1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/RecordLayout.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/StmtVisitor.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/AST/TypeOrdering.h"
30#include "clang/Basic/AttributeCommonInfo.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/Specifiers.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Lex/LiteralSupport.h"
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/EnterExpressionEvaluationContext.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/Ownership.h"
42#include "clang/Sema/ParsedTemplate.h"
43#include "clang/Sema/Scope.h"
44#include "clang/Sema/ScopeInfo.h"
45#include "clang/Sema/SemaCUDA.h"
46#include "clang/Sema/SemaInternal.h"
47#include "clang/Sema/SemaOpenMP.h"
48#include "clang/Sema/Template.h"
49#include "llvm/ADT/ArrayRef.h"
50#include "llvm/ADT/STLExtras.h"
51#include "llvm/ADT/STLForwardCompat.h"
52#include "llvm/ADT/ScopeExit.h"
53#include "llvm/ADT/SmallString.h"
54#include "llvm/ADT/StringExtras.h"
55#include "llvm/Support/ConvertUTF.h"
56#include "llvm/Support/SaveAndRestore.h"
57#include <map>
58#include <optional>
59#include <set>
60
61using namespace clang;
62
63//===----------------------------------------------------------------------===//
64// CheckDefaultArgumentVisitor
65//===----------------------------------------------------------------------===//
66
67namespace {
68/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
69/// the default argument of a parameter to determine whether it
70/// contains any ill-formed subexpressions. For example, this will
71/// diagnose the use of local variables or parameters within the
72/// default argument expression.
73class CheckDefaultArgumentVisitor
74 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
75 Sema &S;
76 const Expr *DefaultArg;
77
78public:
79 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
80 : S(S), DefaultArg(DefaultArg) {}
81
82 bool VisitExpr(const Expr *Node);
83 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
84 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
85 bool VisitLambdaExpr(const LambdaExpr *Lambda);
86 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
87};
88
89/// VisitExpr - Visit all of the children of this expression.
90bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
91 bool IsInvalid = false;
92 for (const Stmt *SubStmt : Node->children())
93 if (SubStmt)
94 IsInvalid |= Visit(SubStmt);
95 return IsInvalid;
96}
97
98/// VisitDeclRefExpr - Visit a reference to a declaration, to
99/// determine whether this declaration can be used in the default
100/// argument expression.
101bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
102 const ValueDecl *Decl = dyn_cast<ValueDecl>(Val: DRE->getDecl());
103
104 if (!isa<VarDecl, BindingDecl>(Val: Decl))
105 return false;
106
107 if (const auto *Param = dyn_cast<ParmVarDecl>(Val: Decl)) {
108 // C++ [dcl.fct.default]p9:
109 // [...] parameters of a function shall not be used in default
110 // argument expressions, even if they are not evaluated. [...]
111 //
112 // C++17 [dcl.fct.default]p9 (by CWG 2082):
113 // [...] A parameter shall not appear as a potentially-evaluated
114 // expression in a default argument. [...]
115 //
116 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
117 return S.Diag(DRE->getBeginLoc(),
118 diag::err_param_default_argument_references_param)
119 << Param->getDeclName() << DefaultArg->getSourceRange();
120 } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) {
121 // C++ [dcl.fct.default]p7:
122 // Local variables shall not be used in default argument
123 // expressions.
124 //
125 // C++17 [dcl.fct.default]p7 (by CWG 2082):
126 // A local variable shall not appear as a potentially-evaluated
127 // expression in a default argument.
128 //
129 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
130 // Note: A local variable cannot be odr-used (6.3) in a default
131 // argument.
132 //
133 if (VD->isLocalVarDecl() && !DRE->isNonOdrUse())
134 return S.Diag(DRE->getBeginLoc(),
135 diag::err_param_default_argument_references_local)
136 << Decl << DefaultArg->getSourceRange();
137 }
138 return false;
139}
140
141/// VisitCXXThisExpr - Visit a C++ "this" expression.
142bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
143 // C++ [dcl.fct.default]p8:
144 // The keyword this shall not be used in a default argument of a
145 // member function.
146 return S.Diag(ThisE->getBeginLoc(),
147 diag::err_param_default_argument_references_this)
148 << ThisE->getSourceRange();
149}
150
151bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
152 const PseudoObjectExpr *POE) {
153 bool Invalid = false;
154 for (const Expr *E : POE->semantics()) {
155 // Look through bindings.
156 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) {
157 E = OVE->getSourceExpr();
158 assert(E && "pseudo-object binding without source expression?");
159 }
160
161 Invalid |= Visit(E);
162 }
163 return Invalid;
164}
165
166bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
167 // [expr.prim.lambda.capture]p9
168 // a lambda-expression appearing in a default argument cannot implicitly or
169 // explicitly capture any local entity. Such a lambda-expression can still
170 // have an init-capture if any full-expression in its initializer satisfies
171 // the constraints of an expression appearing in a default argument.
172 bool Invalid = false;
173 for (const LambdaCapture &LC : Lambda->captures()) {
174 if (!Lambda->isInitCapture(&LC))
175 return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg);
176 // Init captures are always VarDecl.
177 auto *D = cast<VarDecl>(Val: LC.getCapturedVar());
178 Invalid |= Visit(D->getInit());
179 }
180 return Invalid;
181}
182} // namespace
183
184void
185Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
186 const CXXMethodDecl *Method) {
187 // If we have an MSAny spec already, don't bother.
188 if (!Method || ComputedEST == EST_MSAny)
189 return;
190
191 const FunctionProtoType *Proto
192 = Method->getType()->getAs<FunctionProtoType>();
193 Proto = Self->ResolveExceptionSpec(Loc: CallLoc, FPT: Proto);
194 if (!Proto)
195 return;
196
197 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
198
199 // If we have a throw-all spec at this point, ignore the function.
200 if (ComputedEST == EST_None)
201 return;
202
203 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
204 EST = EST_BasicNoexcept;
205
206 switch (EST) {
207 case EST_Unparsed:
208 case EST_Uninstantiated:
209 case EST_Unevaluated:
210 llvm_unreachable("should not see unresolved exception specs here");
211
212 // If this function can throw any exceptions, make a note of that.
213 case EST_MSAny:
214 case EST_None:
215 // FIXME: Whichever we see last of MSAny and None determines our result.
216 // We should make a consistent, order-independent choice here.
217 ClearExceptions();
218 ComputedEST = EST;
219 return;
220 case EST_NoexceptFalse:
221 ClearExceptions();
222 ComputedEST = EST_None;
223 return;
224 // FIXME: If the call to this decl is using any of its default arguments, we
225 // need to search them for potentially-throwing calls.
226 // If this function has a basic noexcept, it doesn't affect the outcome.
227 case EST_BasicNoexcept:
228 case EST_NoexceptTrue:
229 case EST_NoThrow:
230 return;
231 // If we're still at noexcept(true) and there's a throw() callee,
232 // change to that specification.
233 case EST_DynamicNone:
234 if (ComputedEST == EST_BasicNoexcept)
235 ComputedEST = EST_DynamicNone;
236 return;
237 case EST_DependentNoexcept:
238 llvm_unreachable(
239 "should not generate implicit declarations for dependent cases");
240 case EST_Dynamic:
241 break;
242 }
243 assert(EST == EST_Dynamic && "EST case not considered earlier.");
244 assert(ComputedEST != EST_None &&
245 "Shouldn't collect exceptions when throw-all is guaranteed.");
246 ComputedEST = EST_Dynamic;
247 // Record the exceptions in this function's exception specification.
248 for (const auto &E : Proto->exceptions())
249 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
250 Exceptions.push_back(E);
251}
252
253void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
254 if (!S || ComputedEST == EST_MSAny)
255 return;
256
257 // FIXME:
258 //
259 // C++0x [except.spec]p14:
260 // [An] implicit exception-specification specifies the type-id T if and
261 // only if T is allowed by the exception-specification of a function directly
262 // invoked by f's implicit definition; f shall allow all exceptions if any
263 // function it directly invokes allows all exceptions, and f shall allow no
264 // exceptions if every function it directly invokes allows no exceptions.
265 //
266 // Note in particular that if an implicit exception-specification is generated
267 // for a function containing a throw-expression, that specification can still
268 // be noexcept(true).
269 //
270 // Note also that 'directly invoked' is not defined in the standard, and there
271 // is no indication that we should only consider potentially-evaluated calls.
272 //
273 // Ultimately we should implement the intent of the standard: the exception
274 // specification should be the set of exceptions which can be thrown by the
275 // implicit definition. For now, we assume that any non-nothrow expression can
276 // throw any exception.
277
278 if (Self->canThrow(E: S))
279 ComputedEST = EST_None;
280}
281
282ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
283 SourceLocation EqualLoc) {
284 if (RequireCompleteType(Param->getLocation(), Param->getType(),
285 diag::err_typecheck_decl_incomplete_type))
286 return true;
287
288 // C++ [dcl.fct.default]p5
289 // A default argument expression is implicitly converted (clause
290 // 4) to the parameter type. The default argument expression has
291 // the same semantic constraints as the initializer expression in
292 // a declaration of a variable of the parameter type, using the
293 // copy-initialization semantics (8.5).
294 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
295 Parm: Param);
296 InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Param->getLocation(),
297 EqualLoc);
298 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
299 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Arg);
300 if (Result.isInvalid())
301 return true;
302 Arg = Result.getAs<Expr>();
303
304 CheckCompletedExpr(E: Arg, CheckLoc: EqualLoc);
305 Arg = MaybeCreateExprWithCleanups(SubExpr: Arg);
306
307 return Arg;
308}
309
310void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
311 SourceLocation EqualLoc) {
312 // Add the default argument to the parameter
313 Param->setDefaultArg(Arg);
314
315 // We have already instantiated this parameter; provide each of the
316 // instantiations with the uninstantiated default argument.
317 UnparsedDefaultArgInstantiationsMap::iterator InstPos
318 = UnparsedDefaultArgInstantiations.find(Val: Param);
319 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
320 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
321 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
322
323 // We're done tracking this parameter's instantiations.
324 UnparsedDefaultArgInstantiations.erase(I: InstPos);
325 }
326}
327
328/// ActOnParamDefaultArgument - Check whether the default argument
329/// provided for a function parameter is well-formed. If so, attach it
330/// to the parameter declaration.
331void
332Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
333 Expr *DefaultArg) {
334 if (!param || !DefaultArg)
335 return;
336
337 ParmVarDecl *Param = cast<ParmVarDecl>(Val: param);
338 UnparsedDefaultArgLocs.erase(Val: Param);
339
340 // Default arguments are only permitted in C++
341 if (!getLangOpts().CPlusPlus) {
342 Diag(EqualLoc, diag::err_param_default_argument)
343 << DefaultArg->getSourceRange();
344 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
345 }
346
347 // Check for unexpanded parameter packs.
348 if (DiagnoseUnexpandedParameterPack(E: DefaultArg, UPPC: UPPC_DefaultArgument))
349 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
350
351 // C++11 [dcl.fct.default]p3
352 // A default argument expression [...] shall not be specified for a
353 // parameter pack.
354 if (Param->isParameterPack()) {
355 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
356 << DefaultArg->getSourceRange();
357 // Recover by discarding the default argument.
358 Param->setDefaultArg(nullptr);
359 return;
360 }
361
362 ExprResult Result = ConvertParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc);
363 if (Result.isInvalid())
364 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
365
366 DefaultArg = Result.getAs<Expr>();
367
368 // Check that the default argument is well-formed
369 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
370 if (DefaultArgChecker.Visit(DefaultArg))
371 return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg);
372
373 SetParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc);
374}
375
376/// ActOnParamUnparsedDefaultArgument - We've seen a default
377/// argument for a function parameter, but we can't parse it yet
378/// because we're inside a class definition. Note that this default
379/// argument will be parsed later.
380void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
381 SourceLocation EqualLoc,
382 SourceLocation ArgLoc) {
383 if (!param)
384 return;
385
386 ParmVarDecl *Param = cast<ParmVarDecl>(Val: param);
387 Param->setUnparsedDefaultArg();
388 UnparsedDefaultArgLocs[Param] = ArgLoc;
389}
390
391/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
392/// the default argument for the parameter param failed.
393void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc,
394 Expr *DefaultArg) {
395 if (!param)
396 return;
397
398 ParmVarDecl *Param = cast<ParmVarDecl>(Val: param);
399 Param->setInvalidDecl();
400 UnparsedDefaultArgLocs.erase(Val: Param);
401 ExprResult RE;
402 if (DefaultArg) {
403 RE = CreateRecoveryExpr(Begin: EqualLoc, End: DefaultArg->getEndLoc(), SubExprs: {DefaultArg},
404 T: Param->getType().getNonReferenceType());
405 } else {
406 RE = CreateRecoveryExpr(Begin: EqualLoc, End: EqualLoc, SubExprs: {},
407 T: Param->getType().getNonReferenceType());
408 }
409 Param->setDefaultArg(RE.get());
410}
411
412/// CheckExtraCXXDefaultArguments - Check for any extra default
413/// arguments in the declarator, which is not a function declaration
414/// or definition and therefore is not permitted to have default
415/// arguments. This routine should be invoked for every declarator
416/// that is not a function declaration or definition.
417void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
418 // C++ [dcl.fct.default]p3
419 // A default argument expression shall be specified only in the
420 // parameter-declaration-clause of a function declaration or in a
421 // template-parameter (14.1). It shall not be specified for a
422 // parameter pack. If it is specified in a
423 // parameter-declaration-clause, it shall not occur within a
424 // declarator or abstract-declarator of a parameter-declaration.
425 bool MightBeFunction = D.isFunctionDeclarationContext();
426 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
427 DeclaratorChunk &chunk = D.getTypeObject(i);
428 if (chunk.Kind == DeclaratorChunk::Function) {
429 if (MightBeFunction) {
430 // This is a function declaration. It can have default arguments, but
431 // keep looking in case its return type is a function type with default
432 // arguments.
433 MightBeFunction = false;
434 continue;
435 }
436 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
437 ++argIdx) {
438 ParmVarDecl *Param = cast<ParmVarDecl>(Val: chunk.Fun.Params[argIdx].Param);
439 if (Param->hasUnparsedDefaultArg()) {
440 std::unique_ptr<CachedTokens> Toks =
441 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
442 SourceRange SR;
443 if (Toks->size() > 1)
444 SR = SourceRange((*Toks)[1].getLocation(),
445 Toks->back().getLocation());
446 else
447 SR = UnparsedDefaultArgLocs[Param];
448 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
449 << SR;
450 } else if (Param->getDefaultArg()) {
451 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
452 << Param->getDefaultArg()->getSourceRange();
453 Param->setDefaultArg(nullptr);
454 }
455 }
456 } else if (chunk.Kind != DeclaratorChunk::Paren) {
457 MightBeFunction = false;
458 }
459 }
460}
461
462static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
463 return llvm::any_of(Range: FD->parameters(), P: [](ParmVarDecl *P) {
464 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
465 });
466}
467
468/// MergeCXXFunctionDecl - Merge two declarations of the same C++
469/// function, once we already know that they have the same
470/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
471/// error, false otherwise.
472bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
473 Scope *S) {
474 bool Invalid = false;
475
476 // The declaration context corresponding to the scope is the semantic
477 // parent, unless this is a local function declaration, in which case
478 // it is that surrounding function.
479 DeclContext *ScopeDC = New->isLocalExternDecl()
480 ? New->getLexicalDeclContext()
481 : New->getDeclContext();
482
483 // Find the previous declaration for the purpose of default arguments.
484 FunctionDecl *PrevForDefaultArgs = Old;
485 for (/**/; PrevForDefaultArgs;
486 // Don't bother looking back past the latest decl if this is a local
487 // extern declaration; nothing else could work.
488 PrevForDefaultArgs = New->isLocalExternDecl()
489 ? nullptr
490 : PrevForDefaultArgs->getPreviousDecl()) {
491 // Ignore hidden declarations.
492 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
493 continue;
494
495 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
496 !New->isCXXClassMember()) {
497 // Ignore default arguments of old decl if they are not in
498 // the same scope and this is not an out-of-line definition of
499 // a member function.
500 continue;
501 }
502
503 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
504 // If only one of these is a local function declaration, then they are
505 // declared in different scopes, even though isDeclInScope may think
506 // they're in the same scope. (If both are local, the scope check is
507 // sufficient, and if neither is local, then they are in the same scope.)
508 continue;
509 }
510
511 // We found the right previous declaration.
512 break;
513 }
514
515 // C++ [dcl.fct.default]p4:
516 // For non-template functions, default arguments can be added in
517 // later declarations of a function in the same
518 // scope. Declarations in different scopes have completely
519 // distinct sets of default arguments. That is, declarations in
520 // inner scopes do not acquire default arguments from
521 // declarations in outer scopes, and vice versa. In a given
522 // function declaration, all parameters subsequent to a
523 // parameter with a default argument shall have default
524 // arguments supplied in this or previous declarations. A
525 // default argument shall not be redefined by a later
526 // declaration (not even to the same value).
527 //
528 // C++ [dcl.fct.default]p6:
529 // Except for member functions of class templates, the default arguments
530 // in a member function definition that appears outside of the class
531 // definition are added to the set of default arguments provided by the
532 // member function declaration in the class definition.
533 for (unsigned p = 0, NumParams = PrevForDefaultArgs
534 ? PrevForDefaultArgs->getNumParams()
535 : 0;
536 p < NumParams; ++p) {
537 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(i: p);
538 ParmVarDecl *NewParam = New->getParamDecl(i: p);
539
540 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
541 bool NewParamHasDfl = NewParam->hasDefaultArg();
542
543 if (OldParamHasDfl && NewParamHasDfl) {
544 unsigned DiagDefaultParamID =
545 diag::err_param_default_argument_redefinition;
546
547 // MSVC accepts that default parameters be redefined for member functions
548 // of template class. The new default parameter's value is ignored.
549 Invalid = true;
550 if (getLangOpts().MicrosoftExt) {
551 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: New);
552 if (MD && MD->getParent()->getDescribedClassTemplate()) {
553 // Merge the old default argument into the new parameter.
554 NewParam->setHasInheritedDefaultArg();
555 if (OldParam->hasUninstantiatedDefaultArg())
556 NewParam->setUninstantiatedDefaultArg(
557 OldParam->getUninstantiatedDefaultArg());
558 else
559 NewParam->setDefaultArg(OldParam->getInit());
560 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
561 Invalid = false;
562 }
563 }
564
565 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
566 // hint here. Alternatively, we could walk the type-source information
567 // for NewParam to find the last source location in the type... but it
568 // isn't worth the effort right now. This is the kind of test case that
569 // is hard to get right:
570 // int f(int);
571 // void g(int (*fp)(int) = f);
572 // void g(int (*fp)(int) = &f);
573 Diag(NewParam->getLocation(), DiagDefaultParamID)
574 << NewParam->getDefaultArgRange();
575
576 // Look for the function declaration where the default argument was
577 // actually written, which may be a declaration prior to Old.
578 for (auto Older = PrevForDefaultArgs;
579 OldParam->hasInheritedDefaultArg(); /**/) {
580 Older = Older->getPreviousDecl();
581 OldParam = Older->getParamDecl(i: p);
582 }
583
584 Diag(OldParam->getLocation(), diag::note_previous_definition)
585 << OldParam->getDefaultArgRange();
586 } else if (OldParamHasDfl) {
587 // Merge the old default argument into the new parameter unless the new
588 // function is a friend declaration in a template class. In the latter
589 // case the default arguments will be inherited when the friend
590 // declaration will be instantiated.
591 if (New->getFriendObjectKind() == Decl::FOK_None ||
592 !New->getLexicalDeclContext()->isDependentContext()) {
593 // It's important to use getInit() here; getDefaultArg()
594 // strips off any top-level ExprWithCleanups.
595 NewParam->setHasInheritedDefaultArg();
596 if (OldParam->hasUnparsedDefaultArg())
597 NewParam->setUnparsedDefaultArg();
598 else if (OldParam->hasUninstantiatedDefaultArg())
599 NewParam->setUninstantiatedDefaultArg(
600 OldParam->getUninstantiatedDefaultArg());
601 else
602 NewParam->setDefaultArg(OldParam->getInit());
603 }
604 } else if (NewParamHasDfl) {
605 if (New->getDescribedFunctionTemplate()) {
606 // Paragraph 4, quoted above, only applies to non-template functions.
607 Diag(NewParam->getLocation(),
608 diag::err_param_default_argument_template_redecl)
609 << NewParam->getDefaultArgRange();
610 Diag(PrevForDefaultArgs->getLocation(),
611 diag::note_template_prev_declaration)
612 << false;
613 } else if (New->getTemplateSpecializationKind()
614 != TSK_ImplicitInstantiation &&
615 New->getTemplateSpecializationKind() != TSK_Undeclared) {
616 // C++ [temp.expr.spec]p21:
617 // Default function arguments shall not be specified in a declaration
618 // or a definition for one of the following explicit specializations:
619 // - the explicit specialization of a function template;
620 // - the explicit specialization of a member function template;
621 // - the explicit specialization of a member function of a class
622 // template where the class template specialization to which the
623 // member function specialization belongs is implicitly
624 // instantiated.
625 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
626 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
627 << New->getDeclName()
628 << NewParam->getDefaultArgRange();
629 } else if (New->getDeclContext()->isDependentContext()) {
630 // C++ [dcl.fct.default]p6 (DR217):
631 // Default arguments for a member function of a class template shall
632 // be specified on the initial declaration of the member function
633 // within the class template.
634 //
635 // Reading the tea leaves a bit in DR217 and its reference to DR205
636 // leads me to the conclusion that one cannot add default function
637 // arguments for an out-of-line definition of a member function of a
638 // dependent type.
639 int WhichKind = 2;
640 if (CXXRecordDecl *Record
641 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
642 if (Record->getDescribedClassTemplate())
643 WhichKind = 0;
644 else if (isa<ClassTemplatePartialSpecializationDecl>(Val: Record))
645 WhichKind = 1;
646 else
647 WhichKind = 2;
648 }
649
650 Diag(NewParam->getLocation(),
651 diag::err_param_default_argument_member_template_redecl)
652 << WhichKind
653 << NewParam->getDefaultArgRange();
654 }
655 }
656 }
657
658 // DR1344: If a default argument is added outside a class definition and that
659 // default argument makes the function a special member function, the program
660 // is ill-formed. This can only happen for constructors.
661 if (isa<CXXConstructorDecl>(Val: New) &&
662 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
663 CXXSpecialMemberKind NewSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: New)),
664 OldSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: Old));
665 if (NewSM != OldSM) {
666 ParmVarDecl *NewParam = New->getParamDecl(i: New->getMinRequiredArguments());
667 assert(NewParam->hasDefaultArg());
668 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
669 << NewParam->getDefaultArgRange() << llvm::to_underlying(NewSM);
670 Diag(Old->getLocation(), diag::note_previous_declaration);
671 }
672 }
673
674 const FunctionDecl *Def;
675 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
676 // template has a constexpr specifier then all its declarations shall
677 // contain the constexpr specifier.
678 if (New->getConstexprKind() != Old->getConstexprKind()) {
679 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
680 << New << static_cast<int>(New->getConstexprKind())
681 << static_cast<int>(Old->getConstexprKind());
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 Invalid = true;
684 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
685 Old->isDefined(Definition&: Def) &&
686 // If a friend function is inlined but does not have 'inline'
687 // specifier, it is a definition. Do not report attribute conflict
688 // in this case, redefinition will be diagnosed later.
689 (New->isInlineSpecified() ||
690 New->getFriendObjectKind() == Decl::FOK_None)) {
691 // C++11 [dcl.fcn.spec]p4:
692 // If the definition of a function appears in a translation unit before its
693 // first declaration as inline, the program is ill-formed.
694 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
695 Diag(Def->getLocation(), diag::note_previous_definition);
696 Invalid = true;
697 }
698
699 // C++17 [temp.deduct.guide]p3:
700 // Two deduction guide declarations in the same translation unit
701 // for the same class template shall not have equivalent
702 // parameter-declaration-clauses.
703 if (isa<CXXDeductionGuideDecl>(Val: New) &&
704 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
705 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
706 Diag(Old->getLocation(), diag::note_previous_declaration);
707 }
708
709 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
710 // argument expression, that declaration shall be a definition and shall be
711 // the only declaration of the function or function template in the
712 // translation unit.
713 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
714 functionDeclHasDefaultArgument(FD: Old)) {
715 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
716 Diag(Old->getLocation(), diag::note_previous_declaration);
717 Invalid = true;
718 }
719
720 // C++11 [temp.friend]p4 (DR329):
721 // When a function is defined in a friend function declaration in a class
722 // template, the function is instantiated when the function is odr-used.
723 // The same restrictions on multiple declarations and definitions that
724 // apply to non-template function declarations and definitions also apply
725 // to these implicit definitions.
726 const FunctionDecl *OldDefinition = nullptr;
727 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
728 Old->isDefined(Definition&: OldDefinition, CheckForPendingFriendDefinition: true))
729 CheckForFunctionRedefinition(FD: New, EffectiveDefinition: OldDefinition);
730
731 return Invalid;
732}
733
734void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) {
735 Diag(Loc, getLangOpts().CPlusPlus26
736 ? diag::warn_cxx23_placeholder_var_definition
737 : diag::ext_placeholder_var_definition);
738}
739
740NamedDecl *
741Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
742 MultiTemplateParamsArg TemplateParamLists) {
743 assert(D.isDecompositionDeclarator());
744 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
745
746 // The syntax only allows a decomposition declarator as a simple-declaration,
747 // a for-range-declaration, or a condition in Clang, but we parse it in more
748 // cases than that.
749 if (!D.mayHaveDecompositionDeclarator()) {
750 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
751 << Decomp.getSourceRange();
752 return nullptr;
753 }
754
755 if (!TemplateParamLists.empty()) {
756 // FIXME: There's no rule against this, but there are also no rules that
757 // would actually make it usable, so we reject it for now.
758 Diag(TemplateParamLists.front()->getTemplateLoc(),
759 diag::err_decomp_decl_template);
760 return nullptr;
761 }
762
763 Diag(Decomp.getLSquareLoc(),
764 !getLangOpts().CPlusPlus17
765 ? diag::ext_decomp_decl
766 : D.getContext() == DeclaratorContext::Condition
767 ? diag::ext_decomp_decl_cond
768 : diag::warn_cxx14_compat_decomp_decl)
769 << Decomp.getSourceRange();
770
771 // The semantic context is always just the current context.
772 DeclContext *const DC = CurContext;
773
774 // C++17 [dcl.dcl]/8:
775 // The decl-specifier-seq shall contain only the type-specifier auto
776 // and cv-qualifiers.
777 // C++20 [dcl.dcl]/8:
778 // If decl-specifier-seq contains any decl-specifier other than static,
779 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
780 // C++23 [dcl.pre]/6:
781 // Each decl-specifier in the decl-specifier-seq shall be static,
782 // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier.
783 auto &DS = D.getDeclSpec();
784 {
785 // Note: While constrained-auto needs to be checked, we do so separately so
786 // we can emit a better diagnostic.
787 SmallVector<StringRef, 8> BadSpecifiers;
788 SmallVector<SourceLocation, 8> BadSpecifierLocs;
789 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
790 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
791 if (auto SCS = DS.getStorageClassSpec()) {
792 if (SCS == DeclSpec::SCS_static) {
793 CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS));
794 CPlusPlus20SpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc());
795 } else {
796 BadSpecifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS));
797 BadSpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc());
798 }
799 }
800 if (auto TSCS = DS.getThreadStorageClassSpec()) {
801 CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: TSCS));
802 CPlusPlus20SpecifierLocs.push_back(Elt: DS.getThreadStorageClassSpecLoc());
803 }
804 if (DS.hasConstexprSpecifier()) {
805 BadSpecifiers.push_back(
806 Elt: DeclSpec::getSpecifierName(C: DS.getConstexprSpecifier()));
807 BadSpecifierLocs.push_back(Elt: DS.getConstexprSpecLoc());
808 }
809 if (DS.isInlineSpecified()) {
810 BadSpecifiers.push_back(Elt: "inline");
811 BadSpecifierLocs.push_back(Elt: DS.getInlineSpecLoc());
812 }
813
814 if (!BadSpecifiers.empty()) {
815 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
816 Err << (int)BadSpecifiers.size()
817 << llvm::join(Begin: BadSpecifiers.begin(), End: BadSpecifiers.end(), Separator: " ");
818 // Don't add FixItHints to remove the specifiers; we do still respect
819 // them when building the underlying variable.
820 for (auto Loc : BadSpecifierLocs)
821 Err << SourceRange(Loc, Loc);
822 } else if (!CPlusPlus20Specifiers.empty()) {
823 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
824 getLangOpts().CPlusPlus20
825 ? diag::warn_cxx17_compat_decomp_decl_spec
826 : diag::ext_decomp_decl_spec);
827 Warn << (int)CPlusPlus20Specifiers.size()
828 << llvm::join(Begin: CPlusPlus20Specifiers.begin(),
829 End: CPlusPlus20Specifiers.end(), Separator: " ");
830 for (auto Loc : CPlusPlus20SpecifierLocs)
831 Warn << SourceRange(Loc, Loc);
832 }
833 // We can't recover from it being declared as a typedef.
834 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
835 return nullptr;
836 }
837
838 // C++2a [dcl.struct.bind]p1:
839 // A cv that includes volatile is deprecated
840 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
841 getLangOpts().CPlusPlus20)
842 Diag(DS.getVolatileSpecLoc(),
843 diag::warn_deprecated_volatile_structured_binding);
844
845 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
846 QualType R = TInfo->getType();
847
848 if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo,
849 UPPC: UPPC_DeclarationType))
850 D.setInvalidType();
851
852 // The syntax only allows a single ref-qualifier prior to the decomposition
853 // declarator. No other declarator chunks are permitted. Also check the type
854 // specifier here.
855 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
856 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
857 (D.getNumTypeObjects() == 1 &&
858 D.getTypeObject(i: 0).Kind != DeclaratorChunk::Reference)) {
859 Diag(Decomp.getLSquareLoc(),
860 (D.hasGroupingParens() ||
861 (D.getNumTypeObjects() &&
862 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
863 ? diag::err_decomp_decl_parens
864 : diag::err_decomp_decl_type)
865 << R;
866
867 // In most cases, there's no actual problem with an explicitly-specified
868 // type, but a function type won't work here, and ActOnVariableDeclarator
869 // shouldn't be called for such a type.
870 if (R->isFunctionType())
871 D.setInvalidType();
872 }
873
874 // Constrained auto is prohibited by [decl.pre]p6, so check that here.
875 if (DS.isConstrainedAuto()) {
876 TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId();
877 assert(TemplRep->Kind == TNK_Concept_template &&
878 "No other template kind should be possible for a constrained auto");
879
880 SourceRange TemplRange{TemplRep->TemplateNameLoc,
881 TemplRep->RAngleLoc.isValid()
882 ? TemplRep->RAngleLoc
883 : TemplRep->TemplateNameLoc};
884 Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint)
885 << TemplRange << FixItHint::CreateRemoval(TemplRange);
886 }
887
888 // Build the BindingDecls.
889 SmallVector<BindingDecl*, 8> Bindings;
890
891 // Build the BindingDecls.
892 for (auto &B : D.getDecompositionDeclarator().bindings()) {
893 // Check for name conflicts.
894 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
895 IdentifierInfo *VarName = B.Name;
896 assert(VarName && "Cannot have an unnamed binding declaration");
897
898 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
899 RedeclarationKind::ForVisibleRedeclaration);
900 LookupName(R&: Previous, S,
901 /*CreateBuiltins*/AllowBuiltinCreation: DC->getRedeclContext()->isTranslationUnit());
902
903 // It's not permitted to shadow a template parameter name.
904 if (Previous.isSingleResult() &&
905 Previous.getFoundDecl()->isTemplateParameter()) {
906 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
907 Previous.getFoundDecl());
908 Previous.clear();
909 }
910
911 auto *BD = BindingDecl::Create(C&: Context, DC, IdLoc: B.NameLoc, Id: VarName);
912
913 // Find the shadowed declaration before filtering for scope.
914 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
915 ? getShadowedDeclaration(D: BD, R: Previous)
916 : nullptr;
917
918 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
919 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
920 FilterLookupForScope(R&: Previous, Ctx: DC, S, ConsiderLinkage,
921 /*AllowInlineNamespace*/false);
922
923 bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static &&
924 DC->isFunctionOrMethod() && VarName->isPlaceholder();
925 if (!Previous.empty()) {
926 if (IsPlaceholder) {
927 bool sameDC = (Previous.end() - 1)
928 ->getDeclContext()
929 ->getRedeclContext()
930 ->Equals(DC->getRedeclContext());
931 if (sameDC &&
932 isDeclInScope(D: *(Previous.end() - 1), Ctx: CurContext, S, AllowInlineNamespace: false)) {
933 Previous.clear();
934 DiagPlaceholderVariableDefinition(Loc: B.NameLoc);
935 }
936 } else {
937 auto *Old = Previous.getRepresentativeDecl();
938 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
939 Diag(Old->getLocation(), diag::note_previous_definition);
940 }
941 } else if (ShadowedDecl && !D.isRedeclaration()) {
942 CheckShadow(BD, ShadowedDecl, Previous);
943 }
944 PushOnScopeChains(BD, S, true);
945 Bindings.push_back(Elt: BD);
946 ParsingInitForAutoVars.insert(BD);
947 }
948
949 // There are no prior lookup results for the variable itself, because it
950 // is unnamed.
951 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
952 Decomp.getLSquareLoc());
953 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
954 RedeclarationKind::ForVisibleRedeclaration);
955
956 // Build the variable that holds the non-decomposed object.
957 bool AddToScope = true;
958 NamedDecl *New =
959 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
960 TemplateParamLists: MultiTemplateParamsArg(), AddToScope, Bindings);
961 if (AddToScope) {
962 S->AddDecl(New);
963 CurContext->addHiddenDecl(New);
964 }
965
966 if (OpenMP().isInOpenMPDeclareTargetContext())
967 OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New);
968
969 return New;
970}
971
972static bool checkSimpleDecomposition(
973 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
974 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
975 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
976 if ((int64_t)Bindings.size() != NumElems) {
977 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
978 << DecompType << (unsigned)Bindings.size()
979 << (unsigned)NumElems.getLimitedValue(UINT_MAX)
980 << toString(NumElems, 10) << (NumElems < Bindings.size());
981 return true;
982 }
983
984 unsigned I = 0;
985 for (auto *B : Bindings) {
986 SourceLocation Loc = B->getLocation();
987 ExprResult E = S.BuildDeclRefExpr(D: Src, Ty: DecompType, VK: VK_LValue, Loc);
988 if (E.isInvalid())
989 return true;
990 E = GetInit(Loc, E.get(), I++);
991 if (E.isInvalid())
992 return true;
993 B->setBinding(DeclaredType: ElemType, Binding: E.get());
994 }
995
996 return false;
997}
998
999static bool checkArrayLikeDecomposition(Sema &S,
1000 ArrayRef<BindingDecl *> Bindings,
1001 ValueDecl *Src, QualType DecompType,
1002 const llvm::APSInt &NumElems,
1003 QualType ElemType) {
1004 return checkSimpleDecomposition(
1005 S, Bindings, Src, DecompType, NumElems, ElemType,
1006 GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
1007 ExprResult E = S.ActOnIntegerConstant(Loc, Val: I);
1008 if (E.isInvalid())
1009 return ExprError();
1010 return S.CreateBuiltinArraySubscriptExpr(Base, LLoc: Loc, Idx: E.get(), RLoc: Loc);
1011 });
1012}
1013
1014static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1015 ValueDecl *Src, QualType DecompType,
1016 const ConstantArrayType *CAT) {
1017 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
1018 llvm::APSInt(CAT->getSize()),
1019 CAT->getElementType());
1020}
1021
1022static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1023 ValueDecl *Src, QualType DecompType,
1024 const VectorType *VT) {
1025 return checkArrayLikeDecomposition(
1026 S, Bindings, Src, DecompType, NumElems: llvm::APSInt::get(X: VT->getNumElements()),
1027 ElemType: S.Context.getQualifiedType(T: VT->getElementType(),
1028 Qs: DecompType.getQualifiers()));
1029}
1030
1031static bool checkComplexDecomposition(Sema &S,
1032 ArrayRef<BindingDecl *> Bindings,
1033 ValueDecl *Src, QualType DecompType,
1034 const ComplexType *CT) {
1035 return checkSimpleDecomposition(
1036 S, Bindings, Src, DecompType, NumElems: llvm::APSInt::get(X: 2),
1037 ElemType: S.Context.getQualifiedType(T: CT->getElementType(),
1038 Qs: DecompType.getQualifiers()),
1039 GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
1040 return S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: I ? UO_Imag : UO_Real, InputExpr: Base);
1041 });
1042}
1043
1044static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
1045 TemplateArgumentListInfo &Args,
1046 const TemplateParameterList *Params) {
1047 SmallString<128> SS;
1048 llvm::raw_svector_ostream OS(SS);
1049 bool First = true;
1050 unsigned I = 0;
1051 for (auto &Arg : Args.arguments()) {
1052 if (!First)
1053 OS << ", ";
1054 Arg.getArgument().print(Policy: PrintingPolicy, Out&: OS,
1055 IncludeType: TemplateParameterList::shouldIncludeTypeForArgument(
1056 Policy: PrintingPolicy, TPL: Params, Idx: I));
1057 First = false;
1058 I++;
1059 }
1060 return std::string(OS.str());
1061}
1062
1063static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
1064 SourceLocation Loc, StringRef Trait,
1065 TemplateArgumentListInfo &Args,
1066 unsigned DiagID) {
1067 auto DiagnoseMissing = [&] {
1068 if (DiagID)
1069 S.Diag(Loc, DiagID) << printTemplateArgs(PrintingPolicy: S.Context.getPrintingPolicy(),
1070 Args, /*Params*/ nullptr);
1071 return true;
1072 };
1073
1074 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1075 NamespaceDecl *Std = S.getStdNamespace();
1076 if (!Std)
1077 return DiagnoseMissing();
1078
1079 // Look up the trait itself, within namespace std. We can diagnose various
1080 // problems with this lookup even if we've been asked to not diagnose a
1081 // missing specialization, because this can only fail if the user has been
1082 // declaring their own names in namespace std or we don't support the
1083 // standard library implementation in use.
1084 LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: Trait),
1085 Loc, Sema::LookupOrdinaryName);
1086 if (!S.LookupQualifiedName(Result, Std))
1087 return DiagnoseMissing();
1088 if (Result.isAmbiguous())
1089 return true;
1090
1091 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1092 if (!TraitTD) {
1093 Result.suppressDiagnostics();
1094 NamedDecl *Found = *Result.begin();
1095 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1096 S.Diag(Found->getLocation(), diag::note_declared_at);
1097 return true;
1098 }
1099
1100 // Build the template-id.
1101 QualType TraitTy = S.CheckTemplateIdType(Template: TemplateName(TraitTD), TemplateLoc: Loc, TemplateArgs&: Args);
1102 if (TraitTy.isNull())
1103 return true;
1104 if (!S.isCompleteType(Loc, T: TraitTy)) {
1105 if (DiagID)
1106 S.RequireCompleteType(
1107 Loc, TraitTy, DiagID,
1108 printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1109 TraitTD->getTemplateParameters()));
1110 return true;
1111 }
1112
1113 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1114 assert(RD && "specialization of class template is not a class?");
1115
1116 // Look up the member of the trait type.
1117 S.LookupQualifiedName(TraitMemberLookup, RD);
1118 return TraitMemberLookup.isAmbiguous();
1119}
1120
1121static TemplateArgumentLoc
1122getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1123 uint64_t I) {
1124 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(Value: I, Type: T), T);
1125 return S.getTrivialTemplateArgumentLoc(Arg, NTTPType: T, Loc);
1126}
1127
1128static TemplateArgumentLoc
1129getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1130 return S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(T), NTTPType: QualType(), Loc);
1131}
1132
1133namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1134
1135static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1136 llvm::APSInt &Size) {
1137 EnterExpressionEvaluationContext ContextRAII(
1138 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1139
1140 DeclarationName Value = S.PP.getIdentifierInfo(Name: "value");
1141 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1142
1143 // Form template argument list for tuple_size<T>.
1144 TemplateArgumentListInfo Args(Loc, Loc);
1145 Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T));
1146
1147 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1148 // it's not tuple-like.
1149 if (lookupStdTypeTraitMember(S, TraitMemberLookup&: R, Loc, Trait: "tuple_size", Args, /*DiagID*/ 0) ||
1150 R.empty())
1151 return IsTupleLike::NotTupleLike;
1152
1153 // If we get this far, we've committed to the tuple interpretation, but
1154 // we can still fail if there actually isn't a usable ::value.
1155
1156 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1157 LookupResult &R;
1158 TemplateArgumentListInfo &Args;
1159 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1160 : R(R), Args(Args) {}
1161 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1162 SourceLocation Loc) override {
1163 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1164 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1165 /*Params*/ nullptr);
1166 }
1167 } Diagnoser(R, Args);
1168
1169 ExprResult E =
1170 S.BuildDeclarationNameExpr(SS: CXXScopeSpec(), R, /*NeedsADL*/false);
1171 if (E.isInvalid())
1172 return IsTupleLike::Error;
1173
1174 E = S.VerifyIntegerConstantExpression(E: E.get(), Result: &Size, Diagnoser);
1175 if (E.isInvalid())
1176 return IsTupleLike::Error;
1177
1178 return IsTupleLike::TupleLike;
1179}
1180
1181/// \return std::tuple_element<I, T>::type.
1182static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1183 unsigned I, QualType T) {
1184 // Form template argument list for tuple_element<I, T>.
1185 TemplateArgumentListInfo Args(Loc, Loc);
1186 Args.addArgument(
1187 Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I));
1188 Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T));
1189
1190 DeclarationName TypeDN = S.PP.getIdentifierInfo(Name: "type");
1191 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1192 if (lookupStdTypeTraitMember(
1193 S, R, Loc, "tuple_element", Args,
1194 diag::err_decomp_decl_std_tuple_element_not_specialized))
1195 return QualType();
1196
1197 auto *TD = R.getAsSingle<TypeDecl>();
1198 if (!TD) {
1199 R.suppressDiagnostics();
1200 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1201 << printTemplateArgs(S.Context.getPrintingPolicy(), Args,
1202 /*Params*/ nullptr);
1203 if (!R.empty())
1204 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1205 return QualType();
1206 }
1207
1208 return S.Context.getTypeDeclType(Decl: TD);
1209}
1210
1211namespace {
1212struct InitializingBinding {
1213 Sema &S;
1214 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1215 Sema::CodeSynthesisContext Ctx;
1216 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1217 Ctx.PointOfInstantiation = BD->getLocation();
1218 Ctx.Entity = BD;
1219 S.pushCodeSynthesisContext(Ctx);
1220 }
1221 ~InitializingBinding() {
1222 S.popCodeSynthesisContext();
1223 }
1224};
1225}
1226
1227static bool checkTupleLikeDecomposition(Sema &S,
1228 ArrayRef<BindingDecl *> Bindings,
1229 VarDecl *Src, QualType DecompType,
1230 const llvm::APSInt &TupleSize) {
1231 if ((int64_t)Bindings.size() != TupleSize) {
1232 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1233 << DecompType << (unsigned)Bindings.size()
1234 << (unsigned)TupleSize.getLimitedValue(UINT_MAX)
1235 << toString(TupleSize, 10) << (TupleSize < Bindings.size());
1236 return true;
1237 }
1238
1239 if (Bindings.empty())
1240 return false;
1241
1242 DeclarationName GetDN = S.PP.getIdentifierInfo(Name: "get");
1243
1244 // [dcl.decomp]p3:
1245 // The unqualified-id get is looked up in the scope of E by class member
1246 // access lookup ...
1247 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1248 bool UseMemberGet = false;
1249 if (S.isCompleteType(Loc: Src->getLocation(), T: DecompType)) {
1250 if (auto *RD = DecompType->getAsCXXRecordDecl())
1251 S.LookupQualifiedName(MemberGet, RD);
1252 if (MemberGet.isAmbiguous())
1253 return true;
1254 // ... and if that finds at least one declaration that is a function
1255 // template whose first template parameter is a non-type parameter ...
1256 for (NamedDecl *D : MemberGet) {
1257 if (FunctionTemplateDecl *FTD =
1258 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1259 TemplateParameterList *TPL = FTD->getTemplateParameters();
1260 if (TPL->size() != 0 &&
1261 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1262 // ... the initializer is e.get<i>().
1263 UseMemberGet = true;
1264 break;
1265 }
1266 }
1267 }
1268 }
1269
1270 unsigned I = 0;
1271 for (auto *B : Bindings) {
1272 InitializingBinding InitContext(S, B);
1273 SourceLocation Loc = B->getLocation();
1274
1275 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1276 if (E.isInvalid())
1277 return true;
1278
1279 // e is an lvalue if the type of the entity is an lvalue reference and
1280 // an xvalue otherwise
1281 if (!Src->getType()->isLValueReferenceType())
1282 E = ImplicitCastExpr::Create(Context: S.Context, T: E.get()->getType(), Kind: CK_NoOp,
1283 Operand: E.get(), BasePath: nullptr, Cat: VK_XValue,
1284 FPO: FPOptionsOverride());
1285
1286 TemplateArgumentListInfo Args(Loc, Loc);
1287 Args.addArgument(
1288 Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I));
1289
1290 if (UseMemberGet) {
1291 // if [lookup of member get] finds at least one declaration, the
1292 // initializer is e.get<i-1>().
1293 E = S.BuildMemberReferenceExpr(Base: E.get(), BaseType: DecompType, OpLoc: Loc, IsArrow: false,
1294 SS: CXXScopeSpec(), TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr,
1295 R&: MemberGet, TemplateArgs: &Args, S: nullptr);
1296 if (E.isInvalid())
1297 return true;
1298
1299 E = S.BuildCallExpr(S: nullptr, Fn: E.get(), LParenLoc: Loc, ArgExprs: std::nullopt, RParenLoc: Loc);
1300 } else {
1301 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1302 // in the associated namespaces.
1303 Expr *Get = UnresolvedLookupExpr::Create(
1304 Context: S.Context, NamingClass: nullptr, QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc: SourceLocation(),
1305 NameInfo: DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, Args: &Args,
1306 Begin: UnresolvedSetIterator(), End: UnresolvedSetIterator(),
1307 /*KnownDependent=*/false);
1308
1309 Expr *Arg = E.get();
1310 E = S.BuildCallExpr(S: nullptr, Fn: Get, LParenLoc: Loc, ArgExprs: Arg, RParenLoc: Loc);
1311 }
1312 if (E.isInvalid())
1313 return true;
1314 Expr *Init = E.get();
1315
1316 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1317 QualType T = getTupleLikeElementType(S, Loc, I, T: DecompType);
1318 if (T.isNull())
1319 return true;
1320
1321 // each vi is a variable of type "reference to T" initialized with the
1322 // initializer, where the reference is an lvalue reference if the
1323 // initializer is an lvalue and an rvalue reference otherwise
1324 QualType RefType =
1325 S.BuildReferenceType(T, LValueRef: E.get()->isLValue(), Loc, Entity: B->getDeclName());
1326 if (RefType.isNull())
1327 return true;
1328 auto *RefVD = VarDecl::Create(
1329 C&: S.Context, DC: Src->getDeclContext(), StartLoc: Loc, IdLoc: Loc,
1330 Id: B->getDeclName().getAsIdentifierInfo(), T: RefType,
1331 TInfo: S.Context.getTrivialTypeSourceInfo(T, Loc), S: Src->getStorageClass());
1332 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1333 RefVD->setTSCSpec(Src->getTSCSpec());
1334 RefVD->setImplicit();
1335 if (Src->isInlineSpecified())
1336 RefVD->setInlineSpecified();
1337 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1338
1339 InitializedEntity Entity = InitializedEntity::InitializeBinding(Binding: RefVD);
1340 InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc);
1341 InitializationSequence Seq(S, Entity, Kind, Init);
1342 E = Seq.Perform(S, Entity, Kind, Args: Init);
1343 if (E.isInvalid())
1344 return true;
1345 E = S.ActOnFinishFullExpr(Expr: E.get(), CC: Loc, /*DiscardedValue*/ false);
1346 if (E.isInvalid())
1347 return true;
1348 RefVD->setInit(E.get());
1349 S.CheckCompleteVariableDeclaration(VD: RefVD);
1350
1351 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1352 DeclarationNameInfo(B->getDeclName(), Loc),
1353 RefVD);
1354 if (E.isInvalid())
1355 return true;
1356
1357 B->setBinding(DeclaredType: T, Binding: E.get());
1358 I++;
1359 }
1360
1361 return false;
1362}
1363
1364/// Find the base class to decompose in a built-in decomposition of a class type.
1365/// This base class search is, unfortunately, not quite like any other that we
1366/// perform anywhere else in C++.
1367static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1368 const CXXRecordDecl *RD,
1369 CXXCastPath &BasePath) {
1370 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1371 CXXBasePath &Path) {
1372 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1373 };
1374
1375 const CXXRecordDecl *ClassWithFields = nullptr;
1376 AccessSpecifier AS = AS_public;
1377 if (RD->hasDirectFields())
1378 // [dcl.decomp]p4:
1379 // Otherwise, all of E's non-static data members shall be public direct
1380 // members of E ...
1381 ClassWithFields = RD;
1382 else {
1383 // ... or of ...
1384 CXXBasePaths Paths;
1385 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1386 if (!RD->lookupInBases(BaseMatches: BaseHasFields, Paths)) {
1387 // If no classes have fields, just decompose RD itself. (This will work
1388 // if and only if zero bindings were provided.)
1389 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1390 }
1391
1392 CXXBasePath *BestPath = nullptr;
1393 for (auto &P : Paths) {
1394 if (!BestPath)
1395 BestPath = &P;
1396 else if (!S.Context.hasSameType(T1: P.back().Base->getType(),
1397 T2: BestPath->back().Base->getType())) {
1398 // ... the same ...
1399 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1400 << false << RD << BestPath->back().Base->getType()
1401 << P.back().Base->getType();
1402 return DeclAccessPair();
1403 } else if (P.Access < BestPath->Access) {
1404 BestPath = &P;
1405 }
1406 }
1407
1408 // ... unambiguous ...
1409 QualType BaseType = BestPath->back().Base->getType();
1410 if (Paths.isAmbiguous(BaseType: S.Context.getCanonicalType(T: BaseType))) {
1411 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1412 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1413 return DeclAccessPair();
1414 }
1415
1416 // ... [accessible, implied by other rules] base class of E.
1417 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1418 *BestPath, diag::err_decomp_decl_inaccessible_base);
1419 AS = BestPath->Access;
1420
1421 ClassWithFields = BaseType->getAsCXXRecordDecl();
1422 S.BuildBasePathArray(Paths, BasePath);
1423 }
1424
1425 // The above search did not check whether the selected class itself has base
1426 // classes with fields, so check that now.
1427 CXXBasePaths Paths;
1428 if (ClassWithFields->lookupInBases(BaseMatches: BaseHasFields, Paths)) {
1429 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1430 << (ClassWithFields == RD) << RD << ClassWithFields
1431 << Paths.front().back().Base->getType();
1432 return DeclAccessPair();
1433 }
1434
1435 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1436}
1437
1438static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1439 ValueDecl *Src, QualType DecompType,
1440 const CXXRecordDecl *OrigRD) {
1441 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1442 diag::err_incomplete_type))
1443 return true;
1444
1445 CXXCastPath BasePath;
1446 DeclAccessPair BasePair =
1447 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1448 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl());
1449 if (!RD)
1450 return true;
1451 QualType BaseType = S.Context.getQualifiedType(T: S.Context.getRecordType(RD),
1452 Qs: DecompType.getQualifiers());
1453
1454 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1455 unsigned NumFields = llvm::count_if(
1456 RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); });
1457 assert(Bindings.size() != NumFields);
1458 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1459 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1460 << (NumFields < Bindings.size());
1461 return true;
1462 };
1463
1464 // all of E's non-static data members shall be [...] well-formed
1465 // when named as e.name in the context of the structured binding,
1466 // E shall not have an anonymous union member, ...
1467 unsigned I = 0;
1468 for (auto *FD : RD->fields()) {
1469 if (FD->isUnnamedBitField())
1470 continue;
1471
1472 // All the non-static data members are required to be nameable, so they
1473 // must all have names.
1474 if (!FD->getDeclName()) {
1475 if (RD->isLambda()) {
1476 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1477 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1478 return true;
1479 }
1480
1481 if (FD->isAnonymousStructOrUnion()) {
1482 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1483 << DecompType << FD->getType()->isUnionType();
1484 S.Diag(FD->getLocation(), diag::note_declared_at);
1485 return true;
1486 }
1487
1488 // FIXME: Are there any other ways we could have an anonymous member?
1489 }
1490
1491 // We have a real field to bind.
1492 if (I >= Bindings.size())
1493 return DiagnoseBadNumberOfBindings();
1494 auto *B = Bindings[I++];
1495 SourceLocation Loc = B->getLocation();
1496
1497 // The field must be accessible in the context of the structured binding.
1498 // We already checked that the base class is accessible.
1499 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1500 // const_cast here.
1501 S.CheckStructuredBindingMemberAccess(
1502 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1503 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1504 BasePair.getAccess(), FD->getAccess())));
1505
1506 // Initialize the binding to Src.FD.
1507 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1508 if (E.isInvalid())
1509 return true;
1510 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1511 VK_LValue, &BasePath);
1512 if (E.isInvalid())
1513 return true;
1514 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1515 CXXScopeSpec(), FD,
1516 DeclAccessPair::make(FD, FD->getAccess()),
1517 DeclarationNameInfo(FD->getDeclName(), Loc));
1518 if (E.isInvalid())
1519 return true;
1520
1521 // If the type of the member is T, the referenced type is cv T, where cv is
1522 // the cv-qualification of the decomposition expression.
1523 //
1524 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1525 // 'const' to the type of the field.
1526 Qualifiers Q = DecompType.getQualifiers();
1527 if (FD->isMutable())
1528 Q.removeConst();
1529 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1530 }
1531
1532 if (I != Bindings.size())
1533 return DiagnoseBadNumberOfBindings();
1534
1535 return false;
1536}
1537
1538void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1539 QualType DecompType = DD->getType();
1540
1541 // If the type of the decomposition is dependent, then so is the type of
1542 // each binding.
1543 if (DecompType->isDependentType()) {
1544 for (auto *B : DD->bindings())
1545 B->setType(Context.DependentTy);
1546 return;
1547 }
1548
1549 DecompType = DecompType.getNonReferenceType();
1550 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1551
1552 // C++1z [dcl.decomp]/2:
1553 // If E is an array type [...]
1554 // As an extension, we also support decomposition of built-in complex and
1555 // vector types.
1556 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1557 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1558 DD->setInvalidDecl();
1559 return;
1560 }
1561 if (auto *VT = DecompType->getAs<VectorType>()) {
1562 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1563 DD->setInvalidDecl();
1564 return;
1565 }
1566 if (auto *CT = DecompType->getAs<ComplexType>()) {
1567 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1568 DD->setInvalidDecl();
1569 return;
1570 }
1571
1572 // C++1z [dcl.decomp]/3:
1573 // if the expression std::tuple_size<E>::value is a well-formed integral
1574 // constant expression, [...]
1575 llvm::APSInt TupleSize(32);
1576 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1577 case IsTupleLike::Error:
1578 DD->setInvalidDecl();
1579 return;
1580
1581 case IsTupleLike::TupleLike:
1582 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1583 DD->setInvalidDecl();
1584 return;
1585
1586 case IsTupleLike::NotTupleLike:
1587 break;
1588 }
1589
1590 // C++1z [dcl.dcl]/8:
1591 // [E shall be of array or non-union class type]
1592 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1593 if (!RD || RD->isUnion()) {
1594 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1595 << DD << !RD << DecompType;
1596 DD->setInvalidDecl();
1597 return;
1598 }
1599
1600 // C++1z [dcl.decomp]/4:
1601 // all of E's non-static data members shall be [...] direct members of
1602 // E or of the same unambiguous public base class of E, ...
1603 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1604 DD->setInvalidDecl();
1605}
1606
1607/// Merge the exception specifications of two variable declarations.
1608///
1609/// This is called when there's a redeclaration of a VarDecl. The function
1610/// checks if the redeclaration might have an exception specification and
1611/// validates compatibility and merges the specs if necessary.
1612void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1613 // Shortcut if exceptions are disabled.
1614 if (!getLangOpts().CXXExceptions)
1615 return;
1616
1617 assert(Context.hasSameType(New->getType(), Old->getType()) &&
1618 "Should only be called if types are otherwise the same.");
1619
1620 QualType NewType = New->getType();
1621 QualType OldType = Old->getType();
1622
1623 // We're only interested in pointers and references to functions, as well
1624 // as pointers to member functions.
1625 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1626 NewType = R->getPointeeType();
1627 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1628 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1629 NewType = P->getPointeeType();
1630 OldType = OldType->castAs<PointerType>()->getPointeeType();
1631 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1632 NewType = M->getPointeeType();
1633 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1634 }
1635
1636 if (!NewType->isFunctionProtoType())
1637 return;
1638
1639 // There's lots of special cases for functions. For function pointers, system
1640 // libraries are hopefully not as broken so that we don't need these
1641 // workarounds.
1642 if (CheckEquivalentExceptionSpec(
1643 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1644 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1645 New->setInvalidDecl();
1646 }
1647}
1648
1649/// CheckCXXDefaultArguments - Verify that the default arguments for a
1650/// function declaration are well-formed according to C++
1651/// [dcl.fct.default].
1652void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1653 unsigned NumParams = FD->getNumParams();
1654 unsigned ParamIdx = 0;
1655
1656 // This checking doesn't make sense for explicit specializations; their
1657 // default arguments are determined by the declaration we're specializing,
1658 // not by FD.
1659 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1660 return;
1661 if (auto *FTD = FD->getDescribedFunctionTemplate())
1662 if (FTD->isMemberSpecialization())
1663 return;
1664
1665 // Find first parameter with a default argument
1666 for (; ParamIdx < NumParams; ++ParamIdx) {
1667 ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx);
1668 if (Param->hasDefaultArg())
1669 break;
1670 }
1671
1672 // C++20 [dcl.fct.default]p4:
1673 // In a given function declaration, each parameter subsequent to a parameter
1674 // with a default argument shall have a default argument supplied in this or
1675 // a previous declaration, unless the parameter was expanded from a
1676 // parameter pack, or shall be a function parameter pack.
1677 for (; ParamIdx < NumParams; ++ParamIdx) {
1678 ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx);
1679 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1680 !(CurrentInstantiationScope &&
1681 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1682 if (Param->isInvalidDecl())
1683 /* We already complained about this parameter. */;
1684 else if (Param->getIdentifier())
1685 Diag(Param->getLocation(),
1686 diag::err_param_default_argument_missing_name)
1687 << Param->getIdentifier();
1688 else
1689 Diag(Param->getLocation(),
1690 diag::err_param_default_argument_missing);
1691 }
1692 }
1693}
1694
1695/// Check that the given type is a literal type. Issue a diagnostic if not,
1696/// if Kind is Diagnose.
1697/// \return \c true if a problem has been found (and optionally diagnosed).
1698template <typename... Ts>
1699static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1700 SourceLocation Loc, QualType T, unsigned DiagID,
1701 Ts &&...DiagArgs) {
1702 if (T->isDependentType())
1703 return false;
1704
1705 switch (Kind) {
1706 case Sema::CheckConstexprKind::Diagnose:
1707 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1708 std::forward<Ts>(DiagArgs)...);
1709
1710 case Sema::CheckConstexprKind::CheckValid:
1711 return !T->isLiteralType(Ctx: SemaRef.Context);
1712 }
1713
1714 llvm_unreachable("unknown CheckConstexprKind");
1715}
1716
1717/// Determine whether a destructor cannot be constexpr due to
1718static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1719 const CXXDestructorDecl *DD,
1720 Sema::CheckConstexprKind Kind) {
1721 assert(!SemaRef.getLangOpts().CPlusPlus23 &&
1722 "this check is obsolete for C++23");
1723 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1724 const CXXRecordDecl *RD =
1725 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1726 if (!RD || RD->hasConstexprDestructor())
1727 return true;
1728
1729 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1730 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1731 << static_cast<int>(DD->getConstexprKind()) << !FD
1732 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1733 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1734 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1735 }
1736 return false;
1737 };
1738
1739 const CXXRecordDecl *RD = DD->getParent();
1740 for (const CXXBaseSpecifier &B : RD->bases())
1741 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1742 return false;
1743 for (const FieldDecl *FD : RD->fields())
1744 if (!Check(FD->getLocation(), FD->getType(), FD))
1745 return false;
1746 return true;
1747}
1748
1749/// Check whether a function's parameter types are all literal types. If so,
1750/// return true. If not, produce a suitable diagnostic and return false.
1751static bool CheckConstexprParameterTypes(Sema &SemaRef,
1752 const FunctionDecl *FD,
1753 Sema::CheckConstexprKind Kind) {
1754 assert(!SemaRef.getLangOpts().CPlusPlus23 &&
1755 "this check is obsolete for C++23");
1756 unsigned ArgIndex = 0;
1757 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1758 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1759 e = FT->param_type_end();
1760 i != e; ++i, ++ArgIndex) {
1761 const ParmVarDecl *PD = FD->getParamDecl(i: ArgIndex);
1762 assert(PD && "null in a parameter list");
1763 SourceLocation ParamLoc = PD->getLocation();
1764 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1765 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1766 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1767 FD->isConsteval()))
1768 return false;
1769 }
1770 return true;
1771}
1772
1773/// Check whether a function's return type is a literal type. If so, return
1774/// true. If not, produce a suitable diagnostic and return false.
1775static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1776 Sema::CheckConstexprKind Kind) {
1777 assert(!SemaRef.getLangOpts().CPlusPlus23 &&
1778 "this check is obsolete for C++23");
1779 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1780 diag::err_constexpr_non_literal_return,
1781 FD->isConsteval()))
1782 return false;
1783 return true;
1784}
1785
1786/// Get diagnostic %select index for tag kind for
1787/// record diagnostic message.
1788/// WARNING: Indexes apply to particular diagnostics only!
1789///
1790/// \returns diagnostic %select index.
1791static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1792 switch (Tag) {
1793 case TagTypeKind::Struct:
1794 return 0;
1795 case TagTypeKind::Interface:
1796 return 1;
1797 case TagTypeKind::Class:
1798 return 2;
1799 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
1800 }
1801}
1802
1803static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1804 Stmt *Body,
1805 Sema::CheckConstexprKind Kind);
1806
1807// Check whether a function declaration satisfies the requirements of a
1808// constexpr function definition or a constexpr constructor definition. If so,
1809// return true. If not, produce appropriate diagnostics (unless asked not to by
1810// Kind) and return false.
1811//
1812// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1813bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1814 CheckConstexprKind Kind) {
1815 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewFD);
1816 if (MD && MD->isInstance()) {
1817 // C++11 [dcl.constexpr]p4:
1818 // The definition of a constexpr constructor shall satisfy the following
1819 // constraints:
1820 // - the class shall not have any virtual base classes;
1821 //
1822 // FIXME: This only applies to constructors and destructors, not arbitrary
1823 // member functions.
1824 const CXXRecordDecl *RD = MD->getParent();
1825 if (RD->getNumVBases()) {
1826 if (Kind == CheckConstexprKind::CheckValid)
1827 return false;
1828
1829 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1830 << isa<CXXConstructorDecl>(NewFD)
1831 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1832 for (const auto &I : RD->vbases())
1833 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1834 << I.getSourceRange();
1835 return false;
1836 }
1837 }
1838
1839 if (!isa<CXXConstructorDecl>(Val: NewFD)) {
1840 // C++11 [dcl.constexpr]p3:
1841 // The definition of a constexpr function shall satisfy the following
1842 // constraints:
1843 // - it shall not be virtual; (removed in C++20)
1844 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: NewFD);
1845 if (Method && Method->isVirtual()) {
1846 if (getLangOpts().CPlusPlus20) {
1847 if (Kind == CheckConstexprKind::Diagnose)
1848 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1849 } else {
1850 if (Kind == CheckConstexprKind::CheckValid)
1851 return false;
1852
1853 Method = Method->getCanonicalDecl();
1854 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1855
1856 // If it's not obvious why this function is virtual, find an overridden
1857 // function which uses the 'virtual' keyword.
1858 const CXXMethodDecl *WrittenVirtual = Method;
1859 while (!WrittenVirtual->isVirtualAsWritten())
1860 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1861 if (WrittenVirtual != Method)
1862 Diag(WrittenVirtual->getLocation(),
1863 diag::note_overridden_virtual_function);
1864 return false;
1865 }
1866 }
1867
1868 // - its return type shall be a literal type; (removed in C++23)
1869 if (!getLangOpts().CPlusPlus23 &&
1870 !CheckConstexprReturnType(SemaRef&: *this, FD: NewFD, Kind))
1871 return false;
1872 }
1873
1874 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: NewFD)) {
1875 // A destructor can be constexpr only if the defaulted destructor could be;
1876 // we don't need to check the members and bases if we already know they all
1877 // have constexpr destructors. (removed in C++23)
1878 if (!getLangOpts().CPlusPlus23 &&
1879 !Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1880 if (Kind == CheckConstexprKind::CheckValid)
1881 return false;
1882 if (!CheckConstexprDestructorSubobjects(SemaRef&: *this, DD: Dtor, Kind))
1883 return false;
1884 }
1885 }
1886
1887 // - each of its parameter types shall be a literal type; (removed in C++23)
1888 if (!getLangOpts().CPlusPlus23 &&
1889 !CheckConstexprParameterTypes(SemaRef&: *this, FD: NewFD, Kind))
1890 return false;
1891
1892 Stmt *Body = NewFD->getBody();
1893 assert(Body &&
1894 "CheckConstexprFunctionDefinition called on function with no body");
1895 return CheckConstexprFunctionBody(SemaRef&: *this, Dcl: NewFD, Body, Kind);
1896}
1897
1898/// Check the given declaration statement is legal within a constexpr function
1899/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1900///
1901/// \return true if the body is OK (maybe only as an extension), false if we
1902/// have diagnosed a problem.
1903static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1904 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1905 Sema::CheckConstexprKind Kind) {
1906 // C++11 [dcl.constexpr]p3 and p4:
1907 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1908 // contain only
1909 for (const auto *DclIt : DS->decls()) {
1910 switch (DclIt->getKind()) {
1911 case Decl::StaticAssert:
1912 case Decl::Using:
1913 case Decl::UsingShadow:
1914 case Decl::UsingDirective:
1915 case Decl::UnresolvedUsingTypename:
1916 case Decl::UnresolvedUsingValue:
1917 case Decl::UsingEnum:
1918 // - static_assert-declarations
1919 // - using-declarations,
1920 // - using-directives,
1921 // - using-enum-declaration
1922 continue;
1923
1924 case Decl::Typedef:
1925 case Decl::TypeAlias: {
1926 // - typedef declarations and alias-declarations that do not define
1927 // classes or enumerations,
1928 const auto *TN = cast<TypedefNameDecl>(Val: DclIt);
1929 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1930 // Don't allow variably-modified types in constexpr functions.
1931 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1932 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1933 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1934 << TL.getSourceRange() << TL.getType()
1935 << isa<CXXConstructorDecl>(Dcl);
1936 }
1937 return false;
1938 }
1939 continue;
1940 }
1941
1942 case Decl::Enum:
1943 case Decl::CXXRecord:
1944 // C++1y allows types to be defined, not just declared.
1945 if (cast<TagDecl>(Val: DclIt)->isThisDeclarationADefinition()) {
1946 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1947 SemaRef.Diag(DS->getBeginLoc(),
1948 SemaRef.getLangOpts().CPlusPlus14
1949 ? diag::warn_cxx11_compat_constexpr_type_definition
1950 : diag::ext_constexpr_type_definition)
1951 << isa<CXXConstructorDecl>(Dcl);
1952 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1953 return false;
1954 }
1955 }
1956 continue;
1957
1958 case Decl::EnumConstant:
1959 case Decl::IndirectField:
1960 case Decl::ParmVar:
1961 // These can only appear with other declarations which are banned in
1962 // C++11 and permitted in C++1y, so ignore them.
1963 continue;
1964
1965 case Decl::Var:
1966 case Decl::Decomposition: {
1967 // C++1y [dcl.constexpr]p3 allows anything except:
1968 // a definition of a variable of non-literal type or of static or
1969 // thread storage duration or [before C++2a] for which no
1970 // initialization is performed.
1971 const auto *VD = cast<VarDecl>(Val: DclIt);
1972 if (VD->isThisDeclarationADefinition()) {
1973 if (VD->isStaticLocal()) {
1974 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1975 SemaRef.Diag(VD->getLocation(),
1976 SemaRef.getLangOpts().CPlusPlus23
1977 ? diag::warn_cxx20_compat_constexpr_var
1978 : diag::ext_constexpr_static_var)
1979 << isa<CXXConstructorDecl>(Dcl)
1980 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1981 } else if (!SemaRef.getLangOpts().CPlusPlus23) {
1982 return false;
1983 }
1984 }
1985 if (SemaRef.LangOpts.CPlusPlus23) {
1986 CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1987 diag::warn_cxx20_compat_constexpr_var,
1988 isa<CXXConstructorDecl>(Dcl),
1989 /*variable of non-literal type*/ 2);
1990 } else if (CheckLiteralType(
1991 SemaRef, Kind, VD->getLocation(), VD->getType(),
1992 diag::err_constexpr_local_var_non_literal_type,
1993 isa<CXXConstructorDecl>(Dcl))) {
1994 return false;
1995 }
1996 if (!VD->getType()->isDependentType() &&
1997 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1998 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1999 SemaRef.Diag(
2000 VD->getLocation(),
2001 SemaRef.getLangOpts().CPlusPlus20
2002 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
2003 : diag::ext_constexpr_local_var_no_init)
2004 << isa<CXXConstructorDecl>(Dcl);
2005 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2006 return false;
2007 }
2008 continue;
2009 }
2010 }
2011 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2012 SemaRef.Diag(VD->getLocation(),
2013 SemaRef.getLangOpts().CPlusPlus14
2014 ? diag::warn_cxx11_compat_constexpr_local_var
2015 : diag::ext_constexpr_local_var)
2016 << isa<CXXConstructorDecl>(Dcl);
2017 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
2018 return false;
2019 }
2020 continue;
2021 }
2022
2023 case Decl::NamespaceAlias:
2024 case Decl::Function:
2025 // These are disallowed in C++11 and permitted in C++1y. Allow them
2026 // everywhere as an extension.
2027 if (!Cxx1yLoc.isValid())
2028 Cxx1yLoc = DS->getBeginLoc();
2029 continue;
2030
2031 default:
2032 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2033 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2034 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2035 }
2036 return false;
2037 }
2038 }
2039
2040 return true;
2041}
2042
2043/// Check that the given field is initialized within a constexpr constructor.
2044///
2045/// \param Dcl The constexpr constructor being checked.
2046/// \param Field The field being checked. This may be a member of an anonymous
2047/// struct or union nested within the class being checked.
2048/// \param Inits All declarations, including anonymous struct/union members and
2049/// indirect members, for which any initialization was provided.
2050/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
2051/// multiple notes for different members to the same error.
2052/// \param Kind Whether we're diagnosing a constructor as written or determining
2053/// whether the formal requirements are satisfied.
2054/// \return \c false if we're checking for validity and the constructor does
2055/// not satisfy the requirements on a constexpr constructor.
2056static bool CheckConstexprCtorInitializer(Sema &SemaRef,
2057 const FunctionDecl *Dcl,
2058 FieldDecl *Field,
2059 llvm::SmallSet<Decl*, 16> &Inits,
2060 bool &Diagnosed,
2061 Sema::CheckConstexprKind Kind) {
2062 // In C++20 onwards, there's nothing to check for validity.
2063 if (Kind == Sema::CheckConstexprKind::CheckValid &&
2064 SemaRef.getLangOpts().CPlusPlus20)
2065 return true;
2066
2067 if (Field->isInvalidDecl())
2068 return true;
2069
2070 if (Field->isUnnamedBitField())
2071 return true;
2072
2073 // Anonymous unions with no variant members and empty anonymous structs do not
2074 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
2075 // indirect fields don't need initializing.
2076 if (Field->isAnonymousStructOrUnion() &&
2077 (Field->getType()->isUnionType()
2078 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
2079 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
2080 return true;
2081
2082 if (!Inits.count(Field)) {
2083 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2084 if (!Diagnosed) {
2085 SemaRef.Diag(Dcl->getLocation(),
2086 SemaRef.getLangOpts().CPlusPlus20
2087 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
2088 : diag::ext_constexpr_ctor_missing_init);
2089 Diagnosed = true;
2090 }
2091 SemaRef.Diag(Field->getLocation(),
2092 diag::note_constexpr_ctor_missing_init);
2093 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2094 return false;
2095 }
2096 } else if (Field->isAnonymousStructOrUnion()) {
2097 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
2098 for (auto *I : RD->fields())
2099 // If an anonymous union contains an anonymous struct of which any member
2100 // is initialized, all members must be initialized.
2101 if (!RD->isUnion() || Inits.count(I))
2102 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2103 Kind))
2104 return false;
2105 }
2106 return true;
2107}
2108
2109/// Check the provided statement is allowed in a constexpr function
2110/// definition.
2111static bool
2112CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2113 SmallVectorImpl<SourceLocation> &ReturnStmts,
2114 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2115 SourceLocation &Cxx2bLoc,
2116 Sema::CheckConstexprKind Kind) {
2117 // - its function-body shall be [...] a compound-statement that contains only
2118 switch (S->getStmtClass()) {
2119 case Stmt::NullStmtClass:
2120 // - null statements,
2121 return true;
2122
2123 case Stmt::DeclStmtClass:
2124 // - static_assert-declarations
2125 // - using-declarations,
2126 // - using-directives,
2127 // - typedef declarations and alias-declarations that do not define
2128 // classes or enumerations,
2129 if (!CheckConstexprDeclStmt(SemaRef, Dcl, DS: cast<DeclStmt>(Val: S), Cxx1yLoc, Kind))
2130 return false;
2131 return true;
2132
2133 case Stmt::ReturnStmtClass:
2134 // - and exactly one return statement;
2135 if (isa<CXXConstructorDecl>(Val: Dcl)) {
2136 // C++1y allows return statements in constexpr constructors.
2137 if (!Cxx1yLoc.isValid())
2138 Cxx1yLoc = S->getBeginLoc();
2139 return true;
2140 }
2141
2142 ReturnStmts.push_back(Elt: S->getBeginLoc());
2143 return true;
2144
2145 case Stmt::AttributedStmtClass:
2146 // Attributes on a statement don't affect its formal kind and hence don't
2147 // affect its validity in a constexpr function.
2148 return CheckConstexprFunctionStmt(
2149 SemaRef, Dcl, S: cast<AttributedStmt>(Val: S)->getSubStmt(), ReturnStmts,
2150 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind);
2151
2152 case Stmt::CompoundStmtClass: {
2153 // C++1y allows compound-statements.
2154 if (!Cxx1yLoc.isValid())
2155 Cxx1yLoc = S->getBeginLoc();
2156
2157 CompoundStmt *CompStmt = cast<CompoundStmt>(Val: S);
2158 for (auto *BodyIt : CompStmt->body()) {
2159 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: BodyIt, ReturnStmts,
2160 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2161 return false;
2162 }
2163 return true;
2164 }
2165
2166 case Stmt::IfStmtClass: {
2167 // C++1y allows if-statements.
2168 if (!Cxx1yLoc.isValid())
2169 Cxx1yLoc = S->getBeginLoc();
2170
2171 IfStmt *If = cast<IfStmt>(Val: S);
2172 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getThen(), ReturnStmts,
2173 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2174 return false;
2175 if (If->getElse() &&
2176 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getElse(), ReturnStmts,
2177 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2178 return false;
2179 return true;
2180 }
2181
2182 case Stmt::WhileStmtClass:
2183 case Stmt::DoStmtClass:
2184 case Stmt::ForStmtClass:
2185 case Stmt::CXXForRangeStmtClass:
2186 case Stmt::ContinueStmtClass:
2187 // C++1y allows all of these. We don't allow them as extensions in C++11,
2188 // because they don't make sense without variable mutation.
2189 if (!SemaRef.getLangOpts().CPlusPlus14)
2190 break;
2191 if (!Cxx1yLoc.isValid())
2192 Cxx1yLoc = S->getBeginLoc();
2193 for (Stmt *SubStmt : S->children()) {
2194 if (SubStmt &&
2195 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts,
2196 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2197 return false;
2198 }
2199 return true;
2200
2201 case Stmt::SwitchStmtClass:
2202 case Stmt::CaseStmtClass:
2203 case Stmt::DefaultStmtClass:
2204 case Stmt::BreakStmtClass:
2205 // C++1y allows switch-statements, and since they don't need variable
2206 // mutation, we can reasonably allow them in C++11 as an extension.
2207 if (!Cxx1yLoc.isValid())
2208 Cxx1yLoc = S->getBeginLoc();
2209 for (Stmt *SubStmt : S->children()) {
2210 if (SubStmt &&
2211 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts,
2212 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2213 return false;
2214 }
2215 return true;
2216
2217 case Stmt::LabelStmtClass:
2218 case Stmt::GotoStmtClass:
2219 if (Cxx2bLoc.isInvalid())
2220 Cxx2bLoc = S->getBeginLoc();
2221 for (Stmt *SubStmt : S->children()) {
2222 if (SubStmt &&
2223 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts,
2224 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2225 return false;
2226 }
2227 return true;
2228
2229 case Stmt::GCCAsmStmtClass:
2230 case Stmt::MSAsmStmtClass:
2231 // C++2a allows inline assembly statements.
2232 case Stmt::CXXTryStmtClass:
2233 if (Cxx2aLoc.isInvalid())
2234 Cxx2aLoc = S->getBeginLoc();
2235 for (Stmt *SubStmt : S->children()) {
2236 if (SubStmt &&
2237 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts,
2238 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2239 return false;
2240 }
2241 return true;
2242
2243 case Stmt::CXXCatchStmtClass:
2244 // Do not bother checking the language mode (already covered by the
2245 // try block check).
2246 if (!CheckConstexprFunctionStmt(
2247 SemaRef, Dcl, S: cast<CXXCatchStmt>(Val: S)->getHandlerBlock(), ReturnStmts,
2248 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2249 return false;
2250 return true;
2251
2252 default:
2253 if (!isa<Expr>(Val: S))
2254 break;
2255
2256 // C++1y allows expression-statements.
2257 if (!Cxx1yLoc.isValid())
2258 Cxx1yLoc = S->getBeginLoc();
2259 return true;
2260 }
2261
2262 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2263 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2264 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2265 }
2266 return false;
2267}
2268
2269/// Check the body for the given constexpr function declaration only contains
2270/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2271///
2272/// \return true if the body is OK, false if we have found or diagnosed a
2273/// problem.
2274static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2275 Stmt *Body,
2276 Sema::CheckConstexprKind Kind) {
2277 SmallVector<SourceLocation, 4> ReturnStmts;
2278
2279 if (isa<CXXTryStmt>(Val: Body)) {
2280 // C++11 [dcl.constexpr]p3:
2281 // The definition of a constexpr function shall satisfy the following
2282 // constraints: [...]
2283 // - its function-body shall be = delete, = default, or a
2284 // compound-statement
2285 //
2286 // C++11 [dcl.constexpr]p4:
2287 // In the definition of a constexpr constructor, [...]
2288 // - its function-body shall not be a function-try-block;
2289 //
2290 // This restriction is lifted in C++2a, as long as inner statements also
2291 // apply the general constexpr rules.
2292 switch (Kind) {
2293 case Sema::CheckConstexprKind::CheckValid:
2294 if (!SemaRef.getLangOpts().CPlusPlus20)
2295 return false;
2296 break;
2297
2298 case Sema::CheckConstexprKind::Diagnose:
2299 SemaRef.Diag(Body->getBeginLoc(),
2300 !SemaRef.getLangOpts().CPlusPlus20
2301 ? diag::ext_constexpr_function_try_block_cxx20
2302 : diag::warn_cxx17_compat_constexpr_function_try_block)
2303 << isa<CXXConstructorDecl>(Dcl);
2304 break;
2305 }
2306 }
2307
2308 // - its function-body shall be [...] a compound-statement that contains only
2309 // [... list of cases ...]
2310 //
2311 // Note that walking the children here is enough to properly check for
2312 // CompoundStmt and CXXTryStmt body.
2313 SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc;
2314 for (Stmt *SubStmt : Body->children()) {
2315 if (SubStmt &&
2316 !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts,
2317 Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind))
2318 return false;
2319 }
2320
2321 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2322 // If this is only valid as an extension, report that we don't satisfy the
2323 // constraints of the current language.
2324 if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) ||
2325 (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2326 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2327 return false;
2328 } else if (Cxx2bLoc.isValid()) {
2329 SemaRef.Diag(Cxx2bLoc,
2330 SemaRef.getLangOpts().CPlusPlus23
2331 ? diag::warn_cxx20_compat_constexpr_body_invalid_stmt
2332 : diag::ext_constexpr_body_invalid_stmt_cxx23)
2333 << isa<CXXConstructorDecl>(Dcl);
2334 } else if (Cxx2aLoc.isValid()) {
2335 SemaRef.Diag(Cxx2aLoc,
2336 SemaRef.getLangOpts().CPlusPlus20
2337 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2338 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2339 << isa<CXXConstructorDecl>(Dcl);
2340 } else if (Cxx1yLoc.isValid()) {
2341 SemaRef.Diag(Cxx1yLoc,
2342 SemaRef.getLangOpts().CPlusPlus14
2343 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2344 : diag::ext_constexpr_body_invalid_stmt)
2345 << isa<CXXConstructorDecl>(Dcl);
2346 }
2347
2348 if (const CXXConstructorDecl *Constructor
2349 = dyn_cast<CXXConstructorDecl>(Val: Dcl)) {
2350 const CXXRecordDecl *RD = Constructor->getParent();
2351 // DR1359:
2352 // - every non-variant non-static data member and base class sub-object
2353 // shall be initialized;
2354 // DR1460:
2355 // - if the class is a union having variant members, exactly one of them
2356 // shall be initialized;
2357 if (RD->isUnion()) {
2358 if (Constructor->getNumCtorInitializers() == 0 &&
2359 RD->hasVariantMembers()) {
2360 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2361 SemaRef.Diag(
2362 Dcl->getLocation(),
2363 SemaRef.getLangOpts().CPlusPlus20
2364 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2365 : diag::ext_constexpr_union_ctor_no_init);
2366 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2367 return false;
2368 }
2369 }
2370 } else if (!Constructor->isDependentContext() &&
2371 !Constructor->isDelegatingConstructor()) {
2372 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
2373
2374 // Skip detailed checking if we have enough initializers, and we would
2375 // allow at most one initializer per member.
2376 bool AnyAnonStructUnionMembers = false;
2377 unsigned Fields = 0;
2378 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2379 E = RD->field_end(); I != E; ++I, ++Fields) {
2380 if (I->isAnonymousStructOrUnion()) {
2381 AnyAnonStructUnionMembers = true;
2382 break;
2383 }
2384 }
2385 // DR1460:
2386 // - if the class is a union-like class, but is not a union, for each of
2387 // its anonymous union members having variant members, exactly one of
2388 // them shall be initialized;
2389 if (AnyAnonStructUnionMembers ||
2390 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2391 // Check initialization of non-static data members. Base classes are
2392 // always initialized so do not need to be checked. Dependent bases
2393 // might not have initializers in the member initializer list.
2394 llvm::SmallSet<Decl*, 16> Inits;
2395 for (const auto *I: Constructor->inits()) {
2396 if (FieldDecl *FD = I->getMember())
2397 Inits.insert(FD);
2398 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2399 Inits.insert(I: ID->chain_begin(), E: ID->chain_end());
2400 }
2401
2402 bool Diagnosed = false;
2403 for (auto *I : RD->fields())
2404 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2405 Kind))
2406 return false;
2407 }
2408 }
2409 } else {
2410 if (ReturnStmts.empty()) {
2411 // C++1y doesn't require constexpr functions to contain a 'return'
2412 // statement. We still do, unless the return type might be void, because
2413 // otherwise if there's no return statement, the function cannot
2414 // be used in a core constant expression.
2415 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2416 (Dcl->getReturnType()->isVoidType() ||
2417 Dcl->getReturnType()->isDependentType());
2418 switch (Kind) {
2419 case Sema::CheckConstexprKind::Diagnose:
2420 SemaRef.Diag(Dcl->getLocation(),
2421 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2422 : diag::err_constexpr_body_no_return)
2423 << Dcl->isConsteval();
2424 if (!OK)
2425 return false;
2426 break;
2427
2428 case Sema::CheckConstexprKind::CheckValid:
2429 // The formal requirements don't include this rule in C++14, even
2430 // though the "must be able to produce a constant expression" rules
2431 // still imply it in some cases.
2432 if (!SemaRef.getLangOpts().CPlusPlus14)
2433 return false;
2434 break;
2435 }
2436 } else if (ReturnStmts.size() > 1) {
2437 switch (Kind) {
2438 case Sema::CheckConstexprKind::Diagnose:
2439 SemaRef.Diag(
2440 ReturnStmts.back(),
2441 SemaRef.getLangOpts().CPlusPlus14
2442 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2443 : diag::ext_constexpr_body_multiple_return);
2444 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2445 SemaRef.Diag(ReturnStmts[I],
2446 diag::note_constexpr_body_previous_return);
2447 break;
2448
2449 case Sema::CheckConstexprKind::CheckValid:
2450 if (!SemaRef.getLangOpts().CPlusPlus14)
2451 return false;
2452 break;
2453 }
2454 }
2455 }
2456
2457 // C++11 [dcl.constexpr]p5:
2458 // if no function argument values exist such that the function invocation
2459 // substitution would produce a constant expression, the program is
2460 // ill-formed; no diagnostic required.
2461 // C++11 [dcl.constexpr]p3:
2462 // - every constructor call and implicit conversion used in initializing the
2463 // return value shall be one of those allowed in a constant expression.
2464 // C++11 [dcl.constexpr]p4:
2465 // - every constructor involved in initializing non-static data members and
2466 // base class sub-objects shall be a constexpr constructor.
2467 //
2468 // Note that this rule is distinct from the "requirements for a constexpr
2469 // function", so is not checked in CheckValid mode.
2470 SmallVector<PartialDiagnosticAt, 8> Diags;
2471 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2472 !Expr::isPotentialConstantExpr(FD: Dcl, Diags) &&
2473 !SemaRef.getLangOpts().CPlusPlus23) {
2474 SemaRef.Diag(Dcl->getLocation(),
2475 diag::ext_constexpr_function_never_constant_expr)
2476 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval()
2477 << Dcl->getNameInfo().getSourceRange();
2478 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2479 SemaRef.Diag(Diags[I].first, Diags[I].second);
2480 // Don't return false here: we allow this for compatibility in
2481 // system headers.
2482 }
2483
2484 return true;
2485}
2486
2487bool Sema::CheckImmediateEscalatingFunctionDefinition(
2488 FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) {
2489 if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating())
2490 return true;
2491 FD->setBodyContainsImmediateEscalatingExpressions(
2492 FSI->FoundImmediateEscalatingExpression);
2493 if (FSI->FoundImmediateEscalatingExpression) {
2494 auto it = UndefinedButUsed.find(FD->getCanonicalDecl());
2495 if (it != UndefinedButUsed.end()) {
2496 Diag(it->second, diag::err_immediate_function_used_before_definition)
2497 << it->first;
2498 Diag(FD->getLocation(), diag::note_defined_here) << FD;
2499 if (FD->isImmediateFunction() && !FD->isConsteval())
2500 DiagnoseImmediateEscalatingReason(FD);
2501 return false;
2502 }
2503 }
2504 return true;
2505}
2506
2507void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) {
2508 assert(FD->isImmediateEscalating() && !FD->isConsteval() &&
2509 "expected an immediate function");
2510 assert(FD->hasBody() && "expected the function to have a body");
2511 struct ImmediateEscalatingExpressionsVisitor
2512 : public RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor> {
2513
2514 using Base = RecursiveASTVisitor<ImmediateEscalatingExpressionsVisitor>;
2515 Sema &SemaRef;
2516
2517 const FunctionDecl *ImmediateFn;
2518 bool ImmediateFnIsConstructor;
2519 CXXConstructorDecl *CurrentConstructor = nullptr;
2520 CXXCtorInitializer *CurrentInit = nullptr;
2521
2522 ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD)
2523 : SemaRef(SemaRef), ImmediateFn(FD),
2524 ImmediateFnIsConstructor(isa<CXXConstructorDecl>(Val: FD)) {}
2525
2526 bool shouldVisitImplicitCode() const { return true; }
2527 bool shouldVisitLambdaBody() const { return false; }
2528
2529 void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) {
2530 SourceLocation Loc = E->getBeginLoc();
2531 SourceRange Range = E->getSourceRange();
2532 if (CurrentConstructor && CurrentInit) {
2533 Loc = CurrentConstructor->getLocation();
2534 Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange()
2535 : SourceRange();
2536 }
2537
2538 FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr;
2539
2540 SemaRef.Diag(Loc, diag::note_immediate_function_reason)
2541 << ImmediateFn << Fn << Fn->isConsteval() << IsCall
2542 << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor
2543 << (InitializedField != nullptr)
2544 << (CurrentInit && !CurrentInit->isWritten())
2545 << InitializedField << Range;
2546 }
2547 bool TraverseCallExpr(CallExpr *E) {
2548 if (const auto *DR =
2549 dyn_cast<DeclRefExpr>(Val: E->getCallee()->IgnoreImplicit());
2550 DR && DR->isImmediateEscalating()) {
2551 Diag(E, E->getDirectCallee(), /*IsCall=*/true);
2552 return false;
2553 }
2554
2555 for (Expr *A : E->arguments())
2556 if (!getDerived().TraverseStmt(A))
2557 return false;
2558
2559 return true;
2560 }
2561
2562 bool VisitDeclRefExpr(DeclRefExpr *E) {
2563 if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(Val: E->getDecl());
2564 ReferencedFn && E->isImmediateEscalating()) {
2565 Diag(E, ReferencedFn, /*IsCall=*/false);
2566 return false;
2567 }
2568
2569 return true;
2570 }
2571
2572 bool VisitCXXConstructExpr(CXXConstructExpr *E) {
2573 CXXConstructorDecl *D = E->getConstructor();
2574 if (E->isImmediateEscalating()) {
2575 Diag(E, D, /*IsCall=*/true);
2576 return false;
2577 }
2578 return true;
2579 }
2580
2581 bool TraverseConstructorInitializer(CXXCtorInitializer *Init) {
2582 llvm::SaveAndRestore RAII(CurrentInit, Init);
2583 return Base::TraverseConstructorInitializer(Init);
2584 }
2585
2586 bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) {
2587 llvm::SaveAndRestore RAII(CurrentConstructor, Ctr);
2588 return Base::TraverseCXXConstructorDecl(Ctr);
2589 }
2590
2591 bool TraverseType(QualType T) { return true; }
2592 bool VisitBlockExpr(BlockExpr *T) { return true; }
2593
2594 } Visitor(*this, FD);
2595 Visitor.TraverseDecl(FD);
2596}
2597
2598/// Get the class that is directly named by the current context. This is the
2599/// class for which an unqualified-id in this scope could name a constructor
2600/// or destructor.
2601///
2602/// If the scope specifier denotes a class, this will be that class.
2603/// If the scope specifier is empty, this will be the class whose
2604/// member-specification we are currently within. Otherwise, there
2605/// is no such class.
2606CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2607 assert(getLangOpts().CPlusPlus && "No class names in C!");
2608
2609 if (SS && SS->isInvalid())
2610 return nullptr;
2611
2612 if (SS && SS->isNotEmpty()) {
2613 DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true);
2614 return dyn_cast_or_null<CXXRecordDecl>(Val: DC);
2615 }
2616
2617 return dyn_cast_or_null<CXXRecordDecl>(Val: CurContext);
2618}
2619
2620/// isCurrentClassName - Determine whether the identifier II is the
2621/// name of the class type currently being defined. In the case of
2622/// nested classes, this will only return true if II is the name of
2623/// the innermost class.
2624bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2625 const CXXScopeSpec *SS) {
2626 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2627 return CurDecl && &II == CurDecl->getIdentifier();
2628}
2629
2630/// Determine whether the identifier II is a typo for the name of
2631/// the class type currently being defined. If so, update it to the identifier
2632/// that should have been used.
2633bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2634 assert(getLangOpts().CPlusPlus && "No class names in C!");
2635
2636 if (!getLangOpts().SpellChecking)
2637 return false;
2638
2639 CXXRecordDecl *CurDecl;
2640 if (SS && SS->isSet() && !SS->isInvalid()) {
2641 DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true);
2642 CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: DC);
2643 } else
2644 CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: CurContext);
2645
2646 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2647 3 * II->getName().edit_distance(Other: CurDecl->getIdentifier()->getName())
2648 < II->getLength()) {
2649 II = CurDecl->getIdentifier();
2650 return true;
2651 }
2652
2653 return false;
2654}
2655
2656/// Determine whether the given class is a base class of the given
2657/// class, including looking at dependent bases.
2658static bool findCircularInheritance(const CXXRecordDecl *Class,
2659 const CXXRecordDecl *Current) {
2660 SmallVector<const CXXRecordDecl*, 8> Queue;
2661
2662 Class = Class->getCanonicalDecl();
2663 while (true) {
2664 for (const auto &I : Current->bases()) {
2665 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2666 if (!Base)
2667 continue;
2668
2669 Base = Base->getDefinition();
2670 if (!Base)
2671 continue;
2672
2673 if (Base->getCanonicalDecl() == Class)
2674 return true;
2675
2676 Queue.push_back(Elt: Base);
2677 }
2678
2679 if (Queue.empty())
2680 return false;
2681
2682 Current = Queue.pop_back_val();
2683 }
2684
2685 return false;
2686}
2687
2688/// Check the validity of a C++ base class specifier.
2689///
2690/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2691/// and returns NULL otherwise.
2692CXXBaseSpecifier *
2693Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2694 SourceRange SpecifierRange,
2695 bool Virtual, AccessSpecifier Access,
2696 TypeSourceInfo *TInfo,
2697 SourceLocation EllipsisLoc) {
2698 // In HLSL, unspecified class access is public rather than private.
2699 if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class &&
2700 Access == AS_none)
2701 Access = AS_public;
2702
2703 QualType BaseType = TInfo->getType();
2704 if (BaseType->containsErrors()) {
2705 // Already emitted a diagnostic when parsing the error type.
2706 return nullptr;
2707 }
2708 // C++ [class.union]p1:
2709 // A union shall not have base classes.
2710 if (Class->isUnion()) {
2711 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2712 << SpecifierRange;
2713 return nullptr;
2714 }
2715
2716 if (EllipsisLoc.isValid() &&
2717 !TInfo->getType()->containsUnexpandedParameterPack()) {
2718 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2719 << TInfo->getTypeLoc().getSourceRange();
2720 EllipsisLoc = SourceLocation();
2721 }
2722
2723 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2724
2725 if (BaseType->isDependentType()) {
2726 // Make sure that we don't have circular inheritance among our dependent
2727 // bases. For non-dependent bases, the check for completeness below handles
2728 // this.
2729 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2730 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2731 ((BaseDecl = BaseDecl->getDefinition()) &&
2732 findCircularInheritance(Class, Current: BaseDecl))) {
2733 Diag(BaseLoc, diag::err_circular_inheritance)
2734 << BaseType << Context.getTypeDeclType(Class);
2735
2736 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2737 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2738 << BaseType;
2739
2740 return nullptr;
2741 }
2742 }
2743
2744 // Make sure that we don't make an ill-formed AST where the type of the
2745 // Class is non-dependent and its attached base class specifier is an
2746 // dependent type, which violates invariants in many clang code paths (e.g.
2747 // constexpr evaluator). If this case happens (in errory-recovery mode), we
2748 // explicitly mark the Class decl invalid. The diagnostic was already
2749 // emitted.
2750 if (!Class->getTypeForDecl()->isDependentType())
2751 Class->setInvalidDecl();
2752 return new (Context) CXXBaseSpecifier(
2753 SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class,
2754 Access, TInfo, EllipsisLoc);
2755 }
2756
2757 // Base specifiers must be record types.
2758 if (!BaseType->isRecordType()) {
2759 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2760 return nullptr;
2761 }
2762
2763 // C++ [class.union]p1:
2764 // A union shall not be used as a base class.
2765 if (BaseType->isUnionType()) {
2766 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2767 return nullptr;
2768 }
2769
2770 // For the MS ABI, propagate DLL attributes to base class templates.
2771 if (Context.getTargetInfo().getCXXABI().isMicrosoft() ||
2772 Context.getTargetInfo().getTriple().isPS()) {
2773 if (Attr *ClassAttr = getDLLAttr(Class)) {
2774 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2775 Val: BaseType->getAsCXXRecordDecl())) {
2776 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplateSpec: BaseTemplate,
2777 BaseLoc);
2778 }
2779 }
2780 }
2781
2782 // C++ [class.derived]p2:
2783 // The class-name in a base-specifier shall not be an incompletely
2784 // defined class.
2785 if (RequireCompleteType(BaseLoc, BaseType,
2786 diag::err_incomplete_base_class, SpecifierRange)) {
2787 Class->setInvalidDecl();
2788 return nullptr;
2789 }
2790
2791 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2792 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2793 assert(BaseDecl && "Record type has no declaration");
2794 BaseDecl = BaseDecl->getDefinition();
2795 assert(BaseDecl && "Base type is not incomplete, but has no definition");
2796 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(Val: BaseDecl);
2797 assert(CXXBaseDecl && "Base type is not a C++ type");
2798
2799 // Microsoft docs say:
2800 // "If a base-class has a code_seg attribute, derived classes must have the
2801 // same attribute."
2802 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2803 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2804 if ((DerivedCSA || BaseCSA) &&
2805 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2806 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2807 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2808 << CXXBaseDecl;
2809 return nullptr;
2810 }
2811
2812 // A class which contains a flexible array member is not suitable for use as a
2813 // base class:
2814 // - If the layout determines that a base comes before another base,
2815 // the flexible array member would index into the subsequent base.
2816 // - If the layout determines that base comes before the derived class,
2817 // the flexible array member would index into the derived class.
2818 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2819 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2820 << CXXBaseDecl->getDeclName();
2821 return nullptr;
2822 }
2823
2824 // C++ [class]p3:
2825 // If a class is marked final and it appears as a base-type-specifier in
2826 // base-clause, the program is ill-formed.
2827 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2828 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2829 << CXXBaseDecl->getDeclName()
2830 << FA->isSpelledAsSealed();
2831 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2832 << CXXBaseDecl->getDeclName() << FA->getRange();
2833 return nullptr;
2834 }
2835
2836 if (BaseDecl->isInvalidDecl())
2837 Class->setInvalidDecl();
2838
2839 // Create the base specifier.
2840 return new (Context) CXXBaseSpecifier(
2841 SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class,
2842 Access, TInfo, EllipsisLoc);
2843}
2844
2845/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2846/// one entry in the base class list of a class specifier, for
2847/// example:
2848/// class foo : public bar, virtual private baz {
2849/// 'public bar' and 'virtual private baz' are each base-specifiers.
2850BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2851 const ParsedAttributesView &Attributes,
2852 bool Virtual, AccessSpecifier Access,
2853 ParsedType basetype, SourceLocation BaseLoc,
2854 SourceLocation EllipsisLoc) {
2855 if (!classdecl)
2856 return true;
2857
2858 AdjustDeclIfTemplate(Decl&: classdecl);
2859 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: classdecl);
2860 if (!Class)
2861 return true;
2862
2863 // We haven't yet attached the base specifiers.
2864 Class->setIsParsingBaseSpecifiers();
2865
2866 // We do not support any C++11 attributes on base-specifiers yet.
2867 // Diagnose any attributes we see.
2868 for (const ParsedAttr &AL : Attributes) {
2869 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2870 continue;
2871 if (AL.getKind() == ParsedAttr::UnknownAttribute)
2872 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
2873 << AL << AL.getRange();
2874 else
2875 Diag(AL.getLoc(), diag::err_base_specifier_attribute)
2876 << AL << AL.isRegularKeywordAttribute() << AL.getRange();
2877 }
2878
2879 TypeSourceInfo *TInfo = nullptr;
2880 GetTypeFromParser(Ty: basetype, TInfo: &TInfo);
2881
2882 if (EllipsisLoc.isInvalid() &&
2883 DiagnoseUnexpandedParameterPack(Loc: SpecifierRange.getBegin(), T: TInfo,
2884 UPPC: UPPC_BaseType))
2885 return true;
2886
2887 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2888 Virtual, Access, TInfo,
2889 EllipsisLoc))
2890 return BaseSpec;
2891 else
2892 Class->setInvalidDecl();
2893
2894 return true;
2895}
2896
2897/// Use small set to collect indirect bases. As this is only used
2898/// locally, there's no need to abstract the small size parameter.
2899typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2900
2901/// Recursively add the bases of Type. Don't add Type itself.
2902static void
2903NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2904 const QualType &Type)
2905{
2906 // Even though the incoming type is a base, it might not be
2907 // a class -- it could be a template parm, for instance.
2908 if (auto Rec = Type->getAs<RecordType>()) {
2909 auto Decl = Rec->getAsCXXRecordDecl();
2910
2911 // Iterate over its bases.
2912 for (const auto &BaseSpec : Decl->bases()) {
2913 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2914 .getUnqualifiedType();
2915 if (Set.insert(Base).second)
2916 // If we've not already seen it, recurse.
2917 NoteIndirectBases(Context, Set, Base);
2918 }
2919 }
2920}
2921
2922/// Performs the actual work of attaching the given base class
2923/// specifiers to a C++ class.
2924bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2925 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2926 if (Bases.empty())
2927 return false;
2928
2929 // Used to keep track of which base types we have already seen, so
2930 // that we can properly diagnose redundant direct base types. Note
2931 // that the key is always the unqualified canonical type of the base
2932 // class.
2933 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2934
2935 // Used to track indirect bases so we can see if a direct base is
2936 // ambiguous.
2937 IndirectBaseSet IndirectBaseTypes;
2938
2939 // Copy non-redundant base specifiers into permanent storage.
2940 unsigned NumGoodBases = 0;
2941 bool Invalid = false;
2942 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2943 QualType NewBaseType
2944 = Context.getCanonicalType(T: Bases[idx]->getType());
2945 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2946
2947 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2948 if (KnownBase) {
2949 // C++ [class.mi]p3:
2950 // A class shall not be specified as a direct base class of a
2951 // derived class more than once.
2952 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2953 << KnownBase->getType() << Bases[idx]->getSourceRange();
2954
2955 // Delete the duplicate base class specifier; we're going to
2956 // overwrite its pointer later.
2957 Context.Deallocate(Ptr: Bases[idx]);
2958
2959 Invalid = true;
2960 } else {
2961 // Okay, add this new base class.
2962 KnownBase = Bases[idx];
2963 Bases[NumGoodBases++] = Bases[idx];
2964
2965 if (NewBaseType->isDependentType())
2966 continue;
2967 // Note this base's direct & indirect bases, if there could be ambiguity.
2968 if (Bases.size() > 1)
2969 NoteIndirectBases(Context, Set&: IndirectBaseTypes, Type: NewBaseType);
2970
2971 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2972 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: Record->getDecl());
2973 if (Class->isInterface() &&
2974 (!RD->isInterfaceLike() ||
2975 KnownBase->getAccessSpecifier() != AS_public)) {
2976 // The Microsoft extension __interface does not permit bases that
2977 // are not themselves public interfaces.
2978 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2979 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2980 << RD->getSourceRange();
2981 Invalid = true;
2982 }
2983 if (RD->hasAttr<WeakAttr>())
2984 Class->addAttr(WeakAttr::CreateImplicit(Context));
2985 }
2986 }
2987 }
2988
2989 // Attach the remaining base class specifiers to the derived class.
2990 Class->setBases(Bases: Bases.data(), NumBases: NumGoodBases);
2991
2992 // Check that the only base classes that are duplicate are virtual.
2993 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2994 // Check whether this direct base is inaccessible due to ambiguity.
2995 QualType BaseType = Bases[idx]->getType();
2996
2997 // Skip all dependent types in templates being used as base specifiers.
2998 // Checks below assume that the base specifier is a CXXRecord.
2999 if (BaseType->isDependentType())
3000 continue;
3001
3002 CanQualType CanonicalBase = Context.getCanonicalType(T: BaseType)
3003 .getUnqualifiedType();
3004
3005 if (IndirectBaseTypes.count(Ptr: CanonicalBase)) {
3006 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3007 /*DetectVirtual=*/true);
3008 bool found
3009 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
3010 assert(found);
3011 (void)found;
3012
3013 if (Paths.isAmbiguous(BaseType: CanonicalBase))
3014 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
3015 << BaseType << getAmbiguousPathsDisplayString(Paths)
3016 << Bases[idx]->getSourceRange();
3017 else
3018 assert(Bases[idx]->isVirtual());
3019 }
3020
3021 // Delete the base class specifier, since its data has been copied
3022 // into the CXXRecordDecl.
3023 Context.Deallocate(Ptr: Bases[idx]);
3024 }
3025
3026 return Invalid;
3027}
3028
3029/// ActOnBaseSpecifiers - Attach the given base specifiers to the
3030/// class, after checking whether there are any duplicate base
3031/// classes.
3032void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
3033 MutableArrayRef<CXXBaseSpecifier *> Bases) {
3034 if (!ClassDecl || Bases.empty())
3035 return;
3036
3037 AdjustDeclIfTemplate(Decl&: ClassDecl);
3038 AttachBaseSpecifiers(Class: cast<CXXRecordDecl>(Val: ClassDecl), Bases);
3039}
3040
3041/// Determine whether the type \p Derived is a C++ class that is
3042/// derived from the type \p Base.
3043bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
3044 if (!getLangOpts().CPlusPlus)
3045 return false;
3046
3047 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
3048 if (!DerivedRD)
3049 return false;
3050
3051 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
3052 if (!BaseRD)
3053 return false;
3054
3055 // If either the base or the derived type is invalid, don't try to
3056 // check whether one is derived from the other.
3057 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
3058 return false;
3059
3060 // FIXME: In a modules build, do we need the entire path to be visible for us
3061 // to be able to use the inheritance relationship?
3062 if (!isCompleteType(Loc, T: Derived) && !DerivedRD->isBeingDefined())
3063 return false;
3064
3065 return DerivedRD->isDerivedFrom(Base: BaseRD);
3066}
3067
3068/// Determine whether the type \p Derived is a C++ class that is
3069/// derived from the type \p Base.
3070bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
3071 CXXBasePaths &Paths) {
3072 if (!getLangOpts().CPlusPlus)
3073 return false;
3074
3075 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
3076 if (!DerivedRD)
3077 return false;
3078
3079 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
3080 if (!BaseRD)
3081 return false;
3082
3083 if (!isCompleteType(Loc, T: Derived) && !DerivedRD->isBeingDefined())
3084 return false;
3085
3086 return DerivedRD->isDerivedFrom(Base: BaseRD, Paths);
3087}
3088
3089static void BuildBasePathArray(const CXXBasePath &Path,
3090 CXXCastPath &BasePathArray) {
3091 // We first go backward and check if we have a virtual base.
3092 // FIXME: It would be better if CXXBasePath had the base specifier for
3093 // the nearest virtual base.
3094 unsigned Start = 0;
3095 for (unsigned I = Path.size(); I != 0; --I) {
3096 if (Path[I - 1].Base->isVirtual()) {
3097 Start = I - 1;
3098 break;
3099 }
3100 }
3101
3102 // Now add all bases.
3103 for (unsigned I = Start, E = Path.size(); I != E; ++I)
3104 BasePathArray.push_back(Elt: const_cast<CXXBaseSpecifier*>(Path[I].Base));
3105}
3106
3107
3108void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
3109 CXXCastPath &BasePathArray) {
3110 assert(BasePathArray.empty() && "Base path array must be empty!");
3111 assert(Paths.isRecordingPaths() && "Must record paths!");
3112 return ::BuildBasePathArray(Path: Paths.front(), BasePathArray);
3113}
3114/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
3115/// conversion (where Derived and Base are class types) is
3116/// well-formed, meaning that the conversion is unambiguous (and
3117/// that all of the base classes are accessible). Returns true
3118/// and emits a diagnostic if the code is ill-formed, returns false
3119/// otherwise. Loc is the location where this routine should point to
3120/// if there is an error, and Range is the source range to highlight
3121/// if there is an error.
3122///
3123/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
3124/// diagnostic for the respective type of error will be suppressed, but the
3125/// check for ill-formed code will still be performed.
3126bool
3127Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3128 unsigned InaccessibleBaseID,
3129 unsigned AmbiguousBaseConvID,
3130 SourceLocation Loc, SourceRange Range,
3131 DeclarationName Name,
3132 CXXCastPath *BasePath,
3133 bool IgnoreAccess) {
3134 // First, determine whether the path from Derived to Base is
3135 // ambiguous. This is slightly more expensive than checking whether
3136 // the Derived to Base conversion exists, because here we need to
3137 // explore multiple paths to determine if there is an ambiguity.
3138 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3139 /*DetectVirtual=*/false);
3140 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
3141 if (!DerivationOkay)
3142 return true;
3143
3144 const CXXBasePath *Path = nullptr;
3145 if (!Paths.isAmbiguous(BaseType: Context.getCanonicalType(T: Base).getUnqualifiedType()))
3146 Path = &Paths.front();
3147
3148 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
3149 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
3150 // user to access such bases.
3151 if (!Path && getLangOpts().MSVCCompat) {
3152 for (const CXXBasePath &PossiblePath : Paths) {
3153 if (PossiblePath.size() == 1) {
3154 Path = &PossiblePath;
3155 if (AmbiguousBaseConvID)
3156 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
3157 << Base << Derived << Range;
3158 break;
3159 }
3160 }
3161 }
3162
3163 if (Path) {
3164 if (!IgnoreAccess) {
3165 // Check that the base class can be accessed.
3166 switch (
3167 CheckBaseClassAccess(AccessLoc: Loc, Base, Derived, Path: *Path, DiagID: InaccessibleBaseID)) {
3168 case AR_inaccessible:
3169 return true;
3170 case AR_accessible:
3171 case AR_dependent:
3172 case AR_delayed:
3173 break;
3174 }
3175 }
3176
3177 // Build a base path if necessary.
3178 if (BasePath)
3179 ::BuildBasePathArray(Path: *Path, BasePathArray&: *BasePath);
3180 return false;
3181 }
3182
3183 if (AmbiguousBaseConvID) {
3184 // We know that the derived-to-base conversion is ambiguous, and
3185 // we're going to produce a diagnostic. Perform the derived-to-base
3186 // search just one more time to compute all of the possible paths so
3187 // that we can print them out. This is more expensive than any of
3188 // the previous derived-to-base checks we've done, but at this point
3189 // performance isn't as much of an issue.
3190 Paths.clear();
3191 Paths.setRecordingPaths(true);
3192 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
3193 assert(StillOkay && "Can only be used with a derived-to-base conversion");
3194 (void)StillOkay;
3195
3196 // Build up a textual representation of the ambiguous paths, e.g.,
3197 // D -> B -> A, that will be used to illustrate the ambiguous
3198 // conversions in the diagnostic. We only print one of the paths
3199 // to each base class subobject.
3200 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
3201
3202 Diag(Loc, AmbiguousBaseConvID)
3203 << Derived << Base << PathDisplayStr << Range << Name;
3204 }
3205 return true;
3206}
3207
3208bool
3209Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
3210 SourceLocation Loc, SourceRange Range,
3211 CXXCastPath *BasePath,
3212 bool IgnoreAccess) {
3213 return CheckDerivedToBaseConversion(
3214 Derived, Base, diag::err_upcast_to_inaccessible_base,
3215 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
3216 BasePath, IgnoreAccess);
3217}
3218
3219
3220/// Builds a string representing ambiguous paths from a
3221/// specific derived class to different subobjects of the same base
3222/// class.
3223///
3224/// This function builds a string that can be used in error messages
3225/// to show the different paths that one can take through the
3226/// inheritance hierarchy to go from the derived class to different
3227/// subobjects of a base class. The result looks something like this:
3228/// @code
3229/// struct D -> struct B -> struct A
3230/// struct D -> struct C -> struct A
3231/// @endcode
3232std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
3233 std::string PathDisplayStr;
3234 std::set<unsigned> DisplayedPaths;
3235 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3236 Path != Paths.end(); ++Path) {
3237 if (DisplayedPaths.insert(x: Path->back().SubobjectNumber).second) {
3238 // We haven't displayed a path to this particular base
3239 // class subobject yet.
3240 PathDisplayStr += "\n ";
3241 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
3242 for (CXXBasePath::const_iterator Element = Path->begin();
3243 Element != Path->end(); ++Element)
3244 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
3245 }
3246 }
3247
3248 return PathDisplayStr;
3249}
3250
3251//===----------------------------------------------------------------------===//
3252// C++ class member Handling
3253//===----------------------------------------------------------------------===//
3254
3255/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3256bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3257 SourceLocation ColonLoc,
3258 const ParsedAttributesView &Attrs) {
3259 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
3260 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(C&: Context, AS: Access, DC: CurContext,
3261 ASLoc, ColonLoc);
3262 CurContext->addHiddenDecl(ASDecl);
3263 return ProcessAccessDeclAttributeList(ASDecl, AttrList: Attrs);
3264}
3265
3266/// CheckOverrideControl - Check C++11 override control semantics.
3267void Sema::CheckOverrideControl(NamedDecl *D) {
3268 if (D->isInvalidDecl())
3269 return;
3270
3271 // We only care about "override" and "final" declarations.
3272 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3273 return;
3274
3275 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D);
3276
3277 // We can't check dependent instance methods.
3278 if (MD && MD->isInstance() &&
3279 (MD->getParent()->hasAnyDependentBases() ||
3280 MD->getType()->isDependentType()))
3281 return;
3282
3283 if (MD && !MD->isVirtual()) {
3284 // If we have a non-virtual method, check if it hides a virtual method.
3285 // (In that case, it's most likely the method has the wrong type.)
3286 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3287 FindHiddenVirtualMethods(MD, OverloadedMethods);
3288
3289 if (!OverloadedMethods.empty()) {
3290 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3291 Diag(OA->getLocation(),
3292 diag::override_keyword_hides_virtual_member_function)
3293 << "override" << (OverloadedMethods.size() > 1);
3294 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3295 Diag(FA->getLocation(),
3296 diag::override_keyword_hides_virtual_member_function)
3297 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3298 << (OverloadedMethods.size() > 1);
3299 }
3300 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3301 MD->setInvalidDecl();
3302 return;
3303 }
3304 // Fall through into the general case diagnostic.
3305 // FIXME: We might want to attempt typo correction here.
3306 }
3307
3308 if (!MD || !MD->isVirtual()) {
3309 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3310 Diag(OA->getLocation(),
3311 diag::override_keyword_only_allowed_on_virtual_member_functions)
3312 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3313 D->dropAttr<OverrideAttr>();
3314 }
3315 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3316 Diag(FA->getLocation(),
3317 diag::override_keyword_only_allowed_on_virtual_member_functions)
3318 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3319 << FixItHint::CreateRemoval(FA->getLocation());
3320 D->dropAttr<FinalAttr>();
3321 }
3322 return;
3323 }
3324
3325 // C++11 [class.virtual]p5:
3326 // If a function is marked with the virt-specifier override and
3327 // does not override a member function of a base class, the program is
3328 // ill-formed.
3329 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3330 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3331 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3332 << MD->getDeclName();
3333}
3334
3335void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3336 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3337 return;
3338 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D);
3339 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3340 return;
3341
3342 SourceLocation Loc = MD->getLocation();
3343 SourceLocation SpellingLoc = Loc;
3344 if (getSourceManager().isMacroArgExpansion(Loc))
3345 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3346 SpellingLoc = getSourceManager().getSpellingLoc(Loc: SpellingLoc);
3347 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(Loc: SpellingLoc))
3348 return;
3349
3350 if (MD->size_overridden_methods() > 0) {
3351 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3352 unsigned DiagID =
3353 Inconsistent && !Diags.isIgnored(DiagID: DiagInconsistent, Loc: MD->getLocation())
3354 ? DiagInconsistent
3355 : DiagSuggest;
3356 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3357 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3358 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3359 };
3360 if (isa<CXXDestructorDecl>(MD))
3361 EmitDiag(
3362 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3363 diag::warn_suggest_destructor_marked_not_override_overriding);
3364 else
3365 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3366 diag::warn_suggest_function_marked_not_override_overriding);
3367 }
3368}
3369
3370/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3371/// function overrides a virtual member function marked 'final', according to
3372/// C++11 [class.virtual]p4.
3373bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3374 const CXXMethodDecl *Old) {
3375 FinalAttr *FA = Old->getAttr<FinalAttr>();
3376 if (!FA)
3377 return false;
3378
3379 Diag(New->getLocation(), diag::err_final_function_overridden)
3380 << New->getDeclName()
3381 << FA->isSpelledAsSealed();
3382 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3383 return true;
3384}
3385
3386static bool InitializationHasSideEffects(const FieldDecl &FD) {
3387 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3388 // FIXME: Destruction of ObjC lifetime types has side-effects.
3389 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3390 return !RD->isCompleteDefinition() ||
3391 !RD->hasTrivialDefaultConstructor() ||
3392 !RD->hasTrivialDestructor();
3393 return false;
3394}
3395
3396// Check if there is a field shadowing.
3397void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3398 DeclarationName FieldName,
3399 const CXXRecordDecl *RD,
3400 bool DeclIsField) {
3401 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3402 return;
3403
3404 // To record a shadowed field in a base
3405 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3406 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3407 CXXBasePath &Path) {
3408 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3409 // Record an ambiguous path directly
3410 if (Bases.find(x: Base) != Bases.end())
3411 return true;
3412 for (const auto Field : Base->lookup(FieldName)) {
3413 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3414 Field->getAccess() != AS_private) {
3415 assert(Field->getAccess() != AS_none);
3416 assert(Bases.find(Base) == Bases.end());
3417 Bases[Base] = Field;
3418 return true;
3419 }
3420 }
3421 return false;
3422 };
3423
3424 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3425 /*DetectVirtual=*/true);
3426 if (!RD->lookupInBases(BaseMatches: FieldShadowed, Paths))
3427 return;
3428
3429 for (const auto &P : Paths) {
3430 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3431 auto It = Bases.find(x: Base);
3432 // Skip duplicated bases
3433 if (It == Bases.end())
3434 continue;
3435 auto BaseField = It->second;
3436 assert(BaseField->getAccess() != AS_private);
3437 if (AS_none !=
3438 CXXRecordDecl::MergeAccess(PathAccess: P.Access, DeclAccess: BaseField->getAccess())) {
3439 Diag(Loc, diag::warn_shadow_field)
3440 << FieldName << RD << Base << DeclIsField;
3441 Diag(BaseField->getLocation(), diag::note_shadow_field);
3442 Bases.erase(position: It);
3443 }
3444 }
3445}
3446
3447/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3448/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3449/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3450/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3451/// present (but parsing it has been deferred).
3452NamedDecl *
3453Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3454 MultiTemplateParamsArg TemplateParameterLists,
3455 Expr *BW, const VirtSpecifiers &VS,
3456 InClassInitStyle InitStyle) {
3457 const DeclSpec &DS = D.getDeclSpec();
3458 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3459 DeclarationName Name = NameInfo.getName();
3460 SourceLocation Loc = NameInfo.getLoc();
3461
3462 // For anonymous bitfields, the location should point to the type.
3463 if (Loc.isInvalid())
3464 Loc = D.getBeginLoc();
3465
3466 Expr *BitWidth = static_cast<Expr*>(BW);
3467
3468 assert(isa<CXXRecordDecl>(CurContext));
3469 assert(!DS.isFriendSpecified());
3470
3471 bool isFunc = D.isDeclarationOfFunction();
3472 const ParsedAttr *MSPropertyAttr =
3473 D.getDeclSpec().getAttributes().getMSPropertyAttr();
3474
3475 if (cast<CXXRecordDecl>(Val: CurContext)->isInterface()) {
3476 // The Microsoft extension __interface only permits public member functions
3477 // and prohibits constructors, destructors, operators, non-public member
3478 // functions, static methods and data members.
3479 unsigned InvalidDecl;
3480 bool ShowDeclName = true;
3481 if (!isFunc &&
3482 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3483 InvalidDecl = 0;
3484 else if (!isFunc)
3485 InvalidDecl = 1;
3486 else if (AS != AS_public)
3487 InvalidDecl = 2;
3488 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3489 InvalidDecl = 3;
3490 else switch (Name.getNameKind()) {
3491 case DeclarationName::CXXConstructorName:
3492 InvalidDecl = 4;
3493 ShowDeclName = false;
3494 break;
3495
3496 case DeclarationName::CXXDestructorName:
3497 InvalidDecl = 5;
3498 ShowDeclName = false;
3499 break;
3500
3501 case DeclarationName::CXXOperatorName:
3502 case DeclarationName::CXXConversionFunctionName:
3503 InvalidDecl = 6;
3504 break;
3505
3506 default:
3507 InvalidDecl = 0;
3508 break;
3509 }
3510
3511 if (InvalidDecl) {
3512 if (ShowDeclName)
3513 Diag(Loc, diag::err_invalid_member_in_interface)
3514 << (InvalidDecl-1) << Name;
3515 else
3516 Diag(Loc, diag::err_invalid_member_in_interface)
3517 << (InvalidDecl-1) << "";
3518 return nullptr;
3519 }
3520 }
3521
3522 // C++ 9.2p6: A member shall not be declared to have automatic storage
3523 // duration (auto, register) or with the extern storage-class-specifier.
3524 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3525 // data members and cannot be applied to names declared const or static,
3526 // and cannot be applied to reference members.
3527 switch (DS.getStorageClassSpec()) {
3528 case DeclSpec::SCS_unspecified:
3529 case DeclSpec::SCS_typedef:
3530 case DeclSpec::SCS_static:
3531 break;
3532 case DeclSpec::SCS_mutable:
3533 if (isFunc) {
3534 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3535
3536 // FIXME: It would be nicer if the keyword was ignored only for this
3537 // declarator. Otherwise we could get follow-up errors.
3538 D.getMutableDeclSpec().ClearStorageClassSpecs();
3539 }
3540 break;
3541 default:
3542 Diag(DS.getStorageClassSpecLoc(),
3543 diag::err_storageclass_invalid_for_member);
3544 D.getMutableDeclSpec().ClearStorageClassSpecs();
3545 break;
3546 }
3547
3548 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3549 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3550 !isFunc);
3551
3552 if (DS.hasConstexprSpecifier() && isInstField) {
3553 SemaDiagnosticBuilder B =
3554 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3555 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3556 if (InitStyle == ICIS_NoInit) {
3557 B << 0 << 0;
3558 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3559 B << FixItHint::CreateRemoval(RemoveRange: ConstexprLoc);
3560 else {
3561 B << FixItHint::CreateReplacement(RemoveRange: ConstexprLoc, Code: "const");
3562 D.getMutableDeclSpec().ClearConstexprSpec();
3563 const char *PrevSpec;
3564 unsigned DiagID;
3565 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3566 T: DeclSpec::TQ_const, Loc: ConstexprLoc, PrevSpec, DiagID, Lang: getLangOpts());
3567 (void)Failed;
3568 assert(!Failed && "Making a constexpr member const shouldn't fail");
3569 }
3570 } else {
3571 B << 1;
3572 const char *PrevSpec;
3573 unsigned DiagID;
3574 if (D.getMutableDeclSpec().SetStorageClassSpec(
3575 S&: *this, SC: DeclSpec::SCS_static, Loc: ConstexprLoc, PrevSpec, DiagID,
3576 Policy: Context.getPrintingPolicy())) {
3577 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
3578 "This is the only DeclSpec that should fail to be applied");
3579 B << 1;
3580 } else {
3581 B << 0 << FixItHint::CreateInsertion(InsertionLoc: ConstexprLoc, Code: "static ");
3582 isInstField = false;
3583 }
3584 }
3585 }
3586
3587 NamedDecl *Member;
3588 if (isInstField) {
3589 CXXScopeSpec &SS = D.getCXXScopeSpec();
3590
3591 // Data members must have identifiers for names.
3592 if (!Name.isIdentifier()) {
3593 Diag(Loc, diag::err_bad_variable_name)
3594 << Name;
3595 return nullptr;
3596 }
3597
3598 IdentifierInfo *II = Name.getAsIdentifierInfo();
3599
3600 // Member field could not be with "template" keyword.
3601 // So TemplateParameterLists should be empty in this case.
3602 if (TemplateParameterLists.size()) {
3603 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3604 if (TemplateParams->size()) {
3605 // There is no such thing as a member field template.
3606 Diag(D.getIdentifierLoc(), diag::err_template_member)
3607 << II
3608 << SourceRange(TemplateParams->getTemplateLoc(),
3609 TemplateParams->getRAngleLoc());
3610 } else {
3611 // There is an extraneous 'template<>' for this member.
3612 Diag(TemplateParams->getTemplateLoc(),
3613 diag::err_template_member_noparams)
3614 << II
3615 << SourceRange(TemplateParams->getTemplateLoc(),
3616 TemplateParams->getRAngleLoc());
3617 }
3618 return nullptr;
3619 }
3620
3621 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
3622 Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments)
3623 << II
3624 << SourceRange(D.getName().TemplateId->LAngleLoc,
3625 D.getName().TemplateId->RAngleLoc)
3626 << D.getName().TemplateId->LAngleLoc;
3627 D.SetIdentifier(Id: II, IdLoc: Loc);
3628 }
3629
3630 if (SS.isSet() && !SS.isInvalid()) {
3631 // The user provided a superfluous scope specifier inside a class
3632 // definition:
3633 //
3634 // class X {
3635 // int X::member;
3636 // };
3637 if (DeclContext *DC = computeDeclContext(SS, EnteringContext: false)) {
3638 TemplateIdAnnotation *TemplateId =
3639 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
3640 ? D.getName().TemplateId
3641 : nullptr;
3642 diagnoseQualifiedDeclaration(SS, DC, Name, Loc: D.getIdentifierLoc(),
3643 TemplateId,
3644 /*IsMemberSpecialization=*/false);
3645 } else {
3646 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3647 << Name << SS.getRange();
3648 }
3649 SS.clear();
3650 }
3651
3652 if (MSPropertyAttr) {
3653 Member = HandleMSProperty(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D,
3654 BitWidth, InitStyle, AS, *MSPropertyAttr);
3655 if (!Member)
3656 return nullptr;
3657 isInstField = false;
3658 } else {
3659 Member = HandleField(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D,
3660 BitWidth, InitStyle, AS);
3661 if (!Member)
3662 return nullptr;
3663 }
3664
3665 CheckShadowInheritedFields(Loc, FieldName: Name, RD: cast<CXXRecordDecl>(Val: CurContext));
3666 } else {
3667 Member = HandleDeclarator(S, D, TemplateParameterLists);
3668 if (!Member)
3669 return nullptr;
3670
3671 // Non-instance-fields can't have a bitfield.
3672 if (BitWidth) {
3673 if (Member->isInvalidDecl()) {
3674 // don't emit another diagnostic.
3675 } else if (isa<VarDecl>(Val: Member) || isa<VarTemplateDecl>(Val: Member)) {
3676 // C++ 9.6p3: A bit-field shall not be a static member.
3677 // "static member 'A' cannot be a bit-field"
3678 Diag(Loc, diag::err_static_not_bitfield)
3679 << Name << BitWidth->getSourceRange();
3680 } else if (isa<TypedefDecl>(Val: Member)) {
3681 // "typedef member 'x' cannot be a bit-field"
3682 Diag(Loc, diag::err_typedef_not_bitfield)
3683 << Name << BitWidth->getSourceRange();
3684 } else {
3685 // A function typedef ("typedef int f(); f a;").
3686 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3687 Diag(Loc, diag::err_not_integral_type_bitfield)
3688 << Name << cast<ValueDecl>(Member)->getType()
3689 << BitWidth->getSourceRange();
3690 }
3691
3692 BitWidth = nullptr;
3693 Member->setInvalidDecl();
3694 }
3695
3696 NamedDecl *NonTemplateMember = Member;
3697 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Member))
3698 NonTemplateMember = FunTmpl->getTemplatedDecl();
3699 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Val: Member))
3700 NonTemplateMember = VarTmpl->getTemplatedDecl();
3701
3702 Member->setAccess(AS);
3703
3704 // If we have declared a member function template or static data member
3705 // template, set the access of the templated declaration as well.
3706 if (NonTemplateMember != Member)
3707 NonTemplateMember->setAccess(AS);
3708
3709 // C++ [temp.deduct.guide]p3:
3710 // A deduction guide [...] for a member class template [shall be
3711 // declared] with the same access [as the template].
3712 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(Val: NonTemplateMember)) {
3713 auto *TD = DG->getDeducedTemplate();
3714 // Access specifiers are only meaningful if both the template and the
3715 // deduction guide are from the same scope.
3716 if (AS != TD->getAccess() &&
3717 TD->getDeclContext()->getRedeclContext()->Equals(
3718 DG->getDeclContext()->getRedeclContext())) {
3719 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3720 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3721 << TD->getAccess();
3722 const AccessSpecDecl *LastAccessSpec = nullptr;
3723 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3724 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3725 LastAccessSpec = AccessSpec;
3726 }
3727 assert(LastAccessSpec && "differing access with no access specifier");
3728 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3729 << AS;
3730 }
3731 }
3732 }
3733
3734 if (VS.isOverrideSpecified())
3735 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc()));
3736 if (VS.isFinalSpecified())
3737 Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(),
3738 VS.isFinalSpelledSealed()
3739 ? FinalAttr::Keyword_sealed
3740 : FinalAttr::Keyword_final));
3741
3742 if (VS.getLastLocation().isValid()) {
3743 // Update the end location of a method that has a virt-specifiers.
3744 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Member))
3745 MD->setRangeEnd(VS.getLastLocation());
3746 }
3747
3748 CheckOverrideControl(D: Member);
3749
3750 assert((Name || isInstField) && "No identifier for non-field ?");
3751
3752 if (isInstField) {
3753 FieldDecl *FD = cast<FieldDecl>(Val: Member);
3754 FieldCollector->Add(D: FD);
3755
3756 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3757 // Remember all explicit private FieldDecls that have a name, no side
3758 // effects and are not part of a dependent type declaration.
3759
3760 auto DeclHasUnusedAttr = [](const QualType &T) {
3761 if (const TagDecl *TD = T->getAsTagDecl())
3762 return TD->hasAttr<UnusedAttr>();
3763 if (const TypedefType *TDT = T->getAs<TypedefType>())
3764 return TDT->getDecl()->hasAttr<UnusedAttr>();
3765 return false;
3766 };
3767
3768 if (!FD->isImplicit() && FD->getDeclName() &&
3769 FD->getAccess() == AS_private &&
3770 !FD->hasAttr<UnusedAttr>() &&
3771 !FD->getParent()->isDependentContext() &&
3772 !DeclHasUnusedAttr(FD->getType()) &&
3773 !InitializationHasSideEffects(*FD))
3774 UnusedPrivateFields.insert(FD);
3775 }
3776 }
3777
3778 return Member;
3779}
3780
3781namespace {
3782 class UninitializedFieldVisitor
3783 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3784 Sema &S;
3785 // List of Decls to generate a warning on. Also remove Decls that become
3786 // initialized.
3787 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3788 // List of base classes of the record. Classes are removed after their
3789 // initializers.
3790 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3791 // Vector of decls to be removed from the Decl set prior to visiting the
3792 // nodes. These Decls may have been initialized in the prior initializer.
3793 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3794 // If non-null, add a note to the warning pointing back to the constructor.
3795 const CXXConstructorDecl *Constructor;
3796 // Variables to hold state when processing an initializer list. When
3797 // InitList is true, special case initialization of FieldDecls matching
3798 // InitListFieldDecl.
3799 bool InitList;
3800 FieldDecl *InitListFieldDecl;
3801 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3802
3803 public:
3804 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3805 UninitializedFieldVisitor(Sema &S,
3806 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3807 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3808 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3809 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3810
3811 // Returns true if the use of ME is not an uninitialized use.
3812 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3813 bool CheckReferenceOnly) {
3814 llvm::SmallVector<FieldDecl*, 4> Fields;
3815 bool ReferenceField = false;
3816 while (ME) {
3817 FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
3818 if (!FD)
3819 return false;
3820 Fields.push_back(Elt: FD);
3821 if (FD->getType()->isReferenceType())
3822 ReferenceField = true;
3823 ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParenImpCasts());
3824 }
3825
3826 // Binding a reference to an uninitialized field is not an
3827 // uninitialized use.
3828 if (CheckReferenceOnly && !ReferenceField)
3829 return true;
3830
3831 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3832 // Discard the first field since it is the field decl that is being
3833 // initialized.
3834 for (const FieldDecl *FD : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: Fields)))
3835 UsedFieldIndex.push_back(Elt: FD->getFieldIndex());
3836
3837 for (auto UsedIter = UsedFieldIndex.begin(),
3838 UsedEnd = UsedFieldIndex.end(),
3839 OrigIter = InitFieldIndex.begin(),
3840 OrigEnd = InitFieldIndex.end();
3841 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3842 if (*UsedIter < *OrigIter)
3843 return true;
3844 if (*UsedIter > *OrigIter)
3845 break;
3846 }
3847
3848 return false;
3849 }
3850
3851 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3852 bool AddressOf) {
3853 if (isa<EnumConstantDecl>(Val: ME->getMemberDecl()))
3854 return;
3855
3856 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3857 // or union.
3858 MemberExpr *FieldME = ME;
3859
3860 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3861
3862 Expr *Base = ME;
3863 while (MemberExpr *SubME =
3864 dyn_cast<MemberExpr>(Val: Base->IgnoreParenImpCasts())) {
3865
3866 if (isa<VarDecl>(Val: SubME->getMemberDecl()))
3867 return;
3868
3869 if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: SubME->getMemberDecl()))
3870 if (!FD->isAnonymousStructOrUnion())
3871 FieldME = SubME;
3872
3873 if (!FieldME->getType().isPODType(S.Context))
3874 AllPODFields = false;
3875
3876 Base = SubME->getBase();
3877 }
3878
3879 if (!isa<CXXThisExpr>(Val: Base->IgnoreParenImpCasts())) {
3880 Visit(Base);
3881 return;
3882 }
3883
3884 if (AddressOf && AllPODFields)
3885 return;
3886
3887 ValueDecl* FoundVD = FieldME->getMemberDecl();
3888
3889 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Val: Base)) {
3890 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3891 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3892 }
3893
3894 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3895 QualType T = BaseCast->getType();
3896 if (T->isPointerType() &&
3897 BaseClasses.count(Ptr: T->getPointeeType())) {
3898 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3899 << T->getPointeeType() << FoundVD;
3900 }
3901 }
3902 }
3903
3904 if (!Decls.count(Ptr: FoundVD))
3905 return;
3906
3907 const bool IsReference = FoundVD->getType()->isReferenceType();
3908
3909 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3910 // Special checking for initializer lists.
3911 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3912 return;
3913 }
3914 } else {
3915 // Prevent double warnings on use of unbounded references.
3916 if (CheckReferenceOnly && !IsReference)
3917 return;
3918 }
3919
3920 unsigned diag = IsReference
3921 ? diag::warn_reference_field_is_uninit
3922 : diag::warn_field_is_uninit;
3923 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3924 if (Constructor)
3925 S.Diag(Constructor->getLocation(),
3926 diag::note_uninit_in_this_constructor)
3927 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3928
3929 }
3930
3931 void HandleValue(Expr *E, bool AddressOf) {
3932 E = E->IgnoreParens();
3933
3934 if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) {
3935 HandleMemberExpr(ME, CheckReferenceOnly: false /*CheckReferenceOnly*/,
3936 AddressOf /*AddressOf*/);
3937 return;
3938 }
3939
3940 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) {
3941 Visit(CO->getCond());
3942 HandleValue(E: CO->getTrueExpr(), AddressOf);
3943 HandleValue(E: CO->getFalseExpr(), AddressOf);
3944 return;
3945 }
3946
3947 if (BinaryConditionalOperator *BCO =
3948 dyn_cast<BinaryConditionalOperator>(Val: E)) {
3949 Visit(BCO->getCond());
3950 HandleValue(E: BCO->getFalseExpr(), AddressOf);
3951 return;
3952 }
3953
3954 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) {
3955 HandleValue(E: OVE->getSourceExpr(), AddressOf);
3956 return;
3957 }
3958
3959 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
3960 switch (BO->getOpcode()) {
3961 default:
3962 break;
3963 case(BO_PtrMemD):
3964 case(BO_PtrMemI):
3965 HandleValue(E: BO->getLHS(), AddressOf);
3966 Visit(BO->getRHS());
3967 return;
3968 case(BO_Comma):
3969 Visit(BO->getLHS());
3970 HandleValue(E: BO->getRHS(), AddressOf);
3971 return;
3972 }
3973 }
3974
3975 Visit(E);
3976 }
3977
3978 void CheckInitListExpr(InitListExpr *ILE) {
3979 InitFieldIndex.push_back(Elt: 0);
3980 for (auto *Child : ILE->children()) {
3981 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Val: Child)) {
3982 CheckInitListExpr(ILE: SubList);
3983 } else {
3984 Visit(S: Child);
3985 }
3986 ++InitFieldIndex.back();
3987 }
3988 InitFieldIndex.pop_back();
3989 }
3990
3991 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3992 FieldDecl *Field, const Type *BaseClass) {
3993 // Remove Decls that may have been initialized in the previous
3994 // initializer.
3995 for (ValueDecl* VD : DeclsToRemove)
3996 Decls.erase(Ptr: VD);
3997 DeclsToRemove.clear();
3998
3999 Constructor = FieldConstructor;
4000 InitListExpr *ILE = dyn_cast<InitListExpr>(Val: E);
4001
4002 if (ILE && Field) {
4003 InitList = true;
4004 InitListFieldDecl = Field;
4005 InitFieldIndex.clear();
4006 CheckInitListExpr(ILE);
4007 } else {
4008 InitList = false;
4009 Visit(E);
4010 }
4011
4012 if (Field)
4013 Decls.erase(Field);
4014 if (BaseClass)
4015 BaseClasses.erase(Ptr: BaseClass->getCanonicalTypeInternal());
4016 }
4017
4018 void VisitMemberExpr(MemberExpr *ME) {
4019 // All uses of unbounded reference fields will warn.
4020 HandleMemberExpr(ME, CheckReferenceOnly: true /*CheckReferenceOnly*/, AddressOf: false /*AddressOf*/);
4021 }
4022
4023 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
4024 if (E->getCastKind() == CK_LValueToRValue) {
4025 HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/);
4026 return;
4027 }
4028
4029 Inherited::VisitImplicitCastExpr(E);
4030 }
4031
4032 void VisitCXXConstructExpr(CXXConstructExpr *E) {
4033 if (E->getConstructor()->isCopyConstructor()) {
4034 Expr *ArgExpr = E->getArg(Arg: 0);
4035 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: ArgExpr))
4036 if (ILE->getNumInits() == 1)
4037 ArgExpr = ILE->getInit(Init: 0);
4038 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr))
4039 if (ICE->getCastKind() == CK_NoOp)
4040 ArgExpr = ICE->getSubExpr();
4041 HandleValue(E: ArgExpr, AddressOf: false /*AddressOf*/);
4042 return;
4043 }
4044 Inherited::VisitCXXConstructExpr(E);
4045 }
4046
4047 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
4048 Expr *Callee = E->getCallee();
4049 if (isa<MemberExpr>(Val: Callee)) {
4050 HandleValue(E: Callee, AddressOf: false /*AddressOf*/);
4051 for (auto *Arg : E->arguments())
4052 Visit(Arg);
4053 return;
4054 }
4055
4056 Inherited::VisitCXXMemberCallExpr(E);
4057 }
4058
4059 void VisitCallExpr(CallExpr *E) {
4060 // Treat std::move as a use.
4061 if (E->isCallToStdMove()) {
4062 HandleValue(E: E->getArg(Arg: 0), /*AddressOf=*/false);
4063 return;
4064 }
4065
4066 Inherited::VisitCallExpr(CE: E);
4067 }
4068
4069 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
4070 Expr *Callee = E->getCallee();
4071
4072 if (isa<UnresolvedLookupExpr>(Callee))
4073 return Inherited::VisitCXXOperatorCallExpr(E);
4074
4075 Visit(Callee);
4076 for (auto *Arg : E->arguments())
4077 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
4078 }
4079
4080 void VisitBinaryOperator(BinaryOperator *E) {
4081 // If a field assignment is detected, remove the field from the
4082 // uninitiailized field set.
4083 if (E->getOpcode() == BO_Assign)
4084 if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getLHS()))
4085 if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()))
4086 if (!FD->getType()->isReferenceType())
4087 DeclsToRemove.push_back(FD);
4088
4089 if (E->isCompoundAssignmentOp()) {
4090 HandleValue(E: E->getLHS(), AddressOf: false /*AddressOf*/);
4091 Visit(E->getRHS());
4092 return;
4093 }
4094
4095 Inherited::VisitBinaryOperator(E);
4096 }
4097
4098 void VisitUnaryOperator(UnaryOperator *E) {
4099 if (E->isIncrementDecrementOp()) {
4100 HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/);
4101 return;
4102 }
4103 if (E->getOpcode() == UO_AddrOf) {
4104 if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getSubExpr())) {
4105 HandleValue(E: ME->getBase(), AddressOf: true /*AddressOf*/);
4106 return;
4107 }
4108 }
4109
4110 Inherited::VisitUnaryOperator(E);
4111 }
4112 };
4113
4114 // Diagnose value-uses of fields to initialize themselves, e.g.
4115 // foo(foo)
4116 // where foo is not also a parameter to the constructor.
4117 // Also diagnose across field uninitialized use such as
4118 // x(y), y(x)
4119 // TODO: implement -Wuninitialized and fold this into that framework.
4120 static void DiagnoseUninitializedFields(
4121 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
4122
4123 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
4124 Constructor->getLocation())) {
4125 return;
4126 }
4127
4128 if (Constructor->isInvalidDecl())
4129 return;
4130
4131 const CXXRecordDecl *RD = Constructor->getParent();
4132
4133 if (RD->isDependentContext())
4134 return;
4135
4136 // Holds fields that are uninitialized.
4137 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
4138
4139 // At the beginning, all fields are uninitialized.
4140 for (auto *I : RD->decls()) {
4141 if (auto *FD = dyn_cast<FieldDecl>(I)) {
4142 UninitializedFields.insert(FD);
4143 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
4144 UninitializedFields.insert(IFD->getAnonField());
4145 }
4146 }
4147
4148 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
4149 for (const auto &I : RD->bases())
4150 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
4151
4152 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
4153 return;
4154
4155 UninitializedFieldVisitor UninitializedChecker(SemaRef,
4156 UninitializedFields,
4157 UninitializedBaseClasses);
4158
4159 for (const auto *FieldInit : Constructor->inits()) {
4160 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
4161 break;
4162
4163 Expr *InitExpr = FieldInit->getInit();
4164 if (!InitExpr)
4165 continue;
4166
4167 if (CXXDefaultInitExpr *Default =
4168 dyn_cast<CXXDefaultInitExpr>(Val: InitExpr)) {
4169 InitExpr = Default->getExpr();
4170 if (!InitExpr)
4171 continue;
4172 // In class initializers will point to the constructor.
4173 UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: Constructor,
4174 Field: FieldInit->getAnyMember(),
4175 BaseClass: FieldInit->getBaseClass());
4176 } else {
4177 UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: nullptr,
4178 Field: FieldInit->getAnyMember(),
4179 BaseClass: FieldInit->getBaseClass());
4180 }
4181 }
4182 }
4183} // namespace
4184
4185/// Enter a new C++ default initializer scope. After calling this, the
4186/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
4187/// parsing or instantiating the initializer failed.
4188void Sema::ActOnStartCXXInClassMemberInitializer() {
4189 // Create a synthetic function scope to represent the call to the constructor
4190 // that notionally surrounds a use of this initializer.
4191 PushFunctionScope();
4192}
4193
4194void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
4195 if (!D.isFunctionDeclarator())
4196 return;
4197 auto &FTI = D.getFunctionTypeInfo();
4198 if (!FTI.Params)
4199 return;
4200 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
4201 FTI.NumParams)) {
4202 auto *ParamDecl = cast<NamedDecl>(Val: Param.Param);
4203 if (ParamDecl->getDeclName())
4204 PushOnScopeChains(D: ParamDecl, S, /*AddToContext=*/false);
4205 }
4206}
4207
4208ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
4209 return ActOnRequiresClause(ConstraintExpr);
4210}
4211
4212ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
4213 if (ConstraintExpr.isInvalid())
4214 return ExprError();
4215
4216 ConstraintExpr = CorrectDelayedTyposInExpr(ER: ConstraintExpr);
4217 if (ConstraintExpr.isInvalid())
4218 return ExprError();
4219
4220 if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr.get(),
4221 UPPC: UPPC_RequiresClause))
4222 return ExprError();
4223
4224 return ConstraintExpr;
4225}
4226
4227ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD,
4228 Expr *InitExpr,
4229 SourceLocation InitLoc) {
4230 InitializedEntity Entity =
4231 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(Member: FD);
4232 InitializationKind Kind =
4233 FD->getInClassInitStyle() == ICIS_ListInit
4234 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
4235 InitExpr->getBeginLoc(),
4236 InitExpr->getEndLoc())
4237 : InitializationKind::CreateCopy(InitLoc: InitExpr->getBeginLoc(), EqualLoc: InitLoc);
4238 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
4239 return Seq.Perform(S&: *this, Entity, Kind, Args: InitExpr);
4240}
4241
4242/// This is invoked after parsing an in-class initializer for a
4243/// non-static C++ class member, and after instantiating an in-class initializer
4244/// in a class template. Such actions are deferred until the class is complete.
4245void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
4246 SourceLocation InitLoc,
4247 Expr *InitExpr) {
4248 // Pop the notional constructor scope we created earlier.
4249 PopFunctionScopeInfo(WP: nullptr, D);
4250
4251 FieldDecl *FD = dyn_cast<FieldDecl>(Val: D);
4252 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&
4253 "must set init style when field is created");
4254
4255 if (!InitExpr) {
4256 D->setInvalidDecl();
4257 if (FD)
4258 FD->removeInClassInitializer();
4259 return;
4260 }
4261
4262 if (DiagnoseUnexpandedParameterPack(E: InitExpr, UPPC: UPPC_Initializer)) {
4263 FD->setInvalidDecl();
4264 FD->removeInClassInitializer();
4265 return;
4266 }
4267
4268 ExprResult Init = CorrectDelayedTyposInExpr(E: InitExpr, /*InitDecl=*/nullptr,
4269 /*RecoverUncorrectedTypos=*/true);
4270 assert(Init.isUsable() && "Init should at least have a RecoveryExpr");
4271 if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) {
4272 Init = ConvertMemberDefaultInitExpression(FD, InitExpr: Init.get(), InitLoc);
4273 // C++11 [class.base.init]p7:
4274 // The initialization of each base and member constitutes a
4275 // full-expression.
4276 if (!Init.isInvalid())
4277 Init = ActOnFinishFullExpr(Expr: Init.get(), /*DiscarededValue=*/DiscardedValue: false);
4278 if (Init.isInvalid()) {
4279 FD->setInvalidDecl();
4280 return;
4281 }
4282 }
4283
4284 FD->setInClassInitializer(Init.get());
4285}
4286
4287/// Find the direct and/or virtual base specifiers that
4288/// correspond to the given base type, for use in base initialization
4289/// within a constructor.
4290static bool FindBaseInitializer(Sema &SemaRef,
4291 CXXRecordDecl *ClassDecl,
4292 QualType BaseType,
4293 const CXXBaseSpecifier *&DirectBaseSpec,
4294 const CXXBaseSpecifier *&VirtualBaseSpec) {
4295 // First, check for a direct base class.
4296 DirectBaseSpec = nullptr;
4297 for (const auto &Base : ClassDecl->bases()) {
4298 if (SemaRef.Context.hasSameUnqualifiedType(T1: BaseType, T2: Base.getType())) {
4299 // We found a direct base of this type. That's what we're
4300 // initializing.
4301 DirectBaseSpec = &Base;
4302 break;
4303 }
4304 }
4305
4306 // Check for a virtual base class.
4307 // FIXME: We might be able to short-circuit this if we know in advance that
4308 // there are no virtual bases.
4309 VirtualBaseSpec = nullptr;
4310 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4311 // We haven't found a base yet; search the class hierarchy for a
4312 // virtual base class.
4313 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4314 /*DetectVirtual=*/false);
4315 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4316 SemaRef.Context.getTypeDeclType(ClassDecl),
4317 BaseType, Paths)) {
4318 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4319 Path != Paths.end(); ++Path) {
4320 if (Path->back().Base->isVirtual()) {
4321 VirtualBaseSpec = Path->back().Base;
4322 break;
4323 }
4324 }
4325 }
4326 }
4327
4328 return DirectBaseSpec || VirtualBaseSpec;
4329}
4330
4331/// Handle a C++ member initializer using braced-init-list syntax.
4332MemInitResult
4333Sema::ActOnMemInitializer(Decl *ConstructorD,
4334 Scope *S,
4335 CXXScopeSpec &SS,
4336 IdentifierInfo *MemberOrBase,
4337 ParsedType TemplateTypeTy,
4338 const DeclSpec &DS,
4339 SourceLocation IdLoc,
4340 Expr *InitList,
4341 SourceLocation EllipsisLoc) {
4342 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4343 DS, IdLoc, Init: InitList,
4344 EllipsisLoc);
4345}
4346
4347/// Handle a C++ member initializer using parentheses syntax.
4348MemInitResult
4349Sema::ActOnMemInitializer(Decl *ConstructorD,
4350 Scope *S,
4351 CXXScopeSpec &SS,
4352 IdentifierInfo *MemberOrBase,
4353 ParsedType TemplateTypeTy,
4354 const DeclSpec &DS,
4355 SourceLocation IdLoc,
4356 SourceLocation LParenLoc,
4357 ArrayRef<Expr *> Args,
4358 SourceLocation RParenLoc,
4359 SourceLocation EllipsisLoc) {
4360 Expr *List = ParenListExpr::Create(Ctx: Context, LParenLoc, Exprs: Args, RParenLoc);
4361 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4362 DS, IdLoc, Init: List, EllipsisLoc);
4363}
4364
4365namespace {
4366
4367// Callback to only accept typo corrections that can be a valid C++ member
4368// initializer: either a non-static field member or a base class.
4369class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4370public:
4371 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4372 : ClassDecl(ClassDecl) {}
4373
4374 bool ValidateCandidate(const TypoCorrection &candidate) override {
4375 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4376 if (FieldDecl *Member = dyn_cast<FieldDecl>(Val: ND))
4377 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4378 return isa<TypeDecl>(Val: ND);
4379 }
4380 return false;
4381 }
4382
4383 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4384 return std::make_unique<MemInitializerValidatorCCC>(args&: *this);
4385 }
4386
4387private:
4388 CXXRecordDecl *ClassDecl;
4389};
4390
4391}
4392
4393bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc,
4394 RecordDecl *ClassDecl,
4395 const IdentifierInfo *Name) {
4396 DeclContextLookupResult Result = ClassDecl->lookup(Name);
4397 DeclContextLookupResult::iterator Found =
4398 llvm::find_if(Range&: Result, P: [this](const NamedDecl *Elem) {
4399 return isa<FieldDecl, IndirectFieldDecl>(Val: Elem) &&
4400 Elem->isPlaceholderVar(LangOpts: getLangOpts());
4401 });
4402 // We did not find a placeholder variable
4403 if (Found == Result.end())
4404 return false;
4405 Diag(Loc, diag::err_using_placeholder_variable) << Name;
4406 for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) {
4407 const NamedDecl *ND = *It;
4408 if (ND->getDeclContext() != ND->getDeclContext())
4409 break;
4410 if (isa<FieldDecl, IndirectFieldDecl>(ND) &&
4411 ND->isPlaceholderVar(getLangOpts()))
4412 Diag(ND->getLocation(), diag::note_reference_placeholder) << ND;
4413 }
4414 return true;
4415}
4416
4417ValueDecl *
4418Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl,
4419 const IdentifierInfo *MemberOrBase) {
4420 ValueDecl *ND = nullptr;
4421 for (auto *D : ClassDecl->lookup(MemberOrBase)) {
4422 if (isa<FieldDecl, IndirectFieldDecl>(D)) {
4423 bool IsPlaceholder = D->isPlaceholderVar(getLangOpts());
4424 if (ND) {
4425 if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext())
4426 return nullptr;
4427 break;
4428 }
4429 if (!IsPlaceholder)
4430 return cast<ValueDecl>(D);
4431 ND = cast<ValueDecl>(D);
4432 }
4433 }
4434 return ND;
4435}
4436
4437ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4438 CXXScopeSpec &SS,
4439 ParsedType TemplateTypeTy,
4440 IdentifierInfo *MemberOrBase) {
4441 if (SS.getScopeRep() || TemplateTypeTy)
4442 return nullptr;
4443 return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase);
4444}
4445
4446/// Handle a C++ member initializer.
4447MemInitResult
4448Sema::BuildMemInitializer(Decl *ConstructorD,
4449 Scope *S,
4450 CXXScopeSpec &SS,
4451 IdentifierInfo *MemberOrBase,
4452 ParsedType TemplateTypeTy,
4453 const DeclSpec &DS,
4454 SourceLocation IdLoc,
4455 Expr *Init,
4456 SourceLocation EllipsisLoc) {
4457 ExprResult Res = CorrectDelayedTyposInExpr(E: Init, /*InitDecl=*/nullptr,
4458 /*RecoverUncorrectedTypos=*/true);
4459 if (!Res.isUsable())
4460 return true;
4461 Init = Res.get();
4462
4463 if (!ConstructorD)
4464 return true;
4465
4466 AdjustDeclIfTemplate(Decl&: ConstructorD);
4467
4468 CXXConstructorDecl *Constructor
4469 = dyn_cast<CXXConstructorDecl>(Val: ConstructorD);
4470 if (!Constructor) {
4471 // The user wrote a constructor initializer on a function that is
4472 // not a C++ constructor. Ignore the error for now, because we may
4473 // have more member initializers coming; we'll diagnose it just
4474 // once in ActOnMemInitializers.
4475 return true;
4476 }
4477
4478 CXXRecordDecl *ClassDecl = Constructor->getParent();
4479
4480 // C++ [class.base.init]p2:
4481 // Names in a mem-initializer-id are looked up in the scope of the
4482 // constructor's class and, if not found in that scope, are looked
4483 // up in the scope containing the constructor's definition.
4484 // [Note: if the constructor's class contains a member with the
4485 // same name as a direct or virtual base class of the class, a
4486 // mem-initializer-id naming the member or base class and composed
4487 // of a single identifier refers to the class member. A
4488 // mem-initializer-id for the hidden base class may be specified
4489 // using a qualified name. ]
4490
4491 // Look for a member, first.
4492 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4493 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4494 if (EllipsisLoc.isValid())
4495 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4496 << MemberOrBase
4497 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4498
4499 return BuildMemberInitializer(Member, Init, IdLoc);
4500 }
4501 // It didn't name a member, so see if it names a class.
4502 QualType BaseType;
4503 TypeSourceInfo *TInfo = nullptr;
4504
4505 if (TemplateTypeTy) {
4506 BaseType = GetTypeFromParser(Ty: TemplateTypeTy, TInfo: &TInfo);
4507 if (BaseType.isNull())
4508 return true;
4509 } else if (DS.getTypeSpecType() == TST_decltype) {
4510 BaseType = BuildDecltypeType(E: DS.getRepAsExpr());
4511 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4512 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4513 return true;
4514 } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) {
4515 BaseType =
4516 BuildPackIndexingType(Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(),
4517 Loc: DS.getBeginLoc(), EllipsisLoc: DS.getEllipsisLoc());
4518 } else {
4519 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4520 LookupParsedName(R, S, SS: &SS);
4521
4522 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4523 if (!TyD) {
4524 if (R.isAmbiguous()) return true;
4525
4526 // We don't want access-control diagnostics here.
4527 R.suppressDiagnostics();
4528
4529 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4530 bool NotUnknownSpecialization = false;
4531 DeclContext *DC = computeDeclContext(SS, EnteringContext: false);
4532 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Val: DC))
4533 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4534
4535 if (!NotUnknownSpecialization) {
4536 // When the scope specifier can refer to a member of an unknown
4537 // specialization, we take it as a type name.
4538 BaseType = CheckTypenameType(
4539 Keyword: ElaboratedTypeKeyword::None, KeywordLoc: SourceLocation(),
4540 QualifierLoc: SS.getWithLocInContext(Context), II: *MemberOrBase, IILoc: IdLoc);
4541 if (BaseType.isNull())
4542 return true;
4543
4544 TInfo = Context.CreateTypeSourceInfo(T: BaseType);
4545 DependentNameTypeLoc TL =
4546 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4547 if (!TL.isNull()) {
4548 TL.setNameLoc(IdLoc);
4549 TL.setElaboratedKeywordLoc(SourceLocation());
4550 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4551 }
4552
4553 R.clear();
4554 R.setLookupName(MemberOrBase);
4555 }
4556 }
4557
4558 if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) {
4559 if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) {
4560 auto *TempSpec = cast<TemplateSpecializationType>(
4561 Val: UnqualifiedBase->getInjectedClassNameSpecialization());
4562 TemplateName TN = TempSpec->getTemplateName();
4563 for (auto const &Base : ClassDecl->bases()) {
4564 auto BaseTemplate =
4565 Base.getType()->getAs<TemplateSpecializationType>();
4566 if (BaseTemplate && Context.hasSameTemplateName(
4567 BaseTemplate->getTemplateName(), TN)) {
4568 Diag(IdLoc, diag::ext_unqualified_base_class)
4569 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4570 BaseType = Base.getType();
4571 break;
4572 }
4573 }
4574 }
4575 }
4576
4577 // If no results were found, try to correct typos.
4578 TypoCorrection Corr;
4579 MemInitializerValidatorCCC CCC(ClassDecl);
4580 if (R.empty() && BaseType.isNull() &&
4581 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4582 CCC, CTK_ErrorRecovery, ClassDecl))) {
4583 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4584 // We have found a non-static data member with a similar
4585 // name to what was typed; complain and initialize that
4586 // member.
4587 diagnoseTypo(Corr,
4588 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4589 << MemberOrBase << true);
4590 return BuildMemberInitializer(Member, Init, IdLoc);
4591 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4592 const CXXBaseSpecifier *DirectBaseSpec;
4593 const CXXBaseSpecifier *VirtualBaseSpec;
4594 if (FindBaseInitializer(SemaRef&: *this, ClassDecl,
4595 BaseType: Context.getTypeDeclType(Decl: Type),
4596 DirectBaseSpec, VirtualBaseSpec)) {
4597 // We have found a direct or virtual base class with a
4598 // similar name to what was typed; complain and initialize
4599 // that base class.
4600 diagnoseTypo(Corr,
4601 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4602 << MemberOrBase << false,
4603 PDiag() /*Suppress note, we provide our own.*/);
4604
4605 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4606 : VirtualBaseSpec;
4607 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4608 << BaseSpec->getType() << BaseSpec->getSourceRange();
4609
4610 TyD = Type;
4611 }
4612 }
4613 }
4614
4615 if (!TyD && BaseType.isNull()) {
4616 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4617 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4618 return true;
4619 }
4620 }
4621
4622 if (BaseType.isNull()) {
4623 BaseType = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS,
4624 T: Context.getTypeDeclType(Decl: TyD));
4625 MarkAnyDeclReferenced(Loc: TyD->getLocation(), D: TyD, /*OdrUse=*/MightBeOdrUse: false);
4626 TInfo = Context.CreateTypeSourceInfo(T: BaseType);
4627 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4628 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4629 TL.setElaboratedKeywordLoc(SourceLocation());
4630 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4631 }
4632 }
4633
4634 if (!TInfo)
4635 TInfo = Context.getTrivialTypeSourceInfo(T: BaseType, Loc: IdLoc);
4636
4637 return BuildBaseInitializer(BaseType, BaseTInfo: TInfo, Init, ClassDecl, EllipsisLoc);
4638}
4639
4640MemInitResult
4641Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4642 SourceLocation IdLoc) {
4643 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Val: Member);
4644 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Val: Member);
4645 assert((DirectMember || IndirectMember) &&
4646 "Member must be a FieldDecl or IndirectFieldDecl");
4647
4648 if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer))
4649 return true;
4650
4651 if (Member->isInvalidDecl())
4652 return true;
4653
4654 MultiExprArg Args;
4655 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) {
4656 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4657 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) {
4658 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4659 } else {
4660 // Template instantiation doesn't reconstruct ParenListExprs for us.
4661 Args = Init;
4662 }
4663
4664 SourceRange InitRange = Init->getSourceRange();
4665
4666 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4667 // Can't check initialization for a member of dependent type or when
4668 // any of the arguments are type-dependent expressions.
4669 DiscardCleanupsInEvaluationContext();
4670 } else {
4671 bool InitList = false;
4672 if (isa<InitListExpr>(Val: Init)) {
4673 InitList = true;
4674 Args = Init;
4675 }
4676
4677 // Initialize the member.
4678 InitializedEntity MemberEntity =
4679 DirectMember ? InitializedEntity::InitializeMember(Member: DirectMember, Parent: nullptr)
4680 : InitializedEntity::InitializeMember(Member: IndirectMember,
4681 Parent: nullptr);
4682 InitializationKind Kind =
4683 InitList ? InitializationKind::CreateDirectList(
4684 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4685 : InitializationKind::CreateDirect(InitLoc: IdLoc, LParenLoc: InitRange.getBegin(),
4686 RParenLoc: InitRange.getEnd());
4687
4688 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4689 ExprResult MemberInit = InitSeq.Perform(S&: *this, Entity: MemberEntity, Kind, Args,
4690 ResultType: nullptr);
4691 if (!MemberInit.isInvalid()) {
4692 // C++11 [class.base.init]p7:
4693 // The initialization of each base and member constitutes a
4694 // full-expression.
4695 MemberInit = ActOnFinishFullExpr(Expr: MemberInit.get(), CC: InitRange.getBegin(),
4696 /*DiscardedValue*/ false);
4697 }
4698
4699 if (MemberInit.isInvalid()) {
4700 // Args were sensible expressions but we couldn't initialize the member
4701 // from them. Preserve them in a RecoveryExpr instead.
4702 Init = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args,
4703 T: Member->getType())
4704 .get();
4705 if (!Init)
4706 return true;
4707 } else {
4708 Init = MemberInit.get();
4709 }
4710 }
4711
4712 if (DirectMember) {
4713 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4714 InitRange.getBegin(), Init,
4715 InitRange.getEnd());
4716 } else {
4717 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4718 InitRange.getBegin(), Init,
4719 InitRange.getEnd());
4720 }
4721}
4722
4723MemInitResult
4724Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4725 CXXRecordDecl *ClassDecl) {
4726 SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin();
4727 if (!LangOpts.CPlusPlus11)
4728 return Diag(NameLoc, diag::err_delegating_ctor)
4729 << TInfo->getTypeLoc().getSourceRange();
4730 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4731
4732 bool InitList = true;
4733 MultiExprArg Args = Init;
4734 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) {
4735 InitList = false;
4736 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4737 }
4738
4739 SourceRange InitRange = Init->getSourceRange();
4740 // Initialize the object.
4741 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4742 Type: QualType(ClassDecl->getTypeForDecl(), 0));
4743 InitializationKind Kind =
4744 InitList ? InitializationKind::CreateDirectList(
4745 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4746 : InitializationKind::CreateDirect(InitLoc: NameLoc, LParenLoc: InitRange.getBegin(),
4747 RParenLoc: InitRange.getEnd());
4748 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4749 ExprResult DelegationInit = InitSeq.Perform(S&: *this, Entity: DelegationEntity, Kind,
4750 Args, ResultType: nullptr);
4751 if (!DelegationInit.isInvalid()) {
4752 assert((DelegationInit.get()->containsErrors() ||
4753 cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) &&
4754 "Delegating constructor with no target?");
4755
4756 // C++11 [class.base.init]p7:
4757 // The initialization of each base and member constitutes a
4758 // full-expression.
4759 DelegationInit = ActOnFinishFullExpr(
4760 Expr: DelegationInit.get(), CC: InitRange.getBegin(), /*DiscardedValue*/ false);
4761 }
4762
4763 if (DelegationInit.isInvalid()) {
4764 DelegationInit =
4765 CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args,
4766 T: QualType(ClassDecl->getTypeForDecl(), 0));
4767 if (DelegationInit.isInvalid())
4768 return true;
4769 } else {
4770 // If we are in a dependent context, template instantiation will
4771 // perform this type-checking again. Just save the arguments that we
4772 // received in a ParenListExpr.
4773 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4774 // of the information that we have about the base
4775 // initializer. However, deconstructing the ASTs is a dicey process,
4776 // and this approach is far more likely to get the corner cases right.
4777 if (CurContext->isDependentContext())
4778 DelegationInit = Init;
4779 }
4780
4781 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4782 DelegationInit.getAs<Expr>(),
4783 InitRange.getEnd());
4784}
4785
4786MemInitResult
4787Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4788 Expr *Init, CXXRecordDecl *ClassDecl,
4789 SourceLocation EllipsisLoc) {
4790 SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc();
4791
4792 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4793 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4794 << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
4795
4796 // C++ [class.base.init]p2:
4797 // [...] Unless the mem-initializer-id names a nonstatic data
4798 // member of the constructor's class or a direct or virtual base
4799 // of that class, the mem-initializer is ill-formed. A
4800 // mem-initializer-list can initialize a base class using any
4801 // name that denotes that base class type.
4802
4803 // We can store the initializers in "as-written" form and delay analysis until
4804 // instantiation if the constructor is dependent. But not for dependent
4805 // (broken) code in a non-template! SetCtorInitializers does not expect this.
4806 bool Dependent = CurContext->isDependentContext() &&
4807 (BaseType->isDependentType() || Init->isTypeDependent());
4808
4809 SourceRange InitRange = Init->getSourceRange();
4810 if (EllipsisLoc.isValid()) {
4811 // This is a pack expansion.
4812 if (!BaseType->containsUnexpandedParameterPack()) {
4813 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4814 << SourceRange(BaseLoc, InitRange.getEnd());
4815
4816 EllipsisLoc = SourceLocation();
4817 }
4818 } else {
4819 // Check for any unexpanded parameter packs.
4820 if (DiagnoseUnexpandedParameterPack(Loc: BaseLoc, T: BaseTInfo, UPPC: UPPC_Initializer))
4821 return true;
4822
4823 if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer))
4824 return true;
4825 }
4826
4827 // Check for direct and virtual base classes.
4828 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4829 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4830 if (!Dependent) {
4831 if (Context.hasSameUnqualifiedType(T1: QualType(ClassDecl->getTypeForDecl(),0),
4832 T2: BaseType))
4833 return BuildDelegatingInitializer(TInfo: BaseTInfo, Init, ClassDecl);
4834
4835 FindBaseInitializer(SemaRef&: *this, ClassDecl, BaseType, DirectBaseSpec,
4836 VirtualBaseSpec);
4837
4838 // C++ [base.class.init]p2:
4839 // Unless the mem-initializer-id names a nonstatic data member of the
4840 // constructor's class or a direct or virtual base of that class, the
4841 // mem-initializer is ill-formed.
4842 if (!DirectBaseSpec && !VirtualBaseSpec) {
4843 // If the class has any dependent bases, then it's possible that
4844 // one of those types will resolve to the same type as
4845 // BaseType. Therefore, just treat this as a dependent base
4846 // class initialization. FIXME: Should we try to check the
4847 // initialization anyway? It seems odd.
4848 if (ClassDecl->hasAnyDependentBases())
4849 Dependent = true;
4850 else
4851 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4852 << BaseType << Context.getTypeDeclType(ClassDecl)
4853 << BaseTInfo->getTypeLoc().getSourceRange();
4854 }
4855 }
4856
4857 if (Dependent) {
4858 DiscardCleanupsInEvaluationContext();
4859
4860 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4861 /*IsVirtual=*/false,
4862 InitRange.getBegin(), Init,
4863 InitRange.getEnd(), EllipsisLoc);
4864 }
4865
4866 // C++ [base.class.init]p2:
4867 // If a mem-initializer-id is ambiguous because it designates both
4868 // a direct non-virtual base class and an inherited virtual base
4869 // class, the mem-initializer is ill-formed.
4870 if (DirectBaseSpec && VirtualBaseSpec)
4871 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4872 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4873
4874 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4875 if (!BaseSpec)
4876 BaseSpec = VirtualBaseSpec;
4877
4878 // Initialize the base.
4879 bool InitList = true;
4880 MultiExprArg Args = Init;
4881 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) {
4882 InitList = false;
4883 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4884 }
4885
4886 InitializedEntity BaseEntity =
4887 InitializedEntity::InitializeBase(Context, Base: BaseSpec, IsInheritedVirtualBase: VirtualBaseSpec);
4888 InitializationKind Kind =
4889 InitList ? InitializationKind::CreateDirectList(InitLoc: BaseLoc)
4890 : InitializationKind::CreateDirect(InitLoc: BaseLoc, LParenLoc: InitRange.getBegin(),
4891 RParenLoc: InitRange.getEnd());
4892 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4893 ExprResult BaseInit = InitSeq.Perform(S&: *this, Entity: BaseEntity, Kind, Args, ResultType: nullptr);
4894 if (!BaseInit.isInvalid()) {
4895 // C++11 [class.base.init]p7:
4896 // The initialization of each base and member constitutes a
4897 // full-expression.
4898 BaseInit = ActOnFinishFullExpr(Expr: BaseInit.get(), CC: InitRange.getBegin(),
4899 /*DiscardedValue*/ false);
4900 }
4901
4902 if (BaseInit.isInvalid()) {
4903 BaseInit = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(),
4904 SubExprs: Args, T: BaseType);
4905 if (BaseInit.isInvalid())
4906 return true;
4907 } else {
4908 // If we are in a dependent context, template instantiation will
4909 // perform this type-checking again. Just save the arguments that we
4910 // received in a ParenListExpr.
4911 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4912 // of the information that we have about the base
4913 // initializer. However, deconstructing the ASTs is a dicey process,
4914 // and this approach is far more likely to get the corner cases right.
4915 if (CurContext->isDependentContext())
4916 BaseInit = Init;
4917 }
4918
4919 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4920 BaseSpec->isVirtual(),
4921 InitRange.getBegin(),
4922 BaseInit.getAs<Expr>(),
4923 InitRange.getEnd(), EllipsisLoc);
4924}
4925
4926// Create a static_cast\<T&&>(expr).
4927static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
4928 QualType TargetType =
4929 SemaRef.BuildReferenceType(T: E->getType(), /*SpelledAsLValue*/ LValueRef: false,
4930 Loc: SourceLocation(), Entity: DeclarationName());
4931 SourceLocation ExprLoc = E->getBeginLoc();
4932 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4933 T: TargetType, Loc: ExprLoc);
4934
4935 return SemaRef.BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E,
4936 AngleBrackets: SourceRange(ExprLoc, ExprLoc),
4937 Parens: E->getSourceRange()).get();
4938}
4939
4940/// ImplicitInitializerKind - How an implicit base or member initializer should
4941/// initialize its base or member.
4942enum ImplicitInitializerKind {
4943 IIK_Default,
4944 IIK_Copy,
4945 IIK_Move,
4946 IIK_Inherit
4947};
4948
4949static bool
4950BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4951 ImplicitInitializerKind ImplicitInitKind,
4952 CXXBaseSpecifier *BaseSpec,
4953 bool IsInheritedVirtualBase,
4954 CXXCtorInitializer *&CXXBaseInit) {
4955 InitializedEntity InitEntity
4956 = InitializedEntity::InitializeBase(Context&: SemaRef.Context, Base: BaseSpec,
4957 IsInheritedVirtualBase);
4958
4959 ExprResult BaseInit;
4960
4961 switch (ImplicitInitKind) {
4962 case IIK_Inherit:
4963 case IIK_Default: {
4964 InitializationKind InitKind
4965 = InitializationKind::CreateDefault(InitLoc: Constructor->getLocation());
4966 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
4967 BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: std::nullopt);
4968 break;
4969 }
4970
4971 case IIK_Move:
4972 case IIK_Copy: {
4973 bool Moving = ImplicitInitKind == IIK_Move;
4974 ParmVarDecl *Param = Constructor->getParamDecl(0);
4975 QualType ParamType = Param->getType().getNonReferenceType();
4976
4977 Expr *CopyCtorArg =
4978 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4979 SourceLocation(), Param, false,
4980 Constructor->getLocation(), ParamType,
4981 VK_LValue, nullptr);
4982
4983 SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: CopyCtorArg));
4984
4985 // Cast to the base class to avoid ambiguities.
4986 QualType ArgTy =
4987 SemaRef.Context.getQualifiedType(T: BaseSpec->getType().getUnqualifiedType(),
4988 Qs: ParamType.getQualifiers());
4989
4990 if (Moving) {
4991 CopyCtorArg = CastForMoving(SemaRef, E: CopyCtorArg);
4992 }
4993
4994 CXXCastPath BasePath;
4995 BasePath.push_back(Elt: BaseSpec);
4996 CopyCtorArg = SemaRef.ImpCastExprToType(E: CopyCtorArg, Type: ArgTy,
4997 CK: CK_UncheckedDerivedToBase,
4998 VK: Moving ? VK_XValue : VK_LValue,
4999 BasePath: &BasePath).get();
5000
5001 InitializationKind InitKind
5002 = InitializationKind::CreateDirect(InitLoc: Constructor->getLocation(),
5003 LParenLoc: SourceLocation(), RParenLoc: SourceLocation());
5004 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
5005 BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: CopyCtorArg);
5006 break;
5007 }
5008 }
5009
5010 BaseInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: BaseInit);
5011 if (BaseInit.isInvalid())
5012 return true;
5013
5014 CXXBaseInit =
5015 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
5016 SemaRef.Context.getTrivialTypeSourceInfo(T: BaseSpec->getType(),
5017 Loc: SourceLocation()),
5018 BaseSpec->isVirtual(),
5019 SourceLocation(),
5020 BaseInit.getAs<Expr>(),
5021 SourceLocation(),
5022 SourceLocation());
5023
5024 return false;
5025}
5026
5027static bool RefersToRValueRef(Expr *MemRef) {
5028 ValueDecl *Referenced = cast<MemberExpr>(Val: MemRef)->getMemberDecl();
5029 return Referenced->getType()->isRValueReferenceType();
5030}
5031
5032static bool
5033BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
5034 ImplicitInitializerKind ImplicitInitKind,
5035 FieldDecl *Field, IndirectFieldDecl *Indirect,
5036 CXXCtorInitializer *&CXXMemberInit) {
5037 if (Field->isInvalidDecl())
5038 return true;
5039
5040 SourceLocation Loc = Constructor->getLocation();
5041
5042 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
5043 bool Moving = ImplicitInitKind == IIK_Move;
5044 ParmVarDecl *Param = Constructor->getParamDecl(0);
5045 QualType ParamType = Param->getType().getNonReferenceType();
5046
5047 // Suppress copying zero-width bitfields.
5048 if (Field->isZeroLengthBitField(Ctx: SemaRef.Context))
5049 return false;
5050
5051 Expr *MemberExprBase =
5052 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
5053 SourceLocation(), Param, false,
5054 Loc, ParamType, VK_LValue, nullptr);
5055
5056 SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: MemberExprBase));
5057
5058 if (Moving) {
5059 MemberExprBase = CastForMoving(SemaRef, E: MemberExprBase);
5060 }
5061
5062 // Build a reference to this field within the parameter.
5063 CXXScopeSpec SS;
5064 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
5065 Sema::LookupMemberName);
5066 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Val: Indirect)
5067 : cast<ValueDecl>(Val: Field), AS_public);
5068 MemberLookup.resolveKind();
5069 ExprResult CtorArg
5070 = SemaRef.BuildMemberReferenceExpr(Base: MemberExprBase,
5071 BaseType: ParamType, OpLoc: Loc,
5072 /*IsArrow=*/false,
5073 SS,
5074 /*TemplateKWLoc=*/SourceLocation(),
5075 /*FirstQualifierInScope=*/nullptr,
5076 R&: MemberLookup,
5077 /*TemplateArgs=*/nullptr,
5078 /*S*/nullptr);
5079 if (CtorArg.isInvalid())
5080 return true;
5081
5082 // C++11 [class.copy]p15:
5083 // - if a member m has rvalue reference type T&&, it is direct-initialized
5084 // with static_cast<T&&>(x.m);
5085 if (RefersToRValueRef(MemRef: CtorArg.get())) {
5086 CtorArg = CastForMoving(SemaRef, E: CtorArg.get());
5087 }
5088
5089 InitializedEntity Entity =
5090 Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr,
5091 /*Implicit*/ true)
5092 : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr,
5093 /*Implicit*/ true);
5094
5095 // Direct-initialize to use the copy constructor.
5096 InitializationKind InitKind =
5097 InitializationKind::CreateDirect(InitLoc: Loc, LParenLoc: SourceLocation(), RParenLoc: SourceLocation());
5098
5099 Expr *CtorArgE = CtorArg.getAs<Expr>();
5100 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
5101 ExprResult MemberInit =
5102 InitSeq.Perform(S&: SemaRef, Entity, Kind: InitKind, Args: MultiExprArg(&CtorArgE, 1));
5103 MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit);
5104 if (MemberInit.isInvalid())
5105 return true;
5106
5107 if (Indirect)
5108 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
5109 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
5110 else
5111 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
5112 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
5113 return false;
5114 }
5115
5116 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
5117 "Unhandled implicit init kind!");
5118
5119 QualType FieldBaseElementType =
5120 SemaRef.Context.getBaseElementType(Field->getType());
5121
5122 if (FieldBaseElementType->isRecordType()) {
5123 InitializedEntity InitEntity =
5124 Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr,
5125 /*Implicit*/ true)
5126 : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr,
5127 /*Implicit*/ true);
5128 InitializationKind InitKind =
5129 InitializationKind::CreateDefault(InitLoc: Loc);
5130
5131 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, std::nullopt);
5132 ExprResult MemberInit =
5133 InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: std::nullopt);
5134
5135 MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit);
5136 if (MemberInit.isInvalid())
5137 return true;
5138
5139 if (Indirect)
5140 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
5141 Indirect, Loc,
5142 Loc,
5143 MemberInit.get(),
5144 Loc);
5145 else
5146 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
5147 Field, Loc, Loc,
5148 MemberInit.get(),
5149 Loc);
5150 return false;
5151 }
5152
5153 if (!Field->getParent()->isUnion()) {
5154 if (FieldBaseElementType->isReferenceType()) {
5155 SemaRef.Diag(Constructor->getLocation(),
5156 diag::err_uninitialized_member_in_ctor)
5157 << (int)Constructor->isImplicit()
5158 << SemaRef.Context.getTagDeclType(Constructor->getParent())
5159 << 0 << Field->getDeclName();
5160 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
5161 return true;
5162 }
5163
5164 if (FieldBaseElementType.isConstQualified()) {
5165 SemaRef.Diag(Constructor->getLocation(),
5166 diag::err_uninitialized_member_in_ctor)
5167 << (int)Constructor->isImplicit()
5168 << SemaRef.Context.getTagDeclType(Constructor->getParent())
5169 << 1 << Field->getDeclName();
5170 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
5171 return true;
5172 }
5173 }
5174
5175 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
5176 // ARC and Weak:
5177 // Default-initialize Objective-C pointers to NULL.
5178 CXXMemberInit
5179 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
5180 Loc, Loc,
5181 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
5182 Loc);
5183 return false;
5184 }
5185
5186 // Nothing to initialize.
5187 CXXMemberInit = nullptr;
5188 return false;
5189}
5190
5191namespace {
5192struct BaseAndFieldInfo {
5193 Sema &S;
5194 CXXConstructorDecl *Ctor;
5195 bool AnyErrorsInInits;
5196 ImplicitInitializerKind IIK;
5197 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
5198 SmallVector<CXXCtorInitializer*, 8> AllToInit;
5199 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
5200
5201 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
5202 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
5203 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
5204 if (Ctor->getInheritedConstructor())
5205 IIK = IIK_Inherit;
5206 else if (Generated && Ctor->isCopyConstructor())
5207 IIK = IIK_Copy;
5208 else if (Generated && Ctor->isMoveConstructor())
5209 IIK = IIK_Move;
5210 else
5211 IIK = IIK_Default;
5212 }
5213
5214 bool isImplicitCopyOrMove() const {
5215 switch (IIK) {
5216 case IIK_Copy:
5217 case IIK_Move:
5218 return true;
5219
5220 case IIK_Default:
5221 case IIK_Inherit:
5222 return false;
5223 }
5224
5225 llvm_unreachable("Invalid ImplicitInitializerKind!");
5226 }
5227
5228 bool addFieldInitializer(CXXCtorInitializer *Init) {
5229 AllToInit.push_back(Elt: Init);
5230
5231 // Check whether this initializer makes the field "used".
5232 if (Init->getInit()->HasSideEffects(Ctx: S.Context))
5233 S.UnusedPrivateFields.remove(Init->getAnyMember());
5234
5235 return false;
5236 }
5237
5238 bool isInactiveUnionMember(FieldDecl *Field) {
5239 RecordDecl *Record = Field->getParent();
5240 if (!Record->isUnion())
5241 return false;
5242
5243 if (FieldDecl *Active =
5244 ActiveUnionMember.lookup(Val: Record->getCanonicalDecl()))
5245 return Active != Field->getCanonicalDecl();
5246
5247 // In an implicit copy or move constructor, ignore any in-class initializer.
5248 if (isImplicitCopyOrMove())
5249 return true;
5250
5251 // If there's no explicit initialization, the field is active only if it
5252 // has an in-class initializer...
5253 if (Field->hasInClassInitializer())
5254 return false;
5255 // ... or it's an anonymous struct or union whose class has an in-class
5256 // initializer.
5257 if (!Field->isAnonymousStructOrUnion())
5258 return true;
5259 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
5260 return !FieldRD->hasInClassInitializer();
5261 }
5262
5263 /// Determine whether the given field is, or is within, a union member
5264 /// that is inactive (because there was an initializer given for a different
5265 /// member of the union, or because the union was not initialized at all).
5266 bool isWithinInactiveUnionMember(FieldDecl *Field,
5267 IndirectFieldDecl *Indirect) {
5268 if (!Indirect)
5269 return isInactiveUnionMember(Field);
5270
5271 for (auto *C : Indirect->chain()) {
5272 FieldDecl *Field = dyn_cast<FieldDecl>(Val: C);
5273 if (Field && isInactiveUnionMember(Field))
5274 return true;
5275 }
5276 return false;
5277 }
5278};
5279}
5280
5281/// Determine whether the given type is an incomplete or zero-lenfgth
5282/// array type.
5283static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
5284 if (T->isIncompleteArrayType())
5285 return true;
5286
5287 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
5288 if (ArrayT->isZeroSize())
5289 return true;
5290
5291 T = ArrayT->getElementType();
5292 }
5293
5294 return false;
5295}
5296
5297static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
5298 FieldDecl *Field,
5299 IndirectFieldDecl *Indirect = nullptr) {
5300 if (Field->isInvalidDecl())
5301 return false;
5302
5303 // Overwhelmingly common case: we have a direct initializer for this field.
5304 if (CXXCtorInitializer *Init =
5305 Info.AllBaseFields.lookup(Val: Field->getCanonicalDecl()))
5306 return Info.addFieldInitializer(Init);
5307
5308 // C++11 [class.base.init]p8:
5309 // if the entity is a non-static data member that has a
5310 // brace-or-equal-initializer and either
5311 // -- the constructor's class is a union and no other variant member of that
5312 // union is designated by a mem-initializer-id or
5313 // -- the constructor's class is not a union, and, if the entity is a member
5314 // of an anonymous union, no other member of that union is designated by
5315 // a mem-initializer-id,
5316 // the entity is initialized as specified in [dcl.init].
5317 //
5318 // We also apply the same rules to handle anonymous structs within anonymous
5319 // unions.
5320 if (Info.isWithinInactiveUnionMember(Field, Indirect))
5321 return false;
5322
5323 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
5324 ExprResult DIE =
5325 SemaRef.BuildCXXDefaultInitExpr(Loc: Info.Ctor->getLocation(), Field);
5326 if (DIE.isInvalid())
5327 return true;
5328
5329 auto Entity = InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, Implicit: true);
5330 SemaRef.checkInitializerLifetime(Entity, Init: DIE.get());
5331
5332 CXXCtorInitializer *Init;
5333 if (Indirect)
5334 Init = new (SemaRef.Context)
5335 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
5336 SourceLocation(), DIE.get(), SourceLocation());
5337 else
5338 Init = new (SemaRef.Context)
5339 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
5340 SourceLocation(), DIE.get(), SourceLocation());
5341 return Info.addFieldInitializer(Init);
5342 }
5343
5344 // Don't initialize incomplete or zero-length arrays.
5345 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
5346 return false;
5347
5348 // Don't try to build an implicit initializer if there were semantic
5349 // errors in any of the initializers (and therefore we might be
5350 // missing some that the user actually wrote).
5351 if (Info.AnyErrorsInInits)
5352 return false;
5353
5354 CXXCtorInitializer *Init = nullptr;
5355 if (BuildImplicitMemberInitializer(SemaRef&: Info.S, Constructor: Info.Ctor, ImplicitInitKind: Info.IIK, Field,
5356 Indirect, CXXMemberInit&: Init))
5357 return true;
5358
5359 if (!Init)
5360 return false;
5361
5362 return Info.addFieldInitializer(Init);
5363}
5364
5365bool
5366Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5367 CXXCtorInitializer *Initializer) {
5368 assert(Initializer->isDelegatingInitializer());
5369 Constructor->setNumCtorInitializers(1);
5370 CXXCtorInitializer **initializer =
5371 new (Context) CXXCtorInitializer*[1];
5372 memcpy(dest: initializer, src: &Initializer, n: sizeof (CXXCtorInitializer*));
5373 Constructor->setCtorInitializers(initializer);
5374
5375 if (CXXDestructorDecl *Dtor = LookupDestructor(Class: Constructor->getParent())) {
5376 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5377 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5378 }
5379
5380 DelegatingCtorDecls.push_back(LocalValue: Constructor);
5381
5382 DiagnoseUninitializedFields(SemaRef&: *this, Constructor);
5383
5384 return false;
5385}
5386
5387bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5388 ArrayRef<CXXCtorInitializer *> Initializers) {
5389 if (Constructor->isDependentContext()) {
5390 // Just store the initializers as written, they will be checked during
5391 // instantiation.
5392 if (!Initializers.empty()) {
5393 Constructor->setNumCtorInitializers(Initializers.size());
5394 CXXCtorInitializer **baseOrMemberInitializers =
5395 new (Context) CXXCtorInitializer*[Initializers.size()];
5396 memcpy(dest: baseOrMemberInitializers, src: Initializers.data(),
5397 n: Initializers.size() * sizeof(CXXCtorInitializer*));
5398 Constructor->setCtorInitializers(baseOrMemberInitializers);
5399 }
5400
5401 // Let template instantiation know whether we had errors.
5402 if (AnyErrors)
5403 Constructor->setInvalidDecl();
5404
5405 return false;
5406 }
5407
5408 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5409
5410 // We need to build the initializer AST according to order of construction
5411 // and not what user specified in the Initializers list.
5412 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5413 if (!ClassDecl)
5414 return true;
5415
5416 bool HadError = false;
5417
5418 for (unsigned i = 0; i < Initializers.size(); i++) {
5419 CXXCtorInitializer *Member = Initializers[i];
5420
5421 if (Member->isBaseInitializer())
5422 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5423 else {
5424 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5425
5426 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5427 for (auto *C : F->chain()) {
5428 FieldDecl *FD = dyn_cast<FieldDecl>(Val: C);
5429 if (FD && FD->getParent()->isUnion())
5430 Info.ActiveUnionMember.insert(std::make_pair(
5431 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5432 }
5433 } else if (FieldDecl *FD = Member->getMember()) {
5434 if (FD->getParent()->isUnion())
5435 Info.ActiveUnionMember.insert(std::make_pair(
5436 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5437 }
5438 }
5439 }
5440
5441 // Keep track of the direct virtual bases.
5442 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5443 for (auto &I : ClassDecl->bases()) {
5444 if (I.isVirtual())
5445 DirectVBases.insert(&I);
5446 }
5447
5448 // Push virtual bases before others.
5449 for (auto &VBase : ClassDecl->vbases()) {
5450 if (CXXCtorInitializer *Value
5451 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5452 // [class.base.init]p7, per DR257:
5453 // A mem-initializer where the mem-initializer-id names a virtual base
5454 // class is ignored during execution of a constructor of any class that
5455 // is not the most derived class.
5456 if (ClassDecl->isAbstract()) {
5457 // FIXME: Provide a fixit to remove the base specifier. This requires
5458 // tracking the location of the associated comma for a base specifier.
5459 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5460 << VBase.getType() << ClassDecl;
5461 DiagnoseAbstractType(ClassDecl);
5462 }
5463
5464 Info.AllToInit.push_back(Value);
5465 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5466 // [class.base.init]p8, per DR257:
5467 // If a given [...] base class is not named by a mem-initializer-id
5468 // [...] and the entity is not a virtual base class of an abstract
5469 // class, then [...] the entity is default-initialized.
5470 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5471 CXXCtorInitializer *CXXBaseInit;
5472 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5473 &VBase, IsInheritedVirtualBase,
5474 CXXBaseInit)) {
5475 HadError = true;
5476 continue;
5477 }
5478
5479 Info.AllToInit.push_back(CXXBaseInit);
5480 }
5481 }
5482
5483 // Non-virtual bases.
5484 for (auto &Base : ClassDecl->bases()) {
5485 // Virtuals are in the virtual base list and already constructed.
5486 if (Base.isVirtual())
5487 continue;
5488
5489 if (CXXCtorInitializer *Value
5490 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5491 Info.AllToInit.push_back(Value);
5492 } else if (!AnyErrors) {
5493 CXXCtorInitializer *CXXBaseInit;
5494 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5495 &Base, /*IsInheritedVirtualBase=*/false,
5496 CXXBaseInit)) {
5497 HadError = true;
5498 continue;
5499 }
5500
5501 Info.AllToInit.push_back(CXXBaseInit);
5502 }
5503 }
5504
5505 // Fields.
5506 for (auto *Mem : ClassDecl->decls()) {
5507 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5508 // C++ [class.bit]p2:
5509 // A declaration for a bit-field that omits the identifier declares an
5510 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5511 // initialized.
5512 if (F->isUnnamedBitField())
5513 continue;
5514
5515 // If we're not generating the implicit copy/move constructor, then we'll
5516 // handle anonymous struct/union fields based on their individual
5517 // indirect fields.
5518 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5519 continue;
5520
5521 if (CollectFieldInitializer(*this, Info, F))
5522 HadError = true;
5523 continue;
5524 }
5525
5526 // Beyond this point, we only consider default initialization.
5527 if (Info.isImplicitCopyOrMove())
5528 continue;
5529
5530 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5531 if (F->getType()->isIncompleteArrayType()) {
5532 assert(ClassDecl->hasFlexibleArrayMember() &&
5533 "Incomplete array type is not valid");
5534 continue;
5535 }
5536
5537 // Initialize each field of an anonymous struct individually.
5538 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5539 HadError = true;
5540
5541 continue;
5542 }
5543 }
5544
5545 unsigned NumInitializers = Info.AllToInit.size();
5546 if (NumInitializers > 0) {
5547 Constructor->setNumCtorInitializers(NumInitializers);
5548 CXXCtorInitializer **baseOrMemberInitializers =
5549 new (Context) CXXCtorInitializer*[NumInitializers];
5550 memcpy(dest: baseOrMemberInitializers, src: Info.AllToInit.data(),
5551 n: NumInitializers * sizeof(CXXCtorInitializer*));
5552 Constructor->setCtorInitializers(baseOrMemberInitializers);
5553
5554 // Constructors implicitly reference the base and member
5555 // destructors.
5556 MarkBaseAndMemberDestructorsReferenced(Loc: Constructor->getLocation(),
5557 Record: Constructor->getParent());
5558 }
5559
5560 return HadError;
5561}
5562
5563static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5564 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5565 const RecordDecl *RD = RT->getDecl();
5566 if (RD->isAnonymousStructOrUnion()) {
5567 for (auto *Field : RD->fields())
5568 PopulateKeysForFields(Field, IdealInits);
5569 return;
5570 }
5571 }
5572 IdealInits.push_back(Elt: Field->getCanonicalDecl());
5573}
5574
5575static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5576 return Context.getCanonicalType(T: BaseType).getTypePtr();
5577}
5578
5579static const void *GetKeyForMember(ASTContext &Context,
5580 CXXCtorInitializer *Member) {
5581 if (!Member->isAnyMemberInitializer())
5582 return GetKeyForBase(Context, BaseType: QualType(Member->getBaseClass(), 0));
5583
5584 return Member->getAnyMember()->getCanonicalDecl();
5585}
5586
5587static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5588 const CXXCtorInitializer *Previous,
5589 const CXXCtorInitializer *Current) {
5590 if (Previous->isAnyMemberInitializer())
5591 Diag << 0 << Previous->getAnyMember();
5592 else
5593 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5594
5595 if (Current->isAnyMemberInitializer())
5596 Diag << 0 << Current->getAnyMember();
5597 else
5598 Diag << 1 << Current->getTypeSourceInfo()->getType();
5599}
5600
5601static void DiagnoseBaseOrMemInitializerOrder(
5602 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5603 ArrayRef<CXXCtorInitializer *> Inits) {
5604 if (Constructor->getDeclContext()->isDependentContext())
5605 return;
5606
5607 // Don't check initializers order unless the warning is enabled at the
5608 // location of at least one initializer.
5609 bool ShouldCheckOrder = false;
5610 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5611 CXXCtorInitializer *Init = Inits[InitIndex];
5612 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5613 Init->getSourceLocation())) {
5614 ShouldCheckOrder = true;
5615 break;
5616 }
5617 }
5618 if (!ShouldCheckOrder)
5619 return;
5620
5621 // Build the list of bases and members in the order that they'll
5622 // actually be initialized. The explicit initializers should be in
5623 // this same order but may be missing things.
5624 SmallVector<const void*, 32> IdealInitKeys;
5625
5626 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5627
5628 // 1. Virtual bases.
5629 for (const auto &VBase : ClassDecl->vbases())
5630 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5631
5632 // 2. Non-virtual bases.
5633 for (const auto &Base : ClassDecl->bases()) {
5634 if (Base.isVirtual())
5635 continue;
5636 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5637 }
5638
5639 // 3. Direct fields.
5640 for (auto *Field : ClassDecl->fields()) {
5641 if (Field->isUnnamedBitField())
5642 continue;
5643
5644 PopulateKeysForFields(Field, IdealInitKeys);
5645 }
5646
5647 unsigned NumIdealInits = IdealInitKeys.size();
5648 unsigned IdealIndex = 0;
5649
5650 // Track initializers that are in an incorrect order for either a warning or
5651 // note if multiple ones occur.
5652 SmallVector<unsigned> WarnIndexes;
5653 // Correlates the index of an initializer in the init-list to the index of
5654 // the field/base in the class.
5655 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5656
5657 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5658 const void *InitKey = GetKeyForMember(Context&: SemaRef.Context, Member: Inits[InitIndex]);
5659
5660 // Scan forward to try to find this initializer in the idealized
5661 // initializers list.
5662 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5663 if (InitKey == IdealInitKeys[IdealIndex])
5664 break;
5665
5666 // If we didn't find this initializer, it must be because we
5667 // scanned past it on a previous iteration. That can only
5668 // happen if we're out of order; emit a warning.
5669 if (IdealIndex == NumIdealInits && InitIndex) {
5670 WarnIndexes.push_back(Elt: InitIndex);
5671
5672 // Move back to the initializer's location in the ideal list.
5673 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5674 if (InitKey == IdealInitKeys[IdealIndex])
5675 break;
5676
5677 assert(IdealIndex < NumIdealInits &&
5678 "initializer not found in initializer list");
5679 }
5680 CorrelatedInitOrder.emplace_back(Args&: IdealIndex, Args&: InitIndex);
5681 }
5682
5683 if (WarnIndexes.empty())
5684 return;
5685
5686 // Sort based on the ideal order, first in the pair.
5687 llvm::sort(C&: CorrelatedInitOrder, Comp: llvm::less_first());
5688
5689 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5690 // emit the diagnostic before we can try adding notes.
5691 {
5692 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5693 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5694 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5695 : diag::warn_some_initializers_out_of_order);
5696
5697 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5698 if (CorrelatedInitOrder[I].second == I)
5699 continue;
5700 // Ideally we would be using InsertFromRange here, but clang doesn't
5701 // appear to handle InsertFromRange correctly when the source range is
5702 // modified by another fix-it.
5703 D << FixItHint::CreateReplacement(
5704 RemoveRange: Inits[I]->getSourceRange(),
5705 Code: Lexer::getSourceText(
5706 Range: CharSourceRange::getTokenRange(
5707 R: Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5708 SM: SemaRef.getSourceManager(), LangOpts: SemaRef.getLangOpts()));
5709 }
5710
5711 // If there is only 1 item out of order, the warning expects the name and
5712 // type of each being added to it.
5713 if (WarnIndexes.size() == 1) {
5714 AddInitializerToDiag(Diag: D, Previous: Inits[WarnIndexes.front() - 1],
5715 Current: Inits[WarnIndexes.front()]);
5716 return;
5717 }
5718 }
5719 // More than 1 item to warn, create notes letting the user know which ones
5720 // are bad.
5721 for (unsigned WarnIndex : WarnIndexes) {
5722 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5723 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5724 diag::note_initializer_out_of_order);
5725 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5726 D << PrevInit->getSourceRange();
5727 }
5728}
5729
5730namespace {
5731bool CheckRedundantInit(Sema &S,
5732 CXXCtorInitializer *Init,
5733 CXXCtorInitializer *&PrevInit) {
5734 if (!PrevInit) {
5735 PrevInit = Init;
5736 return false;
5737 }
5738
5739 if (FieldDecl *Field = Init->getAnyMember())
5740 S.Diag(Init->getSourceLocation(),
5741 diag::err_multiple_mem_initialization)
5742 << Field->getDeclName()
5743 << Init->getSourceRange();
5744 else {
5745 const Type *BaseClass = Init->getBaseClass();
5746 assert(BaseClass && "neither field nor base");
5747 S.Diag(Init->getSourceLocation(),
5748 diag::err_multiple_base_initialization)
5749 << QualType(BaseClass, 0)
5750 << Init->getSourceRange();
5751 }
5752 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5753 << 0 << PrevInit->getSourceRange();
5754
5755 return true;
5756}
5757
5758typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5759typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5760
5761bool CheckRedundantUnionInit(Sema &S,
5762 CXXCtorInitializer *Init,
5763 RedundantUnionMap &Unions) {
5764 FieldDecl *Field = Init->getAnyMember();
5765 RecordDecl *Parent = Field->getParent();
5766 NamedDecl *Child = Field;
5767
5768 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5769 if (Parent->isUnion()) {
5770 UnionEntry &En = Unions[Parent];
5771 if (En.first && En.first != Child) {
5772 S.Diag(Init->getSourceLocation(),
5773 diag::err_multiple_mem_union_initialization)
5774 << Field->getDeclName()
5775 << Init->getSourceRange();
5776 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5777 << 0 << En.second->getSourceRange();
5778 return true;
5779 }
5780 if (!En.first) {
5781 En.first = Child;
5782 En.second = Init;
5783 }
5784 if (!Parent->isAnonymousStructOrUnion())
5785 return false;
5786 }
5787
5788 Child = Parent;
5789 Parent = cast<RecordDecl>(Parent->getDeclContext());
5790 }
5791
5792 return false;
5793}
5794} // namespace
5795
5796/// ActOnMemInitializers - Handle the member initializers for a constructor.
5797void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5798 SourceLocation ColonLoc,
5799 ArrayRef<CXXCtorInitializer*> MemInits,
5800 bool AnyErrors) {
5801 if (!ConstructorDecl)
5802 return;
5803
5804 AdjustDeclIfTemplate(Decl&: ConstructorDecl);
5805
5806 CXXConstructorDecl *Constructor
5807 = dyn_cast<CXXConstructorDecl>(Val: ConstructorDecl);
5808
5809 if (!Constructor) {
5810 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5811 return;
5812 }
5813
5814 // Mapping for the duplicate initializers check.
5815 // For member initializers, this is keyed with a FieldDecl*.
5816 // For base initializers, this is keyed with a Type*.
5817 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5818
5819 // Mapping for the inconsistent anonymous-union initializers check.
5820 RedundantUnionMap MemberUnions;
5821
5822 bool HadError = false;
5823 for (unsigned i = 0; i < MemInits.size(); i++) {
5824 CXXCtorInitializer *Init = MemInits[i];
5825
5826 // Set the source order index.
5827 Init->setSourceOrder(i);
5828
5829 if (Init->isAnyMemberInitializer()) {
5830 const void *Key = GetKeyForMember(Context, Member: Init);
5831 if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key]) ||
5832 CheckRedundantUnionInit(S&: *this, Init, Unions&: MemberUnions))
5833 HadError = true;
5834 } else if (Init->isBaseInitializer()) {
5835 const void *Key = GetKeyForMember(Context, Member: Init);
5836 if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key]))
5837 HadError = true;
5838 } else {
5839 assert(Init->isDelegatingInitializer());
5840 // This must be the only initializer
5841 if (MemInits.size() != 1) {
5842 Diag(Init->getSourceLocation(),
5843 diag::err_delegating_initializer_alone)
5844 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5845 // We will treat this as being the only initializer.
5846 }
5847 SetDelegatingInitializer(Constructor, Initializer: MemInits[i]);
5848 // Return immediately as the initializer is set.
5849 return;
5850 }
5851 }
5852
5853 if (HadError)
5854 return;
5855
5856 DiagnoseBaseOrMemInitializerOrder(SemaRef&: *this, Constructor, Inits: MemInits);
5857
5858 SetCtorInitializers(Constructor, AnyErrors, Initializers: MemInits);
5859
5860 DiagnoseUninitializedFields(SemaRef&: *this, Constructor);
5861}
5862
5863void
5864Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5865 CXXRecordDecl *ClassDecl) {
5866 // Ignore dependent contexts. Also ignore unions, since their members never
5867 // have destructors implicitly called.
5868 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5869 return;
5870
5871 // FIXME: all the access-control diagnostics are positioned on the
5872 // field/base declaration. That's probably good; that said, the
5873 // user might reasonably want to know why the destructor is being
5874 // emitted, and we currently don't say.
5875
5876 // Non-static data members.
5877 for (auto *Field : ClassDecl->fields()) {
5878 if (Field->isInvalidDecl())
5879 continue;
5880
5881 // Don't destroy incomplete or zero-length arrays.
5882 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5883 continue;
5884
5885 QualType FieldType = Context.getBaseElementType(Field->getType());
5886
5887 const RecordType* RT = FieldType->getAs<RecordType>();
5888 if (!RT)
5889 continue;
5890
5891 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5892 if (FieldClassDecl->isInvalidDecl())
5893 continue;
5894 if (FieldClassDecl->hasIrrelevantDestructor())
5895 continue;
5896 // The destructor for an implicit anonymous union member is never invoked.
5897 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5898 continue;
5899
5900 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5901 // Dtor might still be missing, e.g because it's invalid.
5902 if (!Dtor)
5903 continue;
5904 CheckDestructorAccess(Field->getLocation(), Dtor,
5905 PDiag(diag::err_access_dtor_field)
5906 << Field->getDeclName()
5907 << FieldType);
5908
5909 MarkFunctionReferenced(Location, Dtor);
5910 DiagnoseUseOfDecl(Dtor, Location);
5911 }
5912
5913 // We only potentially invoke the destructors of potentially constructed
5914 // subobjects.
5915 bool VisitVirtualBases = !ClassDecl->isAbstract();
5916
5917 // If the destructor exists and has already been marked used in the MS ABI,
5918 // then virtual base destructors have already been checked and marked used.
5919 // Skip checking them again to avoid duplicate diagnostics.
5920 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5921 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5922 if (Dtor && Dtor->isUsed())
5923 VisitVirtualBases = false;
5924 }
5925
5926 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5927
5928 // Bases.
5929 for (const auto &Base : ClassDecl->bases()) {
5930 const RecordType *RT = Base.getType()->getAs<RecordType>();
5931 if (!RT)
5932 continue;
5933
5934 // Remember direct virtual bases.
5935 if (Base.isVirtual()) {
5936 if (!VisitVirtualBases)
5937 continue;
5938 DirectVirtualBases.insert(Ptr: RT);
5939 }
5940
5941 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(Val: RT->getDecl());
5942 // If our base class is invalid, we probably can't get its dtor anyway.
5943 if (BaseClassDecl->isInvalidDecl())
5944 continue;
5945 if (BaseClassDecl->hasIrrelevantDestructor())
5946 continue;
5947
5948 CXXDestructorDecl *Dtor = LookupDestructor(Class: BaseClassDecl);
5949 // Dtor might still be missing, e.g because it's invalid.
5950 if (!Dtor)
5951 continue;
5952
5953 // FIXME: caret should be on the start of the class name
5954 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5955 PDiag(diag::err_access_dtor_base)
5956 << Base.getType() << Base.getSourceRange(),
5957 Context.getTypeDeclType(ClassDecl));
5958
5959 MarkFunctionReferenced(Location, Dtor);
5960 DiagnoseUseOfDecl(Dtor, Location);
5961 }
5962
5963 if (VisitVirtualBases)
5964 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5965 DirectVirtualBases: &DirectVirtualBases);
5966}
5967
5968void Sema::MarkVirtualBaseDestructorsReferenced(
5969 SourceLocation Location, CXXRecordDecl *ClassDecl,
5970 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5971 // Virtual bases.
5972 for (const auto &VBase : ClassDecl->vbases()) {
5973 // Bases are always records in a well-formed non-dependent class.
5974 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5975
5976 // Ignore already visited direct virtual bases.
5977 if (DirectVirtualBases && DirectVirtualBases->count(Ptr: RT))
5978 continue;
5979
5980 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(Val: RT->getDecl());
5981 // If our base class is invalid, we probably can't get its dtor anyway.
5982 if (BaseClassDecl->isInvalidDecl())
5983 continue;
5984 if (BaseClassDecl->hasIrrelevantDestructor())
5985 continue;
5986
5987 CXXDestructorDecl *Dtor = LookupDestructor(Class: BaseClassDecl);
5988 // Dtor might still be missing, e.g because it's invalid.
5989 if (!Dtor)
5990 continue;
5991 if (CheckDestructorAccess(
5992 ClassDecl->getLocation(), Dtor,
5993 PDiag(diag::err_access_dtor_vbase)
5994 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5995 Context.getTypeDeclType(ClassDecl)) ==
5996 AR_accessible) {
5997 CheckDerivedToBaseConversion(
5998 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5999 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
6000 SourceRange(), DeclarationName(), nullptr);
6001 }
6002
6003 MarkFunctionReferenced(Location, Dtor);
6004 DiagnoseUseOfDecl(Dtor, Location);
6005 }
6006}
6007
6008void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
6009 if (!CDtorDecl)
6010 return;
6011
6012 if (CXXConstructorDecl *Constructor
6013 = dyn_cast<CXXConstructorDecl>(Val: CDtorDecl)) {
6014 if (CXXRecordDecl *ClassDecl = Constructor->getParent();
6015 !ClassDecl || ClassDecl->isInvalidDecl()) {
6016 return;
6017 }
6018 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
6019 DiagnoseUninitializedFields(SemaRef&: *this, Constructor);
6020 }
6021}
6022
6023bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
6024 if (!getLangOpts().CPlusPlus)
6025 return false;
6026
6027 const auto *RD = Context.getBaseElementType(QT: T)->getAsCXXRecordDecl();
6028 if (!RD)
6029 return false;
6030
6031 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
6032 // class template specialization here, but doing so breaks a lot of code.
6033
6034 // We can't answer whether something is abstract until it has a
6035 // definition. If it's currently being defined, we'll walk back
6036 // over all the declarations when we have a full definition.
6037 const CXXRecordDecl *Def = RD->getDefinition();
6038 if (!Def || Def->isBeingDefined())
6039 return false;
6040
6041 return RD->isAbstract();
6042}
6043
6044bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
6045 TypeDiagnoser &Diagnoser) {
6046 if (!isAbstractType(Loc, T))
6047 return false;
6048
6049 T = Context.getBaseElementType(QT: T);
6050 Diagnoser.diagnose(S&: *this, Loc, T);
6051 DiagnoseAbstractType(RD: T->getAsCXXRecordDecl());
6052 return true;
6053}
6054
6055void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
6056 // Check if we've already emitted the list of pure virtual functions
6057 // for this class.
6058 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(Ptr: RD))
6059 return;
6060
6061 // If the diagnostic is suppressed, don't emit the notes. We're only
6062 // going to emit them once, so try to attach them to a diagnostic we're
6063 // actually going to show.
6064 if (Diags.isLastDiagnosticIgnored())
6065 return;
6066
6067 CXXFinalOverriderMap FinalOverriders;
6068 RD->getFinalOverriders(FinaOverriders&: FinalOverriders);
6069
6070 // Keep a set of seen pure methods so we won't diagnose the same method
6071 // more than once.
6072 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
6073
6074 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
6075 MEnd = FinalOverriders.end();
6076 M != MEnd;
6077 ++M) {
6078 for (OverridingMethods::iterator SO = M->second.begin(),
6079 SOEnd = M->second.end();
6080 SO != SOEnd; ++SO) {
6081 // C++ [class.abstract]p4:
6082 // A class is abstract if it contains or inherits at least one
6083 // pure virtual function for which the final overrider is pure
6084 // virtual.
6085
6086 //
6087 if (SO->second.size() != 1)
6088 continue;
6089
6090 if (!SO->second.front().Method->isPureVirtual())
6091 continue;
6092
6093 if (!SeenPureMethods.insert(Ptr: SO->second.front().Method).second)
6094 continue;
6095
6096 Diag(SO->second.front().Method->getLocation(),
6097 diag::note_pure_virtual_function)
6098 << SO->second.front().Method->getDeclName() << RD->getDeclName();
6099 }
6100 }
6101
6102 if (!PureVirtualClassDiagSet)
6103 PureVirtualClassDiagSet.reset(p: new RecordDeclSetTy);
6104 PureVirtualClassDiagSet->insert(Ptr: RD);
6105}
6106
6107namespace {
6108struct AbstractUsageInfo {
6109 Sema &S;
6110 CXXRecordDecl *Record;
6111 CanQualType AbstractType;
6112 bool Invalid;
6113
6114 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
6115 : S(S), Record(Record),
6116 AbstractType(S.Context.getCanonicalType(
6117 S.Context.getTypeDeclType(Record))),
6118 Invalid(false) {}
6119
6120 void DiagnoseAbstractType() {
6121 if (Invalid) return;
6122 S.DiagnoseAbstractType(RD: Record);
6123 Invalid = true;
6124 }
6125
6126 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
6127};
6128
6129struct CheckAbstractUsage {
6130 AbstractUsageInfo &Info;
6131 const NamedDecl *Ctx;
6132
6133 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
6134 : Info(Info), Ctx(Ctx) {}
6135
6136 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
6137 switch (TL.getTypeLocClass()) {
6138#define ABSTRACT_TYPELOC(CLASS, PARENT)
6139#define TYPELOC(CLASS, PARENT) \
6140 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
6141#include "clang/AST/TypeLocNodes.def"
6142 }
6143 }
6144
6145 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6146 Visit(TL: TL.getReturnLoc(), Sel: Sema::AbstractReturnType);
6147 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
6148 if (!TL.getParam(I))
6149 continue;
6150
6151 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
6152 if (TSI) Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractParamType);
6153 }
6154 }
6155
6156 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6157 Visit(TL: TL.getElementLoc(), Sel: Sema::AbstractArrayType);
6158 }
6159
6160 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
6161 // Visit the type parameters from a permissive context.
6162 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
6163 TemplateArgumentLoc TAL = TL.getArgLoc(i: I);
6164 if (TAL.getArgument().getKind() == TemplateArgument::Type)
6165 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
6166 Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractNone);
6167 // TODO: other template argument types?
6168 }
6169 }
6170
6171 // Visit pointee types from a permissive context.
6172#define CheckPolymorphic(Type) \
6173 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
6174 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
6175 }
6176 CheckPolymorphic(PointerTypeLoc)
6177 CheckPolymorphic(ReferenceTypeLoc)
6178 CheckPolymorphic(MemberPointerTypeLoc)
6179 CheckPolymorphic(BlockPointerTypeLoc)
6180 CheckPolymorphic(AtomicTypeLoc)
6181
6182 /// Handle all the types we haven't given a more specific
6183 /// implementation for above.
6184 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
6185 // Every other kind of type that we haven't called out already
6186 // that has an inner type is either (1) sugar or (2) contains that
6187 // inner type in some way as a subobject.
6188 if (TypeLoc Next = TL.getNextTypeLoc())
6189 return Visit(TL: Next, Sel);
6190
6191 // If there's no inner type and we're in a permissive context,
6192 // don't diagnose.
6193 if (Sel == Sema::AbstractNone) return;
6194
6195 // Check whether the type matches the abstract type.
6196 QualType T = TL.getType();
6197 if (T->isArrayType()) {
6198 Sel = Sema::AbstractArrayType;
6199 T = Info.S.Context.getBaseElementType(QT: T);
6200 }
6201 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
6202 if (CT != Info.AbstractType) return;
6203
6204 // It matched; do some magic.
6205 // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646.
6206 if (Sel == Sema::AbstractArrayType) {
6207 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
6208 << T << TL.getSourceRange();
6209 } else {
6210 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
6211 << Sel << T << TL.getSourceRange();
6212 }
6213 Info.DiagnoseAbstractType();
6214 }
6215};
6216
6217void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
6218 Sema::AbstractDiagSelID Sel) {
6219 CheckAbstractUsage(*this, D).Visit(TL, Sel);
6220}
6221
6222}
6223
6224/// Check for invalid uses of an abstract type in a function declaration.
6225static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6226 FunctionDecl *FD) {
6227 // Only definitions are required to refer to complete and
6228 // non-abstract types.
6229 if (!FD->doesThisDeclarationHaveABody())
6230 return;
6231
6232 // For safety's sake, just ignore it if we don't have type source
6233 // information. This should never happen for non-implicit methods,
6234 // but...
6235 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6236 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone);
6237}
6238
6239/// Check for invalid uses of an abstract type in a variable0 declaration.
6240static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6241 VarDecl *VD) {
6242 // No need to do the check on definitions, which require that
6243 // the type is complete.
6244 if (VD->isThisDeclarationADefinition())
6245 return;
6246
6247 Info.CheckType(D: VD, TL: VD->getTypeSourceInfo()->getTypeLoc(),
6248 Sel: Sema::AbstractVariableType);
6249}
6250
6251/// Check for invalid uses of an abstract type within a class definition.
6252static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
6253 CXXRecordDecl *RD) {
6254 for (auto *D : RD->decls()) {
6255 if (D->isImplicit()) continue;
6256
6257 // Step through friends to the befriended declaration.
6258 if (auto *FD = dyn_cast<FriendDecl>(D)) {
6259 D = FD->getFriendDecl();
6260 if (!D) continue;
6261 }
6262
6263 // Functions and function templates.
6264 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
6265 CheckAbstractClassUsage(Info, FD);
6266 } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) {
6267 CheckAbstractClassUsage(Info, FTD->getTemplatedDecl());
6268
6269 // Fields and static variables.
6270 } else if (auto *FD = dyn_cast<FieldDecl>(D)) {
6271 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
6272 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
6273 } else if (auto *VD = dyn_cast<VarDecl>(D)) {
6274 CheckAbstractClassUsage(Info, VD);
6275 } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) {
6276 CheckAbstractClassUsage(Info, VTD->getTemplatedDecl());
6277
6278 // Nested classes and class templates.
6279 } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
6280 CheckAbstractClassUsage(Info, RD);
6281 } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) {
6282 CheckAbstractClassUsage(Info, CTD->getTemplatedDecl());
6283 }
6284 }
6285}
6286
6287static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
6288 Attr *ClassAttr = getDLLAttr(Class);
6289 if (!ClassAttr)
6290 return;
6291
6292 assert(ClassAttr->getKind() == attr::DLLExport);
6293
6294 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6295
6296 if (TSK == TSK_ExplicitInstantiationDeclaration)
6297 // Don't go any further if this is just an explicit instantiation
6298 // declaration.
6299 return;
6300
6301 // Add a context note to explain how we got to any diagnostics produced below.
6302 struct MarkingClassDllexported {
6303 Sema &S;
6304 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
6305 SourceLocation AttrLoc)
6306 : S(S) {
6307 Sema::CodeSynthesisContext Ctx;
6308 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
6309 Ctx.PointOfInstantiation = AttrLoc;
6310 Ctx.Entity = Class;
6311 S.pushCodeSynthesisContext(Ctx);
6312 }
6313 ~MarkingClassDllexported() {
6314 S.popCodeSynthesisContext();
6315 }
6316 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
6317
6318 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
6319 S.MarkVTableUsed(Loc: Class->getLocation(), Class, DefinitionRequired: true);
6320
6321 for (Decl *Member : Class->decls()) {
6322 // Skip members that were not marked exported.
6323 if (!Member->hasAttr<DLLExportAttr>())
6324 continue;
6325
6326 // Defined static variables that are members of an exported base
6327 // class must be marked export too.
6328 auto *VD = dyn_cast<VarDecl>(Member);
6329 if (VD && VD->getStorageClass() == SC_Static &&
6330 TSK == TSK_ImplicitInstantiation)
6331 S.MarkVariableReferenced(VD->getLocation(), VD);
6332
6333 auto *MD = dyn_cast<CXXMethodDecl>(Member);
6334 if (!MD)
6335 continue;
6336
6337 if (MD->isUserProvided()) {
6338 // Instantiate non-default class member functions ...
6339
6340 // .. except for certain kinds of template specializations.
6341 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
6342 continue;
6343
6344 // If this is an MS ABI dllexport default constructor, instantiate any
6345 // default arguments.
6346 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
6347 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6348 if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) {
6349 S.InstantiateDefaultCtorDefaultArgs(CD);
6350 }
6351 }
6352
6353 S.MarkFunctionReferenced(Class->getLocation(), MD);
6354
6355 // The function will be passed to the consumer when its definition is
6356 // encountered.
6357 } else if (MD->isExplicitlyDefaulted()) {
6358 // Synthesize and instantiate explicitly defaulted methods.
6359 S.MarkFunctionReferenced(Class->getLocation(), MD);
6360
6361 if (TSK != TSK_ExplicitInstantiationDefinition) {
6362 // Except for explicit instantiation defs, we will not see the
6363 // definition again later, so pass it to the consumer now.
6364 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6365 }
6366 } else if (!MD->isTrivial() ||
6367 MD->isCopyAssignmentOperator() ||
6368 MD->isMoveAssignmentOperator()) {
6369 // Synthesize and instantiate non-trivial implicit methods, and the copy
6370 // and move assignment operators. The latter are exported even if they
6371 // are trivial, because the address of an operator can be taken and
6372 // should compare equal across libraries.
6373 S.MarkFunctionReferenced(Class->getLocation(), MD);
6374
6375 // There is no later point when we will see the definition of this
6376 // function, so pass it to the consumer now.
6377 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
6378 }
6379 }
6380}
6381
6382static void checkForMultipleExportedDefaultConstructors(Sema &S,
6383 CXXRecordDecl *Class) {
6384 // Only the MS ABI has default constructor closures, so we don't need to do
6385 // this semantic checking anywhere else.
6386 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6387 return;
6388
6389 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6390 for (Decl *Member : Class->decls()) {
6391 // Look for exported default constructors.
6392 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6393 if (!CD || !CD->isDefaultConstructor())
6394 continue;
6395 auto *Attr = CD->getAttr<DLLExportAttr>();
6396 if (!Attr)
6397 continue;
6398
6399 // If the class is non-dependent, mark the default arguments as ODR-used so
6400 // that we can properly codegen the constructor closure.
6401 if (!Class->isDependentContext()) {
6402 for (ParmVarDecl *PD : CD->parameters()) {
6403 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6404 S.DiscardCleanupsInEvaluationContext();
6405 }
6406 }
6407
6408 if (LastExportedDefaultCtor) {
6409 S.Diag(LastExportedDefaultCtor->getLocation(),
6410 diag::err_attribute_dll_ambiguous_default_ctor)
6411 << Class;
6412 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6413 << CD->getDeclName();
6414 return;
6415 }
6416 LastExportedDefaultCtor = CD;
6417 }
6418}
6419
6420static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6421 CXXRecordDecl *Class) {
6422 bool ErrorReported = false;
6423 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6424 ClassTemplateDecl *TD) {
6425 if (ErrorReported)
6426 return;
6427 S.Diag(TD->getLocation(),
6428 diag::err_cuda_device_builtin_surftex_cls_template)
6429 << /*surface*/ 0 << TD;
6430 ErrorReported = true;
6431 };
6432
6433 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6434 if (!TD) {
6435 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class);
6436 if (!SD) {
6437 S.Diag(Class->getLocation(),
6438 diag::err_cuda_device_builtin_surftex_ref_decl)
6439 << /*surface*/ 0 << Class;
6440 S.Diag(Class->getLocation(),
6441 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6442 << Class;
6443 return;
6444 }
6445 TD = SD->getSpecializedTemplate();
6446 }
6447
6448 TemplateParameterList *Params = TD->getTemplateParameters();
6449 unsigned N = Params->size();
6450
6451 if (N != 2) {
6452 reportIllegalClassTemplate(S, TD);
6453 S.Diag(TD->getLocation(),
6454 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6455 << TD << 2;
6456 }
6457 if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) {
6458 reportIllegalClassTemplate(S, TD);
6459 S.Diag(TD->getLocation(),
6460 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6461 << TD << /*1st*/ 0 << /*type*/ 0;
6462 }
6463 if (N > 1) {
6464 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1));
6465 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6466 reportIllegalClassTemplate(S, TD);
6467 S.Diag(TD->getLocation(),
6468 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6469 << TD << /*2nd*/ 1 << /*integer*/ 1;
6470 }
6471 }
6472}
6473
6474static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6475 CXXRecordDecl *Class) {
6476 bool ErrorReported = false;
6477 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6478 ClassTemplateDecl *TD) {
6479 if (ErrorReported)
6480 return;
6481 S.Diag(TD->getLocation(),
6482 diag::err_cuda_device_builtin_surftex_cls_template)
6483 << /*texture*/ 1 << TD;
6484 ErrorReported = true;
6485 };
6486
6487 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6488 if (!TD) {
6489 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class);
6490 if (!SD) {
6491 S.Diag(Class->getLocation(),
6492 diag::err_cuda_device_builtin_surftex_ref_decl)
6493 << /*texture*/ 1 << Class;
6494 S.Diag(Class->getLocation(),
6495 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6496 << Class;
6497 return;
6498 }
6499 TD = SD->getSpecializedTemplate();
6500 }
6501
6502 TemplateParameterList *Params = TD->getTemplateParameters();
6503 unsigned N = Params->size();
6504
6505 if (N != 3) {
6506 reportIllegalClassTemplate(S, TD);
6507 S.Diag(TD->getLocation(),
6508 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6509 << TD << 3;
6510 }
6511 if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) {
6512 reportIllegalClassTemplate(S, TD);
6513 S.Diag(TD->getLocation(),
6514 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6515 << TD << /*1st*/ 0 << /*type*/ 0;
6516 }
6517 if (N > 1) {
6518 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1));
6519 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6520 reportIllegalClassTemplate(S, TD);
6521 S.Diag(TD->getLocation(),
6522 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6523 << TD << /*2nd*/ 1 << /*integer*/ 1;
6524 }
6525 }
6526 if (N > 2) {
6527 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 2));
6528 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6529 reportIllegalClassTemplate(S, TD);
6530 S.Diag(TD->getLocation(),
6531 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6532 << TD << /*3rd*/ 2 << /*integer*/ 1;
6533 }
6534 }
6535}
6536
6537void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6538 // Mark any compiler-generated routines with the implicit code_seg attribute.
6539 for (auto *Method : Class->methods()) {
6540 if (Method->isUserProvided())
6541 continue;
6542 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6543 Method->addAttr(A);
6544 }
6545}
6546
6547/// Check class-level dllimport/dllexport attribute.
6548void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6549 Attr *ClassAttr = getDLLAttr(Class);
6550
6551 // MSVC inherits DLL attributes to partial class template specializations.
6552 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6553 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Class)) {
6554 if (Attr *TemplateAttr =
6555 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6556 auto *A = cast<InheritableAttr>(Val: TemplateAttr->clone(C&: getASTContext()));
6557 A->setInherited(true);
6558 ClassAttr = A;
6559 }
6560 }
6561 }
6562
6563 if (!ClassAttr)
6564 return;
6565
6566 // MSVC allows imported or exported template classes that have UniqueExternal
6567 // linkage. This occurs when the template class has been instantiated with
6568 // a template parameter which itself has internal linkage.
6569 // We drop the attribute to avoid exporting or importing any members.
6570 if ((Context.getTargetInfo().getCXXABI().isMicrosoft() ||
6571 Context.getTargetInfo().getTriple().isPS()) &&
6572 (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) {
6573 Class->dropAttrs<DLLExportAttr, DLLImportAttr>();
6574 return;
6575 }
6576
6577 if (!Class->isExternallyVisible()) {
6578 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6579 << Class << ClassAttr;
6580 return;
6581 }
6582
6583 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6584 !ClassAttr->isInherited()) {
6585 // Diagnose dll attributes on members of class with dll attribute.
6586 for (Decl *Member : Class->decls()) {
6587 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6588 continue;
6589 InheritableAttr *MemberAttr = getDLLAttr(Member);
6590 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6591 continue;
6592
6593 Diag(MemberAttr->getLocation(),
6594 diag::err_attribute_dll_member_of_dll_class)
6595 << MemberAttr << ClassAttr;
6596 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6597 Member->setInvalidDecl();
6598 }
6599 }
6600
6601 if (Class->getDescribedClassTemplate())
6602 // Don't inherit dll attribute until the template is instantiated.
6603 return;
6604
6605 // The class is either imported or exported.
6606 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6607
6608 // Check if this was a dllimport attribute propagated from a derived class to
6609 // a base class template specialization. We don't apply these attributes to
6610 // static data members.
6611 const bool PropagatedImport =
6612 !ClassExported &&
6613 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6614
6615 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6616
6617 // Ignore explicit dllexport on explicit class template instantiation
6618 // declarations, except in MinGW mode.
6619 if (ClassExported && !ClassAttr->isInherited() &&
6620 TSK == TSK_ExplicitInstantiationDeclaration &&
6621 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6622 Class->dropAttr<DLLExportAttr>();
6623 return;
6624 }
6625
6626 // Force declaration of implicit members so they can inherit the attribute.
6627 ForceDeclarationOfImplicitMembers(Class);
6628
6629 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6630 // seem to be true in practice?
6631
6632 for (Decl *Member : Class->decls()) {
6633 VarDecl *VD = dyn_cast<VarDecl>(Member);
6634 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6635
6636 // Only methods and static fields inherit the attributes.
6637 if (!VD && !MD)
6638 continue;
6639
6640 if (MD) {
6641 // Don't process deleted methods.
6642 if (MD->isDeleted())
6643 continue;
6644
6645 if (MD->isInlined()) {
6646 // MinGW does not import or export inline methods. But do it for
6647 // template instantiations.
6648 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6649 TSK != TSK_ExplicitInstantiationDeclaration &&
6650 TSK != TSK_ExplicitInstantiationDefinition)
6651 continue;
6652
6653 // MSVC versions before 2015 don't export the move assignment operators
6654 // and move constructor, so don't attempt to import/export them if
6655 // we have a definition.
6656 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6657 if ((MD->isMoveAssignmentOperator() ||
6658 (Ctor && Ctor->isMoveConstructor())) &&
6659 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6660 continue;
6661
6662 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6663 // operator is exported anyway.
6664 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6665 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6666 continue;
6667 }
6668 }
6669
6670 // Don't apply dllimport attributes to static data members of class template
6671 // instantiations when the attribute is propagated from a derived class.
6672 if (VD && PropagatedImport)
6673 continue;
6674
6675 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6676 continue;
6677
6678 if (!getDLLAttr(Member)) {
6679 InheritableAttr *NewAttr = nullptr;
6680
6681 // Do not export/import inline function when -fno-dllexport-inlines is
6682 // passed. But add attribute for later local static var check.
6683 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6684 TSK != TSK_ExplicitInstantiationDeclaration &&
6685 TSK != TSK_ExplicitInstantiationDefinition) {
6686 if (ClassExported) {
6687 NewAttr = ::new (getASTContext())
6688 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6689 } else {
6690 NewAttr = ::new (getASTContext())
6691 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6692 }
6693 } else {
6694 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6695 }
6696
6697 NewAttr->setInherited(true);
6698 Member->addAttr(NewAttr);
6699
6700 if (MD) {
6701 // Propagate DLLAttr to friend re-declarations of MD that have already
6702 // been constructed.
6703 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6704 FD = FD->getPreviousDecl()) {
6705 if (FD->getFriendObjectKind() == Decl::FOK_None)
6706 continue;
6707 assert(!getDLLAttr(FD) &&
6708 "friend re-decl should not already have a DLLAttr");
6709 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6710 NewAttr->setInherited(true);
6711 FD->addAttr(NewAttr);
6712 }
6713 }
6714 }
6715 }
6716
6717 if (ClassExported)
6718 DelayedDllExportClasses.push_back(Elt: Class);
6719}
6720
6721/// Perform propagation of DLL attributes from a derived class to a
6722/// templated base class for MS compatibility.
6723void Sema::propagateDLLAttrToBaseClassTemplate(
6724 CXXRecordDecl *Class, Attr *ClassAttr,
6725 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6726 if (getDLLAttr(
6727 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6728 // If the base class template has a DLL attribute, don't try to change it.
6729 return;
6730 }
6731
6732 auto TSK = BaseTemplateSpec->getSpecializationKind();
6733 if (!getDLLAttr(BaseTemplateSpec) &&
6734 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6735 TSK == TSK_ImplicitInstantiation)) {
6736 // The template hasn't been instantiated yet (or it has, but only as an
6737 // explicit instantiation declaration or implicit instantiation, which means
6738 // we haven't codegenned any members yet), so propagate the attribute.
6739 auto *NewAttr = cast<InheritableAttr>(Val: ClassAttr->clone(C&: getASTContext()));
6740 NewAttr->setInherited(true);
6741 BaseTemplateSpec->addAttr(NewAttr);
6742
6743 // If this was an import, mark that we propagated it from a derived class to
6744 // a base class template specialization.
6745 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6746 ImportAttr->setPropagatedToBaseTemplate();
6747
6748 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6749 // needs to be run again to work see the new attribute. Otherwise this will
6750 // get run whenever the template is instantiated.
6751 if (TSK != TSK_Undeclared)
6752 checkClassLevelDLLAttribute(BaseTemplateSpec);
6753
6754 return;
6755 }
6756
6757 if (getDLLAttr(BaseTemplateSpec)) {
6758 // The template has already been specialized or instantiated with an
6759 // attribute, explicitly or through propagation. We should not try to change
6760 // it.
6761 return;
6762 }
6763
6764 // The template was previously instantiated or explicitly specialized without
6765 // a dll attribute, It's too late for us to add an attribute, so warn that
6766 // this is unsupported.
6767 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6768 << BaseTemplateSpec->isExplicitSpecialization();
6769 Diag(ClassAttr->getLocation(), diag::note_attribute);
6770 if (BaseTemplateSpec->isExplicitSpecialization()) {
6771 Diag(BaseTemplateSpec->getLocation(),
6772 diag::note_template_class_explicit_specialization_was_here)
6773 << BaseTemplateSpec;
6774 } else {
6775 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6776 diag::note_template_class_instantiation_was_here)
6777 << BaseTemplateSpec;
6778 }
6779}
6780
6781/// Determine the kind of defaulting that would be done for a given function.
6782///
6783/// If the function is both a default constructor and a copy / move constructor
6784/// (due to having a default argument for the first parameter), this picks
6785/// CXXSpecialMemberKind::DefaultConstructor.
6786///
6787/// FIXME: Check that case is properly handled by all callers.
6788Sema::DefaultedFunctionKind
6789Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6790 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
6791 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD)) {
6792 if (Ctor->isDefaultConstructor())
6793 return CXXSpecialMemberKind::DefaultConstructor;
6794
6795 if (Ctor->isCopyConstructor())
6796 return CXXSpecialMemberKind::CopyConstructor;
6797
6798 if (Ctor->isMoveConstructor())
6799 return CXXSpecialMemberKind::MoveConstructor;
6800 }
6801
6802 if (MD->isCopyAssignmentOperator())
6803 return CXXSpecialMemberKind::CopyAssignment;
6804
6805 if (MD->isMoveAssignmentOperator())
6806 return CXXSpecialMemberKind::MoveAssignment;
6807
6808 if (isa<CXXDestructorDecl>(Val: FD))
6809 return CXXSpecialMemberKind::Destructor;
6810 }
6811
6812 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6813 case OO_EqualEqual:
6814 return DefaultedComparisonKind::Equal;
6815
6816 case OO_ExclaimEqual:
6817 return DefaultedComparisonKind::NotEqual;
6818
6819 case OO_Spaceship:
6820 // No point allowing this if <=> doesn't exist in the current language mode.
6821 if (!getLangOpts().CPlusPlus20)
6822 break;
6823 return DefaultedComparisonKind::ThreeWay;
6824
6825 case OO_Less:
6826 case OO_LessEqual:
6827 case OO_Greater:
6828 case OO_GreaterEqual:
6829 // No point allowing this if <=> doesn't exist in the current language mode.
6830 if (!getLangOpts().CPlusPlus20)
6831 break;
6832 return DefaultedComparisonKind::Relational;
6833
6834 default:
6835 break;
6836 }
6837
6838 // Not defaultable.
6839 return DefaultedFunctionKind();
6840}
6841
6842static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6843 SourceLocation DefaultLoc) {
6844 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6845 if (DFK.isComparison())
6846 return S.DefineDefaultedComparison(Loc: DefaultLoc, FD, DCK: DFK.asComparison());
6847
6848 switch (DFK.asSpecialMember()) {
6849 case CXXSpecialMemberKind::DefaultConstructor:
6850 S.DefineImplicitDefaultConstructor(CurrentLocation: DefaultLoc,
6851 Constructor: cast<CXXConstructorDecl>(Val: FD));
6852 break;
6853 case CXXSpecialMemberKind::CopyConstructor:
6854 S.DefineImplicitCopyConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD));
6855 break;
6856 case CXXSpecialMemberKind::CopyAssignment:
6857 S.DefineImplicitCopyAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD));
6858 break;
6859 case CXXSpecialMemberKind::Destructor:
6860 S.DefineImplicitDestructor(CurrentLocation: DefaultLoc, Destructor: cast<CXXDestructorDecl>(Val: FD));
6861 break;
6862 case CXXSpecialMemberKind::MoveConstructor:
6863 S.DefineImplicitMoveConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD));
6864 break;
6865 case CXXSpecialMemberKind::MoveAssignment:
6866 S.DefineImplicitMoveAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD));
6867 break;
6868 case CXXSpecialMemberKind::Invalid:
6869 llvm_unreachable("Invalid special member.");
6870 }
6871}
6872
6873/// Determine whether a type is permitted to be passed or returned in
6874/// registers, per C++ [class.temporary]p3.
6875static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6876 TargetInfo::CallingConvKind CCK) {
6877 if (D->isDependentType() || D->isInvalidDecl())
6878 return false;
6879
6880 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6881 // The PS4 platform ABI follows the behavior of Clang 3.2.
6882 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6883 return !D->hasNonTrivialDestructorForCall() &&
6884 !D->hasNonTrivialCopyConstructorForCall();
6885
6886 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6887 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6888 bool DtorIsTrivialForCall = false;
6889
6890 // If a class has at least one eligible, trivial copy constructor, it
6891 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6892 //
6893 // Note: This permits classes with non-trivial copy or move ctors to be
6894 // passed in registers, so long as they *also* have a trivial copy ctor,
6895 // which is non-conforming.
6896 if (D->needsImplicitCopyConstructor()) {
6897 if (!D->defaultedCopyConstructorIsDeleted()) {
6898 if (D->hasTrivialCopyConstructor())
6899 CopyCtorIsTrivial = true;
6900 if (D->hasTrivialCopyConstructorForCall())
6901 CopyCtorIsTrivialForCall = true;
6902 }
6903 } else {
6904 for (const CXXConstructorDecl *CD : D->ctors()) {
6905 if (CD->isCopyConstructor() && !CD->isDeleted() &&
6906 !CD->isIneligibleOrNotSelected()) {
6907 if (CD->isTrivial())
6908 CopyCtorIsTrivial = true;
6909 if (CD->isTrivialForCall())
6910 CopyCtorIsTrivialForCall = true;
6911 }
6912 }
6913 }
6914
6915 if (D->needsImplicitDestructor()) {
6916 if (!D->defaultedDestructorIsDeleted() &&
6917 D->hasTrivialDestructorForCall())
6918 DtorIsTrivialForCall = true;
6919 } else if (const auto *DD = D->getDestructor()) {
6920 if (!DD->isDeleted() && DD->isTrivialForCall())
6921 DtorIsTrivialForCall = true;
6922 }
6923
6924 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6925 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6926 return true;
6927
6928 // If a class has a destructor, we'd really like to pass it indirectly
6929 // because it allows us to elide copies. Unfortunately, MSVC makes that
6930 // impossible for small types, which it will pass in a single register or
6931 // stack slot. Most objects with dtors are large-ish, so handle that early.
6932 // We can't call out all large objects as being indirect because there are
6933 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6934 // how we pass large POD types.
6935
6936 // Note: This permits small classes with nontrivial destructors to be
6937 // passed in registers, which is non-conforming.
6938 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6939 uint64_t TypeSize = isAArch64 ? 128 : 64;
6940
6941 if (CopyCtorIsTrivial &&
6942 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6943 return true;
6944 return false;
6945 }
6946
6947 // Per C++ [class.temporary]p3, the relevant condition is:
6948 // each copy constructor, move constructor, and destructor of X is
6949 // either trivial or deleted, and X has at least one non-deleted copy
6950 // or move constructor
6951 bool HasNonDeletedCopyOrMove = false;
6952
6953 if (D->needsImplicitCopyConstructor() &&
6954 !D->defaultedCopyConstructorIsDeleted()) {
6955 if (!D->hasTrivialCopyConstructorForCall())
6956 return false;
6957 HasNonDeletedCopyOrMove = true;
6958 }
6959
6960 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6961 !D->defaultedMoveConstructorIsDeleted()) {
6962 if (!D->hasTrivialMoveConstructorForCall())
6963 return false;
6964 HasNonDeletedCopyOrMove = true;
6965 }
6966
6967 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6968 !D->hasTrivialDestructorForCall())
6969 return false;
6970
6971 for (const CXXMethodDecl *MD : D->methods()) {
6972 if (MD->isDeleted() || MD->isIneligibleOrNotSelected())
6973 continue;
6974
6975 auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD);
6976 if (CD && CD->isCopyOrMoveConstructor())
6977 HasNonDeletedCopyOrMove = true;
6978 else if (!isa<CXXDestructorDecl>(Val: MD))
6979 continue;
6980
6981 if (!MD->isTrivialForCall())
6982 return false;
6983 }
6984
6985 return HasNonDeletedCopyOrMove;
6986}
6987
6988/// Report an error regarding overriding, along with any relevant
6989/// overridden methods.
6990///
6991/// \param DiagID the primary error to report.
6992/// \param MD the overriding method.
6993static bool
6994ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6995 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6996 bool IssuedDiagnostic = false;
6997 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6998 if (Report(O)) {
6999 if (!IssuedDiagnostic) {
7000 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7001 IssuedDiagnostic = true;
7002 }
7003 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7004 }
7005 }
7006 return IssuedDiagnostic;
7007}
7008
7009/// Perform semantic checks on a class definition that has been
7010/// completing, introducing implicitly-declared members, checking for
7011/// abstract types, etc.
7012///
7013/// \param S The scope in which the class was parsed. Null if we didn't just
7014/// parse a class definition.
7015/// \param Record The completed class.
7016void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
7017 if (!Record)
7018 return;
7019
7020 if (Record->isAbstract() && !Record->isInvalidDecl()) {
7021 AbstractUsageInfo Info(*this, Record);
7022 CheckAbstractClassUsage(Info, RD: Record);
7023 }
7024
7025 // If this is not an aggregate type and has no user-declared constructor,
7026 // complain about any non-static data members of reference or const scalar
7027 // type, since they will never get initializers.
7028 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
7029 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
7030 !Record->isLambda()) {
7031 bool Complained = false;
7032 for (const auto *F : Record->fields()) {
7033 if (F->hasInClassInitializer() || F->isUnnamedBitField())
7034 continue;
7035
7036 if (F->getType()->isReferenceType() ||
7037 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
7038 if (!Complained) {
7039 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
7040 << llvm::to_underlying(Record->getTagKind()) << Record;
7041 Complained = true;
7042 }
7043
7044 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
7045 << F->getType()->isReferenceType()
7046 << F->getDeclName();
7047 }
7048 }
7049 }
7050
7051 if (Record->getIdentifier()) {
7052 // C++ [class.mem]p13:
7053 // If T is the name of a class, then each of the following shall have a
7054 // name different from T:
7055 // - every member of every anonymous union that is a member of class T.
7056 //
7057 // C++ [class.mem]p14:
7058 // In addition, if class T has a user-declared constructor (12.1), every
7059 // non-static data member of class T shall have a name different from T.
7060 DeclContext::lookup_result R = Record->lookup(Name: Record->getDeclName());
7061 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
7062 ++I) {
7063 NamedDecl *D = (*I)->getUnderlyingDecl();
7064 if (((isa<FieldDecl>(Val: D) || isa<UnresolvedUsingValueDecl>(Val: D)) &&
7065 Record->hasUserDeclaredConstructor()) ||
7066 isa<IndirectFieldDecl>(Val: D)) {
7067 Diag((*I)->getLocation(), diag::err_member_name_of_class)
7068 << D->getDeclName();
7069 break;
7070 }
7071 }
7072 }
7073
7074 // Warn if the class has virtual methods but non-virtual public destructor.
7075 if (Record->isPolymorphic() && !Record->isDependentType()) {
7076 CXXDestructorDecl *dtor = Record->getDestructor();
7077 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
7078 !Record->hasAttr<FinalAttr>())
7079 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
7080 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
7081 }
7082
7083 if (Record->isAbstract()) {
7084 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
7085 Diag(Record->getLocation(), diag::warn_abstract_final_class)
7086 << FA->isSpelledAsSealed();
7087 DiagnoseAbstractType(RD: Record);
7088 }
7089 }
7090
7091 // Warn if the class has a final destructor but is not itself marked final.
7092 if (!Record->hasAttr<FinalAttr>()) {
7093 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
7094 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
7095 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
7096 << FA->isSpelledAsSealed()
7097 << FixItHint::CreateInsertion(
7098 getLocForEndOfToken(Record->getLocation()),
7099 (FA->isSpelledAsSealed() ? " sealed" : " final"));
7100 Diag(Record->getLocation(),
7101 diag::note_final_dtor_non_final_class_silence)
7102 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
7103 }
7104 }
7105 }
7106
7107 // See if trivial_abi has to be dropped.
7108 if (Record->hasAttr<TrivialABIAttr>())
7109 checkIllFormedTrivialABIStruct(RD&: *Record);
7110
7111 // Set HasTrivialSpecialMemberForCall if the record has attribute
7112 // "trivial_abi".
7113 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
7114
7115 if (HasTrivialABI)
7116 Record->setHasTrivialSpecialMemberForCall();
7117
7118 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
7119 // We check these last because they can depend on the properties of the
7120 // primary comparison functions (==, <=>).
7121 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
7122
7123 // Perform checks that can't be done until we know all the properties of a
7124 // member function (whether it's defaulted, deleted, virtual, overriding,
7125 // ...).
7126 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
7127 // A static function cannot override anything.
7128 if (MD->getStorageClass() == SC_Static) {
7129 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
7130 [](const CXXMethodDecl *) { return true; }))
7131 return;
7132 }
7133
7134 // A deleted function cannot override a non-deleted function and vice
7135 // versa.
7136 if (ReportOverrides(*this,
7137 MD->isDeleted() ? diag::err_deleted_override
7138 : diag::err_non_deleted_override,
7139 MD, [&](const CXXMethodDecl *V) {
7140 return MD->isDeleted() != V->isDeleted();
7141 })) {
7142 if (MD->isDefaulted() && MD->isDeleted())
7143 // Explain why this defaulted function was deleted.
7144 DiagnoseDeletedDefaultedFunction(MD);
7145 return;
7146 }
7147
7148 // A consteval function cannot override a non-consteval function and vice
7149 // versa.
7150 if (ReportOverrides(*this,
7151 MD->isConsteval() ? diag::err_consteval_override
7152 : diag::err_non_consteval_override,
7153 MD, [&](const CXXMethodDecl *V) {
7154 return MD->isConsteval() != V->isConsteval();
7155 })) {
7156 if (MD->isDefaulted() && MD->isDeleted())
7157 // Explain why this defaulted function was deleted.
7158 DiagnoseDeletedDefaultedFunction(MD);
7159 return;
7160 }
7161 };
7162
7163 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
7164 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
7165 return false;
7166
7167 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
7168 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
7169 DFK.asComparison() == DefaultedComparisonKind::Relational) {
7170 DefaultedSecondaryComparisons.push_back(Elt: FD);
7171 return true;
7172 }
7173
7174 CheckExplicitlyDefaultedFunction(S, MD: FD);
7175 return false;
7176 };
7177
7178 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
7179 // Check whether the explicitly-defaulted members are valid.
7180 bool Incomplete = CheckForDefaultedFunction(M);
7181
7182 // Skip the rest of the checks for a member of a dependent class.
7183 if (Record->isDependentType())
7184 return;
7185
7186 // For an explicitly defaulted or deleted special member, we defer
7187 // determining triviality until the class is complete. That time is now!
7188 CXXSpecialMemberKind CSM = getSpecialMember(MD: M);
7189 if (!M->isImplicit() && !M->isUserProvided()) {
7190 if (CSM != CXXSpecialMemberKind::Invalid) {
7191 M->setTrivial(SpecialMemberIsTrivial(MD: M, CSM));
7192 // Inform the class that we've finished declaring this member.
7193 Record->finishedDefaultedOrDeletedMember(MD: M);
7194 M->setTrivialForCall(
7195 HasTrivialABI ||
7196 SpecialMemberIsTrivial(MD: M, CSM, TAH: TAH_ConsiderTrivialABI));
7197 Record->setTrivialForCallFlags(M);
7198 }
7199 }
7200
7201 // Set triviality for the purpose of calls if this is a user-provided
7202 // copy/move constructor or destructor.
7203 if ((CSM == CXXSpecialMemberKind::CopyConstructor ||
7204 CSM == CXXSpecialMemberKind::MoveConstructor ||
7205 CSM == CXXSpecialMemberKind::Destructor) &&
7206 M->isUserProvided()) {
7207 M->setTrivialForCall(HasTrivialABI);
7208 Record->setTrivialForCallFlags(M);
7209 }
7210
7211 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
7212 M->hasAttr<DLLExportAttr>()) {
7213 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
7214 M->isTrivial() &&
7215 (CSM == CXXSpecialMemberKind::DefaultConstructor ||
7216 CSM == CXXSpecialMemberKind::CopyConstructor ||
7217 CSM == CXXSpecialMemberKind::Destructor))
7218 M->dropAttr<DLLExportAttr>();
7219
7220 if (M->hasAttr<DLLExportAttr>()) {
7221 // Define after any fields with in-class initializers have been parsed.
7222 DelayedDllExportMemberFunctions.push_back(Elt: M);
7223 }
7224 }
7225
7226 // Define defaulted constexpr virtual functions that override a base class
7227 // function right away.
7228 // FIXME: We can defer doing this until the vtable is marked as used.
7229 if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() &&
7230 M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
7231 DefineDefaultedFunction(*this, M, M->getLocation());
7232
7233 if (!Incomplete)
7234 CheckCompletedMemberFunction(M);
7235 };
7236
7237 // Check the destructor before any other member function. We need to
7238 // determine whether it's trivial in order to determine whether the claas
7239 // type is a literal type, which is a prerequisite for determining whether
7240 // other special member functions are valid and whether they're implicitly
7241 // 'constexpr'.
7242 if (CXXDestructorDecl *Dtor = Record->getDestructor())
7243 CompleteMemberFunction(Dtor);
7244
7245 bool HasMethodWithOverrideControl = false,
7246 HasOverridingMethodWithoutOverrideControl = false;
7247 for (auto *D : Record->decls()) {
7248 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
7249 // FIXME: We could do this check for dependent types with non-dependent
7250 // bases.
7251 if (!Record->isDependentType()) {
7252 // See if a method overloads virtual methods in a base
7253 // class without overriding any.
7254 if (!M->isStatic())
7255 DiagnoseHiddenVirtualMethods(M);
7256 if (M->hasAttr<OverrideAttr>())
7257 HasMethodWithOverrideControl = true;
7258 else if (M->size_overridden_methods() > 0)
7259 HasOverridingMethodWithoutOverrideControl = true;
7260 }
7261
7262 if (!isa<CXXDestructorDecl>(M))
7263 CompleteMemberFunction(M);
7264 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
7265 CheckForDefaultedFunction(
7266 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
7267 }
7268 }
7269
7270 if (HasOverridingMethodWithoutOverrideControl) {
7271 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
7272 for (auto *M : Record->methods())
7273 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
7274 }
7275
7276 // Check the defaulted secondary comparisons after any other member functions.
7277 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
7278 CheckExplicitlyDefaultedFunction(S, MD: FD);
7279
7280 // If this is a member function, we deferred checking it until now.
7281 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD))
7282 CheckCompletedMemberFunction(MD);
7283 }
7284
7285 // ms_struct is a request to use the same ABI rules as MSVC. Check
7286 // whether this class uses any C++ features that are implemented
7287 // completely differently in MSVC, and if so, emit a diagnostic.
7288 // That diagnostic defaults to an error, but we allow projects to
7289 // map it down to a warning (or ignore it). It's a fairly common
7290 // practice among users of the ms_struct pragma to mass-annotate
7291 // headers, sweeping up a bunch of types that the project doesn't
7292 // really rely on MSVC-compatible layout for. We must therefore
7293 // support "ms_struct except for C++ stuff" as a secondary ABI.
7294 // Don't emit this diagnostic if the feature was enabled as a
7295 // language option (as opposed to via a pragma or attribute), as
7296 // the option -mms-bitfields otherwise essentially makes it impossible
7297 // to build C++ code, unless this diagnostic is turned off.
7298 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
7299 (Record->isPolymorphic() || Record->getNumBases())) {
7300 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
7301 }
7302
7303 checkClassLevelDLLAttribute(Class: Record);
7304 checkClassLevelCodeSegAttribute(Class: Record);
7305
7306 bool ClangABICompat4 =
7307 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
7308 TargetInfo::CallingConvKind CCK =
7309 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
7310 bool CanPass = canPassInRegisters(S&: *this, D: Record, CCK);
7311
7312 // Do not change ArgPassingRestrictions if it has already been set to
7313 // RecordArgPassingKind::CanNeverPassInRegs.
7314 if (Record->getArgPassingRestrictions() !=
7315 RecordArgPassingKind::CanNeverPassInRegs)
7316 Record->setArgPassingRestrictions(
7317 CanPass ? RecordArgPassingKind::CanPassInRegs
7318 : RecordArgPassingKind::CannotPassInRegs);
7319
7320 // If canPassInRegisters returns true despite the record having a non-trivial
7321 // destructor, the record is destructed in the callee. This happens only when
7322 // the record or one of its subobjects has a field annotated with trivial_abi
7323 // or a field qualified with ObjC __strong/__weak.
7324 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
7325 Record->setParamDestroyedInCallee(true);
7326 else if (Record->hasNonTrivialDestructor())
7327 Record->setParamDestroyedInCallee(CanPass);
7328
7329 if (getLangOpts().ForceEmitVTables) {
7330 // If we want to emit all the vtables, we need to mark it as used. This
7331 // is especially required for cases like vtable assumption loads.
7332 MarkVTableUsed(Loc: Record->getInnerLocStart(), Class: Record);
7333 }
7334
7335 if (getLangOpts().CUDA) {
7336 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
7337 checkCUDADeviceBuiltinSurfaceClassTemplate(S&: *this, Class: Record);
7338 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
7339 checkCUDADeviceBuiltinTextureClassTemplate(S&: *this, Class: Record);
7340 }
7341}
7342
7343/// Look up the special member function that would be called by a special
7344/// member function for a subobject of class type.
7345///
7346/// \param Class The class type of the subobject.
7347/// \param CSM The kind of special member function.
7348/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
7349/// \param ConstRHS True if this is a copy operation with a const object
7350/// on its RHS, that is, if the argument to the outer special member
7351/// function is 'const' and this is not a field marked 'mutable'.
7352static Sema::SpecialMemberOverloadResult
7353lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class,
7354 CXXSpecialMemberKind CSM, unsigned FieldQuals,
7355 bool ConstRHS) {
7356 unsigned LHSQuals = 0;
7357 if (CSM == CXXSpecialMemberKind::CopyAssignment ||
7358 CSM == CXXSpecialMemberKind::MoveAssignment)
7359 LHSQuals = FieldQuals;
7360
7361 unsigned RHSQuals = FieldQuals;
7362 if (CSM == CXXSpecialMemberKind::DefaultConstructor ||
7363 CSM == CXXSpecialMemberKind::Destructor)
7364 RHSQuals = 0;
7365 else if (ConstRHS)
7366 RHSQuals |= Qualifiers::Const;
7367
7368 return S.LookupSpecialMember(D: Class, SM: CSM,
7369 ConstArg: RHSQuals & Qualifiers::Const,
7370 VolatileArg: RHSQuals & Qualifiers::Volatile,
7371 RValueThis: false,
7372 ConstThis: LHSQuals & Qualifiers::Const,
7373 VolatileThis: LHSQuals & Qualifiers::Volatile);
7374}
7375
7376class Sema::InheritedConstructorInfo {
7377 Sema &S;
7378 SourceLocation UseLoc;
7379
7380 /// A mapping from the base classes through which the constructor was
7381 /// inherited to the using shadow declaration in that base class (or a null
7382 /// pointer if the constructor was declared in that base class).
7383 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
7384 InheritedFromBases;
7385
7386public:
7387 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
7388 ConstructorUsingShadowDecl *Shadow)
7389 : S(S), UseLoc(UseLoc) {
7390 bool DiagnosedMultipleConstructedBases = false;
7391 CXXRecordDecl *ConstructedBase = nullptr;
7392 BaseUsingDecl *ConstructedBaseIntroducer = nullptr;
7393
7394 // Find the set of such base class subobjects and check that there's a
7395 // unique constructed subobject.
7396 for (auto *D : Shadow->redecls()) {
7397 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
7398 auto *DNominatedBase = DShadow->getNominatedBaseClass();
7399 auto *DConstructedBase = DShadow->getConstructedBaseClass();
7400
7401 InheritedFromBases.insert(
7402 std::make_pair(DNominatedBase->getCanonicalDecl(),
7403 DShadow->getNominatedBaseClassShadowDecl()));
7404 if (DShadow->constructsVirtualBase())
7405 InheritedFromBases.insert(
7406 std::make_pair(DConstructedBase->getCanonicalDecl(),
7407 DShadow->getConstructedBaseClassShadowDecl()));
7408 else
7409 assert(DNominatedBase == DConstructedBase);
7410
7411 // [class.inhctor.init]p2:
7412 // If the constructor was inherited from multiple base class subobjects
7413 // of type B, the program is ill-formed.
7414 if (!ConstructedBase) {
7415 ConstructedBase = DConstructedBase;
7416 ConstructedBaseIntroducer = D->getIntroducer();
7417 } else if (ConstructedBase != DConstructedBase &&
7418 !Shadow->isInvalidDecl()) {
7419 if (!DiagnosedMultipleConstructedBases) {
7420 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7421 << Shadow->getTargetDecl();
7422 S.Diag(ConstructedBaseIntroducer->getLocation(),
7423 diag::note_ambiguous_inherited_constructor_using)
7424 << ConstructedBase;
7425 DiagnosedMultipleConstructedBases = true;
7426 }
7427 S.Diag(D->getIntroducer()->getLocation(),
7428 diag::note_ambiguous_inherited_constructor_using)
7429 << DConstructedBase;
7430 }
7431 }
7432
7433 if (DiagnosedMultipleConstructedBases)
7434 Shadow->setInvalidDecl();
7435 }
7436
7437 /// Find the constructor to use for inherited construction of a base class,
7438 /// and whether that base class constructor inherits the constructor from a
7439 /// virtual base class (in which case it won't actually invoke it).
7440 std::pair<CXXConstructorDecl *, bool>
7441 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7442 auto It = InheritedFromBases.find(Val: Base->getCanonicalDecl());
7443 if (It == InheritedFromBases.end())
7444 return std::make_pair(x: nullptr, y: false);
7445
7446 // This is an intermediary class.
7447 if (It->second)
7448 return std::make_pair(
7449 x: S.findInheritingConstructor(Loc: UseLoc, BaseCtor: Ctor, DerivedShadow: It->second),
7450 y: It->second->constructsVirtualBase());
7451
7452 // This is the base class from which the constructor was inherited.
7453 return std::make_pair(x&: Ctor, y: false);
7454 }
7455};
7456
7457/// Is the special member function which would be selected to perform the
7458/// specified operation on the specified class type a constexpr constructor?
7459static bool specialMemberIsConstexpr(
7460 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals,
7461 bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr,
7462 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7463 // Suppress duplicate constraint checking here, in case a constraint check
7464 // caused us to decide to do this. Any truely recursive checks will get
7465 // caught during these checks anyway.
7466 Sema::SatisfactionStackResetRAII SSRAII{S};
7467
7468 // If we're inheriting a constructor, see if we need to call it for this base
7469 // class.
7470 if (InheritedCtor) {
7471 assert(CSM == CXXSpecialMemberKind::DefaultConstructor);
7472 auto BaseCtor =
7473 Inherited->findConstructorForBase(Base: ClassDecl, Ctor: InheritedCtor).first;
7474 if (BaseCtor)
7475 return BaseCtor->isConstexpr();
7476 }
7477
7478 if (CSM == CXXSpecialMemberKind::DefaultConstructor)
7479 return ClassDecl->hasConstexprDefaultConstructor();
7480 if (CSM == CXXSpecialMemberKind::Destructor)
7481 return ClassDecl->hasConstexprDestructor();
7482
7483 Sema::SpecialMemberOverloadResult SMOR =
7484 lookupCallFromSpecialMember(S, Class: ClassDecl, CSM, FieldQuals: Quals, ConstRHS);
7485 if (!SMOR.getMethod())
7486 // A constructor we wouldn't select can't be "involved in initializing"
7487 // anything.
7488 return true;
7489 return SMOR.getMethod()->isConstexpr();
7490}
7491
7492/// Determine whether the specified special member function would be constexpr
7493/// if it were implicitly defined.
7494static bool defaultedSpecialMemberIsConstexpr(
7495 Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg,
7496 CXXConstructorDecl *InheritedCtor = nullptr,
7497 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7498 if (!S.getLangOpts().CPlusPlus11)
7499 return false;
7500
7501 // C++11 [dcl.constexpr]p4:
7502 // In the definition of a constexpr constructor [...]
7503 bool Ctor = true;
7504 switch (CSM) {
7505 case CXXSpecialMemberKind::DefaultConstructor:
7506 if (Inherited)
7507 break;
7508 // Since default constructor lookup is essentially trivial (and cannot
7509 // involve, for instance, template instantiation), we compute whether a
7510 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7511 //
7512 // This is important for performance; we need to know whether the default
7513 // constructor is constexpr to determine whether the type is a literal type.
7514 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7515
7516 case CXXSpecialMemberKind::CopyConstructor:
7517 case CXXSpecialMemberKind::MoveConstructor:
7518 // For copy or move constructors, we need to perform overload resolution.
7519 break;
7520
7521 case CXXSpecialMemberKind::CopyAssignment:
7522 case CXXSpecialMemberKind::MoveAssignment:
7523 if (!S.getLangOpts().CPlusPlus14)
7524 return false;
7525 // In C++1y, we need to perform overload resolution.
7526 Ctor = false;
7527 break;
7528
7529 case CXXSpecialMemberKind::Destructor:
7530 return ClassDecl->defaultedDestructorIsConstexpr();
7531
7532 case CXXSpecialMemberKind::Invalid:
7533 return false;
7534 }
7535
7536 // -- if the class is a non-empty union, or for each non-empty anonymous
7537 // union member of a non-union class, exactly one non-static data member
7538 // shall be initialized; [DR1359]
7539 //
7540 // If we squint, this is guaranteed, since exactly one non-static data member
7541 // will be initialized (if the constructor isn't deleted), we just don't know
7542 // which one.
7543 if (Ctor && ClassDecl->isUnion())
7544 return CSM == CXXSpecialMemberKind::DefaultConstructor
7545 ? ClassDecl->hasInClassInitializer() ||
7546 !ClassDecl->hasVariantMembers()
7547 : true;
7548
7549 // -- the class shall not have any virtual base classes;
7550 if (Ctor && ClassDecl->getNumVBases())
7551 return false;
7552
7553 // C++1y [class.copy]p26:
7554 // -- [the class] is a literal type, and
7555 if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23)
7556 return false;
7557
7558 // -- every constructor involved in initializing [...] base class
7559 // sub-objects shall be a constexpr constructor;
7560 // -- the assignment operator selected to copy/move each direct base
7561 // class is a constexpr function, and
7562 if (!S.getLangOpts().CPlusPlus23) {
7563 for (const auto &B : ClassDecl->bases()) {
7564 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7565 if (!BaseType)
7566 continue;
7567 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(Val: BaseType->getDecl());
7568 if (!specialMemberIsConstexpr(S, ClassDecl: BaseClassDecl, CSM, Quals: 0, ConstRHS: ConstArg,
7569 InheritedCtor, Inherited))
7570 return false;
7571 }
7572 }
7573
7574 // -- every constructor involved in initializing non-static data members
7575 // [...] shall be a constexpr constructor;
7576 // -- every non-static data member and base class sub-object shall be
7577 // initialized
7578 // -- for each non-static data member of X that is of class type (or array
7579 // thereof), the assignment operator selected to copy/move that member is
7580 // a constexpr function
7581 if (!S.getLangOpts().CPlusPlus23) {
7582 for (const auto *F : ClassDecl->fields()) {
7583 if (F->isInvalidDecl())
7584 continue;
7585 if (CSM == CXXSpecialMemberKind::DefaultConstructor &&
7586 F->hasInClassInitializer())
7587 continue;
7588 QualType BaseType = S.Context.getBaseElementType(F->getType());
7589 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7590 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7591 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7592 BaseType.getCVRQualifiers(),
7593 ConstArg && !F->isMutable()))
7594 return false;
7595 } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) {
7596 return false;
7597 }
7598 }
7599 }
7600
7601 // All OK, it's constexpr!
7602 return true;
7603}
7604
7605namespace {
7606/// RAII object to register a defaulted function as having its exception
7607/// specification computed.
7608struct ComputingExceptionSpec {
7609 Sema &S;
7610
7611 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7612 : S(S) {
7613 Sema::CodeSynthesisContext Ctx;
7614 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7615 Ctx.PointOfInstantiation = Loc;
7616 Ctx.Entity = FD;
7617 S.pushCodeSynthesisContext(Ctx);
7618 }
7619 ~ComputingExceptionSpec() {
7620 S.popCodeSynthesisContext();
7621 }
7622};
7623}
7624
7625static Sema::ImplicitExceptionSpecification
7626ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc,
7627 CXXMethodDecl *MD,
7628 CXXSpecialMemberKind CSM,
7629 Sema::InheritedConstructorInfo *ICI);
7630
7631static Sema::ImplicitExceptionSpecification
7632ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7633 FunctionDecl *FD,
7634 Sema::DefaultedComparisonKind DCK);
7635
7636static Sema::ImplicitExceptionSpecification
7637computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7638 auto DFK = S.getDefaultedFunctionKind(FD);
7639 if (DFK.isSpecialMember())
7640 return ComputeDefaultedSpecialMemberExceptionSpec(
7641 S, Loc, MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(), ICI: nullptr);
7642 if (DFK.isComparison())
7643 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7644 DCK: DFK.asComparison());
7645
7646 auto *CD = cast<CXXConstructorDecl>(Val: FD);
7647 assert(CD->getInheritedConstructor() &&
7648 "only defaulted functions and inherited constructors have implicit "
7649 "exception specs");
7650 Sema::InheritedConstructorInfo ICI(
7651 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7652 return ComputeDefaultedSpecialMemberExceptionSpec(
7653 S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI);
7654}
7655
7656static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7657 CXXMethodDecl *MD) {
7658 FunctionProtoType::ExtProtoInfo EPI;
7659
7660 // Build an exception specification pointing back at this member.
7661 EPI.ExceptionSpec.Type = EST_Unevaluated;
7662 EPI.ExceptionSpec.SourceDecl = MD;
7663
7664 // Set the calling convention to the default for C++ instance methods.
7665 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7666 cc: S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7667 /*IsCXXMethod=*/true));
7668 return EPI;
7669}
7670
7671void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7672 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7673 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7674 return;
7675
7676 // Evaluate the exception specification.
7677 auto IES = computeImplicitExceptionSpec(S&: *this, Loc, FD);
7678 auto ESI = IES.getExceptionSpec();
7679
7680 // Update the type of the special member to use it.
7681 UpdateExceptionSpec(FD, ESI);
7682}
7683
7684void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7685 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted");
7686
7687 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7688 if (!DefKind) {
7689 assert(FD->getDeclContext()->isDependentContext());
7690 return;
7691 }
7692
7693 if (DefKind.isComparison())
7694 UnusedPrivateFields.clear();
7695
7696 if (DefKind.isSpecialMember()
7697 ? CheckExplicitlyDefaultedSpecialMember(MD: cast<CXXMethodDecl>(Val: FD),
7698 CSM: DefKind.asSpecialMember(),
7699 DefaultLoc: FD->getDefaultLoc())
7700 : CheckExplicitlyDefaultedComparison(S, MD: FD, DCK: DefKind.asComparison()))
7701 FD->setInvalidDecl();
7702}
7703
7704bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7705 CXXSpecialMemberKind CSM,
7706 SourceLocation DefaultLoc) {
7707 CXXRecordDecl *RD = MD->getParent();
7708
7709 assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid &&
7710 "not an explicitly-defaulted special member");
7711
7712 // Defer all checking for special members of a dependent type.
7713 if (RD->isDependentType())
7714 return false;
7715
7716 // Whether this was the first-declared instance of the constructor.
7717 // This affects whether we implicitly add an exception spec and constexpr.
7718 bool First = MD == MD->getCanonicalDecl();
7719
7720 bool HadError = false;
7721
7722 // C++11 [dcl.fct.def.default]p1:
7723 // A function that is explicitly defaulted shall
7724 // -- be a special member function [...] (checked elsewhere),
7725 // -- have the same type (except for ref-qualifiers, and except that a
7726 // copy operation can take a non-const reference) as an implicit
7727 // declaration, and
7728 // -- not have default arguments.
7729 // C++2a changes the second bullet to instead delete the function if it's
7730 // defaulted on its first declaration, unless it's "an assignment operator,
7731 // and its return type differs or its parameter type is not a reference".
7732 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7733 bool ShouldDeleteForTypeMismatch = false;
7734 unsigned ExpectedParams = 1;
7735 if (CSM == CXXSpecialMemberKind::DefaultConstructor ||
7736 CSM == CXXSpecialMemberKind::Destructor)
7737 ExpectedParams = 0;
7738 if (MD->getNumExplicitParams() != ExpectedParams) {
7739 // This checks for default arguments: a copy or move constructor with a
7740 // default argument is classified as a default constructor, and assignment
7741 // operations and destructors can't have default arguments.
7742 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7743 << llvm::to_underlying(CSM) << MD->getSourceRange();
7744 HadError = true;
7745 } else if (MD->isVariadic()) {
7746 if (DeleteOnTypeMismatch)
7747 ShouldDeleteForTypeMismatch = true;
7748 else {
7749 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7750 << llvm::to_underlying(CSM) << MD->getSourceRange();
7751 HadError = true;
7752 }
7753 }
7754
7755 const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>();
7756
7757 bool CanHaveConstParam = false;
7758 if (CSM == CXXSpecialMemberKind::CopyConstructor)
7759 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7760 else if (CSM == CXXSpecialMemberKind::CopyAssignment)
7761 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7762
7763 QualType ReturnType = Context.VoidTy;
7764 if (CSM == CXXSpecialMemberKind::CopyAssignment ||
7765 CSM == CXXSpecialMemberKind::MoveAssignment) {
7766 // Check for return type matching.
7767 ReturnType = Type->getReturnType();
7768 QualType ThisType = MD->getFunctionObjectParameterType();
7769
7770 QualType DeclType = Context.getTypeDeclType(RD);
7771 DeclType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr,
7772 NamedType: DeclType, OwnedTagDecl: nullptr);
7773 DeclType = Context.getAddrSpaceQualType(
7774 T: DeclType, AddressSpace: ThisType.getQualifiers().getAddressSpace());
7775 QualType ExpectedReturnType = Context.getLValueReferenceType(T: DeclType);
7776
7777 if (!Context.hasSameType(T1: ReturnType, T2: ExpectedReturnType)) {
7778 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7779 << (CSM == CXXSpecialMemberKind::MoveAssignment)
7780 << ExpectedReturnType;
7781 HadError = true;
7782 }
7783
7784 // A defaulted special member cannot have cv-qualifiers.
7785 if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) {
7786 if (DeleteOnTypeMismatch)
7787 ShouldDeleteForTypeMismatch = true;
7788 else {
7789 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7790 << (CSM == CXXSpecialMemberKind::MoveAssignment)
7791 << getLangOpts().CPlusPlus14;
7792 HadError = true;
7793 }
7794 }
7795 // [C++23][dcl.fct.def.default]/p2.2
7796 // if F2 has an implicit object parameter of type “reference to C”,
7797 // F1 may be an explicit object member function whose explicit object
7798 // parameter is of (possibly different) type “reference to C”,
7799 // in which case the type of F1 would differ from the type of F2
7800 // in that the type of F1 has an additional parameter;
7801 if (!Context.hasSameType(
7802 T1: ThisType.getNonReferenceType().getUnqualifiedType(),
7803 T2: Context.getRecordType(RD))) {
7804 if (DeleteOnTypeMismatch)
7805 ShouldDeleteForTypeMismatch = true;
7806 else {
7807 Diag(MD->getLocation(),
7808 diag::err_defaulted_special_member_explicit_object_mismatch)
7809 << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD
7810 << MD->getSourceRange();
7811 HadError = true;
7812 }
7813 }
7814 }
7815
7816 // Check for parameter type matching.
7817 QualType ArgType =
7818 ExpectedParams
7819 ? Type->getParamType(i: MD->isExplicitObjectMemberFunction() ? 1 : 0)
7820 : QualType();
7821 bool HasConstParam = false;
7822 if (ExpectedParams && ArgType->isReferenceType()) {
7823 // Argument must be reference to possibly-const T.
7824 QualType ReferentType = ArgType->getPointeeType();
7825 HasConstParam = ReferentType.isConstQualified();
7826
7827 if (ReferentType.isVolatileQualified()) {
7828 if (DeleteOnTypeMismatch)
7829 ShouldDeleteForTypeMismatch = true;
7830 else {
7831 Diag(MD->getLocation(),
7832 diag::err_defaulted_special_member_volatile_param)
7833 << llvm::to_underlying(CSM);
7834 HadError = true;
7835 }
7836 }
7837
7838 if (HasConstParam && !CanHaveConstParam) {
7839 if (DeleteOnTypeMismatch)
7840 ShouldDeleteForTypeMismatch = true;
7841 else if (CSM == CXXSpecialMemberKind::CopyConstructor ||
7842 CSM == CXXSpecialMemberKind::CopyAssignment) {
7843 Diag(MD->getLocation(),
7844 diag::err_defaulted_special_member_copy_const_param)
7845 << (CSM == CXXSpecialMemberKind::CopyAssignment);
7846 // FIXME: Explain why this special member can't be const.
7847 HadError = true;
7848 } else {
7849 Diag(MD->getLocation(),
7850 diag::err_defaulted_special_member_move_const_param)
7851 << (CSM == CXXSpecialMemberKind::MoveAssignment);
7852 HadError = true;
7853 }
7854 }
7855 } else if (ExpectedParams) {
7856 // A copy assignment operator can take its argument by value, but a
7857 // defaulted one cannot.
7858 assert(CSM == CXXSpecialMemberKind::CopyAssignment &&
7859 "unexpected non-ref argument");
7860 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7861 HadError = true;
7862 }
7863
7864 // C++11 [dcl.fct.def.default]p2:
7865 // An explicitly-defaulted function may be declared constexpr only if it
7866 // would have been implicitly declared as constexpr,
7867 // Do not apply this rule to members of class templates, since core issue 1358
7868 // makes such functions always instantiate to constexpr functions. For
7869 // functions which cannot be constexpr (for non-constructors in C++11 and for
7870 // destructors in C++14 and C++17), this is checked elsewhere.
7871 //
7872 // FIXME: This should not apply if the member is deleted.
7873 bool Constexpr = defaultedSpecialMemberIsConstexpr(S&: *this, ClassDecl: RD, CSM,
7874 ConstArg: HasConstParam);
7875
7876 // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358):
7877 // If the instantiated template specialization of a constexpr function
7878 // template or member function of a class template would fail to satisfy
7879 // the requirements for a constexpr function or constexpr constructor, that
7880 // specialization is still a constexpr function or constexpr constructor,
7881 // even though a call to such a function cannot appear in a constant
7882 // expression.
7883 if (MD->isTemplateInstantiation() && MD->isConstexpr())
7884 Constexpr = true;
7885
7886 if ((getLangOpts().CPlusPlus20 ||
7887 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(Val: MD)
7888 : isa<CXXConstructorDecl>(Val: MD))) &&
7889 MD->isConstexpr() && !Constexpr &&
7890 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7891 if (!MD->isConsteval() && RD->getNumVBases()) {
7892 Diag(MD->getBeginLoc(),
7893 diag::err_incorrect_defaulted_constexpr_with_vb)
7894 << llvm::to_underlying(CSM);
7895 for (const auto &I : RD->vbases())
7896 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here);
7897 } else {
7898 Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr)
7899 << llvm::to_underlying(CSM) << MD->isConsteval();
7900 }
7901 HadError = true;
7902 // FIXME: Explain why the special member can't be constexpr.
7903 }
7904
7905 if (First) {
7906 // C++2a [dcl.fct.def.default]p3:
7907 // If a function is explicitly defaulted on its first declaration, it is
7908 // implicitly considered to be constexpr if the implicit declaration
7909 // would be.
7910 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7911 ? ConstexprSpecKind::Consteval
7912 : ConstexprSpecKind::Constexpr)
7913 : ConstexprSpecKind::Unspecified);
7914
7915 if (!Type->hasExceptionSpec()) {
7916 // C++2a [except.spec]p3:
7917 // If a declaration of a function does not have a noexcept-specifier
7918 // [and] is defaulted on its first declaration, [...] the exception
7919 // specification is as specified below
7920 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7921 EPI.ExceptionSpec.Type = EST_Unevaluated;
7922 EPI.ExceptionSpec.SourceDecl = MD;
7923 MD->setType(
7924 Context.getFunctionType(ResultTy: ReturnType, Args: Type->getParamTypes(), EPI));
7925 }
7926 }
7927
7928 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7929 if (First) {
7930 SetDeclDeleted(dcl: MD, DelLoc: MD->getLocation());
7931 if (!inTemplateInstantiation() && !HadError) {
7932 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted)
7933 << llvm::to_underlying(CSM);
7934 if (ShouldDeleteForTypeMismatch) {
7935 Diag(MD->getLocation(), diag::note_deleted_type_mismatch)
7936 << llvm::to_underlying(CSM);
7937 } else if (ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr,
7938 /*Diagnose*/ true) &&
7939 DefaultLoc.isValid()) {
7940 Diag(DefaultLoc, diag::note_replace_equals_default_to_delete)
7941 << FixItHint::CreateReplacement(DefaultLoc, "delete");
7942 }
7943 }
7944 if (ShouldDeleteForTypeMismatch && !HadError) {
7945 Diag(MD->getLocation(),
7946 diag::warn_cxx17_compat_defaulted_method_type_mismatch)
7947 << llvm::to_underlying(CSM);
7948 }
7949 } else {
7950 // C++11 [dcl.fct.def.default]p4:
7951 // [For a] user-provided explicitly-defaulted function [...] if such a
7952 // function is implicitly defined as deleted, the program is ill-formed.
7953 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
7954 << llvm::to_underlying(CSM);
7955 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl");
7956 ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr, /*Diagnose*/true);
7957 HadError = true;
7958 }
7959 }
7960
7961 return HadError;
7962}
7963
7964namespace {
7965/// Helper class for building and checking a defaulted comparison.
7966///
7967/// Defaulted functions are built in two phases:
7968///
7969/// * First, the set of operations that the function will perform are
7970/// identified, and some of them are checked. If any of the checked
7971/// operations is invalid in certain ways, the comparison function is
7972/// defined as deleted and no body is built.
7973/// * Then, if the function is not defined as deleted, the body is built.
7974///
7975/// This is accomplished by performing two visitation steps over the eventual
7976/// body of the function.
7977template<typename Derived, typename ResultList, typename Result,
7978 typename Subobject>
7979class DefaultedComparisonVisitor {
7980public:
7981 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7982
7983 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7984 DefaultedComparisonKind DCK)
7985 : S(S), RD(RD), FD(FD), DCK(DCK) {
7986 if (auto *Info = FD->getDefalutedOrDeletedInfo()) {
7987 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7988 // UnresolvedSet to avoid this copy.
7989 Fns.assign(I: Info->getUnqualifiedLookups().begin(),
7990 E: Info->getUnqualifiedLookups().end());
7991 }
7992 }
7993
7994 ResultList visit() {
7995 // The type of an lvalue naming a parameter of this function.
7996 QualType ParamLvalType =
7997 FD->getParamDecl(i: 0)->getType().getNonReferenceType();
7998
7999 ResultList Results;
8000
8001 switch (DCK) {
8002 case DefaultedComparisonKind::None:
8003 llvm_unreachable("not a defaulted comparison");
8004
8005 case DefaultedComparisonKind::Equal:
8006 case DefaultedComparisonKind::ThreeWay:
8007 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
8008 return Results;
8009
8010 case DefaultedComparisonKind::NotEqual:
8011 case DefaultedComparisonKind::Relational:
8012 Results.add(getDerived().visitExpandedSubobject(
8013 ParamLvalType, getDerived().getCompleteObject()));
8014 return Results;
8015 }
8016 llvm_unreachable("");
8017 }
8018
8019protected:
8020 Derived &getDerived() { return static_cast<Derived&>(*this); }
8021
8022 /// Visit the expanded list of subobjects of the given type, as specified in
8023 /// C++2a [class.compare.default].
8024 ///
8025 /// \return \c true if the ResultList object said we're done, \c false if not.
8026 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
8027 Qualifiers Quals) {
8028 // C++2a [class.compare.default]p4:
8029 // The direct base class subobjects of C
8030 for (CXXBaseSpecifier &Base : Record->bases())
8031 if (Results.add(getDerived().visitSubobject(
8032 S.Context.getQualifiedType(T: Base.getType(), Qs: Quals),
8033 getDerived().getBase(&Base))))
8034 return true;
8035
8036 // followed by the non-static data members of C
8037 for (FieldDecl *Field : Record->fields()) {
8038 // C++23 [class.bit]p2:
8039 // Unnamed bit-fields are not members ...
8040 if (Field->isUnnamedBitField())
8041 continue;
8042 // Recursively expand anonymous structs.
8043 if (Field->isAnonymousStructOrUnion()) {
8044 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
8045 Quals))
8046 return true;
8047 continue;
8048 }
8049
8050 // Figure out the type of an lvalue denoting this field.
8051 Qualifiers FieldQuals = Quals;
8052 if (Field->isMutable())
8053 FieldQuals.removeConst();
8054 QualType FieldType =
8055 S.Context.getQualifiedType(Field->getType(), FieldQuals);
8056
8057 if (Results.add(getDerived().visitSubobject(
8058 FieldType, getDerived().getField(Field))))
8059 return true;
8060 }
8061
8062 // form a list of subobjects.
8063 return false;
8064 }
8065
8066 Result visitSubobject(QualType Type, Subobject Subobj) {
8067 // In that list, any subobject of array type is recursively expanded
8068 const ArrayType *AT = S.Context.getAsArrayType(T: Type);
8069 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(Val: AT))
8070 return getDerived().visitSubobjectArray(CAT->getElementType(),
8071 CAT->getSize(), Subobj);
8072 return getDerived().visitExpandedSubobject(Type, Subobj);
8073 }
8074
8075 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
8076 Subobject Subobj) {
8077 return getDerived().visitSubobject(Type, Subobj);
8078 }
8079
8080protected:
8081 Sema &S;
8082 CXXRecordDecl *RD;
8083 FunctionDecl *FD;
8084 DefaultedComparisonKind DCK;
8085 UnresolvedSet<16> Fns;
8086};
8087
8088/// Information about a defaulted comparison, as determined by
8089/// DefaultedComparisonAnalyzer.
8090struct DefaultedComparisonInfo {
8091 bool Deleted = false;
8092 bool Constexpr = true;
8093 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
8094
8095 static DefaultedComparisonInfo deleted() {
8096 DefaultedComparisonInfo Deleted;
8097 Deleted.Deleted = true;
8098 return Deleted;
8099 }
8100
8101 bool add(const DefaultedComparisonInfo &R) {
8102 Deleted |= R.Deleted;
8103 Constexpr &= R.Constexpr;
8104 Category = commonComparisonType(A: Category, B: R.Category);
8105 return Deleted;
8106 }
8107};
8108
8109/// An element in the expanded list of subobjects of a defaulted comparison, as
8110/// specified in C++2a [class.compare.default]p4.
8111struct DefaultedComparisonSubobject {
8112 enum { CompleteObject, Member, Base } Kind;
8113 NamedDecl *Decl;
8114 SourceLocation Loc;
8115};
8116
8117/// A visitor over the notional body of a defaulted comparison that determines
8118/// whether that body would be deleted or constexpr.
8119class DefaultedComparisonAnalyzer
8120 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
8121 DefaultedComparisonInfo,
8122 DefaultedComparisonInfo,
8123 DefaultedComparisonSubobject> {
8124public:
8125 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
8126
8127private:
8128 DiagnosticKind Diagnose;
8129
8130public:
8131 using Base = DefaultedComparisonVisitor;
8132 using Result = DefaultedComparisonInfo;
8133 using Subobject = DefaultedComparisonSubobject;
8134
8135 friend Base;
8136
8137 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8138 DefaultedComparisonKind DCK,
8139 DiagnosticKind Diagnose = NoDiagnostics)
8140 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
8141
8142 Result visit() {
8143 if ((DCK == DefaultedComparisonKind::Equal ||
8144 DCK == DefaultedComparisonKind::ThreeWay) &&
8145 RD->hasVariantMembers()) {
8146 // C++2a [class.compare.default]p2 [P2002R0]:
8147 // A defaulted comparison operator function for class C is defined as
8148 // deleted if [...] C has variant members.
8149 if (Diagnose == ExplainDeleted) {
8150 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
8151 << FD << RD->isUnion() << RD;
8152 }
8153 return Result::deleted();
8154 }
8155
8156 return Base::visit();
8157 }
8158
8159private:
8160 Subobject getCompleteObject() {
8161 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
8162 }
8163
8164 Subobject getBase(CXXBaseSpecifier *Base) {
8165 return Subobject{.Kind: Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
8166 .Loc: Base->getBaseTypeLoc()};
8167 }
8168
8169 Subobject getField(FieldDecl *Field) {
8170 return Subobject{Subobject::Member, Field, Field->getLocation()};
8171 }
8172
8173 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
8174 // C++2a [class.compare.default]p2 [P2002R0]:
8175 // A defaulted <=> or == operator function for class C is defined as
8176 // deleted if any non-static data member of C is of reference type
8177 if (Type->isReferenceType()) {
8178 if (Diagnose == ExplainDeleted) {
8179 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
8180 << FD << RD;
8181 }
8182 return Result::deleted();
8183 }
8184
8185 // [...] Let xi be an lvalue denoting the ith element [...]
8186 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
8187 Expr *Args[] = {&Xi, &Xi};
8188
8189 // All operators start by trying to apply that same operator recursively.
8190 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8191 assert(OO != OO_None && "not an overloaded operator!");
8192 return visitBinaryOperator(OO, Args, Subobj);
8193 }
8194
8195 Result
8196 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
8197 Subobject Subobj,
8198 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
8199 // Note that there is no need to consider rewritten candidates here if
8200 // we've already found there is no viable 'operator<=>' candidate (and are
8201 // considering synthesizing a '<=>' from '==' and '<').
8202 OverloadCandidateSet CandidateSet(
8203 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
8204 OverloadCandidateSet::OperatorRewriteInfo(
8205 OO, FD->getLocation(),
8206 /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
8207
8208 /// C++2a [class.compare.default]p1 [P2002R0]:
8209 /// [...] the defaulted function itself is never a candidate for overload
8210 /// resolution [...]
8211 CandidateSet.exclude(FD);
8212
8213 if (Args[0]->getType()->isOverloadableType())
8214 S.LookupOverloadedBinOp(CandidateSet, Op: OO, Fns, Args);
8215 else
8216 // FIXME: We determine whether this is a valid expression by checking to
8217 // see if there's a viable builtin operator candidate for it. That isn't
8218 // really what the rules ask us to do, but should give the right results.
8219 S.AddBuiltinOperatorCandidates(Op: OO, OpLoc: FD->getLocation(), Args, CandidateSet);
8220
8221 Result R;
8222
8223 OverloadCandidateSet::iterator Best;
8224 switch (CandidateSet.BestViableFunction(S, Loc: FD->getLocation(), Best)) {
8225 case OR_Success: {
8226 // C++2a [class.compare.secondary]p2 [P2002R0]:
8227 // The operator function [...] is defined as deleted if [...] the
8228 // candidate selected by overload resolution is not a rewritten
8229 // candidate.
8230 if ((DCK == DefaultedComparisonKind::NotEqual ||
8231 DCK == DefaultedComparisonKind::Relational) &&
8232 !Best->RewriteKind) {
8233 if (Diagnose == ExplainDeleted) {
8234 if (Best->Function) {
8235 S.Diag(Best->Function->getLocation(),
8236 diag::note_defaulted_comparison_not_rewritten_callee)
8237 << FD;
8238 } else {
8239 assert(Best->Conversions.size() == 2 &&
8240 Best->Conversions[0].isUserDefined() &&
8241 "non-user-defined conversion from class to built-in "
8242 "comparison");
8243 S.Diag(Best->Conversions[0]
8244 .UserDefined.FoundConversionFunction.getDecl()
8245 ->getLocation(),
8246 diag::note_defaulted_comparison_not_rewritten_conversion)
8247 << FD;
8248 }
8249 }
8250 return Result::deleted();
8251 }
8252
8253 // Throughout C++2a [class.compare]: if overload resolution does not
8254 // result in a usable function, the candidate function is defined as
8255 // deleted. This requires that we selected an accessible function.
8256 //
8257 // Note that this only considers the access of the function when named
8258 // within the type of the subobject, and not the access path for any
8259 // derived-to-base conversion.
8260 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
8261 if (ArgClass && Best->FoundDecl.getDecl() &&
8262 Best->FoundDecl.getDecl()->isCXXClassMember()) {
8263 QualType ObjectType = Subobj.Kind == Subobject::Member
8264 ? Args[0]->getType()
8265 : S.Context.getRecordType(RD);
8266 if (!S.isMemberAccessibleForDeletion(
8267 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
8268 Diagnose == ExplainDeleted
8269 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
8270 << FD << Subobj.Kind << Subobj.Decl
8271 : S.PDiag()))
8272 return Result::deleted();
8273 }
8274
8275 bool NeedsDeducing =
8276 OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType();
8277
8278 if (FunctionDecl *BestFD = Best->Function) {
8279 // C++2a [class.compare.default]p3 [P2002R0]:
8280 // A defaulted comparison function is constexpr-compatible if
8281 // [...] no overlod resolution performed [...] results in a
8282 // non-constexpr function.
8283 assert(!BestFD->isDeleted() && "wrong overload resolution result");
8284 // If it's not constexpr, explain why not.
8285 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
8286 if (Subobj.Kind != Subobject::CompleteObject)
8287 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
8288 << Subobj.Kind << Subobj.Decl;
8289 S.Diag(BestFD->getLocation(),
8290 diag::note_defaulted_comparison_not_constexpr_here);
8291 // Bail out after explaining; we don't want any more notes.
8292 return Result::deleted();
8293 }
8294 R.Constexpr &= BestFD->isConstexpr();
8295
8296 if (NeedsDeducing) {
8297 // If any callee has an undeduced return type, deduce it now.
8298 // FIXME: It's not clear how a failure here should be handled. For
8299 // now, we produce an eager diagnostic, because that is forward
8300 // compatible with most (all?) other reasonable options.
8301 if (BestFD->getReturnType()->isUndeducedType() &&
8302 S.DeduceReturnType(FD: BestFD, Loc: FD->getLocation(),
8303 /*Diagnose=*/false)) {
8304 // Don't produce a duplicate error when asked to explain why the
8305 // comparison is deleted: we diagnosed that when initially checking
8306 // the defaulted operator.
8307 if (Diagnose == NoDiagnostics) {
8308 S.Diag(
8309 FD->getLocation(),
8310 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
8311 << Subobj.Kind << Subobj.Decl;
8312 S.Diag(
8313 Subobj.Loc,
8314 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
8315 << Subobj.Kind << Subobj.Decl;
8316 S.Diag(BestFD->getLocation(),
8317 diag::note_defaulted_comparison_cannot_deduce_callee)
8318 << Subobj.Kind << Subobj.Decl;
8319 }
8320 return Result::deleted();
8321 }
8322 auto *Info = S.Context.CompCategories.lookupInfoForType(
8323 Ty: BestFD->getCallResultType());
8324 if (!Info) {
8325 if (Diagnose == ExplainDeleted) {
8326 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
8327 << Subobj.Kind << Subobj.Decl
8328 << BestFD->getCallResultType().withoutLocalFastQualifiers();
8329 S.Diag(BestFD->getLocation(),
8330 diag::note_defaulted_comparison_cannot_deduce_callee)
8331 << Subobj.Kind << Subobj.Decl;
8332 }
8333 return Result::deleted();
8334 }
8335 R.Category = Info->Kind;
8336 }
8337 } else {
8338 QualType T = Best->BuiltinParamTypes[0];
8339 assert(T == Best->BuiltinParamTypes[1] &&
8340 "builtin comparison for different types?");
8341 assert(Best->BuiltinParamTypes[2].isNull() &&
8342 "invalid builtin comparison");
8343
8344 if (NeedsDeducing) {
8345 std::optional<ComparisonCategoryType> Cat =
8346 getComparisonCategoryForBuiltinCmp(T);
8347 assert(Cat && "no category for builtin comparison?");
8348 R.Category = *Cat;
8349 }
8350 }
8351
8352 // Note that we might be rewriting to a different operator. That call is
8353 // not considered until we come to actually build the comparison function.
8354 break;
8355 }
8356
8357 case OR_Ambiguous:
8358 if (Diagnose == ExplainDeleted) {
8359 unsigned Kind = 0;
8360 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
8361 Kind = OO == OO_EqualEqual ? 1 : 2;
8362 CandidateSet.NoteCandidates(
8363 PartialDiagnosticAt(
8364 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
8365 << FD << Kind << Subobj.Kind << Subobj.Decl),
8366 S, OCD_AmbiguousCandidates, Args);
8367 }
8368 R = Result::deleted();
8369 break;
8370
8371 case OR_Deleted:
8372 if (Diagnose == ExplainDeleted) {
8373 if ((DCK == DefaultedComparisonKind::NotEqual ||
8374 DCK == DefaultedComparisonKind::Relational) &&
8375 !Best->RewriteKind) {
8376 S.Diag(Best->Function->getLocation(),
8377 diag::note_defaulted_comparison_not_rewritten_callee)
8378 << FD;
8379 } else {
8380 S.Diag(Subobj.Loc,
8381 diag::note_defaulted_comparison_calls_deleted)
8382 << FD << Subobj.Kind << Subobj.Decl;
8383 S.NoteDeletedFunction(FD: Best->Function);
8384 }
8385 }
8386 R = Result::deleted();
8387 break;
8388
8389 case OR_No_Viable_Function:
8390 // If there's no usable candidate, we're done unless we can rewrite a
8391 // '<=>' in terms of '==' and '<'.
8392 if (OO == OO_Spaceship &&
8393 S.Context.CompCategories.lookupInfoForType(Ty: FD->getReturnType())) {
8394 // For any kind of comparison category return type, we need a usable
8395 // '==' and a usable '<'.
8396 if (!R.add(R: visitBinaryOperator(OO: OO_EqualEqual, Args, Subobj,
8397 SpaceshipCandidates: &CandidateSet)))
8398 R.add(R: visitBinaryOperator(OO: OO_Less, Args, Subobj, SpaceshipCandidates: &CandidateSet));
8399 break;
8400 }
8401
8402 if (Diagnose == ExplainDeleted) {
8403 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
8404 << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual)
8405 << Subobj.Kind << Subobj.Decl;
8406
8407 // For a three-way comparison, list both the candidates for the
8408 // original operator and the candidates for the synthesized operator.
8409 if (SpaceshipCandidates) {
8410 SpaceshipCandidates->NoteCandidates(
8411 S, Args,
8412 SpaceshipCandidates->CompleteCandidates(S, OCD: OCD_AllCandidates,
8413 Args, OpLoc: FD->getLocation()));
8414 S.Diag(Subobj.Loc,
8415 diag::note_defaulted_comparison_no_viable_function_synthesized)
8416 << (OO == OO_EqualEqual ? 0 : 1);
8417 }
8418
8419 CandidateSet.NoteCandidates(
8420 S, Args,
8421 CandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args,
8422 OpLoc: FD->getLocation()));
8423 }
8424 R = Result::deleted();
8425 break;
8426 }
8427
8428 return R;
8429 }
8430};
8431
8432/// A list of statements.
8433struct StmtListResult {
8434 bool IsInvalid = false;
8435 llvm::SmallVector<Stmt*, 16> Stmts;
8436
8437 bool add(const StmtResult &S) {
8438 IsInvalid |= S.isInvalid();
8439 if (IsInvalid)
8440 return true;
8441 Stmts.push_back(Elt: S.get());
8442 return false;
8443 }
8444};
8445
8446/// A visitor over the notional body of a defaulted comparison that synthesizes
8447/// the actual body.
8448class DefaultedComparisonSynthesizer
8449 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
8450 StmtListResult, StmtResult,
8451 std::pair<ExprResult, ExprResult>> {
8452 SourceLocation Loc;
8453 unsigned ArrayDepth = 0;
8454
8455public:
8456 using Base = DefaultedComparisonVisitor;
8457 using ExprPair = std::pair<ExprResult, ExprResult>;
8458
8459 friend Base;
8460
8461 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
8462 DefaultedComparisonKind DCK,
8463 SourceLocation BodyLoc)
8464 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
8465
8466 /// Build a suitable function body for this defaulted comparison operator.
8467 StmtResult build() {
8468 Sema::CompoundScopeRAII CompoundScope(S);
8469
8470 StmtListResult Stmts = visit();
8471 if (Stmts.IsInvalid)
8472 return StmtError();
8473
8474 ExprResult RetVal;
8475 switch (DCK) {
8476 case DefaultedComparisonKind::None:
8477 llvm_unreachable("not a defaulted comparison");
8478
8479 case DefaultedComparisonKind::Equal: {
8480 // C++2a [class.eq]p3:
8481 // [...] compar[e] the corresponding elements [...] until the first
8482 // index i where xi == yi yields [...] false. If no such index exists,
8483 // V is true. Otherwise, V is false.
8484 //
8485 // Join the comparisons with '&&'s and return the result. Use a right
8486 // fold (traversing the conditions right-to-left), because that
8487 // short-circuits more naturally.
8488 auto OldStmts = std::move(Stmts.Stmts);
8489 Stmts.Stmts.clear();
8490 ExprResult CmpSoFar;
8491 // Finish a particular comparison chain.
8492 auto FinishCmp = [&] {
8493 if (Expr *Prior = CmpSoFar.get()) {
8494 // Convert the last expression to 'return ...;'
8495 if (RetVal.isUnset() && Stmts.Stmts.empty())
8496 RetVal = CmpSoFar;
8497 // Convert any prior comparison to 'if (!(...)) return false;'
8498 else if (Stmts.add(S: buildIfNotCondReturnFalse(Cond: Prior)))
8499 return true;
8500 CmpSoFar = ExprResult();
8501 }
8502 return false;
8503 };
8504 for (Stmt *EAsStmt : llvm::reverse(C&: OldStmts)) {
8505 Expr *E = dyn_cast<Expr>(Val: EAsStmt);
8506 if (!E) {
8507 // Found an array comparison.
8508 if (FinishCmp() || Stmts.add(S: EAsStmt))
8509 return StmtError();
8510 continue;
8511 }
8512
8513 if (CmpSoFar.isUnset()) {
8514 CmpSoFar = E;
8515 continue;
8516 }
8517 CmpSoFar = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_LAnd, LHSExpr: E, RHSExpr: CmpSoFar.get());
8518 if (CmpSoFar.isInvalid())
8519 return StmtError();
8520 }
8521 if (FinishCmp())
8522 return StmtError();
8523 std::reverse(first: Stmts.Stmts.begin(), last: Stmts.Stmts.end());
8524 // If no such index exists, V is true.
8525 if (RetVal.isUnset())
8526 RetVal = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_true);
8527 break;
8528 }
8529
8530 case DefaultedComparisonKind::ThreeWay: {
8531 // Per C++2a [class.spaceship]p3, as a fallback add:
8532 // return static_cast<R>(std::strong_ordering::equal);
8533 QualType StrongOrdering = S.CheckComparisonCategoryType(
8534 Kind: ComparisonCategoryType::StrongOrdering, Loc,
8535 Usage: Sema::ComparisonCategoryUsage::DefaultedOperator);
8536 if (StrongOrdering.isNull())
8537 return StmtError();
8538 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(Ty: StrongOrdering)
8539 .getValueInfo(ValueKind: ComparisonCategoryResult::Equal)
8540 ->VD;
8541 RetVal = getDecl(EqualVD);
8542 if (RetVal.isInvalid())
8543 return StmtError();
8544 RetVal = buildStaticCastToR(E: RetVal.get());
8545 break;
8546 }
8547
8548 case DefaultedComparisonKind::NotEqual:
8549 case DefaultedComparisonKind::Relational:
8550 RetVal = cast<Expr>(Val: Stmts.Stmts.pop_back_val());
8551 break;
8552 }
8553
8554 // Build the final return statement.
8555 if (RetVal.isInvalid())
8556 return StmtError();
8557 StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: RetVal.get());
8558 if (ReturnStmt.isInvalid())
8559 return StmtError();
8560 Stmts.Stmts.push_back(Elt: ReturnStmt.get());
8561
8562 return S.ActOnCompoundStmt(L: Loc, R: Loc, Elts: Stmts.Stmts, /*IsStmtExpr=*/isStmtExpr: false);
8563 }
8564
8565private:
8566 ExprResult getDecl(ValueDecl *VD) {
8567 return S.BuildDeclarationNameExpr(
8568 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8569 }
8570
8571 ExprResult getParam(unsigned I) {
8572 ParmVarDecl *PD = FD->getParamDecl(i: I);
8573 return getDecl(PD);
8574 }
8575
8576 ExprPair getCompleteObject() {
8577 unsigned Param = 0;
8578 ExprResult LHS;
8579 if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD);
8580 MD && MD->isImplicitObjectMemberFunction()) {
8581 // LHS is '*this'.
8582 LHS = S.ActOnCXXThis(Loc);
8583 if (!LHS.isInvalid())
8584 LHS = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: LHS.get());
8585 } else {
8586 LHS = getParam(I: Param++);
8587 }
8588 ExprResult RHS = getParam(I: Param++);
8589 assert(Param == FD->getNumParams());
8590 return {LHS, RHS};
8591 }
8592
8593 ExprPair getBase(CXXBaseSpecifier *Base) {
8594 ExprPair Obj = getCompleteObject();
8595 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8596 return {ExprError(), ExprError()};
8597 CXXCastPath Path = {Base};
8598 return {S.ImpCastExprToType(E: Obj.first.get(), Type: Base->getType(),
8599 CK: CK_DerivedToBase, VK: VK_LValue, BasePath: &Path),
8600 S.ImpCastExprToType(E: Obj.second.get(), Type: Base->getType(),
8601 CK: CK_DerivedToBase, VK: VK_LValue, BasePath: &Path)};
8602 }
8603
8604 ExprPair getField(FieldDecl *Field) {
8605 ExprPair Obj = getCompleteObject();
8606 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8607 return {ExprError(), ExprError()};
8608
8609 DeclAccessPair Found = DeclAccessPair::make(D: Field, AS: Field->getAccess());
8610 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8611 return {S.BuildFieldReferenceExpr(BaseExpr: Obj.first.get(), /*IsArrow=*/false, OpLoc: Loc,
8612 SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo),
8613 S.BuildFieldReferenceExpr(BaseExpr: Obj.second.get(), /*IsArrow=*/false, OpLoc: Loc,
8614 SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo)};
8615 }
8616
8617 // FIXME: When expanding a subobject, register a note in the code synthesis
8618 // stack to say which subobject we're comparing.
8619
8620 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8621 if (Cond.isInvalid())
8622 return StmtError();
8623
8624 ExprResult NotCond = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_LNot, InputExpr: Cond.get());
8625 if (NotCond.isInvalid())
8626 return StmtError();
8627
8628 ExprResult False = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_false);
8629 assert(!False.isInvalid() && "should never fail");
8630 StmtResult ReturnFalse = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: False.get());
8631 if (ReturnFalse.isInvalid())
8632 return StmtError();
8633
8634 return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt: nullptr,
8635 Cond: S.ActOnCondition(S: nullptr, Loc, SubExpr: NotCond.get(),
8636 CK: Sema::ConditionKind::Boolean),
8637 RParenLoc: Loc, ThenVal: ReturnFalse.get(), ElseLoc: SourceLocation(), ElseVal: nullptr);
8638 }
8639
8640 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8641 ExprPair Subobj) {
8642 QualType SizeType = S.Context.getSizeType();
8643 Size = Size.zextOrTrunc(width: S.Context.getTypeSize(T: SizeType));
8644
8645 // Build 'size_t i$n = 0'.
8646 IdentifierInfo *IterationVarName = nullptr;
8647 {
8648 SmallString<8> Str;
8649 llvm::raw_svector_ostream OS(Str);
8650 OS << "i" << ArrayDepth;
8651 IterationVarName = &S.Context.Idents.get(Name: OS.str());
8652 }
8653 VarDecl *IterationVar = VarDecl::Create(
8654 C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: IterationVarName, T: SizeType,
8655 TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc), S: SC_None);
8656 llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0);
8657 IterationVar->setInit(
8658 IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc));
8659 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8660
8661 auto IterRef = [&] {
8662 ExprResult Ref = S.BuildDeclarationNameExpr(
8663 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8664 IterationVar);
8665 assert(!Ref.isInvalid() && "can't reference our own variable?");
8666 return Ref.get();
8667 };
8668
8669 // Build 'i$n != Size'.
8670 ExprResult Cond = S.CreateBuiltinBinOp(
8671 OpLoc: Loc, Opc: BO_NE, LHSExpr: IterRef(),
8672 RHSExpr: IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc));
8673 assert(!Cond.isInvalid() && "should never fail");
8674
8675 // Build '++i$n'.
8676 ExprResult Inc = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_PreInc, InputExpr: IterRef());
8677 assert(!Inc.isInvalid() && "should never fail");
8678
8679 // Build 'a[i$n]' and 'b[i$n]'.
8680 auto Index = [&](ExprResult E) {
8681 if (E.isInvalid())
8682 return ExprError();
8683 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8684 };
8685 Subobj.first = Index(Subobj.first);
8686 Subobj.second = Index(Subobj.second);
8687
8688 // Compare the array elements.
8689 ++ArrayDepth;
8690 StmtResult Substmt = visitSubobject(Type, Subobj);
8691 --ArrayDepth;
8692
8693 if (Substmt.isInvalid())
8694 return StmtError();
8695
8696 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8697 // For outer levels or for an 'operator<=>' we already have a suitable
8698 // statement that returns as necessary.
8699 if (Expr *ElemCmp = dyn_cast<Expr>(Val: Substmt.get())) {
8700 assert(DCK == DefaultedComparisonKind::Equal &&
8701 "should have non-expression statement");
8702 Substmt = buildIfNotCondReturnFalse(Cond: ElemCmp);
8703 if (Substmt.isInvalid())
8704 return StmtError();
8705 }
8706
8707 // Build 'for (...) ...'
8708 return S.ActOnForStmt(ForLoc: Loc, LParenLoc: Loc, First: Init,
8709 Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Cond.get(),
8710 CK: Sema::ConditionKind::Boolean),
8711 Third: S.MakeFullDiscardedValueExpr(Arg: Inc.get()), RParenLoc: Loc,
8712 Body: Substmt.get());
8713 }
8714
8715 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8716 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8717 return StmtError();
8718
8719 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8720 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8721 ExprResult Op;
8722 if (Type->isOverloadableType())
8723 Op = S.CreateOverloadedBinOp(OpLoc: Loc, Opc, Fns, LHS: Obj.first.get(),
8724 RHS: Obj.second.get(), /*PerformADL=*/RequiresADL: true,
8725 /*AllowRewrittenCandidates=*/true, DefaultedFn: FD);
8726 else
8727 Op = S.CreateBuiltinBinOp(OpLoc: Loc, Opc, LHSExpr: Obj.first.get(), RHSExpr: Obj.second.get());
8728 if (Op.isInvalid())
8729 return StmtError();
8730
8731 switch (DCK) {
8732 case DefaultedComparisonKind::None:
8733 llvm_unreachable("not a defaulted comparison");
8734
8735 case DefaultedComparisonKind::Equal:
8736 // Per C++2a [class.eq]p2, each comparison is individually contextually
8737 // converted to bool.
8738 Op = S.PerformContextuallyConvertToBool(From: Op.get());
8739 if (Op.isInvalid())
8740 return StmtError();
8741 return Op.get();
8742
8743 case DefaultedComparisonKind::ThreeWay: {
8744 // Per C++2a [class.spaceship]p3, form:
8745 // if (R cmp = static_cast<R>(op); cmp != 0)
8746 // return cmp;
8747 QualType R = FD->getReturnType();
8748 Op = buildStaticCastToR(E: Op.get());
8749 if (Op.isInvalid())
8750 return StmtError();
8751
8752 // R cmp = ...;
8753 IdentifierInfo *Name = &S.Context.Idents.get(Name: "cmp");
8754 VarDecl *VD =
8755 VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: Name, T: R,
8756 TInfo: S.Context.getTrivialTypeSourceInfo(T: R, Loc), S: SC_None);
8757 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8758 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8759
8760 // cmp != 0
8761 ExprResult VDRef = getDecl(VD);
8762 if (VDRef.isInvalid())
8763 return StmtError();
8764 llvm::APInt ZeroVal(S.Context.getIntWidth(T: S.Context.IntTy), 0);
8765 Expr *Zero =
8766 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8767 ExprResult Comp;
8768 if (VDRef.get()->getType()->isOverloadableType())
8769 Comp = S.CreateOverloadedBinOp(OpLoc: Loc, Opc: BO_NE, Fns, LHS: VDRef.get(), RHS: Zero, RequiresADL: true,
8770 AllowRewrittenCandidates: true, DefaultedFn: FD);
8771 else
8772 Comp = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_NE, LHSExpr: VDRef.get(), RHSExpr: Zero);
8773 if (Comp.isInvalid())
8774 return StmtError();
8775 Sema::ConditionResult Cond = S.ActOnCondition(
8776 S: nullptr, Loc, SubExpr: Comp.get(), CK: Sema::ConditionKind::Boolean);
8777 if (Cond.isInvalid())
8778 return StmtError();
8779
8780 // return cmp;
8781 VDRef = getDecl(VD);
8782 if (VDRef.isInvalid())
8783 return StmtError();
8784 StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: VDRef.get());
8785 if (ReturnStmt.isInvalid())
8786 return StmtError();
8787
8788 // if (...)
8789 return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt, Cond,
8790 RParenLoc: Loc, ThenVal: ReturnStmt.get(),
8791 /*ElseLoc=*/SourceLocation(), /*Else=*/ElseVal: nullptr);
8792 }
8793
8794 case DefaultedComparisonKind::NotEqual:
8795 case DefaultedComparisonKind::Relational:
8796 // C++2a [class.compare.secondary]p2:
8797 // Otherwise, the operator function yields x @ y.
8798 return Op.get();
8799 }
8800 llvm_unreachable("");
8801 }
8802
8803 /// Build "static_cast<R>(E)".
8804 ExprResult buildStaticCastToR(Expr *E) {
8805 QualType R = FD->getReturnType();
8806 assert(!R->isUndeducedType() && "type should have been deduced already");
8807
8808 // Don't bother forming a no-op cast in the common case.
8809 if (E->isPRValue() && S.Context.hasSameType(T1: E->getType(), T2: R))
8810 return E;
8811 return S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast,
8812 Ty: S.Context.getTrivialTypeSourceInfo(T: R, Loc), E,
8813 AngleBrackets: SourceRange(Loc, Loc), Parens: SourceRange(Loc, Loc));
8814 }
8815};
8816}
8817
8818/// Perform the unqualified lookups that might be needed to form a defaulted
8819/// comparison function for the given operator.
8820static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8821 UnresolvedSetImpl &Operators,
8822 OverloadedOperatorKind Op) {
8823 auto Lookup = [&](OverloadedOperatorKind OO) {
8824 Self.LookupOverloadedOperatorName(Op: OO, S, Functions&: Operators);
8825 };
8826
8827 // Every defaulted operator looks up itself.
8828 Lookup(Op);
8829 // ... and the rewritten form of itself, if any.
8830 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Kind: Op))
8831 Lookup(ExtraOp);
8832
8833 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8834 // synthesize a three-way comparison from '<' and '=='. In a dependent
8835 // context, we also need to look up '==' in case we implicitly declare a
8836 // defaulted 'operator=='.
8837 if (Op == OO_Spaceship) {
8838 Lookup(OO_ExclaimEqual);
8839 Lookup(OO_Less);
8840 Lookup(OO_EqualEqual);
8841 }
8842}
8843
8844bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8845 DefaultedComparisonKind DCK) {
8846 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison");
8847
8848 // Perform any unqualified lookups we're going to need to default this
8849 // function.
8850 if (S) {
8851 UnresolvedSet<32> Operators;
8852 lookupOperatorsForDefaultedComparison(Self&: *this, S, Operators,
8853 Op: FD->getOverloadedOperator());
8854 FD->setDefaultedOrDeletedInfo(
8855 FunctionDecl::DefaultedOrDeletedFunctionInfo::Create(
8856 Context, Lookups: Operators.pairs()));
8857 }
8858
8859 // C++2a [class.compare.default]p1:
8860 // A defaulted comparison operator function for some class C shall be a
8861 // non-template function declared in the member-specification of C that is
8862 // -- a non-static const non-volatile member of C having one parameter of
8863 // type const C& and either no ref-qualifier or the ref-qualifier &, or
8864 // -- a friend of C having two parameters of type const C& or two
8865 // parameters of type C.
8866
8867 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8868 bool IsMethod = isa<CXXMethodDecl>(Val: FD);
8869 if (IsMethod) {
8870 auto *MD = cast<CXXMethodDecl>(Val: FD);
8871 assert(!MD->isStatic() && "comparison function cannot be a static member");
8872
8873 if (MD->getRefQualifier() == RQ_RValue) {
8874 Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator);
8875
8876 // Remove the ref qualifier to recover.
8877 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8878 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8879 EPI.RefQualifier = RQ_None;
8880 MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(),
8881 Args: FPT->getParamTypes(), EPI));
8882 }
8883
8884 // If we're out-of-class, this is the class we're comparing.
8885 if (!RD)
8886 RD = MD->getParent();
8887 QualType T = MD->getFunctionObjectParameterType();
8888 if (!T.isConstQualified()) {
8889 SourceLocation Loc, InsertLoc;
8890 if (MD->isExplicitObjectMemberFunction()) {
8891 Loc = MD->getParamDecl(0)->getBeginLoc();
8892 InsertLoc = getLocForEndOfToken(
8893 Loc: MD->getParamDecl(0)->getExplicitObjectParamThisLoc());
8894 } else {
8895 Loc = MD->getLocation();
8896 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8897 InsertLoc = Loc.getRParenLoc();
8898 }
8899 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8900 // corresponding defaulted 'operator<=>' already.
8901 if (!MD->isImplicit()) {
8902 Diag(Loc, diag::err_defaulted_comparison_non_const)
8903 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8904 }
8905
8906 // Add the 'const' to the type to recover.
8907 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8908 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8909 EPI.TypeQuals.addConst();
8910 MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(),
8911 Args: FPT->getParamTypes(), EPI));
8912 }
8913
8914 if (MD->isVolatile()) {
8915 Diag(MD->getLocation(), diag::err_volatile_comparison_operator);
8916
8917 // Remove the 'volatile' from the type to recover.
8918 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8919 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8920 EPI.TypeQuals.removeVolatile();
8921 MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(),
8922 Args: FPT->getParamTypes(), EPI));
8923 }
8924 }
8925
8926 if ((FD->getNumParams() -
8927 (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) !=
8928 (IsMethod ? 1 : 2)) {
8929 // Let's not worry about using a variadic template pack here -- who would do
8930 // such a thing?
8931 Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args)
8932 << int(IsMethod) << int(DCK);
8933 return true;
8934 }
8935
8936 const ParmVarDecl *KnownParm = nullptr;
8937 for (const ParmVarDecl *Param : FD->parameters()) {
8938 if (Param->isExplicitObjectParameter())
8939 continue;
8940 QualType ParmTy = Param->getType();
8941
8942 if (!KnownParm) {
8943 auto CTy = ParmTy;
8944 // Is it `T const &`?
8945 bool Ok = !IsMethod;
8946 QualType ExpectedTy;
8947 if (RD)
8948 ExpectedTy = Context.getRecordType(RD);
8949 if (auto *Ref = CTy->getAs<ReferenceType>()) {
8950 CTy = Ref->getPointeeType();
8951 if (RD)
8952 ExpectedTy.addConst();
8953 Ok = true;
8954 }
8955
8956 // Is T a class?
8957 if (!Ok) {
8958 } else if (RD) {
8959 if (!RD->isDependentType() && !Context.hasSameType(CTy, ExpectedTy))
8960 Ok = false;
8961 } else if (auto *CRD = CTy->getAsRecordDecl()) {
8962 RD = cast<CXXRecordDecl>(CRD);
8963 } else {
8964 Ok = false;
8965 }
8966
8967 if (Ok) {
8968 KnownParm = Param;
8969 } else {
8970 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8971 // corresponding defaulted 'operator<=>' already.
8972 if (!FD->isImplicit()) {
8973 if (RD) {
8974 QualType PlainTy = Context.getRecordType(RD);
8975 QualType RefTy =
8976 Context.getLValueReferenceType(T: PlainTy.withConst());
8977 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8978 << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy
8979 << Param->getSourceRange();
8980 } else {
8981 assert(!IsMethod && "should know expected type for method");
8982 Diag(FD->getLocation(),
8983 diag::err_defaulted_comparison_param_unknown)
8984 << int(DCK) << ParmTy << Param->getSourceRange();
8985 }
8986 }
8987 return true;
8988 }
8989 } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) {
8990 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8991 << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange()
8992 << ParmTy << Param->getSourceRange();
8993 return true;
8994 }
8995 }
8996
8997 assert(RD && "must have determined class");
8998 if (IsMethod) {
8999 } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
9000 // In-class, must be a friend decl.
9001 assert(FD->getFriendObjectKind() && "expected a friend declaration");
9002 } else {
9003 // Out of class, require the defaulted comparison to be a friend (of a
9004 // complete type).
9005 if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD),
9006 diag::err_defaulted_comparison_not_friend, int(DCK),
9007 int(1)))
9008 return true;
9009
9010 if (llvm::none_of(Range: RD->friends(), P: [&](const FriendDecl *F) {
9011 return FD->getCanonicalDecl() ==
9012 F->getFriendDecl()->getCanonicalDecl();
9013 })) {
9014 Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend)
9015 << int(DCK) << int(0) << RD;
9016 Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at);
9017 return true;
9018 }
9019 }
9020
9021 // C++2a [class.eq]p1, [class.rel]p1:
9022 // A [defaulted comparison other than <=>] shall have a declared return
9023 // type bool.
9024 if (DCK != DefaultedComparisonKind::ThreeWay &&
9025 !FD->getDeclaredReturnType()->isDependentType() &&
9026 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
9027 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
9028 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
9029 << FD->getReturnTypeSourceRange();
9030 return true;
9031 }
9032 // C++2a [class.spaceship]p2 [P2002R0]:
9033 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
9034 // R shall not contain a placeholder type.
9035 if (QualType RT = FD->getDeclaredReturnType();
9036 DCK == DefaultedComparisonKind::ThreeWay &&
9037 RT->getContainedDeducedType() &&
9038 (!Context.hasSameType(T1: RT, T2: Context.getAutoDeductType()) ||
9039 RT->getContainedAutoType()->isConstrained())) {
9040 Diag(FD->getLocation(),
9041 diag::err_defaulted_comparison_deduced_return_type_not_auto)
9042 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
9043 << FD->getReturnTypeSourceRange();
9044 return true;
9045 }
9046
9047 // For a defaulted function in a dependent class, defer all remaining checks
9048 // until instantiation.
9049 if (RD->isDependentType())
9050 return false;
9051
9052 // Determine whether the function should be defined as deleted.
9053 DefaultedComparisonInfo Info =
9054 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
9055
9056 bool First = FD == FD->getCanonicalDecl();
9057
9058 if (!First) {
9059 if (Info.Deleted) {
9060 // C++11 [dcl.fct.def.default]p4:
9061 // [For a] user-provided explicitly-defaulted function [...] if such a
9062 // function is implicitly defined as deleted, the program is ill-formed.
9063 //
9064 // This is really just a consequence of the general rule that you can
9065 // only delete a function on its first declaration.
9066 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
9067 << FD->isImplicit() << (int)DCK;
9068 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9069 DefaultedComparisonAnalyzer::ExplainDeleted)
9070 .visit();
9071 return true;
9072 }
9073 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
9074 // C++20 [class.compare.default]p1:
9075 // [...] A definition of a comparison operator as defaulted that appears
9076 // in a class shall be the first declaration of that function.
9077 Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class)
9078 << (int)DCK;
9079 Diag(FD->getCanonicalDecl()->getLocation(),
9080 diag::note_previous_declaration);
9081 return true;
9082 }
9083 }
9084
9085 // If we want to delete the function, then do so; there's nothing else to
9086 // check in that case.
9087 if (Info.Deleted) {
9088 SetDeclDeleted(dcl: FD, DelLoc: FD->getLocation());
9089 if (!inTemplateInstantiation() && !FD->isImplicit()) {
9090 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
9091 << (int)DCK;
9092 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9093 DefaultedComparisonAnalyzer::ExplainDeleted)
9094 .visit();
9095 if (FD->getDefaultLoc().isValid())
9096 Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete)
9097 << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete");
9098 }
9099 return false;
9100 }
9101
9102 // C++2a [class.spaceship]p2:
9103 // The return type is deduced as the common comparison type of R0, R1, ...
9104 if (DCK == DefaultedComparisonKind::ThreeWay &&
9105 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
9106 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
9107 if (RetLoc.isInvalid())
9108 RetLoc = FD->getBeginLoc();
9109 // FIXME: Should we really care whether we have the complete type and the
9110 // 'enumerator' constants here? A forward declaration seems sufficient.
9111 QualType Cat = CheckComparisonCategoryType(
9112 Kind: Info.Category, Loc: RetLoc, Usage: ComparisonCategoryUsage::DefaultedOperator);
9113 if (Cat.isNull())
9114 return true;
9115 Context.adjustDeducedFunctionResultType(
9116 FD, ResultType: SubstAutoType(TypeWithAuto: FD->getDeclaredReturnType(), Replacement: Cat));
9117 }
9118
9119 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
9120 // An explicitly-defaulted function that is not defined as deleted may be
9121 // declared constexpr or consteval only if it is constexpr-compatible.
9122 // C++2a [class.compare.default]p3 [P2002R0]:
9123 // A defaulted comparison function is constexpr-compatible if it satisfies
9124 // the requirements for a constexpr function [...]
9125 // The only relevant requirements are that the parameter and return types are
9126 // literal types. The remaining conditions are checked by the analyzer.
9127 //
9128 // We support P2448R2 in language modes earlier than C++23 as an extension.
9129 // The concept of constexpr-compatible was removed.
9130 // C++23 [dcl.fct.def.default]p3 [P2448R2]
9131 // A function explicitly defaulted on its first declaration is implicitly
9132 // inline, and is implicitly constexpr if it is constexpr-suitable.
9133 // C++23 [dcl.constexpr]p3
9134 // A function is constexpr-suitable if
9135 // - it is not a coroutine, and
9136 // - if the function is a constructor or destructor, its class does not
9137 // have any virtual base classes.
9138 if (FD->isConstexpr()) {
9139 if (!getLangOpts().CPlusPlus23 &&
9140 CheckConstexprReturnType(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) &&
9141 CheckConstexprParameterTypes(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) &&
9142 !Info.Constexpr) {
9143 Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch)
9144 << FD->isImplicit() << (int)DCK << FD->isConsteval();
9145 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
9146 DefaultedComparisonAnalyzer::ExplainConstexpr)
9147 .visit();
9148 }
9149 }
9150
9151 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
9152 // If a constexpr-compatible function is explicitly defaulted on its first
9153 // declaration, it is implicitly considered to be constexpr.
9154 // FIXME: Only applying this to the first declaration seems problematic, as
9155 // simple reorderings can affect the meaning of the program.
9156 if (First && !FD->isConstexpr() && Info.Constexpr)
9157 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
9158
9159 // C++2a [except.spec]p3:
9160 // If a declaration of a function does not have a noexcept-specifier
9161 // [and] is defaulted on its first declaration, [...] the exception
9162 // specification is as specified below
9163 if (FD->getExceptionSpecType() == EST_None) {
9164 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
9165 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
9166 EPI.ExceptionSpec.Type = EST_Unevaluated;
9167 EPI.ExceptionSpec.SourceDecl = FD;
9168 FD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(),
9169 Args: FPT->getParamTypes(), EPI));
9170 }
9171
9172 return false;
9173}
9174
9175void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
9176 FunctionDecl *Spaceship) {
9177 Sema::CodeSynthesisContext Ctx;
9178 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
9179 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
9180 Ctx.Entity = Spaceship;
9181 pushCodeSynthesisContext(Ctx);
9182
9183 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
9184 EqualEqual->setImplicit();
9185
9186 popCodeSynthesisContext();
9187}
9188
9189void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
9190 DefaultedComparisonKind DCK) {
9191 assert(FD->isDefaulted() && !FD->isDeleted() &&
9192 !FD->doesThisDeclarationHaveABody());
9193 if (FD->willHaveBody() || FD->isInvalidDecl())
9194 return;
9195
9196 SynthesizedFunctionScope Scope(*this, FD);
9197
9198 // Add a context note for diagnostics produced after this point.
9199 Scope.addContextNote(UseLoc);
9200
9201 {
9202 // Build and set up the function body.
9203 // The first parameter has type maybe-ref-to maybe-const T, use that to get
9204 // the type of the class being compared.
9205 auto PT = FD->getParamDecl(i: 0)->getType();
9206 CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl();
9207 SourceLocation BodyLoc =
9208 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
9209 StmtResult Body =
9210 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
9211 if (Body.isInvalid()) {
9212 FD->setInvalidDecl();
9213 return;
9214 }
9215 FD->setBody(Body.get());
9216 FD->markUsed(Context);
9217 }
9218
9219 // The exception specification is needed because we are defining the
9220 // function. Note that this will reuse the body we just built.
9221 ResolveExceptionSpec(Loc: UseLoc, FPT: FD->getType()->castAs<FunctionProtoType>());
9222
9223 if (ASTMutationListener *L = getASTMutationListener())
9224 L->CompletedImplicitDefinition(D: FD);
9225}
9226
9227static Sema::ImplicitExceptionSpecification
9228ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
9229 FunctionDecl *FD,
9230 Sema::DefaultedComparisonKind DCK) {
9231 ComputingExceptionSpec CES(S, FD, Loc);
9232 Sema::ImplicitExceptionSpecification ExceptSpec(S);
9233
9234 if (FD->isInvalidDecl())
9235 return ExceptSpec;
9236
9237 // The common case is that we just defined the comparison function. In that
9238 // case, just look at whether the body can throw.
9239 if (FD->hasBody()) {
9240 ExceptSpec.CalledStmt(S: FD->getBody());
9241 } else {
9242 // Otherwise, build a body so we can check it. This should ideally only
9243 // happen when we're not actually marking the function referenced. (This is
9244 // only really important for efficiency: we don't want to build and throw
9245 // away bodies for comparison functions more than we strictly need to.)
9246
9247 // Pretend to synthesize the function body in an unevaluated context.
9248 // Note that we can't actually just go ahead and define the function here:
9249 // we are not permitted to mark its callees as referenced.
9250 Sema::SynthesizedFunctionScope Scope(S, FD);
9251 EnterExpressionEvaluationContext Context(
9252 S, Sema::ExpressionEvaluationContext::Unevaluated);
9253
9254 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
9255 SourceLocation BodyLoc =
9256 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
9257 StmtResult Body =
9258 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
9259 if (!Body.isInvalid())
9260 ExceptSpec.CalledStmt(S: Body.get());
9261
9262 // FIXME: Can we hold onto this body and just transform it to potentially
9263 // evaluated when we're asked to define the function rather than rebuilding
9264 // it? Either that, or we should only build the bits of the body that we
9265 // need (the expressions, not the statements).
9266 }
9267
9268 return ExceptSpec;
9269}
9270
9271void Sema::CheckDelayedMemberExceptionSpecs() {
9272 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
9273 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
9274
9275 std::swap(LHS&: Overriding, RHS&: DelayedOverridingExceptionSpecChecks);
9276 std::swap(LHS&: Equivalent, RHS&: DelayedEquivalentExceptionSpecChecks);
9277
9278 // Perform any deferred checking of exception specifications for virtual
9279 // destructors.
9280 for (auto &Check : Overriding)
9281 CheckOverridingFunctionExceptionSpec(New: Check.first, Old: Check.second);
9282
9283 // Perform any deferred checking of exception specifications for befriended
9284 // special members.
9285 for (auto &Check : Equivalent)
9286 CheckEquivalentExceptionSpec(Old: Check.second, New: Check.first);
9287}
9288
9289namespace {
9290/// CRTP base class for visiting operations performed by a special member
9291/// function (or inherited constructor).
9292template<typename Derived>
9293struct SpecialMemberVisitor {
9294 Sema &S;
9295 CXXMethodDecl *MD;
9296 CXXSpecialMemberKind CSM;
9297 Sema::InheritedConstructorInfo *ICI;
9298
9299 // Properties of the special member, computed for convenience.
9300 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
9301
9302 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
9303 Sema::InheritedConstructorInfo *ICI)
9304 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
9305 switch (CSM) {
9306 case CXXSpecialMemberKind::DefaultConstructor:
9307 case CXXSpecialMemberKind::CopyConstructor:
9308 case CXXSpecialMemberKind::MoveConstructor:
9309 IsConstructor = true;
9310 break;
9311 case CXXSpecialMemberKind::CopyAssignment:
9312 case CXXSpecialMemberKind::MoveAssignment:
9313 IsAssignment = true;
9314 break;
9315 case CXXSpecialMemberKind::Destructor:
9316 break;
9317 case CXXSpecialMemberKind::Invalid:
9318 llvm_unreachable("invalid special member kind");
9319 }
9320
9321 if (MD->getNumExplicitParams()) {
9322 if (const ReferenceType *RT =
9323 MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>())
9324 ConstArg = RT->getPointeeType().isConstQualified();
9325 }
9326 }
9327
9328 Derived &getDerived() { return static_cast<Derived&>(*this); }
9329
9330 /// Is this a "move" special member?
9331 bool isMove() const {
9332 return CSM == CXXSpecialMemberKind::MoveConstructor ||
9333 CSM == CXXSpecialMemberKind::MoveAssignment;
9334 }
9335
9336 /// Look up the corresponding special member in the given class.
9337 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
9338 unsigned Quals, bool IsMutable) {
9339 return lookupCallFromSpecialMember(S, Class, CSM, FieldQuals: Quals,
9340 ConstRHS: ConstArg && !IsMutable);
9341 }
9342
9343 /// Look up the constructor for the specified base class to see if it's
9344 /// overridden due to this being an inherited constructor.
9345 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
9346 if (!ICI)
9347 return {};
9348 assert(CSM == CXXSpecialMemberKind::DefaultConstructor);
9349 auto *BaseCtor =
9350 cast<CXXConstructorDecl>(Val: MD)->getInheritedConstructor().getConstructor();
9351 if (auto *MD = ICI->findConstructorForBase(Base: Class, Ctor: BaseCtor).first)
9352 return MD;
9353 return {};
9354 }
9355
9356 /// A base or member subobject.
9357 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
9358
9359 /// Get the location to use for a subobject in diagnostics.
9360 static SourceLocation getSubobjectLoc(Subobject Subobj) {
9361 // FIXME: For an indirect virtual base, the direct base leading to
9362 // the indirect virtual base would be a more useful choice.
9363 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
9364 return B->getBaseTypeLoc();
9365 else
9366 return Subobj.get<FieldDecl*>()->getLocation();
9367 }
9368
9369 enum BasesToVisit {
9370 /// Visit all non-virtual (direct) bases.
9371 VisitNonVirtualBases,
9372 /// Visit all direct bases, virtual or not.
9373 VisitDirectBases,
9374 /// Visit all non-virtual bases, and all virtual bases if the class
9375 /// is not abstract.
9376 VisitPotentiallyConstructedBases,
9377 /// Visit all direct or virtual bases.
9378 VisitAllBases
9379 };
9380
9381 // Visit the bases and members of the class.
9382 bool visit(BasesToVisit Bases) {
9383 CXXRecordDecl *RD = MD->getParent();
9384
9385 if (Bases == VisitPotentiallyConstructedBases)
9386 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
9387
9388 for (auto &B : RD->bases())
9389 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
9390 getDerived().visitBase(&B))
9391 return true;
9392
9393 if (Bases == VisitAllBases)
9394 for (auto &B : RD->vbases())
9395 if (getDerived().visitBase(&B))
9396 return true;
9397
9398 for (auto *F : RD->fields())
9399 if (!F->isInvalidDecl() && !F->isUnnamedBitField() &&
9400 getDerived().visitField(F))
9401 return true;
9402
9403 return false;
9404 }
9405};
9406}
9407
9408namespace {
9409struct SpecialMemberDeletionInfo
9410 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
9411 bool Diagnose;
9412
9413 SourceLocation Loc;
9414
9415 bool AllFieldsAreConst;
9416
9417 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
9418 CXXSpecialMemberKind CSM,
9419 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
9420 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
9421 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
9422
9423 bool inUnion() const { return MD->getParent()->isUnion(); }
9424
9425 CXXSpecialMemberKind getEffectiveCSM() {
9426 return ICI ? CXXSpecialMemberKind::Invalid : CSM;
9427 }
9428
9429 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
9430
9431 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
9432 bool visitField(FieldDecl *Field) { return shouldDeleteForField(FD: Field); }
9433
9434 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
9435 bool shouldDeleteForField(FieldDecl *FD);
9436 bool shouldDeleteForAllConstMembers();
9437
9438 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
9439 unsigned Quals);
9440 bool shouldDeleteForSubobjectCall(Subobject Subobj,
9441 Sema::SpecialMemberOverloadResult SMOR,
9442 bool IsDtorCallInCtor);
9443
9444 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
9445};
9446}
9447
9448/// Is the given special member inaccessible when used on the given
9449/// sub-object.
9450bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
9451 CXXMethodDecl *target) {
9452 /// If we're operating on a base class, the object type is the
9453 /// type of this special member.
9454 QualType objectTy;
9455 AccessSpecifier access = target->getAccess();
9456 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
9457 objectTy = S.Context.getTypeDeclType(MD->getParent());
9458 access = CXXRecordDecl::MergeAccess(PathAccess: base->getAccessSpecifier(), DeclAccess: access);
9459
9460 // If we're operating on a field, the object type is the type of the field.
9461 } else {
9462 objectTy = S.Context.getTypeDeclType(target->getParent());
9463 }
9464
9465 return S.isMemberAccessibleForDeletion(
9466 target->getParent(), DeclAccessPair::make(target, access), objectTy);
9467}
9468
9469/// Check whether we should delete a special member due to the implicit
9470/// definition containing a call to a special member of a subobject.
9471bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
9472 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
9473 bool IsDtorCallInCtor) {
9474 CXXMethodDecl *Decl = SMOR.getMethod();
9475 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9476
9477 int DiagKind = -1;
9478
9479 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
9480 DiagKind = !Decl ? 0 : 1;
9481 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9482 DiagKind = 2;
9483 else if (!isAccessible(Subobj, target: Decl))
9484 DiagKind = 3;
9485 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
9486 !Decl->isTrivial()) {
9487 // A member of a union must have a trivial corresponding special member.
9488 // As a weird special case, a destructor call from a union's constructor
9489 // must be accessible and non-deleted, but need not be trivial. Such a
9490 // destructor is never actually called, but is semantically checked as
9491 // if it were.
9492 if (CSM == CXXSpecialMemberKind::DefaultConstructor) {
9493 // [class.default.ctor]p2:
9494 // A defaulted default constructor for class X is defined as deleted if
9495 // - X is a union that has a variant member with a non-trivial default
9496 // constructor and no variant member of X has a default member
9497 // initializer
9498 const auto *RD = cast<CXXRecordDecl>(Val: Field->getParent());
9499 if (!RD->hasInClassInitializer())
9500 DiagKind = 4;
9501 } else {
9502 DiagKind = 4;
9503 }
9504 }
9505
9506 if (DiagKind == -1)
9507 return false;
9508
9509 if (Diagnose) {
9510 if (Field) {
9511 S.Diag(Field->getLocation(),
9512 diag::note_deleted_special_member_class_subobject)
9513 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent()
9514 << /*IsField*/ true << Field << DiagKind << IsDtorCallInCtor
9515 << /*IsObjCPtr*/ false;
9516 } else {
9517 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
9518 S.Diag(Base->getBeginLoc(),
9519 diag::note_deleted_special_member_class_subobject)
9520 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent()
9521 << /*IsField*/ false << Base->getType() << DiagKind
9522 << IsDtorCallInCtor << /*IsObjCPtr*/ false;
9523 }
9524
9525 if (DiagKind == 1)
9526 S.NoteDeletedFunction(Decl);
9527 // FIXME: Explain inaccessibility if DiagKind == 3.
9528 }
9529
9530 return true;
9531}
9532
9533/// Check whether we should delete a special member function due to having a
9534/// direct or virtual base class or non-static data member of class type M.
9535bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
9536 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
9537 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
9538 bool IsMutable = Field && Field->isMutable();
9539
9540 // C++11 [class.ctor]p5:
9541 // -- any direct or virtual base class, or non-static data member with no
9542 // brace-or-equal-initializer, has class type M (or array thereof) and
9543 // either M has no default constructor or overload resolution as applied
9544 // to M's default constructor results in an ambiguity or in a function
9545 // that is deleted or inaccessible
9546 // C++11 [class.copy]p11, C++11 [class.copy]p23:
9547 // -- a direct or virtual base class B that cannot be copied/moved because
9548 // overload resolution, as applied to B's corresponding special member,
9549 // results in an ambiguity or a function that is deleted or inaccessible
9550 // from the defaulted special member
9551 // C++11 [class.dtor]p5:
9552 // -- any direct or virtual base class [...] has a type with a destructor
9553 // that is deleted or inaccessible
9554 if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field &&
9555 Field->hasInClassInitializer()) &&
9556 shouldDeleteForSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable),
9557 IsDtorCallInCtor: false))
9558 return true;
9559
9560 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
9561 // -- any direct or virtual base class or non-static data member has a
9562 // type with a destructor that is deleted or inaccessible
9563 if (IsConstructor) {
9564 Sema::SpecialMemberOverloadResult SMOR =
9565 S.LookupSpecialMember(D: Class, SM: CXXSpecialMemberKind::Destructor, ConstArg: false,
9566 VolatileArg: false, RValueThis: false, ConstThis: false, VolatileThis: false);
9567 if (shouldDeleteForSubobjectCall(Subobj, SMOR, IsDtorCallInCtor: true))
9568 return true;
9569 }
9570
9571 return false;
9572}
9573
9574bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
9575 FieldDecl *FD, QualType FieldType) {
9576 // The defaulted special functions are defined as deleted if this is a variant
9577 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
9578 // type under ARC.
9579 if (!FieldType.hasNonTrivialObjCLifetime())
9580 return false;
9581
9582 // Don't make the defaulted default constructor defined as deleted if the
9583 // member has an in-class initializer.
9584 if (CSM == CXXSpecialMemberKind::DefaultConstructor &&
9585 FD->hasInClassInitializer())
9586 return false;
9587
9588 if (Diagnose) {
9589 auto *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent());
9590 S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject)
9591 << llvm::to_underlying(getEffectiveCSM()) << ParentClass
9592 << /*IsField*/ true << FD << 4 << /*IsDtorCallInCtor*/ false
9593 << /*IsObjCPtr*/ true;
9594 }
9595
9596 return true;
9597}
9598
9599/// Check whether we should delete a special member function due to the class
9600/// having a particular direct or virtual base class.
9601bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
9602 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
9603 // If program is correct, BaseClass cannot be null, but if it is, the error
9604 // must be reported elsewhere.
9605 if (!BaseClass)
9606 return false;
9607 // If we have an inheriting constructor, check whether we're calling an
9608 // inherited constructor instead of a default constructor.
9609 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass);
9610 if (auto *BaseCtor = SMOR.getMethod()) {
9611 // Note that we do not check access along this path; other than that,
9612 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
9613 // FIXME: Check that the base has a usable destructor! Sink this into
9614 // shouldDeleteForClassSubobject.
9615 if (BaseCtor->isDeleted() && Diagnose) {
9616 S.Diag(Base->getBeginLoc(),
9617 diag::note_deleted_special_member_class_subobject)
9618 << llvm::to_underlying(getEffectiveCSM()) << MD->getParent()
9619 << /*IsField*/ false << Base->getType() << /*Deleted*/ 1
9620 << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ false;
9621 S.NoteDeletedFunction(BaseCtor);
9622 }
9623 return BaseCtor->isDeleted();
9624 }
9625 return shouldDeleteForClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0);
9626}
9627
9628/// Check whether we should delete a special member function due to the class
9629/// having a particular non-static data member.
9630bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
9631 QualType FieldType = S.Context.getBaseElementType(FD->getType());
9632 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
9633
9634 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9635 return true;
9636
9637 if (CSM == CXXSpecialMemberKind::DefaultConstructor) {
9638 // For a default constructor, all references must be initialized in-class
9639 // and, if a union, it must have a non-const member.
9640 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9641 if (Diagnose)
9642 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9643 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9644 return true;
9645 }
9646 // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static
9647 // data member of const-qualified type (or array thereof) with no
9648 // brace-or-equal-initializer is not const-default-constructible.
9649 if (!inUnion() && FieldType.isConstQualified() &&
9650 !FD->hasInClassInitializer() &&
9651 (!FieldRecord || !FieldRecord->allowConstDefaultInit())) {
9652 if (Diagnose)
9653 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9654 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9655 return true;
9656 }
9657
9658 if (inUnion() && !FieldType.isConstQualified())
9659 AllFieldsAreConst = false;
9660 } else if (CSM == CXXSpecialMemberKind::CopyConstructor) {
9661 // For a copy constructor, data members must not be of rvalue reference
9662 // type.
9663 if (FieldType->isRValueReferenceType()) {
9664 if (Diagnose)
9665 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9666 << MD->getParent() << FD << FieldType;
9667 return true;
9668 }
9669 } else if (IsAssignment) {
9670 // For an assignment operator, data members must not be of reference type.
9671 if (FieldType->isReferenceType()) {
9672 if (Diagnose)
9673 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9674 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9675 return true;
9676 }
9677 if (!FieldRecord && FieldType.isConstQualified()) {
9678 // C++11 [class.copy]p23:
9679 // -- a non-static data member of const non-class type (or array thereof)
9680 if (Diagnose)
9681 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9682 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9683 return true;
9684 }
9685 }
9686
9687 if (FieldRecord) {
9688 // Some additional restrictions exist on the variant members.
9689 if (!inUnion() && FieldRecord->isUnion() &&
9690 FieldRecord->isAnonymousStructOrUnion()) {
9691 bool AllVariantFieldsAreConst = true;
9692
9693 // FIXME: Handle anonymous unions declared within anonymous unions.
9694 for (auto *UI : FieldRecord->fields()) {
9695 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9696
9697 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9698 return true;
9699
9700 if (!UnionFieldType.isConstQualified())
9701 AllVariantFieldsAreConst = false;
9702
9703 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9704 if (UnionFieldRecord &&
9705 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9706 UnionFieldType.getCVRQualifiers()))
9707 return true;
9708 }
9709
9710 // At least one member in each anonymous union must be non-const
9711 if (CSM == CXXSpecialMemberKind::DefaultConstructor &&
9712 AllVariantFieldsAreConst && !FieldRecord->field_empty()) {
9713 if (Diagnose)
9714 S.Diag(FieldRecord->getLocation(),
9715 diag::note_deleted_default_ctor_all_const)
9716 << !!ICI << MD->getParent() << /*anonymous union*/1;
9717 return true;
9718 }
9719
9720 // Don't check the implicit member of the anonymous union type.
9721 // This is technically non-conformant but supported, and we have a
9722 // diagnostic for this elsewhere.
9723 return false;
9724 }
9725
9726 if (shouldDeleteForClassSubobject(Class: FieldRecord, Subobj: FD,
9727 Quals: FieldType.getCVRQualifiers()))
9728 return true;
9729 }
9730
9731 return false;
9732}
9733
9734/// C++11 [class.ctor] p5:
9735/// A defaulted default constructor for a class X is defined as deleted if
9736/// X is a union and all of its variant members are of const-qualified type.
9737bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9738 // This is a silly definition, because it gives an empty union a deleted
9739 // default constructor. Don't do that.
9740 if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() &&
9741 AllFieldsAreConst) {
9742 bool AnyFields = false;
9743 for (auto *F : MD->getParent()->fields())
9744 if ((AnyFields = !F->isUnnamedBitField()))
9745 break;
9746 if (!AnyFields)
9747 return false;
9748 if (Diagnose)
9749 S.Diag(MD->getParent()->getLocation(),
9750 diag::note_deleted_default_ctor_all_const)
9751 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9752 return true;
9753 }
9754 return false;
9755}
9756
9757/// Determine whether a defaulted special member function should be defined as
9758/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9759/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9760bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD,
9761 CXXSpecialMemberKind CSM,
9762 InheritedConstructorInfo *ICI,
9763 bool Diagnose) {
9764 if (MD->isInvalidDecl())
9765 return false;
9766 CXXRecordDecl *RD = MD->getParent();
9767 assert(!RD->isDependentType() && "do deletion after instantiation");
9768 if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) ||
9769 RD->isInvalidDecl())
9770 return false;
9771
9772 // C++11 [expr.lambda.prim]p19:
9773 // The closure type associated with a lambda-expression has a
9774 // deleted (8.4.3) default constructor and a deleted copy
9775 // assignment operator.
9776 // C++2a adds back these operators if the lambda has no lambda-capture.
9777 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9778 (CSM == CXXSpecialMemberKind::DefaultConstructor ||
9779 CSM == CXXSpecialMemberKind::CopyAssignment)) {
9780 if (Diagnose)
9781 Diag(RD->getLocation(), diag::note_lambda_decl);
9782 return true;
9783 }
9784
9785 // For an anonymous struct or union, the copy and assignment special members
9786 // will never be used, so skip the check. For an anonymous union declared at
9787 // namespace scope, the constructor and destructor are used.
9788 if (CSM != CXXSpecialMemberKind::DefaultConstructor &&
9789 CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion())
9790 return false;
9791
9792 // C++11 [class.copy]p7, p18:
9793 // If the class definition declares a move constructor or move assignment
9794 // operator, an implicitly declared copy constructor or copy assignment
9795 // operator is defined as deleted.
9796 if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor ||
9797 CSM == CXXSpecialMemberKind::CopyAssignment)) {
9798 CXXMethodDecl *UserDeclaredMove = nullptr;
9799
9800 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9801 // deletion of the corresponding copy operation, not both copy operations.
9802 // MSVC 2015 has adopted the standards conforming behavior.
9803 bool DeletesOnlyMatchingCopy =
9804 getLangOpts().MSVCCompat &&
9805 !getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015);
9806
9807 if (RD->hasUserDeclaredMoveConstructor() &&
9808 (!DeletesOnlyMatchingCopy ||
9809 CSM == CXXSpecialMemberKind::CopyConstructor)) {
9810 if (!Diagnose) return true;
9811
9812 // Find any user-declared move constructor.
9813 for (auto *I : RD->ctors()) {
9814 if (I->isMoveConstructor()) {
9815 UserDeclaredMove = I;
9816 break;
9817 }
9818 }
9819 assert(UserDeclaredMove);
9820 } else if (RD->hasUserDeclaredMoveAssignment() &&
9821 (!DeletesOnlyMatchingCopy ||
9822 CSM == CXXSpecialMemberKind::CopyAssignment)) {
9823 if (!Diagnose) return true;
9824
9825 // Find any user-declared move assignment operator.
9826 for (auto *I : RD->methods()) {
9827 if (I->isMoveAssignmentOperator()) {
9828 UserDeclaredMove = I;
9829 break;
9830 }
9831 }
9832 assert(UserDeclaredMove);
9833 }
9834
9835 if (UserDeclaredMove) {
9836 Diag(UserDeclaredMove->getLocation(),
9837 diag::note_deleted_copy_user_declared_move)
9838 << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD
9839 << UserDeclaredMove->isMoveAssignmentOperator();
9840 return true;
9841 }
9842 }
9843
9844 // Do access control from the special member function
9845 ContextRAII MethodContext(*this, MD);
9846
9847 // C++11 [class.dtor]p5:
9848 // -- for a virtual destructor, lookup of the non-array deallocation function
9849 // results in an ambiguity or in a function that is deleted or inaccessible
9850 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) {
9851 FunctionDecl *OperatorDelete = nullptr;
9852 DeclarationName Name =
9853 Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete);
9854 if (FindDeallocationFunction(StartLoc: MD->getLocation(), RD: MD->getParent(), Name,
9855 Operator&: OperatorDelete, /*Diagnose*/false)) {
9856 if (Diagnose)
9857 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9858 return true;
9859 }
9860 }
9861
9862 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9863
9864 // Per DR1611, do not consider virtual bases of constructors of abstract
9865 // classes, since we are not going to construct them.
9866 // Per DR1658, do not consider virtual bases of destructors of abstract
9867 // classes either.
9868 // Per DR2180, for assignment operators we only assign (and thus only
9869 // consider) direct bases.
9870 if (SMI.visit(Bases: SMI.IsAssignment ? SMI.VisitDirectBases
9871 : SMI.VisitPotentiallyConstructedBases))
9872 return true;
9873
9874 if (SMI.shouldDeleteForAllConstMembers())
9875 return true;
9876
9877 if (getLangOpts().CUDA) {
9878 // We should delete the special member in CUDA mode if target inference
9879 // failed.
9880 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9881 // is treated as certain special member, which may not reflect what special
9882 // member MD really is. However inferTargetForImplicitSpecialMember
9883 // expects CSM to match MD, therefore recalculate CSM.
9884 assert(ICI || CSM == getSpecialMember(MD));
9885 auto RealCSM = CSM;
9886 if (ICI)
9887 RealCSM = getSpecialMember(MD);
9888
9889 return CUDA().inferTargetForImplicitSpecialMember(ClassDecl: RD, CSM: RealCSM, MemberDecl: MD,
9890 ConstRHS: SMI.ConstArg, Diagnose);
9891 }
9892
9893 return false;
9894}
9895
9896void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9897 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9898 assert(DFK && "not a defaultable function");
9899 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted");
9900
9901 if (DFK.isSpecialMember()) {
9902 ShouldDeleteSpecialMember(MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(),
9903 ICI: nullptr, /*Diagnose=*/true);
9904 } else {
9905 DefaultedComparisonAnalyzer(
9906 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9907 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9908 .visit();
9909 }
9910}
9911
9912/// Perform lookup for a special member of the specified kind, and determine
9913/// whether it is trivial. If the triviality can be determined without the
9914/// lookup, skip it. This is intended for use when determining whether a
9915/// special member of a containing object is trivial, and thus does not ever
9916/// perform overload resolution for default constructors.
9917///
9918/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9919/// member that was most likely to be intended to be trivial, if any.
9920///
9921/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9922/// determine whether the special member is trivial.
9923static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9924 CXXSpecialMemberKind CSM, unsigned Quals,
9925 bool ConstRHS,
9926 Sema::TrivialABIHandling TAH,
9927 CXXMethodDecl **Selected) {
9928 if (Selected)
9929 *Selected = nullptr;
9930
9931 switch (CSM) {
9932 case CXXSpecialMemberKind::Invalid:
9933 llvm_unreachable("not a special member");
9934
9935 case CXXSpecialMemberKind::DefaultConstructor:
9936 // C++11 [class.ctor]p5:
9937 // A default constructor is trivial if:
9938 // - all the [direct subobjects] have trivial default constructors
9939 //
9940 // Note, no overload resolution is performed in this case.
9941 if (RD->hasTrivialDefaultConstructor())
9942 return true;
9943
9944 if (Selected) {
9945 // If there's a default constructor which could have been trivial, dig it
9946 // out. Otherwise, if there's any user-provided default constructor, point
9947 // to that as an example of why there's not a trivial one.
9948 CXXConstructorDecl *DefCtor = nullptr;
9949 if (RD->needsImplicitDefaultConstructor())
9950 S.DeclareImplicitDefaultConstructor(ClassDecl: RD);
9951 for (auto *CI : RD->ctors()) {
9952 if (!CI->isDefaultConstructor())
9953 continue;
9954 DefCtor = CI;
9955 if (!DefCtor->isUserProvided())
9956 break;
9957 }
9958
9959 *Selected = DefCtor;
9960 }
9961
9962 return false;
9963
9964 case CXXSpecialMemberKind::Destructor:
9965 // C++11 [class.dtor]p5:
9966 // A destructor is trivial if:
9967 // - all the direct [subobjects] have trivial destructors
9968 if (RD->hasTrivialDestructor() ||
9969 (TAH == Sema::TAH_ConsiderTrivialABI &&
9970 RD->hasTrivialDestructorForCall()))
9971 return true;
9972
9973 if (Selected) {
9974 if (RD->needsImplicitDestructor())
9975 S.DeclareImplicitDestructor(ClassDecl: RD);
9976 *Selected = RD->getDestructor();
9977 }
9978
9979 return false;
9980
9981 case CXXSpecialMemberKind::CopyConstructor:
9982 // C++11 [class.copy]p12:
9983 // A copy constructor is trivial if:
9984 // - the constructor selected to copy each direct [subobject] is trivial
9985 if (RD->hasTrivialCopyConstructor() ||
9986 (TAH == Sema::TAH_ConsiderTrivialABI &&
9987 RD->hasTrivialCopyConstructorForCall())) {
9988 if (Quals == Qualifiers::Const)
9989 // We must either select the trivial copy constructor or reach an
9990 // ambiguity; no need to actually perform overload resolution.
9991 return true;
9992 } else if (!Selected) {
9993 return false;
9994 }
9995 // In C++98, we are not supposed to perform overload resolution here, but we
9996 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9997 // cases like B as having a non-trivial copy constructor:
9998 // struct A { template<typename T> A(T&); };
9999 // struct B { mutable A a; };
10000 goto NeedOverloadResolution;
10001
10002 case CXXSpecialMemberKind::CopyAssignment:
10003 // C++11 [class.copy]p25:
10004 // A copy assignment operator is trivial if:
10005 // - the assignment operator selected to copy each direct [subobject] is
10006 // trivial
10007 if (RD->hasTrivialCopyAssignment()) {
10008 if (Quals == Qualifiers::Const)
10009 return true;
10010 } else if (!Selected) {
10011 return false;
10012 }
10013 // In C++98, we are not supposed to perform overload resolution here, but we
10014 // treat that as a language defect.
10015 goto NeedOverloadResolution;
10016
10017 case CXXSpecialMemberKind::MoveConstructor:
10018 case CXXSpecialMemberKind::MoveAssignment:
10019 NeedOverloadResolution:
10020 Sema::SpecialMemberOverloadResult SMOR =
10021 lookupCallFromSpecialMember(S, Class: RD, CSM, FieldQuals: Quals, ConstRHS);
10022
10023 // The standard doesn't describe how to behave if the lookup is ambiguous.
10024 // We treat it as not making the member non-trivial, just like the standard
10025 // mandates for the default constructor. This should rarely matter, because
10026 // the member will also be deleted.
10027 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
10028 return true;
10029
10030 if (!SMOR.getMethod()) {
10031 assert(SMOR.getKind() ==
10032 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
10033 return false;
10034 }
10035
10036 // We deliberately don't check if we found a deleted special member. We're
10037 // not supposed to!
10038 if (Selected)
10039 *Selected = SMOR.getMethod();
10040
10041 if (TAH == Sema::TAH_ConsiderTrivialABI &&
10042 (CSM == CXXSpecialMemberKind::CopyConstructor ||
10043 CSM == CXXSpecialMemberKind::MoveConstructor))
10044 return SMOR.getMethod()->isTrivialForCall();
10045 return SMOR.getMethod()->isTrivial();
10046 }
10047
10048 llvm_unreachable("unknown special method kind");
10049}
10050
10051static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
10052 for (auto *CI : RD->ctors())
10053 if (!CI->isImplicit())
10054 return CI;
10055
10056 // Look for constructor templates.
10057 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
10058 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
10059 if (CXXConstructorDecl *CD =
10060 dyn_cast<CXXConstructorDecl>(Val: TI->getTemplatedDecl()))
10061 return CD;
10062 }
10063
10064 return nullptr;
10065}
10066
10067/// The kind of subobject we are checking for triviality. The values of this
10068/// enumeration are used in diagnostics.
10069enum TrivialSubobjectKind {
10070 /// The subobject is a base class.
10071 TSK_BaseClass,
10072 /// The subobject is a non-static data member.
10073 TSK_Field,
10074 /// The object is actually the complete object.
10075 TSK_CompleteObject
10076};
10077
10078/// Check whether the special member selected for a given type would be trivial.
10079static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
10080 QualType SubType, bool ConstRHS,
10081 CXXSpecialMemberKind CSM,
10082 TrivialSubobjectKind Kind,
10083 Sema::TrivialABIHandling TAH,
10084 bool Diagnose) {
10085 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
10086 if (!SubRD)
10087 return true;
10088
10089 CXXMethodDecl *Selected;
10090 if (findTrivialSpecialMember(S, RD: SubRD, CSM, Quals: SubType.getCVRQualifiers(),
10091 ConstRHS, TAH, Selected: Diagnose ? &Selected : nullptr))
10092 return true;
10093
10094 if (Diagnose) {
10095 if (ConstRHS)
10096 SubType.addConst();
10097
10098 if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) {
10099 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
10100 << Kind << SubType.getUnqualifiedType();
10101 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
10102 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
10103 } else if (!Selected)
10104 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
10105 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM)
10106 << SubType;
10107 else if (Selected->isUserProvided()) {
10108 if (Kind == TSK_CompleteObject)
10109 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
10110 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM);
10111 else {
10112 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
10113 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM);
10114 S.Diag(Selected->getLocation(), diag::note_declared_at);
10115 }
10116 } else {
10117 if (Kind != TSK_CompleteObject)
10118 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
10119 << Kind << SubType.getUnqualifiedType() << llvm::to_underlying(CSM);
10120
10121 // Explain why the defaulted or deleted special member isn't trivial.
10122 S.SpecialMemberIsTrivial(MD: Selected, CSM, TAH: Sema::TAH_IgnoreTrivialABI,
10123 Diagnose);
10124 }
10125 }
10126
10127 return false;
10128}
10129
10130/// Check whether the members of a class type allow a special member to be
10131/// trivial.
10132static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
10133 CXXSpecialMemberKind CSM, bool ConstArg,
10134 Sema::TrivialABIHandling TAH,
10135 bool Diagnose) {
10136 for (const auto *FI : RD->fields()) {
10137 if (FI->isInvalidDecl() || FI->isUnnamedBitField())
10138 continue;
10139
10140 QualType FieldType = S.Context.getBaseElementType(FI->getType());
10141
10142 // Pretend anonymous struct or union members are members of this class.
10143 if (FI->isAnonymousStructOrUnion()) {
10144 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
10145 CSM, ConstArg, TAH, Diagnose))
10146 return false;
10147 continue;
10148 }
10149
10150 // C++11 [class.ctor]p5:
10151 // A default constructor is trivial if [...]
10152 // -- no non-static data member of its class has a
10153 // brace-or-equal-initializer
10154 if (CSM == CXXSpecialMemberKind::DefaultConstructor &&
10155 FI->hasInClassInitializer()) {
10156 if (Diagnose)
10157 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
10158 << FI;
10159 return false;
10160 }
10161
10162 // Objective C ARC 4.3.5:
10163 // [...] nontrivally ownership-qualified types are [...] not trivially
10164 // default constructible, copy constructible, move constructible, copy
10165 // assignable, move assignable, or destructible [...]
10166 if (FieldType.hasNonTrivialObjCLifetime()) {
10167 if (Diagnose)
10168 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
10169 << RD << FieldType.getObjCLifetime();
10170 return false;
10171 }
10172
10173 bool ConstRHS = ConstArg && !FI->isMutable();
10174 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
10175 CSM, TSK_Field, TAH, Diagnose))
10176 return false;
10177 }
10178
10179 return true;
10180}
10181
10182/// Diagnose why the specified class does not have a trivial special member of
10183/// the given kind.
10184void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD,
10185 CXXSpecialMemberKind CSM) {
10186 QualType Ty = Context.getRecordType(RD);
10187
10188 bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor ||
10189 CSM == CXXSpecialMemberKind::CopyAssignment);
10190 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
10191 TSK_CompleteObject, TAH_IgnoreTrivialABI,
10192 /*Diagnose*/true);
10193}
10194
10195/// Determine whether a defaulted or deleted special member function is trivial,
10196/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
10197/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
10198bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
10199 TrivialABIHandling TAH, bool Diagnose) {
10200 assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid &&
10201 "not special enough");
10202
10203 CXXRecordDecl *RD = MD->getParent();
10204
10205 bool ConstArg = false;
10206
10207 // C++11 [class.copy]p12, p25: [DR1593]
10208 // A [special member] is trivial if [...] its parameter-type-list is
10209 // equivalent to the parameter-type-list of an implicit declaration [...]
10210 switch (CSM) {
10211 case CXXSpecialMemberKind::DefaultConstructor:
10212 case CXXSpecialMemberKind::Destructor:
10213 // Trivial default constructors and destructors cannot have parameters.
10214 break;
10215
10216 case CXXSpecialMemberKind::CopyConstructor:
10217 case CXXSpecialMemberKind::CopyAssignment: {
10218 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0);
10219 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
10220
10221 // When ClangABICompat14 is true, CXX copy constructors will only be trivial
10222 // if they are not user-provided and their parameter-type-list is equivalent
10223 // to the parameter-type-list of an implicit declaration. This maintains the
10224 // behavior before dr2171 was implemented.
10225 //
10226 // Otherwise, if ClangABICompat14 is false, All copy constructors can be
10227 // trivial, if they are not user-provided, regardless of the qualifiers on
10228 // the reference type.
10229 const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <=
10230 LangOptions::ClangABI::Ver14;
10231 if (!RT ||
10232 ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) &&
10233 ClangABICompat14)) {
10234 if (Diagnose)
10235 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
10236 << Param0->getSourceRange() << Param0->getType()
10237 << Context.getLValueReferenceType(
10238 Context.getRecordType(RD).withConst());
10239 return false;
10240 }
10241
10242 ConstArg = RT->getPointeeType().isConstQualified();
10243 break;
10244 }
10245
10246 case CXXSpecialMemberKind::MoveConstructor:
10247 case CXXSpecialMemberKind::MoveAssignment: {
10248 // Trivial move operations always have non-cv-qualified parameters.
10249 const ParmVarDecl *Param0 = MD->getNonObjectParameter(0);
10250 const RValueReferenceType *RT =
10251 Param0->getType()->getAs<RValueReferenceType>();
10252 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
10253 if (Diagnose)
10254 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
10255 << Param0->getSourceRange() << Param0->getType()
10256 << Context.getRValueReferenceType(Context.getRecordType(RD));
10257 return false;
10258 }
10259 break;
10260 }
10261
10262 case CXXSpecialMemberKind::Invalid:
10263 llvm_unreachable("not a special member");
10264 }
10265
10266 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
10267 if (Diagnose)
10268 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
10269 diag::note_nontrivial_default_arg)
10270 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
10271 return false;
10272 }
10273 if (MD->isVariadic()) {
10274 if (Diagnose)
10275 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
10276 return false;
10277 }
10278
10279 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
10280 // A copy/move [constructor or assignment operator] is trivial if
10281 // -- the [member] selected to copy/move each direct base class subobject
10282 // is trivial
10283 //
10284 // C++11 [class.copy]p12, C++11 [class.copy]p25:
10285 // A [default constructor or destructor] is trivial if
10286 // -- all the direct base classes have trivial [default constructors or
10287 // destructors]
10288 for (const auto &BI : RD->bases())
10289 if (!checkTrivialSubobjectCall(S&: *this, SubobjLoc: BI.getBeginLoc(), SubType: BI.getType(),
10290 ConstRHS: ConstArg, CSM, Kind: TSK_BaseClass, TAH, Diagnose))
10291 return false;
10292
10293 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
10294 // A copy/move [constructor or assignment operator] for a class X is
10295 // trivial if
10296 // -- for each non-static data member of X that is of class type (or array
10297 // thereof), the constructor selected to copy/move that member is
10298 // trivial
10299 //
10300 // C++11 [class.copy]p12, C++11 [class.copy]p25:
10301 // A [default constructor or destructor] is trivial if
10302 // -- for all of the non-static data members of its class that are of class
10303 // type (or array thereof), each such class has a trivial [default
10304 // constructor or destructor]
10305 if (!checkTrivialClassMembers(S&: *this, RD, CSM, ConstArg, TAH, Diagnose))
10306 return false;
10307
10308 // C++11 [class.dtor]p5:
10309 // A destructor is trivial if [...]
10310 // -- the destructor is not virtual
10311 if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) {
10312 if (Diagnose)
10313 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
10314 return false;
10315 }
10316
10317 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
10318 // A [special member] for class X is trivial if [...]
10319 // -- class X has no virtual functions and no virtual base classes
10320 if (CSM != CXXSpecialMemberKind::Destructor &&
10321 MD->getParent()->isDynamicClass()) {
10322 if (!Diagnose)
10323 return false;
10324
10325 if (RD->getNumVBases()) {
10326 // Check for virtual bases. We already know that the corresponding
10327 // member in all bases is trivial, so vbases must all be direct.
10328 CXXBaseSpecifier &BS = *RD->vbases_begin();
10329 assert(BS.isVirtual());
10330 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
10331 return false;
10332 }
10333
10334 // Must have a virtual method.
10335 for (const auto *MI : RD->methods()) {
10336 if (MI->isVirtual()) {
10337 SourceLocation MLoc = MI->getBeginLoc();
10338 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
10339 return false;
10340 }
10341 }
10342
10343 llvm_unreachable("dynamic class with no vbases and no virtual functions");
10344 }
10345
10346 // Looks like it's trivial!
10347 return true;
10348}
10349
10350namespace {
10351struct FindHiddenVirtualMethod {
10352 Sema *S;
10353 CXXMethodDecl *Method;
10354 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
10355 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10356
10357private:
10358 /// Check whether any most overridden method from MD in Methods
10359 static bool CheckMostOverridenMethods(
10360 const CXXMethodDecl *MD,
10361 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
10362 if (MD->size_overridden_methods() == 0)
10363 return Methods.count(Ptr: MD->getCanonicalDecl());
10364 for (const CXXMethodDecl *O : MD->overridden_methods())
10365 if (CheckMostOverridenMethods(MD: O, Methods))
10366 return true;
10367 return false;
10368 }
10369
10370public:
10371 /// Member lookup function that determines whether a given C++
10372 /// method overloads virtual methods in a base class without overriding any,
10373 /// to be used with CXXRecordDecl::lookupInBases().
10374 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
10375 RecordDecl *BaseRecord =
10376 Specifier->getType()->castAs<RecordType>()->getDecl();
10377
10378 DeclarationName Name = Method->getDeclName();
10379 assert(Name.getNameKind() == DeclarationName::Identifier);
10380
10381 bool foundSameNameMethod = false;
10382 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
10383 for (Path.Decls = BaseRecord->lookup(Name).begin();
10384 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
10385 NamedDecl *D = *Path.Decls;
10386 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D)) {
10387 MD = MD->getCanonicalDecl();
10388 foundSameNameMethod = true;
10389 // Interested only in hidden virtual methods.
10390 if (!MD->isVirtual())
10391 continue;
10392 // If the method we are checking overrides a method from its base
10393 // don't warn about the other overloaded methods. Clang deviates from
10394 // GCC by only diagnosing overloads of inherited virtual functions that
10395 // do not override any other virtual functions in the base. GCC's
10396 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
10397 // function from a base class. These cases may be better served by a
10398 // warning (not specific to virtual functions) on call sites when the
10399 // call would select a different function from the base class, were it
10400 // visible.
10401 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
10402 if (!S->IsOverload(Method, MD, false))
10403 return true;
10404 // Collect the overload only if its hidden.
10405 if (!CheckMostOverridenMethods(MD, Methods: OverridenAndUsingBaseMethods))
10406 overloadedMethods.push_back(Elt: MD);
10407 }
10408 }
10409
10410 if (foundSameNameMethod)
10411 OverloadedMethods.append(in_start: overloadedMethods.begin(),
10412 in_end: overloadedMethods.end());
10413 return foundSameNameMethod;
10414 }
10415};
10416} // end anonymous namespace
10417
10418/// Add the most overridden methods from MD to Methods
10419static void AddMostOverridenMethods(const CXXMethodDecl *MD,
10420 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
10421 if (MD->size_overridden_methods() == 0)
10422 Methods.insert(Ptr: MD->getCanonicalDecl());
10423 else
10424 for (const CXXMethodDecl *O : MD->overridden_methods())
10425 AddMostOverridenMethods(MD: O, Methods);
10426}
10427
10428/// Check if a method overloads virtual methods in a base class without
10429/// overriding any.
10430void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
10431 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10432 if (!MD->getDeclName().isIdentifier())
10433 return;
10434
10435 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
10436 /*bool RecordPaths=*/false,
10437 /*bool DetectVirtual=*/false);
10438 FindHiddenVirtualMethod FHVM;
10439 FHVM.Method = MD;
10440 FHVM.S = this;
10441
10442 // Keep the base methods that were overridden or introduced in the subclass
10443 // by 'using' in a set. A base method not in this set is hidden.
10444 CXXRecordDecl *DC = MD->getParent();
10445 DeclContext::lookup_result R = DC->lookup(Name: MD->getDeclName());
10446 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
10447 NamedDecl *ND = *I;
10448 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(Val: *I))
10449 ND = shad->getTargetDecl();
10450 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ND))
10451 AddMostOverridenMethods(MD, Methods&: FHVM.OverridenAndUsingBaseMethods);
10452 }
10453
10454 if (DC->lookupInBases(BaseMatches: FHVM, Paths))
10455 OverloadedMethods = FHVM.OverloadedMethods;
10456}
10457
10458void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
10459 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
10460 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
10461 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
10462 PartialDiagnostic PD = PDiag(
10463 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
10464 HandleFunctionTypeMismatch(PDiag&: PD, FromType: MD->getType(), ToType: overloadedMD->getType());
10465 Diag(overloadedMD->getLocation(), PD);
10466 }
10467}
10468
10469/// Diagnose methods which overload virtual methods in a base class
10470/// without overriding any.
10471void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
10472 if (MD->isInvalidDecl())
10473 return;
10474
10475 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
10476 return;
10477
10478 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
10479 FindHiddenVirtualMethods(MD, OverloadedMethods);
10480 if (!OverloadedMethods.empty()) {
10481 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
10482 << MD << (OverloadedMethods.size() > 1);
10483
10484 NoteHiddenVirtualMethods(MD, OverloadedMethods);
10485 }
10486}
10487
10488void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
10489 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
10490 // No diagnostics if this is a template instantiation.
10491 if (!isTemplateInstantiation(Kind: RD.getTemplateSpecializationKind())) {
10492 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10493 diag::ext_cannot_use_trivial_abi) << &RD;
10494 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
10495 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
10496 }
10497 RD.dropAttr<TrivialABIAttr>();
10498 };
10499
10500 // Ill-formed if the copy and move constructors are deleted.
10501 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
10502 // If the type is dependent, then assume it might have
10503 // implicit copy or move ctor because we won't know yet at this point.
10504 if (RD.isDependentType())
10505 return true;
10506 if (RD.needsImplicitCopyConstructor() &&
10507 !RD.defaultedCopyConstructorIsDeleted())
10508 return true;
10509 if (RD.needsImplicitMoveConstructor() &&
10510 !RD.defaultedMoveConstructorIsDeleted())
10511 return true;
10512 for (const CXXConstructorDecl *CD : RD.ctors())
10513 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
10514 return true;
10515 return false;
10516 };
10517
10518 if (!HasNonDeletedCopyOrMoveConstructor()) {
10519 PrintDiagAndRemoveAttr(0);
10520 return;
10521 }
10522
10523 // Ill-formed if the struct has virtual functions.
10524 if (RD.isPolymorphic()) {
10525 PrintDiagAndRemoveAttr(1);
10526 return;
10527 }
10528
10529 for (const auto &B : RD.bases()) {
10530 // Ill-formed if the base class is non-trivial for the purpose of calls or a
10531 // virtual base.
10532 if (!B.getType()->isDependentType() &&
10533 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
10534 PrintDiagAndRemoveAttr(2);
10535 return;
10536 }
10537
10538 if (B.isVirtual()) {
10539 PrintDiagAndRemoveAttr(3);
10540 return;
10541 }
10542 }
10543
10544 for (const auto *FD : RD.fields()) {
10545 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
10546 // non-trivial for the purpose of calls.
10547 QualType FT = FD->getType();
10548 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
10549 PrintDiagAndRemoveAttr(4);
10550 return;
10551 }
10552
10553 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
10554 if (!RT->isDependentType() &&
10555 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
10556 PrintDiagAndRemoveAttr(5);
10557 return;
10558 }
10559 }
10560}
10561
10562void Sema::ActOnFinishCXXMemberSpecification(
10563 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
10564 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
10565 if (!TagDecl)
10566 return;
10567
10568 AdjustDeclIfTemplate(Decl&: TagDecl);
10569
10570 for (const ParsedAttr &AL : AttrList) {
10571 if (AL.getKind() != ParsedAttr::AT_Visibility)
10572 continue;
10573 AL.setInvalid();
10574 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
10575 }
10576
10577 ActOnFields(S, RecLoc: RLoc, TagDecl,
10578 Fields: llvm::ArrayRef(
10579 // strict aliasing violation!
10580 reinterpret_cast<Decl **>(FieldCollector->getCurFields()),
10581 FieldCollector->getCurNumFields()),
10582 LBrac, RBrac, AttrList);
10583
10584 CheckCompletedCXXClass(S, Record: cast<CXXRecordDecl>(Val: TagDecl));
10585}
10586
10587/// Find the equality comparison functions that should be implicitly declared
10588/// in a given class definition, per C++2a [class.compare.default]p3.
10589static void findImplicitlyDeclaredEqualityComparisons(
10590 ASTContext &Ctx, CXXRecordDecl *RD,
10591 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
10592 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_EqualEqual);
10593 if (!RD->lookup(EqEq).empty())
10594 // Member operator== explicitly declared: no implicit operator==s.
10595 return;
10596
10597 // Traverse friends looking for an '==' or a '<=>'.
10598 for (FriendDecl *Friend : RD->friends()) {
10599 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: Friend->getFriendDecl());
10600 if (!FD) continue;
10601
10602 if (FD->getOverloadedOperator() == OO_EqualEqual) {
10603 // Friend operator== explicitly declared: no implicit operator==s.
10604 Spaceships.clear();
10605 return;
10606 }
10607
10608 if (FD->getOverloadedOperator() == OO_Spaceship &&
10609 FD->isExplicitlyDefaulted())
10610 Spaceships.push_back(Elt: FD);
10611 }
10612
10613 // Look for members named 'operator<=>'.
10614 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_Spaceship);
10615 for (NamedDecl *ND : RD->lookup(Cmp)) {
10616 // Note that we could find a non-function here (either a function template
10617 // or a using-declaration). Neither case results in an implicit
10618 // 'operator=='.
10619 if (auto *FD = dyn_cast<FunctionDecl>(ND))
10620 if (FD->isExplicitlyDefaulted())
10621 Spaceships.push_back(FD);
10622 }
10623}
10624
10625/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
10626/// special functions, such as the default constructor, copy
10627/// constructor, or destructor, to the given C++ class (C++
10628/// [special]p1). This routine can only be executed just before the
10629/// definition of the class is complete.
10630void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
10631 // Don't add implicit special members to templated classes.
10632 // FIXME: This means unqualified lookups for 'operator=' within a class
10633 // template don't work properly.
10634 if (!ClassDecl->isDependentType()) {
10635 if (ClassDecl->needsImplicitDefaultConstructor()) {
10636 ++getASTContext().NumImplicitDefaultConstructors;
10637
10638 if (ClassDecl->hasInheritedConstructor())
10639 DeclareImplicitDefaultConstructor(ClassDecl);
10640 }
10641
10642 if (ClassDecl->needsImplicitCopyConstructor()) {
10643 ++getASTContext().NumImplicitCopyConstructors;
10644
10645 // If the properties or semantics of the copy constructor couldn't be
10646 // determined while the class was being declared, force a declaration
10647 // of it now.
10648 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
10649 ClassDecl->hasInheritedConstructor())
10650 DeclareImplicitCopyConstructor(ClassDecl);
10651 // For the MS ABI we need to know whether the copy ctor is deleted. A
10652 // prerequisite for deleting the implicit copy ctor is that the class has
10653 // a move ctor or move assignment that is either user-declared or whose
10654 // semantics are inherited from a subobject. FIXME: We should provide a
10655 // more direct way for CodeGen to ask whether the constructor was deleted.
10656 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
10657 (ClassDecl->hasUserDeclaredMoveConstructor() ||
10658 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10659 ClassDecl->hasUserDeclaredMoveAssignment() ||
10660 ClassDecl->needsOverloadResolutionForMoveAssignment()))
10661 DeclareImplicitCopyConstructor(ClassDecl);
10662 }
10663
10664 if (getLangOpts().CPlusPlus11 &&
10665 ClassDecl->needsImplicitMoveConstructor()) {
10666 ++getASTContext().NumImplicitMoveConstructors;
10667
10668 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10669 ClassDecl->hasInheritedConstructor())
10670 DeclareImplicitMoveConstructor(ClassDecl);
10671 }
10672
10673 if (ClassDecl->needsImplicitCopyAssignment()) {
10674 ++getASTContext().NumImplicitCopyAssignmentOperators;
10675
10676 // If we have a dynamic class, then the copy assignment operator may be
10677 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10678 // it shows up in the right place in the vtable and that we diagnose
10679 // problems with the implicit exception specification.
10680 if (ClassDecl->isDynamicClass() ||
10681 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10682 ClassDecl->hasInheritedAssignment())
10683 DeclareImplicitCopyAssignment(ClassDecl);
10684 }
10685
10686 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10687 ++getASTContext().NumImplicitMoveAssignmentOperators;
10688
10689 // Likewise for the move assignment operator.
10690 if (ClassDecl->isDynamicClass() ||
10691 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10692 ClassDecl->hasInheritedAssignment())
10693 DeclareImplicitMoveAssignment(ClassDecl);
10694 }
10695
10696 if (ClassDecl->needsImplicitDestructor()) {
10697 ++getASTContext().NumImplicitDestructors;
10698
10699 // If we have a dynamic class, then the destructor may be virtual, so we
10700 // have to declare the destructor immediately. This ensures that, e.g., it
10701 // shows up in the right place in the vtable and that we diagnose problems
10702 // with the implicit exception specification.
10703 if (ClassDecl->isDynamicClass() ||
10704 ClassDecl->needsOverloadResolutionForDestructor())
10705 DeclareImplicitDestructor(ClassDecl);
10706 }
10707 }
10708
10709 // C++2a [class.compare.default]p3:
10710 // If the member-specification does not explicitly declare any member or
10711 // friend named operator==, an == operator function is declared implicitly
10712 // for each defaulted three-way comparison operator function defined in
10713 // the member-specification
10714 // FIXME: Consider doing this lazily.
10715 // We do this during the initial parse for a class template, not during
10716 // instantiation, so that we can handle unqualified lookups for 'operator=='
10717 // when parsing the template.
10718 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10719 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10720 findImplicitlyDeclaredEqualityComparisons(Ctx&: Context, RD: ClassDecl,
10721 Spaceships&: DefaultedSpaceships);
10722 for (auto *FD : DefaultedSpaceships)
10723 DeclareImplicitEqualityComparison(RD: ClassDecl, Spaceship: FD);
10724 }
10725}
10726
10727unsigned
10728Sema::ActOnReenterTemplateScope(Decl *D,
10729 llvm::function_ref<Scope *()> EnterScope) {
10730 if (!D)
10731 return 0;
10732 AdjustDeclIfTemplate(Decl&: D);
10733
10734 // In order to get name lookup right, reenter template scopes in order from
10735 // outermost to innermost.
10736 SmallVector<TemplateParameterList *, 4> ParameterLists;
10737 DeclContext *LookupDC = dyn_cast<DeclContext>(Val: D);
10738
10739 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(Val: D)) {
10740 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10741 ParameterLists.push_back(Elt: DD->getTemplateParameterList(index: i));
10742
10743 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) {
10744 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10745 ParameterLists.push_back(Elt: FTD->getTemplateParameters());
10746 } else if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) {
10747 LookupDC = VD->getDeclContext();
10748
10749 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10750 ParameterLists.push_back(Elt: VTD->getTemplateParameters());
10751 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Val: D))
10752 ParameterLists.push_back(Elt: PSD->getTemplateParameters());
10753 }
10754 } else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) {
10755 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10756 ParameterLists.push_back(Elt: TD->getTemplateParameterList(i));
10757
10758 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: TD)) {
10759 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10760 ParameterLists.push_back(Elt: CTD->getTemplateParameters());
10761 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: D))
10762 ParameterLists.push_back(Elt: PSD->getTemplateParameters());
10763 }
10764 }
10765 // FIXME: Alias declarations and concepts.
10766
10767 unsigned Count = 0;
10768 Scope *InnermostTemplateScope = nullptr;
10769 for (TemplateParameterList *Params : ParameterLists) {
10770 // Ignore explicit specializations; they don't contribute to the template
10771 // depth.
10772 if (Params->size() == 0)
10773 continue;
10774
10775 InnermostTemplateScope = EnterScope();
10776 for (NamedDecl *Param : *Params) {
10777 if (Param->getDeclName()) {
10778 InnermostTemplateScope->AddDecl(Param);
10779 IdResolver.AddDecl(D: Param);
10780 }
10781 }
10782 ++Count;
10783 }
10784
10785 // Associate the new template scopes with the corresponding entities.
10786 if (InnermostTemplateScope) {
10787 assert(LookupDC && "no enclosing DeclContext for template lookup");
10788 EnterTemplatedContext(S: InnermostTemplateScope, DC: LookupDC);
10789 }
10790
10791 return Count;
10792}
10793
10794void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10795 if (!RecordD) return;
10796 AdjustDeclIfTemplate(Decl&: RecordD);
10797 CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RecordD);
10798 PushDeclContext(S, Record);
10799}
10800
10801void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10802 if (!RecordD) return;
10803 PopDeclContext();
10804}
10805
10806/// This is used to implement the constant expression evaluation part of the
10807/// attribute enable_if extension. There is nothing in standard C++ which would
10808/// require reentering parameters.
10809void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10810 if (!Param)
10811 return;
10812
10813 S->AddDecl(Param);
10814 if (Param->getDeclName())
10815 IdResolver.AddDecl(Param);
10816}
10817
10818/// ActOnStartDelayedCXXMethodDeclaration - We have completed
10819/// parsing a top-level (non-nested) C++ class, and we are now
10820/// parsing those parts of the given Method declaration that could
10821/// not be parsed earlier (C++ [class.mem]p2), such as default
10822/// arguments. This action should enter the scope of the given
10823/// Method declaration as if we had just parsed the qualified method
10824/// name. However, it should not bring the parameters into scope;
10825/// that will be performed by ActOnDelayedCXXMethodParameter.
10826void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10827}
10828
10829/// ActOnDelayedCXXMethodParameter - We've already started a delayed
10830/// C++ method declaration. We're (re-)introducing the given
10831/// function parameter into scope for use in parsing later parts of
10832/// the method declaration. For example, we could see an
10833/// ActOnParamDefaultArgument event for this parameter.
10834void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10835 if (!ParamD)
10836 return;
10837
10838 ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamD);
10839
10840 S->AddDecl(Param);
10841 if (Param->getDeclName())
10842 IdResolver.AddDecl(Param);
10843}
10844
10845/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10846/// processing the delayed method declaration for Method. The method
10847/// declaration is now considered finished. There may be a separate
10848/// ActOnStartOfFunctionDef action later (not necessarily
10849/// immediately!) for this method, if it was also defined inside the
10850/// class body.
10851void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10852 if (!MethodD)
10853 return;
10854
10855 AdjustDeclIfTemplate(Decl&: MethodD);
10856
10857 FunctionDecl *Method = cast<FunctionDecl>(Val: MethodD);
10858
10859 // Now that we have our default arguments, check the constructor
10860 // again. It could produce additional diagnostics or affect whether
10861 // the class has implicitly-declared destructors, among other
10862 // things.
10863 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Method))
10864 CheckConstructor(Constructor);
10865
10866 // Check the default arguments, which we may have added.
10867 if (!Method->isInvalidDecl())
10868 CheckCXXDefaultArguments(FD: Method);
10869}
10870
10871// Emit the given diagnostic for each non-address-space qualifier.
10872// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10873static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10874 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10875 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10876 bool DiagOccured = false;
10877 FTI.MethodQualifiers->forEachQualifier(
10878 Handle: [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10879 SourceLocation SL) {
10880 // This diagnostic should be emitted on any qualifier except an addr
10881 // space qualifier. However, forEachQualifier currently doesn't visit
10882 // addr space qualifiers, so there's no way to write this condition
10883 // right now; we just diagnose on everything.
10884 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10885 DiagOccured = true;
10886 });
10887 if (DiagOccured)
10888 D.setInvalidType();
10889 }
10890}
10891
10892/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10893/// the well-formedness of the constructor declarator @p D with type @p
10894/// R. If there are any errors in the declarator, this routine will
10895/// emit diagnostics and set the invalid bit to true. In any case, the type
10896/// will be updated to reflect a well-formed type for the constructor and
10897/// returned.
10898QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10899 StorageClass &SC) {
10900 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10901
10902 // C++ [class.ctor]p3:
10903 // A constructor shall not be virtual (10.3) or static (9.4). A
10904 // constructor can be invoked for a const, volatile or const
10905 // volatile object. A constructor shall not be declared const,
10906 // volatile, or const volatile (9.3.2).
10907 if (isVirtual) {
10908 if (!D.isInvalidType())
10909 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10910 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10911 << SourceRange(D.getIdentifierLoc());
10912 D.setInvalidType();
10913 }
10914 if (SC == SC_Static) {
10915 if (!D.isInvalidType())
10916 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10917 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10918 << SourceRange(D.getIdentifierLoc());
10919 D.setInvalidType();
10920 SC = SC_None;
10921 }
10922
10923 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10924 diagnoseIgnoredQualifiers(
10925 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10926 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10927 D.getDeclSpec().getRestrictSpecLoc(),
10928 D.getDeclSpec().getAtomicSpecLoc());
10929 D.setInvalidType();
10930 }
10931
10932 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10933
10934 // C++0x [class.ctor]p4:
10935 // A constructor shall not be declared with a ref-qualifier.
10936 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10937 if (FTI.hasRefQualifier()) {
10938 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10939 << FTI.RefQualifierIsLValueRef
10940 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10941 D.setInvalidType();
10942 }
10943
10944 // Rebuild the function type "R" without any type qualifiers (in
10945 // case any of the errors above fired) and with "void" as the
10946 // return type, since constructors don't have return types.
10947 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10948 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10949 return R;
10950
10951 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10952 EPI.TypeQuals = Qualifiers();
10953 EPI.RefQualifier = RQ_None;
10954
10955 return Context.getFunctionType(ResultTy: Context.VoidTy, Args: Proto->getParamTypes(), EPI);
10956}
10957
10958/// CheckConstructor - Checks a fully-formed constructor for
10959/// well-formedness, issuing any diagnostics required. Returns true if
10960/// the constructor declarator is invalid.
10961void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10962 CXXRecordDecl *ClassDecl
10963 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10964 if (!ClassDecl)
10965 return Constructor->setInvalidDecl();
10966
10967 // C++ [class.copy]p3:
10968 // A declaration of a constructor for a class X is ill-formed if
10969 // its first parameter is of type (optionally cv-qualified) X and
10970 // either there are no other parameters or else all other
10971 // parameters have default arguments.
10972 if (!Constructor->isInvalidDecl() &&
10973 Constructor->hasOneParamOrDefaultArgs() &&
10974 Constructor->getTemplateSpecializationKind() !=
10975 TSK_ImplicitInstantiation) {
10976 QualType ParamType = Constructor->getParamDecl(0)->getType();
10977 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10978 if (Context.getCanonicalType(T: ParamType).getUnqualifiedType() == ClassTy) {
10979 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10980 const char *ConstRef
10981 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10982 : " const &";
10983 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10984 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10985
10986 // FIXME: Rather that making the constructor invalid, we should endeavor
10987 // to fix the type.
10988 Constructor->setInvalidDecl();
10989 }
10990 }
10991}
10992
10993/// CheckDestructor - Checks a fully-formed destructor definition for
10994/// well-formedness, issuing any diagnostics required. Returns true
10995/// on error.
10996bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10997 CXXRecordDecl *RD = Destructor->getParent();
10998
10999 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
11000 SourceLocation Loc;
11001
11002 if (!Destructor->isImplicit())
11003 Loc = Destructor->getLocation();
11004 else
11005 Loc = RD->getLocation();
11006
11007 // If we have a virtual destructor, look up the deallocation function
11008 if (FunctionDecl *OperatorDelete =
11009 FindDeallocationFunctionForDestructor(StartLoc: Loc, RD)) {
11010 Expr *ThisArg = nullptr;
11011
11012 // If the notional 'delete this' expression requires a non-trivial
11013 // conversion from 'this' to the type of a destroying operator delete's
11014 // first parameter, perform that conversion now.
11015 if (OperatorDelete->isDestroyingOperatorDelete()) {
11016 QualType ParamType = OperatorDelete->getParamDecl(i: 0)->getType();
11017 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
11018 // C++ [class.dtor]p13:
11019 // ... as if for the expression 'delete this' appearing in a
11020 // non-virtual destructor of the destructor's class.
11021 ContextRAII SwitchContext(*this, Destructor);
11022 ExprResult This =
11023 ActOnCXXThis(Loc: OperatorDelete->getParamDecl(i: 0)->getLocation());
11024 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?");
11025 This = PerformImplicitConversion(From: This.get(), ToType: ParamType, Action: AA_Passing);
11026 if (This.isInvalid()) {
11027 // FIXME: Register this as a context note so that it comes out
11028 // in the right order.
11029 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
11030 return true;
11031 }
11032 ThisArg = This.get();
11033 }
11034 }
11035
11036 DiagnoseUseOfDecl(OperatorDelete, Loc);
11037 MarkFunctionReferenced(Loc, Func: OperatorDelete);
11038 Destructor->setOperatorDelete(OD: OperatorDelete, ThisArg);
11039 }
11040 }
11041
11042 return false;
11043}
11044
11045/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
11046/// the well-formednes of the destructor declarator @p D with type @p
11047/// R. If there are any errors in the declarator, this routine will
11048/// emit diagnostics and set the declarator to invalid. Even if this happens,
11049/// will be updated to reflect a well-formed type for the destructor and
11050/// returned.
11051QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
11052 StorageClass& SC) {
11053 // C++ [class.dtor]p1:
11054 // [...] A typedef-name that names a class is a class-name
11055 // (7.1.3); however, a typedef-name that names a class shall not
11056 // be used as the identifier in the declarator for a destructor
11057 // declaration.
11058 QualType DeclaratorType = GetTypeFromParser(Ty: D.getName().DestructorName);
11059 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
11060 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
11061 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
11062 else if (const TemplateSpecializationType *TST =
11063 DeclaratorType->getAs<TemplateSpecializationType>())
11064 if (TST->isTypeAlias())
11065 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
11066 << DeclaratorType << 1;
11067
11068 // C++ [class.dtor]p2:
11069 // A destructor is used to destroy objects of its class type. A
11070 // destructor takes no parameters, and no return type can be
11071 // specified for it (not even void). The address of a destructor
11072 // shall not be taken. A destructor shall not be static. A
11073 // destructor can be invoked for a const, volatile or const
11074 // volatile object. A destructor shall not be declared const,
11075 // volatile or const volatile (9.3.2).
11076 if (SC == SC_Static) {
11077 if (!D.isInvalidType())
11078 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
11079 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
11080 << SourceRange(D.getIdentifierLoc())
11081 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
11082
11083 SC = SC_None;
11084 }
11085 if (!D.isInvalidType()) {
11086 // Destructors don't have return types, but the parser will
11087 // happily parse something like:
11088 //
11089 // class X {
11090 // float ~X();
11091 // };
11092 //
11093 // The return type will be eliminated later.
11094 if (D.getDeclSpec().hasTypeSpecifier())
11095 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
11096 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
11097 << SourceRange(D.getIdentifierLoc());
11098 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
11099 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
11100 SourceLocation(),
11101 D.getDeclSpec().getConstSpecLoc(),
11102 D.getDeclSpec().getVolatileSpecLoc(),
11103 D.getDeclSpec().getRestrictSpecLoc(),
11104 D.getDeclSpec().getAtomicSpecLoc());
11105 D.setInvalidType();
11106 }
11107 }
11108
11109 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
11110
11111 // C++0x [class.dtor]p2:
11112 // A destructor shall not be declared with a ref-qualifier.
11113 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11114 if (FTI.hasRefQualifier()) {
11115 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
11116 << FTI.RefQualifierIsLValueRef
11117 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
11118 D.setInvalidType();
11119 }
11120
11121 // Make sure we don't have any parameters.
11122 if (FTIHasNonVoidParameters(FTI)) {
11123 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
11124
11125 // Delete the parameters.
11126 FTI.freeParams();
11127 D.setInvalidType();
11128 }
11129
11130 // Make sure the destructor isn't variadic.
11131 if (FTI.isVariadic) {
11132 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
11133 D.setInvalidType();
11134 }
11135
11136 // Rebuild the function type "R" without any type qualifiers or
11137 // parameters (in case any of the errors above fired) and with
11138 // "void" as the return type, since destructors don't have return
11139 // types.
11140 if (!D.isInvalidType())
11141 return R;
11142
11143 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
11144 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
11145 EPI.Variadic = false;
11146 EPI.TypeQuals = Qualifiers();
11147 EPI.RefQualifier = RQ_None;
11148 return Context.getFunctionType(ResultTy: Context.VoidTy, Args: std::nullopt, EPI);
11149}
11150
11151static void extendLeft(SourceRange &R, SourceRange Before) {
11152 if (Before.isInvalid())
11153 return;
11154 R.setBegin(Before.getBegin());
11155 if (R.getEnd().isInvalid())
11156 R.setEnd(Before.getEnd());
11157}
11158
11159static void extendRight(SourceRange &R, SourceRange After) {
11160 if (After.isInvalid())
11161 return;
11162 if (R.getBegin().isInvalid())
11163 R.setBegin(After.getBegin());
11164 R.setEnd(After.getEnd());
11165}
11166
11167/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
11168/// well-formednes of the conversion function declarator @p D with
11169/// type @p R. If there are any errors in the declarator, this routine
11170/// will emit diagnostics and return true. Otherwise, it will return
11171/// false. Either way, the type @p R will be updated to reflect a
11172/// well-formed type for the conversion operator.
11173void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
11174 StorageClass& SC) {
11175 // C++ [class.conv.fct]p1:
11176 // Neither parameter types nor return type can be specified. The
11177 // type of a conversion function (8.3.5) is "function taking no
11178 // parameter returning conversion-type-id."
11179 if (SC == SC_Static) {
11180 if (!D.isInvalidType())
11181 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
11182 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
11183 << D.getName().getSourceRange();
11184 D.setInvalidType();
11185 SC = SC_None;
11186 }
11187
11188 TypeSourceInfo *ConvTSI = nullptr;
11189 QualType ConvType =
11190 GetTypeFromParser(Ty: D.getName().ConversionFunctionId, TInfo: &ConvTSI);
11191
11192 const DeclSpec &DS = D.getDeclSpec();
11193 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
11194 // Conversion functions don't have return types, but the parser will
11195 // happily parse something like:
11196 //
11197 // class X {
11198 // float operator bool();
11199 // };
11200 //
11201 // The return type will be changed later anyway.
11202 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
11203 << SourceRange(DS.getTypeSpecTypeLoc())
11204 << SourceRange(D.getIdentifierLoc());
11205 D.setInvalidType();
11206 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
11207 // It's also plausible that the user writes type qualifiers in the wrong
11208 // place, such as:
11209 // struct S { const operator int(); };
11210 // FIXME: we could provide a fixit to move the qualifiers onto the
11211 // conversion type.
11212 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
11213 << SourceRange(D.getIdentifierLoc()) << 0;
11214 D.setInvalidType();
11215 }
11216 const auto *Proto = R->castAs<FunctionProtoType>();
11217 // Make sure we don't have any parameters.
11218 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11219 unsigned NumParam = Proto->getNumParams();
11220
11221 // [C++2b]
11222 // A conversion function shall have no non-object parameters.
11223 if (NumParam == 1) {
11224 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11225 if (const auto *First =
11226 dyn_cast_if_present<ParmVarDecl>(Val: FTI.Params[0].Param);
11227 First && First->isExplicitObjectParameter())
11228 NumParam--;
11229 }
11230
11231 if (NumParam != 0) {
11232 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
11233 // Delete the parameters.
11234 FTI.freeParams();
11235 D.setInvalidType();
11236 } else if (Proto->isVariadic()) {
11237 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
11238 D.setInvalidType();
11239 }
11240
11241 // Diagnose "&operator bool()" and other such nonsense. This
11242 // is actually a gcc extension which we don't support.
11243 if (Proto->getReturnType() != ConvType) {
11244 bool NeedsTypedef = false;
11245 SourceRange Before, After;
11246
11247 // Walk the chunks and extract information on them for our diagnostic.
11248 bool PastFunctionChunk = false;
11249 for (auto &Chunk : D.type_objects()) {
11250 switch (Chunk.Kind) {
11251 case DeclaratorChunk::Function:
11252 if (!PastFunctionChunk) {
11253 if (Chunk.Fun.HasTrailingReturnType) {
11254 TypeSourceInfo *TRT = nullptr;
11255 GetTypeFromParser(Ty: Chunk.Fun.getTrailingReturnType(), TInfo: &TRT);
11256 if (TRT) extendRight(R&: After, After: TRT->getTypeLoc().getSourceRange());
11257 }
11258 PastFunctionChunk = true;
11259 break;
11260 }
11261 [[fallthrough]];
11262 case DeclaratorChunk::Array:
11263 NeedsTypedef = true;
11264 extendRight(R&: After, After: Chunk.getSourceRange());
11265 break;
11266
11267 case DeclaratorChunk::Pointer:
11268 case DeclaratorChunk::BlockPointer:
11269 case DeclaratorChunk::Reference:
11270 case DeclaratorChunk::MemberPointer:
11271 case DeclaratorChunk::Pipe:
11272 extendLeft(R&: Before, Before: Chunk.getSourceRange());
11273 break;
11274
11275 case DeclaratorChunk::Paren:
11276 extendLeft(R&: Before, Before: Chunk.Loc);
11277 extendRight(R&: After, After: Chunk.EndLoc);
11278 break;
11279 }
11280 }
11281
11282 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
11283 After.isValid() ? After.getBegin() :
11284 D.getIdentifierLoc();
11285 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
11286 DB << Before << After;
11287
11288 if (!NeedsTypedef) {
11289 DB << /*don't need a typedef*/0;
11290
11291 // If we can provide a correct fix-it hint, do so.
11292 if (After.isInvalid() && ConvTSI) {
11293 SourceLocation InsertLoc =
11294 getLocForEndOfToken(Loc: ConvTSI->getTypeLoc().getEndLoc());
11295 DB << FixItHint::CreateInsertion(InsertionLoc: InsertLoc, Code: " ")
11296 << FixItHint::CreateInsertionFromRange(
11297 InsertionLoc: InsertLoc, FromRange: CharSourceRange::getTokenRange(R: Before))
11298 << FixItHint::CreateRemoval(RemoveRange: Before);
11299 }
11300 } else if (!Proto->getReturnType()->isDependentType()) {
11301 DB << /*typedef*/1 << Proto->getReturnType();
11302 } else if (getLangOpts().CPlusPlus11) {
11303 DB << /*alias template*/2 << Proto->getReturnType();
11304 } else {
11305 DB << /*might not be fixable*/3;
11306 }
11307
11308 // Recover by incorporating the other type chunks into the result type.
11309 // Note, this does *not* change the name of the function. This is compatible
11310 // with the GCC extension:
11311 // struct S { &operator int(); } s;
11312 // int &r = s.operator int(); // ok in GCC
11313 // S::operator int&() {} // error in GCC, function name is 'operator int'.
11314 ConvType = Proto->getReturnType();
11315 }
11316
11317 // C++ [class.conv.fct]p4:
11318 // The conversion-type-id shall not represent a function type nor
11319 // an array type.
11320 if (ConvType->isArrayType()) {
11321 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
11322 ConvType = Context.getPointerType(T: ConvType);
11323 D.setInvalidType();
11324 } else if (ConvType->isFunctionType()) {
11325 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
11326 ConvType = Context.getPointerType(T: ConvType);
11327 D.setInvalidType();
11328 }
11329
11330 // Rebuild the function type "R" without any parameters (in case any
11331 // of the errors above fired) and with the conversion type as the
11332 // return type.
11333 if (D.isInvalidType())
11334 R = Context.getFunctionType(ResultTy: ConvType, Args: std::nullopt,
11335 EPI: Proto->getExtProtoInfo());
11336
11337 // C++0x explicit conversion operators.
11338 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
11339 Diag(DS.getExplicitSpecLoc(),
11340 getLangOpts().CPlusPlus11
11341 ? diag::warn_cxx98_compat_explicit_conversion_functions
11342 : diag::ext_explicit_conversion_functions)
11343 << SourceRange(DS.getExplicitSpecRange());
11344}
11345
11346/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
11347/// the declaration of the given C++ conversion function. This routine
11348/// is responsible for recording the conversion function in the C++
11349/// class, if possible.
11350Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
11351 assert(Conversion && "Expected to receive a conversion function declaration");
11352
11353 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
11354
11355 // Make sure we aren't redeclaring the conversion function.
11356 QualType ConvType = Context.getCanonicalType(T: Conversion->getConversionType());
11357 // C++ [class.conv.fct]p1:
11358 // [...] A conversion function is never used to convert a
11359 // (possibly cv-qualified) object to the (possibly cv-qualified)
11360 // same object type (or a reference to it), to a (possibly
11361 // cv-qualified) base class of that type (or a reference to it),
11362 // or to (possibly cv-qualified) void.
11363 QualType ClassType
11364 = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl));
11365 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
11366 ConvType = ConvTypeRef->getPointeeType();
11367 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
11368 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
11369 /* Suppress diagnostics for instantiations. */;
11370 else if (Conversion->size_overridden_methods() != 0)
11371 /* Suppress diagnostics for overriding virtual function in a base class. */;
11372 else if (ConvType->isRecordType()) {
11373 ConvType = Context.getCanonicalType(T: ConvType).getUnqualifiedType();
11374 if (ConvType == ClassType)
11375 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
11376 << ClassType;
11377 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
11378 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
11379 << ClassType << ConvType;
11380 } else if (ConvType->isVoidType()) {
11381 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
11382 << ClassType << ConvType;
11383 }
11384
11385 if (FunctionTemplateDecl *ConversionTemplate =
11386 Conversion->getDescribedFunctionTemplate()) {
11387 if (const auto *ConvTypePtr = ConvType->getAs<PointerType>()) {
11388 ConvType = ConvTypePtr->getPointeeType();
11389 }
11390 if (ConvType->isUndeducedAutoType()) {
11391 Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed)
11392 << getReturnTypeLoc(Conversion).getSourceRange()
11393 << llvm::to_underlying(ConvType->castAs<AutoType>()->getKeyword())
11394 << /* in declaration of conversion function template= */ 24;
11395 }
11396
11397 return ConversionTemplate;
11398 }
11399
11400 return Conversion;
11401}
11402
11403void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D,
11404 DeclarationName Name, QualType R) {
11405 CheckExplicitObjectMemberFunction(D, Name, R, IsLambda: false, DC);
11406}
11407
11408void Sema::CheckExplicitObjectLambda(Declarator &D) {
11409 CheckExplicitObjectMemberFunction(D, Name: {}, R: {}, IsLambda: true);
11410}
11411
11412void Sema::CheckExplicitObjectMemberFunction(Declarator &D,
11413 DeclarationName Name, QualType R,
11414 bool IsLambda, DeclContext *DC) {
11415 if (!D.isFunctionDeclarator())
11416 return;
11417
11418 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
11419 if (FTI.NumParams == 0)
11420 return;
11421 ParmVarDecl *ExplicitObjectParam = nullptr;
11422 for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) {
11423 const auto &ParamInfo = FTI.Params[Idx];
11424 if (!ParamInfo.Param)
11425 continue;
11426 ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamInfo.Param);
11427 if (!Param->isExplicitObjectParameter())
11428 continue;
11429 if (Idx == 0) {
11430 ExplicitObjectParam = Param;
11431 continue;
11432 } else {
11433 Diag(Param->getLocation(),
11434 diag::err_explicit_object_parameter_must_be_first)
11435 << IsLambda << Param->getSourceRange();
11436 }
11437 }
11438 if (!ExplicitObjectParam)
11439 return;
11440
11441 if (ExplicitObjectParam->hasDefaultArg()) {
11442 Diag(ExplicitObjectParam->getLocation(),
11443 diag::err_explicit_object_default_arg)
11444 << ExplicitObjectParam->getSourceRange();
11445 }
11446
11447 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static ||
11448 (D.getContext() == clang::DeclaratorContext::Member &&
11449 D.isStaticMember())) {
11450 Diag(ExplicitObjectParam->getBeginLoc(),
11451 diag::err_explicit_object_parameter_nonmember)
11452 << D.getSourceRange() << /*static=*/0 << IsLambda;
11453 D.setInvalidType();
11454 }
11455
11456 if (D.getDeclSpec().isVirtualSpecified()) {
11457 Diag(ExplicitObjectParam->getBeginLoc(),
11458 diag::err_explicit_object_parameter_nonmember)
11459 << D.getSourceRange() << /*virtual=*/1 << IsLambda;
11460 D.setInvalidType();
11461 }
11462
11463 if (IsLambda && FTI.hasMutableQualifier()) {
11464 Diag(ExplicitObjectParam->getBeginLoc(),
11465 diag::err_explicit_object_parameter_mutable)
11466 << D.getSourceRange();
11467 }
11468
11469 if (IsLambda)
11470 return;
11471
11472 if (!DC || !DC->isRecord()) {
11473 Diag(ExplicitObjectParam->getLocation(),
11474 diag::err_explicit_object_parameter_nonmember)
11475 << D.getSourceRange() << /*non-member=*/2 << IsLambda;
11476 D.setInvalidType();
11477 return;
11478 }
11479
11480 // CWG2674: constructors and destructors cannot have explicit parameters.
11481 if (Name.getNameKind() == DeclarationName::CXXConstructorName ||
11482 Name.getNameKind() == DeclarationName::CXXDestructorName) {
11483 Diag(ExplicitObjectParam->getBeginLoc(),
11484 diag::err_explicit_object_parameter_constructor)
11485 << (Name.getNameKind() == DeclarationName::CXXDestructorName)
11486 << D.getSourceRange();
11487 D.setInvalidType();
11488 }
11489}
11490
11491namespace {
11492/// Utility class to accumulate and print a diagnostic listing the invalid
11493/// specifier(s) on a declaration.
11494struct BadSpecifierDiagnoser {
11495 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
11496 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
11497 ~BadSpecifierDiagnoser() {
11498 Diagnostic << Specifiers;
11499 }
11500
11501 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
11502 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
11503 }
11504 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
11505 return check(SpecLoc,
11506 Spec: DeclSpec::getSpecifierName(T: Spec, Policy: S.getPrintingPolicy()));
11507 }
11508 void check(SourceLocation SpecLoc, const char *Spec) {
11509 if (SpecLoc.isInvalid()) return;
11510 Diagnostic << SourceRange(SpecLoc, SpecLoc);
11511 if (!Specifiers.empty()) Specifiers += " ";
11512 Specifiers += Spec;
11513 }
11514
11515 Sema &S;
11516 Sema::SemaDiagnosticBuilder Diagnostic;
11517 std::string Specifiers;
11518};
11519}
11520
11521/// Check the validity of a declarator that we parsed for a deduction-guide.
11522/// These aren't actually declarators in the grammar, so we need to check that
11523/// the user didn't specify any pieces that are not part of the deduction-guide
11524/// grammar. Return true on invalid deduction-guide.
11525bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
11526 StorageClass &SC) {
11527 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
11528 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
11529 assert(GuidedTemplateDecl && "missing template decl for deduction guide");
11530
11531 // C++ [temp.deduct.guide]p3:
11532 // A deduction-gide shall be declared in the same scope as the
11533 // corresponding class template.
11534 if (!CurContext->getRedeclContext()->Equals(
11535 DC: GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
11536 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
11537 << GuidedTemplateDecl;
11538 NoteTemplateLocation(*GuidedTemplateDecl);
11539 }
11540
11541 auto &DS = D.getMutableDeclSpec();
11542 // We leave 'friend' and 'virtual' to be rejected in the normal way.
11543 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
11544 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
11545 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
11546 BadSpecifierDiagnoser Diagnoser(
11547 *this, D.getIdentifierLoc(),
11548 diag::err_deduction_guide_invalid_specifier);
11549
11550 Diagnoser.check(SpecLoc: DS.getStorageClassSpecLoc(), Spec: DS.getStorageClassSpec());
11551 DS.ClearStorageClassSpecs();
11552 SC = SC_None;
11553
11554 // 'explicit' is permitted.
11555 Diagnoser.check(SpecLoc: DS.getInlineSpecLoc(), Spec: "inline");
11556 Diagnoser.check(SpecLoc: DS.getNoreturnSpecLoc(), Spec: "_Noreturn");
11557 Diagnoser.check(SpecLoc: DS.getConstexprSpecLoc(), Spec: "constexpr");
11558 DS.ClearConstexprSpec();
11559
11560 Diagnoser.check(SpecLoc: DS.getConstSpecLoc(), Spec: "const");
11561 Diagnoser.check(SpecLoc: DS.getRestrictSpecLoc(), Spec: "__restrict");
11562 Diagnoser.check(SpecLoc: DS.getVolatileSpecLoc(), Spec: "volatile");
11563 Diagnoser.check(SpecLoc: DS.getAtomicSpecLoc(), Spec: "_Atomic");
11564 Diagnoser.check(SpecLoc: DS.getUnalignedSpecLoc(), Spec: "__unaligned");
11565 DS.ClearTypeQualifiers();
11566
11567 Diagnoser.check(SpecLoc: DS.getTypeSpecComplexLoc(), Spec: DS.getTypeSpecComplex());
11568 Diagnoser.check(SpecLoc: DS.getTypeSpecSignLoc(), Spec: DS.getTypeSpecSign());
11569 Diagnoser.check(SpecLoc: DS.getTypeSpecWidthLoc(), Spec: DS.getTypeSpecWidth());
11570 Diagnoser.check(SpecLoc: DS.getTypeSpecTypeLoc(), Spec: DS.getTypeSpecType());
11571 DS.ClearTypeSpecType();
11572 }
11573
11574 if (D.isInvalidType())
11575 return true;
11576
11577 // Check the declarator is simple enough.
11578 bool FoundFunction = false;
11579 for (const DeclaratorChunk &Chunk : llvm::reverse(C: D.type_objects())) {
11580 if (Chunk.Kind == DeclaratorChunk::Paren)
11581 continue;
11582 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
11583 Diag(D.getDeclSpec().getBeginLoc(),
11584 diag::err_deduction_guide_with_complex_decl)
11585 << D.getSourceRange();
11586 break;
11587 }
11588 if (!Chunk.Fun.hasTrailingReturnType())
11589 return Diag(D.getName().getBeginLoc(),
11590 diag::err_deduction_guide_no_trailing_return_type);
11591
11592 // Check that the return type is written as a specialization of
11593 // the template specified as the deduction-guide's name.
11594 // The template name may not be qualified. [temp.deduct.guide]
11595 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
11596 TypeSourceInfo *TSI = nullptr;
11597 QualType RetTy = GetTypeFromParser(Ty: TrailingReturnType, TInfo: &TSI);
11598 assert(TSI && "deduction guide has valid type but invalid return type?");
11599 bool AcceptableReturnType = false;
11600 bool MightInstantiateToSpecialization = false;
11601 if (auto RetTST =
11602 TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) {
11603 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
11604 bool TemplateMatches =
11605 Context.hasSameTemplateName(X: SpecifiedName, Y: GuidedTemplate);
11606 auto TKind = SpecifiedName.getKind();
11607 // A Using TemplateName can't actually be valid (either it's qualified, or
11608 // we're in the wrong scope). But we have diagnosed these problems
11609 // already.
11610 bool SimplyWritten = TKind == TemplateName::Template ||
11611 TKind == TemplateName::UsingTemplate;
11612 if (SimplyWritten && TemplateMatches)
11613 AcceptableReturnType = true;
11614 else {
11615 // This could still instantiate to the right type, unless we know it
11616 // names the wrong class template.
11617 auto *TD = SpecifiedName.getAsTemplateDecl();
11618 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
11619 !TemplateMatches);
11620 }
11621 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
11622 MightInstantiateToSpecialization = true;
11623 }
11624
11625 if (!AcceptableReturnType)
11626 return Diag(TSI->getTypeLoc().getBeginLoc(),
11627 diag::err_deduction_guide_bad_trailing_return_type)
11628 << GuidedTemplate << TSI->getType()
11629 << MightInstantiateToSpecialization
11630 << TSI->getTypeLoc().getSourceRange();
11631
11632 // Keep going to check that we don't have any inner declarator pieces (we
11633 // could still have a function returning a pointer to a function).
11634 FoundFunction = true;
11635 }
11636
11637 if (D.isFunctionDefinition())
11638 // we can still create a valid deduction guide here.
11639 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
11640 return false;
11641}
11642
11643//===----------------------------------------------------------------------===//
11644// Namespace Handling
11645//===----------------------------------------------------------------------===//
11646
11647/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
11648/// reopened.
11649static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
11650 SourceLocation Loc,
11651 IdentifierInfo *II, bool *IsInline,
11652 NamespaceDecl *PrevNS) {
11653 assert(*IsInline != PrevNS->isInline());
11654
11655 // 'inline' must appear on the original definition, but not necessarily
11656 // on all extension definitions, so the note should point to the first
11657 // definition to avoid confusion.
11658 PrevNS = PrevNS->getFirstDecl();
11659
11660 if (PrevNS->isInline())
11661 // The user probably just forgot the 'inline', so suggest that it
11662 // be added back.
11663 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
11664 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
11665 else
11666 S.Diag(Loc, diag::err_inline_namespace_mismatch);
11667
11668 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
11669 *IsInline = PrevNS->isInline();
11670}
11671
11672/// ActOnStartNamespaceDef - This is called at the start of a namespace
11673/// definition.
11674Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
11675 SourceLocation InlineLoc,
11676 SourceLocation NamespaceLoc,
11677 SourceLocation IdentLoc, IdentifierInfo *II,
11678 SourceLocation LBrace,
11679 const ParsedAttributesView &AttrList,
11680 UsingDirectiveDecl *&UD, bool IsNested) {
11681 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
11682 // For anonymous namespace, take the location of the left brace.
11683 SourceLocation Loc = II ? IdentLoc : LBrace;
11684 bool IsInline = InlineLoc.isValid();
11685 bool IsInvalid = false;
11686 bool IsStd = false;
11687 bool AddToKnown = false;
11688 Scope *DeclRegionScope = NamespcScope->getParent();
11689
11690 NamespaceDecl *PrevNS = nullptr;
11691 if (II) {
11692 // C++ [namespace.std]p7:
11693 // A translation unit shall not declare namespace std to be an inline
11694 // namespace (9.8.2).
11695 //
11696 // Precondition: the std namespace is in the file scope and is declared to
11697 // be inline
11698 auto DiagnoseInlineStdNS = [&]() {
11699 assert(IsInline && II->isStr("std") &&
11700 CurContext->getRedeclContext()->isTranslationUnit() &&
11701 "Precondition of DiagnoseInlineStdNS not met");
11702 Diag(InlineLoc, diag::err_inline_namespace_std)
11703 << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6));
11704 IsInline = false;
11705 };
11706 // C++ [namespace.def]p2:
11707 // The identifier in an original-namespace-definition shall not
11708 // have been previously defined in the declarative region in
11709 // which the original-namespace-definition appears. The
11710 // identifier in an original-namespace-definition is the name of
11711 // the namespace. Subsequently in that declarative region, it is
11712 // treated as an original-namespace-name.
11713 //
11714 // Since namespace names are unique in their scope, and we don't
11715 // look through using directives, just look for any ordinary names
11716 // as if by qualified name lookup.
11717 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
11718 RedeclarationKind::ForExternalRedeclaration);
11719 LookupQualifiedName(R, LookupCtx: CurContext->getRedeclContext());
11720 NamedDecl *PrevDecl =
11721 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
11722 PrevNS = dyn_cast_or_null<NamespaceDecl>(Val: PrevDecl);
11723
11724 if (PrevNS) {
11725 // This is an extended namespace definition.
11726 if (IsInline && II->isStr(Str: "std") &&
11727 CurContext->getRedeclContext()->isTranslationUnit())
11728 DiagnoseInlineStdNS();
11729 else if (IsInline != PrevNS->isInline())
11730 DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc, II,
11731 IsInline: &IsInline, PrevNS);
11732 } else if (PrevDecl) {
11733 // This is an invalid name redefinition.
11734 Diag(Loc, diag::err_redefinition_different_kind)
11735 << II;
11736 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11737 IsInvalid = true;
11738 // Continue on to push Namespc as current DeclContext and return it.
11739 } else if (II->isStr(Str: "std") &&
11740 CurContext->getRedeclContext()->isTranslationUnit()) {
11741 if (IsInline)
11742 DiagnoseInlineStdNS();
11743 // This is the first "real" definition of the namespace "std", so update
11744 // our cache of the "std" namespace to point at this definition.
11745 PrevNS = getStdNamespace();
11746 IsStd = true;
11747 AddToKnown = !IsInline;
11748 } else {
11749 // We've seen this namespace for the first time.
11750 AddToKnown = !IsInline;
11751 }
11752 } else {
11753 // Anonymous namespaces.
11754
11755 // Determine whether the parent already has an anonymous namespace.
11756 DeclContext *Parent = CurContext->getRedeclContext();
11757 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) {
11758 PrevNS = TU->getAnonymousNamespace();
11759 } else {
11760 NamespaceDecl *ND = cast<NamespaceDecl>(Val: Parent);
11761 PrevNS = ND->getAnonymousNamespace();
11762 }
11763
11764 if (PrevNS && IsInline != PrevNS->isInline())
11765 DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc: NamespaceLoc, II,
11766 IsInline: &IsInline, PrevNS);
11767 }
11768
11769 NamespaceDecl *Namespc = NamespaceDecl::Create(
11770 C&: Context, DC: CurContext, Inline: IsInline, StartLoc, IdLoc: Loc, Id: II, PrevDecl: PrevNS, Nested: IsNested);
11771 if (IsInvalid)
11772 Namespc->setInvalidDecl();
11773
11774 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
11775 AddPragmaAttributes(DeclRegionScope, Namespc);
11776 ProcessAPINotes(Namespc);
11777
11778 // FIXME: Should we be merging attributes?
11779 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
11780 PushNamespaceVisibilityAttr(Attr, Loc);
11781
11782 if (IsStd)
11783 StdNamespace = Namespc;
11784 if (AddToKnown)
11785 KnownNamespaces[Namespc] = false;
11786
11787 if (II) {
11788 PushOnScopeChains(Namespc, DeclRegionScope);
11789 } else {
11790 // Link the anonymous namespace into its parent.
11791 DeclContext *Parent = CurContext->getRedeclContext();
11792 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) {
11793 TU->setAnonymousNamespace(Namespc);
11794 } else {
11795 cast<NamespaceDecl>(Val: Parent)->setAnonymousNamespace(Namespc);
11796 }
11797
11798 CurContext->addDecl(Namespc);
11799
11800 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11801 // behaves as if it were replaced by
11802 // namespace unique { /* empty body */ }
11803 // using namespace unique;
11804 // namespace unique { namespace-body }
11805 // where all occurrences of 'unique' in a translation unit are
11806 // replaced by the same identifier and this identifier differs
11807 // from all other identifiers in the entire program.
11808
11809 // We just create the namespace with an empty name and then add an
11810 // implicit using declaration, just like the standard suggests.
11811 //
11812 // CodeGen enforces the "universally unique" aspect by giving all
11813 // declarations semantically contained within an anonymous
11814 // namespace internal linkage.
11815
11816 if (!PrevNS) {
11817 UD = UsingDirectiveDecl::Create(Context, Parent,
11818 /* 'using' */ LBrace,
11819 /* 'namespace' */ SourceLocation(),
11820 /* qualifier */ NestedNameSpecifierLoc(),
11821 /* identifier */ SourceLocation(),
11822 Namespc,
11823 /* Ancestor */ Parent);
11824 UD->setImplicit();
11825 Parent->addDecl(UD);
11826 }
11827 }
11828
11829 ActOnDocumentableDecl(Namespc);
11830
11831 // Although we could have an invalid decl (i.e. the namespace name is a
11832 // redefinition), push it as current DeclContext and try to continue parsing.
11833 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11834 // for the namespace has the declarations that showed up in that particular
11835 // namespace definition.
11836 PushDeclContext(NamespcScope, Namespc);
11837 return Namespc;
11838}
11839
11840/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11841/// is a namespace alias, returns the namespace it points to.
11842static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11843 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(Val: D))
11844 return AD->getNamespace();
11845 return dyn_cast_or_null<NamespaceDecl>(Val: D);
11846}
11847
11848/// ActOnFinishNamespaceDef - This callback is called after a namespace is
11849/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11850void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11851 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Val: Dcl);
11852 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
11853 Namespc->setRBraceLoc(RBrace);
11854 PopDeclContext();
11855 if (Namespc->hasAttr<VisibilityAttr>())
11856 PopPragmaVisibility(IsNamespaceEnd: true, EndLoc: RBrace);
11857 // If this namespace contains an export-declaration, export it now.
11858 if (DeferredExportedNamespaces.erase(Ptr: Namespc))
11859 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11860}
11861
11862CXXRecordDecl *Sema::getStdBadAlloc() const {
11863 return cast_or_null<CXXRecordDecl>(
11864 Val: StdBadAlloc.get(Source: Context.getExternalSource()));
11865}
11866
11867EnumDecl *Sema::getStdAlignValT() const {
11868 return cast_or_null<EnumDecl>(Val: StdAlignValT.get(Source: Context.getExternalSource()));
11869}
11870
11871NamespaceDecl *Sema::getStdNamespace() const {
11872 return cast_or_null<NamespaceDecl>(
11873 Val: StdNamespace.get(Source: Context.getExternalSource()));
11874}
11875namespace {
11876
11877enum UnsupportedSTLSelect {
11878 USS_InvalidMember,
11879 USS_MissingMember,
11880 USS_NonTrivial,
11881 USS_Other
11882};
11883
11884struct InvalidSTLDiagnoser {
11885 Sema &S;
11886 SourceLocation Loc;
11887 QualType TyForDiags;
11888
11889 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11890 const VarDecl *VD = nullptr) {
11891 {
11892 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11893 << TyForDiags << ((int)Sel);
11894 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11895 assert(!Name.empty());
11896 D << Name;
11897 }
11898 }
11899 if (Sel == USS_InvalidMember) {
11900 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11901 << VD << VD->getSourceRange();
11902 }
11903 return QualType();
11904 }
11905};
11906} // namespace
11907
11908QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11909 SourceLocation Loc,
11910 ComparisonCategoryUsage Usage) {
11911 assert(getLangOpts().CPlusPlus &&
11912 "Looking for comparison category type outside of C++.");
11913
11914 // Use an elaborated type for diagnostics which has a name containing the
11915 // prepended 'std' namespace but not any inline namespace names.
11916 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11917 auto *NNS =
11918 NestedNameSpecifier::Create(Context, Prefix: nullptr, NS: getStdNamespace());
11919 return Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS,
11920 NamedType: Info->getType());
11921 };
11922
11923 // Check if we've already successfully checked the comparison category type
11924 // before. If so, skip checking it again.
11925 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11926 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11927 // The only thing we need to check is that the type has a reachable
11928 // definition in the current context.
11929 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11930 return QualType();
11931
11932 return Info->getType();
11933 }
11934
11935 // If lookup failed
11936 if (!Info) {
11937 std::string NameForDiags = "std::";
11938 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11939 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11940 << NameForDiags << (int)Usage;
11941 return QualType();
11942 }
11943
11944 assert(Info->Kind == Kind);
11945 assert(Info->Record);
11946
11947 // Update the Record decl in case we encountered a forward declaration on our
11948 // first pass. FIXME: This is a bit of a hack.
11949 if (Info->Record->hasDefinition())
11950 Info->Record = Info->Record->getDefinition();
11951
11952 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11953 return QualType();
11954
11955 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11956
11957 if (!Info->Record->isTriviallyCopyable())
11958 return UnsupportedSTLError(USS_NonTrivial);
11959
11960 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11961 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11962 // Tolerate empty base classes.
11963 if (Base->isEmpty())
11964 continue;
11965 // Reject STL implementations which have at least one non-empty base.
11966 return UnsupportedSTLError();
11967 }
11968
11969 // Check that the STL has implemented the types using a single integer field.
11970 // This expectation allows better codegen for builtin operators. We require:
11971 // (1) The class has exactly one field.
11972 // (2) The field is an integral or enumeration type.
11973 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11974 if (std::distance(FIt, FEnd) != 1 ||
11975 !FIt->getType()->isIntegralOrEnumerationType()) {
11976 return UnsupportedSTLError();
11977 }
11978
11979 // Build each of the require values and store them in Info.
11980 for (ComparisonCategoryResult CCR :
11981 ComparisonCategories::getPossibleResultsForType(Type: Kind)) {
11982 StringRef MemName = ComparisonCategories::getResultString(Kind: CCR);
11983 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(ValueKind: CCR);
11984
11985 if (!ValInfo)
11986 return UnsupportedSTLError(USS_MissingMember, MemName);
11987
11988 VarDecl *VD = ValInfo->VD;
11989 assert(VD && "should not be null!");
11990
11991 // Attempt to diagnose reasons why the STL definition of this type
11992 // might be foobar, including it failing to be a constant expression.
11993 // TODO Handle more ways the lookup or result can be invalid.
11994 if (!VD->isStaticDataMember() ||
11995 !VD->isUsableInConstantExpressions(C: Context))
11996 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11997
11998 // Attempt to evaluate the var decl as a constant expression and extract
11999 // the value of its first field as a ICE. If this fails, the STL
12000 // implementation is not supported.
12001 if (!ValInfo->hasValidIntValue())
12002 return UnsupportedSTLError();
12003
12004 MarkVariableReferenced(Loc, Var: VD);
12005 }
12006
12007 // We've successfully built the required types and expressions. Update
12008 // the cache and return the newly cached value.
12009 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
12010 return Info->getType();
12011}
12012
12013/// Retrieve the special "std" namespace, which may require us to
12014/// implicitly define the namespace.
12015NamespaceDecl *Sema::getOrCreateStdNamespace() {
12016 if (!StdNamespace) {
12017 // The "std" namespace has not yet been defined, so build one implicitly.
12018 StdNamespace = NamespaceDecl::Create(
12019 Context, Context.getTranslationUnitDecl(),
12020 /*Inline=*/false, SourceLocation(), SourceLocation(),
12021 &PP.getIdentifierTable().get(Name: "std"),
12022 /*PrevDecl=*/nullptr, /*Nested=*/false);
12023 getStdNamespace()->setImplicit(true);
12024 // We want the created NamespaceDecl to be available for redeclaration
12025 // lookups, but not for regular name lookups.
12026 Context.getTranslationUnitDecl()->addDecl(getStdNamespace());
12027 getStdNamespace()->clearIdentifierNamespace();
12028 }
12029
12030 return getStdNamespace();
12031}
12032
12033bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
12034 assert(getLangOpts().CPlusPlus &&
12035 "Looking for std::initializer_list outside of C++.");
12036
12037 // We're looking for implicit instantiations of
12038 // template <typename E> class std::initializer_list.
12039
12040 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
12041 return false;
12042
12043 ClassTemplateDecl *Template = nullptr;
12044 const TemplateArgument *Arguments = nullptr;
12045
12046 if (const RecordType *RT = Ty->getAs<RecordType>()) {
12047
12048 ClassTemplateSpecializationDecl *Specialization =
12049 dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl());
12050 if (!Specialization)
12051 return false;
12052
12053 Template = Specialization->getSpecializedTemplate();
12054 Arguments = Specialization->getTemplateArgs().data();
12055 } else if (const TemplateSpecializationType *TST =
12056 Ty->getAs<TemplateSpecializationType>()) {
12057 Template = dyn_cast_or_null<ClassTemplateDecl>(
12058 Val: TST->getTemplateName().getAsTemplateDecl());
12059 Arguments = TST->template_arguments().begin();
12060 }
12061 if (!Template)
12062 return false;
12063
12064 if (!StdInitializerList) {
12065 // Haven't recognized std::initializer_list yet, maybe this is it.
12066 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
12067 if (TemplateClass->getIdentifier() !=
12068 &PP.getIdentifierTable().get(Name: "initializer_list") ||
12069 !getStdNamespace()->InEnclosingNamespaceSetOf(
12070 NS: TemplateClass->getDeclContext()))
12071 return false;
12072 // This is a template called std::initializer_list, but is it the right
12073 // template?
12074 TemplateParameterList *Params = Template->getTemplateParameters();
12075 if (Params->getMinRequiredArguments() != 1)
12076 return false;
12077 if (!isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0)))
12078 return false;
12079
12080 // It's the right template.
12081 StdInitializerList = Template;
12082 }
12083
12084 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
12085 return false;
12086
12087 // This is an instance of std::initializer_list. Find the argument type.
12088 if (Element)
12089 *Element = Arguments[0].getAsType();
12090 return true;
12091}
12092
12093static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
12094 NamespaceDecl *Std = S.getStdNamespace();
12095 if (!Std) {
12096 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
12097 return nullptr;
12098 }
12099
12100 LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "initializer_list"),
12101 Loc, Sema::LookupOrdinaryName);
12102 if (!S.LookupQualifiedName(Result, Std)) {
12103 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
12104 return nullptr;
12105 }
12106 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
12107 if (!Template) {
12108 Result.suppressDiagnostics();
12109 // We found something weird. Complain about the first thing we found.
12110 NamedDecl *Found = *Result.begin();
12111 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
12112 return nullptr;
12113 }
12114
12115 // We found some template called std::initializer_list. Now verify that it's
12116 // correct.
12117 TemplateParameterList *Params = Template->getTemplateParameters();
12118 if (Params->getMinRequiredArguments() != 1 ||
12119 !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) {
12120 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
12121 return nullptr;
12122 }
12123
12124 return Template;
12125}
12126
12127QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
12128 if (!StdInitializerList) {
12129 StdInitializerList = LookupStdInitializerList(S&: *this, Loc);
12130 if (!StdInitializerList)
12131 return QualType();
12132 }
12133
12134 TemplateArgumentListInfo Args(Loc, Loc);
12135 Args.addArgument(Loc: TemplateArgumentLoc(TemplateArgument(Element),
12136 Context.getTrivialTypeSourceInfo(T: Element,
12137 Loc)));
12138 return Context.getElaboratedType(
12139 Keyword: ElaboratedTypeKeyword::None,
12140 NNS: NestedNameSpecifier::Create(Context, Prefix: nullptr, NS: getStdNamespace()),
12141 NamedType: CheckTemplateIdType(Template: TemplateName(StdInitializerList), TemplateLoc: Loc, TemplateArgs&: Args));
12142}
12143
12144bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
12145 // C++ [dcl.init.list]p2:
12146 // A constructor is an initializer-list constructor if its first parameter
12147 // is of type std::initializer_list<E> or reference to possibly cv-qualified
12148 // std::initializer_list<E> for some type E, and either there are no other
12149 // parameters or else all other parameters have default arguments.
12150 if (!Ctor->hasOneParamOrDefaultArgs())
12151 return false;
12152
12153 QualType ArgType = Ctor->getParamDecl(i: 0)->getType();
12154 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
12155 ArgType = RT->getPointeeType().getUnqualifiedType();
12156
12157 return isStdInitializerList(Ty: ArgType, Element: nullptr);
12158}
12159
12160/// Determine whether a using statement is in a context where it will be
12161/// apply in all contexts.
12162static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
12163 switch (CurContext->getDeclKind()) {
12164 case Decl::TranslationUnit:
12165 return true;
12166 case Decl::LinkageSpec:
12167 return IsUsingDirectiveInToplevelContext(CurContext: CurContext->getParent());
12168 default:
12169 return false;
12170 }
12171}
12172
12173namespace {
12174
12175// Callback to only accept typo corrections that are namespaces.
12176class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
12177public:
12178 bool ValidateCandidate(const TypoCorrection &candidate) override {
12179 if (NamedDecl *ND = candidate.getCorrectionDecl())
12180 return isa<NamespaceDecl>(Val: ND) || isa<NamespaceAliasDecl>(Val: ND);
12181 return false;
12182 }
12183
12184 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12185 return std::make_unique<NamespaceValidatorCCC>(args&: *this);
12186 }
12187};
12188
12189}
12190
12191static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected,
12192 Sema &S) {
12193 auto *ND = cast<NamespaceDecl>(Val: Corrected.getFoundDecl());
12194 Module *M = ND->getOwningModule();
12195 assert(M && "hidden namespace definition not in a module?");
12196
12197 if (M->isExplicitGlobalModule())
12198 S.Diag(Corrected.getCorrectionRange().getBegin(),
12199 diag::err_module_unimported_use_header)
12200 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl()
12201 << /*Header Name*/ false;
12202 else
12203 S.Diag(Corrected.getCorrectionRange().getBegin(),
12204 diag::err_module_unimported_use)
12205 << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl()
12206 << M->getTopLevelModuleName();
12207}
12208
12209static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
12210 CXXScopeSpec &SS,
12211 SourceLocation IdentLoc,
12212 IdentifierInfo *Ident) {
12213 R.clear();
12214 NamespaceValidatorCCC CCC{};
12215 if (TypoCorrection Corrected =
12216 S.CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S: Sc, SS: &SS, CCC,
12217 Mode: Sema::CTK_ErrorRecovery)) {
12218 // Generally we find it is confusing more than helpful to diagnose the
12219 // invisible namespace.
12220 // See https://github.com/llvm/llvm-project/issues/73893.
12221 //
12222 // However, we should diagnose when the users are trying to using an
12223 // invisible namespace. So we handle the case specially here.
12224 if (isa_and_nonnull<NamespaceDecl>(Val: Corrected.getFoundDecl()) &&
12225 Corrected.requiresImport()) {
12226 DiagnoseInvisibleNamespace(Corrected, S);
12227 } else if (DeclContext *DC = S.computeDeclContext(SS, EnteringContext: false)) {
12228 std::string CorrectedStr(Corrected.getAsString(LO: S.getLangOpts()));
12229 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
12230 Ident->getName().equals(RHS: CorrectedStr);
12231 S.diagnoseTypo(Corrected,
12232 S.PDiag(diag::err_using_directive_member_suggest)
12233 << Ident << DC << DroppedSpecifier << SS.getRange(),
12234 S.PDiag(diag::note_namespace_defined_here));
12235 } else {
12236 S.diagnoseTypo(Corrected,
12237 S.PDiag(diag::err_using_directive_suggest) << Ident,
12238 S.PDiag(diag::note_namespace_defined_here));
12239 }
12240 R.addDecl(D: Corrected.getFoundDecl());
12241 return true;
12242 }
12243 return false;
12244}
12245
12246Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
12247 SourceLocation NamespcLoc, CXXScopeSpec &SS,
12248 SourceLocation IdentLoc,
12249 IdentifierInfo *NamespcName,
12250 const ParsedAttributesView &AttrList) {
12251 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12252 assert(NamespcName && "Invalid NamespcName.");
12253 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
12254
12255 // Get the innermost enclosing declaration scope.
12256 S = S->getDeclParent();
12257
12258 UsingDirectiveDecl *UDir = nullptr;
12259 NestedNameSpecifier *Qualifier = nullptr;
12260 if (SS.isSet())
12261 Qualifier = SS.getScopeRep();
12262
12263 // Lookup namespace name.
12264 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
12265 LookupParsedName(R, S, SS: &SS);
12266 if (R.isAmbiguous())
12267 return nullptr;
12268
12269 if (R.empty()) {
12270 R.clear();
12271 // Allow "using namespace std;" or "using namespace ::std;" even if
12272 // "std" hasn't been defined yet, for GCC compatibility.
12273 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
12274 NamespcName->isStr(Str: "std")) {
12275 Diag(IdentLoc, diag::ext_using_undefined_std);
12276 R.addDecl(getOrCreateStdNamespace());
12277 R.resolveKind();
12278 }
12279 // Otherwise, attempt typo correction.
12280 else TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident: NamespcName);
12281 }
12282
12283 if (!R.empty()) {
12284 NamedDecl *Named = R.getRepresentativeDecl();
12285 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
12286 assert(NS && "expected namespace decl");
12287
12288 // The use of a nested name specifier may trigger deprecation warnings.
12289 DiagnoseUseOfDecl(D: Named, Locs: IdentLoc);
12290
12291 // C++ [namespace.udir]p1:
12292 // A using-directive specifies that the names in the nominated
12293 // namespace can be used in the scope in which the
12294 // using-directive appears after the using-directive. During
12295 // unqualified name lookup (3.4.1), the names appear as if they
12296 // were declared in the nearest enclosing namespace which
12297 // contains both the using-directive and the nominated
12298 // namespace. [Note: in this context, "contains" means "contains
12299 // directly or indirectly". ]
12300
12301 // Find enclosing context containing both using-directive and
12302 // nominated namespace.
12303 DeclContext *CommonAncestor = NS;
12304 while (CommonAncestor && !CommonAncestor->Encloses(DC: CurContext))
12305 CommonAncestor = CommonAncestor->getParent();
12306
12307 UDir = UsingDirectiveDecl::Create(C&: Context, DC: CurContext, UsingLoc, NamespaceLoc: NamespcLoc,
12308 QualifierLoc: SS.getWithLocInContext(Context),
12309 IdentLoc, Nominated: Named, CommonAncestor);
12310
12311 if (IsUsingDirectiveInToplevelContext(CurContext) &&
12312 !SourceMgr.isInMainFile(Loc: SourceMgr.getExpansionLoc(Loc: IdentLoc))) {
12313 Diag(IdentLoc, diag::warn_using_directive_in_header);
12314 }
12315
12316 PushUsingDirective(S, UDir);
12317 } else {
12318 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12319 }
12320
12321 if (UDir) {
12322 ProcessDeclAttributeList(S, UDir, AttrList);
12323 ProcessAPINotes(UDir);
12324 }
12325
12326 return UDir;
12327}
12328
12329void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
12330 // If the scope has an associated entity and the using directive is at
12331 // namespace or translation unit scope, add the UsingDirectiveDecl into
12332 // its lookup structure so qualified name lookup can find it.
12333 DeclContext *Ctx = S->getEntity();
12334 if (Ctx && !Ctx->isFunctionOrMethod())
12335 Ctx->addDecl(UDir);
12336 else
12337 // Otherwise, it is at block scope. The using-directives will affect lookup
12338 // only to the end of the scope.
12339 S->PushUsingDirective(UDir);
12340}
12341
12342Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
12343 SourceLocation UsingLoc,
12344 SourceLocation TypenameLoc, CXXScopeSpec &SS,
12345 UnqualifiedId &Name,
12346 SourceLocation EllipsisLoc,
12347 const ParsedAttributesView &AttrList) {
12348 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
12349
12350 if (SS.isEmpty()) {
12351 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
12352 return nullptr;
12353 }
12354
12355 switch (Name.getKind()) {
12356 case UnqualifiedIdKind::IK_ImplicitSelfParam:
12357 case UnqualifiedIdKind::IK_Identifier:
12358 case UnqualifiedIdKind::IK_OperatorFunctionId:
12359 case UnqualifiedIdKind::IK_LiteralOperatorId:
12360 case UnqualifiedIdKind::IK_ConversionFunctionId:
12361 break;
12362
12363 case UnqualifiedIdKind::IK_ConstructorName:
12364 case UnqualifiedIdKind::IK_ConstructorTemplateId:
12365 // C++11 inheriting constructors.
12366 Diag(Name.getBeginLoc(),
12367 getLangOpts().CPlusPlus11
12368 ? diag::warn_cxx98_compat_using_decl_constructor
12369 : diag::err_using_decl_constructor)
12370 << SS.getRange();
12371
12372 if (getLangOpts().CPlusPlus11) break;
12373
12374 return nullptr;
12375
12376 case UnqualifiedIdKind::IK_DestructorName:
12377 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
12378 return nullptr;
12379
12380 case UnqualifiedIdKind::IK_TemplateId:
12381 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
12382 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
12383 return nullptr;
12384
12385 case UnqualifiedIdKind::IK_DeductionGuideName:
12386 llvm_unreachable("cannot parse qualified deduction guide name");
12387 }
12388
12389 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
12390 DeclarationName TargetName = TargetNameInfo.getName();
12391 if (!TargetName)
12392 return nullptr;
12393
12394 // Warn about access declarations.
12395 if (UsingLoc.isInvalid()) {
12396 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
12397 ? diag::err_access_decl
12398 : diag::warn_access_decl_deprecated)
12399 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
12400 }
12401
12402 if (EllipsisLoc.isInvalid()) {
12403 if (DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_UsingDeclaration) ||
12404 DiagnoseUnexpandedParameterPack(NameInfo: TargetNameInfo, UPPC: UPPC_UsingDeclaration))
12405 return nullptr;
12406 } else {
12407 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
12408 !TargetNameInfo.containsUnexpandedParameterPack()) {
12409 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
12410 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
12411 EllipsisLoc = SourceLocation();
12412 }
12413 }
12414
12415 NamedDecl *UD =
12416 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
12417 SS, TargetNameInfo, EllipsisLoc, AttrList,
12418 /*IsInstantiation*/ false,
12419 AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists));
12420 if (UD)
12421 PushOnScopeChains(D: UD, S, /*AddToContext*/ false);
12422
12423 return UD;
12424}
12425
12426Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
12427 SourceLocation UsingLoc,
12428 SourceLocation EnumLoc,
12429 SourceLocation IdentLoc,
12430 IdentifierInfo &II, CXXScopeSpec *SS) {
12431 assert(!SS->isInvalid() && "ScopeSpec is invalid");
12432 TypeSourceInfo *TSI = nullptr;
12433 QualType EnumTy = GetTypeFromParser(
12434 Ty: getTypeName(II, NameLoc: IdentLoc, S, SS, /*isClassName=*/false,
12435 /*HasTrailingDot=*/false,
12436 /*ObjectType=*/nullptr, /*IsCtorOrDtorName=*/false,
12437 /*WantNontrivialTypeSourceInfo=*/true),
12438 TInfo: &TSI);
12439 if (EnumTy.isNull()) {
12440 Diag(IdentLoc, SS && isDependentScopeSpecifier(*SS)
12441 ? diag::err_using_enum_is_dependent
12442 : diag::err_unknown_typename)
12443 << II.getName()
12444 << SourceRange(SS ? SS->getBeginLoc() : IdentLoc, IdentLoc);
12445 return nullptr;
12446 }
12447
12448 auto *Enum = dyn_cast_if_present<EnumDecl>(Val: EnumTy->getAsTagDecl());
12449 if (!Enum) {
12450 Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy;
12451 return nullptr;
12452 }
12453
12454 if (auto *Def = Enum->getDefinition())
12455 Enum = Def;
12456
12457 if (TSI == nullptr)
12458 TSI = Context.getTrivialTypeSourceInfo(T: EnumTy, Loc: IdentLoc);
12459
12460 auto *UD =
12461 BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, NameLoc: IdentLoc, EnumType: TSI, ED: Enum);
12462
12463 if (UD)
12464 PushOnScopeChains(D: UD, S, /*AddToContext*/ false);
12465
12466 return UD;
12467}
12468
12469/// Determine whether a using declaration considers the given
12470/// declarations as "equivalent", e.g., if they are redeclarations of
12471/// the same entity or are both typedefs of the same type.
12472static bool
12473IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
12474 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
12475 return true;
12476
12477 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(Val: D1))
12478 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(Val: D2))
12479 return Context.hasSameType(T1: TD1->getUnderlyingType(),
12480 T2: TD2->getUnderlyingType());
12481
12482 // Two using_if_exists using-declarations are equivalent if both are
12483 // unresolved.
12484 if (isa<UnresolvedUsingIfExistsDecl>(Val: D1) &&
12485 isa<UnresolvedUsingIfExistsDecl>(Val: D2))
12486 return true;
12487
12488 return false;
12489}
12490
12491
12492/// Determines whether to create a using shadow decl for a particular
12493/// decl, given the set of decls existing prior to this using lookup.
12494bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig,
12495 const LookupResult &Previous,
12496 UsingShadowDecl *&PrevShadow) {
12497 // Diagnose finding a decl which is not from a base class of the
12498 // current class. We do this now because there are cases where this
12499 // function will silently decide not to build a shadow decl, which
12500 // will pre-empt further diagnostics.
12501 //
12502 // We don't need to do this in C++11 because we do the check once on
12503 // the qualifier.
12504 //
12505 // FIXME: diagnose the following if we care enough:
12506 // struct A { int foo; };
12507 // struct B : A { using A::foo; };
12508 // template <class T> struct C : A {};
12509 // template <class T> struct D : C<T> { using B::foo; } // <---
12510 // This is invalid (during instantiation) in C++03 because B::foo
12511 // resolves to the using decl in B, which is not a base class of D<T>.
12512 // We can't diagnose it immediately because C<T> is an unknown
12513 // specialization. The UsingShadowDecl in D<T> then points directly
12514 // to A::foo, which will look well-formed when we instantiate.
12515 // The right solution is to not collapse the shadow-decl chain.
12516 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord())
12517 if (auto *Using = dyn_cast<UsingDecl>(Val: BUD)) {
12518 DeclContext *OrigDC = Orig->getDeclContext();
12519
12520 // Handle enums and anonymous structs.
12521 if (isa<EnumDecl>(Val: OrigDC))
12522 OrigDC = OrigDC->getParent();
12523 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(Val: OrigDC);
12524 while (OrigRec->isAnonymousStructOrUnion())
12525 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
12526
12527 if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom(Base: OrigRec)) {
12528 if (OrigDC == CurContext) {
12529 Diag(Using->getLocation(),
12530 diag::err_using_decl_nested_name_specifier_is_current_class)
12531 << Using->getQualifierLoc().getSourceRange();
12532 Diag(Orig->getLocation(), diag::note_using_decl_target);
12533 Using->setInvalidDecl();
12534 return true;
12535 }
12536
12537 Diag(Using->getQualifierLoc().getBeginLoc(),
12538 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12539 << Using->getQualifier() << cast<CXXRecordDecl>(CurContext)
12540 << Using->getQualifierLoc().getSourceRange();
12541 Diag(Orig->getLocation(), diag::note_using_decl_target);
12542 Using->setInvalidDecl();
12543 return true;
12544 }
12545 }
12546
12547 if (Previous.empty()) return false;
12548
12549 NamedDecl *Target = Orig;
12550 if (isa<UsingShadowDecl>(Val: Target))
12551 Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl();
12552
12553 // If the target happens to be one of the previous declarations, we
12554 // don't have a conflict.
12555 //
12556 // FIXME: but we might be increasing its access, in which case we
12557 // should redeclare it.
12558 NamedDecl *NonTag = nullptr, *Tag = nullptr;
12559 bool FoundEquivalentDecl = false;
12560 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
12561 I != E; ++I) {
12562 NamedDecl *D = (*I)->getUnderlyingDecl();
12563 // We can have UsingDecls in our Previous results because we use the same
12564 // LookupResult for checking whether the UsingDecl itself is a valid
12565 // redeclaration.
12566 if (isa<UsingDecl>(Val: D) || isa<UsingPackDecl>(Val: D) || isa<UsingEnumDecl>(Val: D))
12567 continue;
12568
12569 if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) {
12570 // C++ [class.mem]p19:
12571 // If T is the name of a class, then [every named member other than
12572 // a non-static data member] shall have a name different from T
12573 if (RD->isInjectedClassName() && !isa<FieldDecl>(Val: Target) &&
12574 !isa<IndirectFieldDecl>(Val: Target) &&
12575 !isa<UnresolvedUsingValueDecl>(Val: Target) &&
12576 DiagnoseClassNameShadow(
12577 DC: CurContext,
12578 Info: DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation())))
12579 return true;
12580 }
12581
12582 if (IsEquivalentForUsingDecl(Context, D1: D, D2: Target)) {
12583 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Val: *I))
12584 PrevShadow = Shadow;
12585 FoundEquivalentDecl = true;
12586 } else if (isEquivalentInternalLinkageDeclaration(A: D, B: Target)) {
12587 // We don't conflict with an existing using shadow decl of an equivalent
12588 // declaration, but we're not a redeclaration of it.
12589 FoundEquivalentDecl = true;
12590 }
12591
12592 if (isVisible(D))
12593 (isa<TagDecl>(Val: D) ? Tag : NonTag) = D;
12594 }
12595
12596 if (FoundEquivalentDecl)
12597 return false;
12598
12599 // Always emit a diagnostic for a mismatch between an unresolved
12600 // using_if_exists and a resolved using declaration in either direction.
12601 if (isa<UnresolvedUsingIfExistsDecl>(Val: Target) !=
12602 (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(Val: NonTag))) {
12603 if (!NonTag && !Tag)
12604 return false;
12605 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12606 Diag(Target->getLocation(), diag::note_using_decl_target);
12607 Diag((NonTag ? NonTag : Tag)->getLocation(),
12608 diag::note_using_decl_conflict);
12609 BUD->setInvalidDecl();
12610 return true;
12611 }
12612
12613 if (FunctionDecl *FD = Target->getAsFunction()) {
12614 NamedDecl *OldDecl = nullptr;
12615 switch (CheckOverload(S: nullptr, New: FD, OldDecls: Previous, OldDecl,
12616 /*IsForUsingDecl*/ UseMemberUsingDeclRules: true)) {
12617 case Ovl_Overload:
12618 return false;
12619
12620 case Ovl_NonFunction:
12621 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12622 break;
12623
12624 // We found a decl with the exact signature.
12625 case Ovl_Match:
12626 // If we're in a record, we want to hide the target, so we
12627 // return true (without a diagnostic) to tell the caller not to
12628 // build a shadow decl.
12629 if (CurContext->isRecord())
12630 return true;
12631
12632 // If we're not in a record, this is an error.
12633 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12634 break;
12635 }
12636
12637 Diag(Target->getLocation(), diag::note_using_decl_target);
12638 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
12639 BUD->setInvalidDecl();
12640 return true;
12641 }
12642
12643 // Target is not a function.
12644
12645 if (isa<TagDecl>(Val: Target)) {
12646 // No conflict between a tag and a non-tag.
12647 if (!Tag) return false;
12648
12649 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12650 Diag(Target->getLocation(), diag::note_using_decl_target);
12651 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
12652 BUD->setInvalidDecl();
12653 return true;
12654 }
12655
12656 // No conflict between a tag and a non-tag.
12657 if (!NonTag) return false;
12658
12659 Diag(BUD->getLocation(), diag::err_using_decl_conflict);
12660 Diag(Target->getLocation(), diag::note_using_decl_target);
12661 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
12662 BUD->setInvalidDecl();
12663 return true;
12664}
12665
12666/// Determine whether a direct base class is a virtual base class.
12667static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
12668 if (!Derived->getNumVBases())
12669 return false;
12670 for (auto &B : Derived->bases())
12671 if (B.getType()->getAsCXXRecordDecl() == Base)
12672 return B.isVirtual();
12673 llvm_unreachable("not a direct base class");
12674}
12675
12676/// Builds a shadow declaration corresponding to a 'using' declaration.
12677UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD,
12678 NamedDecl *Orig,
12679 UsingShadowDecl *PrevDecl) {
12680 // If we resolved to another shadow declaration, just coalesce them.
12681 NamedDecl *Target = Orig;
12682 if (isa<UsingShadowDecl>(Val: Target)) {
12683 Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl();
12684 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
12685 }
12686
12687 NamedDecl *NonTemplateTarget = Target;
12688 if (auto *TargetTD = dyn_cast<TemplateDecl>(Val: Target))
12689 NonTemplateTarget = TargetTD->getTemplatedDecl();
12690
12691 UsingShadowDecl *Shadow;
12692 if (NonTemplateTarget && isa<CXXConstructorDecl>(Val: NonTemplateTarget)) {
12693 UsingDecl *Using = cast<UsingDecl>(Val: BUD);
12694 bool IsVirtualBase =
12695 isVirtualDirectBase(Derived: cast<CXXRecordDecl>(Val: CurContext),
12696 Base: Using->getQualifier()->getAsRecordDecl());
12697 Shadow = ConstructorUsingShadowDecl::Create(
12698 C&: Context, DC: CurContext, Loc: Using->getLocation(), Using, Target: Orig, IsVirtual: IsVirtualBase);
12699 } else {
12700 Shadow = UsingShadowDecl::Create(C&: Context, DC: CurContext, Loc: BUD->getLocation(),
12701 Name: Target->getDeclName(), Introducer: BUD, Target);
12702 }
12703 BUD->addShadowDecl(S: Shadow);
12704
12705 Shadow->setAccess(BUD->getAccess());
12706 if (Orig->isInvalidDecl() || BUD->isInvalidDecl())
12707 Shadow->setInvalidDecl();
12708
12709 Shadow->setPreviousDecl(PrevDecl);
12710
12711 if (S)
12712 PushOnScopeChains(Shadow, S);
12713 else
12714 CurContext->addDecl(Shadow);
12715
12716
12717 return Shadow;
12718}
12719
12720/// Hides a using shadow declaration. This is required by the current
12721/// using-decl implementation when a resolvable using declaration in a
12722/// class is followed by a declaration which would hide or override
12723/// one or more of the using decl's targets; for example:
12724///
12725/// struct Base { void foo(int); };
12726/// struct Derived : Base {
12727/// using Base::foo;
12728/// void foo(int);
12729/// };
12730///
12731/// The governing language is C++03 [namespace.udecl]p12:
12732///
12733/// When a using-declaration brings names from a base class into a
12734/// derived class scope, member functions in the derived class
12735/// override and/or hide member functions with the same name and
12736/// parameter types in a base class (rather than conflicting).
12737///
12738/// There are two ways to implement this:
12739/// (1) optimistically create shadow decls when they're not hidden
12740/// by existing declarations, or
12741/// (2) don't create any shadow decls (or at least don't make them
12742/// visible) until we've fully parsed/instantiated the class.
12743/// The problem with (1) is that we might have to retroactively remove
12744/// a shadow decl, which requires several O(n) operations because the
12745/// decl structures are (very reasonably) not designed for removal.
12746/// (2) avoids this but is very fiddly and phase-dependent.
12747void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
12748 if (Shadow->getDeclName().getNameKind() ==
12749 DeclarationName::CXXConversionFunctionName)
12750 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
12751
12752 // Remove it from the DeclContext...
12753 Shadow->getDeclContext()->removeDecl(Shadow);
12754
12755 // ...and the scope, if applicable...
12756 if (S) {
12757 S->RemoveDecl(Shadow);
12758 IdResolver.RemoveDecl(Shadow);
12759 }
12760
12761 // ...and the using decl.
12762 Shadow->getIntroducer()->removeShadowDecl(S: Shadow);
12763
12764 // TODO: complain somehow if Shadow was used. It shouldn't
12765 // be possible for this to happen, because...?
12766}
12767
12768/// Find the base specifier for a base class with the given type.
12769static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
12770 QualType DesiredBase,
12771 bool &AnyDependentBases) {
12772 // Check whether the named type is a direct base class.
12773 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
12774 .getUnqualifiedType();
12775 for (auto &Base : Derived->bases()) {
12776 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
12777 if (CanonicalDesiredBase == BaseType)
12778 return &Base;
12779 if (BaseType->isDependentType())
12780 AnyDependentBases = true;
12781 }
12782 return nullptr;
12783}
12784
12785namespace {
12786class UsingValidatorCCC final : public CorrectionCandidateCallback {
12787public:
12788 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
12789 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
12790 : HasTypenameKeyword(HasTypenameKeyword),
12791 IsInstantiation(IsInstantiation), OldNNS(NNS),
12792 RequireMemberOf(RequireMemberOf) {}
12793
12794 bool ValidateCandidate(const TypoCorrection &Candidate) override {
12795 NamedDecl *ND = Candidate.getCorrectionDecl();
12796
12797 // Keywords are not valid here.
12798 if (!ND || isa<NamespaceDecl>(Val: ND))
12799 return false;
12800
12801 // Completely unqualified names are invalid for a 'using' declaration.
12802 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
12803 return false;
12804
12805 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
12806 // reject.
12807
12808 if (RequireMemberOf) {
12809 auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND);
12810 if (FoundRecord && FoundRecord->isInjectedClassName()) {
12811 // No-one ever wants a using-declaration to name an injected-class-name
12812 // of a base class, unless they're declaring an inheriting constructor.
12813 ASTContext &Ctx = ND->getASTContext();
12814 if (!Ctx.getLangOpts().CPlusPlus11)
12815 return false;
12816 QualType FoundType = Ctx.getRecordType(FoundRecord);
12817
12818 // Check that the injected-class-name is named as a member of its own
12819 // type; we don't want to suggest 'using Derived::Base;', since that
12820 // means something else.
12821 NestedNameSpecifier *Specifier =
12822 Candidate.WillReplaceSpecifier()
12823 ? Candidate.getCorrectionSpecifier()
12824 : OldNNS;
12825 if (!Specifier->getAsType() ||
12826 !Ctx.hasSameType(T1: QualType(Specifier->getAsType(), 0), T2: FoundType))
12827 return false;
12828
12829 // Check that this inheriting constructor declaration actually names a
12830 // direct base class of the current class.
12831 bool AnyDependentBases = false;
12832 if (!findDirectBaseWithType(Derived: RequireMemberOf,
12833 DesiredBase: Ctx.getRecordType(FoundRecord),
12834 AnyDependentBases) &&
12835 !AnyDependentBases)
12836 return false;
12837 } else {
12838 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
12839 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(Base: RD))
12840 return false;
12841
12842 // FIXME: Check that the base class member is accessible?
12843 }
12844 } else {
12845 auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND);
12846 if (FoundRecord && FoundRecord->isInjectedClassName())
12847 return false;
12848 }
12849
12850 if (isa<TypeDecl>(Val: ND))
12851 return HasTypenameKeyword || !IsInstantiation;
12852
12853 return !HasTypenameKeyword;
12854 }
12855
12856 std::unique_ptr<CorrectionCandidateCallback> clone() override {
12857 return std::make_unique<UsingValidatorCCC>(args&: *this);
12858 }
12859
12860private:
12861 bool HasTypenameKeyword;
12862 bool IsInstantiation;
12863 NestedNameSpecifier *OldNNS;
12864 CXXRecordDecl *RequireMemberOf;
12865};
12866} // end anonymous namespace
12867
12868/// Remove decls we can't actually see from a lookup being used to declare
12869/// shadow using decls.
12870///
12871/// \param S - The scope of the potential shadow decl
12872/// \param Previous - The lookup of a potential shadow decl's name.
12873void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) {
12874 // It is really dumb that we have to do this.
12875 LookupResult::Filter F = Previous.makeFilter();
12876 while (F.hasNext()) {
12877 NamedDecl *D = F.next();
12878 if (!isDeclInScope(D, Ctx: CurContext, S))
12879 F.erase();
12880 // If we found a local extern declaration that's not ordinarily visible,
12881 // and this declaration is being added to a non-block scope, ignore it.
12882 // We're only checking for scope conflicts here, not also for violations
12883 // of the linkage rules.
12884 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12885 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12886 F.erase();
12887 }
12888 F.done();
12889}
12890
12891/// Builds a using declaration.
12892///
12893/// \param IsInstantiation - Whether this call arises from an
12894/// instantiation of an unresolved using declaration. We treat
12895/// the lookup differently for these declarations.
12896NamedDecl *Sema::BuildUsingDeclaration(
12897 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12898 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12899 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12900 const ParsedAttributesView &AttrList, bool IsInstantiation,
12901 bool IsUsingIfExists) {
12902 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
12903 SourceLocation IdentLoc = NameInfo.getLoc();
12904 assert(IdentLoc.isValid() && "Invalid TargetName location.");
12905
12906 // FIXME: We ignore attributes for now.
12907
12908 // For an inheriting constructor declaration, the name of the using
12909 // declaration is the name of a constructor in this class, not in the
12910 // base class.
12911 DeclarationNameInfo UsingName = NameInfo;
12912 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12913 if (auto *RD = dyn_cast<CXXRecordDecl>(Val: CurContext))
12914 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12915 Ty: Context.getCanonicalType(T: Context.getRecordType(RD))));
12916
12917 // Do the redeclaration lookup in the current scope.
12918 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12919 RedeclarationKind::ForVisibleRedeclaration);
12920 Previous.setHideTags(false);
12921 if (S) {
12922 LookupName(R&: Previous, S);
12923
12924 FilterUsingLookup(S, Previous);
12925 } else {
12926 assert(IsInstantiation && "no scope in non-instantiation");
12927 if (CurContext->isRecord())
12928 LookupQualifiedName(R&: Previous, LookupCtx: CurContext);
12929 else {
12930 // No redeclaration check is needed here; in non-member contexts we
12931 // diagnosed all possible conflicts with other using-declarations when
12932 // building the template:
12933 //
12934 // For a dependent non-type using declaration, the only valid case is
12935 // if we instantiate to a single enumerator. We check for conflicts
12936 // between shadow declarations we introduce, and we check in the template
12937 // definition for conflicts between a non-type using declaration and any
12938 // other declaration, which together covers all cases.
12939 //
12940 // A dependent typename using declaration will never successfully
12941 // instantiate, since it will always name a class member, so we reject
12942 // that in the template definition.
12943 }
12944 }
12945
12946 // Check for invalid redeclarations.
12947 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12948 SS, NameLoc: IdentLoc, Previous))
12949 return nullptr;
12950
12951 // 'using_if_exists' doesn't make sense on an inherited constructor.
12952 if (IsUsingIfExists && UsingName.getName().getNameKind() ==
12953 DeclarationName::CXXConstructorName) {
12954 Diag(UsingLoc, diag::err_using_if_exists_on_ctor);
12955 return nullptr;
12956 }
12957
12958 DeclContext *LookupContext = computeDeclContext(SS);
12959 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12960 if (!LookupContext || EllipsisLoc.isValid()) {
12961 NamedDecl *D;
12962 // Dependent scope, or an unexpanded pack
12963 if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword,
12964 SS, NameInfo, NameLoc: IdentLoc))
12965 return nullptr;
12966
12967 if (HasTypenameKeyword) {
12968 // FIXME: not all declaration name kinds are legal here
12969 D = UnresolvedUsingTypenameDecl::Create(C&: Context, DC: CurContext,
12970 UsingLoc, TypenameLoc,
12971 QualifierLoc,
12972 TargetNameLoc: IdentLoc, TargetName: NameInfo.getName(),
12973 EllipsisLoc);
12974 } else {
12975 D = UnresolvedUsingValueDecl::Create(C&: Context, DC: CurContext, UsingLoc,
12976 QualifierLoc, NameInfo, EllipsisLoc);
12977 }
12978 D->setAccess(AS);
12979 CurContext->addDecl(D);
12980 ProcessDeclAttributeList(S, D, AttrList);
12981 return D;
12982 }
12983
12984 auto Build = [&](bool Invalid) {
12985 UsingDecl *UD =
12986 UsingDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc, QualifierLoc,
12987 NameInfo: UsingName, HasTypenameKeyword);
12988 UD->setAccess(AS);
12989 CurContext->addDecl(UD);
12990 ProcessDeclAttributeList(S, UD, AttrList);
12991 UD->setInvalidDecl(Invalid);
12992 return UD;
12993 };
12994 auto BuildInvalid = [&]{ return Build(true); };
12995 auto BuildValid = [&]{ return Build(false); };
12996
12997 if (RequireCompleteDeclContext(SS, DC: LookupContext))
12998 return BuildInvalid();
12999
13000 // Look up the target name.
13001 LookupResult R(*this, NameInfo, LookupOrdinaryName);
13002
13003 // Unlike most lookups, we don't always want to hide tag
13004 // declarations: tag names are visible through the using declaration
13005 // even if hidden by ordinary names, *except* in a dependent context
13006 // where they may be used by two-phase lookup.
13007 if (!IsInstantiation)
13008 R.setHideTags(false);
13009
13010 // For the purposes of this lookup, we have a base object type
13011 // equal to that of the current context.
13012 if (CurContext->isRecord()) {
13013 R.setBaseObjectType(
13014 Context.getTypeDeclType(cast<CXXRecordDecl>(Val: CurContext)));
13015 }
13016
13017 LookupQualifiedName(R, LookupCtx: LookupContext);
13018
13019 // Validate the context, now we have a lookup
13020 if (CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword, SS, NameInfo,
13021 NameLoc: IdentLoc, R: &R))
13022 return nullptr;
13023
13024 if (R.empty() && IsUsingIfExists)
13025 R.addDecl(UnresolvedUsingIfExistsDecl::Create(Ctx&: Context, DC: CurContext, Loc: UsingLoc,
13026 Name: UsingName.getName()),
13027 AS_public);
13028
13029 // Try to correct typos if possible. If constructor name lookup finds no
13030 // results, that means the named class has no explicit constructors, and we
13031 // suppressed declaring implicit ones (probably because it's dependent or
13032 // invalid).
13033 if (R.empty() &&
13034 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
13035 // HACK 2017-01-08: Work around an issue with libstdc++'s detection of
13036 // ::gets. Sometimes it believes that glibc provides a ::gets in cases where
13037 // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later.
13038 auto *II = NameInfo.getName().getAsIdentifierInfo();
13039 if (getLangOpts().CPlusPlus14 && II && II->isStr(Str: "gets") &&
13040 CurContext->isStdNamespace() &&
13041 isa<TranslationUnitDecl>(Val: LookupContext) &&
13042 getSourceManager().isInSystemHeader(Loc: UsingLoc))
13043 return nullptr;
13044 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
13045 dyn_cast<CXXRecordDecl>(Val: CurContext));
13046 if (TypoCorrection Corrected =
13047 CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC,
13048 Mode: CTK_ErrorRecovery)) {
13049 // We reject candidates where DroppedSpecifier == true, hence the
13050 // literal '0' below.
13051 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
13052 << NameInfo.getName() << LookupContext << 0
13053 << SS.getRange());
13054
13055 // If we picked a correction with no attached Decl we can't do anything
13056 // useful with it, bail out.
13057 NamedDecl *ND = Corrected.getCorrectionDecl();
13058 if (!ND)
13059 return BuildInvalid();
13060
13061 // If we corrected to an inheriting constructor, handle it as one.
13062 auto *RD = dyn_cast<CXXRecordDecl>(Val: ND);
13063 if (RD && RD->isInjectedClassName()) {
13064 // The parent of the injected class name is the class itself.
13065 RD = cast<CXXRecordDecl>(RD->getParent());
13066
13067 // Fix up the information we'll use to build the using declaration.
13068 if (Corrected.WillReplaceSpecifier()) {
13069 NestedNameSpecifierLocBuilder Builder;
13070 Builder.MakeTrivial(Context, Qualifier: Corrected.getCorrectionSpecifier(),
13071 R: QualifierLoc.getSourceRange());
13072 QualifierLoc = Builder.getWithLocInContext(Context);
13073 }
13074
13075 // In this case, the name we introduce is the name of a derived class
13076 // constructor.
13077 auto *CurClass = cast<CXXRecordDecl>(Val: CurContext);
13078 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
13079 Ty: Context.getCanonicalType(T: Context.getRecordType(CurClass))));
13080 UsingName.setNamedTypeInfo(nullptr);
13081 for (auto *Ctor : LookupConstructors(Class: RD))
13082 R.addDecl(D: Ctor);
13083 R.resolveKind();
13084 } else {
13085 // FIXME: Pick up all the declarations if we found an overloaded
13086 // function.
13087 UsingName.setName(ND->getDeclName());
13088 R.addDecl(D: ND);
13089 }
13090 } else {
13091 Diag(IdentLoc, diag::err_no_member)
13092 << NameInfo.getName() << LookupContext << SS.getRange();
13093 return BuildInvalid();
13094 }
13095 }
13096
13097 if (R.isAmbiguous())
13098 return BuildInvalid();
13099
13100 if (HasTypenameKeyword) {
13101 // If we asked for a typename and got a non-type decl, error out.
13102 if (!R.getAsSingle<TypeDecl>() &&
13103 !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) {
13104 Diag(IdentLoc, diag::err_using_typename_non_type);
13105 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
13106 Diag((*I)->getUnderlyingDecl()->getLocation(),
13107 diag::note_using_decl_target);
13108 return BuildInvalid();
13109 }
13110 } else {
13111 // If we asked for a non-typename and we got a type, error out,
13112 // but only if this is an instantiation of an unresolved using
13113 // decl. Otherwise just silently find the type name.
13114 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
13115 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
13116 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
13117 return BuildInvalid();
13118 }
13119 }
13120
13121 // C++14 [namespace.udecl]p6:
13122 // A using-declaration shall not name a namespace.
13123 if (R.getAsSingle<NamespaceDecl>()) {
13124 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
13125 << SS.getRange();
13126 return BuildInvalid();
13127 }
13128
13129 UsingDecl *UD = BuildValid();
13130
13131 // Some additional rules apply to inheriting constructors.
13132 if (UsingName.getName().getNameKind() ==
13133 DeclarationName::CXXConstructorName) {
13134 // Suppress access diagnostics; the access check is instead performed at the
13135 // point of use for an inheriting constructor.
13136 R.suppressDiagnostics();
13137 if (CheckInheritingConstructorUsingDecl(UD))
13138 return UD;
13139 }
13140
13141 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
13142 UsingShadowDecl *PrevDecl = nullptr;
13143 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
13144 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
13145 }
13146
13147 return UD;
13148}
13149
13150NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS,
13151 SourceLocation UsingLoc,
13152 SourceLocation EnumLoc,
13153 SourceLocation NameLoc,
13154 TypeSourceInfo *EnumType,
13155 EnumDecl *ED) {
13156 bool Invalid = false;
13157
13158 if (CurContext->getRedeclContext()->isRecord()) {
13159 /// In class scope, check if this is a duplicate, for better a diagnostic.
13160 DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc);
13161 LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName,
13162 RedeclarationKind::ForVisibleRedeclaration);
13163
13164 LookupName(R&: Previous, S);
13165
13166 for (NamedDecl *D : Previous)
13167 if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D))
13168 if (UED->getEnumDecl() == ED) {
13169 Diag(UsingLoc, diag::err_using_enum_decl_redeclaration)
13170 << SourceRange(EnumLoc, NameLoc);
13171 Diag(D->getLocation(), diag::note_using_enum_decl) << 1;
13172 Invalid = true;
13173 break;
13174 }
13175 }
13176
13177 if (RequireCompleteEnumDecl(D: ED, L: NameLoc))
13178 Invalid = true;
13179
13180 UsingEnumDecl *UD = UsingEnumDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc,
13181 EnumL: EnumLoc, NameL: NameLoc, EnumType);
13182 UD->setAccess(AS);
13183 CurContext->addDecl(UD);
13184
13185 if (Invalid) {
13186 UD->setInvalidDecl();
13187 return UD;
13188 }
13189
13190 // Create the shadow decls for each enumerator
13191 for (EnumConstantDecl *EC : ED->enumerators()) {
13192 UsingShadowDecl *PrevDecl = nullptr;
13193 DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation());
13194 LookupResult Previous(*this, DNI, LookupOrdinaryName,
13195 RedeclarationKind::ForVisibleRedeclaration);
13196 LookupName(R&: Previous, S);
13197 FilterUsingLookup(S, Previous);
13198
13199 if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl))
13200 BuildUsingShadowDecl(S, UD, EC, PrevDecl);
13201 }
13202
13203 return UD;
13204}
13205
13206NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
13207 ArrayRef<NamedDecl *> Expansions) {
13208 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||
13209 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||
13210 isa<UsingPackDecl>(InstantiatedFrom));
13211
13212 auto *UPD =
13213 UsingPackDecl::Create(C&: Context, DC: CurContext, InstantiatedFrom, UsingDecls: Expansions);
13214 UPD->setAccess(InstantiatedFrom->getAccess());
13215 CurContext->addDecl(UPD);
13216 return UPD;
13217}
13218
13219/// Additional checks for a using declaration referring to a constructor name.
13220bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
13221 assert(!UD->hasTypename() && "expecting a constructor name");
13222
13223 const Type *SourceType = UD->getQualifier()->getAsType();
13224 assert(SourceType &&
13225 "Using decl naming constructor doesn't have type in scope spec.");
13226 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(Val: CurContext);
13227
13228 // Check whether the named type is a direct base class.
13229 bool AnyDependentBases = false;
13230 auto *Base = findDirectBaseWithType(Derived: TargetClass, DesiredBase: QualType(SourceType, 0),
13231 AnyDependentBases);
13232 if (!Base && !AnyDependentBases) {
13233 Diag(UD->getUsingLoc(),
13234 diag::err_using_decl_constructor_not_in_direct_base)
13235 << UD->getNameInfo().getSourceRange()
13236 << QualType(SourceType, 0) << TargetClass;
13237 UD->setInvalidDecl();
13238 return true;
13239 }
13240
13241 if (Base)
13242 Base->setInheritConstructors();
13243
13244 return false;
13245}
13246
13247/// Checks that the given using declaration is not an invalid
13248/// redeclaration. Note that this is checking only for the using decl
13249/// itself, not for any ill-formedness among the UsingShadowDecls.
13250bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
13251 bool HasTypenameKeyword,
13252 const CXXScopeSpec &SS,
13253 SourceLocation NameLoc,
13254 const LookupResult &Prev) {
13255 NestedNameSpecifier *Qual = SS.getScopeRep();
13256
13257 // C++03 [namespace.udecl]p8:
13258 // C++0x [namespace.udecl]p10:
13259 // A using-declaration is a declaration and can therefore be used
13260 // repeatedly where (and only where) multiple declarations are
13261 // allowed.
13262 //
13263 // That's in non-member contexts.
13264 if (!CurContext->getRedeclContext()->isRecord()) {
13265 // A dependent qualifier outside a class can only ever resolve to an
13266 // enumeration type. Therefore it conflicts with any other non-type
13267 // declaration in the same scope.
13268 // FIXME: How should we check for dependent type-type conflicts at block
13269 // scope?
13270 if (Qual->isDependent() && !HasTypenameKeyword) {
13271 for (auto *D : Prev) {
13272 if (!isa<TypeDecl>(Val: D) && !isa<UsingDecl>(Val: D) && !isa<UsingPackDecl>(Val: D)) {
13273 bool OldCouldBeEnumerator =
13274 isa<UnresolvedUsingValueDecl>(Val: D) || isa<EnumConstantDecl>(Val: D);
13275 Diag(NameLoc,
13276 OldCouldBeEnumerator ? diag::err_redefinition
13277 : diag::err_redefinition_different_kind)
13278 << Prev.getLookupName();
13279 Diag(D->getLocation(), diag::note_previous_definition);
13280 return true;
13281 }
13282 }
13283 }
13284 return false;
13285 }
13286
13287 const NestedNameSpecifier *CNNS =
13288 Context.getCanonicalNestedNameSpecifier(NNS: Qual);
13289 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
13290 NamedDecl *D = *I;
13291
13292 bool DTypename;
13293 NestedNameSpecifier *DQual;
13294 if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: D)) {
13295 DTypename = UD->hasTypename();
13296 DQual = UD->getQualifier();
13297 } else if (UnresolvedUsingValueDecl *UD
13298 = dyn_cast<UnresolvedUsingValueDecl>(Val: D)) {
13299 DTypename = false;
13300 DQual = UD->getQualifier();
13301 } else if (UnresolvedUsingTypenameDecl *UD
13302 = dyn_cast<UnresolvedUsingTypenameDecl>(Val: D)) {
13303 DTypename = true;
13304 DQual = UD->getQualifier();
13305 } else continue;
13306
13307 // using decls differ if one says 'typename' and the other doesn't.
13308 // FIXME: non-dependent using decls?
13309 if (HasTypenameKeyword != DTypename) continue;
13310
13311 // using decls differ if they name different scopes (but note that
13312 // template instantiation can cause this check to trigger when it
13313 // didn't before instantiation).
13314 if (CNNS != Context.getCanonicalNestedNameSpecifier(NNS: DQual))
13315 continue;
13316
13317 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
13318 Diag(D->getLocation(), diag::note_using_decl) << 1;
13319 return true;
13320 }
13321
13322 return false;
13323}
13324
13325/// Checks that the given nested-name qualifier used in a using decl
13326/// in the current context is appropriately related to the current
13327/// scope. If an error is found, diagnoses it and returns true.
13328/// R is nullptr, if the caller has not (yet) done a lookup, otherwise it's the
13329/// result of that lookup. UD is likewise nullptr, except when we have an
13330/// already-populated UsingDecl whose shadow decls contain the same information
13331/// (i.e. we're instantiating a UsingDecl with non-dependent scope).
13332bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename,
13333 const CXXScopeSpec &SS,
13334 const DeclarationNameInfo &NameInfo,
13335 SourceLocation NameLoc,
13336 const LookupResult *R, const UsingDecl *UD) {
13337 DeclContext *NamedContext = computeDeclContext(SS);
13338 assert(bool(NamedContext) == (R || UD) && !(R && UD) &&
13339 "resolvable context must have exactly one set of decls");
13340
13341 // C++ 20 permits using an enumerator that does not have a class-hierarchy
13342 // relationship.
13343 bool Cxx20Enumerator = false;
13344 if (NamedContext) {
13345 EnumConstantDecl *EC = nullptr;
13346 if (R)
13347 EC = R->getAsSingle<EnumConstantDecl>();
13348 else if (UD && UD->shadow_size() == 1)
13349 EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl());
13350 if (EC)
13351 Cxx20Enumerator = getLangOpts().CPlusPlus20;
13352
13353 if (auto *ED = dyn_cast<EnumDecl>(Val: NamedContext)) {
13354 // C++14 [namespace.udecl]p7:
13355 // A using-declaration shall not name a scoped enumerator.
13356 // C++20 p1099 permits enumerators.
13357 if (EC && R && ED->isScoped())
13358 Diag(SS.getBeginLoc(),
13359 getLangOpts().CPlusPlus20
13360 ? diag::warn_cxx17_compat_using_decl_scoped_enumerator
13361 : diag::ext_using_decl_scoped_enumerator)
13362 << SS.getRange();
13363
13364 // We want to consider the scope of the enumerator
13365 NamedContext = ED->getDeclContext();
13366 }
13367 }
13368
13369 if (!CurContext->isRecord()) {
13370 // C++03 [namespace.udecl]p3:
13371 // C++0x [namespace.udecl]p8:
13372 // A using-declaration for a class member shall be a member-declaration.
13373 // C++20 [namespace.udecl]p7
13374 // ... other than an enumerator ...
13375
13376 // If we weren't able to compute a valid scope, it might validly be a
13377 // dependent class or enumeration scope. If we have a 'typename' keyword,
13378 // the scope must resolve to a class type.
13379 if (NamedContext ? !NamedContext->getRedeclContext()->isRecord()
13380 : !HasTypename)
13381 return false; // OK
13382
13383 Diag(NameLoc,
13384 Cxx20Enumerator
13385 ? diag::warn_cxx17_compat_using_decl_class_member_enumerator
13386 : diag::err_using_decl_can_not_refer_to_class_member)
13387 << SS.getRange();
13388
13389 if (Cxx20Enumerator)
13390 return false; // OK
13391
13392 auto *RD = NamedContext
13393 ? cast<CXXRecordDecl>(Val: NamedContext->getRedeclContext())
13394 : nullptr;
13395 if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) {
13396 // See if there's a helpful fixit
13397
13398 if (!R) {
13399 // We will have already diagnosed the problem on the template
13400 // definition, Maybe we should do so again?
13401 } else if (R->getAsSingle<TypeDecl>()) {
13402 if (getLangOpts().CPlusPlus11) {
13403 // Convert 'using X::Y;' to 'using Y = X::Y;'.
13404 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
13405 << 0 // alias declaration
13406 << FixItHint::CreateInsertion(SS.getBeginLoc(),
13407 NameInfo.getName().getAsString() +
13408 " = ");
13409 } else {
13410 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
13411 SourceLocation InsertLoc = getLocForEndOfToken(Loc: NameInfo.getEndLoc());
13412 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
13413 << 1 // typedef declaration
13414 << FixItHint::CreateReplacement(UsingLoc, "typedef")
13415 << FixItHint::CreateInsertion(
13416 InsertLoc, " " + NameInfo.getName().getAsString());
13417 }
13418 } else if (R->getAsSingle<VarDecl>()) {
13419 // Don't provide a fixit outside C++11 mode; we don't want to suggest
13420 // repeating the type of the static data member here.
13421 FixItHint FixIt;
13422 if (getLangOpts().CPlusPlus11) {
13423 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
13424 FixIt = FixItHint::CreateReplacement(
13425 RemoveRange: UsingLoc, Code: "auto &" + NameInfo.getName().getAsString() + " = ");
13426 }
13427
13428 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
13429 << 2 // reference declaration
13430 << FixIt;
13431 } else if (R->getAsSingle<EnumConstantDecl>()) {
13432 // Don't provide a fixit outside C++11 mode; we don't want to suggest
13433 // repeating the type of the enumeration here, and we can't do so if
13434 // the type is anonymous.
13435 FixItHint FixIt;
13436 if (getLangOpts().CPlusPlus11) {
13437 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
13438 FixIt = FixItHint::CreateReplacement(
13439 RemoveRange: UsingLoc,
13440 Code: "constexpr auto " + NameInfo.getName().getAsString() + " = ");
13441 }
13442
13443 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
13444 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
13445 << FixIt;
13446 }
13447 }
13448
13449 return true; // Fail
13450 }
13451
13452 // If the named context is dependent, we can't decide much.
13453 if (!NamedContext) {
13454 // FIXME: in C++0x, we can diagnose if we can prove that the
13455 // nested-name-specifier does not refer to a base class, which is
13456 // still possible in some cases.
13457
13458 // Otherwise we have to conservatively report that things might be
13459 // okay.
13460 return false;
13461 }
13462
13463 // The current scope is a record.
13464 if (!NamedContext->isRecord()) {
13465 // Ideally this would point at the last name in the specifier,
13466 // but we don't have that level of source info.
13467 Diag(SS.getBeginLoc(),
13468 Cxx20Enumerator
13469 ? diag::warn_cxx17_compat_using_decl_non_member_enumerator
13470 : diag::err_using_decl_nested_name_specifier_is_not_class)
13471 << SS.getScopeRep() << SS.getRange();
13472
13473 if (Cxx20Enumerator)
13474 return false; // OK
13475
13476 return true;
13477 }
13478
13479 if (!NamedContext->isDependentContext() &&
13480 RequireCompleteDeclContext(SS&: const_cast<CXXScopeSpec&>(SS), DC: NamedContext))
13481 return true;
13482
13483 if (getLangOpts().CPlusPlus11) {
13484 // C++11 [namespace.udecl]p3:
13485 // In a using-declaration used as a member-declaration, the
13486 // nested-name-specifier shall name a base class of the class
13487 // being defined.
13488
13489 if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom(
13490 Base: cast<CXXRecordDecl>(Val: NamedContext))) {
13491
13492 if (Cxx20Enumerator) {
13493 Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator)
13494 << SS.getRange();
13495 return false;
13496 }
13497
13498 if (CurContext == NamedContext) {
13499 Diag(SS.getBeginLoc(),
13500 diag::err_using_decl_nested_name_specifier_is_current_class)
13501 << SS.getRange();
13502 return !getLangOpts().CPlusPlus20;
13503 }
13504
13505 if (!cast<CXXRecordDecl>(Val: NamedContext)->isInvalidDecl()) {
13506 Diag(SS.getBeginLoc(),
13507 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13508 << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext)
13509 << SS.getRange();
13510 }
13511 return true;
13512 }
13513
13514 return false;
13515 }
13516
13517 // C++03 [namespace.udecl]p4:
13518 // A using-declaration used as a member-declaration shall refer
13519 // to a member of a base class of the class being defined [etc.].
13520
13521 // Salient point: SS doesn't have to name a base class as long as
13522 // lookup only finds members from base classes. Therefore we can
13523 // diagnose here only if we can prove that can't happen,
13524 // i.e. if the class hierarchies provably don't intersect.
13525
13526 // TODO: it would be nice if "definitely valid" results were cached
13527 // in the UsingDecl and UsingShadowDecl so that these checks didn't
13528 // need to be repeated.
13529
13530 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
13531 auto Collect = [&Bases](const CXXRecordDecl *Base) {
13532 Bases.insert(Ptr: Base);
13533 return true;
13534 };
13535
13536 // Collect all bases. Return false if we find a dependent base.
13537 if (!cast<CXXRecordDecl>(Val: CurContext)->forallBases(BaseMatches: Collect))
13538 return false;
13539
13540 // Returns true if the base is dependent or is one of the accumulated base
13541 // classes.
13542 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
13543 return !Bases.count(Ptr: Base);
13544 };
13545
13546 // Return false if the class has a dependent base or if it or one
13547 // of its bases is present in the base set of the current context.
13548 if (Bases.count(Ptr: cast<CXXRecordDecl>(Val: NamedContext)) ||
13549 !cast<CXXRecordDecl>(Val: NamedContext)->forallBases(BaseMatches: IsNotBase))
13550 return false;
13551
13552 Diag(SS.getRange().getBegin(),
13553 diag::err_using_decl_nested_name_specifier_is_not_base_class)
13554 << SS.getScopeRep()
13555 << cast<CXXRecordDecl>(CurContext)
13556 << SS.getRange();
13557
13558 return true;
13559}
13560
13561Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
13562 MultiTemplateParamsArg TemplateParamLists,
13563 SourceLocation UsingLoc, UnqualifiedId &Name,
13564 const ParsedAttributesView &AttrList,
13565 TypeResult Type, Decl *DeclFromDeclSpec) {
13566 // Get the innermost enclosing declaration scope.
13567 S = S->getDeclParent();
13568
13569 if (Type.isInvalid())
13570 return nullptr;
13571
13572 bool Invalid = false;
13573 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
13574 TypeSourceInfo *TInfo = nullptr;
13575 GetTypeFromParser(Ty: Type.get(), TInfo: &TInfo);
13576
13577 if (DiagnoseClassNameShadow(DC: CurContext, Info: NameInfo))
13578 return nullptr;
13579
13580 if (DiagnoseUnexpandedParameterPack(Loc: Name.StartLocation, T: TInfo,
13581 UPPC: UPPC_DeclarationType)) {
13582 Invalid = true;
13583 TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy,
13584 Loc: TInfo->getTypeLoc().getBeginLoc());
13585 }
13586
13587 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
13588 TemplateParamLists.size()
13589 ? forRedeclarationInCurContext()
13590 : RedeclarationKind::ForVisibleRedeclaration);
13591 LookupName(R&: Previous, S);
13592
13593 // Warn about shadowing the name of a template parameter.
13594 if (Previous.isSingleResult() &&
13595 Previous.getFoundDecl()->isTemplateParameter()) {
13596 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
13597 Previous.clear();
13598 }
13599
13600 assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier &&
13601 "name in alias declaration must be an identifier");
13602 TypeAliasDecl *NewTD = TypeAliasDecl::Create(C&: Context, DC: CurContext, StartLoc: UsingLoc,
13603 IdLoc: Name.StartLocation,
13604 Id: Name.Identifier, TInfo);
13605
13606 NewTD->setAccess(AS);
13607
13608 if (Invalid)
13609 NewTD->setInvalidDecl();
13610
13611 ProcessDeclAttributeList(S, NewTD, AttrList);
13612 AddPragmaAttributes(S, NewTD);
13613 ProcessAPINotes(NewTD);
13614
13615 CheckTypedefForVariablyModifiedType(S, NewTD);
13616 Invalid |= NewTD->isInvalidDecl();
13617
13618 bool Redeclaration = false;
13619
13620 NamedDecl *NewND;
13621 if (TemplateParamLists.size()) {
13622 TypeAliasTemplateDecl *OldDecl = nullptr;
13623 TemplateParameterList *OldTemplateParams = nullptr;
13624
13625 if (TemplateParamLists.size() != 1) {
13626 Diag(UsingLoc, diag::err_alias_template_extra_headers)
13627 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
13628 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
13629 Invalid = true;
13630 }
13631 TemplateParameterList *TemplateParams = TemplateParamLists[0];
13632
13633 // Check that we can declare a template here.
13634 if (CheckTemplateDeclScope(S, TemplateParams))
13635 return nullptr;
13636
13637 // Only consider previous declarations in the same scope.
13638 FilterLookupForScope(R&: Previous, Ctx: CurContext, S, /*ConsiderLinkage*/false,
13639 /*ExplicitInstantiationOrSpecialization*/AllowInlineNamespace: false);
13640 if (!Previous.empty()) {
13641 Redeclaration = true;
13642
13643 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
13644 if (!OldDecl && !Invalid) {
13645 Diag(UsingLoc, diag::err_redefinition_different_kind)
13646 << Name.Identifier;
13647
13648 NamedDecl *OldD = Previous.getRepresentativeDecl();
13649 if (OldD->getLocation().isValid())
13650 Diag(OldD->getLocation(), diag::note_previous_definition);
13651
13652 Invalid = true;
13653 }
13654
13655 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
13656 if (TemplateParameterListsAreEqual(TemplateParams,
13657 OldDecl->getTemplateParameters(),
13658 /*Complain=*/true,
13659 TPL_TemplateMatch))
13660 OldTemplateParams =
13661 OldDecl->getMostRecentDecl()->getTemplateParameters();
13662 else
13663 Invalid = true;
13664
13665 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
13666 if (!Invalid &&
13667 !Context.hasSameType(OldTD->getUnderlyingType(),
13668 NewTD->getUnderlyingType())) {
13669 // FIXME: The C++0x standard does not clearly say this is ill-formed,
13670 // but we can't reasonably accept it.
13671 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
13672 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
13673 if (OldTD->getLocation().isValid())
13674 Diag(OldTD->getLocation(), diag::note_previous_definition);
13675 Invalid = true;
13676 }
13677 }
13678 }
13679
13680 // Merge any previous default template arguments into our parameters,
13681 // and check the parameter list.
13682 if (CheckTemplateParameterList(NewParams: TemplateParams, OldParams: OldTemplateParams,
13683 TPC: TPC_TypeAliasTemplate))
13684 return nullptr;
13685
13686 TypeAliasTemplateDecl *NewDecl =
13687 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
13688 Name.Identifier, TemplateParams,
13689 NewTD);
13690 NewTD->setDescribedAliasTemplate(NewDecl);
13691
13692 NewDecl->setAccess(AS);
13693
13694 if (Invalid)
13695 NewDecl->setInvalidDecl();
13696 else if (OldDecl) {
13697 NewDecl->setPreviousDecl(OldDecl);
13698 CheckRedeclarationInModule(NewDecl, OldDecl);
13699 }
13700
13701 NewND = NewDecl;
13702 } else {
13703 if (auto *TD = dyn_cast_or_null<TagDecl>(Val: DeclFromDeclSpec)) {
13704 setTagNameForLinkagePurposes(TD, NewTD);
13705 handleTagNumbering(Tag: TD, TagScope: S);
13706 }
13707 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
13708 NewND = NewTD;
13709 }
13710
13711 PushOnScopeChains(D: NewND, S);
13712 ActOnDocumentableDecl(NewND);
13713 return NewND;
13714}
13715
13716Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
13717 SourceLocation AliasLoc,
13718 IdentifierInfo *Alias, CXXScopeSpec &SS,
13719 SourceLocation IdentLoc,
13720 IdentifierInfo *Ident) {
13721
13722 // Lookup the namespace name.
13723 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
13724 LookupParsedName(R, S, SS: &SS);
13725
13726 if (R.isAmbiguous())
13727 return nullptr;
13728
13729 if (R.empty()) {
13730 if (!TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident)) {
13731 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
13732 return nullptr;
13733 }
13734 }
13735 assert(!R.isAmbiguous() && !R.empty());
13736 NamedDecl *ND = R.getRepresentativeDecl();
13737
13738 // Check if we have a previous declaration with the same name.
13739 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
13740 RedeclarationKind::ForVisibleRedeclaration);
13741 LookupName(R&: PrevR, S);
13742
13743 // Check we're not shadowing a template parameter.
13744 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
13745 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
13746 PrevR.clear();
13747 }
13748
13749 // Filter out any other lookup result from an enclosing scope.
13750 FilterLookupForScope(R&: PrevR, Ctx: CurContext, S, /*ConsiderLinkage*/false,
13751 /*AllowInlineNamespace*/false);
13752
13753 // Find the previous declaration and check that we can redeclare it.
13754 NamespaceAliasDecl *Prev = nullptr;
13755 if (PrevR.isSingleResult()) {
13756 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
13757 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Val: PrevDecl)) {
13758 // We already have an alias with the same name that points to the same
13759 // namespace; check that it matches.
13760 if (AD->getNamespace()->Equals(getNamespaceDecl(D: ND))) {
13761 Prev = AD;
13762 } else if (isVisible(D: PrevDecl)) {
13763 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
13764 << Alias;
13765 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
13766 << AD->getNamespace();
13767 return nullptr;
13768 }
13769 } else if (isVisible(D: PrevDecl)) {
13770 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
13771 ? diag::err_redefinition
13772 : diag::err_redefinition_different_kind;
13773 Diag(AliasLoc, DiagID) << Alias;
13774 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13775 return nullptr;
13776 }
13777 }
13778
13779 // The use of a nested name specifier may trigger deprecation warnings.
13780 DiagnoseUseOfDecl(D: ND, Locs: IdentLoc);
13781
13782 NamespaceAliasDecl *AliasDecl =
13783 NamespaceAliasDecl::Create(C&: Context, DC: CurContext, NamespaceLoc, AliasLoc,
13784 Alias, QualifierLoc: SS.getWithLocInContext(Context),
13785 IdentLoc, Namespace: ND);
13786 if (Prev)
13787 AliasDecl->setPreviousDecl(Prev);
13788
13789 PushOnScopeChains(AliasDecl, S);
13790 return AliasDecl;
13791}
13792
13793namespace {
13794struct SpecialMemberExceptionSpecInfo
13795 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
13796 SourceLocation Loc;
13797 Sema::ImplicitExceptionSpecification ExceptSpec;
13798
13799 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
13800 CXXSpecialMemberKind CSM,
13801 Sema::InheritedConstructorInfo *ICI,
13802 SourceLocation Loc)
13803 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
13804
13805 bool visitBase(CXXBaseSpecifier *Base);
13806 bool visitField(FieldDecl *FD);
13807
13808 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
13809 unsigned Quals);
13810
13811 void visitSubobjectCall(Subobject Subobj,
13812 Sema::SpecialMemberOverloadResult SMOR);
13813};
13814}
13815
13816bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
13817 auto *RT = Base->getType()->getAs<RecordType>();
13818 if (!RT)
13819 return false;
13820
13821 auto *BaseClass = cast<CXXRecordDecl>(Val: RT->getDecl());
13822 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass);
13823 if (auto *BaseCtor = SMOR.getMethod()) {
13824 visitSubobjectCall(Subobj: Base, SMOR: BaseCtor);
13825 return false;
13826 }
13827
13828 visitClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0);
13829 return false;
13830}
13831
13832bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
13833 if (CSM == CXXSpecialMemberKind::DefaultConstructor &&
13834 FD->hasInClassInitializer()) {
13835 Expr *E = FD->getInClassInitializer();
13836 if (!E)
13837 // FIXME: It's a little wasteful to build and throw away a
13838 // CXXDefaultInitExpr here.
13839 // FIXME: We should have a single context note pointing at Loc, and
13840 // this location should be MD->getLocation() instead, since that's
13841 // the location where we actually use the default init expression.
13842 E = S.BuildCXXDefaultInitExpr(Loc, Field: FD).get();
13843 if (E)
13844 ExceptSpec.CalledExpr(E);
13845 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
13846 ->getAs<RecordType>()) {
13847 visitClassSubobject(Class: cast<CXXRecordDecl>(RT->getDecl()), Subobj: FD,
13848 Quals: FD->getType().getCVRQualifiers());
13849 }
13850 return false;
13851}
13852
13853void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
13854 Subobject Subobj,
13855 unsigned Quals) {
13856 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
13857 bool IsMutable = Field && Field->isMutable();
13858 visitSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable));
13859}
13860
13861void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
13862 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
13863 // Note, if lookup fails, it doesn't matter what exception specification we
13864 // choose because the special member will be deleted.
13865 if (CXXMethodDecl *MD = SMOR.getMethod())
13866 ExceptSpec.CalledDecl(CallLoc: getSubobjectLoc(Subobj), Method: MD);
13867}
13868
13869bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
13870 llvm::APSInt Result;
13871 ExprResult Converted = CheckConvertedConstantExpression(
13872 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
13873 ExplicitSpec.setExpr(Converted.get());
13874 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
13875 ExplicitSpec.setKind(Result.getBoolValue()
13876 ? ExplicitSpecKind::ResolvedTrue
13877 : ExplicitSpecKind::ResolvedFalse);
13878 return true;
13879 }
13880 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
13881 return false;
13882}
13883
13884ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
13885 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
13886 if (!ExplicitExpr->isTypeDependent())
13887 tryResolveExplicitSpecifier(ExplicitSpec&: ES);
13888 return ES;
13889}
13890
13891static Sema::ImplicitExceptionSpecification
13892ComputeDefaultedSpecialMemberExceptionSpec(
13893 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM,
13894 Sema::InheritedConstructorInfo *ICI) {
13895 ComputingExceptionSpec CES(S, MD, Loc);
13896
13897 CXXRecordDecl *ClassDecl = MD->getParent();
13898
13899 // C++ [except.spec]p14:
13900 // An implicitly declared special member function (Clause 12) shall have an
13901 // exception-specification. [...]
13902 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
13903 if (ClassDecl->isInvalidDecl())
13904 return Info.ExceptSpec;
13905
13906 // FIXME: If this diagnostic fires, we're probably missing a check for
13907 // attempting to resolve an exception specification before it's known
13908 // at a higher level.
13909 if (S.RequireCompleteType(MD->getLocation(),
13910 S.Context.getRecordType(ClassDecl),
13911 diag::err_exception_spec_incomplete_type))
13912 return Info.ExceptSpec;
13913
13914 // C++1z [except.spec]p7:
13915 // [Look for exceptions thrown by] a constructor selected [...] to
13916 // initialize a potentially constructed subobject,
13917 // C++1z [except.spec]p8:
13918 // The exception specification for an implicitly-declared destructor, or a
13919 // destructor without a noexcept-specifier, is potentially-throwing if and
13920 // only if any of the destructors for any of its potentially constructed
13921 // subojects is potentially throwing.
13922 // FIXME: We respect the first rule but ignore the "potentially constructed"
13923 // in the second rule to resolve a core issue (no number yet) that would have
13924 // us reject:
13925 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
13926 // struct B : A {};
13927 // struct C : B { void f(); };
13928 // ... due to giving B::~B() a non-throwing exception specification.
13929 Info.visit(Bases: Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
13930 : Info.VisitAllBases);
13931
13932 return Info.ExceptSpec;
13933}
13934
13935namespace {
13936/// RAII object to register a special member as being currently declared.
13937struct DeclaringSpecialMember {
13938 Sema &S;
13939 Sema::SpecialMemberDecl D;
13940 Sema::ContextRAII SavedContext;
13941 bool WasAlreadyBeingDeclared;
13942
13943 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM)
13944 : S(S), D(RD, CSM), SavedContext(S, RD) {
13945 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(Ptr: D).second;
13946 if (WasAlreadyBeingDeclared)
13947 // This almost never happens, but if it does, ensure that our cache
13948 // doesn't contain a stale result.
13949 S.SpecialMemberCache.clear();
13950 else {
13951 // Register a note to be produced if we encounter an error while
13952 // declaring the special member.
13953 Sema::CodeSynthesisContext Ctx;
13954 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
13955 // FIXME: We don't have a location to use here. Using the class's
13956 // location maintains the fiction that we declare all special members
13957 // with the class, but (1) it's not clear that lying about that helps our
13958 // users understand what's going on, and (2) there may be outer contexts
13959 // on the stack (some of which are relevant) and printing them exposes
13960 // our lies.
13961 Ctx.PointOfInstantiation = RD->getLocation();
13962 Ctx.Entity = RD;
13963 Ctx.SpecialMember = CSM;
13964 S.pushCodeSynthesisContext(Ctx);
13965 }
13966 }
13967 ~DeclaringSpecialMember() {
13968 if (!WasAlreadyBeingDeclared) {
13969 S.SpecialMembersBeingDeclared.erase(Ptr: D);
13970 S.popCodeSynthesisContext();
13971 }
13972 }
13973
13974 /// Are we already trying to declare this special member?
13975 bool isAlreadyBeingDeclared() const {
13976 return WasAlreadyBeingDeclared;
13977 }
13978};
13979}
13980
13981void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
13982 // Look up any existing declarations, but don't trigger declaration of all
13983 // implicit special members with this name.
13984 DeclarationName Name = FD->getDeclName();
13985 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
13986 RedeclarationKind::ForExternalRedeclaration);
13987 for (auto *D : FD->getParent()->lookup(Name))
13988 if (auto *Acceptable = R.getAcceptableDecl(D))
13989 R.addDecl(Acceptable);
13990 R.resolveKind();
13991 R.suppressDiagnostics();
13992
13993 CheckFunctionDeclaration(S, NewFD: FD, Previous&: R, /*IsMemberSpecialization*/ false,
13994 DeclIsDefn: FD->isThisDeclarationADefinition());
13995}
13996
13997void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13998 QualType ResultTy,
13999 ArrayRef<QualType> Args) {
14000 // Build an exception specification pointing back at this constructor.
14001 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(S&: *this, MD: SpecialMem);
14002
14003 LangAS AS = getDefaultCXXMethodAddrSpace();
14004 if (AS != LangAS::Default) {
14005 EPI.TypeQuals.addAddressSpace(space: AS);
14006 }
14007
14008 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
14009 SpecialMem->setType(QT);
14010
14011 // During template instantiation of implicit special member functions we need
14012 // a reliable TypeSourceInfo for the function prototype in order to allow
14013 // functions to be substituted.
14014 if (inTemplateInstantiation() &&
14015 cast<CXXRecordDecl>(Val: SpecialMem->getParent())->isLambda()) {
14016 TypeSourceInfo *TSI =
14017 Context.getTrivialTypeSourceInfo(T: SpecialMem->getType());
14018 SpecialMem->setTypeSourceInfo(TSI);
14019 }
14020}
14021
14022CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
14023 CXXRecordDecl *ClassDecl) {
14024 // C++ [class.ctor]p5:
14025 // A default constructor for a class X is a constructor of class X
14026 // that can be called without an argument. If there is no
14027 // user-declared constructor for class X, a default constructor is
14028 // implicitly declared. An implicitly-declared default constructor
14029 // is an inline public member of its class.
14030 assert(ClassDecl->needsImplicitDefaultConstructor() &&
14031 "Should not build implicit default constructor!");
14032
14033 DeclaringSpecialMember DSM(*this, ClassDecl,
14034 CXXSpecialMemberKind::DefaultConstructor);
14035 if (DSM.isAlreadyBeingDeclared())
14036 return nullptr;
14037
14038 bool Constexpr = defaultedSpecialMemberIsConstexpr(
14039 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::DefaultConstructor, ConstArg: false);
14040
14041 // Create the actual constructor declaration.
14042 CanQualType ClassType
14043 = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl));
14044 SourceLocation ClassLoc = ClassDecl->getLocation();
14045 DeclarationName Name
14046 = Context.DeclarationNames.getCXXConstructorName(Ty: ClassType);
14047 DeclarationNameInfo NameInfo(Name, ClassLoc);
14048 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
14049 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, /*Type*/ T: QualType(),
14050 /*TInfo=*/nullptr, ES: ExplicitSpecifier(),
14051 UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
14052 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
14053 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr
14054 : ConstexprSpecKind::Unspecified);
14055 DefaultCon->setAccess(AS_public);
14056 DefaultCon->setDefaulted();
14057
14058 setupImplicitSpecialMemberType(SpecialMem: DefaultCon, ResultTy: Context.VoidTy, Args: std::nullopt);
14059
14060 if (getLangOpts().CUDA)
14061 CUDA().inferTargetForImplicitSpecialMember(
14062 ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon,
14063 /* ConstRHS */ false,
14064 /* Diagnose */ false);
14065
14066 // We don't need to use SpecialMemberIsTrivial here; triviality for default
14067 // constructors is easy to compute.
14068 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
14069
14070 // Note that we have declared this constructor.
14071 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
14072
14073 Scope *S = getScopeForContext(ClassDecl);
14074 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
14075
14076 if (ShouldDeleteSpecialMember(DefaultCon,
14077 CXXSpecialMemberKind::DefaultConstructor))
14078 SetDeclDeleted(DefaultCon, ClassLoc);
14079
14080 if (S)
14081 PushOnScopeChains(DefaultCon, S, false);
14082 ClassDecl->addDecl(DefaultCon);
14083
14084 return DefaultCon;
14085}
14086
14087void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
14088 CXXConstructorDecl *Constructor) {
14089 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
14090 !Constructor->doesThisDeclarationHaveABody() &&
14091 !Constructor->isDeleted()) &&
14092 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
14093 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
14094 return;
14095
14096 CXXRecordDecl *ClassDecl = Constructor->getParent();
14097 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
14098 if (ClassDecl->isInvalidDecl()) {
14099 return;
14100 }
14101
14102 SynthesizedFunctionScope Scope(*this, Constructor);
14103
14104 // The exception specification is needed because we are defining the
14105 // function.
14106 ResolveExceptionSpec(Loc: CurrentLocation,
14107 FPT: Constructor->getType()->castAs<FunctionProtoType>());
14108 MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl);
14109
14110 // Add a context note for diagnostics produced after this point.
14111 Scope.addContextNote(UseLoc: CurrentLocation);
14112
14113 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
14114 Constructor->setInvalidDecl();
14115 return;
14116 }
14117
14118 SourceLocation Loc = Constructor->getEndLoc().isValid()
14119 ? Constructor->getEndLoc()
14120 : Constructor->getLocation();
14121 Constructor->setBody(new (Context) CompoundStmt(Loc));
14122 Constructor->markUsed(Context);
14123
14124 if (ASTMutationListener *L = getASTMutationListener()) {
14125 L->CompletedImplicitDefinition(Constructor);
14126 }
14127
14128 DiagnoseUninitializedFields(SemaRef&: *this, Constructor);
14129}
14130
14131void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
14132 // Perform any delayed checks on exception specifications.
14133 CheckDelayedMemberExceptionSpecs();
14134}
14135
14136/// Find or create the fake constructor we synthesize to model constructing an
14137/// object of a derived class via a constructor of a base class.
14138CXXConstructorDecl *
14139Sema::findInheritingConstructor(SourceLocation Loc,
14140 CXXConstructorDecl *BaseCtor,
14141 ConstructorUsingShadowDecl *Shadow) {
14142 CXXRecordDecl *Derived = Shadow->getParent();
14143 SourceLocation UsingLoc = Shadow->getLocation();
14144
14145 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
14146 // For now we use the name of the base class constructor as a member of the
14147 // derived class to indicate a (fake) inherited constructor name.
14148 DeclarationName Name = BaseCtor->getDeclName();
14149
14150 // Check to see if we already have a fake constructor for this inherited
14151 // constructor call.
14152 for (NamedDecl *Ctor : Derived->lookup(Name))
14153 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
14154 ->getInheritedConstructor()
14155 .getConstructor(),
14156 BaseCtor))
14157 return cast<CXXConstructorDecl>(Ctor);
14158
14159 DeclarationNameInfo NameInfo(Name, UsingLoc);
14160 TypeSourceInfo *TInfo =
14161 Context.getTrivialTypeSourceInfo(T: BaseCtor->getType(), Loc: UsingLoc);
14162 FunctionProtoTypeLoc ProtoLoc =
14163 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
14164
14165 // Check the inherited constructor is valid and find the list of base classes
14166 // from which it was inherited.
14167 InheritedConstructorInfo ICI(*this, Loc, Shadow);
14168
14169 bool Constexpr = BaseCtor->isConstexpr() &&
14170 defaultedSpecialMemberIsConstexpr(
14171 S&: *this, ClassDecl: Derived, CSM: CXXSpecialMemberKind::DefaultConstructor,
14172 ConstArg: false, InheritedCtor: BaseCtor, Inherited: &ICI);
14173
14174 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
14175 C&: Context, RD: Derived, StartLoc: UsingLoc, NameInfo, T: TInfo->getType(), TInfo,
14176 ES: BaseCtor->getExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
14177 /*isInline=*/true,
14178 /*isImplicitlyDeclared=*/true,
14179 ConstexprKind: Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
14180 Inherited: InheritedConstructor(Shadow, BaseCtor),
14181 TrailingRequiresClause: BaseCtor->getTrailingRequiresClause());
14182 if (Shadow->isInvalidDecl())
14183 DerivedCtor->setInvalidDecl();
14184
14185 // Build an unevaluated exception specification for this fake constructor.
14186 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
14187 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
14188 EPI.ExceptionSpec.Type = EST_Unevaluated;
14189 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
14190 DerivedCtor->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(),
14191 Args: FPT->getParamTypes(), EPI));
14192
14193 // Build the parameter declarations.
14194 SmallVector<ParmVarDecl *, 16> ParamDecls;
14195 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
14196 TypeSourceInfo *TInfo =
14197 Context.getTrivialTypeSourceInfo(T: FPT->getParamType(i: I), Loc: UsingLoc);
14198 ParmVarDecl *PD = ParmVarDecl::Create(
14199 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
14200 FPT->getParamType(i: I), TInfo, SC_None, /*DefArg=*/nullptr);
14201 PD->setScopeInfo(scopeDepth: 0, parameterIndex: I);
14202 PD->setImplicit();
14203 // Ensure attributes are propagated onto parameters (this matters for
14204 // format, pass_object_size, ...).
14205 mergeDeclAttributes(New: PD, Old: BaseCtor->getParamDecl(I));
14206 ParamDecls.push_back(Elt: PD);
14207 ProtoLoc.setParam(I, PD);
14208 }
14209
14210 // Set up the new constructor.
14211 assert(!BaseCtor->isDeleted() && "should not use deleted constructor");
14212 DerivedCtor->setAccess(BaseCtor->getAccess());
14213 DerivedCtor->setParams(ParamDecls);
14214 Derived->addDecl(DerivedCtor);
14215
14216 if (ShouldDeleteSpecialMember(DerivedCtor,
14217 CXXSpecialMemberKind::DefaultConstructor, &ICI))
14218 SetDeclDeleted(DerivedCtor, UsingLoc);
14219
14220 return DerivedCtor;
14221}
14222
14223void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
14224 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
14225 Ctor->getInheritedConstructor().getShadowDecl());
14226 ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor,
14227 &ICI,
14228 /*Diagnose*/ true);
14229}
14230
14231void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
14232 CXXConstructorDecl *Constructor) {
14233 CXXRecordDecl *ClassDecl = Constructor->getParent();
14234 assert(Constructor->getInheritedConstructor() &&
14235 !Constructor->doesThisDeclarationHaveABody() &&
14236 !Constructor->isDeleted());
14237 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
14238 return;
14239
14240 // Initializations are performed "as if by a defaulted default constructor",
14241 // so enter the appropriate scope.
14242 SynthesizedFunctionScope Scope(*this, Constructor);
14243
14244 // The exception specification is needed because we are defining the
14245 // function.
14246 ResolveExceptionSpec(Loc: CurrentLocation,
14247 FPT: Constructor->getType()->castAs<FunctionProtoType>());
14248 MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl);
14249
14250 // Add a context note for diagnostics produced after this point.
14251 Scope.addContextNote(UseLoc: CurrentLocation);
14252
14253 ConstructorUsingShadowDecl *Shadow =
14254 Constructor->getInheritedConstructor().getShadowDecl();
14255 CXXConstructorDecl *InheritedCtor =
14256 Constructor->getInheritedConstructor().getConstructor();
14257
14258 // [class.inhctor.init]p1:
14259 // initialization proceeds as if a defaulted default constructor is used to
14260 // initialize the D object and each base class subobject from which the
14261 // constructor was inherited
14262
14263 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
14264 CXXRecordDecl *RD = Shadow->getParent();
14265 SourceLocation InitLoc = Shadow->getLocation();
14266
14267 // Build explicit initializers for all base classes from which the
14268 // constructor was inherited.
14269 SmallVector<CXXCtorInitializer*, 8> Inits;
14270 for (bool VBase : {false, true}) {
14271 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
14272 if (B.isVirtual() != VBase)
14273 continue;
14274
14275 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
14276 if (!BaseRD)
14277 continue;
14278
14279 auto BaseCtor = ICI.findConstructorForBase(Base: BaseRD, Ctor: InheritedCtor);
14280 if (!BaseCtor.first)
14281 continue;
14282
14283 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
14284 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
14285 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
14286
14287 auto *TInfo = Context.getTrivialTypeSourceInfo(T: B.getType(), Loc: InitLoc);
14288 Inits.push_back(Elt: new (Context) CXXCtorInitializer(
14289 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
14290 SourceLocation()));
14291 }
14292 }
14293
14294 // We now proceed as if for a defaulted default constructor, with the relevant
14295 // initializers replaced.
14296
14297 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Initializers: Inits)) {
14298 Constructor->setInvalidDecl();
14299 return;
14300 }
14301
14302 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
14303 Constructor->markUsed(Context);
14304
14305 if (ASTMutationListener *L = getASTMutationListener()) {
14306 L->CompletedImplicitDefinition(Constructor);
14307 }
14308
14309 DiagnoseUninitializedFields(SemaRef&: *this, Constructor);
14310}
14311
14312CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
14313 // C++ [class.dtor]p2:
14314 // If a class has no user-declared destructor, a destructor is
14315 // declared implicitly. An implicitly-declared destructor is an
14316 // inline public member of its class.
14317 assert(ClassDecl->needsImplicitDestructor());
14318
14319 DeclaringSpecialMember DSM(*this, ClassDecl,
14320 CXXSpecialMemberKind::Destructor);
14321 if (DSM.isAlreadyBeingDeclared())
14322 return nullptr;
14323
14324 bool Constexpr = defaultedSpecialMemberIsConstexpr(
14325 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::Destructor, ConstArg: false);
14326
14327 // Create the actual destructor declaration.
14328 CanQualType ClassType
14329 = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl));
14330 SourceLocation ClassLoc = ClassDecl->getLocation();
14331 DeclarationName Name
14332 = Context.DeclarationNames.getCXXDestructorName(Ty: ClassType);
14333 DeclarationNameInfo NameInfo(Name, ClassLoc);
14334 CXXDestructorDecl *Destructor = CXXDestructorDecl::Create(
14335 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), TInfo: nullptr,
14336 UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
14337 /*isInline=*/true,
14338 /*isImplicitlyDeclared=*/true,
14339 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr
14340 : ConstexprSpecKind::Unspecified);
14341 Destructor->setAccess(AS_public);
14342 Destructor->setDefaulted();
14343
14344 setupImplicitSpecialMemberType(SpecialMem: Destructor, ResultTy: Context.VoidTy, Args: std::nullopt);
14345
14346 if (getLangOpts().CUDA)
14347 CUDA().inferTargetForImplicitSpecialMember(
14348 ClassDecl, CXXSpecialMemberKind::Destructor, Destructor,
14349 /* ConstRHS */ false,
14350 /* Diagnose */ false);
14351
14352 // We don't need to use SpecialMemberIsTrivial here; triviality for
14353 // destructors is easy to compute.
14354 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
14355 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
14356 ClassDecl->hasTrivialDestructorForCall());
14357
14358 // Note that we have declared this destructor.
14359 ++getASTContext().NumImplicitDestructorsDeclared;
14360
14361 Scope *S = getScopeForContext(ClassDecl);
14362 CheckImplicitSpecialMemberDeclaration(S, Destructor);
14363
14364 // We can't check whether an implicit destructor is deleted before we complete
14365 // the definition of the class, because its validity depends on the alignment
14366 // of the class. We'll check this from ActOnFields once the class is complete.
14367 if (ClassDecl->isCompleteDefinition() &&
14368 ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor))
14369 SetDeclDeleted(Destructor, ClassLoc);
14370
14371 // Introduce this destructor into its scope.
14372 if (S)
14373 PushOnScopeChains(Destructor, S, false);
14374 ClassDecl->addDecl(Destructor);
14375
14376 return Destructor;
14377}
14378
14379void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
14380 CXXDestructorDecl *Destructor) {
14381 assert((Destructor->isDefaulted() &&
14382 !Destructor->doesThisDeclarationHaveABody() &&
14383 !Destructor->isDeleted()) &&
14384 "DefineImplicitDestructor - call it for implicit default dtor");
14385 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
14386 return;
14387
14388 CXXRecordDecl *ClassDecl = Destructor->getParent();
14389 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
14390
14391 SynthesizedFunctionScope Scope(*this, Destructor);
14392
14393 // The exception specification is needed because we are defining the
14394 // function.
14395 ResolveExceptionSpec(Loc: CurrentLocation,
14396 FPT: Destructor->getType()->castAs<FunctionProtoType>());
14397 MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl);
14398
14399 // Add a context note for diagnostics produced after this point.
14400 Scope.addContextNote(UseLoc: CurrentLocation);
14401
14402 MarkBaseAndMemberDestructorsReferenced(Location: Destructor->getLocation(),
14403 ClassDecl: Destructor->getParent());
14404
14405 if (CheckDestructor(Destructor)) {
14406 Destructor->setInvalidDecl();
14407 return;
14408 }
14409
14410 SourceLocation Loc = Destructor->getEndLoc().isValid()
14411 ? Destructor->getEndLoc()
14412 : Destructor->getLocation();
14413 Destructor->setBody(new (Context) CompoundStmt(Loc));
14414 Destructor->markUsed(Context);
14415
14416 if (ASTMutationListener *L = getASTMutationListener()) {
14417 L->CompletedImplicitDefinition(Destructor);
14418 }
14419}
14420
14421void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
14422 CXXDestructorDecl *Destructor) {
14423 if (Destructor->isInvalidDecl())
14424 return;
14425
14426 CXXRecordDecl *ClassDecl = Destructor->getParent();
14427 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&
14428 "implicit complete dtors unneeded outside MS ABI");
14429 assert(ClassDecl->getNumVBases() > 0 &&
14430 "complete dtor only exists for classes with vbases");
14431
14432 SynthesizedFunctionScope Scope(*this, Destructor);
14433
14434 // Add a context note for diagnostics produced after this point.
14435 Scope.addContextNote(UseLoc: CurrentLocation);
14436
14437 MarkVirtualBaseDestructorsReferenced(Location: Destructor->getLocation(), ClassDecl);
14438}
14439
14440/// Perform any semantic analysis which needs to be delayed until all
14441/// pending class member declarations have been parsed.
14442void Sema::ActOnFinishCXXMemberDecls() {
14443 // If the context is an invalid C++ class, just suppress these checks.
14444 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: CurContext)) {
14445 if (Record->isInvalidDecl()) {
14446 DelayedOverridingExceptionSpecChecks.clear();
14447 DelayedEquivalentExceptionSpecChecks.clear();
14448 return;
14449 }
14450 checkForMultipleExportedDefaultConstructors(S&: *this, Class: Record);
14451 }
14452}
14453
14454void Sema::ActOnFinishCXXNonNestedClass() {
14455 referenceDLLExportedClassMethods();
14456
14457 if (!DelayedDllExportMemberFunctions.empty()) {
14458 SmallVector<CXXMethodDecl*, 4> WorkList;
14459 std::swap(LHS&: DelayedDllExportMemberFunctions, RHS&: WorkList);
14460 for (CXXMethodDecl *M : WorkList) {
14461 DefineDefaultedFunction(*this, M, M->getLocation());
14462
14463 // Pass the method to the consumer to get emitted. This is not necessary
14464 // for explicit instantiation definitions, as they will get emitted
14465 // anyway.
14466 if (M->getParent()->getTemplateSpecializationKind() !=
14467 TSK_ExplicitInstantiationDefinition)
14468 ActOnFinishInlineFunctionDef(M);
14469 }
14470 }
14471}
14472
14473void Sema::referenceDLLExportedClassMethods() {
14474 if (!DelayedDllExportClasses.empty()) {
14475 // Calling ReferenceDllExportedMembers might cause the current function to
14476 // be called again, so use a local copy of DelayedDllExportClasses.
14477 SmallVector<CXXRecordDecl *, 4> WorkList;
14478 std::swap(LHS&: DelayedDllExportClasses, RHS&: WorkList);
14479 for (CXXRecordDecl *Class : WorkList)
14480 ReferenceDllExportedMembers(S&: *this, Class);
14481 }
14482}
14483
14484void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
14485 assert(getLangOpts().CPlusPlus11 &&
14486 "adjusting dtor exception specs was introduced in c++11");
14487
14488 if (Destructor->isDependentContext())
14489 return;
14490
14491 // C++11 [class.dtor]p3:
14492 // A declaration of a destructor that does not have an exception-
14493 // specification is implicitly considered to have the same exception-
14494 // specification as an implicit declaration.
14495 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
14496 if (DtorType->hasExceptionSpec())
14497 return;
14498
14499 // Replace the destructor's type, building off the existing one. Fortunately,
14500 // the only thing of interest in the destructor type is its extended info.
14501 // The return and arguments are fixed.
14502 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
14503 EPI.ExceptionSpec.Type = EST_Unevaluated;
14504 EPI.ExceptionSpec.SourceDecl = Destructor;
14505 Destructor->setType(
14506 Context.getFunctionType(ResultTy: Context.VoidTy, Args: std::nullopt, EPI));
14507
14508 // FIXME: If the destructor has a body that could throw, and the newly created
14509 // spec doesn't allow exceptions, we should emit a warning, because this
14510 // change in behavior can break conforming C++03 programs at runtime.
14511 // However, we don't have a body or an exception specification yet, so it
14512 // needs to be done somewhere else.
14513}
14514
14515namespace {
14516/// An abstract base class for all helper classes used in building the
14517// copy/move operators. These classes serve as factory functions and help us
14518// avoid using the same Expr* in the AST twice.
14519class ExprBuilder {
14520 ExprBuilder(const ExprBuilder&) = delete;
14521 ExprBuilder &operator=(const ExprBuilder&) = delete;
14522
14523protected:
14524 static Expr *assertNotNull(Expr *E) {
14525 assert(E && "Expression construction must not fail.");
14526 return E;
14527 }
14528
14529public:
14530 ExprBuilder() {}
14531 virtual ~ExprBuilder() {}
14532
14533 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
14534};
14535
14536class RefBuilder: public ExprBuilder {
14537 VarDecl *Var;
14538 QualType VarType;
14539
14540public:
14541 Expr *build(Sema &S, SourceLocation Loc) const override {
14542 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
14543 }
14544
14545 RefBuilder(VarDecl *Var, QualType VarType)
14546 : Var(Var), VarType(VarType) {}
14547};
14548
14549class ThisBuilder: public ExprBuilder {
14550public:
14551 Expr *build(Sema &S, SourceLocation Loc) const override {
14552 return assertNotNull(E: S.ActOnCXXThis(Loc).getAs<Expr>());
14553 }
14554};
14555
14556class CastBuilder: public ExprBuilder {
14557 const ExprBuilder &Builder;
14558 QualType Type;
14559 ExprValueKind Kind;
14560 const CXXCastPath &Path;
14561
14562public:
14563 Expr *build(Sema &S, SourceLocation Loc) const override {
14564 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
14565 CK_UncheckedDerivedToBase, Kind,
14566 &Path).get());
14567 }
14568
14569 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
14570 const CXXCastPath &Path)
14571 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
14572};
14573
14574class DerefBuilder: public ExprBuilder {
14575 const ExprBuilder &Builder;
14576
14577public:
14578 Expr *build(Sema &S, SourceLocation Loc) const override {
14579 return assertNotNull(
14580 E: S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: Builder.build(S, Loc)).get());
14581 }
14582
14583 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14584};
14585
14586class MemberBuilder: public ExprBuilder {
14587 const ExprBuilder &Builder;
14588 QualType Type;
14589 CXXScopeSpec SS;
14590 bool IsArrow;
14591 LookupResult &MemberLookup;
14592
14593public:
14594 Expr *build(Sema &S, SourceLocation Loc) const override {
14595 return assertNotNull(S.BuildMemberReferenceExpr(
14596 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
14597 nullptr, MemberLookup, nullptr, nullptr).get());
14598 }
14599
14600 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
14601 LookupResult &MemberLookup)
14602 : Builder(Builder), Type(Type), IsArrow(IsArrow),
14603 MemberLookup(MemberLookup) {}
14604};
14605
14606class MoveCastBuilder: public ExprBuilder {
14607 const ExprBuilder &Builder;
14608
14609public:
14610 Expr *build(Sema &S, SourceLocation Loc) const override {
14611 return assertNotNull(E: CastForMoving(SemaRef&: S, E: Builder.build(S, Loc)));
14612 }
14613
14614 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14615};
14616
14617class LvalueConvBuilder: public ExprBuilder {
14618 const ExprBuilder &Builder;
14619
14620public:
14621 Expr *build(Sema &S, SourceLocation Loc) const override {
14622 return assertNotNull(
14623 E: S.DefaultLvalueConversion(E: Builder.build(S, Loc)).get());
14624 }
14625
14626 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
14627};
14628
14629class SubscriptBuilder: public ExprBuilder {
14630 const ExprBuilder &Base;
14631 const ExprBuilder &Index;
14632
14633public:
14634 Expr *build(Sema &S, SourceLocation Loc) const override {
14635 return assertNotNull(E: S.CreateBuiltinArraySubscriptExpr(
14636 Base: Base.build(S, Loc), LLoc: Loc, Idx: Index.build(S, Loc), RLoc: Loc).get());
14637 }
14638
14639 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
14640 : Base(Base), Index(Index) {}
14641};
14642
14643} // end anonymous namespace
14644
14645/// When generating a defaulted copy or move assignment operator, if a field
14646/// should be copied with __builtin_memcpy rather than via explicit assignments,
14647/// do so. This optimization only applies for arrays of scalars, and for arrays
14648/// of class type where the selected copy/move-assignment operator is trivial.
14649static StmtResult
14650buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
14651 const ExprBuilder &ToB, const ExprBuilder &FromB) {
14652 // Compute the size of the memory buffer to be copied.
14653 QualType SizeType = S.Context.getSizeType();
14654 llvm::APInt Size(S.Context.getTypeSize(T: SizeType),
14655 S.Context.getTypeSizeInChars(T).getQuantity());
14656
14657 // Take the address of the field references for "from" and "to". We
14658 // directly construct UnaryOperators here because semantic analysis
14659 // does not permit us to take the address of an xvalue.
14660 Expr *From = FromB.build(S, Loc);
14661 From = UnaryOperator::Create(
14662 C: S.Context, input: From, opc: UO_AddrOf, type: S.Context.getPointerType(T: From->getType()),
14663 VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides());
14664 Expr *To = ToB.build(S, Loc);
14665 To = UnaryOperator::Create(
14666 C: S.Context, input: To, opc: UO_AddrOf, type: S.Context.getPointerType(T: To->getType()),
14667 VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides());
14668
14669 const Type *E = T->getBaseElementTypeUnsafe();
14670 bool NeedsCollectableMemCpy =
14671 E->isRecordType() &&
14672 E->castAs<RecordType>()->getDecl()->hasObjectMember();
14673
14674 // Create a reference to the __builtin_objc_memmove_collectable function
14675 StringRef MemCpyName = NeedsCollectableMemCpy ?
14676 "__builtin_objc_memmove_collectable" :
14677 "__builtin_memcpy";
14678 LookupResult R(S, &S.Context.Idents.get(Name: MemCpyName), Loc,
14679 Sema::LookupOrdinaryName);
14680 S.LookupName(R, S: S.TUScope, AllowBuiltinCreation: true);
14681
14682 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
14683 if (!MemCpy)
14684 // Something went horribly wrong earlier, and we will have complained
14685 // about it.
14686 return StmtError();
14687
14688 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
14689 VK_PRValue, Loc, nullptr);
14690 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
14691
14692 Expr *CallArgs[] = {
14693 To, From, IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc)
14694 };
14695 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
14696 Loc, CallArgs, Loc);
14697
14698 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
14699 return Call.getAs<Stmt>();
14700}
14701
14702/// Builds a statement that copies/moves the given entity from \p From to
14703/// \c To.
14704///
14705/// This routine is used to copy/move the members of a class with an
14706/// implicitly-declared copy/move assignment operator. When the entities being
14707/// copied are arrays, this routine builds for loops to copy them.
14708///
14709/// \param S The Sema object used for type-checking.
14710///
14711/// \param Loc The location where the implicit copy/move is being generated.
14712///
14713/// \param T The type of the expressions being copied/moved. Both expressions
14714/// must have this type.
14715///
14716/// \param To The expression we are copying/moving to.
14717///
14718/// \param From The expression we are copying/moving from.
14719///
14720/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
14721/// Otherwise, it's a non-static member subobject.
14722///
14723/// \param Copying Whether we're copying or moving.
14724///
14725/// \param Depth Internal parameter recording the depth of the recursion.
14726///
14727/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
14728/// if a memcpy should be used instead.
14729static StmtResult
14730buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
14731 const ExprBuilder &To, const ExprBuilder &From,
14732 bool CopyingBaseSubobject, bool Copying,
14733 unsigned Depth = 0) {
14734 // C++11 [class.copy]p28:
14735 // Each subobject is assigned in the manner appropriate to its type:
14736 //
14737 // - if the subobject is of class type, as if by a call to operator= with
14738 // the subobject as the object expression and the corresponding
14739 // subobject of x as a single function argument (as if by explicit
14740 // qualification; that is, ignoring any possible virtual overriding
14741 // functions in more derived classes);
14742 //
14743 // C++03 [class.copy]p13:
14744 // - if the subobject is of class type, the copy assignment operator for
14745 // the class is used (as if by explicit qualification; that is,
14746 // ignoring any possible virtual overriding functions in more derived
14747 // classes);
14748 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
14749 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: RecordTy->getDecl());
14750
14751 // Look for operator=.
14752 DeclarationName Name
14753 = S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal);
14754 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
14755 S.LookupQualifiedName(OpLookup, ClassDecl, false);
14756
14757 // Prior to C++11, filter out any result that isn't a copy/move-assignment
14758 // operator.
14759 if (!S.getLangOpts().CPlusPlus11) {
14760 LookupResult::Filter F = OpLookup.makeFilter();
14761 while (F.hasNext()) {
14762 NamedDecl *D = F.next();
14763 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D))
14764 if (Method->isCopyAssignmentOperator() ||
14765 (!Copying && Method->isMoveAssignmentOperator()))
14766 continue;
14767
14768 F.erase();
14769 }
14770 F.done();
14771 }
14772
14773 // Suppress the protected check (C++ [class.protected]) for each of the
14774 // assignment operators we found. This strange dance is required when
14775 // we're assigning via a base classes's copy-assignment operator. To
14776 // ensure that we're getting the right base class subobject (without
14777 // ambiguities), we need to cast "this" to that subobject type; to
14778 // ensure that we don't go through the virtual call mechanism, we need
14779 // to qualify the operator= name with the base class (see below). However,
14780 // this means that if the base class has a protected copy assignment
14781 // operator, the protected member access check will fail. So, we
14782 // rewrite "protected" access to "public" access in this case, since we
14783 // know by construction that we're calling from a derived class.
14784 if (CopyingBaseSubobject) {
14785 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
14786 L != LEnd; ++L) {
14787 if (L.getAccess() == AS_protected)
14788 L.setAccess(AS_public);
14789 }
14790 }
14791
14792 // Create the nested-name-specifier that will be used to qualify the
14793 // reference to operator=; this is required to suppress the virtual
14794 // call mechanism.
14795 CXXScopeSpec SS;
14796 const Type *CanonicalT = S.Context.getCanonicalType(T: T.getTypePtr());
14797 SS.MakeTrivial(Context&: S.Context,
14798 Qualifier: NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, Template: false,
14799 T: CanonicalT),
14800 R: Loc);
14801
14802 // Create the reference to operator=.
14803 ExprResult OpEqualRef
14804 = S.BuildMemberReferenceExpr(Base: To.build(S, Loc), BaseType: T, OpLoc: Loc, /*IsArrow=*/false,
14805 SS, /*TemplateKWLoc=*/SourceLocation(),
14806 /*FirstQualifierInScope=*/nullptr,
14807 R&: OpLookup,
14808 /*TemplateArgs=*/nullptr, /*S*/nullptr,
14809 /*SuppressQualifierCheck=*/true);
14810 if (OpEqualRef.isInvalid())
14811 return StmtError();
14812
14813 // Build the call to the assignment operator.
14814
14815 Expr *FromInst = From.build(S, Loc);
14816 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/S: nullptr,
14817 MemExpr: OpEqualRef.getAs<Expr>(),
14818 LParenLoc: Loc, Args: FromInst, RParenLoc: Loc);
14819 if (Call.isInvalid())
14820 return StmtError();
14821
14822 // If we built a call to a trivial 'operator=' while copying an array,
14823 // bail out. We'll replace the whole shebang with a memcpy.
14824 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Val: Call.get());
14825 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
14826 return StmtResult((Stmt*)nullptr);
14827
14828 // Convert to an expression-statement, and clean up any produced
14829 // temporaries.
14830 return S.ActOnExprStmt(Arg: Call);
14831 }
14832
14833 // - if the subobject is of scalar type, the built-in assignment
14834 // operator is used.
14835 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
14836 if (!ArrayTy) {
14837 ExprResult Assignment = S.CreateBuiltinBinOp(
14838 OpLoc: Loc, Opc: BO_Assign, LHSExpr: To.build(S, Loc), RHSExpr: From.build(S, Loc));
14839 if (Assignment.isInvalid())
14840 return StmtError();
14841 return S.ActOnExprStmt(Arg: Assignment);
14842 }
14843
14844 // - if the subobject is an array, each element is assigned, in the
14845 // manner appropriate to the element type;
14846
14847 // Construct a loop over the array bounds, e.g.,
14848 //
14849 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
14850 //
14851 // that will copy each of the array elements.
14852 QualType SizeType = S.Context.getSizeType();
14853
14854 // Create the iteration variable.
14855 IdentifierInfo *IterationVarName = nullptr;
14856 {
14857 SmallString<8> Str;
14858 llvm::raw_svector_ostream OS(Str);
14859 OS << "__i" << Depth;
14860 IterationVarName = &S.Context.Idents.get(Name: OS.str());
14861 }
14862 VarDecl *IterationVar = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc,
14863 Id: IterationVarName, T: SizeType,
14864 TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc),
14865 S: SC_None);
14866
14867 // Initialize the iteration variable to zero.
14868 llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0);
14869 IterationVar->setInit(IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc));
14870
14871 // Creates a reference to the iteration variable.
14872 RefBuilder IterationVarRef(IterationVar, SizeType);
14873 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
14874
14875 // Create the DeclStmt that holds the iteration variable.
14876 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
14877
14878 // Subscript the "from" and "to" expressions with the iteration variable.
14879 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
14880 MoveCastBuilder FromIndexMove(FromIndexCopy);
14881 const ExprBuilder *FromIndex;
14882 if (Copying)
14883 FromIndex = &FromIndexCopy;
14884 else
14885 FromIndex = &FromIndexMove;
14886
14887 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
14888
14889 // Build the copy/move for an individual element of the array.
14890 StmtResult Copy =
14891 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
14892 ToIndex, *FromIndex, CopyingBaseSubobject,
14893 Copying, Depth + 1);
14894 // Bail out if copying fails or if we determined that we should use memcpy.
14895 if (Copy.isInvalid() || !Copy.get())
14896 return Copy;
14897
14898 // Create the comparison against the array bound.
14899 llvm::APInt Upper
14900 = ArrayTy->getSize().zextOrTrunc(width: S.Context.getTypeSize(T: SizeType));
14901 Expr *Comparison = BinaryOperator::Create(
14902 C: S.Context, lhs: IterationVarRefRVal.build(S, Loc),
14903 rhs: IntegerLiteral::Create(C: S.Context, V: Upper, type: SizeType, l: Loc), opc: BO_NE,
14904 ResTy: S.Context.BoolTy, VK: VK_PRValue, OK: OK_Ordinary, opLoc: Loc,
14905 FPFeatures: S.CurFPFeatureOverrides());
14906
14907 // Create the pre-increment of the iteration variable. We can determine
14908 // whether the increment will overflow based on the value of the array
14909 // bound.
14910 Expr *Increment = UnaryOperator::Create(
14911 C: S.Context, input: IterationVarRef.build(S, Loc), opc: UO_PreInc, type: SizeType, VK: VK_LValue,
14912 OK: OK_Ordinary, l: Loc, CanOverflow: Upper.isMaxValue(), FPFeatures: S.CurFPFeatureOverrides());
14913
14914 // Construct the loop that copies all elements of this array.
14915 return S.ActOnForStmt(
14916 ForLoc: Loc, LParenLoc: Loc, First: InitStmt,
14917 Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Comparison, CK: Sema::ConditionKind::Boolean),
14918 Third: S.MakeFullDiscardedValueExpr(Arg: Increment), RParenLoc: Loc, Body: Copy.get());
14919}
14920
14921static StmtResult
14922buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
14923 const ExprBuilder &To, const ExprBuilder &From,
14924 bool CopyingBaseSubobject, bool Copying) {
14925 // Maybe we should use a memcpy?
14926 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
14927 T.isTriviallyCopyableType(Context: S.Context))
14928 return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From);
14929
14930 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
14931 CopyingBaseSubobject,
14932 Copying, Depth: 0));
14933
14934 // If we ended up picking a trivial assignment operator for an array of a
14935 // non-trivially-copyable class type, just emit a memcpy.
14936 if (!Result.isInvalid() && !Result.get())
14937 return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From);
14938
14939 return Result;
14940}
14941
14942CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
14943 // Note: The following rules are largely analoguous to the copy
14944 // constructor rules. Note that virtual bases are not taken into account
14945 // for determining the argument type of the operator. Note also that
14946 // operators taking an object instead of a reference are allowed.
14947 assert(ClassDecl->needsImplicitCopyAssignment());
14948
14949 DeclaringSpecialMember DSM(*this, ClassDecl,
14950 CXXSpecialMemberKind::CopyAssignment);
14951 if (DSM.isAlreadyBeingDeclared())
14952 return nullptr;
14953
14954 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14955 ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr,
14956 NamedType: ArgType, OwnedTagDecl: nullptr);
14957 LangAS AS = getDefaultCXXMethodAddrSpace();
14958 if (AS != LangAS::Default)
14959 ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS);
14960 QualType RetType = Context.getLValueReferenceType(T: ArgType);
14961 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
14962 if (Const)
14963 ArgType = ArgType.withConst();
14964
14965 ArgType = Context.getLValueReferenceType(T: ArgType);
14966
14967 bool Constexpr = defaultedSpecialMemberIsConstexpr(
14968 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, ConstArg: Const);
14969
14970 // An implicitly-declared copy assignment operator is an inline public
14971 // member of its class.
14972 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal);
14973 SourceLocation ClassLoc = ClassDecl->getLocation();
14974 DeclarationNameInfo NameInfo(Name, ClassLoc);
14975 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
14976 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(),
14977 /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None,
14978 UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
14979 /*isInline=*/true,
14980 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14981 EndLocation: SourceLocation());
14982 CopyAssignment->setAccess(AS_public);
14983 CopyAssignment->setDefaulted();
14984 CopyAssignment->setImplicit();
14985
14986 setupImplicitSpecialMemberType(SpecialMem: CopyAssignment, ResultTy: RetType, Args: ArgType);
14987
14988 if (getLangOpts().CUDA)
14989 CUDA().inferTargetForImplicitSpecialMember(
14990 ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, MemberDecl: CopyAssignment,
14991 /* ConstRHS */ Const,
14992 /* Diagnose */ false);
14993
14994 // Add the parameter to the operator.
14995 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
14996 ClassLoc, ClassLoc,
14997 /*Id=*/nullptr, ArgType,
14998 /*TInfo=*/nullptr, SC_None,
14999 nullptr);
15000 CopyAssignment->setParams(FromParam);
15001
15002 CopyAssignment->setTrivial(
15003 ClassDecl->needsOverloadResolutionForCopyAssignment()
15004 ? SpecialMemberIsTrivial(MD: CopyAssignment,
15005 CSM: CXXSpecialMemberKind::CopyAssignment)
15006 : ClassDecl->hasTrivialCopyAssignment());
15007
15008 // Note that we have added this copy-assignment operator.
15009 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
15010
15011 Scope *S = getScopeForContext(ClassDecl);
15012 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
15013
15014 if (ShouldDeleteSpecialMember(MD: CopyAssignment,
15015 CSM: CXXSpecialMemberKind::CopyAssignment)) {
15016 ClassDecl->setImplicitCopyAssignmentIsDeleted();
15017 SetDeclDeleted(CopyAssignment, ClassLoc);
15018 }
15019
15020 if (S)
15021 PushOnScopeChains(CopyAssignment, S, false);
15022 ClassDecl->addDecl(CopyAssignment);
15023
15024 return CopyAssignment;
15025}
15026
15027/// Diagnose an implicit copy operation for a class which is odr-used, but
15028/// which is deprecated because the class has a user-declared copy constructor,
15029/// copy assignment operator, or destructor.
15030static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
15031 assert(CopyOp->isImplicit());
15032
15033 CXXRecordDecl *RD = CopyOp->getParent();
15034 CXXMethodDecl *UserDeclaredOperation = nullptr;
15035
15036 if (RD->hasUserDeclaredDestructor()) {
15037 UserDeclaredOperation = RD->getDestructor();
15038 } else if (!isa<CXXConstructorDecl>(Val: CopyOp) &&
15039 RD->hasUserDeclaredCopyConstructor()) {
15040 // Find any user-declared copy constructor.
15041 for (auto *I : RD->ctors()) {
15042 if (I->isCopyConstructor()) {
15043 UserDeclaredOperation = I;
15044 break;
15045 }
15046 }
15047 assert(UserDeclaredOperation);
15048 } else if (isa<CXXConstructorDecl>(Val: CopyOp) &&
15049 RD->hasUserDeclaredCopyAssignment()) {
15050 // Find any user-declared move assignment operator.
15051 for (auto *I : RD->methods()) {
15052 if (I->isCopyAssignmentOperator()) {
15053 UserDeclaredOperation = I;
15054 break;
15055 }
15056 }
15057 assert(UserDeclaredOperation);
15058 }
15059
15060 if (UserDeclaredOperation) {
15061 bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided();
15062 bool UDOIsDestructor = isa<CXXDestructorDecl>(Val: UserDeclaredOperation);
15063 bool IsCopyAssignment = !isa<CXXConstructorDecl>(Val: CopyOp);
15064 unsigned DiagID =
15065 (UDOIsUserProvided && UDOIsDestructor)
15066 ? diag::warn_deprecated_copy_with_user_provided_dtor
15067 : (UDOIsUserProvided && !UDOIsDestructor)
15068 ? diag::warn_deprecated_copy_with_user_provided_copy
15069 : (!UDOIsUserProvided && UDOIsDestructor)
15070 ? diag::warn_deprecated_copy_with_dtor
15071 : diag::warn_deprecated_copy;
15072 S.Diag(UserDeclaredOperation->getLocation(), DiagID)
15073 << RD << IsCopyAssignment;
15074 }
15075}
15076
15077void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
15078 CXXMethodDecl *CopyAssignOperator) {
15079 assert((CopyAssignOperator->isDefaulted() &&
15080 CopyAssignOperator->isOverloadedOperator() &&
15081 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
15082 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
15083 !CopyAssignOperator->isDeleted()) &&
15084 "DefineImplicitCopyAssignment called for wrong function");
15085 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
15086 return;
15087
15088 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
15089 if (ClassDecl->isInvalidDecl()) {
15090 CopyAssignOperator->setInvalidDecl();
15091 return;
15092 }
15093
15094 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
15095
15096 // The exception specification is needed because we are defining the
15097 // function.
15098 ResolveExceptionSpec(Loc: CurrentLocation,
15099 FPT: CopyAssignOperator->getType()->castAs<FunctionProtoType>());
15100
15101 // Add a context note for diagnostics produced after this point.
15102 Scope.addContextNote(UseLoc: CurrentLocation);
15103
15104 // C++11 [class.copy]p18:
15105 // The [definition of an implicitly declared copy assignment operator] is
15106 // deprecated if the class has a user-declared copy constructor or a
15107 // user-declared destructor.
15108 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
15109 diagnoseDeprecatedCopyOperation(S&: *this, CopyOp: CopyAssignOperator);
15110
15111 // C++0x [class.copy]p30:
15112 // The implicitly-defined or explicitly-defaulted copy assignment operator
15113 // for a non-union class X performs memberwise copy assignment of its
15114 // subobjects. The direct base classes of X are assigned first, in the
15115 // order of their declaration in the base-specifier-list, and then the
15116 // immediate non-static data members of X are assigned, in the order in
15117 // which they were declared in the class definition.
15118
15119 // The statements that form the synthesized function body.
15120 SmallVector<Stmt*, 8> Statements;
15121
15122 // The parameter for the "other" object, which we are copying from.
15123 ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0);
15124 Qualifiers OtherQuals = Other->getType().getQualifiers();
15125 QualType OtherRefType = Other->getType();
15126 if (OtherRefType->isLValueReferenceType()) {
15127 OtherRefType = OtherRefType->getPointeeType();
15128 OtherQuals = OtherRefType.getQualifiers();
15129 }
15130
15131 // Our location for everything implicitly-generated.
15132 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
15133 ? CopyAssignOperator->getEndLoc()
15134 : CopyAssignOperator->getLocation();
15135
15136 // Builds a DeclRefExpr for the "other" object.
15137 RefBuilder OtherRef(Other, OtherRefType);
15138
15139 // Builds the function object parameter.
15140 std::optional<ThisBuilder> This;
15141 std::optional<DerefBuilder> DerefThis;
15142 std::optional<RefBuilder> ExplicitObject;
15143 bool IsArrow = false;
15144 QualType ObjectType;
15145 if (CopyAssignOperator->isExplicitObjectMemberFunction()) {
15146 ObjectType = CopyAssignOperator->getParamDecl(0)->getType();
15147 if (ObjectType->isReferenceType())
15148 ObjectType = ObjectType->getPointeeType();
15149 ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType);
15150 } else {
15151 ObjectType = getCurrentThisType();
15152 This.emplace();
15153 DerefThis.emplace(args&: *This);
15154 IsArrow = !LangOpts.HLSL;
15155 }
15156 ExprBuilder &ObjectParameter =
15157 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15158 : static_cast<ExprBuilder &>(*This);
15159
15160 // Assign base classes.
15161 bool Invalid = false;
15162 for (auto &Base : ClassDecl->bases()) {
15163 // Form the assignment:
15164 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
15165 QualType BaseType = Base.getType().getUnqualifiedType();
15166 if (!BaseType->isRecordType()) {
15167 Invalid = true;
15168 continue;
15169 }
15170
15171 CXXCastPath BasePath;
15172 BasePath.push_back(Elt: &Base);
15173
15174 // Construct the "from" expression, which is an implicit cast to the
15175 // appropriately-qualified base type.
15176 CastBuilder From(OtherRef, Context.getQualifiedType(T: BaseType, Qs: OtherQuals),
15177 VK_LValue, BasePath);
15178
15179 // Dereference "this".
15180 CastBuilder To(
15181 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15182 : static_cast<ExprBuilder &>(*DerefThis),
15183 Context.getQualifiedType(T: BaseType, Qs: ObjectType.getQualifiers()),
15184 VK_LValue, BasePath);
15185
15186 // Build the copy.
15187 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
15188 To, From,
15189 /*CopyingBaseSubobject=*/true,
15190 /*Copying=*/true);
15191 if (Copy.isInvalid()) {
15192 CopyAssignOperator->setInvalidDecl();
15193 return;
15194 }
15195
15196 // Success! Record the copy.
15197 Statements.push_back(Copy.getAs<Expr>());
15198 }
15199
15200 // Assign non-static members.
15201 for (auto *Field : ClassDecl->fields()) {
15202 // FIXME: We should form some kind of AST representation for the implied
15203 // memcpy in a union copy operation.
15204 if (Field->isUnnamedBitField() || Field->getParent()->isUnion())
15205 continue;
15206
15207 if (Field->isInvalidDecl()) {
15208 Invalid = true;
15209 continue;
15210 }
15211
15212 // Check for members of reference type; we can't copy those.
15213 if (Field->getType()->isReferenceType()) {
15214 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15215 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
15216 Diag(Field->getLocation(), diag::note_declared_at);
15217 Invalid = true;
15218 continue;
15219 }
15220
15221 // Check for members of const-qualified, non-class type.
15222 QualType BaseType = Context.getBaseElementType(Field->getType());
15223 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
15224 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15225 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
15226 Diag(Field->getLocation(), diag::note_declared_at);
15227 Invalid = true;
15228 continue;
15229 }
15230
15231 // Suppress assigning zero-width bitfields.
15232 if (Field->isZeroLengthBitField(Context))
15233 continue;
15234
15235 QualType FieldType = Field->getType().getNonReferenceType();
15236 if (FieldType->isIncompleteArrayType()) {
15237 assert(ClassDecl->hasFlexibleArrayMember() &&
15238 "Incomplete array type is not valid");
15239 continue;
15240 }
15241
15242 // Build references to the field in the object we're copying from and to.
15243 CXXScopeSpec SS; // Intentionally empty
15244 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
15245 LookupMemberName);
15246 MemberLookup.addDecl(Field);
15247 MemberLookup.resolveKind();
15248
15249 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
15250 MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup);
15251 // Build the copy of this field.
15252 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
15253 To, From,
15254 /*CopyingBaseSubobject=*/false,
15255 /*Copying=*/true);
15256 if (Copy.isInvalid()) {
15257 CopyAssignOperator->setInvalidDecl();
15258 return;
15259 }
15260
15261 // Success! Record the copy.
15262 Statements.push_back(Copy.getAs<Stmt>());
15263 }
15264
15265 if (!Invalid) {
15266 // Add a "return *this;"
15267 Expr *ThisExpr =
15268 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15269 : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This)
15270 : static_cast<ExprBuilder &>(*DerefThis))
15271 .build(*this, Loc);
15272 StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr);
15273 if (Return.isInvalid())
15274 Invalid = true;
15275 else
15276 Statements.push_back(Elt: Return.getAs<Stmt>());
15277 }
15278
15279 if (Invalid) {
15280 CopyAssignOperator->setInvalidDecl();
15281 return;
15282 }
15283
15284 StmtResult Body;
15285 {
15286 CompoundScopeRAII CompoundScope(*this);
15287 Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements,
15288 /*isStmtExpr=*/false);
15289 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
15290 }
15291 CopyAssignOperator->setBody(Body.getAs<Stmt>());
15292 CopyAssignOperator->markUsed(Context);
15293
15294 if (ASTMutationListener *L = getASTMutationListener()) {
15295 L->CompletedImplicitDefinition(CopyAssignOperator);
15296 }
15297}
15298
15299CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
15300 assert(ClassDecl->needsImplicitMoveAssignment());
15301
15302 DeclaringSpecialMember DSM(*this, ClassDecl,
15303 CXXSpecialMemberKind::MoveAssignment);
15304 if (DSM.isAlreadyBeingDeclared())
15305 return nullptr;
15306
15307 // Note: The following rules are largely analoguous to the move
15308 // constructor rules.
15309
15310 QualType ArgType = Context.getTypeDeclType(ClassDecl);
15311 ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr,
15312 NamedType: ArgType, OwnedTagDecl: nullptr);
15313 LangAS AS = getDefaultCXXMethodAddrSpace();
15314 if (AS != LangAS::Default)
15315 ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS);
15316 QualType RetType = Context.getLValueReferenceType(T: ArgType);
15317 ArgType = Context.getRValueReferenceType(T: ArgType);
15318
15319 bool Constexpr = defaultedSpecialMemberIsConstexpr(
15320 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, ConstArg: false);
15321
15322 // An implicitly-declared move assignment operator is an inline public
15323 // member of its class.
15324 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal);
15325 SourceLocation ClassLoc = ClassDecl->getLocation();
15326 DeclarationNameInfo NameInfo(Name, ClassLoc);
15327 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
15328 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(),
15329 /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None,
15330 UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
15331 /*isInline=*/true,
15332 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
15333 EndLocation: SourceLocation());
15334 MoveAssignment->setAccess(AS_public);
15335 MoveAssignment->setDefaulted();
15336 MoveAssignment->setImplicit();
15337
15338 setupImplicitSpecialMemberType(SpecialMem: MoveAssignment, ResultTy: RetType, Args: ArgType);
15339
15340 if (getLangOpts().CUDA)
15341 CUDA().inferTargetForImplicitSpecialMember(
15342 ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, MemberDecl: MoveAssignment,
15343 /* ConstRHS */ false,
15344 /* Diagnose */ false);
15345
15346 // Add the parameter to the operator.
15347 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
15348 ClassLoc, ClassLoc,
15349 /*Id=*/nullptr, ArgType,
15350 /*TInfo=*/nullptr, SC_None,
15351 nullptr);
15352 MoveAssignment->setParams(FromParam);
15353
15354 MoveAssignment->setTrivial(
15355 ClassDecl->needsOverloadResolutionForMoveAssignment()
15356 ? SpecialMemberIsTrivial(MD: MoveAssignment,
15357 CSM: CXXSpecialMemberKind::MoveAssignment)
15358 : ClassDecl->hasTrivialMoveAssignment());
15359
15360 // Note that we have added this copy-assignment operator.
15361 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
15362
15363 Scope *S = getScopeForContext(ClassDecl);
15364 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
15365
15366 if (ShouldDeleteSpecialMember(MD: MoveAssignment,
15367 CSM: CXXSpecialMemberKind::MoveAssignment)) {
15368 ClassDecl->setImplicitMoveAssignmentIsDeleted();
15369 SetDeclDeleted(MoveAssignment, ClassLoc);
15370 }
15371
15372 if (S)
15373 PushOnScopeChains(MoveAssignment, S, false);
15374 ClassDecl->addDecl(MoveAssignment);
15375
15376 return MoveAssignment;
15377}
15378
15379/// Check if we're implicitly defining a move assignment operator for a class
15380/// with virtual bases. Such a move assignment might move-assign the virtual
15381/// base multiple times.
15382static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
15383 SourceLocation CurrentLocation) {
15384 assert(!Class->isDependentContext() && "should not define dependent move");
15385
15386 // Only a virtual base could get implicitly move-assigned multiple times.
15387 // Only a non-trivial move assignment can observe this. We only want to
15388 // diagnose if we implicitly define an assignment operator that assigns
15389 // two base classes, both of which move-assign the same virtual base.
15390 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
15391 Class->getNumBases() < 2)
15392 return;
15393
15394 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
15395 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
15396 VBaseMap VBases;
15397
15398 for (auto &BI : Class->bases()) {
15399 Worklist.push_back(Elt: &BI);
15400 while (!Worklist.empty()) {
15401 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
15402 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
15403
15404 // If the base has no non-trivial move assignment operators,
15405 // we don't care about moves from it.
15406 if (!Base->hasNonTrivialMoveAssignment())
15407 continue;
15408
15409 // If there's nothing virtual here, skip it.
15410 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
15411 continue;
15412
15413 // If we're not actually going to call a move assignment for this base,
15414 // or the selected move assignment is trivial, skip it.
15415 Sema::SpecialMemberOverloadResult SMOR =
15416 S.LookupSpecialMember(D: Base, SM: CXXSpecialMemberKind::MoveAssignment,
15417 /*ConstArg*/ false, /*VolatileArg*/ false,
15418 /*RValueThis*/ true, /*ConstThis*/ false,
15419 /*VolatileThis*/ false);
15420 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
15421 !SMOR.getMethod()->isMoveAssignmentOperator())
15422 continue;
15423
15424 if (BaseSpec->isVirtual()) {
15425 // We're going to move-assign this virtual base, and its move
15426 // assignment operator is not trivial. If this can happen for
15427 // multiple distinct direct bases of Class, diagnose it. (If it
15428 // only happens in one base, we'll diagnose it when synthesizing
15429 // that base class's move assignment operator.)
15430 CXXBaseSpecifier *&Existing =
15431 VBases.insert(KV: std::make_pair(x: Base->getCanonicalDecl(), y: &BI))
15432 .first->second;
15433 if (Existing && Existing != &BI) {
15434 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
15435 << Class << Base;
15436 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
15437 << (Base->getCanonicalDecl() ==
15438 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
15439 << Base << Existing->getType() << Existing->getSourceRange();
15440 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
15441 << (Base->getCanonicalDecl() ==
15442 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
15443 << Base << BI.getType() << BaseSpec->getSourceRange();
15444
15445 // Only diagnose each vbase once.
15446 Existing = nullptr;
15447 }
15448 } else {
15449 // Only walk over bases that have defaulted move assignment operators.
15450 // We assume that any user-provided move assignment operator handles
15451 // the multiple-moves-of-vbase case itself somehow.
15452 if (!SMOR.getMethod()->isDefaulted())
15453 continue;
15454
15455 // We're going to move the base classes of Base. Add them to the list.
15456 llvm::append_range(C&: Worklist, R: llvm::make_pointer_range(Range: Base->bases()));
15457 }
15458 }
15459 }
15460}
15461
15462void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
15463 CXXMethodDecl *MoveAssignOperator) {
15464 assert((MoveAssignOperator->isDefaulted() &&
15465 MoveAssignOperator->isOverloadedOperator() &&
15466 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
15467 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
15468 !MoveAssignOperator->isDeleted()) &&
15469 "DefineImplicitMoveAssignment called for wrong function");
15470 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
15471 return;
15472
15473 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
15474 if (ClassDecl->isInvalidDecl()) {
15475 MoveAssignOperator->setInvalidDecl();
15476 return;
15477 }
15478
15479 // C++0x [class.copy]p28:
15480 // The implicitly-defined or move assignment operator for a non-union class
15481 // X performs memberwise move assignment of its subobjects. The direct base
15482 // classes of X are assigned first, in the order of their declaration in the
15483 // base-specifier-list, and then the immediate non-static data members of X
15484 // are assigned, in the order in which they were declared in the class
15485 // definition.
15486
15487 // Issue a warning if our implicit move assignment operator will move
15488 // from a virtual base more than once.
15489 checkMoveAssignmentForRepeatedMove(S&: *this, Class: ClassDecl, CurrentLocation);
15490
15491 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
15492
15493 // The exception specification is needed because we are defining the
15494 // function.
15495 ResolveExceptionSpec(Loc: CurrentLocation,
15496 FPT: MoveAssignOperator->getType()->castAs<FunctionProtoType>());
15497
15498 // Add a context note for diagnostics produced after this point.
15499 Scope.addContextNote(UseLoc: CurrentLocation);
15500
15501 // The statements that form the synthesized function body.
15502 SmallVector<Stmt*, 8> Statements;
15503
15504 // The parameter for the "other" object, which we are move from.
15505 ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0);
15506 QualType OtherRefType =
15507 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
15508
15509 // Our location for everything implicitly-generated.
15510 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
15511 ? MoveAssignOperator->getEndLoc()
15512 : MoveAssignOperator->getLocation();
15513
15514 // Builds a reference to the "other" object.
15515 RefBuilder OtherRef(Other, OtherRefType);
15516 // Cast to rvalue.
15517 MoveCastBuilder MoveOther(OtherRef);
15518
15519 // Builds the function object parameter.
15520 std::optional<ThisBuilder> This;
15521 std::optional<DerefBuilder> DerefThis;
15522 std::optional<RefBuilder> ExplicitObject;
15523 QualType ObjectType;
15524 if (MoveAssignOperator->isExplicitObjectMemberFunction()) {
15525 ObjectType = MoveAssignOperator->getParamDecl(0)->getType();
15526 if (ObjectType->isReferenceType())
15527 ObjectType = ObjectType->getPointeeType();
15528 ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType);
15529 } else {
15530 ObjectType = getCurrentThisType();
15531 This.emplace();
15532 DerefThis.emplace(args&: *This);
15533 }
15534 ExprBuilder &ObjectParameter =
15535 ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This);
15536
15537 // Assign base classes.
15538 bool Invalid = false;
15539 for (auto &Base : ClassDecl->bases()) {
15540 // C++11 [class.copy]p28:
15541 // It is unspecified whether subobjects representing virtual base classes
15542 // are assigned more than once by the implicitly-defined copy assignment
15543 // operator.
15544 // FIXME: Do not assign to a vbase that will be assigned by some other base
15545 // class. For a move-assignment, this can result in the vbase being moved
15546 // multiple times.
15547
15548 // Form the assignment:
15549 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
15550 QualType BaseType = Base.getType().getUnqualifiedType();
15551 if (!BaseType->isRecordType()) {
15552 Invalid = true;
15553 continue;
15554 }
15555
15556 CXXCastPath BasePath;
15557 BasePath.push_back(Elt: &Base);
15558
15559 // Construct the "from" expression, which is an implicit cast to the
15560 // appropriately-qualified base type.
15561 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
15562
15563 // Implicitly cast "this" to the appropriately-qualified base type.
15564 // Dereference "this".
15565 CastBuilder To(
15566 ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15567 : static_cast<ExprBuilder &>(*DerefThis),
15568 Context.getQualifiedType(BaseType, ObjectType.getQualifiers()),
15569 VK_LValue, BasePath);
15570
15571 // Build the move.
15572 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
15573 To, From,
15574 /*CopyingBaseSubobject=*/true,
15575 /*Copying=*/false);
15576 if (Move.isInvalid()) {
15577 MoveAssignOperator->setInvalidDecl();
15578 return;
15579 }
15580
15581 // Success! Record the move.
15582 Statements.push_back(Move.getAs<Expr>());
15583 }
15584
15585 // Assign non-static members.
15586 for (auto *Field : ClassDecl->fields()) {
15587 // FIXME: We should form some kind of AST representation for the implied
15588 // memcpy in a union copy operation.
15589 if (Field->isUnnamedBitField() || Field->getParent()->isUnion())
15590 continue;
15591
15592 if (Field->isInvalidDecl()) {
15593 Invalid = true;
15594 continue;
15595 }
15596
15597 // Check for members of reference type; we can't move those.
15598 if (Field->getType()->isReferenceType()) {
15599 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15600 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
15601 Diag(Field->getLocation(), diag::note_declared_at);
15602 Invalid = true;
15603 continue;
15604 }
15605
15606 // Check for members of const-qualified, non-class type.
15607 QualType BaseType = Context.getBaseElementType(Field->getType());
15608 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
15609 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
15610 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
15611 Diag(Field->getLocation(), diag::note_declared_at);
15612 Invalid = true;
15613 continue;
15614 }
15615
15616 // Suppress assigning zero-width bitfields.
15617 if (Field->isZeroLengthBitField(Context))
15618 continue;
15619
15620 QualType FieldType = Field->getType().getNonReferenceType();
15621 if (FieldType->isIncompleteArrayType()) {
15622 assert(ClassDecl->hasFlexibleArrayMember() &&
15623 "Incomplete array type is not valid");
15624 continue;
15625 }
15626
15627 // Build references to the field in the object we're copying from and to.
15628 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
15629 LookupMemberName);
15630 MemberLookup.addDecl(Field);
15631 MemberLookup.resolveKind();
15632 MemberBuilder From(MoveOther, OtherRefType,
15633 /*IsArrow=*/false, MemberLookup);
15634 MemberBuilder To(ObjectParameter, ObjectType, /*IsArrow=*/!ExplicitObject,
15635 MemberLookup);
15636
15637 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
15638 "Member reference with rvalue base must be rvalue except for reference "
15639 "members, which aren't allowed for move assignment.");
15640
15641 // Build the move of this field.
15642 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
15643 To, From,
15644 /*CopyingBaseSubobject=*/false,
15645 /*Copying=*/false);
15646 if (Move.isInvalid()) {
15647 MoveAssignOperator->setInvalidDecl();
15648 return;
15649 }
15650
15651 // Success! Record the copy.
15652 Statements.push_back(Move.getAs<Stmt>());
15653 }
15654
15655 if (!Invalid) {
15656 // Add a "return *this;"
15657 Expr *ThisExpr =
15658 (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject)
15659 : static_cast<ExprBuilder &>(*DerefThis))
15660 .build(S&: *this, Loc);
15661
15662 StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr);
15663 if (Return.isInvalid())
15664 Invalid = true;
15665 else
15666 Statements.push_back(Elt: Return.getAs<Stmt>());
15667 }
15668
15669 if (Invalid) {
15670 MoveAssignOperator->setInvalidDecl();
15671 return;
15672 }
15673
15674 StmtResult Body;
15675 {
15676 CompoundScopeRAII CompoundScope(*this);
15677 Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements,
15678 /*isStmtExpr=*/false);
15679 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
15680 }
15681 MoveAssignOperator->setBody(Body.getAs<Stmt>());
15682 MoveAssignOperator->markUsed(Context);
15683
15684 if (ASTMutationListener *L = getASTMutationListener()) {
15685 L->CompletedImplicitDefinition(MoveAssignOperator);
15686 }
15687}
15688
15689CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
15690 CXXRecordDecl *ClassDecl) {
15691 // C++ [class.copy]p4:
15692 // If the class definition does not explicitly declare a copy
15693 // constructor, one is declared implicitly.
15694 assert(ClassDecl->needsImplicitCopyConstructor());
15695
15696 DeclaringSpecialMember DSM(*this, ClassDecl,
15697 CXXSpecialMemberKind::CopyConstructor);
15698 if (DSM.isAlreadyBeingDeclared())
15699 return nullptr;
15700
15701 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15702 QualType ArgType = ClassType;
15703 ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr,
15704 NamedType: ArgType, OwnedTagDecl: nullptr);
15705 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
15706 if (Const)
15707 ArgType = ArgType.withConst();
15708
15709 LangAS AS = getDefaultCXXMethodAddrSpace();
15710 if (AS != LangAS::Default)
15711 ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS);
15712
15713 ArgType = Context.getLValueReferenceType(T: ArgType);
15714
15715 bool Constexpr = defaultedSpecialMemberIsConstexpr(
15716 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyConstructor, ConstArg: Const);
15717
15718 DeclarationName Name
15719 = Context.DeclarationNames.getCXXConstructorName(
15720 Ty: Context.getCanonicalType(T: ClassType));
15721 SourceLocation ClassLoc = ClassDecl->getLocation();
15722 DeclarationNameInfo NameInfo(Name, ClassLoc);
15723
15724 // An implicitly-declared copy constructor is an inline public
15725 // member of its class.
15726 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
15727 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr,
15728 ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
15729 /*isInline=*/true,
15730 /*isImplicitlyDeclared=*/true,
15731 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr
15732 : ConstexprSpecKind::Unspecified);
15733 CopyConstructor->setAccess(AS_public);
15734 CopyConstructor->setDefaulted();
15735
15736 setupImplicitSpecialMemberType(SpecialMem: CopyConstructor, ResultTy: Context.VoidTy, Args: ArgType);
15737
15738 if (getLangOpts().CUDA)
15739 CUDA().inferTargetForImplicitSpecialMember(
15740 ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor,
15741 /* ConstRHS */ Const,
15742 /* Diagnose */ false);
15743
15744 // During template instantiation of special member functions we need a
15745 // reliable TypeSourceInfo for the parameter types in order to allow functions
15746 // to be substituted.
15747 TypeSourceInfo *TSI = nullptr;
15748 if (inTemplateInstantiation() && ClassDecl->isLambda())
15749 TSI = Context.getTrivialTypeSourceInfo(T: ArgType);
15750
15751 // Add the parameter to the constructor.
15752 ParmVarDecl *FromParam =
15753 ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc,
15754 /*IdentifierInfo=*/nullptr, ArgType,
15755 /*TInfo=*/TSI, SC_None, nullptr);
15756 CopyConstructor->setParams(FromParam);
15757
15758 CopyConstructor->setTrivial(
15759 ClassDecl->needsOverloadResolutionForCopyConstructor()
15760 ? SpecialMemberIsTrivial(CopyConstructor,
15761 CXXSpecialMemberKind::CopyConstructor)
15762 : ClassDecl->hasTrivialCopyConstructor());
15763
15764 CopyConstructor->setTrivialForCall(
15765 ClassDecl->hasAttr<TrivialABIAttr>() ||
15766 (ClassDecl->needsOverloadResolutionForCopyConstructor()
15767 ? SpecialMemberIsTrivial(CopyConstructor,
15768 CXXSpecialMemberKind::CopyConstructor,
15769 TAH_ConsiderTrivialABI)
15770 : ClassDecl->hasTrivialCopyConstructorForCall()));
15771
15772 // Note that we have declared this constructor.
15773 ++getASTContext().NumImplicitCopyConstructorsDeclared;
15774
15775 Scope *S = getScopeForContext(ClassDecl);
15776 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
15777
15778 if (ShouldDeleteSpecialMember(CopyConstructor,
15779 CXXSpecialMemberKind::CopyConstructor)) {
15780 ClassDecl->setImplicitCopyConstructorIsDeleted();
15781 SetDeclDeleted(CopyConstructor, ClassLoc);
15782 }
15783
15784 if (S)
15785 PushOnScopeChains(CopyConstructor, S, false);
15786 ClassDecl->addDecl(CopyConstructor);
15787
15788 return CopyConstructor;
15789}
15790
15791void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
15792 CXXConstructorDecl *CopyConstructor) {
15793 assert((CopyConstructor->isDefaulted() &&
15794 CopyConstructor->isCopyConstructor() &&
15795 !CopyConstructor->doesThisDeclarationHaveABody() &&
15796 !CopyConstructor->isDeleted()) &&
15797 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
15798 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
15799 return;
15800
15801 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
15802 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
15803
15804 SynthesizedFunctionScope Scope(*this, CopyConstructor);
15805
15806 // The exception specification is needed because we are defining the
15807 // function.
15808 ResolveExceptionSpec(Loc: CurrentLocation,
15809 FPT: CopyConstructor->getType()->castAs<FunctionProtoType>());
15810 MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl);
15811
15812 // Add a context note for diagnostics produced after this point.
15813 Scope.addContextNote(UseLoc: CurrentLocation);
15814
15815 // C++11 [class.copy]p7:
15816 // The [definition of an implicitly declared copy constructor] is
15817 // deprecated if the class has a user-declared copy assignment operator
15818 // or a user-declared destructor.
15819 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
15820 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
15821
15822 if (SetCtorInitializers(Constructor: CopyConstructor, /*AnyErrors=*/false)) {
15823 CopyConstructor->setInvalidDecl();
15824 } else {
15825 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
15826 ? CopyConstructor->getEndLoc()
15827 : CopyConstructor->getLocation();
15828 Sema::CompoundScopeRAII CompoundScope(*this);
15829 CopyConstructor->setBody(
15830 ActOnCompoundStmt(L: Loc, R: Loc, Elts: std::nullopt, /*isStmtExpr=*/false)
15831 .getAs<Stmt>());
15832 CopyConstructor->markUsed(Context);
15833 }
15834
15835 if (ASTMutationListener *L = getASTMutationListener()) {
15836 L->CompletedImplicitDefinition(CopyConstructor);
15837 }
15838}
15839
15840CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
15841 CXXRecordDecl *ClassDecl) {
15842 assert(ClassDecl->needsImplicitMoveConstructor());
15843
15844 DeclaringSpecialMember DSM(*this, ClassDecl,
15845 CXXSpecialMemberKind::MoveConstructor);
15846 if (DSM.isAlreadyBeingDeclared())
15847 return nullptr;
15848
15849 QualType ClassType = Context.getTypeDeclType(ClassDecl);
15850
15851 QualType ArgType = ClassType;
15852 ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr,
15853 NamedType: ArgType, OwnedTagDecl: nullptr);
15854 LangAS AS = getDefaultCXXMethodAddrSpace();
15855 if (AS != LangAS::Default)
15856 ArgType = Context.getAddrSpaceQualType(T: ClassType, AddressSpace: AS);
15857 ArgType = Context.getRValueReferenceType(T: ArgType);
15858
15859 bool Constexpr = defaultedSpecialMemberIsConstexpr(
15860 S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveConstructor, ConstArg: false);
15861
15862 DeclarationName Name
15863 = Context.DeclarationNames.getCXXConstructorName(
15864 Ty: Context.getCanonicalType(T: ClassType));
15865 SourceLocation ClassLoc = ClassDecl->getLocation();
15866 DeclarationNameInfo NameInfo(Name, ClassLoc);
15867
15868 // C++11 [class.copy]p11:
15869 // An implicitly-declared copy/move constructor is an inline public
15870 // member of its class.
15871 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
15872 C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr,
15873 ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(),
15874 /*isInline=*/true,
15875 /*isImplicitlyDeclared=*/true,
15876 ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr
15877 : ConstexprSpecKind::Unspecified);
15878 MoveConstructor->setAccess(AS_public);
15879 MoveConstructor->setDefaulted();
15880
15881 setupImplicitSpecialMemberType(SpecialMem: MoveConstructor, ResultTy: Context.VoidTy, Args: ArgType);
15882
15883 if (getLangOpts().CUDA)
15884 CUDA().inferTargetForImplicitSpecialMember(
15885 ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor,
15886 /* ConstRHS */ false,
15887 /* Diagnose */ false);
15888
15889 // Add the parameter to the constructor.
15890 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
15891 ClassLoc, ClassLoc,
15892 /*IdentifierInfo=*/nullptr,
15893 ArgType, /*TInfo=*/nullptr,
15894 SC_None, nullptr);
15895 MoveConstructor->setParams(FromParam);
15896
15897 MoveConstructor->setTrivial(
15898 ClassDecl->needsOverloadResolutionForMoveConstructor()
15899 ? SpecialMemberIsTrivial(MoveConstructor,
15900 CXXSpecialMemberKind::MoveConstructor)
15901 : ClassDecl->hasTrivialMoveConstructor());
15902
15903 MoveConstructor->setTrivialForCall(
15904 ClassDecl->hasAttr<TrivialABIAttr>() ||
15905 (ClassDecl->needsOverloadResolutionForMoveConstructor()
15906 ? SpecialMemberIsTrivial(MoveConstructor,
15907 CXXSpecialMemberKind::MoveConstructor,
15908 TAH_ConsiderTrivialABI)
15909 : ClassDecl->hasTrivialMoveConstructorForCall()));
15910
15911 // Note that we have declared this constructor.
15912 ++getASTContext().NumImplicitMoveConstructorsDeclared;
15913
15914 Scope *S = getScopeForContext(ClassDecl);
15915 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
15916
15917 if (ShouldDeleteSpecialMember(MoveConstructor,
15918 CXXSpecialMemberKind::MoveConstructor)) {
15919 ClassDecl->setImplicitMoveConstructorIsDeleted();
15920 SetDeclDeleted(MoveConstructor, ClassLoc);
15921 }
15922
15923 if (S)
15924 PushOnScopeChains(MoveConstructor, S, false);
15925 ClassDecl->addDecl(MoveConstructor);
15926
15927 return MoveConstructor;
15928}
15929
15930void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
15931 CXXConstructorDecl *MoveConstructor) {
15932 assert((MoveConstructor->isDefaulted() &&
15933 MoveConstructor->isMoveConstructor() &&
15934 !MoveConstructor->doesThisDeclarationHaveABody() &&
15935 !MoveConstructor->isDeleted()) &&
15936 "DefineImplicitMoveConstructor - call it for implicit move ctor");
15937 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
15938 return;
15939
15940 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
15941 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
15942
15943 SynthesizedFunctionScope Scope(*this, MoveConstructor);
15944
15945 // The exception specification is needed because we are defining the
15946 // function.
15947 ResolveExceptionSpec(Loc: CurrentLocation,
15948 FPT: MoveConstructor->getType()->castAs<FunctionProtoType>());
15949 MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl);
15950
15951 // Add a context note for diagnostics produced after this point.
15952 Scope.addContextNote(UseLoc: CurrentLocation);
15953
15954 if (SetCtorInitializers(Constructor: MoveConstructor, /*AnyErrors=*/false)) {
15955 MoveConstructor->setInvalidDecl();
15956 } else {
15957 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
15958 ? MoveConstructor->getEndLoc()
15959 : MoveConstructor->getLocation();
15960 Sema::CompoundScopeRAII CompoundScope(*this);
15961 MoveConstructor->setBody(
15962 ActOnCompoundStmt(L: Loc, R: Loc, Elts: std::nullopt, /*isStmtExpr=*/false)
15963 .getAs<Stmt>());
15964 MoveConstructor->markUsed(Context);
15965 }
15966
15967 if (ASTMutationListener *L = getASTMutationListener()) {
15968 L->CompletedImplicitDefinition(MoveConstructor);
15969 }
15970}
15971
15972bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
15973 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD);
15974}
15975
15976void Sema::DefineImplicitLambdaToFunctionPointerConversion(
15977 SourceLocation CurrentLocation,
15978 CXXConversionDecl *Conv) {
15979 SynthesizedFunctionScope Scope(*this, Conv);
15980 assert(!Conv->getReturnType()->isUndeducedType());
15981
15982 QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType();
15983 CallingConv CC =
15984 ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv();
15985
15986 CXXRecordDecl *Lambda = Conv->getParent();
15987 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
15988 FunctionDecl *Invoker =
15989 CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic()
15990 ? CallOp
15991 : Lambda->getLambdaStaticInvoker(CC);
15992
15993 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
15994 CallOp = InstantiateFunctionDeclaration(
15995 FTD: CallOp->getDescribedFunctionTemplate(), Args: TemplateArgs, Loc: CurrentLocation);
15996 if (!CallOp)
15997 return;
15998
15999 if (CallOp != Invoker) {
16000 Invoker = InstantiateFunctionDeclaration(
16001 FTD: Invoker->getDescribedFunctionTemplate(), Args: TemplateArgs,
16002 Loc: CurrentLocation);
16003 if (!Invoker)
16004 return;
16005 }
16006 }
16007
16008 if (CallOp->isInvalidDecl())
16009 return;
16010
16011 // Mark the call operator referenced (and add to pending instantiations
16012 // if necessary).
16013 // For both the conversion and static-invoker template specializations
16014 // we construct their body's in this function, so no need to add them
16015 // to the PendingInstantiations.
16016 MarkFunctionReferenced(Loc: CurrentLocation, Func: CallOp);
16017
16018 if (Invoker != CallOp) {
16019 // Fill in the __invoke function with a dummy implementation. IR generation
16020 // will fill in the actual details. Update its type in case it contained
16021 // an 'auto'.
16022 Invoker->markUsed(Context);
16023 Invoker->setReferenced();
16024 Invoker->setType(Conv->getReturnType()->getPointeeType());
16025 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
16026 }
16027
16028 // Construct the body of the conversion function { return __invoke; }.
16029 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue,
16030 Conv->getLocation());
16031 assert(FunctionRef && "Can't refer to __invoke function?");
16032 Stmt *Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: FunctionRef).get();
16033 Conv->setBody(CompoundStmt::Create(C: Context, Stmts: Return, FPFeatures: FPOptionsOverride(),
16034 LB: Conv->getLocation(), RB: Conv->getLocation()));
16035 Conv->markUsed(Context);
16036 Conv->setReferenced();
16037
16038 if (ASTMutationListener *L = getASTMutationListener()) {
16039 L->CompletedImplicitDefinition(Conv);
16040 if (Invoker != CallOp)
16041 L->CompletedImplicitDefinition(D: Invoker);
16042 }
16043}
16044
16045void Sema::DefineImplicitLambdaToBlockPointerConversion(
16046 SourceLocation CurrentLocation, CXXConversionDecl *Conv) {
16047 assert(!Conv->getParent()->isGenericLambda());
16048
16049 SynthesizedFunctionScope Scope(*this, Conv);
16050
16051 // Copy-initialize the lambda object as needed to capture it.
16052 Expr *This = ActOnCXXThis(Loc: CurrentLocation).get();
16053 Expr *DerefThis =CreateBuiltinUnaryOp(OpLoc: CurrentLocation, Opc: UO_Deref, InputExpr: This).get();
16054
16055 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
16056 ConvLocation: Conv->getLocation(),
16057 Conv, Src: DerefThis);
16058
16059 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
16060 // behavior. Note that only the general conversion function does this
16061 // (since it's unusable otherwise); in the case where we inline the
16062 // block literal, it has block literal lifetime semantics.
16063 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
16064 BuildBlock = ImplicitCastExpr::Create(
16065 Context, T: BuildBlock.get()->getType(), Kind: CK_CopyAndAutoreleaseBlockObject,
16066 Operand: BuildBlock.get(), BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride());
16067
16068 if (BuildBlock.isInvalid()) {
16069 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
16070 Conv->setInvalidDecl();
16071 return;
16072 }
16073
16074 // Create the return statement that returns the block from the conversion
16075 // function.
16076 StmtResult Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: BuildBlock.get());
16077 if (Return.isInvalid()) {
16078 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
16079 Conv->setInvalidDecl();
16080 return;
16081 }
16082
16083 // Set the body of the conversion function.
16084 Stmt *ReturnS = Return.get();
16085 Conv->setBody(CompoundStmt::Create(C: Context, Stmts: ReturnS, FPFeatures: FPOptionsOverride(),
16086 LB: Conv->getLocation(), RB: Conv->getLocation()));
16087 Conv->markUsed(Context);
16088
16089 // We're done; notify the mutation listener, if any.
16090 if (ASTMutationListener *L = getASTMutationListener()) {
16091 L->CompletedImplicitDefinition(Conv);
16092 }
16093}
16094
16095/// Determine whether the given list arguments contains exactly one
16096/// "real" (non-default) argument.
16097static bool hasOneRealArgument(MultiExprArg Args) {
16098 switch (Args.size()) {
16099 case 0:
16100 return false;
16101
16102 default:
16103 if (!Args[1]->isDefaultArgument())
16104 return false;
16105
16106 [[fallthrough]];
16107 case 1:
16108 return !Args[0]->isDefaultArgument();
16109 }
16110
16111 return false;
16112}
16113
16114ExprResult Sema::BuildCXXConstructExpr(
16115 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
16116 CXXConstructorDecl *Constructor, MultiExprArg ExprArgs,
16117 bool HadMultipleCandidates, bool IsListInitialization,
16118 bool IsStdInitListInitialization, bool RequiresZeroInit,
16119 CXXConstructionKind ConstructKind, SourceRange ParenRange) {
16120 bool Elidable = false;
16121
16122 // C++0x [class.copy]p34:
16123 // When certain criteria are met, an implementation is allowed to
16124 // omit the copy/move construction of a class object, even if the
16125 // copy/move constructor and/or destructor for the object have
16126 // side effects. [...]
16127 // - when a temporary class object that has not been bound to a
16128 // reference (12.2) would be copied/moved to a class object
16129 // with the same cv-unqualified type, the copy/move operation
16130 // can be omitted by constructing the temporary object
16131 // directly into the target of the omitted copy/move
16132 if (ConstructKind == CXXConstructionKind::Complete && Constructor &&
16133 // FIXME: Converting constructors should also be accepted.
16134 // But to fix this, the logic that digs down into a CXXConstructExpr
16135 // to find the source object needs to handle it.
16136 // Right now it assumes the source object is passed directly as the
16137 // first argument.
16138 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(Args: ExprArgs)) {
16139 Expr *SubExpr = ExprArgs[0];
16140 // FIXME: Per above, this is also incorrect if we want to accept
16141 // converting constructors, as isTemporaryObject will
16142 // reject temporaries with different type from the
16143 // CXXRecord itself.
16144 Elidable = SubExpr->isTemporaryObject(
16145 Ctx&: Context, TempTy: cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
16146 }
16147
16148 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
16149 FoundDecl, Constructor,
16150 Elidable, Exprs: ExprArgs, HadMultipleCandidates,
16151 IsListInitialization,
16152 IsStdInitListInitialization, RequiresZeroInit,
16153 ConstructKind, ParenRange);
16154}
16155
16156ExprResult Sema::BuildCXXConstructExpr(
16157 SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl,
16158 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs,
16159 bool HadMultipleCandidates, bool IsListInitialization,
16160 bool IsStdInitListInitialization, bool RequiresZeroInit,
16161 CXXConstructionKind ConstructKind, SourceRange ParenRange) {
16162 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(Val: FoundDecl)) {
16163 Constructor = findInheritingConstructor(Loc: ConstructLoc, BaseCtor: Constructor, Shadow);
16164 // The only way to get here is if we did overlaod resolution to find the
16165 // shadow decl, so we don't need to worry about re-checking the trailing
16166 // requires clause.
16167 if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc))
16168 return ExprError();
16169 }
16170
16171 return BuildCXXConstructExpr(
16172 ConstructLoc, DeclInitType, Constructor, Elidable, Exprs: ExprArgs,
16173 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
16174 RequiresZeroInit, ConstructKind, ParenRange);
16175}
16176
16177/// BuildCXXConstructExpr - Creates a complete call to a constructor,
16178/// including handling of its default argument expressions.
16179ExprResult Sema::BuildCXXConstructExpr(
16180 SourceLocation ConstructLoc, QualType DeclInitType,
16181 CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs,
16182 bool HadMultipleCandidates, bool IsListInitialization,
16183 bool IsStdInitListInitialization, bool RequiresZeroInit,
16184 CXXConstructionKind ConstructKind, SourceRange ParenRange) {
16185 assert(declaresSameEntity(
16186 Constructor->getParent(),
16187 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
16188 "given constructor for wrong type");
16189 MarkFunctionReferenced(ConstructLoc, Constructor);
16190 if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor))
16191 return ExprError();
16192
16193 return CheckForImmediateInvocation(
16194 CXXConstructExpr::Create(
16195 Ctx: Context, Ty: DeclInitType, Loc: ConstructLoc, Ctor: Constructor, Elidable, Args: ExprArgs,
16196 HadMultipleCandidates, ListInitialization: IsListInitialization,
16197 StdInitListInitialization: IsStdInitListInitialization, ZeroInitialization: RequiresZeroInit,
16198 ConstructKind: static_cast<CXXConstructionKind>(ConstructKind), ParenOrBraceRange: ParenRange),
16199 Constructor);
16200}
16201
16202void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
16203 if (VD->isInvalidDecl()) return;
16204 // If initializing the variable failed, don't also diagnose problems with
16205 // the destructor, they're likely related.
16206 if (VD->getInit() && VD->getInit()->containsErrors())
16207 return;
16208
16209 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: Record->getDecl());
16210 if (ClassDecl->isInvalidDecl()) return;
16211 if (ClassDecl->hasIrrelevantDestructor()) return;
16212 if (ClassDecl->isDependentContext()) return;
16213
16214 if (VD->isNoDestroy(getASTContext()))
16215 return;
16216
16217 CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl);
16218 // The result of `LookupDestructor` might be nullptr if the destructor is
16219 // invalid, in which case it is marked as `IneligibleOrNotSelected` and
16220 // will not be selected by `CXXRecordDecl::getDestructor()`.
16221 if (!Destructor)
16222 return;
16223 // If this is an array, we'll require the destructor during initialization, so
16224 // we can skip over this. We still want to emit exit-time destructor warnings
16225 // though.
16226 if (!VD->getType()->isArrayType()) {
16227 MarkFunctionReferenced(Loc: VD->getLocation(), Func: Destructor);
16228 CheckDestructorAccess(VD->getLocation(), Destructor,
16229 PDiag(diag::err_access_dtor_var)
16230 << VD->getDeclName() << VD->getType());
16231 DiagnoseUseOfDecl(D: Destructor, Locs: VD->getLocation());
16232 }
16233
16234 if (Destructor->isTrivial()) return;
16235
16236 // If the destructor is constexpr, check whether the variable has constant
16237 // destruction now.
16238 if (Destructor->isConstexpr()) {
16239 bool HasConstantInit = false;
16240 if (VD->getInit() && !VD->getInit()->isValueDependent())
16241 HasConstantInit = VD->evaluateValue();
16242 SmallVector<PartialDiagnosticAt, 8> Notes;
16243 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
16244 HasConstantInit) {
16245 Diag(VD->getLocation(),
16246 diag::err_constexpr_var_requires_const_destruction) << VD;
16247 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
16248 Diag(Notes[I].first, Notes[I].second);
16249 }
16250 }
16251
16252 if (!VD->hasGlobalStorage() || !VD->needsDestruction(Ctx: Context))
16253 return;
16254
16255 // Emit warning for non-trivial dtor in global scope (a real global,
16256 // class-static, function-static).
16257 if (!VD->hasAttr<AlwaysDestroyAttr>())
16258 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
16259
16260 // TODO: this should be re-enabled for static locals by !CXAAtExit
16261 if (!VD->isStaticLocal())
16262 Diag(VD->getLocation(), diag::warn_global_destructor);
16263}
16264
16265/// Given a constructor and the set of arguments provided for the
16266/// constructor, convert the arguments and add any required default arguments
16267/// to form a proper call to this constructor.
16268///
16269/// \returns true if an error occurred, false otherwise.
16270bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
16271 QualType DeclInitType, MultiExprArg ArgsPtr,
16272 SourceLocation Loc,
16273 SmallVectorImpl<Expr *> &ConvertedArgs,
16274 bool AllowExplicit,
16275 bool IsListInitialization) {
16276 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
16277 unsigned NumArgs = ArgsPtr.size();
16278 Expr **Args = ArgsPtr.data();
16279
16280 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
16281 unsigned NumParams = Proto->getNumParams();
16282
16283 // If too few arguments are available, we'll fill in the rest with defaults.
16284 if (NumArgs < NumParams)
16285 ConvertedArgs.reserve(N: NumParams);
16286 else
16287 ConvertedArgs.reserve(N: NumArgs);
16288
16289 VariadicCallType CallType =
16290 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
16291 SmallVector<Expr *, 8> AllArgs;
16292 bool Invalid = GatherArgumentsForCall(
16293 CallLoc: Loc, FDecl: Constructor, Proto: Proto, FirstParam: 0, Args: llvm::ArrayRef(Args, NumArgs), AllArgs,
16294 CallType, AllowExplicit, IsListInitialization);
16295 ConvertedArgs.append(in_start: AllArgs.begin(), in_end: AllArgs.end());
16296
16297 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
16298
16299 CheckConstructorCall(FDecl: Constructor, ThisType: DeclInitType,
16300 Args: llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto: Proto,
16301 Loc);
16302
16303 return Invalid;
16304}
16305
16306static inline bool
16307CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
16308 const FunctionDecl *FnDecl) {
16309 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
16310 if (isa<NamespaceDecl>(Val: DC)) {
16311 return SemaRef.Diag(FnDecl->getLocation(),
16312 diag::err_operator_new_delete_declared_in_namespace)
16313 << FnDecl->getDeclName();
16314 }
16315
16316 if (isa<TranslationUnitDecl>(Val: DC) &&
16317 FnDecl->getStorageClass() == SC_Static) {
16318 return SemaRef.Diag(FnDecl->getLocation(),
16319 diag::err_operator_new_delete_declared_static)
16320 << FnDecl->getDeclName();
16321 }
16322
16323 return false;
16324}
16325
16326static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
16327 const PointerType *PtrTy) {
16328 auto &Ctx = SemaRef.Context;
16329 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
16330 PtrQuals.removeAddressSpace();
16331 return Ctx.getPointerType(T: Ctx.getCanonicalType(T: Ctx.getQualifiedType(
16332 T: PtrTy->getPointeeType().getUnqualifiedType(), Qs: PtrQuals)));
16333}
16334
16335static inline bool
16336CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
16337 CanQualType ExpectedResultType,
16338 CanQualType ExpectedFirstParamType,
16339 unsigned DependentParamTypeDiag,
16340 unsigned InvalidParamTypeDiag) {
16341 QualType ResultType =
16342 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
16343
16344 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
16345 // The operator is valid on any address space for OpenCL.
16346 // Drop address space from actual and expected result types.
16347 if (const auto *PtrTy = ResultType->getAs<PointerType>())
16348 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
16349
16350 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
16351 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
16352 }
16353
16354 // Check that the result type is what we expect.
16355 if (SemaRef.Context.getCanonicalType(T: ResultType) != ExpectedResultType) {
16356 // Reject even if the type is dependent; an operator delete function is
16357 // required to have a non-dependent result type.
16358 return SemaRef.Diag(
16359 FnDecl->getLocation(),
16360 ResultType->isDependentType()
16361 ? diag::err_operator_new_delete_dependent_result_type
16362 : diag::err_operator_new_delete_invalid_result_type)
16363 << FnDecl->getDeclName() << ExpectedResultType;
16364 }
16365
16366 // A function template must have at least 2 parameters.
16367 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
16368 return SemaRef.Diag(FnDecl->getLocation(),
16369 diag::err_operator_new_delete_template_too_few_parameters)
16370 << FnDecl->getDeclName();
16371
16372 // The function decl must have at least 1 parameter.
16373 if (FnDecl->getNumParams() == 0)
16374 return SemaRef.Diag(FnDecl->getLocation(),
16375 diag::err_operator_new_delete_too_few_parameters)
16376 << FnDecl->getDeclName();
16377
16378 QualType FirstParamType = FnDecl->getParamDecl(i: 0)->getType();
16379 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
16380 // The operator is valid on any address space for OpenCL.
16381 // Drop address space from actual and expected first parameter types.
16382 if (const auto *PtrTy =
16383 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
16384 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
16385
16386 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
16387 ExpectedFirstParamType =
16388 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
16389 }
16390
16391 // Check that the first parameter type is what we expect.
16392 if (SemaRef.Context.getCanonicalType(T: FirstParamType).getUnqualifiedType() !=
16393 ExpectedFirstParamType) {
16394 // The first parameter type is not allowed to be dependent. As a tentative
16395 // DR resolution, we allow a dependent parameter type if it is the right
16396 // type anyway, to allow destroying operator delete in class templates.
16397 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
16398 ? DependentParamTypeDiag
16399 : InvalidParamTypeDiag)
16400 << FnDecl->getDeclName() << ExpectedFirstParamType;
16401 }
16402
16403 return false;
16404}
16405
16406static bool
16407CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
16408 // C++ [basic.stc.dynamic.allocation]p1:
16409 // A program is ill-formed if an allocation function is declared in a
16410 // namespace scope other than global scope or declared static in global
16411 // scope.
16412 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
16413 return true;
16414
16415 CanQualType SizeTy =
16416 SemaRef.Context.getCanonicalType(T: SemaRef.Context.getSizeType());
16417
16418 // C++ [basic.stc.dynamic.allocation]p1:
16419 // The return type shall be void*. The first parameter shall have type
16420 // std::size_t.
16421 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
16422 SizeTy,
16423 diag::err_operator_new_dependent_param_type,
16424 diag::err_operator_new_param_type))
16425 return true;
16426
16427 // C++ [basic.stc.dynamic.allocation]p1:
16428 // The first parameter shall not have an associated default argument.
16429 if (FnDecl->getParamDecl(0)->hasDefaultArg())
16430 return SemaRef.Diag(FnDecl->getLocation(),
16431 diag::err_operator_new_default_arg)
16432 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
16433
16434 return false;
16435}
16436
16437static bool
16438CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
16439 // C++ [basic.stc.dynamic.deallocation]p1:
16440 // A program is ill-formed if deallocation functions are declared in a
16441 // namespace scope other than global scope or declared static in global
16442 // scope.
16443 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
16444 return true;
16445
16446 auto *MD = dyn_cast<CXXMethodDecl>(Val: FnDecl);
16447
16448 // C++ P0722:
16449 // Within a class C, the first parameter of a destroying operator delete
16450 // shall be of type C *. The first parameter of any other deallocation
16451 // function shall be of type void *.
16452 CanQualType ExpectedFirstParamType =
16453 MD && MD->isDestroyingOperatorDelete()
16454 ? SemaRef.Context.getCanonicalType(T: SemaRef.Context.getPointerType(
16455 T: SemaRef.Context.getRecordType(MD->getParent())))
16456 : SemaRef.Context.VoidPtrTy;
16457
16458 // C++ [basic.stc.dynamic.deallocation]p2:
16459 // Each deallocation function shall return void
16460 if (CheckOperatorNewDeleteTypes(
16461 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
16462 diag::err_operator_delete_dependent_param_type,
16463 diag::err_operator_delete_param_type))
16464 return true;
16465
16466 // C++ P0722:
16467 // A destroying operator delete shall be a usual deallocation function.
16468 if (MD && !MD->getParent()->isDependentContext() &&
16469 MD->isDestroyingOperatorDelete() &&
16470 !SemaRef.isUsualDeallocationFunction(FD: MD)) {
16471 SemaRef.Diag(MD->getLocation(),
16472 diag::err_destroying_operator_delete_not_usual);
16473 return true;
16474 }
16475
16476 return false;
16477}
16478
16479/// CheckOverloadedOperatorDeclaration - Check whether the declaration
16480/// of this overloaded operator is well-formed. If so, returns false;
16481/// otherwise, emits appropriate diagnostics and returns true.
16482bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
16483 assert(FnDecl && FnDecl->isOverloadedOperator() &&
16484 "Expected an overloaded operator declaration");
16485
16486 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
16487
16488 // C++ [over.oper]p5:
16489 // The allocation and deallocation functions, operator new,
16490 // operator new[], operator delete and operator delete[], are
16491 // described completely in 3.7.3. The attributes and restrictions
16492 // found in the rest of this subclause do not apply to them unless
16493 // explicitly stated in 3.7.3.
16494 if (Op == OO_Delete || Op == OO_Array_Delete)
16495 return CheckOperatorDeleteDeclaration(SemaRef&: *this, FnDecl);
16496
16497 if (Op == OO_New || Op == OO_Array_New)
16498 return CheckOperatorNewDeclaration(SemaRef&: *this, FnDecl);
16499
16500 // C++ [over.oper]p7:
16501 // An operator function shall either be a member function or
16502 // be a non-member function and have at least one parameter
16503 // whose type is a class, a reference to a class, an enumeration,
16504 // or a reference to an enumeration.
16505 // Note: Before C++23, a member function could not be static. The only member
16506 // function allowed to be static is the call operator function.
16507 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: FnDecl)) {
16508 if (MethodDecl->isStatic()) {
16509 if (Op == OO_Call || Op == OO_Subscript)
16510 Diag(FnDecl->getLocation(),
16511 (LangOpts.CPlusPlus23
16512 ? diag::warn_cxx20_compat_operator_overload_static
16513 : diag::ext_operator_overload_static))
16514 << FnDecl;
16515 else
16516 return Diag(FnDecl->getLocation(), diag::err_operator_overload_static)
16517 << FnDecl;
16518 }
16519 } else {
16520 bool ClassOrEnumParam = false;
16521 for (auto *Param : FnDecl->parameters()) {
16522 QualType ParamType = Param->getType().getNonReferenceType();
16523 if (ParamType->isDependentType() || ParamType->isRecordType() ||
16524 ParamType->isEnumeralType()) {
16525 ClassOrEnumParam = true;
16526 break;
16527 }
16528 }
16529
16530 if (!ClassOrEnumParam)
16531 return Diag(FnDecl->getLocation(),
16532 diag::err_operator_overload_needs_class_or_enum)
16533 << FnDecl->getDeclName();
16534 }
16535
16536 // C++ [over.oper]p8:
16537 // An operator function cannot have default arguments (8.3.6),
16538 // except where explicitly stated below.
16539 //
16540 // Only the function-call operator (C++ [over.call]p1) and the subscript
16541 // operator (CWG2507) allow default arguments.
16542 if (Op != OO_Call) {
16543 ParmVarDecl *FirstDefaultedParam = nullptr;
16544 for (auto *Param : FnDecl->parameters()) {
16545 if (Param->hasDefaultArg()) {
16546 FirstDefaultedParam = Param;
16547 break;
16548 }
16549 }
16550 if (FirstDefaultedParam) {
16551 if (Op == OO_Subscript) {
16552 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16553 ? diag::ext_subscript_overload
16554 : diag::error_subscript_overload)
16555 << FnDecl->getDeclName() << 1
16556 << FirstDefaultedParam->getDefaultArgRange();
16557 } else {
16558 return Diag(FirstDefaultedParam->getLocation(),
16559 diag::err_operator_overload_default_arg)
16560 << FnDecl->getDeclName()
16561 << FirstDefaultedParam->getDefaultArgRange();
16562 }
16563 }
16564 }
16565
16566 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
16567 { false, false, false }
16568#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
16569 , { Unary, Binary, MemberOnly }
16570#include "clang/Basic/OperatorKinds.def"
16571 };
16572
16573 bool CanBeUnaryOperator = OperatorUses[Op][0];
16574 bool CanBeBinaryOperator = OperatorUses[Op][1];
16575 bool MustBeMemberOperator = OperatorUses[Op][2];
16576
16577 // C++ [over.oper]p8:
16578 // [...] Operator functions cannot have more or fewer parameters
16579 // than the number required for the corresponding operator, as
16580 // described in the rest of this subclause.
16581 unsigned NumParams = FnDecl->getNumParams() +
16582 (isa<CXXMethodDecl>(Val: FnDecl) &&
16583 !FnDecl->hasCXXExplicitFunctionObjectParameter()
16584 ? 1
16585 : 0);
16586 if (Op != OO_Call && Op != OO_Subscript &&
16587 ((NumParams == 1 && !CanBeUnaryOperator) ||
16588 (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) ||
16589 (NumParams > 2))) {
16590 // We have the wrong number of parameters.
16591 unsigned ErrorKind;
16592 if (CanBeUnaryOperator && CanBeBinaryOperator) {
16593 ErrorKind = 2; // 2 -> unary or binary.
16594 } else if (CanBeUnaryOperator) {
16595 ErrorKind = 0; // 0 -> unary
16596 } else {
16597 assert(CanBeBinaryOperator &&
16598 "All non-call overloaded operators are unary or binary!");
16599 ErrorKind = 1; // 1 -> binary
16600 }
16601 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
16602 << FnDecl->getDeclName() << NumParams << ErrorKind;
16603 }
16604
16605 if (Op == OO_Subscript && NumParams != 2) {
16606 Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23
16607 ? diag::ext_subscript_overload
16608 : diag::error_subscript_overload)
16609 << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2);
16610 }
16611
16612 // Overloaded operators other than operator() and operator[] cannot be
16613 // variadic.
16614 if (Op != OO_Call &&
16615 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
16616 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
16617 << FnDecl->getDeclName();
16618 }
16619
16620 // Some operators must be member functions.
16621 if (MustBeMemberOperator && !isa<CXXMethodDecl>(Val: FnDecl)) {
16622 return Diag(FnDecl->getLocation(),
16623 diag::err_operator_overload_must_be_member)
16624 << FnDecl->getDeclName();
16625 }
16626
16627 // C++ [over.inc]p1:
16628 // The user-defined function called operator++ implements the
16629 // prefix and postfix ++ operator. If this function is a member
16630 // function with no parameters, or a non-member function with one
16631 // parameter of class or enumeration type, it defines the prefix
16632 // increment operator ++ for objects of that type. If the function
16633 // is a member function with one parameter (which shall be of type
16634 // int) or a non-member function with two parameters (the second
16635 // of which shall be of type int), it defines the postfix
16636 // increment operator ++ for objects of that type.
16637 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
16638 ParmVarDecl *LastParam = FnDecl->getParamDecl(i: FnDecl->getNumParams() - 1);
16639 QualType ParamType = LastParam->getType();
16640
16641 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
16642 !ParamType->isDependentType())
16643 return Diag(LastParam->getLocation(),
16644 diag::err_operator_overload_post_incdec_must_be_int)
16645 << LastParam->getType() << (Op == OO_MinusMinus);
16646 }
16647
16648 return false;
16649}
16650
16651static bool
16652checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
16653 FunctionTemplateDecl *TpDecl) {
16654 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
16655
16656 // Must have one or two template parameters.
16657 if (TemplateParams->size() == 1) {
16658 NonTypeTemplateParmDecl *PmDecl =
16659 dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 0));
16660
16661 // The template parameter must be a char parameter pack.
16662 if (PmDecl && PmDecl->isTemplateParameterPack() &&
16663 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
16664 return false;
16665
16666 // C++20 [over.literal]p5:
16667 // A string literal operator template is a literal operator template
16668 // whose template-parameter-list comprises a single non-type
16669 // template-parameter of class type.
16670 //
16671 // As a DR resolution, we also allow placeholders for deduced class
16672 // template specializations.
16673 if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl &&
16674 !PmDecl->isTemplateParameterPack() &&
16675 (PmDecl->getType()->isRecordType() ||
16676 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
16677 return false;
16678 } else if (TemplateParams->size() == 2) {
16679 TemplateTypeParmDecl *PmType =
16680 dyn_cast<TemplateTypeParmDecl>(Val: TemplateParams->getParam(Idx: 0));
16681 NonTypeTemplateParmDecl *PmArgs =
16682 dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 1));
16683
16684 // The second template parameter must be a parameter pack with the
16685 // first template parameter as its type.
16686 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
16687 PmArgs->isTemplateParameterPack()) {
16688 const TemplateTypeParmType *TArgs =
16689 PmArgs->getType()->getAs<TemplateTypeParmType>();
16690 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
16691 TArgs->getIndex() == PmType->getIndex()) {
16692 if (!SemaRef.inTemplateInstantiation())
16693 SemaRef.Diag(TpDecl->getLocation(),
16694 diag::ext_string_literal_operator_template);
16695 return false;
16696 }
16697 }
16698 }
16699
16700 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
16701 diag::err_literal_operator_template)
16702 << TpDecl->getTemplateParameters()->getSourceRange();
16703 return true;
16704}
16705
16706/// CheckLiteralOperatorDeclaration - Check whether the declaration
16707/// of this literal operator function is well-formed. If so, returns
16708/// false; otherwise, emits appropriate diagnostics and returns true.
16709bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
16710 if (isa<CXXMethodDecl>(Val: FnDecl)) {
16711 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
16712 << FnDecl->getDeclName();
16713 return true;
16714 }
16715
16716 if (FnDecl->isExternC()) {
16717 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
16718 if (const LinkageSpecDecl *LSD =
16719 FnDecl->getDeclContext()->getExternCContext())
16720 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
16721 return true;
16722 }
16723
16724 // This might be the definition of a literal operator template.
16725 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
16726
16727 // This might be a specialization of a literal operator template.
16728 if (!TpDecl)
16729 TpDecl = FnDecl->getPrimaryTemplate();
16730
16731 // template <char...> type operator "" name() and
16732 // template <class T, T...> type operator "" name() are the only valid
16733 // template signatures, and the only valid signatures with no parameters.
16734 //
16735 // C++20 also allows template <SomeClass T> type operator "" name().
16736 if (TpDecl) {
16737 if (FnDecl->param_size() != 0) {
16738 Diag(FnDecl->getLocation(),
16739 diag::err_literal_operator_template_with_params);
16740 return true;
16741 }
16742
16743 if (checkLiteralOperatorTemplateParameterList(SemaRef&: *this, TpDecl))
16744 return true;
16745
16746 } else if (FnDecl->param_size() == 1) {
16747 const ParmVarDecl *Param = FnDecl->getParamDecl(i: 0);
16748
16749 QualType ParamType = Param->getType().getUnqualifiedType();
16750
16751 // Only unsigned long long int, long double, any character type, and const
16752 // char * are allowed as the only parameters.
16753 if (ParamType->isSpecificBuiltinType(K: BuiltinType::ULongLong) ||
16754 ParamType->isSpecificBuiltinType(K: BuiltinType::LongDouble) ||
16755 Context.hasSameType(ParamType, Context.CharTy) ||
16756 Context.hasSameType(ParamType, Context.WideCharTy) ||
16757 Context.hasSameType(ParamType, Context.Char8Ty) ||
16758 Context.hasSameType(ParamType, Context.Char16Ty) ||
16759 Context.hasSameType(ParamType, Context.Char32Ty)) {
16760 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
16761 QualType InnerType = Ptr->getPointeeType();
16762
16763 // Pointer parameter must be a const char *.
16764 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
16765 Context.CharTy) &&
16766 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
16767 Diag(Param->getSourceRange().getBegin(),
16768 diag::err_literal_operator_param)
16769 << ParamType << "'const char *'" << Param->getSourceRange();
16770 return true;
16771 }
16772
16773 } else if (ParamType->isRealFloatingType()) {
16774 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16775 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
16776 return true;
16777
16778 } else if (ParamType->isIntegerType()) {
16779 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
16780 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
16781 return true;
16782
16783 } else {
16784 Diag(Param->getSourceRange().getBegin(),
16785 diag::err_literal_operator_invalid_param)
16786 << ParamType << Param->getSourceRange();
16787 return true;
16788 }
16789
16790 } else if (FnDecl->param_size() == 2) {
16791 FunctionDecl::param_iterator Param = FnDecl->param_begin();
16792
16793 // First, verify that the first parameter is correct.
16794
16795 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
16796
16797 // Two parameter function must have a pointer to const as a
16798 // first parameter; let's strip those qualifiers.
16799 const PointerType *PT = FirstParamType->getAs<PointerType>();
16800
16801 if (!PT) {
16802 Diag((*Param)->getSourceRange().getBegin(),
16803 diag::err_literal_operator_param)
16804 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16805 return true;
16806 }
16807
16808 QualType PointeeType = PT->getPointeeType();
16809 // First parameter must be const
16810 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
16811 Diag((*Param)->getSourceRange().getBegin(),
16812 diag::err_literal_operator_param)
16813 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16814 return true;
16815 }
16816
16817 QualType InnerType = PointeeType.getUnqualifiedType();
16818 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
16819 // const char32_t* are allowed as the first parameter to a two-parameter
16820 // function
16821 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
16822 Context.hasSameType(InnerType, Context.WideCharTy) ||
16823 Context.hasSameType(InnerType, Context.Char8Ty) ||
16824 Context.hasSameType(InnerType, Context.Char16Ty) ||
16825 Context.hasSameType(InnerType, Context.Char32Ty))) {
16826 Diag((*Param)->getSourceRange().getBegin(),
16827 diag::err_literal_operator_param)
16828 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
16829 return true;
16830 }
16831
16832 // Move on to the second and final parameter.
16833 ++Param;
16834
16835 // The second parameter must be a std::size_t.
16836 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
16837 if (!Context.hasSameType(T1: SecondParamType, T2: Context.getSizeType())) {
16838 Diag((*Param)->getSourceRange().getBegin(),
16839 diag::err_literal_operator_param)
16840 << SecondParamType << Context.getSizeType()
16841 << (*Param)->getSourceRange();
16842 return true;
16843 }
16844 } else {
16845 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
16846 return true;
16847 }
16848
16849 // Parameters are good.
16850
16851 // A parameter-declaration-clause containing a default argument is not
16852 // equivalent to any of the permitted forms.
16853 for (auto *Param : FnDecl->parameters()) {
16854 if (Param->hasDefaultArg()) {
16855 Diag(Param->getDefaultArgRange().getBegin(),
16856 diag::err_literal_operator_default_argument)
16857 << Param->getDefaultArgRange();
16858 break;
16859 }
16860 }
16861
16862 const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier();
16863 ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId();
16864 if (Status != ReservedLiteralSuffixIdStatus::NotReserved &&
16865 !getSourceManager().isInSystemHeader(Loc: FnDecl->getLocation())) {
16866 // C++23 [usrlit.suffix]p1:
16867 // Literal suffix identifiers that do not start with an underscore are
16868 // reserved for future standardization. Literal suffix identifiers that
16869 // contain a double underscore __ are reserved for use by C++
16870 // implementations.
16871 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
16872 << static_cast<int>(Status)
16873 << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName());
16874 }
16875
16876 return false;
16877}
16878
16879/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
16880/// linkage specification, including the language and (if present)
16881/// the '{'. ExternLoc is the location of the 'extern', Lang is the
16882/// language string literal. LBraceLoc, if valid, provides the location of
16883/// the '{' brace. Otherwise, this linkage specification does not
16884/// have any braces.
16885Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
16886 Expr *LangStr,
16887 SourceLocation LBraceLoc) {
16888 StringLiteral *Lit = cast<StringLiteral>(Val: LangStr);
16889 assert(Lit->isUnevaluated() && "Unexpected string literal kind");
16890
16891 StringRef Lang = Lit->getString();
16892 LinkageSpecLanguageIDs Language;
16893 if (Lang == "C")
16894 Language = LinkageSpecLanguageIDs::C;
16895 else if (Lang == "C++")
16896 Language = LinkageSpecLanguageIDs::CXX;
16897 else {
16898 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
16899 << LangStr->getSourceRange();
16900 return nullptr;
16901 }
16902
16903 // FIXME: Add all the various semantics of linkage specifications
16904
16905 LinkageSpecDecl *D = LinkageSpecDecl::Create(C&: Context, DC: CurContext, ExternLoc,
16906 LangLoc: LangStr->getExprLoc(), Lang: Language,
16907 HasBraces: LBraceLoc.isValid());
16908
16909 /// C++ [module.unit]p7.2.3
16910 /// - Otherwise, if the declaration
16911 /// - ...
16912 /// - ...
16913 /// - appears within a linkage-specification,
16914 /// it is attached to the global module.
16915 ///
16916 /// If the declaration is already in global module fragment, we don't
16917 /// need to attach it again.
16918 if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) {
16919 Module *GlobalModule = PushImplicitGlobalModuleFragment(BeginLoc: ExternLoc);
16920 D->setLocalOwningModule(GlobalModule);
16921 }
16922
16923 CurContext->addDecl(D);
16924 PushDeclContext(S, D);
16925 return D;
16926}
16927
16928/// ActOnFinishLinkageSpecification - Complete the definition of
16929/// the C++ linkage specification LinkageSpec. If RBraceLoc is
16930/// valid, it's the position of the closing '}' brace in a linkage
16931/// specification that uses braces.
16932Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
16933 Decl *LinkageSpec,
16934 SourceLocation RBraceLoc) {
16935 if (RBraceLoc.isValid()) {
16936 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(Val: LinkageSpec);
16937 LSDecl->setRBraceLoc(RBraceLoc);
16938 }
16939
16940 // If the current module doesn't has Parent, it implies that the
16941 // LinkageSpec isn't in the module created by itself. So we don't
16942 // need to pop it.
16943 if (getLangOpts().CPlusPlusModules && getCurrentModule() &&
16944 getCurrentModule()->isImplicitGlobalModule() &&
16945 getCurrentModule()->Parent)
16946 PopImplicitGlobalModuleFragment();
16947
16948 PopDeclContext();
16949 return LinkageSpec;
16950}
16951
16952Decl *Sema::ActOnEmptyDeclaration(Scope *S,
16953 const ParsedAttributesView &AttrList,
16954 SourceLocation SemiLoc) {
16955 Decl *ED = EmptyDecl::Create(C&: Context, DC: CurContext, L: SemiLoc);
16956 // Attribute declarations appertain to empty declaration so we handle
16957 // them here.
16958 ProcessDeclAttributeList(S, D: ED, AttrList);
16959
16960 CurContext->addDecl(D: ED);
16961 return ED;
16962}
16963
16964/// Perform semantic analysis for the variable declaration that
16965/// occurs within a C++ catch clause, returning the newly-created
16966/// variable.
16967VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo,
16968 SourceLocation StartLoc,
16969 SourceLocation Loc,
16970 const IdentifierInfo *Name) {
16971 bool Invalid = false;
16972 QualType ExDeclType = TInfo->getType();
16973
16974 // Arrays and functions decay.
16975 if (ExDeclType->isArrayType())
16976 ExDeclType = Context.getArrayDecayedType(T: ExDeclType);
16977 else if (ExDeclType->isFunctionType())
16978 ExDeclType = Context.getPointerType(T: ExDeclType);
16979
16980 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
16981 // The exception-declaration shall not denote a pointer or reference to an
16982 // incomplete type, other than [cv] void*.
16983 // N2844 forbids rvalue references.
16984 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
16985 Diag(Loc, diag::err_catch_rvalue_ref);
16986 Invalid = true;
16987 }
16988
16989 if (ExDeclType->isVariablyModifiedType()) {
16990 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
16991 Invalid = true;
16992 }
16993
16994 QualType BaseType = ExDeclType;
16995 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
16996 unsigned DK = diag::err_catch_incomplete;
16997 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
16998 BaseType = Ptr->getPointeeType();
16999 Mode = 1;
17000 DK = diag::err_catch_incomplete_ptr;
17001 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
17002 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
17003 BaseType = Ref->getPointeeType();
17004 Mode = 2;
17005 DK = diag::err_catch_incomplete_ref;
17006 }
17007 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
17008 !BaseType->isDependentType() && RequireCompleteType(Loc, T: BaseType, DiagID: DK))
17009 Invalid = true;
17010
17011 if (!Invalid && BaseType.isWebAssemblyReferenceType()) {
17012 Diag(Loc, diag::err_wasm_reftype_tc) << 1;
17013 Invalid = true;
17014 }
17015
17016 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
17017 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
17018 Invalid = true;
17019 }
17020
17021 if (!Invalid && !ExDeclType->isDependentType() &&
17022 RequireNonAbstractType(Loc, ExDeclType,
17023 diag::err_abstract_type_in_decl,
17024 AbstractVariableType))
17025 Invalid = true;
17026
17027 // Only the non-fragile NeXT runtime currently supports C++ catches
17028 // of ObjC types, and no runtime supports catching ObjC types by value.
17029 if (!Invalid && getLangOpts().ObjC) {
17030 QualType T = ExDeclType;
17031 if (const ReferenceType *RT = T->getAs<ReferenceType>())
17032 T = RT->getPointeeType();
17033
17034 if (T->isObjCObjectType()) {
17035 Diag(Loc, diag::err_objc_object_catch);
17036 Invalid = true;
17037 } else if (T->isObjCObjectPointerType()) {
17038 // FIXME: should this be a test for macosx-fragile specifically?
17039 if (getLangOpts().ObjCRuntime.isFragile())
17040 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
17041 }
17042 }
17043
17044 VarDecl *ExDecl = VarDecl::Create(C&: Context, DC: CurContext, StartLoc, IdLoc: Loc, Id: Name,
17045 T: ExDeclType, TInfo, S: SC_None);
17046 ExDecl->setExceptionVariable(true);
17047
17048 // In ARC, infer 'retaining' for variables of retainable type.
17049 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
17050 Invalid = true;
17051
17052 if (!Invalid && !ExDeclType->isDependentType()) {
17053 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
17054 // Insulate this from anything else we might currently be parsing.
17055 EnterExpressionEvaluationContext scope(
17056 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
17057
17058 // C++ [except.handle]p16:
17059 // The object declared in an exception-declaration or, if the
17060 // exception-declaration does not specify a name, a temporary (12.2) is
17061 // copy-initialized (8.5) from the exception object. [...]
17062 // The object is destroyed when the handler exits, after the destruction
17063 // of any automatic objects initialized within the handler.
17064 //
17065 // We just pretend to initialize the object with itself, then make sure
17066 // it can be destroyed later.
17067 QualType initType = Context.getExceptionObjectType(T: ExDeclType);
17068
17069 InitializedEntity entity =
17070 InitializedEntity::InitializeVariable(Var: ExDecl);
17071 InitializationKind initKind =
17072 InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: SourceLocation());
17073
17074 Expr *opaqueValue =
17075 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
17076 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
17077 ExprResult result = sequence.Perform(S&: *this, Entity: entity, Kind: initKind, Args: opaqueValue);
17078 if (result.isInvalid())
17079 Invalid = true;
17080 else {
17081 // If the constructor used was non-trivial, set this as the
17082 // "initializer".
17083 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
17084 if (!construct->getConstructor()->isTrivial()) {
17085 Expr *init = MaybeCreateExprWithCleanups(construct);
17086 ExDecl->setInit(init);
17087 }
17088
17089 // And make sure it's destructable.
17090 FinalizeVarWithDestructor(VD: ExDecl, Record: recordType);
17091 }
17092 }
17093 }
17094
17095 if (Invalid)
17096 ExDecl->setInvalidDecl();
17097
17098 return ExDecl;
17099}
17100
17101/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
17102/// handler.
17103Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
17104 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
17105 bool Invalid = D.isInvalidType();
17106
17107 // Check for unexpanded parameter packs.
17108 if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo,
17109 UPPC: UPPC_ExceptionType)) {
17110 TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy,
17111 Loc: D.getIdentifierLoc());
17112 Invalid = true;
17113 }
17114
17115 const IdentifierInfo *II = D.getIdentifier();
17116 if (NamedDecl *PrevDecl =
17117 LookupSingleName(S, Name: II, Loc: D.getIdentifierLoc(), NameKind: LookupOrdinaryName,
17118 Redecl: RedeclarationKind::ForVisibleRedeclaration)) {
17119 // The scope should be freshly made just for us. There is just no way
17120 // it contains any previous declaration, except for function parameters in
17121 // a function-try-block's catch statement.
17122 assert(!S->isDeclScope(PrevDecl));
17123 if (isDeclInScope(D: PrevDecl, Ctx: CurContext, S)) {
17124 Diag(D.getIdentifierLoc(), diag::err_redefinition)
17125 << D.getIdentifier();
17126 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
17127 Invalid = true;
17128 } else if (PrevDecl->isTemplateParameter())
17129 // Maybe we will complain about the shadowed template parameter.
17130 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17131 }
17132
17133 if (D.getCXXScopeSpec().isSet() && !Invalid) {
17134 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
17135 << D.getCXXScopeSpec().getRange();
17136 Invalid = true;
17137 }
17138
17139 VarDecl *ExDecl = BuildExceptionDeclaration(
17140 S, TInfo, StartLoc: D.getBeginLoc(), Loc: D.getIdentifierLoc(), Name: D.getIdentifier());
17141 if (Invalid)
17142 ExDecl->setInvalidDecl();
17143
17144 // Add the exception declaration into this scope.
17145 if (II)
17146 PushOnScopeChains(ExDecl, S);
17147 else
17148 CurContext->addDecl(ExDecl);
17149
17150 ProcessDeclAttributes(S, ExDecl, D);
17151 return ExDecl;
17152}
17153
17154Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
17155 Expr *AssertExpr,
17156 Expr *AssertMessageExpr,
17157 SourceLocation RParenLoc) {
17158 if (DiagnoseUnexpandedParameterPack(E: AssertExpr, UPPC: UPPC_StaticAssertExpression))
17159 return nullptr;
17160
17161 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
17162 AssertMessageExpr, RParenLoc, Failed: false);
17163}
17164
17165static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) {
17166 switch (BTK) {
17167 case BuiltinType::Char_S:
17168 case BuiltinType::Char_U:
17169 break;
17170 case BuiltinType::Char8:
17171 OS << "u8";
17172 break;
17173 case BuiltinType::Char16:
17174 OS << 'u';
17175 break;
17176 case BuiltinType::Char32:
17177 OS << 'U';
17178 break;
17179 case BuiltinType::WChar_S:
17180 case BuiltinType::WChar_U:
17181 OS << 'L';
17182 break;
17183 default:
17184 llvm_unreachable("Non-character type");
17185 }
17186}
17187
17188/// Convert character's value, interpreted as a code unit, to a string.
17189/// The value needs to be zero-extended to 32-bits.
17190/// FIXME: This assumes Unicode literal encodings
17191static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy,
17192 unsigned TyWidth,
17193 SmallVectorImpl<char> &Str) {
17194 char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT];
17195 char *Ptr = Arr;
17196 BuiltinType::Kind K = BTy->getKind();
17197 llvm::raw_svector_ostream OS(Str);
17198
17199 // This should catch Char_S, Char_U, Char8, and use of escaped characters in
17200 // other types.
17201 if (K == BuiltinType::Char_S || K == BuiltinType::Char_U ||
17202 K == BuiltinType::Char8 || Value <= 0x7F) {
17203 StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Value);
17204 if (!Escaped.empty())
17205 EscapeStringForDiagnostic(Str: Escaped, OutStr&: Str);
17206 else
17207 OS << static_cast<char>(Value);
17208 return;
17209 }
17210
17211 switch (K) {
17212 case BuiltinType::Char16:
17213 case BuiltinType::Char32:
17214 case BuiltinType::WChar_S:
17215 case BuiltinType::WChar_U: {
17216 if (llvm::ConvertCodePointToUTF8(Source: Value, ResultPtr&: Ptr))
17217 EscapeStringForDiagnostic(Str: StringRef(Arr, Ptr - Arr), OutStr&: Str);
17218 else
17219 OS << "\\x"
17220 << llvm::format_hex_no_prefix(N: Value, Width: TyWidth / 4, /*Upper=*/true);
17221 break;
17222 }
17223 default:
17224 llvm_unreachable("Non-character type is passed");
17225 }
17226}
17227
17228/// Convert \V to a string we can present to the user in a diagnostic
17229/// \T is the type of the expression that has been evaluated into \V
17230static bool ConvertAPValueToString(const APValue &V, QualType T,
17231 SmallVectorImpl<char> &Str,
17232 ASTContext &Context) {
17233 if (!V.hasValue())
17234 return false;
17235
17236 switch (V.getKind()) {
17237 case APValue::ValueKind::Int:
17238 if (T->isBooleanType()) {
17239 // Bools are reduced to ints during evaluation, but for
17240 // diagnostic purposes we want to print them as
17241 // true or false.
17242 int64_t BoolValue = V.getInt().getExtValue();
17243 assert((BoolValue == 0 || BoolValue == 1) &&
17244 "Bool type, but value is not 0 or 1");
17245 llvm::raw_svector_ostream OS(Str);
17246 OS << (BoolValue ? "true" : "false");
17247 } else {
17248 llvm::raw_svector_ostream OS(Str);
17249 // Same is true for chars.
17250 // We want to print the character representation for textual types
17251 const auto *BTy = T->getAs<BuiltinType>();
17252 if (BTy) {
17253 switch (BTy->getKind()) {
17254 case BuiltinType::Char_S:
17255 case BuiltinType::Char_U:
17256 case BuiltinType::Char8:
17257 case BuiltinType::Char16:
17258 case BuiltinType::Char32:
17259 case BuiltinType::WChar_S:
17260 case BuiltinType::WChar_U: {
17261 unsigned TyWidth = Context.getIntWidth(T);
17262 assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width");
17263 uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue());
17264 WriteCharTypePrefix(BTK: BTy->getKind(), OS);
17265 OS << '\'';
17266 WriteCharValueForDiagnostic(Value: CodeUnit, BTy, TyWidth, Str);
17267 OS << "' (0x"
17268 << llvm::format_hex_no_prefix(N: CodeUnit, /*Width=*/2,
17269 /*Upper=*/true)
17270 << ", " << V.getInt() << ')';
17271 return true;
17272 }
17273 default:
17274 break;
17275 }
17276 }
17277 V.getInt().toString(Str);
17278 }
17279
17280 break;
17281
17282 case APValue::ValueKind::Float:
17283 V.getFloat().toString(Str);
17284 break;
17285
17286 case APValue::ValueKind::LValue:
17287 if (V.isNullPointer()) {
17288 llvm::raw_svector_ostream OS(Str);
17289 OS << "nullptr";
17290 } else
17291 return false;
17292 break;
17293
17294 case APValue::ValueKind::ComplexFloat: {
17295 llvm::raw_svector_ostream OS(Str);
17296 OS << '(';
17297 V.getComplexFloatReal().toString(Str);
17298 OS << " + ";
17299 V.getComplexFloatImag().toString(Str);
17300 OS << "i)";
17301 } break;
17302
17303 case APValue::ValueKind::ComplexInt: {
17304 llvm::raw_svector_ostream OS(Str);
17305 OS << '(';
17306 V.getComplexIntReal().toString(Str);
17307 OS << " + ";
17308 V.getComplexIntImag().toString(Str);
17309 OS << "i)";
17310 } break;
17311
17312 default:
17313 return false;
17314 }
17315
17316 return true;
17317}
17318
17319/// Some Expression types are not useful to print notes about,
17320/// e.g. literals and values that have already been expanded
17321/// before such as int-valued template parameters.
17322static bool UsefulToPrintExpr(const Expr *E) {
17323 E = E->IgnoreParenImpCasts();
17324 // Literals are pretty easy for humans to understand.
17325 if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr,
17326 CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(Val: E))
17327 return false;
17328
17329 // These have been substituted from template parameters
17330 // and appear as literals in the static assert error.
17331 if (isa<SubstNonTypeTemplateParmExpr>(Val: E))
17332 return false;
17333
17334 // -5 is also simple to understand.
17335 if (const auto *UnaryOp = dyn_cast<UnaryOperator>(Val: E))
17336 return UsefulToPrintExpr(E: UnaryOp->getSubExpr());
17337
17338 // Only print nested arithmetic operators.
17339 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E))
17340 return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() ||
17341 BO->isBitwiseOp());
17342
17343 return true;
17344}
17345
17346/// Try to print more useful information about a failed static_assert
17347/// with expression \E
17348void Sema::DiagnoseStaticAssertDetails(const Expr *E) {
17349 if (const auto *Op = dyn_cast<BinaryOperator>(Val: E);
17350 Op && Op->getOpcode() != BO_LOr) {
17351 const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts();
17352 const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts();
17353
17354 // Ignore comparisons of boolean expressions with a boolean literal.
17355 if ((isa<CXXBoolLiteralExpr>(Val: LHS) && RHS->getType()->isBooleanType()) ||
17356 (isa<CXXBoolLiteralExpr>(Val: RHS) && LHS->getType()->isBooleanType()))
17357 return;
17358
17359 // Don't print obvious expressions.
17360 if (!UsefulToPrintExpr(E: LHS) && !UsefulToPrintExpr(E: RHS))
17361 return;
17362
17363 struct {
17364 const clang::Expr *Cond;
17365 Expr::EvalResult Result;
17366 SmallString<12> ValueString;
17367 bool Print;
17368 } DiagSide[2] = {{.Cond: LHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false},
17369 {.Cond: RHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false}};
17370 for (unsigned I = 0; I < 2; I++) {
17371 const Expr *Side = DiagSide[I].Cond;
17372
17373 Side->EvaluateAsRValue(Result&: DiagSide[I].Result, Ctx: Context, InConstantContext: true);
17374
17375 DiagSide[I].Print =
17376 ConvertAPValueToString(V: DiagSide[I].Result.Val, T: Side->getType(),
17377 Str&: DiagSide[I].ValueString, Context);
17378 }
17379 if (DiagSide[0].Print && DiagSide[1].Print) {
17380 Diag(Op->getExprLoc(), diag::note_expr_evaluates_to)
17381 << DiagSide[0].ValueString << Op->getOpcodeStr()
17382 << DiagSide[1].ValueString << Op->getSourceRange();
17383 }
17384 }
17385}
17386
17387bool Sema::EvaluateStaticAssertMessageAsString(Expr *Message,
17388 std::string &Result,
17389 ASTContext &Ctx,
17390 bool ErrorOnInvalidMessage) {
17391 assert(Message);
17392 assert(!Message->isTypeDependent() && !Message->isValueDependent() &&
17393 "can't evaluate a dependant static assert message");
17394
17395 if (const auto *SL = dyn_cast<StringLiteral>(Val: Message)) {
17396 assert(SL->isUnevaluated() && "expected an unevaluated string");
17397 Result.assign(first: SL->getString().begin(), last: SL->getString().end());
17398 return true;
17399 }
17400
17401 SourceLocation Loc = Message->getBeginLoc();
17402 QualType T = Message->getType().getNonReferenceType();
17403 auto *RD = T->getAsCXXRecordDecl();
17404 if (!RD) {
17405 Diag(Loc, diag::err_static_assert_invalid_message);
17406 return false;
17407 }
17408
17409 auto FindMember = [&](StringRef Member, bool &Empty,
17410 bool Diag = false) -> std::optional<LookupResult> {
17411 DeclarationName DN = PP.getIdentifierInfo(Name: Member);
17412 LookupResult MemberLookup(*this, DN, Loc, Sema::LookupMemberName);
17413 LookupQualifiedName(MemberLookup, RD);
17414 Empty = MemberLookup.empty();
17415 OverloadCandidateSet Candidates(MemberLookup.getNameLoc(),
17416 OverloadCandidateSet::CSK_Normal);
17417 if (MemberLookup.empty())
17418 return std::nullopt;
17419 return std::move(MemberLookup);
17420 };
17421
17422 bool SizeNotFound, DataNotFound;
17423 std::optional<LookupResult> SizeMember = FindMember("size", SizeNotFound);
17424 std::optional<LookupResult> DataMember = FindMember("data", DataNotFound);
17425 if (SizeNotFound || DataNotFound) {
17426 Diag(Loc, diag::err_static_assert_missing_member_function)
17427 << ((SizeNotFound && DataNotFound) ? 2
17428 : SizeNotFound ? 0
17429 : 1);
17430 return false;
17431 }
17432
17433 if (!SizeMember || !DataMember) {
17434 if (!SizeMember)
17435 FindMember("size", SizeNotFound, /*Diag=*/true);
17436 if (!DataMember)
17437 FindMember("data", DataNotFound, /*Diag=*/true);
17438 return false;
17439 }
17440
17441 auto BuildExpr = [&](LookupResult &LR) {
17442 ExprResult Res = BuildMemberReferenceExpr(
17443 Message, Message->getType(), Message->getBeginLoc(), false,
17444 CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr);
17445 if (Res.isInvalid())
17446 return ExprError();
17447 Res = BuildCallExpr(S: nullptr, Fn: Res.get(), LParenLoc: Loc, ArgExprs: std::nullopt, RParenLoc: Loc, ExecConfig: nullptr,
17448 IsExecConfig: false, AllowRecovery: true);
17449 if (Res.isInvalid())
17450 return ExprError();
17451 if (Res.get()->isTypeDependent() || Res.get()->isValueDependent())
17452 return ExprError();
17453 return TemporaryMaterializationConversion(Res.get());
17454 };
17455
17456 ExprResult SizeE = BuildExpr(*SizeMember);
17457 ExprResult DataE = BuildExpr(*DataMember);
17458
17459 QualType SizeT = Context.getSizeType();
17460 QualType ConstCharPtr =
17461 Context.getPointerType(Context.getConstType(T: Context.CharTy));
17462
17463 ExprResult EvaluatedSize =
17464 SizeE.isInvalid() ? ExprError()
17465 : BuildConvertedConstantExpression(
17466 From: SizeE.get(), T: SizeT, CCE: CCEK_StaticAssertMessageSize);
17467 if (EvaluatedSize.isInvalid()) {
17468 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*size*/ 0;
17469 return false;
17470 }
17471
17472 ExprResult EvaluatedData =
17473 DataE.isInvalid()
17474 ? ExprError()
17475 : BuildConvertedConstantExpression(From: DataE.get(), T: ConstCharPtr,
17476 CCE: CCEK_StaticAssertMessageData);
17477 if (EvaluatedData.isInvalid()) {
17478 Diag(Loc, diag::err_static_assert_invalid_mem_fn_ret_ty) << /*data*/ 1;
17479 return false;
17480 }
17481
17482 if (!ErrorOnInvalidMessage &&
17483 Diags.isIgnored(diag::warn_static_assert_message_constexpr, Loc))
17484 return true;
17485
17486 Expr::EvalResult Status;
17487 SmallVector<PartialDiagnosticAt, 8> Notes;
17488 Status.Diag = &Notes;
17489 if (!Message->EvaluateCharRangeAsString(Result, SizeExpression: EvaluatedSize.get(),
17490 PtrExpression: EvaluatedData.get(), Ctx, Status) ||
17491 !Notes.empty()) {
17492 Diag(Message->getBeginLoc(),
17493 ErrorOnInvalidMessage ? diag::err_static_assert_message_constexpr
17494 : diag::warn_static_assert_message_constexpr);
17495 for (const auto &Note : Notes)
17496 Diag(Note.first, Note.second);
17497 return !ErrorOnInvalidMessage;
17498 }
17499 return true;
17500}
17501
17502Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
17503 Expr *AssertExpr, Expr *AssertMessage,
17504 SourceLocation RParenLoc,
17505 bool Failed) {
17506 assert(AssertExpr != nullptr && "Expected non-null condition");
17507 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
17508 (!AssertMessage || (!AssertMessage->isTypeDependent() &&
17509 !AssertMessage->isValueDependent())) &&
17510 !Failed) {
17511 // In a static_assert-declaration, the constant-expression shall be a
17512 // constant expression that can be contextually converted to bool.
17513 ExprResult Converted = PerformContextuallyConvertToBool(From: AssertExpr);
17514 if (Converted.isInvalid())
17515 Failed = true;
17516
17517 ExprResult FullAssertExpr =
17518 ActOnFinishFullExpr(Expr: Converted.get(), CC: StaticAssertLoc,
17519 /*DiscardedValue*/ false,
17520 /*IsConstexpr*/ true);
17521 if (FullAssertExpr.isInvalid())
17522 Failed = true;
17523 else
17524 AssertExpr = FullAssertExpr.get();
17525
17526 llvm::APSInt Cond;
17527 Expr *BaseExpr = AssertExpr;
17528 AllowFoldKind FoldKind = NoFold;
17529
17530 if (!getLangOpts().CPlusPlus) {
17531 // In C mode, allow folding as an extension for better compatibility with
17532 // C++ in terms of expressions like static_assert("test") or
17533 // static_assert(nullptr).
17534 FoldKind = AllowFold;
17535 }
17536
17537 if (!Failed && VerifyIntegerConstantExpression(
17538 BaseExpr, &Cond,
17539 diag::err_static_assert_expression_is_not_constant,
17540 FoldKind).isInvalid())
17541 Failed = true;
17542
17543 // If the static_assert passes, only verify that
17544 // the message is grammatically valid without evaluating it.
17545 if (!Failed && AssertMessage && Cond.getBoolValue()) {
17546 std::string Str;
17547 EvaluateStaticAssertMessageAsString(Message: AssertMessage, Result&: Str, Ctx&: Context,
17548 /*ErrorOnInvalidMessage=*/false);
17549 }
17550
17551 // CWG2518
17552 // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a
17553 // template definition, the declaration has no effect.
17554 bool InTemplateDefinition =
17555 getLangOpts().CPlusPlus && CurContext->isDependentContext();
17556
17557 if (!Failed && !Cond && !InTemplateDefinition) {
17558 SmallString<256> MsgBuffer;
17559 llvm::raw_svector_ostream Msg(MsgBuffer);
17560 bool HasMessage = AssertMessage;
17561 if (AssertMessage) {
17562 std::string Str;
17563 HasMessage =
17564 EvaluateStaticAssertMessageAsString(
17565 Message: AssertMessage, Result&: Str, Ctx&: Context, /*ErrorOnInvalidMessage=*/true) ||
17566 !Str.empty();
17567 Msg << Str;
17568 }
17569 Expr *InnerCond = nullptr;
17570 std::string InnerCondDescription;
17571 std::tie(args&: InnerCond, args&: InnerCondDescription) =
17572 findFailedBooleanCondition(Cond: Converted.get());
17573 if (InnerCond && isa<ConceptSpecializationExpr>(Val: InnerCond)) {
17574 // Drill down into concept specialization expressions to see why they
17575 // weren't satisfied.
17576 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
17577 << !HasMessage << Msg.str() << AssertExpr->getSourceRange();
17578 ConstraintSatisfaction Satisfaction;
17579 if (!CheckConstraintSatisfaction(ConstraintExpr: InnerCond, Satisfaction))
17580 DiagnoseUnsatisfiedConstraint(Satisfaction);
17581 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(Val: InnerCond)
17582 && !isa<IntegerLiteral>(Val: InnerCond)) {
17583 Diag(InnerCond->getBeginLoc(),
17584 diag::err_static_assert_requirement_failed)
17585 << InnerCondDescription << !HasMessage << Msg.str()
17586 << InnerCond->getSourceRange();
17587 DiagnoseStaticAssertDetails(E: InnerCond);
17588 } else {
17589 Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed)
17590 << !HasMessage << Msg.str() << AssertExpr->getSourceRange();
17591 PrintContextStack();
17592 }
17593 Failed = true;
17594 }
17595 } else {
17596 ExprResult FullAssertExpr = ActOnFinishFullExpr(Expr: AssertExpr, CC: StaticAssertLoc,
17597 /*DiscardedValue*/false,
17598 /*IsConstexpr*/true);
17599 if (FullAssertExpr.isInvalid())
17600 Failed = true;
17601 else
17602 AssertExpr = FullAssertExpr.get();
17603 }
17604
17605 Decl *Decl = StaticAssertDecl::Create(C&: Context, DC: CurContext, StaticAssertLoc,
17606 AssertExpr, Message: AssertMessage, RParenLoc,
17607 Failed);
17608
17609 CurContext->addDecl(D: Decl);
17610 return Decl;
17611}
17612
17613/// Handle a friend tag declaration where the scope specifier was
17614/// templated.
17615DeclResult Sema::ActOnTemplatedFriendTag(
17616 Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc,
17617 CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc,
17618 const ParsedAttributesView &Attr, MultiTemplateParamsArg TempParamLists) {
17619 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec);
17620
17621 bool IsMemberSpecialization = false;
17622 bool Invalid = false;
17623
17624 if (TemplateParameterList *TemplateParams =
17625 MatchTemplateParametersToScopeSpecifier(
17626 DeclStartLoc: TagLoc, DeclLoc: NameLoc, SS, TemplateId: nullptr, ParamLists: TempParamLists, /*friend*/ IsFriend: true,
17627 IsMemberSpecialization, Invalid)) {
17628 if (TemplateParams->size() > 0) {
17629 // This is a declaration of a class template.
17630 if (Invalid)
17631 return true;
17632
17633 return CheckClassTemplate(S, TagSpec, TUK: TUK_Friend, KWLoc: TagLoc, SS, Name,
17634 NameLoc, Attr, TemplateParams, AS: AS_public,
17635 /*ModulePrivateLoc=*/SourceLocation(),
17636 FriendLoc, NumOuterTemplateParamLists: TempParamLists.size() - 1,
17637 OuterTemplateParamLists: TempParamLists.data()).get();
17638 } else {
17639 // The "template<>" header is extraneous.
17640 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
17641 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
17642 IsMemberSpecialization = true;
17643 }
17644 }
17645
17646 if (Invalid) return true;
17647
17648 bool isAllExplicitSpecializations = true;
17649 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
17650 if (TempParamLists[I]->size()) {
17651 isAllExplicitSpecializations = false;
17652 break;
17653 }
17654 }
17655
17656 // FIXME: don't ignore attributes.
17657
17658 // If it's explicit specializations all the way down, just forget
17659 // about the template header and build an appropriate non-templated
17660 // friend. TODO: for source fidelity, remember the headers.
17661 if (isAllExplicitSpecializations) {
17662 if (SS.isEmpty()) {
17663 bool Owned = false;
17664 bool IsDependent = false;
17665 return ActOnTag(S, TagSpec, TUK: TUK_Friend, KWLoc: TagLoc, SS, Name, NameLoc, Attr,
17666 AS: AS_public,
17667 /*ModulePrivateLoc=*/SourceLocation(),
17668 TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent,
17669 /*ScopedEnumKWLoc=*/SourceLocation(),
17670 /*ScopedEnumUsesClassTag=*/false,
17671 /*UnderlyingType=*/TypeResult(),
17672 /*IsTypeSpecifier=*/false,
17673 /*IsTemplateParamOrArg=*/false, /*OOK=*/OOK_Outside);
17674 }
17675
17676 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
17677 ElaboratedTypeKeyword Keyword
17678 = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind);
17679 QualType T = CheckTypenameType(Keyword, KeywordLoc: TagLoc, QualifierLoc,
17680 II: *Name, IILoc: NameLoc);
17681 if (T.isNull())
17682 return true;
17683
17684 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17685 if (isa<DependentNameType>(Val: T)) {
17686 DependentNameTypeLoc TL =
17687 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17688 TL.setElaboratedKeywordLoc(TagLoc);
17689 TL.setQualifierLoc(QualifierLoc);
17690 TL.setNameLoc(NameLoc);
17691 } else {
17692 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
17693 TL.setElaboratedKeywordLoc(TagLoc);
17694 TL.setQualifierLoc(QualifierLoc);
17695 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
17696 }
17697
17698 FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc,
17699 Friend_: TSI, FriendL: FriendLoc, FriendTypeTPLists: TempParamLists);
17700 Friend->setAccess(AS_public);
17701 CurContext->addDecl(Friend);
17702 return Friend;
17703 }
17704
17705 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
17706
17707
17708
17709 // Handle the case of a templated-scope friend class. e.g.
17710 // template <class T> class A<T>::B;
17711 // FIXME: we don't support these right now.
17712 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
17713 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
17714 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind);
17715 QualType T = Context.getDependentNameType(Keyword: ETK, NNS: SS.getScopeRep(), Name);
17716 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
17717 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
17718 TL.setElaboratedKeywordLoc(TagLoc);
17719 TL.setQualifierLoc(SS.getWithLocInContext(Context));
17720 TL.setNameLoc(NameLoc);
17721
17722 FriendDecl *Friend = FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc,
17723 Friend_: TSI, FriendL: FriendLoc, FriendTypeTPLists: TempParamLists);
17724 Friend->setAccess(AS_public);
17725 Friend->setUnsupportedFriend(true);
17726 CurContext->addDecl(Friend);
17727 return Friend;
17728}
17729
17730/// Handle a friend type declaration. This works in tandem with
17731/// ActOnTag.
17732///
17733/// Notes on friend class templates:
17734///
17735/// We generally treat friend class declarations as if they were
17736/// declaring a class. So, for example, the elaborated type specifier
17737/// in a friend declaration is required to obey the restrictions of a
17738/// class-head (i.e. no typedefs in the scope chain), template
17739/// parameters are required to match up with simple template-ids, &c.
17740/// However, unlike when declaring a template specialization, it's
17741/// okay to refer to a template specialization without an empty
17742/// template parameter declaration, e.g.
17743/// friend class A<T>::B<unsigned>;
17744/// We permit this as a special case; if there are any template
17745/// parameters present at all, require proper matching, i.e.
17746/// template <> template \<class T> friend class A<int>::B;
17747Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
17748 MultiTemplateParamsArg TempParams) {
17749 SourceLocation Loc = DS.getBeginLoc();
17750 SourceLocation FriendLoc = DS.getFriendSpecLoc();
17751
17752 assert(DS.isFriendSpecified());
17753 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
17754
17755 // C++ [class.friend]p3:
17756 // A friend declaration that does not declare a function shall have one of
17757 // the following forms:
17758 // friend elaborated-type-specifier ;
17759 // friend simple-type-specifier ;
17760 // friend typename-specifier ;
17761 //
17762 // If the friend keyword isn't first, or if the declarations has any type
17763 // qualifiers, then the declaration doesn't have that form.
17764 if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst())
17765 Diag(FriendLoc, diag::err_friend_not_first_in_declaration);
17766 if (DS.getTypeQualifiers()) {
17767 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
17768 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
17769 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
17770 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
17771 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
17772 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
17773 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
17774 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
17775 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
17776 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
17777 }
17778
17779 // Try to convert the decl specifier to a type. This works for
17780 // friend templates because ActOnTag never produces a ClassTemplateDecl
17781 // for a TUK_Friend.
17782 Declarator TheDeclarator(DS, ParsedAttributesView::none(),
17783 DeclaratorContext::Member);
17784 TypeSourceInfo *TSI = GetTypeForDeclarator(D&: TheDeclarator);
17785 QualType T = TSI->getType();
17786 if (TheDeclarator.isInvalidType())
17787 return nullptr;
17788
17789 if (DiagnoseUnexpandedParameterPack(Loc, T: TSI, UPPC: UPPC_FriendDeclaration))
17790 return nullptr;
17791
17792 if (!T->isElaboratedTypeSpecifier()) {
17793 if (TempParams.size()) {
17794 // C++23 [dcl.pre]p5:
17795 // In a simple-declaration, the optional init-declarator-list can be
17796 // omitted only when declaring a class or enumeration, that is, when
17797 // the decl-specifier-seq contains either a class-specifier, an
17798 // elaborated-type-specifier with a class-key, or an enum-specifier.
17799 //
17800 // The declaration of a template-declaration or explicit-specialization
17801 // is never a member-declaration, so this must be a simple-declaration
17802 // with no init-declarator-list. Therefore, this is ill-formed.
17803 Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange();
17804 return nullptr;
17805 } else if (const RecordDecl *RD = T->getAsRecordDecl()) {
17806 SmallString<16> InsertionText(" ");
17807 InsertionText += RD->getKindName();
17808
17809 Diag(Loc, getLangOpts().CPlusPlus11
17810 ? diag::warn_cxx98_compat_unelaborated_friend_type
17811 : diag::ext_unelaborated_friend_type)
17812 << (unsigned)RD->getTagKind() << T
17813 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
17814 InsertionText);
17815 } else {
17816 Diag(FriendLoc, getLangOpts().CPlusPlus11
17817 ? diag::warn_cxx98_compat_nonclass_type_friend
17818 : diag::ext_nonclass_type_friend)
17819 << T << DS.getSourceRange();
17820 }
17821 }
17822
17823 // C++98 [class.friend]p1: A friend of a class is a function
17824 // or class that is not a member of the class . . .
17825 // This is fixed in DR77, which just barely didn't make the C++03
17826 // deadline. It's also a very silly restriction that seriously
17827 // affects inner classes and which nobody else seems to implement;
17828 // thus we never diagnose it, not even in -pedantic.
17829 //
17830 // But note that we could warn about it: it's always useless to
17831 // friend one of your own members (it's not, however, worthless to
17832 // friend a member of an arbitrary specialization of your template).
17833
17834 Decl *D;
17835 if (!TempParams.empty())
17836 D = FriendTemplateDecl::Create(Context, DC: CurContext, Loc, Params: TempParams, Friend: TSI,
17837 FriendLoc);
17838 else
17839 D = FriendDecl::Create(C&: Context, DC: CurContext, L: TSI->getTypeLoc().getBeginLoc(),
17840 Friend_: TSI, FriendL: FriendLoc);
17841
17842 if (!D)
17843 return nullptr;
17844
17845 D->setAccess(AS_public);
17846 CurContext->addDecl(D);
17847
17848 return D;
17849}
17850
17851NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
17852 MultiTemplateParamsArg TemplateParams) {
17853 const DeclSpec &DS = D.getDeclSpec();
17854
17855 assert(DS.isFriendSpecified());
17856 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
17857
17858 SourceLocation Loc = D.getIdentifierLoc();
17859 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
17860
17861 // C++ [class.friend]p1
17862 // A friend of a class is a function or class....
17863 // Note that this sees through typedefs, which is intended.
17864 // It *doesn't* see through dependent types, which is correct
17865 // according to [temp.arg.type]p3:
17866 // If a declaration acquires a function type through a
17867 // type dependent on a template-parameter and this causes
17868 // a declaration that does not use the syntactic form of a
17869 // function declarator to have a function type, the program
17870 // is ill-formed.
17871 if (!TInfo->getType()->isFunctionType()) {
17872 Diag(Loc, diag::err_unexpected_friend);
17873
17874 // It might be worthwhile to try to recover by creating an
17875 // appropriate declaration.
17876 return nullptr;
17877 }
17878
17879 // C++ [namespace.memdef]p3
17880 // - If a friend declaration in a non-local class first declares a
17881 // class or function, the friend class or function is a member
17882 // of the innermost enclosing namespace.
17883 // - The name of the friend is not found by simple name lookup
17884 // until a matching declaration is provided in that namespace
17885 // scope (either before or after the class declaration granting
17886 // friendship).
17887 // - If a friend function is called, its name may be found by the
17888 // name lookup that considers functions from namespaces and
17889 // classes associated with the types of the function arguments.
17890 // - When looking for a prior declaration of a class or a function
17891 // declared as a friend, scopes outside the innermost enclosing
17892 // namespace scope are not considered.
17893
17894 CXXScopeSpec &SS = D.getCXXScopeSpec();
17895 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
17896 assert(NameInfo.getName());
17897
17898 // Check for unexpanded parameter packs.
17899 if (DiagnoseUnexpandedParameterPack(Loc, T: TInfo, UPPC: UPPC_FriendDeclaration) ||
17900 DiagnoseUnexpandedParameterPack(NameInfo, UPPC: UPPC_FriendDeclaration) ||
17901 DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_FriendDeclaration))
17902 return nullptr;
17903
17904 // The context we found the declaration in, or in which we should
17905 // create the declaration.
17906 DeclContext *DC;
17907 Scope *DCScope = S;
17908 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
17909 RedeclarationKind::ForExternalRedeclaration);
17910
17911 bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
17912
17913 // There are five cases here.
17914 // - There's no scope specifier and we're in a local class. Only look
17915 // for functions declared in the immediately-enclosing block scope.
17916 // We recover from invalid scope qualifiers as if they just weren't there.
17917 FunctionDecl *FunctionContainingLocalClass = nullptr;
17918 if ((SS.isInvalid() || !SS.isSet()) &&
17919 (FunctionContainingLocalClass =
17920 cast<CXXRecordDecl>(Val: CurContext)->isLocalClass())) {
17921 // C++11 [class.friend]p11:
17922 // If a friend declaration appears in a local class and the name
17923 // specified is an unqualified name, a prior declaration is
17924 // looked up without considering scopes that are outside the
17925 // innermost enclosing non-class scope. For a friend function
17926 // declaration, if there is no prior declaration, the program is
17927 // ill-formed.
17928
17929 // Find the innermost enclosing non-class scope. This is the block
17930 // scope containing the local class definition (or for a nested class,
17931 // the outer local class).
17932 DCScope = S->getFnParent();
17933
17934 // Look up the function name in the scope.
17935 Previous.clear(Kind: LookupLocalFriendName);
17936 LookupName(R&: Previous, S, /*AllowBuiltinCreation*/false);
17937
17938 if (!Previous.empty()) {
17939 // All possible previous declarations must have the same context:
17940 // either they were declared at block scope or they are members of
17941 // one of the enclosing local classes.
17942 DC = Previous.getRepresentativeDecl()->getDeclContext();
17943 } else {
17944 // This is ill-formed, but provide the context that we would have
17945 // declared the function in, if we were permitted to, for error recovery.
17946 DC = FunctionContainingLocalClass;
17947 }
17948 adjustContextForLocalExternDecl(DC);
17949
17950 // - There's no scope specifier, in which case we just go to the
17951 // appropriate scope and look for a function or function template
17952 // there as appropriate.
17953 } else if (SS.isInvalid() || !SS.isSet()) {
17954 // C++11 [namespace.memdef]p3:
17955 // If the name in a friend declaration is neither qualified nor
17956 // a template-id and the declaration is a function or an
17957 // elaborated-type-specifier, the lookup to determine whether
17958 // the entity has been previously declared shall not consider
17959 // any scopes outside the innermost enclosing namespace.
17960
17961 // Find the appropriate context according to the above.
17962 DC = CurContext;
17963
17964 // Skip class contexts. If someone can cite chapter and verse
17965 // for this behavior, that would be nice --- it's what GCC and
17966 // EDG do, and it seems like a reasonable intent, but the spec
17967 // really only says that checks for unqualified existing
17968 // declarations should stop at the nearest enclosing namespace,
17969 // not that they should only consider the nearest enclosing
17970 // namespace.
17971 while (DC->isRecord())
17972 DC = DC->getParent();
17973
17974 DeclContext *LookupDC = DC->getNonTransparentContext();
17975 while (true) {
17976 LookupQualifiedName(R&: Previous, LookupCtx: LookupDC);
17977
17978 if (!Previous.empty()) {
17979 DC = LookupDC;
17980 break;
17981 }
17982
17983 if (isTemplateId) {
17984 if (isa<TranslationUnitDecl>(Val: LookupDC)) break;
17985 } else {
17986 if (LookupDC->isFileContext()) break;
17987 }
17988 LookupDC = LookupDC->getParent();
17989 }
17990
17991 DCScope = getScopeForDeclContext(S, DC);
17992
17993 // - There's a non-dependent scope specifier, in which case we
17994 // compute it and do a previous lookup there for a function
17995 // or function template.
17996 } else if (!SS.getScopeRep()->isDependent()) {
17997 DC = computeDeclContext(SS);
17998 if (!DC) return nullptr;
17999
18000 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
18001
18002 LookupQualifiedName(R&: Previous, LookupCtx: DC);
18003
18004 // C++ [class.friend]p1: A friend of a class is a function or
18005 // class that is not a member of the class . . .
18006 if (DC->Equals(CurContext))
18007 Diag(DS.getFriendSpecLoc(),
18008 getLangOpts().CPlusPlus11 ?
18009 diag::warn_cxx98_compat_friend_is_member :
18010 diag::err_friend_is_member);
18011
18012 // - There's a scope specifier that does not match any template
18013 // parameter lists, in which case we use some arbitrary context,
18014 // create a method or method template, and wait for instantiation.
18015 // - There's a scope specifier that does match some template
18016 // parameter lists, which we don't handle right now.
18017 } else {
18018 DC = CurContext;
18019 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
18020 }
18021
18022 if (!DC->isRecord()) {
18023 int DiagArg = -1;
18024 switch (D.getName().getKind()) {
18025 case UnqualifiedIdKind::IK_ConstructorTemplateId:
18026 case UnqualifiedIdKind::IK_ConstructorName:
18027 DiagArg = 0;
18028 break;
18029 case UnqualifiedIdKind::IK_DestructorName:
18030 DiagArg = 1;
18031 break;
18032 case UnqualifiedIdKind::IK_ConversionFunctionId:
18033 DiagArg = 2;
18034 break;
18035 case UnqualifiedIdKind::IK_DeductionGuideName:
18036 DiagArg = 3;
18037 break;
18038 case UnqualifiedIdKind::IK_Identifier:
18039 case UnqualifiedIdKind::IK_ImplicitSelfParam:
18040 case UnqualifiedIdKind::IK_LiteralOperatorId:
18041 case UnqualifiedIdKind::IK_OperatorFunctionId:
18042 case UnqualifiedIdKind::IK_TemplateId:
18043 break;
18044 }
18045 // This implies that it has to be an operator or function.
18046 if (DiagArg >= 0) {
18047 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
18048 return nullptr;
18049 }
18050 }
18051
18052 // FIXME: This is an egregious hack to cope with cases where the scope stack
18053 // does not contain the declaration context, i.e., in an out-of-line
18054 // definition of a class.
18055 Scope FakeDCScope(S, Scope::DeclScope, Diags);
18056 if (!DCScope) {
18057 FakeDCScope.setEntity(DC);
18058 DCScope = &FakeDCScope;
18059 }
18060
18061 bool AddToScope = true;
18062 NamedDecl *ND = ActOnFunctionDeclarator(S: DCScope, D, DC, TInfo, Previous,
18063 TemplateParamLists: TemplateParams, AddToScope);
18064 if (!ND) return nullptr;
18065
18066 assert(ND->getLexicalDeclContext() == CurContext);
18067
18068 // If we performed typo correction, we might have added a scope specifier
18069 // and changed the decl context.
18070 DC = ND->getDeclContext();
18071
18072 // Add the function declaration to the appropriate lookup tables,
18073 // adjusting the redeclarations list as necessary. We don't
18074 // want to do this yet if the friending class is dependent.
18075 //
18076 // Also update the scope-based lookup if the target context's
18077 // lookup context is in lexical scope.
18078 if (!CurContext->isDependentContext()) {
18079 DC = DC->getRedeclContext();
18080 DC->makeDeclVisibleInContext(D: ND);
18081 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
18082 PushOnScopeChains(D: ND, S: EnclosingScope, /*AddToContext=*/ false);
18083 }
18084
18085 FriendDecl *FrD = FriendDecl::Create(C&: Context, DC: CurContext,
18086 L: D.getIdentifierLoc(), Friend_: ND,
18087 FriendL: DS.getFriendSpecLoc());
18088 FrD->setAccess(AS_public);
18089 CurContext->addDecl(FrD);
18090
18091 if (ND->isInvalidDecl()) {
18092 FrD->setInvalidDecl();
18093 } else {
18094 if (DC->isRecord()) CheckFriendAccess(D: ND);
18095
18096 FunctionDecl *FD;
18097 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND))
18098 FD = FTD->getTemplatedDecl();
18099 else
18100 FD = cast<FunctionDecl>(Val: ND);
18101
18102 // C++ [class.friend]p6:
18103 // A function may be defined in a friend declaration of a class if and
18104 // only if the class is a non-local class, and the function name is
18105 // unqualified.
18106 if (D.isFunctionDefinition()) {
18107 // Qualified friend function definition.
18108 if (SS.isNotEmpty()) {
18109 // FIXME: We should only do this if the scope specifier names the
18110 // innermost enclosing namespace; otherwise the fixit changes the
18111 // meaning of the code.
18112 SemaDiagnosticBuilder DB =
18113 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
18114
18115 DB << SS.getScopeRep();
18116 if (DC->isFileContext())
18117 DB << FixItHint::CreateRemoval(RemoveRange: SS.getRange());
18118
18119 // Friend function defined in a local class.
18120 } else if (FunctionContainingLocalClass) {
18121 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
18122
18123 // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have
18124 // a template-id, the function name is not unqualified because these is
18125 // no name. While the wording requires some reading in-between the
18126 // lines, GCC, MSVC, and EDG all consider a friend function
18127 // specialization definitions // to be de facto explicit specialization
18128 // and diagnose them as such.
18129 } else if (isTemplateId) {
18130 Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def);
18131 }
18132 }
18133
18134 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
18135 // default argument expression, that declaration shall be a definition
18136 // and shall be the only declaration of the function or function
18137 // template in the translation unit.
18138 if (functionDeclHasDefaultArgument(FD)) {
18139 // We can't look at FD->getPreviousDecl() because it may not have been set
18140 // if we're in a dependent context. If the function is known to be a
18141 // redeclaration, we will have narrowed Previous down to the right decl.
18142 if (D.isRedeclaration()) {
18143 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
18144 Diag(Previous.getRepresentativeDecl()->getLocation(),
18145 diag::note_previous_declaration);
18146 } else if (!D.isFunctionDefinition())
18147 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
18148 }
18149
18150 // Mark templated-scope function declarations as unsupported.
18151 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
18152 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
18153 << SS.getScopeRep() << SS.getRange()
18154 << cast<CXXRecordDecl>(CurContext);
18155 FrD->setUnsupportedFriend(true);
18156 }
18157 }
18158
18159 warnOnReservedIdentifier(D: ND);
18160
18161 return ND;
18162}
18163
18164void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc,
18165 StringLiteral *Message) {
18166 AdjustDeclIfTemplate(Decl&: Dcl);
18167
18168 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Val: Dcl);
18169 if (!Fn) {
18170 Diag(DelLoc, diag::err_deleted_non_function);
18171 return;
18172 }
18173
18174 // Deleted function does not have a body.
18175 Fn->setWillHaveBody(false);
18176
18177 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
18178 // Don't consider the implicit declaration we generate for explicit
18179 // specializations. FIXME: Do not generate these implicit declarations.
18180 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
18181 Prev->getPreviousDecl()) &&
18182 !Prev->isDefined()) {
18183 Diag(DelLoc, diag::err_deleted_decl_not_first);
18184 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
18185 Prev->isImplicit() ? diag::note_previous_implicit_declaration
18186 : diag::note_previous_declaration);
18187 // We can't recover from this; the declaration might have already
18188 // been used.
18189 Fn->setInvalidDecl();
18190 return;
18191 }
18192
18193 // To maintain the invariant that functions are only deleted on their first
18194 // declaration, mark the implicitly-instantiated declaration of the
18195 // explicitly-specialized function as deleted instead of marking the
18196 // instantiated redeclaration.
18197 Fn = Fn->getCanonicalDecl();
18198 }
18199
18200 // dllimport/dllexport cannot be deleted.
18201 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
18202 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
18203 Fn->setInvalidDecl();
18204 }
18205
18206 // C++11 [basic.start.main]p3:
18207 // A program that defines main as deleted [...] is ill-formed.
18208 if (Fn->isMain())
18209 Diag(DelLoc, diag::err_deleted_main);
18210
18211 // C++11 [dcl.fct.def.delete]p4:
18212 // A deleted function is implicitly inline.
18213 Fn->setImplicitlyInline();
18214 Fn->setDeletedAsWritten(D: true, Message);
18215}
18216
18217void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
18218 if (!Dcl || Dcl->isInvalidDecl())
18219 return;
18220
18221 auto *FD = dyn_cast<FunctionDecl>(Val: Dcl);
18222 if (!FD) {
18223 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: Dcl)) {
18224 if (getDefaultedFunctionKind(FD: FTD->getTemplatedDecl()).isComparison()) {
18225 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
18226 return;
18227 }
18228 }
18229
18230 Diag(DefaultLoc, diag::err_default_special_members)
18231 << getLangOpts().CPlusPlus20;
18232 return;
18233 }
18234
18235 // Reject if this can't possibly be a defaultable function.
18236 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
18237 if (!DefKind &&
18238 // A dependent function that doesn't locally look defaultable can
18239 // still instantiate to a defaultable function if it's a constructor
18240 // or assignment operator.
18241 (!FD->isDependentContext() ||
18242 (!isa<CXXConstructorDecl>(Val: FD) &&
18243 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
18244 Diag(DefaultLoc, diag::err_default_special_members)
18245 << getLangOpts().CPlusPlus20;
18246 return;
18247 }
18248
18249 // Issue compatibility warning. We already warned if the operator is
18250 // 'operator<=>' when parsing the '<=>' token.
18251 if (DefKind.isComparison() &&
18252 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
18253 Diag(DefaultLoc, getLangOpts().CPlusPlus20
18254 ? diag::warn_cxx17_compat_defaulted_comparison
18255 : diag::ext_defaulted_comparison);
18256 }
18257
18258 FD->setDefaulted();
18259 FD->setExplicitlyDefaulted();
18260 FD->setDefaultLoc(DefaultLoc);
18261
18262 // Defer checking functions that are defaulted in a dependent context.
18263 if (FD->isDependentContext())
18264 return;
18265
18266 // Unset that we will have a body for this function. We might not,
18267 // if it turns out to be trivial, and we don't need this marking now
18268 // that we've marked it as defaulted.
18269 FD->setWillHaveBody(false);
18270
18271 if (DefKind.isComparison()) {
18272 // If this comparison's defaulting occurs within the definition of its
18273 // lexical class context, we have to do the checking when complete.
18274 if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()))
18275 if (!RD->isCompleteDefinition())
18276 return;
18277 }
18278
18279 // If this member fn was defaulted on its first declaration, we will have
18280 // already performed the checking in CheckCompletedCXXClass. Such a
18281 // declaration doesn't trigger an implicit definition.
18282 if (isa<CXXMethodDecl>(Val: FD)) {
18283 const FunctionDecl *Primary = FD;
18284 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
18285 // Ask the template instantiation pattern that actually had the
18286 // '= default' on it.
18287 Primary = Pattern;
18288 if (Primary->getCanonicalDecl()->isDefaulted())
18289 return;
18290 }
18291
18292 if (DefKind.isComparison()) {
18293 if (CheckExplicitlyDefaultedComparison(S: nullptr, FD, DCK: DefKind.asComparison()))
18294 FD->setInvalidDecl();
18295 else
18296 DefineDefaultedComparison(UseLoc: DefaultLoc, FD, DCK: DefKind.asComparison());
18297 } else {
18298 auto *MD = cast<CXXMethodDecl>(Val: FD);
18299
18300 if (CheckExplicitlyDefaultedSpecialMember(MD, CSM: DefKind.asSpecialMember(),
18301 DefaultLoc))
18302 MD->setInvalidDecl();
18303 else
18304 DefineDefaultedFunction(*this, MD, DefaultLoc);
18305 }
18306}
18307
18308static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
18309 for (Stmt *SubStmt : S->children()) {
18310 if (!SubStmt)
18311 continue;
18312 if (isa<ReturnStmt>(SubStmt))
18313 Self.Diag(SubStmt->getBeginLoc(),
18314 diag::err_return_in_constructor_handler);
18315 if (!isa<Expr>(Val: SubStmt))
18316 SearchForReturnInStmt(Self, S: SubStmt);
18317 }
18318}
18319
18320void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
18321 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
18322 CXXCatchStmt *Handler = TryBlock->getHandler(i: I);
18323 SearchForReturnInStmt(Self&: *this, S: Handler);
18324 }
18325}
18326
18327void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind,
18328 StringLiteral *DeletedMessage) {
18329 switch (BodyKind) {
18330 case FnBodyKind::Delete:
18331 SetDeclDeleted(Dcl: D, DelLoc: Loc, Message: DeletedMessage);
18332 break;
18333 case FnBodyKind::Default:
18334 SetDeclDefaulted(Dcl: D, DefaultLoc: Loc);
18335 break;
18336 case FnBodyKind::Other:
18337 llvm_unreachable(
18338 "Parsed function body should be '= delete;' or '= default;'");
18339 }
18340}
18341
18342bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
18343 const CXXMethodDecl *Old) {
18344 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
18345 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
18346
18347 if (OldFT->hasExtParameterInfos()) {
18348 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
18349 // A parameter of the overriding method should be annotated with noescape
18350 // if the corresponding parameter of the overridden method is annotated.
18351 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
18352 !NewFT->getExtParameterInfo(I).isNoEscape()) {
18353 Diag(New->getParamDecl(I)->getLocation(),
18354 diag::warn_overriding_method_missing_noescape);
18355 Diag(Old->getParamDecl(I)->getLocation(),
18356 diag::note_overridden_marked_noescape);
18357 }
18358 }
18359
18360 // SME attributes must match when overriding a function declaration.
18361 if (IsInvalidSMECallConversion(FromType: Old->getType(), ToType: New->getType())) {
18362 Diag(New->getLocation(), diag::err_conflicting_overriding_attributes)
18363 << New << New->getType() << Old->getType();
18364 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18365 return true;
18366 }
18367
18368 // Virtual overrides must have the same code_seg.
18369 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
18370 const auto *NewCSA = New->getAttr<CodeSegAttr>();
18371 if ((NewCSA || OldCSA) &&
18372 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
18373 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
18374 Diag(Old->getLocation(), diag::note_previous_declaration);
18375 return true;
18376 }
18377
18378 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
18379
18380 // If the calling conventions match, everything is fine
18381 if (NewCC == OldCC)
18382 return false;
18383
18384 // If the calling conventions mismatch because the new function is static,
18385 // suppress the calling convention mismatch error; the error about static
18386 // function override (err_static_overrides_virtual from
18387 // Sema::CheckFunctionDeclaration) is more clear.
18388 if (New->getStorageClass() == SC_Static)
18389 return false;
18390
18391 Diag(New->getLocation(),
18392 diag::err_conflicting_overriding_cc_attributes)
18393 << New->getDeclName() << New->getType() << Old->getType();
18394 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18395 return true;
18396}
18397
18398bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New,
18399 const CXXMethodDecl *Old) {
18400 // CWG2553
18401 // A virtual function shall not be an explicit object member function.
18402 if (!New->isExplicitObjectMemberFunction())
18403 return true;
18404 Diag(New->getParamDecl(0)->getBeginLoc(),
18405 diag::err_explicit_object_parameter_nonmember)
18406 << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false;
18407 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
18408 New->setInvalidDecl();
18409 return false;
18410}
18411
18412bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
18413 const CXXMethodDecl *Old) {
18414 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
18415 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
18416
18417 if (Context.hasSameType(T1: NewTy, T2: OldTy) ||
18418 NewTy->isDependentType() || OldTy->isDependentType())
18419 return false;
18420
18421 // Check if the return types are covariant
18422 QualType NewClassTy, OldClassTy;
18423
18424 /// Both types must be pointers or references to classes.
18425 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
18426 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
18427 NewClassTy = NewPT->getPointeeType();
18428 OldClassTy = OldPT->getPointeeType();
18429 }
18430 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
18431 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
18432 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
18433 NewClassTy = NewRT->getPointeeType();
18434 OldClassTy = OldRT->getPointeeType();
18435 }
18436 }
18437 }
18438
18439 // The return types aren't either both pointers or references to a class type.
18440 if (NewClassTy.isNull()) {
18441 Diag(New->getLocation(),
18442 diag::err_different_return_type_for_overriding_virtual_function)
18443 << New->getDeclName() << NewTy << OldTy
18444 << New->getReturnTypeSourceRange();
18445 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18446 << Old->getReturnTypeSourceRange();
18447
18448 return true;
18449 }
18450
18451 if (!Context.hasSameUnqualifiedType(T1: NewClassTy, T2: OldClassTy)) {
18452 // C++14 [class.virtual]p8:
18453 // If the class type in the covariant return type of D::f differs from
18454 // that of B::f, the class type in the return type of D::f shall be
18455 // complete at the point of declaration of D::f or shall be the class
18456 // type D.
18457 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
18458 if (!RT->isBeingDefined() &&
18459 RequireCompleteType(New->getLocation(), NewClassTy,
18460 diag::err_covariant_return_incomplete,
18461 New->getDeclName()))
18462 return true;
18463 }
18464
18465 // Check if the new class derives from the old class.
18466 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
18467 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
18468 << New->getDeclName() << NewTy << OldTy
18469 << New->getReturnTypeSourceRange();
18470 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18471 << Old->getReturnTypeSourceRange();
18472 return true;
18473 }
18474
18475 // Check if we the conversion from derived to base is valid.
18476 if (CheckDerivedToBaseConversion(
18477 NewClassTy, OldClassTy,
18478 diag::err_covariant_return_inaccessible_base,
18479 diag::err_covariant_return_ambiguous_derived_to_base_conv,
18480 New->getLocation(), New->getReturnTypeSourceRange(),
18481 New->getDeclName(), nullptr)) {
18482 // FIXME: this note won't trigger for delayed access control
18483 // diagnostics, and it's impossible to get an undelayed error
18484 // here from access control during the original parse because
18485 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
18486 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18487 << Old->getReturnTypeSourceRange();
18488 return true;
18489 }
18490 }
18491
18492 // The qualifiers of the return types must be the same.
18493 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
18494 Diag(New->getLocation(),
18495 diag::err_covariant_return_type_different_qualifications)
18496 << New->getDeclName() << NewTy << OldTy
18497 << New->getReturnTypeSourceRange();
18498 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18499 << Old->getReturnTypeSourceRange();
18500 return true;
18501 }
18502
18503
18504 // The new class type must have the same or less qualifiers as the old type.
18505 if (NewClassTy.isMoreQualifiedThan(other: OldClassTy)) {
18506 Diag(New->getLocation(),
18507 diag::err_covariant_return_type_class_type_more_qualified)
18508 << New->getDeclName() << NewTy << OldTy
18509 << New->getReturnTypeSourceRange();
18510 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
18511 << Old->getReturnTypeSourceRange();
18512 return true;
18513 }
18514
18515 return false;
18516}
18517
18518/// Mark the given method pure.
18519///
18520/// \param Method the method to be marked pure.
18521///
18522/// \param InitRange the source range that covers the "0" initializer.
18523bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
18524 SourceLocation EndLoc = InitRange.getEnd();
18525 if (EndLoc.isValid())
18526 Method->setRangeEnd(EndLoc);
18527
18528 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
18529 Method->setIsPureVirtual();
18530 return false;
18531 }
18532
18533 if (!Method->isInvalidDecl())
18534 Diag(Method->getLocation(), diag::err_non_virtual_pure)
18535 << Method->getDeclName() << InitRange;
18536 return true;
18537}
18538
18539void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
18540 if (D->getFriendObjectKind())
18541 Diag(D->getLocation(), diag::err_pure_friend);
18542 else if (auto *M = dyn_cast<CXXMethodDecl>(Val: D))
18543 CheckPureMethod(Method: M, InitRange: ZeroLoc);
18544 else
18545 Diag(D->getLocation(), diag::err_illegal_initializer);
18546}
18547
18548/// Determine whether the given declaration is a global variable or
18549/// static data member.
18550static bool isNonlocalVariable(const Decl *D) {
18551 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(Val: D))
18552 return Var->hasGlobalStorage();
18553
18554 return false;
18555}
18556
18557/// Invoked when we are about to parse an initializer for the declaration
18558/// 'Dcl'.
18559///
18560/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
18561/// static data member of class X, names should be looked up in the scope of
18562/// class X. If the declaration had a scope specifier, a scope will have
18563/// been created and passed in for this purpose. Otherwise, S will be null.
18564void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
18565 // If there is no declaration, there was an error parsing it.
18566 if (!D || D->isInvalidDecl())
18567 return;
18568
18569 // We will always have a nested name specifier here, but this declaration
18570 // might not be out of line if the specifier names the current namespace:
18571 // extern int n;
18572 // int ::n = 0;
18573 if (S && D->isOutOfLine())
18574 EnterDeclaratorContext(S, DC: D->getDeclContext());
18575
18576 // If we are parsing the initializer for a static data member, push a
18577 // new expression evaluation context that is associated with this static
18578 // data member.
18579 if (isNonlocalVariable(D))
18580 PushExpressionEvaluationContext(
18581 NewContext: ExpressionEvaluationContext::PotentiallyEvaluated, LambdaContextDecl: D);
18582}
18583
18584/// Invoked after we are finished parsing an initializer for the declaration D.
18585void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
18586 // If there is no declaration, there was an error parsing it.
18587 if (!D || D->isInvalidDecl())
18588 return;
18589
18590 if (isNonlocalVariable(D))
18591 PopExpressionEvaluationContext();
18592
18593 if (S && D->isOutOfLine())
18594 ExitDeclaratorContext(S);
18595}
18596
18597/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
18598/// C++ if/switch/while/for statement.
18599/// e.g: "if (int x = f()) {...}"
18600DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
18601 // C++ 6.4p2:
18602 // The declarator shall not specify a function or an array.
18603 // The type-specifier-seq shall not contain typedef and shall not declare a
18604 // new class or enumeration.
18605 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
18606 "Parser allowed 'typedef' as storage class of condition decl.");
18607
18608 Decl *Dcl = ActOnDeclarator(S, D);
18609 if (!Dcl)
18610 return true;
18611
18612 if (isa<FunctionDecl>(Val: Dcl)) { // The declarator shall not specify a function.
18613 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
18614 << D.getSourceRange();
18615 return true;
18616 }
18617
18618 if (auto *VD = dyn_cast<VarDecl>(Val: Dcl))
18619 VD->setCXXCondDecl();
18620
18621 return Dcl;
18622}
18623
18624void Sema::LoadExternalVTableUses() {
18625 if (!ExternalSource)
18626 return;
18627
18628 SmallVector<ExternalVTableUse, 4> VTables;
18629 ExternalSource->ReadUsedVTables(VTables);
18630 SmallVector<VTableUse, 4> NewUses;
18631 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
18632 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
18633 = VTablesUsed.find(Val: VTables[I].Record);
18634 // Even if a definition wasn't required before, it may be required now.
18635 if (Pos != VTablesUsed.end()) {
18636 if (!Pos->second && VTables[I].DefinitionRequired)
18637 Pos->second = true;
18638 continue;
18639 }
18640
18641 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
18642 NewUses.push_back(Elt: VTableUse(VTables[I].Record, VTables[I].Location));
18643 }
18644
18645 VTableUses.insert(I: VTableUses.begin(), From: NewUses.begin(), To: NewUses.end());
18646}
18647
18648void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
18649 bool DefinitionRequired) {
18650 // Ignore any vtable uses in unevaluated operands or for classes that do
18651 // not have a vtable.
18652 if (!Class->isDynamicClass() || Class->isDependentContext() ||
18653 CurContext->isDependentContext() || isUnevaluatedContext())
18654 return;
18655 // Do not mark as used if compiling for the device outside of the target
18656 // region.
18657 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice &&
18658 !OpenMP().isInOpenMPDeclareTargetContext() &&
18659 !OpenMP().isInOpenMPTargetExecutionDirective()) {
18660 if (!DefinitionRequired)
18661 MarkVirtualMembersReferenced(Loc, RD: Class);
18662 return;
18663 }
18664
18665 // Try to insert this class into the map.
18666 LoadExternalVTableUses();
18667 Class = Class->getCanonicalDecl();
18668 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
18669 Pos = VTablesUsed.insert(KV: std::make_pair(x&: Class, y&: DefinitionRequired));
18670 if (!Pos.second) {
18671 // If we already had an entry, check to see if we are promoting this vtable
18672 // to require a definition. If so, we need to reappend to the VTableUses
18673 // list, since we may have already processed the first entry.
18674 if (DefinitionRequired && !Pos.first->second) {
18675 Pos.first->second = true;
18676 } else {
18677 // Otherwise, we can early exit.
18678 return;
18679 }
18680 } else {
18681 // The Microsoft ABI requires that we perform the destructor body
18682 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
18683 // the deleting destructor is emitted with the vtable, not with the
18684 // destructor definition as in the Itanium ABI.
18685 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
18686 CXXDestructorDecl *DD = Class->getDestructor();
18687 if (DD && DD->isVirtual() && !DD->isDeleted()) {
18688 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
18689 // If this is an out-of-line declaration, marking it referenced will
18690 // not do anything. Manually call CheckDestructor to look up operator
18691 // delete().
18692 ContextRAII SavedContext(*this, DD);
18693 CheckDestructor(Destructor: DD);
18694 } else {
18695 MarkFunctionReferenced(Loc, Class->getDestructor());
18696 }
18697 }
18698 }
18699 }
18700
18701 // Local classes need to have their virtual members marked
18702 // immediately. For all other classes, we mark their virtual members
18703 // at the end of the translation unit.
18704 if (Class->isLocalClass())
18705 MarkVirtualMembersReferenced(Loc, RD: Class->getDefinition());
18706 else
18707 VTableUses.push_back(Elt: std::make_pair(x&: Class, y&: Loc));
18708}
18709
18710bool Sema::DefineUsedVTables() {
18711 LoadExternalVTableUses();
18712 if (VTableUses.empty())
18713 return false;
18714
18715 // Note: The VTableUses vector could grow as a result of marking
18716 // the members of a class as "used", so we check the size each
18717 // time through the loop and prefer indices (which are stable) to
18718 // iterators (which are not).
18719 bool DefinedAnything = false;
18720 for (unsigned I = 0; I != VTableUses.size(); ++I) {
18721 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
18722 if (!Class)
18723 continue;
18724 TemplateSpecializationKind ClassTSK =
18725 Class->getTemplateSpecializationKind();
18726
18727 SourceLocation Loc = VTableUses[I].second;
18728
18729 bool DefineVTable = true;
18730
18731 // If this class has a key function, but that key function is
18732 // defined in another translation unit, we don't need to emit the
18733 // vtable even though we're using it.
18734 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(RD: Class);
18735 if (KeyFunction && !KeyFunction->hasBody()) {
18736 // The key function is in another translation unit.
18737 DefineVTable = false;
18738 TemplateSpecializationKind TSK =
18739 KeyFunction->getTemplateSpecializationKind();
18740 assert(TSK != TSK_ExplicitInstantiationDefinition &&
18741 TSK != TSK_ImplicitInstantiation &&
18742 "Instantiations don't have key functions");
18743 (void)TSK;
18744 } else if (!KeyFunction) {
18745 // If we have a class with no key function that is the subject
18746 // of an explicit instantiation declaration, suppress the
18747 // vtable; it will live with the explicit instantiation
18748 // definition.
18749 bool IsExplicitInstantiationDeclaration =
18750 ClassTSK == TSK_ExplicitInstantiationDeclaration;
18751 for (auto *R : Class->redecls()) {
18752 TemplateSpecializationKind TSK
18753 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
18754 if (TSK == TSK_ExplicitInstantiationDeclaration)
18755 IsExplicitInstantiationDeclaration = true;
18756 else if (TSK == TSK_ExplicitInstantiationDefinition) {
18757 IsExplicitInstantiationDeclaration = false;
18758 break;
18759 }
18760 }
18761
18762 if (IsExplicitInstantiationDeclaration)
18763 DefineVTable = false;
18764 }
18765
18766 // The exception specifications for all virtual members may be needed even
18767 // if we are not providing an authoritative form of the vtable in this TU.
18768 // We may choose to emit it available_externally anyway.
18769 if (!DefineVTable) {
18770 MarkVirtualMemberExceptionSpecsNeeded(Loc, RD: Class);
18771 continue;
18772 }
18773
18774 // Mark all of the virtual members of this class as referenced, so
18775 // that we can build a vtable. Then, tell the AST consumer that a
18776 // vtable for this class is required.
18777 DefinedAnything = true;
18778 MarkVirtualMembersReferenced(Loc, RD: Class);
18779 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
18780 if (VTablesUsed[Canonical])
18781 Consumer.HandleVTable(RD: Class);
18782
18783 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
18784 // no key function or the key function is inlined. Don't warn in C++ ABIs
18785 // that lack key functions, since the user won't be able to make one.
18786 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
18787 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation &&
18788 ClassTSK != TSK_ExplicitInstantiationDefinition) {
18789 const FunctionDecl *KeyFunctionDef = nullptr;
18790 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
18791 KeyFunctionDef->isInlined()))
18792 Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
18793 }
18794 }
18795 VTableUses.clear();
18796
18797 return DefinedAnything;
18798}
18799
18800void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
18801 const CXXRecordDecl *RD) {
18802 for (const auto *I : RD->methods())
18803 if (I->isVirtual() && !I->isPureVirtual())
18804 ResolveExceptionSpec(Loc, FPT: I->getType()->castAs<FunctionProtoType>());
18805}
18806
18807void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
18808 const CXXRecordDecl *RD,
18809 bool ConstexprOnly) {
18810 // Mark all functions which will appear in RD's vtable as used.
18811 CXXFinalOverriderMap FinalOverriders;
18812 RD->getFinalOverriders(FinaOverriders&: FinalOverriders);
18813 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
18814 E = FinalOverriders.end();
18815 I != E; ++I) {
18816 for (OverridingMethods::const_iterator OI = I->second.begin(),
18817 OE = I->second.end();
18818 OI != OE; ++OI) {
18819 assert(OI->second.size() > 0 && "no final overrider");
18820 CXXMethodDecl *Overrider = OI->second.front().Method;
18821
18822 // C++ [basic.def.odr]p2:
18823 // [...] A virtual member function is used if it is not pure. [...]
18824 if (!Overrider->isPureVirtual() &&
18825 (!ConstexprOnly || Overrider->isConstexpr()))
18826 MarkFunctionReferenced(Loc, Overrider);
18827 }
18828 }
18829
18830 // Only classes that have virtual bases need a VTT.
18831 if (RD->getNumVBases() == 0)
18832 return;
18833
18834 for (const auto &I : RD->bases()) {
18835 const auto *Base =
18836 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
18837 if (Base->getNumVBases() == 0)
18838 continue;
18839 MarkVirtualMembersReferenced(Loc, RD: Base);
18840 }
18841}
18842
18843/// SetIvarInitializers - This routine builds initialization ASTs for the
18844/// Objective-C implementation whose ivars need be initialized.
18845void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
18846 if (!getLangOpts().CPlusPlus)
18847 return;
18848 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
18849 SmallVector<ObjCIvarDecl*, 8> ivars;
18850 CollectIvarsToConstructOrDestruct(OI: OID, Ivars&: ivars);
18851 if (ivars.empty())
18852 return;
18853 SmallVector<CXXCtorInitializer*, 32> AllToInit;
18854 for (unsigned i = 0; i < ivars.size(); i++) {
18855 FieldDecl *Field = ivars[i];
18856 if (Field->isInvalidDecl())
18857 continue;
18858
18859 CXXCtorInitializer *Member;
18860 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Member: Field);
18861 InitializationKind InitKind =
18862 InitializationKind::CreateDefault(InitLoc: ObjCImplementation->getLocation());
18863
18864 InitializationSequence InitSeq(*this, InitEntity, InitKind, std::nullopt);
18865 ExprResult MemberInit =
18866 InitSeq.Perform(S&: *this, Entity: InitEntity, Kind: InitKind, Args: std::nullopt);
18867 MemberInit = MaybeCreateExprWithCleanups(SubExpr: MemberInit);
18868 // Note, MemberInit could actually come back empty if no initialization
18869 // is required (e.g., because it would call a trivial default constructor)
18870 if (!MemberInit.get() || MemberInit.isInvalid())
18871 continue;
18872
18873 Member =
18874 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
18875 SourceLocation(),
18876 MemberInit.getAs<Expr>(),
18877 SourceLocation());
18878 AllToInit.push_back(Elt: Member);
18879
18880 // Be sure that the destructor is accessible and is marked as referenced.
18881 if (const RecordType *RecordTy =
18882 Context.getBaseElementType(Field->getType())
18883 ->getAs<RecordType>()) {
18884 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RecordTy->getDecl());
18885 if (CXXDestructorDecl *Destructor = LookupDestructor(Class: RD)) {
18886 MarkFunctionReferenced(Loc: Field->getLocation(), Func: Destructor);
18887 CheckDestructorAccess(Field->getLocation(), Destructor,
18888 PDiag(diag::err_access_dtor_ivar)
18889 << Context.getBaseElementType(Field->getType()));
18890 }
18891 }
18892 }
18893 ObjCImplementation->setIvarInitializers(C&: Context,
18894 initializers: AllToInit.data(), numInitializers: AllToInit.size());
18895 }
18896}
18897
18898static
18899void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
18900 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
18901 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
18902 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
18903 Sema &S) {
18904 if (Ctor->isInvalidDecl())
18905 return;
18906
18907 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
18908
18909 // Target may not be determinable yet, for instance if this is a dependent
18910 // call in an uninstantiated template.
18911 if (Target) {
18912 const FunctionDecl *FNTarget = nullptr;
18913 (void)Target->hasBody(FNTarget);
18914 Target = const_cast<CXXConstructorDecl*>(
18915 cast_or_null<CXXConstructorDecl>(Val: FNTarget));
18916 }
18917
18918 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
18919 // Avoid dereferencing a null pointer here.
18920 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
18921
18922 if (!Current.insert(Ptr: Canonical).second)
18923 return;
18924
18925 // We know that beyond here, we aren't chaining into a cycle.
18926 if (!Target || !Target->isDelegatingConstructor() ||
18927 Target->isInvalidDecl() || Valid.count(Ptr: TCanonical)) {
18928 Valid.insert(I: Current.begin(), E: Current.end());
18929 Current.clear();
18930 // We've hit a cycle.
18931 } else if (TCanonical == Canonical || Invalid.count(Ptr: TCanonical) ||
18932 Current.count(Ptr: TCanonical)) {
18933 // If we haven't diagnosed this cycle yet, do so now.
18934 if (!Invalid.count(Ptr: TCanonical)) {
18935 S.Diag((*Ctor->init_begin())->getSourceLocation(),
18936 diag::warn_delegating_ctor_cycle)
18937 << Ctor;
18938
18939 // Don't add a note for a function delegating directly to itself.
18940 if (TCanonical != Canonical)
18941 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
18942
18943 CXXConstructorDecl *C = Target;
18944 while (C->getCanonicalDecl() != Canonical) {
18945 const FunctionDecl *FNTarget = nullptr;
18946 (void)C->getTargetConstructor()->hasBody(FNTarget);
18947 assert(FNTarget && "Ctor cycle through bodiless function");
18948
18949 C = const_cast<CXXConstructorDecl*>(
18950 cast<CXXConstructorDecl>(Val: FNTarget));
18951 S.Diag(C->getLocation(), diag::note_which_delegates_to);
18952 }
18953 }
18954
18955 Invalid.insert(I: Current.begin(), E: Current.end());
18956 Current.clear();
18957 } else {
18958 DelegatingCycleHelper(Ctor: Target, Valid, Invalid, Current, S);
18959 }
18960}
18961
18962
18963void Sema::CheckDelegatingCtorCycles() {
18964 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
18965
18966 for (DelegatingCtorDeclsType::iterator
18967 I = DelegatingCtorDecls.begin(source: ExternalSource.get()),
18968 E = DelegatingCtorDecls.end();
18969 I != E; ++I)
18970 DelegatingCycleHelper(Ctor: *I, Valid, Invalid, Current, S&: *this);
18971
18972 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
18973 (*CI)->setInvalidDecl();
18974}
18975
18976namespace {
18977 /// AST visitor that finds references to the 'this' expression.
18978 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
18979 Sema &S;
18980
18981 public:
18982 explicit FindCXXThisExpr(Sema &S) : S(S) { }
18983
18984 bool VisitCXXThisExpr(CXXThisExpr *E) {
18985 S.Diag(E->getLocation(), diag::err_this_static_member_func)
18986 << E->isImplicit();
18987 return false;
18988 }
18989 };
18990}
18991
18992bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
18993 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
18994 if (!TSInfo)
18995 return false;
18996
18997 TypeLoc TL = TSInfo->getTypeLoc();
18998 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
18999 if (!ProtoTL)
19000 return false;
19001
19002 // C++11 [expr.prim.general]p3:
19003 // [The expression this] shall not appear before the optional
19004 // cv-qualifier-seq and it shall not appear within the declaration of a
19005 // static member function (although its type and value category are defined
19006 // within a static member function as they are within a non-static member
19007 // function). [ Note: this is because declaration matching does not occur
19008 // until the complete declarator is known. - end note ]
19009 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
19010 FindCXXThisExpr Finder(*this);
19011
19012 // If the return type came after the cv-qualifier-seq, check it now.
19013 if (Proto->hasTrailingReturn() &&
19014 !Finder.TraverseTypeLoc(TL: ProtoTL.getReturnLoc()))
19015 return true;
19016
19017 // Check the exception specification.
19018 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
19019 return true;
19020
19021 // Check the trailing requires clause
19022 if (Expr *E = Method->getTrailingRequiresClause())
19023 if (!Finder.TraverseStmt(E))
19024 return true;
19025
19026 return checkThisInStaticMemberFunctionAttributes(Method);
19027}
19028
19029bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
19030 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
19031 if (!TSInfo)
19032 return false;
19033
19034 TypeLoc TL = TSInfo->getTypeLoc();
19035 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
19036 if (!ProtoTL)
19037 return false;
19038
19039 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
19040 FindCXXThisExpr Finder(*this);
19041
19042 switch (Proto->getExceptionSpecType()) {
19043 case EST_Unparsed:
19044 case EST_Uninstantiated:
19045 case EST_Unevaluated:
19046 case EST_BasicNoexcept:
19047 case EST_NoThrow:
19048 case EST_DynamicNone:
19049 case EST_MSAny:
19050 case EST_None:
19051 break;
19052
19053 case EST_DependentNoexcept:
19054 case EST_NoexceptFalse:
19055 case EST_NoexceptTrue:
19056 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
19057 return true;
19058 [[fallthrough]];
19059
19060 case EST_Dynamic:
19061 for (const auto &E : Proto->exceptions()) {
19062 if (!Finder.TraverseType(E))
19063 return true;
19064 }
19065 break;
19066 }
19067
19068 return false;
19069}
19070
19071bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
19072 FindCXXThisExpr Finder(*this);
19073
19074 // Check attributes.
19075 for (const auto *A : Method->attrs()) {
19076 // FIXME: This should be emitted by tblgen.
19077 Expr *Arg = nullptr;
19078 ArrayRef<Expr *> Args;
19079 if (const auto *G = dyn_cast<GuardedByAttr>(A))
19080 Arg = G->getArg();
19081 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
19082 Arg = G->getArg();
19083 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
19084 Args = llvm::ArrayRef(AA->args_begin(), AA->args_size());
19085 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
19086 Args = llvm::ArrayRef(AB->args_begin(), AB->args_size());
19087 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
19088 Arg = ETLF->getSuccessValue();
19089 Args = llvm::ArrayRef(ETLF->args_begin(), ETLF->args_size());
19090 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
19091 Arg = STLF->getSuccessValue();
19092 Args = llvm::ArrayRef(STLF->args_begin(), STLF->args_size());
19093 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
19094 Arg = LR->getArg();
19095 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
19096 Args = llvm::ArrayRef(LE->args_begin(), LE->args_size());
19097 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
19098 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
19099 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
19100 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
19101 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
19102 Args = llvm::ArrayRef(AC->args_begin(), AC->args_size());
19103 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
19104 Args = llvm::ArrayRef(RC->args_begin(), RC->args_size());
19105
19106 if (Arg && !Finder.TraverseStmt(Arg))
19107 return true;
19108
19109 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
19110 if (!Finder.TraverseStmt(Args[I]))
19111 return true;
19112 }
19113 }
19114
19115 return false;
19116}
19117
19118void Sema::checkExceptionSpecification(
19119 bool IsTopLevel, ExceptionSpecificationType EST,
19120 ArrayRef<ParsedType> DynamicExceptions,
19121 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
19122 SmallVectorImpl<QualType> &Exceptions,
19123 FunctionProtoType::ExceptionSpecInfo &ESI) {
19124 Exceptions.clear();
19125 ESI.Type = EST;
19126 if (EST == EST_Dynamic) {
19127 Exceptions.reserve(N: DynamicExceptions.size());
19128 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
19129 // FIXME: Preserve type source info.
19130 QualType ET = GetTypeFromParser(Ty: DynamicExceptions[ei]);
19131
19132 if (IsTopLevel) {
19133 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
19134 collectUnexpandedParameterPacks(T: ET, Unexpanded);
19135 if (!Unexpanded.empty()) {
19136 DiagnoseUnexpandedParameterPacks(
19137 Loc: DynamicExceptionRanges[ei].getBegin(), UPPC: UPPC_ExceptionType,
19138 Unexpanded);
19139 continue;
19140 }
19141 }
19142
19143 // Check that the type is valid for an exception spec, and
19144 // drop it if not.
19145 if (!CheckSpecifiedExceptionType(T&: ET, Range: DynamicExceptionRanges[ei]))
19146 Exceptions.push_back(Elt: ET);
19147 }
19148 ESI.Exceptions = Exceptions;
19149 return;
19150 }
19151
19152 if (isComputedNoexcept(ESpecType: EST)) {
19153 assert((NoexceptExpr->isTypeDependent() ||
19154 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
19155 Context.BoolTy) &&
19156 "Parser should have made sure that the expression is boolean");
19157 if (IsTopLevel && DiagnoseUnexpandedParameterPack(E: NoexceptExpr)) {
19158 ESI.Type = EST_BasicNoexcept;
19159 return;
19160 }
19161
19162 ESI.NoexceptExpr = NoexceptExpr;
19163 return;
19164 }
19165}
19166
19167void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
19168 ExceptionSpecificationType EST,
19169 SourceRange SpecificationRange,
19170 ArrayRef<ParsedType> DynamicExceptions,
19171 ArrayRef<SourceRange> DynamicExceptionRanges,
19172 Expr *NoexceptExpr) {
19173 if (!MethodD)
19174 return;
19175
19176 // Dig out the method we're referring to.
19177 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: MethodD))
19178 MethodD = FunTmpl->getTemplatedDecl();
19179
19180 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: MethodD);
19181 if (!Method)
19182 return;
19183
19184 // Check the exception specification.
19185 llvm::SmallVector<QualType, 4> Exceptions;
19186 FunctionProtoType::ExceptionSpecInfo ESI;
19187 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
19188 DynamicExceptionRanges, NoexceptExpr, Exceptions,
19189 ESI);
19190
19191 // Update the exception specification on the function type.
19192 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
19193
19194 if (Method->isStatic())
19195 checkThisInStaticMemberFunctionExceptionSpec(Method);
19196
19197 if (Method->isVirtual()) {
19198 // Check overrides, which we previously had to delay.
19199 for (const CXXMethodDecl *O : Method->overridden_methods())
19200 CheckOverridingFunctionExceptionSpec(New: Method, Old: O);
19201 }
19202}
19203
19204/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
19205///
19206MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
19207 SourceLocation DeclStart, Declarator &D,
19208 Expr *BitWidth,
19209 InClassInitStyle InitStyle,
19210 AccessSpecifier AS,
19211 const ParsedAttr &MSPropertyAttr) {
19212 const IdentifierInfo *II = D.getIdentifier();
19213 if (!II) {
19214 Diag(DeclStart, diag::err_anonymous_property);
19215 return nullptr;
19216 }
19217 SourceLocation Loc = D.getIdentifierLoc();
19218
19219 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
19220 QualType T = TInfo->getType();
19221 if (getLangOpts().CPlusPlus) {
19222 CheckExtraCXXDefaultArguments(D);
19223
19224 if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo,
19225 UPPC: UPPC_DataMemberType)) {
19226 D.setInvalidType();
19227 T = Context.IntTy;
19228 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
19229 }
19230 }
19231
19232 DiagnoseFunctionSpecifiers(DS: D.getDeclSpec());
19233
19234 if (D.getDeclSpec().isInlineSpecified())
19235 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
19236 << getLangOpts().CPlusPlus17;
19237 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
19238 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
19239 diag::err_invalid_thread)
19240 << DeclSpec::getSpecifierName(TSCS);
19241
19242 // Check to see if this name was declared as a member previously
19243 NamedDecl *PrevDecl = nullptr;
19244 LookupResult Previous(*this, II, Loc, LookupMemberName,
19245 RedeclarationKind::ForVisibleRedeclaration);
19246 LookupName(R&: Previous, S);
19247 switch (Previous.getResultKind()) {
19248 case LookupResult::Found:
19249 case LookupResult::FoundUnresolvedValue:
19250 PrevDecl = Previous.getAsSingle<NamedDecl>();
19251 break;
19252
19253 case LookupResult::FoundOverloaded:
19254 PrevDecl = Previous.getRepresentativeDecl();
19255 break;
19256
19257 case LookupResult::NotFound:
19258 case LookupResult::NotFoundInCurrentInstantiation:
19259 case LookupResult::Ambiguous:
19260 break;
19261 }
19262
19263 if (PrevDecl && PrevDecl->isTemplateParameter()) {
19264 // Maybe we will complain about the shadowed template parameter.
19265 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
19266 // Just pretend that we didn't see the previous declaration.
19267 PrevDecl = nullptr;
19268 }
19269
19270 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
19271 PrevDecl = nullptr;
19272
19273 SourceLocation TSSL = D.getBeginLoc();
19274 MSPropertyDecl *NewPD =
19275 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
19276 MSPropertyAttr.getPropertyDataGetter(),
19277 MSPropertyAttr.getPropertyDataSetter());
19278 ProcessDeclAttributes(TUScope, NewPD, D);
19279 NewPD->setAccess(AS);
19280
19281 if (NewPD->isInvalidDecl())
19282 Record->setInvalidDecl();
19283
19284 if (D.getDeclSpec().isModulePrivateSpecified())
19285 NewPD->setModulePrivate();
19286
19287 if (NewPD->isInvalidDecl() && PrevDecl) {
19288 // Don't introduce NewFD into scope; there's already something
19289 // with the same name in the same scope.
19290 } else if (II) {
19291 PushOnScopeChains(NewPD, S);
19292 } else
19293 Record->addDecl(NewPD);
19294
19295 return NewPD;
19296}
19297
19298void Sema::ActOnStartFunctionDeclarationDeclarator(
19299 Declarator &Declarator, unsigned TemplateParameterDepth) {
19300 auto &Info = InventedParameterInfos.emplace_back();
19301 TemplateParameterList *ExplicitParams = nullptr;
19302 ArrayRef<TemplateParameterList *> ExplicitLists =
19303 Declarator.getTemplateParameterLists();
19304 if (!ExplicitLists.empty()) {
19305 bool IsMemberSpecialization, IsInvalid;
19306 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
19307 DeclStartLoc: Declarator.getBeginLoc(), DeclLoc: Declarator.getIdentifierLoc(),
19308 SS: Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
19309 ParamLists: ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, Invalid&: IsInvalid,
19310 /*SuppressDiagnostic=*/true);
19311 }
19312 // C++23 [dcl.fct]p23:
19313 // An abbreviated function template can have a template-head. The invented
19314 // template-parameters are appended to the template-parameter-list after
19315 // the explicitly declared template-parameters.
19316 //
19317 // A template-head must have one or more template-parameters (read:
19318 // 'template<>' is *not* a template-head). Only append the invented
19319 // template parameters if we matched the nested-name-specifier to a non-empty
19320 // TemplateParameterList.
19321 if (ExplicitParams && !ExplicitParams->empty()) {
19322 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
19323 llvm::append_range(C&: Info.TemplateParams, R&: *ExplicitParams);
19324 Info.NumExplicitTemplateParams = ExplicitParams->size();
19325 } else {
19326 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
19327 Info.NumExplicitTemplateParams = 0;
19328 }
19329}
19330
19331void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
19332 auto &FSI = InventedParameterInfos.back();
19333 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
19334 if (FSI.NumExplicitTemplateParams != 0) {
19335 TemplateParameterList *ExplicitParams =
19336 Declarator.getTemplateParameterLists().back();
19337 Declarator.setInventedTemplateParameterList(
19338 TemplateParameterList::Create(
19339 C: Context, TemplateLoc: ExplicitParams->getTemplateLoc(),
19340 LAngleLoc: ExplicitParams->getLAngleLoc(), Params: FSI.TemplateParams,
19341 RAngleLoc: ExplicitParams->getRAngleLoc(),
19342 RequiresClause: ExplicitParams->getRequiresClause()));
19343 } else {
19344 Declarator.setInventedTemplateParameterList(
19345 TemplateParameterList::Create(
19346 C: Context, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), Params: FSI.TemplateParams,
19347 RAngleLoc: SourceLocation(), /*RequiresClause=*/nullptr));
19348 }
19349 }
19350 InventedParameterInfos.pop_back();
19351}
19352

source code of clang/lib/Sema/SemaDeclCXX.cpp