idx);
3830 return 0;
3831}
3832
3833static void release_proto_idx(struct proto *prot)
3834{
3835 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
3836 clear_bit(nr: prot->inuse_idx, addr: proto_inuse_idx);
3837}
3838#else
3839static inline int assign_proto_idx(struct proto *prot)
3840{
3841 return 0;
3842}
3843
3844static inline void release_proto_idx(struct proto *prot)
3845{
3846}
3847
3848#endif
3849
3850static void tw_prot_cleanup(struct timewait_sock_ops *twsk_prot)
3851{
3852 if (!twsk_prot)
3853 return;
3854 kfree(objp: twsk_prot->twsk_slab_name);
3855 twsk_prot->twsk_slab_name = NULL;
3856 kmem_cache_destroy(s: twsk_prot->twsk_slab);
3857 twsk_prot->twsk_slab = NULL;
3858}
3859
3860static int tw_prot_init(const struct proto *prot)
3861{
3862 struct timewait_sock_ops *twsk_prot = prot->twsk_prot;
3863
3864 if (!twsk_prot)
3865 return 0;
3866
3867 twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, fmt: "tw_sock_%s",
3868 prot->name);
3869 if (!twsk_prot->twsk_slab_name)
3870 return -ENOMEM;
3871
3872 twsk_prot->twsk_slab =
3873 kmem_cache_create(name: twsk_prot->twsk_slab_name,
3874 size: twsk_prot->twsk_obj_size, align: 0,
3875 SLAB_ACCOUNT | prot->slab_flags,
3876 NULL);
3877 if (!twsk_prot->twsk_slab) {
3878 pr_crit("%s: Can't create timewait sock SLAB cache!\n",
3879 prot->name);
3880 return -ENOMEM;
3881 }
3882
3883 return 0;
3884}
3885
3886static void req_prot_cleanup(struct request_sock_ops *rsk_prot)
3887{
3888 if (!rsk_prot)
3889 return;
3890 kfree(objp: rsk_prot->slab_name);
3891 rsk_prot->slab_name = NULL;
3892 kmem_cache_destroy(s: rsk_prot->slab);
3893 rsk_prot->slab = NULL;
3894}
3895
3896static int req_prot_init(const struct proto *prot)
3897{
3898 struct request_sock_ops *rsk_prot = prot->rsk_prot;
3899
3900 if (!rsk_prot)
3901 return 0;
3902
3903 rsk_prot->slab_name = kasprintf(GFP_KERNEL, fmt: "request_sock_%s",
3904 prot->name);
3905 if (!rsk_prot->slab_name)
3906 return -ENOMEM;
3907
3908 rsk_prot->slab = kmem_cache_create(name: rsk_prot->slab_name,
3909 size: rsk_prot->obj_size, align: 0,
3910 SLAB_ACCOUNT | prot->slab_flags,
3911 NULL);
3912
3913 if (!rsk_prot->slab) {
3914 pr_crit("%s: Can't create request sock SLAB cache!\n",
3915 prot->name);
3916 return -ENOMEM;
3917 }
3918 return 0;
3919}
3920
3921int proto_register(struct proto *prot, int alloc_slab)
3922{
3923 int ret = -ENOBUFS;
3924
3925 if (prot->memory_allocated && !prot->sysctl_mem) {
3926 pr_err("%s: missing sysctl_mem\n", prot->name);
3927 return -EINVAL;
3928 }
3929 if (prot->memory_allocated && !prot->per_cpu_fw_alloc) {
3930 pr_err("%s: missing per_cpu_fw_alloc\n", prot->name);
3931 return -EINVAL;
3932 }
3933 if (alloc_slab) {
3934 prot->slab = kmem_cache_create_usercopy(name: prot->name,
3935 size: prot->obj_size, align: 0,
3936 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT |
3937 prot->slab_flags,
3938 useroffset: prot->useroffset, usersize: prot->usersize,
3939 NULL);
3940
3941 if (prot->slab == NULL) {
3942 pr_crit("%s: Can't create sock SLAB cache!\n",
3943 prot->name);
3944 goto out;
3945 }
3946
3947 if (req_prot_init(prot))
3948 goto out_free_request_sock_slab;
3949
3950 if (tw_prot_init(prot))
3951 goto out_free_timewait_sock_slab;
3952 }
3953
3954 mutex_lock(&proto_list_mutex);
3955 ret = assign_proto_idx(prot);
3956 if (ret) {
3957 mutex_unlock(lock: &proto_list_mutex);
3958 goto out_free_timewait_sock_slab;
3959 }
3960 list_add(new: &prot->node, head: &proto_list);
3961 mutex_unlock(lock: &proto_list_mutex);
3962 return ret;
3963
3964out_free_timewait_sock_slab:
3965 if (alloc_slab)
3966 tw_prot_cleanup(twsk_prot: prot->twsk_prot);
3967out_free_request_sock_slab:
3968 if (alloc_slab) {
3969 req_prot_cleanup(rsk_prot: prot->rsk_prot);
3970
3971 kmem_cache_destroy(s: prot->slab);
3972 prot->slab = NULL;
3973 }
3974out:
3975 return ret;
3976}
3977EXPORT_SYMBOL(proto_register);
3978
3979void proto_unregister(struct proto *prot)
3980{
3981 mutex_lock(&proto_list_mutex);
3982 release_proto_idx(prot);
3983 list_del(entry: &prot->node);
3984 mutex_unlock(lock: &proto_list_mutex);
3985
3986 kmem_cache_destroy(s: prot->slab);
3987 prot->slab = NULL;
3988
3989 req_prot_cleanup(rsk_prot: prot->rsk_prot);
3990 tw_prot_cleanup(twsk_prot: prot->twsk_prot);
3991}
3992EXPORT_SYMBOL(proto_unregister);
3993
3994int sock_load_diag_module(int family, int protocol)
3995{
3996 if (!protocol) {
3997 if (!sock_is_registered(family))
3998 return -ENOENT;
3999
4000 return request_module("net-pf-%d-proto-%d-type-%d", PF_NETLINK,
4001 NETLINK_SOCK_DIAG, family);
4002 }
4003
4004#ifdef CONFIG_INET
4005 if (family == AF_INET &&
4006 protocol != IPPROTO_RAW &&
4007 protocol < MAX_INET_PROTOS &&
4008 !rcu_access_pointer(inet_protos[protocol]))
4009 return -ENOENT;
4010#endif
4011
4012 return request_module("net-pf-%d-proto-%d-type-%d-%d", PF_NETLINK,
4013 NETLINK_SOCK_DIAG, family, protocol);
4014}
4015EXPORT_SYMBOL(sock_load_diag_module);
4016
4017#ifdef CONFIG_PROC_FS
4018static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
4019 __acquires(proto_list_mutex)
4020{
4021 mutex_lock(&proto_list_mutex);
4022 return seq_list_start_head(head: &proto_list, pos: *pos);
4023}
4024
4025static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4026{
4027 return seq_list_next(v, head: &proto_list, ppos: pos);
4028}
4029
4030static void proto_seq_stop(struct seq_file *seq, void *v)
4031 __releases(proto_list_mutex)
4032{
4033 mutex_unlock(lock: &proto_list_mutex);
4034}
4035
4036static char proto_method_implemented(const void *method)
4037{
4038 return method == NULL ? 'n' : 'y';
4039}
4040static long sock_prot_memory_allocated(struct proto *proto)
4041{
4042 return proto->memory_allocated != NULL ? proto_memory_allocated(prot: proto) : -1L;
4043}
4044
4045static const char *sock_prot_memory_pressure(struct proto *proto)
4046{
4047 return proto->memory_pressure != NULL ?
4048 proto_memory_pressure(prot: proto) ? "yes" : "no" : "NI";
4049}
4050
4051static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
4052{
4053
4054 seq_printf(m: seq, fmt: "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
4055 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
4056 proto->name,
4057 proto->obj_size,
4058 sock_prot_inuse_get(seq_file_net(seq), proto),
4059 sock_prot_memory_allocated(proto),
4060 sock_prot_memory_pressure(proto),
4061 proto->max_header,
4062 proto->slab == NULL ? "no" : "yes",
4063 module_name(proto->owner),
4064 proto_method_implemented(method: proto->close),
4065 proto_method_implemented(method: proto->connect),
4066 proto_method_implemented(method: proto->disconnect),
4067 proto_method_implemented(method: proto->accept),
4068 proto_method_implemented(method: proto->ioctl),
4069 proto_method_implemented(method: proto->init),
4070 proto_method_implemented(method: proto->destroy),
4071 proto_method_implemented(method: proto->shutdown),
4072 proto_method_implemented(method: proto->setsockopt),
4073 proto_method_implemented(method: proto->getsockopt),
4074 proto_method_implemented(method: proto->sendmsg),
4075 proto_method_implemented(method: proto->recvmsg),
4076 proto_method_implemented(method: proto->bind),
4077 proto_method_implemented(method: proto->backlog_rcv),
4078 proto_method_implemented(method: proto->hash),
4079 proto_method_implemented(method: proto->unhash),
4080 proto_method_implemented(method: proto->get_port),
4081 proto_method_implemented(method: proto->enter_memory_pressure));
4082}
4083
4084static int proto_seq_show(struct seq_file *seq, void *v)
4085{
4086 if (v == &proto_list)
4087 seq_printf(m: seq, fmt: "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
4088 "protocol",
4089 "size",
4090 "sockets",
4091 "memory",
4092 "press",
4093 "maxhdr",
4094 "slab",
4095 "module",
4096 "cl co di ac io in de sh ss gs se re bi br ha uh gp em\n");
4097 else
4098 proto_seq_printf(seq, list_entry(v, struct proto, node));
4099 return 0;
4100}
4101
4102static const struct seq_operations proto_seq_ops = {
4103 .start = proto_seq_start,
4104 .next = proto_seq_next,
4105 .stop = proto_seq_stop,
4106 .show = proto_seq_show,
4107};
4108
4109static __net_init int proto_init_net(struct net *net)
4110{
4111 if (!proc_create_net("protocols", 0444, net->proc_net, &proto_seq_ops,
4112 sizeof(struct seq_net_private)))
4113 return -ENOMEM;
4114
4115 return 0;
4116}
4117
4118static __net_exit void proto_exit_net(struct net *net)
4119{
4120 remove_proc_entry("protocols", net->proc_net);
4121}
4122
4123
4124static __net_initdata struct pernet_operations proto_net_ops = {
4125 .init = proto_init_net,
4126 .exit = proto_exit_net,
4127};
4128
4129static int __init proto_init(void)
4130{
4131 return register_pernet_subsys(&proto_net_ops);
4132}
4133
4134subsys_initcall(proto_init);
4135
4136#endif /* PROC_FS */
4137
4138#ifdef CONFIG_NET_RX_BUSY_POLL
4139bool sk_busy_loop_end(void *p, unsigned long start_time)
4140{
4141 struct sock *sk = p;
4142
4143 return !skb_queue_empty_lockless(list: &sk->sk_receive_queue) ||
4144 sk_busy_loop_timeout(sk, start_time);
4145}
4146EXPORT_SYMBOL(sk_busy_loop_end);
4147#endif /* CONFIG_NET_RX_BUSY_POLL */
4148
4149int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len)
4150{
4151 if (!sk->sk_prot->bind_add)
4152 return -EOPNOTSUPP;
4153 return sk->sk_prot->bind_add(sk, addr, addr_len);
4154}
4155EXPORT_SYMBOL(sock_bind_add);
4156
4157/* Copy 'size' bytes from userspace and return `size` back to userspace */
4158int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
4159 void __user *arg, void *karg, size_t size)
4160{
4161 int ret;
4162
4163 if (copy_from_user(to: karg, from: arg, n: size))
4164 return -EFAULT;
4165
4166 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, karg);
4167 if (ret)
4168 return ret;
4169
4170 if (copy_to_user(to: arg, from: karg, n: size))
4171 return -EFAULT;
4172
4173 return 0;
4174}
4175EXPORT_SYMBOL(sock_ioctl_inout);
4176
4177/* This is the most common ioctl prep function, where the result (4 bytes) is
4178 * copied back to userspace if the ioctl() returns successfully. No input is
4179 * copied from userspace as input argument.
4180 */
4181static int sock_ioctl_out(struct sock *sk, unsigned int cmd, void __user *arg)
4182{
4183 int ret, karg = 0;
4184
4185 ret = READ_ONCE(sk->sk_prot)->ioctl(sk, cmd, &karg);
4186 if (ret)
4187 return ret;
4188
4189 return put_user(karg, (int __user *)arg);
4190}
4191
4192/* A wrapper around sock ioctls, which copies the data from userspace
4193 * (depending on the protocol/ioctl), and copies back the result to userspace.
4194 * The main motivation for this function is to pass kernel memory to the
4195 * protocol ioctl callbacks, instead of userspace memory.
4196 */
4197int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
4198{
4199 int rc = 1;
4200
4201 if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET)
4202 rc = ipmr_sk_ioctl(sk, cmd, arg);
4203 else if (sk->sk_type == SOCK_RAW && sk->sk_family == AF_INET6)
4204 rc = ip6mr_sk_ioctl(sk, cmd, arg);
4205 else if (sk_is_phonet(sk))
4206 rc = phonet_sk_ioctl(sk, cmd, arg);
4207
4208 /* If ioctl was processed, returns its value */
4209 if (rc <= 0)
4210 return rc;
4211
4212 /* Otherwise call the default handler */
4213 return sock_ioctl_out(sk, cmd, arg);
4214}
4215EXPORT_SYMBOL(sk_ioctl);
4216

source code of linux/net/core/sock.c