1//===- SIInstrInfo.cpp - SI Instruction Information ----------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// SI Implementation of TargetInstrInfo.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SIInstrInfo.h"
15#include "AMDGPU.h"
16#include "AMDGPUInstrInfo.h"
17#include "GCNHazardRecognizer.h"
18#include "GCNSubtarget.h"
19#include "SIMachineFunctionInfo.h"
20#include "Utils/AMDGPUBaseInfo.h"
21#include "llvm/Analysis/ValueTracking.h"
22#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
23#include "llvm/CodeGen/LiveIntervals.h"
24#include "llvm/CodeGen/LiveVariables.h"
25#include "llvm/CodeGen/MachineDominators.h"
26#include "llvm/CodeGen/MachineFrameInfo.h"
27#include "llvm/CodeGen/MachineScheduler.h"
28#include "llvm/CodeGen/RegisterScavenging.h"
29#include "llvm/CodeGen/ScheduleDAG.h"
30#include "llvm/IR/DiagnosticInfo.h"
31#include "llvm/IR/IntrinsicsAMDGPU.h"
32#include "llvm/MC/MCContext.h"
33#include "llvm/Support/CommandLine.h"
34#include "llvm/Target/TargetMachine.h"
35
36using namespace llvm;
37
38#define DEBUG_TYPE "si-instr-info"
39
40#define GET_INSTRINFO_CTOR_DTOR
41#include "AMDGPUGenInstrInfo.inc"
42
43namespace llvm {
44namespace AMDGPU {
45#define GET_D16ImageDimIntrinsics_IMPL
46#define GET_ImageDimIntrinsicTable_IMPL
47#define GET_RsrcIntrinsics_IMPL
48#include "AMDGPUGenSearchableTables.inc"
49}
50}
51
52
53// Must be at least 4 to be able to branch over minimum unconditional branch
54// code. This is only for making it possible to write reasonably small tests for
55// long branches.
56static cl::opt<unsigned>
57BranchOffsetBits("amdgpu-s-branch-bits", cl::ReallyHidden, cl::init(Val: 16),
58 cl::desc("Restrict range of branch instructions (DEBUG)"));
59
60static cl::opt<bool> Fix16BitCopies(
61 "amdgpu-fix-16-bit-physreg-copies",
62 cl::desc("Fix copies between 32 and 16 bit registers by extending to 32 bit"),
63 cl::init(Val: true),
64 cl::ReallyHidden);
65
66SIInstrInfo::SIInstrInfo(const GCNSubtarget &ST)
67 : AMDGPUGenInstrInfo(AMDGPU::ADJCALLSTACKUP, AMDGPU::ADJCALLSTACKDOWN),
68 RI(ST), ST(ST) {
69 SchedModel.init(&ST);
70}
71
72//===----------------------------------------------------------------------===//
73// TargetInstrInfo callbacks
74//===----------------------------------------------------------------------===//
75
76static unsigned getNumOperandsNoGlue(SDNode *Node) {
77 unsigned N = Node->getNumOperands();
78 while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue)
79 --N;
80 return N;
81}
82
83/// Returns true if both nodes have the same value for the given
84/// operand \p Op, or if both nodes do not have this operand.
85static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) {
86 unsigned Opc0 = N0->getMachineOpcode();
87 unsigned Opc1 = N1->getMachineOpcode();
88
89 int Op0Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc0, NamedIdx: OpName);
90 int Op1Idx = AMDGPU::getNamedOperandIdx(Opcode: Opc1, NamedIdx: OpName);
91
92 if (Op0Idx == -1 && Op1Idx == -1)
93 return true;
94
95
96 if ((Op0Idx == -1 && Op1Idx != -1) ||
97 (Op1Idx == -1 && Op0Idx != -1))
98 return false;
99
100 // getNamedOperandIdx returns the index for the MachineInstr's operands,
101 // which includes the result as the first operand. We are indexing into the
102 // MachineSDNode's operands, so we need to skip the result operand to get
103 // the real index.
104 --Op0Idx;
105 --Op1Idx;
106
107 return N0->getOperand(Num: Op0Idx) == N1->getOperand(Num: Op1Idx);
108}
109
110static bool canRemat(const MachineInstr &MI) {
111
112 if (SIInstrInfo::isVOP1(MI) || SIInstrInfo::isVOP2(MI) ||
113 SIInstrInfo::isVOP3(MI) || SIInstrInfo::isSDWA(MI) ||
114 SIInstrInfo::isSALU(MI))
115 return true;
116
117 if (SIInstrInfo::isSMRD(MI)) {
118 return !MI.memoperands_empty() &&
119 llvm::all_of(Range: MI.memoperands(), P: [](const MachineMemOperand *MMO) {
120 return MMO->isLoad() && MMO->isInvariant();
121 });
122 }
123
124 return false;
125}
126
127bool SIInstrInfo::isReallyTriviallyReMaterializable(
128 const MachineInstr &MI) const {
129
130 if (canRemat(MI)) {
131 // Normally VALU use of exec would block the rematerialization, but that
132 // is OK in this case to have an implicit exec read as all VALU do.
133 // We really want all of the generic logic for this except for this.
134
135 // Another potential implicit use is mode register. The core logic of
136 // the RA will not attempt rematerialization if mode is set anywhere
137 // in the function, otherwise it is safe since mode is not changed.
138
139 // There is difference to generic method which does not allow
140 // rematerialization if there are virtual register uses. We allow this,
141 // therefore this method includes SOP instructions as well.
142 if (!MI.hasImplicitDef() &&
143 MI.getNumImplicitOperands() == MI.getDesc().implicit_uses().size() &&
144 !MI.mayRaiseFPException())
145 return true;
146 }
147
148 return TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
149}
150
151// Returns true if the scalar result of a VALU instruction depends on exec.
152static bool resultDependsOnExec(const MachineInstr &MI) {
153 // Ignore comparisons which are only used masked with exec.
154 // This allows some hoisting/sinking of VALU comparisons.
155 if (MI.isCompare()) {
156 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
157 Register DstReg = MI.getOperand(i: 0).getReg();
158 if (!DstReg.isVirtual())
159 return true;
160 for (MachineInstr &Use : MRI.use_nodbg_instructions(Reg: DstReg)) {
161 switch (Use.getOpcode()) {
162 case AMDGPU::S_AND_SAVEEXEC_B32:
163 case AMDGPU::S_AND_SAVEEXEC_B64:
164 break;
165 case AMDGPU::S_AND_B32:
166 case AMDGPU::S_AND_B64:
167 if (!Use.readsRegister(AMDGPU::EXEC, /*TRI=*/nullptr))
168 return true;
169 break;
170 default:
171 return true;
172 }
173 }
174 return false;
175 }
176
177 switch (MI.getOpcode()) {
178 default:
179 break;
180 case AMDGPU::V_READFIRSTLANE_B32:
181 return true;
182 }
183
184 return false;
185}
186
187bool SIInstrInfo::isIgnorableUse(const MachineOperand &MO) const {
188 // Any implicit use of exec by VALU is not a real register read.
189 return MO.getReg() == AMDGPU::EXEC && MO.isImplicit() &&
190 isVALU(*MO.getParent()) && !resultDependsOnExec(*MO.getParent());
191}
192
193bool SIInstrInfo::isSafeToSink(MachineInstr &MI,
194 MachineBasicBlock *SuccToSinkTo,
195 MachineCycleInfo *CI) const {
196 // Allow sinking if MI edits lane mask (divergent i1 in sgpr).
197 if (MI.getOpcode() == AMDGPU::SI_IF_BREAK)
198 return true;
199
200 MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
201 // Check if sinking of MI would create temporal divergent use.
202 for (auto Op : MI.uses()) {
203 if (Op.isReg() && Op.getReg().isVirtual() &&
204 RI.isSGPRClass(MRI.getRegClass(Reg: Op.getReg()))) {
205 MachineInstr *SgprDef = MRI.getVRegDef(Reg: Op.getReg());
206
207 // SgprDef defined inside cycle
208 MachineCycle *FromCycle = CI->getCycle(Block: SgprDef->getParent());
209 if (FromCycle == nullptr)
210 continue;
211
212 MachineCycle *ToCycle = CI->getCycle(Block: SuccToSinkTo);
213 // Check if there is a FromCycle that contains SgprDef's basic block but
214 // does not contain SuccToSinkTo and also has divergent exit condition.
215 while (FromCycle && !FromCycle->contains(C: ToCycle)) {
216 // After structurize-cfg, there should be exactly one cycle exit.
217 SmallVector<MachineBasicBlock *, 1> ExitBlocks;
218 FromCycle->getExitBlocks(TmpStorage&: ExitBlocks);
219 assert(ExitBlocks.size() == 1);
220 assert(ExitBlocks[0]->getSinglePredecessor());
221
222 // FromCycle has divergent exit condition.
223 if (hasDivergentBranch(MBB: ExitBlocks[0]->getSinglePredecessor())) {
224 return false;
225 }
226
227 FromCycle = FromCycle->getParentCycle();
228 }
229 }
230 }
231
232 return true;
233}
234
235bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1,
236 int64_t &Offset0,
237 int64_t &Offset1) const {
238 if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode())
239 return false;
240
241 unsigned Opc0 = Load0->getMachineOpcode();
242 unsigned Opc1 = Load1->getMachineOpcode();
243
244 // Make sure both are actually loads.
245 if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad())
246 return false;
247
248 // A mayLoad instruction without a def is not a load. Likely a prefetch.
249 if (!get(Opc0).getNumDefs() || !get(Opc1).getNumDefs())
250 return false;
251
252 if (isDS(Opcode: Opc0) && isDS(Opcode: Opc1)) {
253
254 // FIXME: Handle this case:
255 if (getNumOperandsNoGlue(Node: Load0) != getNumOperandsNoGlue(Node: Load1))
256 return false;
257
258 // Check base reg.
259 if (Load0->getOperand(Num: 0) != Load1->getOperand(Num: 0))
260 return false;
261
262 // Skip read2 / write2 variants for simplicity.
263 // TODO: We should report true if the used offsets are adjacent (excluded
264 // st64 versions).
265 int Offset0Idx = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
266 int Offset1Idx = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
267 if (Offset0Idx == -1 || Offset1Idx == -1)
268 return false;
269
270 // XXX - be careful of dataless loads
271 // getNamedOperandIdx returns the index for MachineInstrs. Since they
272 // include the output in the operand list, but SDNodes don't, we need to
273 // subtract the index by one.
274 Offset0Idx -= get(Opc0).NumDefs;
275 Offset1Idx -= get(Opc1).NumDefs;
276 Offset0 = Load0->getConstantOperandVal(Num: Offset0Idx);
277 Offset1 = Load1->getConstantOperandVal(Num: Offset1Idx);
278 return true;
279 }
280
281 if (isSMRD(Opcode: Opc0) && isSMRD(Opcode: Opc1)) {
282 // Skip time and cache invalidation instructions.
283 if (!AMDGPU::hasNamedOperand(Opc0, AMDGPU::OpName::sbase) ||
284 !AMDGPU::hasNamedOperand(Opc1, AMDGPU::OpName::sbase))
285 return false;
286
287 unsigned NumOps = getNumOperandsNoGlue(Node: Load0);
288 if (NumOps != getNumOperandsNoGlue(Node: Load1))
289 return false;
290
291 // Check base reg.
292 if (Load0->getOperand(Num: 0) != Load1->getOperand(Num: 0))
293 return false;
294
295 // Match register offsets, if both register and immediate offsets present.
296 assert(NumOps == 4 || NumOps == 5);
297 if (NumOps == 5 && Load0->getOperand(Num: 1) != Load1->getOperand(Num: 1))
298 return false;
299
300 const ConstantSDNode *Load0Offset =
301 dyn_cast<ConstantSDNode>(Val: Load0->getOperand(Num: NumOps - 3));
302 const ConstantSDNode *Load1Offset =
303 dyn_cast<ConstantSDNode>(Val: Load1->getOperand(Num: NumOps - 3));
304
305 if (!Load0Offset || !Load1Offset)
306 return false;
307
308 Offset0 = Load0Offset->getZExtValue();
309 Offset1 = Load1Offset->getZExtValue();
310 return true;
311 }
312
313 // MUBUF and MTBUF can access the same addresses.
314 if ((isMUBUF(Opcode: Opc0) || isMTBUF(Opcode: Opc0)) && (isMUBUF(Opcode: Opc1) || isMTBUF(Opcode: Opc1))) {
315
316 // MUBUF and MTBUF have vaddr at different indices.
317 if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) ||
318 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) ||
319 !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc))
320 return false;
321
322 int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset);
323 int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset);
324
325 if (OffIdx0 == -1 || OffIdx1 == -1)
326 return false;
327
328 // getNamedOperandIdx returns the index for MachineInstrs. Since they
329 // include the output in the operand list, but SDNodes don't, we need to
330 // subtract the index by one.
331 OffIdx0 -= get(Opc0).NumDefs;
332 OffIdx1 -= get(Opc1).NumDefs;
333
334 SDValue Off0 = Load0->getOperand(Num: OffIdx0);
335 SDValue Off1 = Load1->getOperand(Num: OffIdx1);
336
337 // The offset might be a FrameIndexSDNode.
338 if (!isa<ConstantSDNode>(Val: Off0) || !isa<ConstantSDNode>(Val: Off1))
339 return false;
340
341 Offset0 = Off0->getAsZExtVal();
342 Offset1 = Off1->getAsZExtVal();
343 return true;
344 }
345
346 return false;
347}
348
349static bool isStride64(unsigned Opc) {
350 switch (Opc) {
351 case AMDGPU::DS_READ2ST64_B32:
352 case AMDGPU::DS_READ2ST64_B64:
353 case AMDGPU::DS_WRITE2ST64_B32:
354 case AMDGPU::DS_WRITE2ST64_B64:
355 return true;
356 default:
357 return false;
358 }
359}
360
361bool SIInstrInfo::getMemOperandsWithOffsetWidth(
362 const MachineInstr &LdSt, SmallVectorImpl<const MachineOperand *> &BaseOps,
363 int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width,
364 const TargetRegisterInfo *TRI) const {
365 if (!LdSt.mayLoadOrStore())
366 return false;
367
368 unsigned Opc = LdSt.getOpcode();
369 OffsetIsScalable = false;
370 const MachineOperand *BaseOp, *OffsetOp;
371 int DataOpIdx;
372
373 if (isDS(MI: LdSt)) {
374 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::addr);
375 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
376 if (OffsetOp) {
377 // Normal, single offset LDS instruction.
378 if (!BaseOp) {
379 // DS_CONSUME/DS_APPEND use M0 for the base address.
380 // TODO: find the implicit use operand for M0 and use that as BaseOp?
381 return false;
382 }
383 BaseOps.push_back(Elt: BaseOp);
384 Offset = OffsetOp->getImm();
385 // Get appropriate operand, and compute width accordingly.
386 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
387 if (DataOpIdx == -1)
388 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
389 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
390 } else {
391 // The 2 offset instructions use offset0 and offset1 instead. We can treat
392 // these as a load with a single offset if the 2 offsets are consecutive.
393 // We will use this for some partially aligned loads.
394 const MachineOperand *Offset0Op =
395 getNamedOperand(LdSt, AMDGPU::OpName::offset0);
396 const MachineOperand *Offset1Op =
397 getNamedOperand(LdSt, AMDGPU::OpName::offset1);
398
399 unsigned Offset0 = Offset0Op->getImm() & 0xff;
400 unsigned Offset1 = Offset1Op->getImm() & 0xff;
401 if (Offset0 + 1 != Offset1)
402 return false;
403
404 // Each of these offsets is in element sized units, so we need to convert
405 // to bytes of the individual reads.
406
407 unsigned EltSize;
408 if (LdSt.mayLoad())
409 EltSize = TRI->getRegSizeInBits(RC: *getOpRegClass(MI: LdSt, OpNo: 0)) / 16;
410 else {
411 assert(LdSt.mayStore());
412 int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
413 EltSize = TRI->getRegSizeInBits(RC: *getOpRegClass(MI: LdSt, OpNo: Data0Idx)) / 8;
414 }
415
416 if (isStride64(Opc))
417 EltSize *= 64;
418
419 BaseOps.push_back(Elt: BaseOp);
420 Offset = EltSize * Offset0;
421 // Get appropriate operand(s), and compute width accordingly.
422 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
423 if (DataOpIdx == -1) {
424 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0);
425 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
426 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data1);
427 Width = Width.getValue() + getOpSize(MI: LdSt, OpNo: DataOpIdx);
428 } else {
429 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
430 }
431 }
432 return true;
433 }
434
435 if (isMUBUF(MI: LdSt) || isMTBUF(MI: LdSt)) {
436 const MachineOperand *RSrc = getNamedOperand(LdSt, AMDGPU::OpName::srsrc);
437 if (!RSrc) // e.g. BUFFER_WBINVL1_VOL
438 return false;
439 BaseOps.push_back(Elt: RSrc);
440 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
441 if (BaseOp && !BaseOp->isFI())
442 BaseOps.push_back(Elt: BaseOp);
443 const MachineOperand *OffsetImm =
444 getNamedOperand(LdSt, AMDGPU::OpName::offset);
445 Offset = OffsetImm->getImm();
446 const MachineOperand *SOffset =
447 getNamedOperand(LdSt, AMDGPU::OpName::soffset);
448 if (SOffset) {
449 if (SOffset->isReg())
450 BaseOps.push_back(Elt: SOffset);
451 else
452 Offset += SOffset->getImm();
453 }
454 // Get appropriate operand, and compute width accordingly.
455 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
456 if (DataOpIdx == -1)
457 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
458 if (DataOpIdx == -1) // LDS DMA
459 return false;
460 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
461 return true;
462 }
463
464 if (isMIMG(MI: LdSt)) {
465 int SRsrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
466 BaseOps.push_back(Elt: &LdSt.getOperand(i: SRsrcIdx));
467 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
468 if (VAddr0Idx >= 0) {
469 // GFX10 possible NSA encoding.
470 for (int I = VAddr0Idx; I < SRsrcIdx; ++I)
471 BaseOps.push_back(Elt: &LdSt.getOperand(i: I));
472 } else {
473 BaseOps.push_back(getNamedOperand(LdSt, AMDGPU::OpName::vaddr));
474 }
475 Offset = 0;
476 // Get appropriate operand, and compute width accordingly.
477 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
478 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
479 return true;
480 }
481
482 if (isSMRD(MI: LdSt)) {
483 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::sbase);
484 if (!BaseOp) // e.g. S_MEMTIME
485 return false;
486 BaseOps.push_back(Elt: BaseOp);
487 OffsetOp = getNamedOperand(LdSt, AMDGPU::OpName::offset);
488 Offset = OffsetOp ? OffsetOp->getImm() : 0;
489 // Get appropriate operand, and compute width accordingly.
490 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::sdst);
491 if (DataOpIdx == -1)
492 return false;
493 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
494 return true;
495 }
496
497 if (isFLAT(MI: LdSt)) {
498 // Instructions have either vaddr or saddr or both or none.
499 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::vaddr);
500 if (BaseOp)
501 BaseOps.push_back(Elt: BaseOp);
502 BaseOp = getNamedOperand(LdSt, AMDGPU::OpName::saddr);
503 if (BaseOp)
504 BaseOps.push_back(Elt: BaseOp);
505 Offset = getNamedOperand(LdSt, AMDGPU::OpName::offset)->getImm();
506 // Get appropriate operand, and compute width accordingly.
507 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
508 if (DataOpIdx == -1)
509 DataOpIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdata);
510 if (DataOpIdx == -1) // LDS DMA
511 return false;
512 Width = getOpSize(MI: LdSt, OpNo: DataOpIdx);
513 return true;
514 }
515
516 return false;
517}
518
519static bool memOpsHaveSameBasePtr(const MachineInstr &MI1,
520 ArrayRef<const MachineOperand *> BaseOps1,
521 const MachineInstr &MI2,
522 ArrayRef<const MachineOperand *> BaseOps2) {
523 // Only examine the first "base" operand of each instruction, on the
524 // assumption that it represents the real base address of the memory access.
525 // Other operands are typically offsets or indices from this base address.
526 if (BaseOps1.front()->isIdenticalTo(Other: *BaseOps2.front()))
527 return true;
528
529 if (!MI1.hasOneMemOperand() || !MI2.hasOneMemOperand())
530 return false;
531
532 auto MO1 = *MI1.memoperands_begin();
533 auto MO2 = *MI2.memoperands_begin();
534 if (MO1->getAddrSpace() != MO2->getAddrSpace())
535 return false;
536
537 auto Base1 = MO1->getValue();
538 auto Base2 = MO2->getValue();
539 if (!Base1 || !Base2)
540 return false;
541 Base1 = getUnderlyingObject(V: Base1);
542 Base2 = getUnderlyingObject(V: Base2);
543
544 if (isa<UndefValue>(Val: Base1) || isa<UndefValue>(Val: Base2))
545 return false;
546
547 return Base1 == Base2;
548}
549
550bool SIInstrInfo::shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
551 int64_t Offset1, bool OffsetIsScalable1,
552 ArrayRef<const MachineOperand *> BaseOps2,
553 int64_t Offset2, bool OffsetIsScalable2,
554 unsigned ClusterSize,
555 unsigned NumBytes) const {
556 // If the mem ops (to be clustered) do not have the same base ptr, then they
557 // should not be clustered
558 if (!BaseOps1.empty() && !BaseOps2.empty()) {
559 const MachineInstr &FirstLdSt = *BaseOps1.front()->getParent();
560 const MachineInstr &SecondLdSt = *BaseOps2.front()->getParent();
561 if (!memOpsHaveSameBasePtr(MI1: FirstLdSt, BaseOps1, MI2: SecondLdSt, BaseOps2))
562 return false;
563 } else if (!BaseOps1.empty() || !BaseOps2.empty()) {
564 // If only one base op is empty, they do not have the same base ptr
565 return false;
566 }
567
568 // In order to avoid register pressure, on an average, the number of DWORDS
569 // loaded together by all clustered mem ops should not exceed 8. This is an
570 // empirical value based on certain observations and performance related
571 // experiments.
572 // The good thing about this heuristic is - it avoids clustering of too many
573 // sub-word loads, and also avoids clustering of wide loads. Below is the
574 // brief summary of how the heuristic behaves for various `LoadSize`.
575 // (1) 1 <= LoadSize <= 4: cluster at max 8 mem ops
576 // (2) 5 <= LoadSize <= 8: cluster at max 4 mem ops
577 // (3) 9 <= LoadSize <= 12: cluster at max 2 mem ops
578 // (4) 13 <= LoadSize <= 16: cluster at max 2 mem ops
579 // (5) LoadSize >= 17: do not cluster
580 const unsigned LoadSize = NumBytes / ClusterSize;
581 const unsigned NumDWORDs = ((LoadSize + 3) / 4) * ClusterSize;
582 return NumDWORDs <= 8;
583}
584
585// FIXME: This behaves strangely. If, for example, you have 32 load + stores,
586// the first 16 loads will be interleaved with the stores, and the next 16 will
587// be clustered as expected. It should really split into 2 16 store batches.
588//
589// Loads are clustered until this returns false, rather than trying to schedule
590// groups of stores. This also means we have to deal with saying different
591// address space loads should be clustered, and ones which might cause bank
592// conflicts.
593//
594// This might be deprecated so it might not be worth that much effort to fix.
595bool SIInstrInfo::shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1,
596 int64_t Offset0, int64_t Offset1,
597 unsigned NumLoads) const {
598 assert(Offset1 > Offset0 &&
599 "Second offset should be larger than first offset!");
600 // If we have less than 16 loads in a row, and the offsets are within 64
601 // bytes, then schedule together.
602
603 // A cacheline is 64 bytes (for global memory).
604 return (NumLoads <= 16 && (Offset1 - Offset0) < 64);
605}
606
607static void reportIllegalCopy(const SIInstrInfo *TII, MachineBasicBlock &MBB,
608 MachineBasicBlock::iterator MI,
609 const DebugLoc &DL, MCRegister DestReg,
610 MCRegister SrcReg, bool KillSrc,
611 const char *Msg = "illegal VGPR to SGPR copy") {
612 MachineFunction *MF = MBB.getParent();
613 DiagnosticInfoUnsupported IllegalCopy(MF->getFunction(), Msg, DL, DS_Error);
614 LLVMContext &C = MF->getFunction().getContext();
615 C.diagnose(DI: IllegalCopy);
616
617 BuildMI(MBB, MI, DL, TII->get(AMDGPU::SI_ILLEGAL_COPY), DestReg)
618 .addReg(SrcReg, getKillRegState(KillSrc));
619}
620
621/// Handle copying from SGPR to AGPR, or from AGPR to AGPR on GFX908. It is not
622/// possible to have a direct copy in these cases on GFX908, so an intermediate
623/// VGPR copy is required.
624static void indirectCopyToAGPR(const SIInstrInfo &TII,
625 MachineBasicBlock &MBB,
626 MachineBasicBlock::iterator MI,
627 const DebugLoc &DL, MCRegister DestReg,
628 MCRegister SrcReg, bool KillSrc,
629 RegScavenger &RS, bool RegsOverlap,
630 Register ImpDefSuperReg = Register(),
631 Register ImpUseSuperReg = Register()) {
632 assert((TII.getSubtarget().hasMAIInsts() &&
633 !TII.getSubtarget().hasGFX90AInsts()) &&
634 "Expected GFX908 subtarget.");
635
636 assert((AMDGPU::SReg_32RegClass.contains(SrcReg) ||
637 AMDGPU::AGPR_32RegClass.contains(SrcReg)) &&
638 "Source register of the copy should be either an SGPR or an AGPR.");
639
640 assert(AMDGPU::AGPR_32RegClass.contains(DestReg) &&
641 "Destination register of the copy should be an AGPR.");
642
643 const SIRegisterInfo &RI = TII.getRegisterInfo();
644
645 // First try to find defining accvgpr_write to avoid temporary registers.
646 // In the case of copies of overlapping AGPRs, we conservatively do not
647 // reuse previous accvgpr_writes. Otherwise, we may incorrectly pick up
648 // an accvgpr_write used for this same copy due to implicit-defs
649 if (!RegsOverlap) {
650 for (auto Def = MI, E = MBB.begin(); Def != E; ) {
651 --Def;
652
653 if (!Def->modifiesRegister(SrcReg, &RI))
654 continue;
655
656 if (Def->getOpcode() != AMDGPU::V_ACCVGPR_WRITE_B32_e64 ||
657 Def->getOperand(0).getReg() != SrcReg)
658 break;
659
660 MachineOperand &DefOp = Def->getOperand(i: 1);
661 assert(DefOp.isReg() || DefOp.isImm());
662
663 if (DefOp.isReg()) {
664 bool SafeToPropagate = true;
665 // Check that register source operand is not clobbered before MI.
666 // Immediate operands are always safe to propagate.
667 for (auto I = Def; I != MI && SafeToPropagate; ++I)
668 if (I->modifiesRegister(DefOp.getReg(), &RI))
669 SafeToPropagate = false;
670
671 if (!SafeToPropagate)
672 break;
673
674 DefOp.setIsKill(false);
675 }
676
677 MachineInstrBuilder Builder =
678 BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
679 .add(DefOp);
680 if (ImpDefSuperReg)
681 Builder.addReg(RegNo: ImpDefSuperReg, flags: RegState::Define | RegState::Implicit);
682
683 if (ImpUseSuperReg) {
684 Builder.addReg(RegNo: ImpUseSuperReg,
685 flags: getKillRegState(B: KillSrc) | RegState::Implicit);
686 }
687
688 return;
689 }
690 }
691
692 RS.enterBasicBlockEnd(MBB);
693 RS.backward(I: std::next(x: MI));
694
695 // Ideally we want to have three registers for a long reg_sequence copy
696 // to hide 2 waitstates between v_mov_b32 and accvgpr_write.
697 unsigned MaxVGPRs = RI.getRegPressureLimit(&AMDGPU::VGPR_32RegClass,
698 *MBB.getParent());
699
700 // Registers in the sequence are allocated contiguously so we can just
701 // use register number to pick one of three round-robin temps.
702 unsigned RegNo = (DestReg - AMDGPU::AGPR0) % 3;
703 Register Tmp =
704 MBB.getParent()->getInfo<SIMachineFunctionInfo>()->getVGPRForAGPRCopy();
705 assert(MBB.getParent()->getRegInfo().isReserved(Tmp) &&
706 "VGPR used for an intermediate copy should have been reserved.");
707
708 // Only loop through if there are any free registers left. We don't want to
709 // spill.
710 while (RegNo--) {
711 Register Tmp2 = RS.scavengeRegisterBackwards(AMDGPU::VGPR_32RegClass, MI,
712 /* RestoreAfter */ false, 0,
713 /* AllowSpill */ false);
714 if (!Tmp2 || RI.getHWRegIndex(Reg: Tmp2) >= MaxVGPRs)
715 break;
716 Tmp = Tmp2;
717 RS.setRegUsed(Reg: Tmp);
718 }
719
720 // Insert copy to temporary VGPR.
721 unsigned TmpCopyOp = AMDGPU::V_MOV_B32_e32;
722 if (AMDGPU::AGPR_32RegClass.contains(SrcReg)) {
723 TmpCopyOp = AMDGPU::V_ACCVGPR_READ_B32_e64;
724 } else {
725 assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
726 }
727
728 MachineInstrBuilder UseBuilder = BuildMI(MBB, MI, DL, TII.get(TmpCopyOp), Tmp)
729 .addReg(SrcReg, getKillRegState(B: KillSrc));
730 if (ImpUseSuperReg) {
731 UseBuilder.addReg(RegNo: ImpUseSuperReg,
732 flags: getKillRegState(B: KillSrc) | RegState::Implicit);
733 }
734
735 MachineInstrBuilder DefBuilder
736 = BuildMI(MBB, MI, DL, TII.get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
737 .addReg(Tmp, RegState::Kill);
738
739 if (ImpDefSuperReg)
740 DefBuilder.addReg(RegNo: ImpDefSuperReg, flags: RegState::Define | RegState::Implicit);
741}
742
743static void expandSGPRCopy(const SIInstrInfo &TII, MachineBasicBlock &MBB,
744 MachineBasicBlock::iterator MI, const DebugLoc &DL,
745 MCRegister DestReg, MCRegister SrcReg, bool KillSrc,
746 const TargetRegisterClass *RC, bool Forward) {
747 const SIRegisterInfo &RI = TII.getRegisterInfo();
748 ArrayRef<int16_t> BaseIndices = RI.getRegSplitParts(RC, 4);
749 MachineBasicBlock::iterator I = MI;
750 MachineInstr *FirstMI = nullptr, *LastMI = nullptr;
751
752 for (unsigned Idx = 0; Idx < BaseIndices.size(); ++Idx) {
753 int16_t SubIdx = BaseIndices[Idx];
754 Register DestSubReg = RI.getSubReg(DestReg, SubIdx);
755 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
756 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
757 unsigned Opcode = AMDGPU::S_MOV_B32;
758
759 // Is SGPR aligned? If so try to combine with next.
760 bool AlignedDest = ((DestSubReg - AMDGPU::SGPR0) % 2) == 0;
761 bool AlignedSrc = ((SrcSubReg - AMDGPU::SGPR0) % 2) == 0;
762 if (AlignedDest && AlignedSrc && (Idx + 1 < BaseIndices.size())) {
763 // Can use SGPR64 copy
764 unsigned Channel = RI.getChannelFromSubReg(SubReg: SubIdx);
765 SubIdx = RI.getSubRegFromChannel(Channel, NumRegs: 2);
766 DestSubReg = RI.getSubReg(DestReg, SubIdx);
767 SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
768 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
769 Opcode = AMDGPU::S_MOV_B64;
770 Idx++;
771 }
772
773 LastMI = BuildMI(MBB, I, DL, TII.get(Opcode), DestSubReg)
774 .addReg(SrcSubReg)
775 .addReg(SrcReg, RegState::Implicit);
776
777 if (!FirstMI)
778 FirstMI = LastMI;
779
780 if (!Forward)
781 I--;
782 }
783
784 assert(FirstMI && LastMI);
785 if (!Forward)
786 std::swap(a&: FirstMI, b&: LastMI);
787
788 FirstMI->addOperand(
789 Op: MachineOperand::CreateReg(Reg: DestReg, isDef: true /*IsDef*/, isImp: true /*IsImp*/));
790
791 if (KillSrc)
792 LastMI->addRegisterKilled(SrcReg, &RI);
793}
794
795void SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
796 MachineBasicBlock::iterator MI,
797 const DebugLoc &DL, MCRegister DestReg,
798 MCRegister SrcReg, bool KillSrc) const {
799 const TargetRegisterClass *RC = RI.getPhysRegBaseClass(DestReg);
800 unsigned Size = RI.getRegSizeInBits(*RC);
801 const TargetRegisterClass *SrcRC = RI.getPhysRegBaseClass(SrcReg);
802 unsigned SrcSize = RI.getRegSizeInBits(*SrcRC);
803
804 // The rest of copyPhysReg assumes Src and Dst size are the same size.
805 // TODO-GFX11_16BIT If all true 16 bit instruction patterns are completed can
806 // we remove Fix16BitCopies and this code block?
807 if (Fix16BitCopies) {
808 if (((Size == 16) != (SrcSize == 16))) {
809 // Non-VGPR Src and Dst will later be expanded back to 32 bits.
810 assert(ST.hasTrue16BitInsts());
811 MCRegister &RegToFix = (Size == 32) ? DestReg : SrcReg;
812 MCRegister SubReg = RI.getSubReg(RegToFix, AMDGPU::lo16);
813 RegToFix = SubReg;
814
815 if (DestReg == SrcReg) {
816 // Identity copy. Insert empty bundle since ExpandPostRA expects an
817 // instruction here.
818 BuildMI(MBB, MI, DL, get(AMDGPU::BUNDLE));
819 return;
820 }
821 RC = RI.getPhysRegBaseClass(DestReg);
822 Size = RI.getRegSizeInBits(*RC);
823 SrcRC = RI.getPhysRegBaseClass(SrcReg);
824 SrcSize = RI.getRegSizeInBits(*SrcRC);
825 }
826 }
827
828 if (RC == &AMDGPU::VGPR_32RegClass) {
829 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
830 AMDGPU::SReg_32RegClass.contains(SrcReg) ||
831 AMDGPU::AGPR_32RegClass.contains(SrcReg));
832 unsigned Opc = AMDGPU::AGPR_32RegClass.contains(SrcReg) ?
833 AMDGPU::V_ACCVGPR_READ_B32_e64 : AMDGPU::V_MOV_B32_e32;
834 BuildMI(MBB, MI, DL, get(Opc), DestReg)
835 .addReg(SrcReg, getKillRegState(B: KillSrc));
836 return;
837 }
838
839 if (RC == &AMDGPU::SReg_32_XM0RegClass ||
840 RC == &AMDGPU::SReg_32RegClass) {
841 if (SrcReg == AMDGPU::SCC) {
842 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B32), DestReg)
843 .addImm(1)
844 .addImm(0);
845 return;
846 }
847
848 if (DestReg == AMDGPU::VCC_LO) {
849 if (AMDGPU::SReg_32RegClass.contains(SrcReg)) {
850 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::VCC_LO)
851 .addReg(SrcReg, getKillRegState(KillSrc));
852 } else {
853 // FIXME: Hack until VReg_1 removed.
854 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
855 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
856 .addImm(0)
857 .addReg(SrcReg, getKillRegState(KillSrc));
858 }
859
860 return;
861 }
862
863 if (!AMDGPU::SReg_32RegClass.contains(SrcReg)) {
864 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
865 return;
866 }
867
868 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
869 .addReg(SrcReg, getKillRegState(KillSrc));
870 return;
871 }
872
873 if (RC == &AMDGPU::SReg_64RegClass) {
874 if (SrcReg == AMDGPU::SCC) {
875 BuildMI(MBB, MI, DL, get(AMDGPU::S_CSELECT_B64), DestReg)
876 .addImm(1)
877 .addImm(0);
878 return;
879 }
880
881 if (DestReg == AMDGPU::VCC) {
882 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
883 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC)
884 .addReg(SrcReg, getKillRegState(KillSrc));
885 } else {
886 // FIXME: Hack until VReg_1 removed.
887 assert(AMDGPU::VGPR_32RegClass.contains(SrcReg));
888 BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_U32_e32))
889 .addImm(0)
890 .addReg(SrcReg, getKillRegState(KillSrc));
891 }
892
893 return;
894 }
895
896 if (!AMDGPU::SReg_64RegClass.contains(SrcReg)) {
897 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
898 return;
899 }
900
901 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
902 .addReg(SrcReg, getKillRegState(KillSrc));
903 return;
904 }
905
906 if (DestReg == AMDGPU::SCC) {
907 // Copying 64-bit or 32-bit sources to SCC barely makes sense,
908 // but SelectionDAG emits such copies for i1 sources.
909 if (AMDGPU::SReg_64RegClass.contains(SrcReg)) {
910 // This copy can only be produced by patterns
911 // with explicit SCC, which are known to be enabled
912 // only for subtargets with S_CMP_LG_U64 present.
913 assert(ST.hasScalarCompareEq64());
914 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U64))
915 .addReg(SrcReg, getKillRegState(KillSrc))
916 .addImm(0);
917 } else {
918 assert(AMDGPU::SReg_32RegClass.contains(SrcReg));
919 BuildMI(MBB, MI, DL, get(AMDGPU::S_CMP_LG_U32))
920 .addReg(SrcReg, getKillRegState(KillSrc))
921 .addImm(0);
922 }
923
924 return;
925 }
926
927 if (RC == &AMDGPU::AGPR_32RegClass) {
928 if (AMDGPU::VGPR_32RegClass.contains(SrcReg) ||
929 (ST.hasGFX90AInsts() && AMDGPU::SReg_32RegClass.contains(SrcReg))) {
930 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_WRITE_B32_e64), DestReg)
931 .addReg(SrcReg, getKillRegState(KillSrc));
932 return;
933 }
934
935 if (AMDGPU::AGPR_32RegClass.contains(SrcReg) && ST.hasGFX90AInsts()) {
936 BuildMI(MBB, MI, DL, get(AMDGPU::V_ACCVGPR_MOV_B32), DestReg)
937 .addReg(SrcReg, getKillRegState(KillSrc));
938 return;
939 }
940
941 // FIXME: Pass should maintain scavenger to avoid scan through the block on
942 // every AGPR spill.
943 RegScavenger RS;
944 const bool Overlap = RI.regsOverlap(SrcReg, DestReg);
945 indirectCopyToAGPR(TII: *this, MBB, MI, DL, DestReg, SrcReg, KillSrc, RS, RegsOverlap: Overlap);
946 return;
947 }
948
949 if (Size == 16) {
950 assert(AMDGPU::VGPR_16RegClass.contains(SrcReg) ||
951 AMDGPU::SReg_LO16RegClass.contains(SrcReg) ||
952 AMDGPU::AGPR_LO16RegClass.contains(SrcReg));
953
954 bool IsSGPRDst = AMDGPU::SReg_LO16RegClass.contains(DestReg);
955 bool IsSGPRSrc = AMDGPU::SReg_LO16RegClass.contains(SrcReg);
956 bool IsAGPRDst = AMDGPU::AGPR_LO16RegClass.contains(DestReg);
957 bool IsAGPRSrc = AMDGPU::AGPR_LO16RegClass.contains(SrcReg);
958 bool DstLow = !AMDGPU::isHi(DestReg, RI);
959 bool SrcLow = !AMDGPU::isHi(SrcReg, RI);
960 MCRegister NewDestReg = RI.get32BitRegister(Reg: DestReg);
961 MCRegister NewSrcReg = RI.get32BitRegister(Reg: SrcReg);
962
963 if (IsSGPRDst) {
964 if (!IsSGPRSrc) {
965 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
966 return;
967 }
968
969 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), NewDestReg)
970 .addReg(NewSrcReg, getKillRegState(KillSrc));
971 return;
972 }
973
974 if (IsAGPRDst || IsAGPRSrc) {
975 if (!DstLow || !SrcLow) {
976 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
977 Msg: "Cannot use hi16 subreg with an AGPR!");
978 }
979
980 copyPhysReg(MBB, MI, DL, DestReg: NewDestReg, SrcReg: NewSrcReg, KillSrc);
981 return;
982 }
983
984 if (ST.hasTrue16BitInsts()) {
985 if (IsSGPRSrc) {
986 assert(SrcLow);
987 SrcReg = NewSrcReg;
988 }
989 // Use the smaller instruction encoding if possible.
990 if (AMDGPU::VGPR_16_Lo128RegClass.contains(DestReg) &&
991 (IsSGPRSrc || AMDGPU::VGPR_16_Lo128RegClass.contains(SrcReg))) {
992 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e32), DestReg)
993 .addReg(SrcReg);
994 } else {
995 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B16_t16_e64), DestReg)
996 .addImm(0) // src0_modifiers
997 .addReg(SrcReg)
998 .addImm(0); // op_sel
999 }
1000 return;
1001 }
1002
1003 if (IsSGPRSrc && !ST.hasSDWAScalar()) {
1004 if (!DstLow || !SrcLow) {
1005 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc,
1006 Msg: "Cannot use hi16 subreg on VI!");
1007 }
1008
1009 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), NewDestReg)
1010 .addReg(NewSrcReg, getKillRegState(KillSrc));
1011 return;
1012 }
1013
1014 auto MIB = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_sdwa), NewDestReg)
1015 .addImm(0) // src0_modifiers
1016 .addReg(NewSrcReg)
1017 .addImm(0) // clamp
1018 .addImm(DstLow ? AMDGPU::SDWA::SdwaSel::WORD_0
1019 : AMDGPU::SDWA::SdwaSel::WORD_1)
1020 .addImm(AMDGPU::SDWA::DstUnused::UNUSED_PRESERVE)
1021 .addImm(SrcLow ? AMDGPU::SDWA::SdwaSel::WORD_0
1022 : AMDGPU::SDWA::SdwaSel::WORD_1)
1023 .addReg(NewDestReg, RegState::Implicit | RegState::Undef);
1024 // First implicit operand is $exec.
1025 MIB->tieOperands(0, MIB->getNumOperands() - 1);
1026 return;
1027 }
1028
1029 if (RC == RI.getVGPR64Class() && (SrcRC == RC || RI.isSGPRClass(SrcRC))) {
1030 if (ST.hasMovB64()) {
1031 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_e32), DestReg)
1032 .addReg(SrcReg, getKillRegState(KillSrc));
1033 return;
1034 }
1035 if (ST.hasPkMovB32()) {
1036 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestReg)
1037 .addImm(SISrcMods::OP_SEL_1)
1038 .addReg(SrcReg)
1039 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
1040 .addReg(SrcReg)
1041 .addImm(0) // op_sel_lo
1042 .addImm(0) // op_sel_hi
1043 .addImm(0) // neg_lo
1044 .addImm(0) // neg_hi
1045 .addImm(0) // clamp
1046 .addReg(SrcReg, getKillRegState(KillSrc) | RegState::Implicit);
1047 return;
1048 }
1049 }
1050
1051 const bool Forward = RI.getHWRegIndex(Reg: DestReg) <= RI.getHWRegIndex(Reg: SrcReg);
1052 if (RI.isSGPRClass(RC)) {
1053 if (!RI.isSGPRClass(SrcRC)) {
1054 reportIllegalCopy(TII: this, MBB, MI, DL, DestReg, SrcReg, KillSrc);
1055 return;
1056 }
1057 const bool CanKillSuperReg = KillSrc && !RI.regsOverlap(SrcReg, DestReg);
1058 expandSGPRCopy(TII: *this, MBB, MI, DL, DestReg, SrcReg, KillSrc: CanKillSuperReg, RC,
1059 Forward);
1060 return;
1061 }
1062
1063 unsigned EltSize = 4;
1064 unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1065 if (RI.isAGPRClass(RC)) {
1066 if (ST.hasGFX90AInsts() && RI.isAGPRClass(SrcRC))
1067 Opcode = AMDGPU::V_ACCVGPR_MOV_B32;
1068 else if (RI.hasVGPRs(SrcRC) ||
1069 (ST.hasGFX90AInsts() && RI.isSGPRClass(SrcRC)))
1070 Opcode = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
1071 else
1072 Opcode = AMDGPU::INSTRUCTION_LIST_END;
1073 } else if (RI.hasVGPRs(RC) && RI.isAGPRClass(SrcRC)) {
1074 Opcode = AMDGPU::V_ACCVGPR_READ_B32_e64;
1075 } else if ((Size % 64 == 0) && RI.hasVGPRs(RC) &&
1076 (RI.isProperlyAlignedRC(*RC) &&
1077 (SrcRC == RC || RI.isSGPRClass(SrcRC)))) {
1078 // TODO: In 96-bit case, could do a 64-bit mov and then a 32-bit mov.
1079 if (ST.hasMovB64()) {
1080 Opcode = AMDGPU::V_MOV_B64_e32;
1081 EltSize = 8;
1082 } else if (ST.hasPkMovB32()) {
1083 Opcode = AMDGPU::V_PK_MOV_B32;
1084 EltSize = 8;
1085 }
1086 }
1087
1088 // For the cases where we need an intermediate instruction/temporary register
1089 // (destination is an AGPR), we need a scavenger.
1090 //
1091 // FIXME: The pass should maintain this for us so we don't have to re-scan the
1092 // whole block for every handled copy.
1093 std::unique_ptr<RegScavenger> RS;
1094 if (Opcode == AMDGPU::INSTRUCTION_LIST_END)
1095 RS.reset(p: new RegScavenger());
1096
1097 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RC, EltSize);
1098
1099 // If there is an overlap, we can't kill the super-register on the last
1100 // instruction, since it will also kill the components made live by this def.
1101 const bool Overlap = RI.regsOverlap(SrcReg, DestReg);
1102 const bool CanKillSuperReg = KillSrc && !Overlap;
1103
1104 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
1105 unsigned SubIdx;
1106 if (Forward)
1107 SubIdx = SubIndices[Idx];
1108 else
1109 SubIdx = SubIndices[SubIndices.size() - Idx - 1];
1110 Register DestSubReg = RI.getSubReg(DestReg, SubIdx);
1111 Register SrcSubReg = RI.getSubReg(SrcReg, SubIdx);
1112 assert(DestSubReg && SrcSubReg && "Failed to find subregs!");
1113
1114 bool IsFirstSubreg = Idx == 0;
1115 bool UseKill = CanKillSuperReg && Idx == SubIndices.size() - 1;
1116
1117 if (Opcode == AMDGPU::INSTRUCTION_LIST_END) {
1118 Register ImpDefSuper = IsFirstSubreg ? Register(DestReg) : Register();
1119 Register ImpUseSuper = SrcReg;
1120 indirectCopyToAGPR(TII: *this, MBB, MI, DL, DestReg: DestSubReg, SrcReg: SrcSubReg, KillSrc: UseKill,
1121 RS&: *RS, RegsOverlap: Overlap, ImpDefSuperReg: ImpDefSuper, ImpUseSuperReg: ImpUseSuper);
1122 } else if (Opcode == AMDGPU::V_PK_MOV_B32) {
1123 MachineInstrBuilder MIB =
1124 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), DestSubReg)
1125 .addImm(SISrcMods::OP_SEL_1)
1126 .addReg(SrcSubReg)
1127 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1)
1128 .addReg(SrcSubReg)
1129 .addImm(0) // op_sel_lo
1130 .addImm(0) // op_sel_hi
1131 .addImm(0) // neg_lo
1132 .addImm(0) // neg_hi
1133 .addImm(0) // clamp
1134 .addReg(SrcReg, getKillRegState(UseKill) | RegState::Implicit);
1135 if (IsFirstSubreg)
1136 MIB.addReg(RegNo: DestReg, flags: RegState::Define | RegState::Implicit);
1137 } else {
1138 MachineInstrBuilder Builder =
1139 BuildMI(MBB, MI, DL, get(Opcode), DestSubReg).addReg(SrcSubReg);
1140 if (IsFirstSubreg)
1141 Builder.addReg(RegNo: DestReg, flags: RegState::Define | RegState::Implicit);
1142
1143 Builder.addReg(RegNo: SrcReg, flags: getKillRegState(B: UseKill) | RegState::Implicit);
1144 }
1145 }
1146}
1147
1148int SIInstrInfo::commuteOpcode(unsigned Opcode) const {
1149 int NewOpc;
1150
1151 // Try to map original to commuted opcode
1152 NewOpc = AMDGPU::getCommuteRev(Opcode);
1153 if (NewOpc != -1)
1154 // Check if the commuted (REV) opcode exists on the target.
1155 return pseudoToMCOpcode(Opcode: NewOpc) != -1 ? NewOpc : -1;
1156
1157 // Try to map commuted to original opcode
1158 NewOpc = AMDGPU::getCommuteOrig(Opcode);
1159 if (NewOpc != -1)
1160 // Check if the original (non-REV) opcode exists on the target.
1161 return pseudoToMCOpcode(Opcode: NewOpc) != -1 ? NewOpc : -1;
1162
1163 return Opcode;
1164}
1165
1166void SIInstrInfo::materializeImmediate(MachineBasicBlock &MBB,
1167 MachineBasicBlock::iterator MI,
1168 const DebugLoc &DL, Register DestReg,
1169 int64_t Value) const {
1170 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1171 const TargetRegisterClass *RegClass = MRI.getRegClass(Reg: DestReg);
1172 if (RegClass == &AMDGPU::SReg_32RegClass ||
1173 RegClass == &AMDGPU::SGPR_32RegClass ||
1174 RegClass == &AMDGPU::SReg_32_XM0RegClass ||
1175 RegClass == &AMDGPU::SReg_32_XM0_XEXECRegClass) {
1176 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg)
1177 .addImm(Value);
1178 return;
1179 }
1180
1181 if (RegClass == &AMDGPU::SReg_64RegClass ||
1182 RegClass == &AMDGPU::SGPR_64RegClass ||
1183 RegClass == &AMDGPU::SReg_64_XEXECRegClass) {
1184 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg)
1185 .addImm(Value);
1186 return;
1187 }
1188
1189 if (RegClass == &AMDGPU::VGPR_32RegClass) {
1190 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg)
1191 .addImm(Value);
1192 return;
1193 }
1194 if (RegClass->hasSuperClassEq(&AMDGPU::VReg_64RegClass)) {
1195 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO), DestReg)
1196 .addImm(Value);
1197 return;
1198 }
1199
1200 unsigned EltSize = 4;
1201 unsigned Opcode = AMDGPU::V_MOV_B32_e32;
1202 if (RI.isSGPRClass(RegClass)) {
1203 if (RI.getRegSizeInBits(*RegClass) > 32) {
1204 Opcode = AMDGPU::S_MOV_B64;
1205 EltSize = 8;
1206 } else {
1207 Opcode = AMDGPU::S_MOV_B32;
1208 EltSize = 4;
1209 }
1210 }
1211
1212 ArrayRef<int16_t> SubIndices = RI.getRegSplitParts(RegClass, EltSize);
1213 for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) {
1214 int64_t IdxValue = Idx == 0 ? Value : 0;
1215
1216 MachineInstrBuilder Builder = BuildMI(MBB, MI, DL,
1217 get(Opcode), RI.getSubReg(DestReg, SubIndices[Idx]));
1218 Builder.addImm(Val: IdxValue);
1219 }
1220}
1221
1222const TargetRegisterClass *
1223SIInstrInfo::getPreferredSelectRegClass(unsigned Size) const {
1224 return &AMDGPU::VGPR_32RegClass;
1225}
1226
1227void SIInstrInfo::insertVectorSelect(MachineBasicBlock &MBB,
1228 MachineBasicBlock::iterator I,
1229 const DebugLoc &DL, Register DstReg,
1230 ArrayRef<MachineOperand> Cond,
1231 Register TrueReg,
1232 Register FalseReg) const {
1233 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
1234 const TargetRegisterClass *BoolXExecRC =
1235 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
1236 assert(MRI.getRegClass(DstReg) == &AMDGPU::VGPR_32RegClass &&
1237 "Not a VGPR32 reg");
1238
1239 if (Cond.size() == 1) {
1240 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1241 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1242 .add(Cond[0]);
1243 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1244 .addImm(0)
1245 .addReg(FalseReg)
1246 .addImm(0)
1247 .addReg(TrueReg)
1248 .addReg(SReg);
1249 } else if (Cond.size() == 2) {
1250 assert(Cond[0].isImm() && "Cond[0] is not an immediate");
1251 switch (Cond[0].getImm()) {
1252 case SIInstrInfo::SCC_TRUE: {
1253 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1254 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1255 : AMDGPU::S_CSELECT_B64), SReg)
1256 .addImm(1)
1257 .addImm(0);
1258 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1259 .addImm(0)
1260 .addReg(FalseReg)
1261 .addImm(0)
1262 .addReg(TrueReg)
1263 .addReg(SReg);
1264 break;
1265 }
1266 case SIInstrInfo::SCC_FALSE: {
1267 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1268 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1269 : AMDGPU::S_CSELECT_B64), SReg)
1270 .addImm(0)
1271 .addImm(1);
1272 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1273 .addImm(0)
1274 .addReg(FalseReg)
1275 .addImm(0)
1276 .addReg(TrueReg)
1277 .addReg(SReg);
1278 break;
1279 }
1280 case SIInstrInfo::VCCNZ: {
1281 MachineOperand RegOp = Cond[1];
1282 RegOp.setImplicit(false);
1283 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1284 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1285 .add(RegOp);
1286 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1287 .addImm(0)
1288 .addReg(FalseReg)
1289 .addImm(0)
1290 .addReg(TrueReg)
1291 .addReg(SReg);
1292 break;
1293 }
1294 case SIInstrInfo::VCCZ: {
1295 MachineOperand RegOp = Cond[1];
1296 RegOp.setImplicit(false);
1297 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1298 BuildMI(MBB, I, DL, get(AMDGPU::COPY), SReg)
1299 .add(RegOp);
1300 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1301 .addImm(0)
1302 .addReg(TrueReg)
1303 .addImm(0)
1304 .addReg(FalseReg)
1305 .addReg(SReg);
1306 break;
1307 }
1308 case SIInstrInfo::EXECNZ: {
1309 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1310 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
1311 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
1312 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
1313 .addImm(0);
1314 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1315 : AMDGPU::S_CSELECT_B64), SReg)
1316 .addImm(1)
1317 .addImm(0);
1318 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1319 .addImm(0)
1320 .addReg(FalseReg)
1321 .addImm(0)
1322 .addReg(TrueReg)
1323 .addReg(SReg);
1324 break;
1325 }
1326 case SIInstrInfo::EXECZ: {
1327 Register SReg = MRI.createVirtualRegister(RegClass: BoolXExecRC);
1328 Register SReg2 = MRI.createVirtualRegister(RI.getBoolRC());
1329 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
1330 : AMDGPU::S_OR_SAVEEXEC_B64), SReg2)
1331 .addImm(0);
1332 BuildMI(MBB, I, DL, get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
1333 : AMDGPU::S_CSELECT_B64), SReg)
1334 .addImm(0)
1335 .addImm(1);
1336 BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
1337 .addImm(0)
1338 .addReg(FalseReg)
1339 .addImm(0)
1340 .addReg(TrueReg)
1341 .addReg(SReg);
1342 llvm_unreachable("Unhandled branch predicate EXECZ");
1343 break;
1344 }
1345 default:
1346 llvm_unreachable("invalid branch predicate");
1347 }
1348 } else {
1349 llvm_unreachable("Can only handle Cond size 1 or 2");
1350 }
1351}
1352
1353Register SIInstrInfo::insertEQ(MachineBasicBlock *MBB,
1354 MachineBasicBlock::iterator I,
1355 const DebugLoc &DL,
1356 Register SrcReg, int Value) const {
1357 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1358 Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
1359 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_EQ_I32_e64), Reg)
1360 .addImm(Value)
1361 .addReg(SrcReg);
1362
1363 return Reg;
1364}
1365
1366Register SIInstrInfo::insertNE(MachineBasicBlock *MBB,
1367 MachineBasicBlock::iterator I,
1368 const DebugLoc &DL,
1369 Register SrcReg, int Value) const {
1370 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
1371 Register Reg = MRI.createVirtualRegister(RI.getBoolRC());
1372 BuildMI(*MBB, I, DL, get(AMDGPU::V_CMP_NE_I32_e64), Reg)
1373 .addImm(Value)
1374 .addReg(SrcReg);
1375
1376 return Reg;
1377}
1378
1379unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const {
1380
1381 if (RI.isAGPRClass(DstRC))
1382 return AMDGPU::COPY;
1383 if (RI.getRegSizeInBits(*DstRC) == 16) {
1384 // Assume hi bits are unneeded. Only _e64 true16 instructions are legal
1385 // before RA.
1386 return RI.isSGPRClass(DstRC) ? AMDGPU::COPY : AMDGPU::V_MOV_B16_t16_e64;
1387 } else if (RI.getRegSizeInBits(*DstRC) == 32) {
1388 return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
1389 } else if (RI.getRegSizeInBits(*DstRC) == 64 && RI.isSGPRClass(DstRC)) {
1390 return AMDGPU::S_MOV_B64;
1391 } else if (RI.getRegSizeInBits(*DstRC) == 64 && !RI.isSGPRClass(DstRC)) {
1392 return AMDGPU::V_MOV_B64_PSEUDO;
1393 }
1394 return AMDGPU::COPY;
1395}
1396
1397const MCInstrDesc &
1398SIInstrInfo::getIndirectGPRIDXPseudo(unsigned VecSize,
1399 bool IsIndirectSrc) const {
1400 if (IsIndirectSrc) {
1401 if (VecSize <= 32) // 4 bytes
1402 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1);
1403 if (VecSize <= 64) // 8 bytes
1404 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2);
1405 if (VecSize <= 96) // 12 bytes
1406 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3);
1407 if (VecSize <= 128) // 16 bytes
1408 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4);
1409 if (VecSize <= 160) // 20 bytes
1410 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5);
1411 if (VecSize <= 256) // 32 bytes
1412 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8);
1413 if (VecSize <= 288) // 36 bytes
1414 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9);
1415 if (VecSize <= 320) // 40 bytes
1416 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10);
1417 if (VecSize <= 352) // 44 bytes
1418 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11);
1419 if (VecSize <= 384) // 48 bytes
1420 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12);
1421 if (VecSize <= 512) // 64 bytes
1422 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16);
1423 if (VecSize <= 1024) // 128 bytes
1424 return get(AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32);
1425
1426 llvm_unreachable("unsupported size for IndirectRegReadGPRIDX pseudos");
1427 }
1428
1429 if (VecSize <= 32) // 4 bytes
1430 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1);
1431 if (VecSize <= 64) // 8 bytes
1432 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2);
1433 if (VecSize <= 96) // 12 bytes
1434 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3);
1435 if (VecSize <= 128) // 16 bytes
1436 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4);
1437 if (VecSize <= 160) // 20 bytes
1438 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5);
1439 if (VecSize <= 256) // 32 bytes
1440 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8);
1441 if (VecSize <= 288) // 36 bytes
1442 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9);
1443 if (VecSize <= 320) // 40 bytes
1444 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10);
1445 if (VecSize <= 352) // 44 bytes
1446 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11);
1447 if (VecSize <= 384) // 48 bytes
1448 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12);
1449 if (VecSize <= 512) // 64 bytes
1450 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16);
1451 if (VecSize <= 1024) // 128 bytes
1452 return get(AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32);
1453
1454 llvm_unreachable("unsupported size for IndirectRegWriteGPRIDX pseudos");
1455}
1456
1457static unsigned getIndirectVGPRWriteMovRelPseudoOpc(unsigned VecSize) {
1458 if (VecSize <= 32) // 4 bytes
1459 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1;
1460 if (VecSize <= 64) // 8 bytes
1461 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2;
1462 if (VecSize <= 96) // 12 bytes
1463 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3;
1464 if (VecSize <= 128) // 16 bytes
1465 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4;
1466 if (VecSize <= 160) // 20 bytes
1467 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5;
1468 if (VecSize <= 256) // 32 bytes
1469 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8;
1470 if (VecSize <= 288) // 36 bytes
1471 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9;
1472 if (VecSize <= 320) // 40 bytes
1473 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10;
1474 if (VecSize <= 352) // 44 bytes
1475 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11;
1476 if (VecSize <= 384) // 48 bytes
1477 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12;
1478 if (VecSize <= 512) // 64 bytes
1479 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16;
1480 if (VecSize <= 1024) // 128 bytes
1481 return AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32;
1482
1483 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1484}
1485
1486static unsigned getIndirectSGPRWriteMovRelPseudo32(unsigned VecSize) {
1487 if (VecSize <= 32) // 4 bytes
1488 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1;
1489 if (VecSize <= 64) // 8 bytes
1490 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2;
1491 if (VecSize <= 96) // 12 bytes
1492 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3;
1493 if (VecSize <= 128) // 16 bytes
1494 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4;
1495 if (VecSize <= 160) // 20 bytes
1496 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5;
1497 if (VecSize <= 256) // 32 bytes
1498 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8;
1499 if (VecSize <= 288) // 36 bytes
1500 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9;
1501 if (VecSize <= 320) // 40 bytes
1502 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10;
1503 if (VecSize <= 352) // 44 bytes
1504 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11;
1505 if (VecSize <= 384) // 48 bytes
1506 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12;
1507 if (VecSize <= 512) // 64 bytes
1508 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16;
1509 if (VecSize <= 1024) // 128 bytes
1510 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32;
1511
1512 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1513}
1514
1515static unsigned getIndirectSGPRWriteMovRelPseudo64(unsigned VecSize) {
1516 if (VecSize <= 64) // 8 bytes
1517 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1;
1518 if (VecSize <= 128) // 16 bytes
1519 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2;
1520 if (VecSize <= 256) // 32 bytes
1521 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4;
1522 if (VecSize <= 512) // 64 bytes
1523 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8;
1524 if (VecSize <= 1024) // 128 bytes
1525 return AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16;
1526
1527 llvm_unreachable("unsupported size for IndirectRegWrite pseudos");
1528}
1529
1530const MCInstrDesc &
1531SIInstrInfo::getIndirectRegWriteMovRelPseudo(unsigned VecSize, unsigned EltSize,
1532 bool IsSGPR) const {
1533 if (IsSGPR) {
1534 switch (EltSize) {
1535 case 32:
1536 return get(getIndirectSGPRWriteMovRelPseudo32(VecSize));
1537 case 64:
1538 return get(getIndirectSGPRWriteMovRelPseudo64(VecSize));
1539 default:
1540 llvm_unreachable("invalid reg indexing elt size");
1541 }
1542 }
1543
1544 assert(EltSize == 32 && "invalid reg indexing elt size");
1545 return get(getIndirectVGPRWriteMovRelPseudoOpc(VecSize));
1546}
1547
1548static unsigned getSGPRSpillSaveOpcode(unsigned Size) {
1549 switch (Size) {
1550 case 4:
1551 return AMDGPU::SI_SPILL_S32_SAVE;
1552 case 8:
1553 return AMDGPU::SI_SPILL_S64_SAVE;
1554 case 12:
1555 return AMDGPU::SI_SPILL_S96_SAVE;
1556 case 16:
1557 return AMDGPU::SI_SPILL_S128_SAVE;
1558 case 20:
1559 return AMDGPU::SI_SPILL_S160_SAVE;
1560 case 24:
1561 return AMDGPU::SI_SPILL_S192_SAVE;
1562 case 28:
1563 return AMDGPU::SI_SPILL_S224_SAVE;
1564 case 32:
1565 return AMDGPU::SI_SPILL_S256_SAVE;
1566 case 36:
1567 return AMDGPU::SI_SPILL_S288_SAVE;
1568 case 40:
1569 return AMDGPU::SI_SPILL_S320_SAVE;
1570 case 44:
1571 return AMDGPU::SI_SPILL_S352_SAVE;
1572 case 48:
1573 return AMDGPU::SI_SPILL_S384_SAVE;
1574 case 64:
1575 return AMDGPU::SI_SPILL_S512_SAVE;
1576 case 128:
1577 return AMDGPU::SI_SPILL_S1024_SAVE;
1578 default:
1579 llvm_unreachable("unknown register size");
1580 }
1581}
1582
1583static unsigned getVGPRSpillSaveOpcode(unsigned Size) {
1584 switch (Size) {
1585 case 4:
1586 return AMDGPU::SI_SPILL_V32_SAVE;
1587 case 8:
1588 return AMDGPU::SI_SPILL_V64_SAVE;
1589 case 12:
1590 return AMDGPU::SI_SPILL_V96_SAVE;
1591 case 16:
1592 return AMDGPU::SI_SPILL_V128_SAVE;
1593 case 20:
1594 return AMDGPU::SI_SPILL_V160_SAVE;
1595 case 24:
1596 return AMDGPU::SI_SPILL_V192_SAVE;
1597 case 28:
1598 return AMDGPU::SI_SPILL_V224_SAVE;
1599 case 32:
1600 return AMDGPU::SI_SPILL_V256_SAVE;
1601 case 36:
1602 return AMDGPU::SI_SPILL_V288_SAVE;
1603 case 40:
1604 return AMDGPU::SI_SPILL_V320_SAVE;
1605 case 44:
1606 return AMDGPU::SI_SPILL_V352_SAVE;
1607 case 48:
1608 return AMDGPU::SI_SPILL_V384_SAVE;
1609 case 64:
1610 return AMDGPU::SI_SPILL_V512_SAVE;
1611 case 128:
1612 return AMDGPU::SI_SPILL_V1024_SAVE;
1613 default:
1614 llvm_unreachable("unknown register size");
1615 }
1616}
1617
1618static unsigned getAGPRSpillSaveOpcode(unsigned Size) {
1619 switch (Size) {
1620 case 4:
1621 return AMDGPU::SI_SPILL_A32_SAVE;
1622 case 8:
1623 return AMDGPU::SI_SPILL_A64_SAVE;
1624 case 12:
1625 return AMDGPU::SI_SPILL_A96_SAVE;
1626 case 16:
1627 return AMDGPU::SI_SPILL_A128_SAVE;
1628 case 20:
1629 return AMDGPU::SI_SPILL_A160_SAVE;
1630 case 24:
1631 return AMDGPU::SI_SPILL_A192_SAVE;
1632 case 28:
1633 return AMDGPU::SI_SPILL_A224_SAVE;
1634 case 32:
1635 return AMDGPU::SI_SPILL_A256_SAVE;
1636 case 36:
1637 return AMDGPU::SI_SPILL_A288_SAVE;
1638 case 40:
1639 return AMDGPU::SI_SPILL_A320_SAVE;
1640 case 44:
1641 return AMDGPU::SI_SPILL_A352_SAVE;
1642 case 48:
1643 return AMDGPU::SI_SPILL_A384_SAVE;
1644 case 64:
1645 return AMDGPU::SI_SPILL_A512_SAVE;
1646 case 128:
1647 return AMDGPU::SI_SPILL_A1024_SAVE;
1648 default:
1649 llvm_unreachable("unknown register size");
1650 }
1651}
1652
1653static unsigned getAVSpillSaveOpcode(unsigned Size) {
1654 switch (Size) {
1655 case 4:
1656 return AMDGPU::SI_SPILL_AV32_SAVE;
1657 case 8:
1658 return AMDGPU::SI_SPILL_AV64_SAVE;
1659 case 12:
1660 return AMDGPU::SI_SPILL_AV96_SAVE;
1661 case 16:
1662 return AMDGPU::SI_SPILL_AV128_SAVE;
1663 case 20:
1664 return AMDGPU::SI_SPILL_AV160_SAVE;
1665 case 24:
1666 return AMDGPU::SI_SPILL_AV192_SAVE;
1667 case 28:
1668 return AMDGPU::SI_SPILL_AV224_SAVE;
1669 case 32:
1670 return AMDGPU::SI_SPILL_AV256_SAVE;
1671 case 36:
1672 return AMDGPU::SI_SPILL_AV288_SAVE;
1673 case 40:
1674 return AMDGPU::SI_SPILL_AV320_SAVE;
1675 case 44:
1676 return AMDGPU::SI_SPILL_AV352_SAVE;
1677 case 48:
1678 return AMDGPU::SI_SPILL_AV384_SAVE;
1679 case 64:
1680 return AMDGPU::SI_SPILL_AV512_SAVE;
1681 case 128:
1682 return AMDGPU::SI_SPILL_AV1024_SAVE;
1683 default:
1684 llvm_unreachable("unknown register size");
1685 }
1686}
1687
1688static unsigned getWWMRegSpillSaveOpcode(unsigned Size,
1689 bool IsVectorSuperClass) {
1690 // Currently, there is only 32-bit WWM register spills needed.
1691 if (Size != 4)
1692 llvm_unreachable("unknown wwm register spill size");
1693
1694 if (IsVectorSuperClass)
1695 return AMDGPU::SI_SPILL_WWM_AV32_SAVE;
1696
1697 return AMDGPU::SI_SPILL_WWM_V32_SAVE;
1698}
1699
1700static unsigned getVectorRegSpillSaveOpcode(Register Reg,
1701 const TargetRegisterClass *RC,
1702 unsigned Size,
1703 const SIRegisterInfo &TRI,
1704 const SIMachineFunctionInfo &MFI) {
1705 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC);
1706
1707 // Choose the right opcode if spilling a WWM register.
1708 if (MFI.checkFlag(Reg, Flag: AMDGPU::VirtRegFlag::WWM_REG))
1709 return getWWMRegSpillSaveOpcode(Size, IsVectorSuperClass);
1710
1711 if (IsVectorSuperClass)
1712 return getAVSpillSaveOpcode(Size);
1713
1714 return TRI.isAGPRClass(RC) ? getAGPRSpillSaveOpcode(Size)
1715 : getVGPRSpillSaveOpcode(Size);
1716}
1717
1718void SIInstrInfo::storeRegToStackSlot(
1719 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg,
1720 bool isKill, int FrameIndex, const TargetRegisterClass *RC,
1721 const TargetRegisterInfo *TRI, Register VReg) const {
1722 MachineFunction *MF = MBB.getParent();
1723 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1724 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
1725 const DebugLoc &DL = MBB.findDebugLoc(MBBI: MI);
1726
1727 MachinePointerInfo PtrInfo
1728 = MachinePointerInfo::getFixedStack(MF&: *MF, FI: FrameIndex);
1729 MachineMemOperand *MMO = MF->getMachineMemOperand(
1730 PtrInfo, F: MachineMemOperand::MOStore, Size: FrameInfo.getObjectSize(ObjectIdx: FrameIndex),
1731 BaseAlignment: FrameInfo.getObjectAlign(ObjectIdx: FrameIndex));
1732 unsigned SpillSize = TRI->getSpillSize(RC: *RC);
1733
1734 MachineRegisterInfo &MRI = MF->getRegInfo();
1735 if (RI.isSGPRClass(RC)) {
1736 MFI->setHasSpilledSGPRs();
1737 assert(SrcReg != AMDGPU::M0 && "m0 should not be spilled");
1738 assert(SrcReg != AMDGPU::EXEC_LO && SrcReg != AMDGPU::EXEC_HI &&
1739 SrcReg != AMDGPU::EXEC && "exec should not be spilled");
1740
1741 // We are only allowed to create one new instruction when spilling
1742 // registers, so we need to use pseudo instruction for spilling SGPRs.
1743 const MCInstrDesc &OpDesc = get(getSGPRSpillSaveOpcode(Size: SpillSize));
1744
1745 // The SGPR spill/restore instructions only work on number sgprs, so we need
1746 // to make sure we are using the correct register class.
1747 if (SrcReg.isVirtual() && SpillSize == 4) {
1748 MRI.constrainRegClass(SrcReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
1749 }
1750
1751 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: OpDesc)
1752 .addReg(RegNo: SrcReg, flags: getKillRegState(B: isKill)) // data
1753 .addFrameIndex(Idx: FrameIndex) // addr
1754 .addMemOperand(MMO)
1755 .addReg(RegNo: MFI->getStackPtrOffsetReg(), flags: RegState::Implicit);
1756
1757 if (RI.spillSGPRToVGPR())
1758 FrameInfo.setStackID(ObjectIdx: FrameIndex, ID: TargetStackID::SGPRSpill);
1759 return;
1760 }
1761
1762 unsigned Opcode = getVectorRegSpillSaveOpcode(Reg: VReg ? VReg : SrcReg, RC,
1763 Size: SpillSize, TRI: RI, MFI: *MFI);
1764 MFI->setHasSpilledVGPRs();
1765
1766 BuildMI(MBB, MI, DL, get(Opcode))
1767 .addReg(SrcReg, getKillRegState(B: isKill)) // data
1768 .addFrameIndex(FrameIndex) // addr
1769 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
1770 .addImm(0) // offset
1771 .addMemOperand(MMO);
1772}
1773
1774static unsigned getSGPRSpillRestoreOpcode(unsigned Size) {
1775 switch (Size) {
1776 case 4:
1777 return AMDGPU::SI_SPILL_S32_RESTORE;
1778 case 8:
1779 return AMDGPU::SI_SPILL_S64_RESTORE;
1780 case 12:
1781 return AMDGPU::SI_SPILL_S96_RESTORE;
1782 case 16:
1783 return AMDGPU::SI_SPILL_S128_RESTORE;
1784 case 20:
1785 return AMDGPU::SI_SPILL_S160_RESTORE;
1786 case 24:
1787 return AMDGPU::SI_SPILL_S192_RESTORE;
1788 case 28:
1789 return AMDGPU::SI_SPILL_S224_RESTORE;
1790 case 32:
1791 return AMDGPU::SI_SPILL_S256_RESTORE;
1792 case 36:
1793 return AMDGPU::SI_SPILL_S288_RESTORE;
1794 case 40:
1795 return AMDGPU::SI_SPILL_S320_RESTORE;
1796 case 44:
1797 return AMDGPU::SI_SPILL_S352_RESTORE;
1798 case 48:
1799 return AMDGPU::SI_SPILL_S384_RESTORE;
1800 case 64:
1801 return AMDGPU::SI_SPILL_S512_RESTORE;
1802 case 128:
1803 return AMDGPU::SI_SPILL_S1024_RESTORE;
1804 default:
1805 llvm_unreachable("unknown register size");
1806 }
1807}
1808
1809static unsigned getVGPRSpillRestoreOpcode(unsigned Size) {
1810 switch (Size) {
1811 case 4:
1812 return AMDGPU::SI_SPILL_V32_RESTORE;
1813 case 8:
1814 return AMDGPU::SI_SPILL_V64_RESTORE;
1815 case 12:
1816 return AMDGPU::SI_SPILL_V96_RESTORE;
1817 case 16:
1818 return AMDGPU::SI_SPILL_V128_RESTORE;
1819 case 20:
1820 return AMDGPU::SI_SPILL_V160_RESTORE;
1821 case 24:
1822 return AMDGPU::SI_SPILL_V192_RESTORE;
1823 case 28:
1824 return AMDGPU::SI_SPILL_V224_RESTORE;
1825 case 32:
1826 return AMDGPU::SI_SPILL_V256_RESTORE;
1827 case 36:
1828 return AMDGPU::SI_SPILL_V288_RESTORE;
1829 case 40:
1830 return AMDGPU::SI_SPILL_V320_RESTORE;
1831 case 44:
1832 return AMDGPU::SI_SPILL_V352_RESTORE;
1833 case 48:
1834 return AMDGPU::SI_SPILL_V384_RESTORE;
1835 case 64:
1836 return AMDGPU::SI_SPILL_V512_RESTORE;
1837 case 128:
1838 return AMDGPU::SI_SPILL_V1024_RESTORE;
1839 default:
1840 llvm_unreachable("unknown register size");
1841 }
1842}
1843
1844static unsigned getAGPRSpillRestoreOpcode(unsigned Size) {
1845 switch (Size) {
1846 case 4:
1847 return AMDGPU::SI_SPILL_A32_RESTORE;
1848 case 8:
1849 return AMDGPU::SI_SPILL_A64_RESTORE;
1850 case 12:
1851 return AMDGPU::SI_SPILL_A96_RESTORE;
1852 case 16:
1853 return AMDGPU::SI_SPILL_A128_RESTORE;
1854 case 20:
1855 return AMDGPU::SI_SPILL_A160_RESTORE;
1856 case 24:
1857 return AMDGPU::SI_SPILL_A192_RESTORE;
1858 case 28:
1859 return AMDGPU::SI_SPILL_A224_RESTORE;
1860 case 32:
1861 return AMDGPU::SI_SPILL_A256_RESTORE;
1862 case 36:
1863 return AMDGPU::SI_SPILL_A288_RESTORE;
1864 case 40:
1865 return AMDGPU::SI_SPILL_A320_RESTORE;
1866 case 44:
1867 return AMDGPU::SI_SPILL_A352_RESTORE;
1868 case 48:
1869 return AMDGPU::SI_SPILL_A384_RESTORE;
1870 case 64:
1871 return AMDGPU::SI_SPILL_A512_RESTORE;
1872 case 128:
1873 return AMDGPU::SI_SPILL_A1024_RESTORE;
1874 default:
1875 llvm_unreachable("unknown register size");
1876 }
1877}
1878
1879static unsigned getAVSpillRestoreOpcode(unsigned Size) {
1880 switch (Size) {
1881 case 4:
1882 return AMDGPU::SI_SPILL_AV32_RESTORE;
1883 case 8:
1884 return AMDGPU::SI_SPILL_AV64_RESTORE;
1885 case 12:
1886 return AMDGPU::SI_SPILL_AV96_RESTORE;
1887 case 16:
1888 return AMDGPU::SI_SPILL_AV128_RESTORE;
1889 case 20:
1890 return AMDGPU::SI_SPILL_AV160_RESTORE;
1891 case 24:
1892 return AMDGPU::SI_SPILL_AV192_RESTORE;
1893 case 28:
1894 return AMDGPU::SI_SPILL_AV224_RESTORE;
1895 case 32:
1896 return AMDGPU::SI_SPILL_AV256_RESTORE;
1897 case 36:
1898 return AMDGPU::SI_SPILL_AV288_RESTORE;
1899 case 40:
1900 return AMDGPU::SI_SPILL_AV320_RESTORE;
1901 case 44:
1902 return AMDGPU::SI_SPILL_AV352_RESTORE;
1903 case 48:
1904 return AMDGPU::SI_SPILL_AV384_RESTORE;
1905 case 64:
1906 return AMDGPU::SI_SPILL_AV512_RESTORE;
1907 case 128:
1908 return AMDGPU::SI_SPILL_AV1024_RESTORE;
1909 default:
1910 llvm_unreachable("unknown register size");
1911 }
1912}
1913
1914static unsigned getWWMRegSpillRestoreOpcode(unsigned Size,
1915 bool IsVectorSuperClass) {
1916 // Currently, there is only 32-bit WWM register spills needed.
1917 if (Size != 4)
1918 llvm_unreachable("unknown wwm register spill size");
1919
1920 if (IsVectorSuperClass)
1921 return AMDGPU::SI_SPILL_WWM_AV32_RESTORE;
1922
1923 return AMDGPU::SI_SPILL_WWM_V32_RESTORE;
1924}
1925
1926static unsigned
1927getVectorRegSpillRestoreOpcode(Register Reg, const TargetRegisterClass *RC,
1928 unsigned Size, const SIRegisterInfo &TRI,
1929 const SIMachineFunctionInfo &MFI) {
1930 bool IsVectorSuperClass = TRI.isVectorSuperClass(RC);
1931
1932 // Choose the right opcode if restoring a WWM register.
1933 if (MFI.checkFlag(Reg, Flag: AMDGPU::VirtRegFlag::WWM_REG))
1934 return getWWMRegSpillRestoreOpcode(Size, IsVectorSuperClass);
1935
1936 if (IsVectorSuperClass)
1937 return getAVSpillRestoreOpcode(Size);
1938
1939 return TRI.isAGPRClass(RC) ? getAGPRSpillRestoreOpcode(Size)
1940 : getVGPRSpillRestoreOpcode(Size);
1941}
1942
1943void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1944 MachineBasicBlock::iterator MI,
1945 Register DestReg, int FrameIndex,
1946 const TargetRegisterClass *RC,
1947 const TargetRegisterInfo *TRI,
1948 Register VReg) const {
1949 MachineFunction *MF = MBB.getParent();
1950 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1951 MachineFrameInfo &FrameInfo = MF->getFrameInfo();
1952 const DebugLoc &DL = MBB.findDebugLoc(MBBI: MI);
1953 unsigned SpillSize = TRI->getSpillSize(RC: *RC);
1954
1955 MachinePointerInfo PtrInfo
1956 = MachinePointerInfo::getFixedStack(MF&: *MF, FI: FrameIndex);
1957
1958 MachineMemOperand *MMO = MF->getMachineMemOperand(
1959 PtrInfo, F: MachineMemOperand::MOLoad, Size: FrameInfo.getObjectSize(ObjectIdx: FrameIndex),
1960 BaseAlignment: FrameInfo.getObjectAlign(ObjectIdx: FrameIndex));
1961
1962 if (RI.isSGPRClass(RC)) {
1963 MFI->setHasSpilledSGPRs();
1964 assert(DestReg != AMDGPU::M0 && "m0 should not be reloaded into");
1965 assert(DestReg != AMDGPU::EXEC_LO && DestReg != AMDGPU::EXEC_HI &&
1966 DestReg != AMDGPU::EXEC && "exec should not be spilled");
1967
1968 // FIXME: Maybe this should not include a memoperand because it will be
1969 // lowered to non-memory instructions.
1970 const MCInstrDesc &OpDesc = get(getSGPRSpillRestoreOpcode(Size: SpillSize));
1971 if (DestReg.isVirtual() && SpillSize == 4) {
1972 MachineRegisterInfo &MRI = MF->getRegInfo();
1973 MRI.constrainRegClass(DestReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
1974 }
1975
1976 if (RI.spillSGPRToVGPR())
1977 FrameInfo.setStackID(ObjectIdx: FrameIndex, ID: TargetStackID::SGPRSpill);
1978 BuildMI(BB&: MBB, I: MI, MIMD: DL, MCID: OpDesc, DestReg)
1979 .addFrameIndex(Idx: FrameIndex) // addr
1980 .addMemOperand(MMO)
1981 .addReg(RegNo: MFI->getStackPtrOffsetReg(), flags: RegState::Implicit);
1982
1983 return;
1984 }
1985
1986 unsigned Opcode = getVectorRegSpillRestoreOpcode(Reg: VReg ? VReg : DestReg, RC,
1987 Size: SpillSize, TRI: RI, MFI: *MFI);
1988 BuildMI(MBB, MI, DL, get(Opcode), DestReg)
1989 .addFrameIndex(FrameIndex) // vaddr
1990 .addReg(MFI->getStackPtrOffsetReg()) // scratch_offset
1991 .addImm(0) // offset
1992 .addMemOperand(MMO);
1993}
1994
1995void SIInstrInfo::insertNoop(MachineBasicBlock &MBB,
1996 MachineBasicBlock::iterator MI) const {
1997 insertNoops(MBB, MI, Quantity: 1);
1998}
1999
2000void SIInstrInfo::insertNoops(MachineBasicBlock &MBB,
2001 MachineBasicBlock::iterator MI,
2002 unsigned Quantity) const {
2003 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2004 while (Quantity > 0) {
2005 unsigned Arg = std::min(a: Quantity, b: 8u);
2006 Quantity -= Arg;
2007 BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)).addImm(Arg - 1);
2008 }
2009}
2010
2011void SIInstrInfo::insertReturn(MachineBasicBlock &MBB) const {
2012 auto MF = MBB.getParent();
2013 SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
2014
2015 assert(Info->isEntryFunction());
2016
2017 if (MBB.succ_empty()) {
2018 bool HasNoTerminator = MBB.getFirstTerminator() == MBB.end();
2019 if (HasNoTerminator) {
2020 if (Info->returnsVoid()) {
2021 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::S_ENDPGM)).addImm(0);
2022 } else {
2023 BuildMI(MBB, MBB.end(), DebugLoc(), get(AMDGPU::SI_RETURN_TO_EPILOG));
2024 }
2025 }
2026 }
2027}
2028
2029MachineBasicBlock *SIInstrInfo::insertSimulatedTrap(MachineRegisterInfo &MRI,
2030 MachineBasicBlock &MBB,
2031 MachineInstr &MI,
2032 const DebugLoc &DL) const {
2033 MachineFunction *MF = MBB.getParent();
2034 MachineBasicBlock *SplitBB = MBB.splitAt(SplitInst&: MI, /*UpdateLiveIns=*/false);
2035 MachineBasicBlock *HaltLoop = MF->CreateMachineBasicBlock();
2036 MF->push_back(MBB: HaltLoop);
2037
2038 constexpr unsigned DoorbellIDMask = 0x3ff;
2039 constexpr unsigned ECQueueWaveAbort = 0x400;
2040
2041 // Start with a `s_trap 2`, if we're in PRIV=1 and we need the workaround this
2042 // will be a nop.
2043 BuildMI(MBB, MI, DL, get(AMDGPU::S_TRAP))
2044 .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap));
2045 Register DoorbellReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
2046 BuildMI(MBB, MI, DL, get(AMDGPU::S_SENDMSG_RTN_B32), DoorbellReg)
2047 .addImm(AMDGPU::SendMsg::ID_RTN_GET_DOORBELL);
2048 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::TTMP2)
2049 .addUse(AMDGPU::M0);
2050 Register DoorbellRegMasked =
2051 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
2052 BuildMI(MBB, MI, DL, get(AMDGPU::S_AND_B32), DoorbellRegMasked)
2053 .addUse(DoorbellReg)
2054 .addImm(DoorbellIDMask);
2055 Register SetWaveAbortBit =
2056 MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
2057 BuildMI(MBB, MI, DL, get(AMDGPU::S_OR_B32), SetWaveAbortBit)
2058 .addUse(DoorbellRegMasked)
2059 .addImm(ECQueueWaveAbort);
2060 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2061 .addUse(SetWaveAbortBit);
2062 BuildMI(MBB, MI, DL, get(AMDGPU::S_SENDMSG))
2063 .addImm(AMDGPU::SendMsg::ID_INTERRUPT);
2064 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), AMDGPU::M0)
2065 .addUse(AMDGPU::TTMP2);
2066 BuildMI(MBB, MI, DL, get(AMDGPU::S_BRANCH)).addMBB(HaltLoop);
2067
2068 BuildMI(*HaltLoop, HaltLoop->end(), DL, get(AMDGPU::S_SETHALT)).addImm(5);
2069 BuildMI(*HaltLoop, HaltLoop->end(), DL, get(AMDGPU::S_BRANCH))
2070 .addMBB(HaltLoop);
2071
2072 if (SplitBB != &MBB)
2073 MBB.removeSuccessor(Succ: SplitBB);
2074 MBB.addSuccessor(Succ: HaltLoop);
2075 HaltLoop->addSuccessor(Succ: HaltLoop);
2076
2077 return SplitBB;
2078}
2079
2080unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) {
2081 switch (MI.getOpcode()) {
2082 default:
2083 if (MI.isMetaInstruction())
2084 return 0;
2085 return 1; // FIXME: Do wait states equal cycles?
2086
2087 case AMDGPU::S_NOP:
2088 return MI.getOperand(i: 0).getImm() + 1;
2089 // SI_RETURN_TO_EPILOG is a fallthrough to code outside of the function. The
2090 // hazard, even if one exist, won't really be visible. Should we handle it?
2091 }
2092}
2093
2094bool SIInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
2095 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2096 MachineBasicBlock &MBB = *MI.getParent();
2097 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2098 switch (MI.getOpcode()) {
2099 default: return TargetInstrInfo::expandPostRAPseudo(MI);
2100 case AMDGPU::S_MOV_B64_term:
2101 // This is only a terminator to get the correct spill code placement during
2102 // register allocation.
2103 MI.setDesc(get(AMDGPU::S_MOV_B64));
2104 break;
2105
2106 case AMDGPU::S_MOV_B32_term:
2107 // This is only a terminator to get the correct spill code placement during
2108 // register allocation.
2109 MI.setDesc(get(AMDGPU::S_MOV_B32));
2110 break;
2111
2112 case AMDGPU::S_XOR_B64_term:
2113 // This is only a terminator to get the correct spill code placement during
2114 // register allocation.
2115 MI.setDesc(get(AMDGPU::S_XOR_B64));
2116 break;
2117
2118 case AMDGPU::S_XOR_B32_term:
2119 // This is only a terminator to get the correct spill code placement during
2120 // register allocation.
2121 MI.setDesc(get(AMDGPU::S_XOR_B32));
2122 break;
2123 case AMDGPU::S_OR_B64_term:
2124 // This is only a terminator to get the correct spill code placement during
2125 // register allocation.
2126 MI.setDesc(get(AMDGPU::S_OR_B64));
2127 break;
2128 case AMDGPU::S_OR_B32_term:
2129 // This is only a terminator to get the correct spill code placement during
2130 // register allocation.
2131 MI.setDesc(get(AMDGPU::S_OR_B32));
2132 break;
2133
2134 case AMDGPU::S_ANDN2_B64_term:
2135 // This is only a terminator to get the correct spill code placement during
2136 // register allocation.
2137 MI.setDesc(get(AMDGPU::S_ANDN2_B64));
2138 break;
2139
2140 case AMDGPU::S_ANDN2_B32_term:
2141 // This is only a terminator to get the correct spill code placement during
2142 // register allocation.
2143 MI.setDesc(get(AMDGPU::S_ANDN2_B32));
2144 break;
2145
2146 case AMDGPU::S_AND_B64_term:
2147 // This is only a terminator to get the correct spill code placement during
2148 // register allocation.
2149 MI.setDesc(get(AMDGPU::S_AND_B64));
2150 break;
2151
2152 case AMDGPU::S_AND_B32_term:
2153 // This is only a terminator to get the correct spill code placement during
2154 // register allocation.
2155 MI.setDesc(get(AMDGPU::S_AND_B32));
2156 break;
2157
2158 case AMDGPU::S_AND_SAVEEXEC_B64_term:
2159 // This is only a terminator to get the correct spill code placement during
2160 // register allocation.
2161 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B64));
2162 break;
2163
2164 case AMDGPU::S_AND_SAVEEXEC_B32_term:
2165 // This is only a terminator to get the correct spill code placement during
2166 // register allocation.
2167 MI.setDesc(get(AMDGPU::S_AND_SAVEEXEC_B32));
2168 break;
2169
2170 case AMDGPU::SI_SPILL_S32_TO_VGPR:
2171 MI.setDesc(get(AMDGPU::V_WRITELANE_B32));
2172 break;
2173
2174 case AMDGPU::SI_RESTORE_S32_FROM_VGPR:
2175 MI.setDesc(get(AMDGPU::V_READLANE_B32));
2176 break;
2177
2178 case AMDGPU::V_MOV_B64_PSEUDO: {
2179 Register Dst = MI.getOperand(i: 0).getReg();
2180 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
2181 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2182
2183 const MachineOperand &SrcOp = MI.getOperand(i: 1);
2184 // FIXME: Will this work for 64-bit floating point immediates?
2185 assert(!SrcOp.isFPImm());
2186 if (ST.hasMovB64()) {
2187 MI.setDesc(get(AMDGPU::V_MOV_B64_e32));
2188 if (SrcOp.isReg() || isInlineConstant(MI, OpIdx: 1) ||
2189 isUInt<32>(x: SrcOp.getImm()))
2190 break;
2191 }
2192 if (SrcOp.isImm()) {
2193 APInt Imm(64, SrcOp.getImm());
2194 APInt Lo(32, Imm.getLoBits(numBits: 32).getZExtValue());
2195 APInt Hi(32, Imm.getHiBits(numBits: 32).getZExtValue());
2196 if (ST.hasPkMovB32() && Lo == Hi && isInlineConstant(Imm: Lo)) {
2197 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
2198 .addImm(SISrcMods::OP_SEL_1)
2199 .addImm(Lo.getSExtValue())
2200 .addImm(SISrcMods::OP_SEL_1)
2201 .addImm(Lo.getSExtValue())
2202 .addImm(0) // op_sel_lo
2203 .addImm(0) // op_sel_hi
2204 .addImm(0) // neg_lo
2205 .addImm(0) // neg_hi
2206 .addImm(0); // clamp
2207 } else {
2208 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
2209 .addImm(Lo.getSExtValue())
2210 .addReg(Dst, RegState::Implicit | RegState::Define);
2211 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
2212 .addImm(Hi.getSExtValue())
2213 .addReg(Dst, RegState::Implicit | RegState::Define);
2214 }
2215 } else {
2216 assert(SrcOp.isReg());
2217 if (ST.hasPkMovB32() &&
2218 !RI.isAGPR(MBB.getParent()->getRegInfo(), SrcOp.getReg())) {
2219 BuildMI(MBB, MI, DL, get(AMDGPU::V_PK_MOV_B32), Dst)
2220 .addImm(SISrcMods::OP_SEL_1) // src0_mod
2221 .addReg(SrcOp.getReg())
2222 .addImm(SISrcMods::OP_SEL_0 | SISrcMods::OP_SEL_1) // src1_mod
2223 .addReg(SrcOp.getReg())
2224 .addImm(0) // op_sel_lo
2225 .addImm(0) // op_sel_hi
2226 .addImm(0) // neg_lo
2227 .addImm(0) // neg_hi
2228 .addImm(0); // clamp
2229 } else {
2230 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo)
2231 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0))
2232 .addReg(Dst, RegState::Implicit | RegState::Define);
2233 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi)
2234 .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1))
2235 .addReg(Dst, RegState::Implicit | RegState::Define);
2236 }
2237 }
2238 MI.eraseFromParent();
2239 break;
2240 }
2241 case AMDGPU::V_MOV_B64_DPP_PSEUDO: {
2242 expandMovDPP64(MI);
2243 break;
2244 }
2245 case AMDGPU::S_MOV_B64_IMM_PSEUDO: {
2246 const MachineOperand &SrcOp = MI.getOperand(i: 1);
2247 assert(!SrcOp.isFPImm());
2248 APInt Imm(64, SrcOp.getImm());
2249 if (Imm.isIntN(N: 32) || isInlineConstant(Imm)) {
2250 MI.setDesc(get(AMDGPU::S_MOV_B64));
2251 break;
2252 }
2253
2254 Register Dst = MI.getOperand(i: 0).getReg();
2255 Register DstLo = RI.getSubReg(Dst, AMDGPU::sub0);
2256 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2257
2258 APInt Lo(32, Imm.getLoBits(numBits: 32).getZExtValue());
2259 APInt Hi(32, Imm.getHiBits(numBits: 32).getZExtValue());
2260 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstLo)
2261 .addImm(Lo.getSExtValue())
2262 .addReg(Dst, RegState::Implicit | RegState::Define);
2263 BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DstHi)
2264 .addImm(Hi.getSExtValue())
2265 .addReg(Dst, RegState::Implicit | RegState::Define);
2266 MI.eraseFromParent();
2267 break;
2268 }
2269 case AMDGPU::V_SET_INACTIVE_B32: {
2270 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
2271 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2272 // FIXME: We may possibly optimize the COPY once we find ways to make LLVM
2273 // optimizations (mainly Register Coalescer) aware of WWM register liveness.
2274 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
2275 .add(MI.getOperand(1));
2276 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
2277 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
2278 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), MI.getOperand(0).getReg())
2279 .add(MI.getOperand(2));
2280 BuildMI(MBB, MI, DL, get(NotOpc), Exec)
2281 .addReg(Exec);
2282 MI.eraseFromParent();
2283 break;
2284 }
2285 case AMDGPU::V_SET_INACTIVE_B64: {
2286 unsigned NotOpc = ST.isWave32() ? AMDGPU::S_NOT_B32 : AMDGPU::S_NOT_B64;
2287 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2288 MachineInstr *Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
2289 MI.getOperand(0).getReg())
2290 .add(MI.getOperand(1));
2291 expandPostRAPseudo(MI&: *Copy);
2292 auto FirstNot = BuildMI(MBB, MI, DL, get(NotOpc), Exec).addReg(Exec);
2293 FirstNot->addRegisterDead(AMDGPU::SCC, TRI); // SCC is overwritten
2294 Copy = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B64_PSEUDO),
2295 MI.getOperand(0).getReg())
2296 .add(MI.getOperand(2));
2297 expandPostRAPseudo(MI&: *Copy);
2298 BuildMI(MBB, MI, DL, get(NotOpc), Exec)
2299 .addReg(Exec);
2300 MI.eraseFromParent();
2301 break;
2302 }
2303 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V1:
2304 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V2:
2305 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V3:
2306 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V4:
2307 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V5:
2308 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V8:
2309 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V9:
2310 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V10:
2311 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V11:
2312 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V12:
2313 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V16:
2314 case AMDGPU::V_INDIRECT_REG_WRITE_MOVREL_B32_V32:
2315 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V1:
2316 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V2:
2317 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V3:
2318 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V4:
2319 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V5:
2320 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V8:
2321 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V9:
2322 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V10:
2323 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V11:
2324 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V12:
2325 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V16:
2326 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B32_V32:
2327 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V1:
2328 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V2:
2329 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V4:
2330 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V8:
2331 case AMDGPU::S_INDIRECT_REG_WRITE_MOVREL_B64_V16: {
2332 const TargetRegisterClass *EltRC = getOpRegClass(MI, OpNo: 2);
2333
2334 unsigned Opc;
2335 if (RI.hasVGPRs(EltRC)) {
2336 Opc = AMDGPU::V_MOVRELD_B32_e32;
2337 } else {
2338 Opc = RI.getRegSizeInBits(*EltRC) == 64 ? AMDGPU::S_MOVRELD_B64
2339 : AMDGPU::S_MOVRELD_B32;
2340 }
2341
2342 const MCInstrDesc &OpDesc = get(Opc);
2343 Register VecReg = MI.getOperand(i: 0).getReg();
2344 bool IsUndef = MI.getOperand(i: 1).isUndef();
2345 unsigned SubReg = MI.getOperand(i: 3).getImm();
2346 assert(VecReg == MI.getOperand(1).getReg());
2347
2348 MachineInstrBuilder MIB =
2349 BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: OpDesc)
2350 .addReg(RegNo: RI.getSubReg(VecReg, SubReg), flags: RegState::Undef)
2351 .add(MI.getOperand(i: 2))
2352 .addReg(VecReg, RegState::ImplicitDefine)
2353 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2354
2355 const int ImpDefIdx =
2356 OpDesc.getNumOperands() + OpDesc.implicit_uses().size();
2357 const int ImpUseIdx = ImpDefIdx + 1;
2358 MIB->tieOperands(DefIdx: ImpDefIdx, UseIdx: ImpUseIdx);
2359 MI.eraseFromParent();
2360 break;
2361 }
2362 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V1:
2363 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V2:
2364 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V3:
2365 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V4:
2366 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V5:
2367 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V8:
2368 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V9:
2369 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V10:
2370 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V11:
2371 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V12:
2372 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V16:
2373 case AMDGPU::V_INDIRECT_REG_WRITE_GPR_IDX_B32_V32: {
2374 assert(ST.useVGPRIndexMode());
2375 Register VecReg = MI.getOperand(i: 0).getReg();
2376 bool IsUndef = MI.getOperand(i: 1).isUndef();
2377 Register Idx = MI.getOperand(i: 3).getReg();
2378 Register SubReg = MI.getOperand(i: 4).getImm();
2379
2380 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
2381 .addReg(Idx)
2382 .addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
2383 SetOn->getOperand(i: 3).setIsUndef();
2384
2385 const MCInstrDesc &OpDesc = get(AMDGPU::V_MOV_B32_indirect_write);
2386 MachineInstrBuilder MIB =
2387 BuildMI(BB&: MBB, I&: MI, MIMD: DL, MCID: OpDesc)
2388 .addReg(RegNo: RI.getSubReg(VecReg, SubReg), flags: RegState::Undef)
2389 .add(MI.getOperand(i: 2))
2390 .addReg(VecReg, RegState::ImplicitDefine)
2391 .addReg(VecReg,
2392 RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2393
2394 const int ImpDefIdx =
2395 OpDesc.getNumOperands() + OpDesc.implicit_uses().size();
2396 const int ImpUseIdx = ImpDefIdx + 1;
2397 MIB->tieOperands(DefIdx: ImpDefIdx, UseIdx: ImpUseIdx);
2398
2399 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
2400
2401 finalizeBundle(MBB, FirstMI: SetOn->getIterator(), LastMI: std::next(x: SetOff->getIterator()));
2402
2403 MI.eraseFromParent();
2404 break;
2405 }
2406 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V1:
2407 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V2:
2408 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V3:
2409 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V4:
2410 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V5:
2411 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V8:
2412 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V9:
2413 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V10:
2414 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V11:
2415 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V12:
2416 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V16:
2417 case AMDGPU::V_INDIRECT_REG_READ_GPR_IDX_B32_V32: {
2418 assert(ST.useVGPRIndexMode());
2419 Register Dst = MI.getOperand(i: 0).getReg();
2420 Register VecReg = MI.getOperand(i: 1).getReg();
2421 bool IsUndef = MI.getOperand(i: 1).isUndef();
2422 Register Idx = MI.getOperand(i: 2).getReg();
2423 Register SubReg = MI.getOperand(i: 3).getImm();
2424
2425 MachineInstr *SetOn = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_ON))
2426 .addReg(Idx)
2427 .addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
2428 SetOn->getOperand(i: 3).setIsUndef();
2429
2430 BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_indirect_read))
2431 .addDef(Dst)
2432 .addReg(RI.getSubReg(VecReg, SubReg), RegState::Undef)
2433 .addReg(VecReg, RegState::Implicit | (IsUndef ? RegState::Undef : 0));
2434
2435 MachineInstr *SetOff = BuildMI(MBB, MI, DL, get(AMDGPU::S_SET_GPR_IDX_OFF));
2436
2437 finalizeBundle(MBB, FirstMI: SetOn->getIterator(), LastMI: std::next(x: SetOff->getIterator()));
2438
2439 MI.eraseFromParent();
2440 break;
2441 }
2442 case AMDGPU::SI_PC_ADD_REL_OFFSET: {
2443 MachineFunction &MF = *MBB.getParent();
2444 Register Reg = MI.getOperand(i: 0).getReg();
2445 Register RegLo = RI.getSubReg(Reg, AMDGPU::sub0);
2446 Register RegHi = RI.getSubReg(Reg, AMDGPU::sub1);
2447 MachineOperand OpLo = MI.getOperand(i: 1);
2448 MachineOperand OpHi = MI.getOperand(i: 2);
2449
2450 // Create a bundle so these instructions won't be re-ordered by the
2451 // post-RA scheduler.
2452 MIBundleBuilder Bundler(MBB, MI);
2453 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg));
2454
2455 // What we want here is an offset from the value returned by s_getpc (which
2456 // is the address of the s_add_u32 instruction) to the global variable, but
2457 // since the encoding of $symbol starts 4 bytes after the start of the
2458 // s_add_u32 instruction, we end up with an offset that is 4 bytes too
2459 // small. This requires us to add 4 to the global variable offset in order
2460 // to compute the correct address. Similarly for the s_addc_u32 instruction,
2461 // the encoding of $symbol starts 12 bytes after the start of the s_add_u32
2462 // instruction.
2463
2464 int64_t Adjust = 0;
2465 if (ST.hasGetPCZeroExtension()) {
2466 // Fix up hardware that does not sign-extend the 48-bit PC value by
2467 // inserting: s_sext_i32_i16 reghi, reghi
2468 Bundler.append(
2469 BuildMI(MF, DL, get(AMDGPU::S_SEXT_I32_I16), RegHi).addReg(RegHi));
2470 Adjust += 4;
2471 }
2472
2473 if (OpLo.isGlobal())
2474 OpLo.setOffset(OpLo.getOffset() + Adjust + 4);
2475 Bundler.append(
2476 BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo).addReg(RegLo).add(OpLo));
2477
2478 if (OpHi.isGlobal())
2479 OpHi.setOffset(OpHi.getOffset() + Adjust + 12);
2480 Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi)
2481 .addReg(RegHi)
2482 .add(OpHi));
2483
2484 finalizeBundle(MBB, FirstMI: Bundler.begin());
2485
2486 MI.eraseFromParent();
2487 break;
2488 }
2489 case AMDGPU::ENTER_STRICT_WWM: {
2490 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2491 // Whole Wave Mode is entered.
2492 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_OR_SAVEEXEC_B32
2493 : AMDGPU::S_OR_SAVEEXEC_B64));
2494 break;
2495 }
2496 case AMDGPU::ENTER_STRICT_WQM: {
2497 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2498 // STRICT_WQM is entered.
2499 const unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
2500 const unsigned WQMOp = ST.isWave32() ? AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64;
2501 const unsigned MovOp = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
2502 BuildMI(MBB, MI, DL, get(MovOp), MI.getOperand(i: 0).getReg()).addReg(Exec);
2503 BuildMI(MBB, MI, DL, get(WQMOp), Exec).addReg(Exec);
2504
2505 MI.eraseFromParent();
2506 break;
2507 }
2508 case AMDGPU::EXIT_STRICT_WWM:
2509 case AMDGPU::EXIT_STRICT_WQM: {
2510 // This only gets its own opcode so that SIPreAllocateWWMRegs can tell when
2511 // WWM/STICT_WQM is exited.
2512 MI.setDesc(get(ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64));
2513 break;
2514 }
2515 case AMDGPU::ENTER_PSEUDO_WM:
2516 case AMDGPU::EXIT_PSEUDO_WM: {
2517 // These do nothing.
2518 MI.eraseFromParent();
2519 break;
2520 }
2521 case AMDGPU::SI_RETURN: {
2522 const MachineFunction *MF = MBB.getParent();
2523 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
2524 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2525 // Hiding the return address use with SI_RETURN may lead to extra kills in
2526 // the function and missing live-ins. We are fine in practice because callee
2527 // saved register handling ensures the register value is restored before
2528 // RET, but we need the undef flag here to appease the MachineVerifier
2529 // liveness checks.
2530 MachineInstrBuilder MIB =
2531 BuildMI(MBB, MI, DL, get(AMDGPU::S_SETPC_B64_return))
2532 .addReg(TRI->getReturnAddressReg(*MF), RegState::Undef);
2533
2534 MIB.copyImplicitOps(OtherMI: MI);
2535 MI.eraseFromParent();
2536 break;
2537 }
2538
2539 case AMDGPU::S_MUL_U64_U32_PSEUDO:
2540 case AMDGPU::S_MUL_I64_I32_PSEUDO:
2541 MI.setDesc(get(AMDGPU::S_MUL_U64));
2542 break;
2543
2544 case AMDGPU::S_GETPC_B64_pseudo:
2545 MI.setDesc(get(AMDGPU::S_GETPC_B64));
2546 if (ST.hasGetPCZeroExtension()) {
2547 Register Dst = MI.getOperand(i: 0).getReg();
2548 Register DstHi = RI.getSubReg(Dst, AMDGPU::sub1);
2549 // Fix up hardware that does not sign-extend the 48-bit PC value by
2550 // inserting: s_sext_i32_i16 dsthi, dsthi
2551 BuildMI(MBB, std::next(MI.getIterator()), DL, get(AMDGPU::S_SEXT_I32_I16),
2552 DstHi)
2553 .addReg(DstHi);
2554 }
2555 break;
2556 }
2557 return true;
2558}
2559
2560void SIInstrInfo::reMaterialize(MachineBasicBlock &MBB,
2561 MachineBasicBlock::iterator I, Register DestReg,
2562 unsigned SubIdx, const MachineInstr &Orig,
2563 const TargetRegisterInfo &RI) const {
2564
2565 // Try shrinking the instruction to remat only the part needed for current
2566 // context.
2567 // TODO: Handle more cases.
2568 unsigned Opcode = Orig.getOpcode();
2569 switch (Opcode) {
2570 case AMDGPU::S_LOAD_DWORDX16_IMM:
2571 case AMDGPU::S_LOAD_DWORDX8_IMM: {
2572 if (SubIdx != 0)
2573 break;
2574
2575 if (I == MBB.end())
2576 break;
2577
2578 if (I->isBundled())
2579 break;
2580
2581 // Look for a single use of the register that is also a subreg.
2582 Register RegToFind = Orig.getOperand(i: 0).getReg();
2583 MachineOperand *UseMO = nullptr;
2584 for (auto &CandMO : I->operands()) {
2585 if (!CandMO.isReg() || CandMO.getReg() != RegToFind || CandMO.isDef())
2586 continue;
2587 if (UseMO) {
2588 UseMO = nullptr;
2589 break;
2590 }
2591 UseMO = &CandMO;
2592 }
2593 if (!UseMO || UseMO->getSubReg() == AMDGPU::NoSubRegister)
2594 break;
2595
2596 unsigned Offset = RI.getSubRegIdxOffset(Idx: UseMO->getSubReg());
2597 unsigned SubregSize = RI.getSubRegIdxSize(Idx: UseMO->getSubReg());
2598
2599 MachineFunction *MF = MBB.getParent();
2600 MachineRegisterInfo &MRI = MF->getRegInfo();
2601 assert(MRI.use_nodbg_empty(DestReg) && "DestReg should have no users yet.");
2602
2603 unsigned NewOpcode = -1;
2604 if (SubregSize == 256)
2605 NewOpcode = AMDGPU::S_LOAD_DWORDX8_IMM;
2606 else if (SubregSize == 128)
2607 NewOpcode = AMDGPU::S_LOAD_DWORDX4_IMM;
2608 else
2609 break;
2610
2611 const MCInstrDesc &TID = get(NewOpcode);
2612 const TargetRegisterClass *NewRC =
2613 RI.getAllocatableClass(RC: getRegClass(TID, OpNum: 0, TRI: &RI, MF: *MF));
2614 MRI.setRegClass(Reg: DestReg, RC: NewRC);
2615
2616 UseMO->setReg(DestReg);
2617 UseMO->setSubReg(AMDGPU::NoSubRegister);
2618
2619 // Use a smaller load with the desired size, possibly with updated offset.
2620 MachineInstr *MI = MF->CloneMachineInstr(Orig: &Orig);
2621 MI->setDesc(TID);
2622 MI->getOperand(i: 0).setReg(DestReg);
2623 MI->getOperand(0).setSubReg(AMDGPU::NoSubRegister);
2624 if (Offset) {
2625 MachineOperand *OffsetMO = getNamedOperand(*MI, AMDGPU::OpName::offset);
2626 int64_t FinalOffset = OffsetMO->getImm() + Offset / 8;
2627 OffsetMO->setImm(FinalOffset);
2628 }
2629 SmallVector<MachineMemOperand *> NewMMOs;
2630 for (const MachineMemOperand *MemOp : Orig.memoperands())
2631 NewMMOs.push_back(Elt: MF->getMachineMemOperand(MMO: MemOp, PtrInfo: MemOp->getPointerInfo(),
2632 Size: SubregSize / 8));
2633 MI->setMemRefs(MF&: *MF, MemRefs: NewMMOs);
2634
2635 MBB.insert(I, MI);
2636 return;
2637 }
2638
2639 default:
2640 break;
2641 }
2642
2643 TargetInstrInfo::reMaterialize(MBB, I, DestReg, SubIdx, Orig, RI);
2644}
2645
2646std::pair<MachineInstr*, MachineInstr*>
2647SIInstrInfo::expandMovDPP64(MachineInstr &MI) const {
2648 assert (MI.getOpcode() == AMDGPU::V_MOV_B64_DPP_PSEUDO);
2649
2650 if (ST.hasMovB64() &&
2651 AMDGPU::isLegalDPALU_DPPControl(
2652 getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl)->getImm())) {
2653 MI.setDesc(get(AMDGPU::V_MOV_B64_dpp));
2654 return std::pair(&MI, nullptr);
2655 }
2656
2657 MachineBasicBlock &MBB = *MI.getParent();
2658 DebugLoc DL = MBB.findDebugLoc(MBBI: MI);
2659 MachineFunction *MF = MBB.getParent();
2660 MachineRegisterInfo &MRI = MF->getRegInfo();
2661 Register Dst = MI.getOperand(i: 0).getReg();
2662 unsigned Part = 0;
2663 MachineInstr *Split[2];
2664
2665 for (auto Sub : { AMDGPU::sub0, AMDGPU::sub1 }) {
2666 auto MovDPP = BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_dpp));
2667 if (Dst.isPhysical()) {
2668 MovDPP.addDef(RI.getSubReg(Dst, Sub));
2669 } else {
2670 assert(MRI.isSSA());
2671 auto Tmp = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
2672 MovDPP.addDef(Tmp);
2673 }
2674
2675 for (unsigned I = 1; I <= 2; ++I) { // old and src operands.
2676 const MachineOperand &SrcOp = MI.getOperand(I);
2677 assert(!SrcOp.isFPImm());
2678 if (SrcOp.isImm()) {
2679 APInt Imm(64, SrcOp.getImm());
2680 Imm.ashrInPlace(Part * 32);
2681 MovDPP.addImm(Imm.getLoBits(32).getZExtValue());
2682 } else {
2683 assert(SrcOp.isReg());
2684 Register Src = SrcOp.getReg();
2685 if (Src.isPhysical())
2686 MovDPP.addReg(RI.getSubReg(Src, Sub));
2687 else
2688 MovDPP.addReg(Src, SrcOp.isUndef() ? RegState::Undef : 0, Sub);
2689 }
2690 }
2691
2692 for (const MachineOperand &MO : llvm::drop_begin(MI.explicit_operands(), 3))
2693 MovDPP.addImm(MO.getImm());
2694
2695 Split[Part] = MovDPP;
2696 ++Part;
2697 }
2698
2699 if (Dst.isVirtual())
2700 BuildMI(MBB, MI, DL, get(AMDGPU::REG_SEQUENCE), Dst)
2701 .addReg(Split[0]->getOperand(0).getReg())
2702 .addImm(AMDGPU::sub0)
2703 .addReg(Split[1]->getOperand(0).getReg())
2704 .addImm(AMDGPU::sub1);
2705
2706 MI.eraseFromParent();
2707 return std::pair(Split[0], Split[1]);
2708}
2709
2710std::optional<DestSourcePair>
2711SIInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
2712 if (MI.getOpcode() == AMDGPU::WWM_COPY)
2713 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
2714
2715 return std::nullopt;
2716}
2717
2718bool SIInstrInfo::swapSourceModifiers(MachineInstr &MI,
2719 MachineOperand &Src0,
2720 unsigned Src0OpName,
2721 MachineOperand &Src1,
2722 unsigned Src1OpName) const {
2723 MachineOperand *Src0Mods = getNamedOperand(MI, OperandName: Src0OpName);
2724 if (!Src0Mods)
2725 return false;
2726
2727 MachineOperand *Src1Mods = getNamedOperand(MI, OperandName: Src1OpName);
2728 assert(Src1Mods &&
2729 "All commutable instructions have both src0 and src1 modifiers");
2730
2731 int Src0ModsVal = Src0Mods->getImm();
2732 int Src1ModsVal = Src1Mods->getImm();
2733
2734 Src1Mods->setImm(Src0ModsVal);
2735 Src0Mods->setImm(Src1ModsVal);
2736 return true;
2737}
2738
2739static MachineInstr *swapRegAndNonRegOperand(MachineInstr &MI,
2740 MachineOperand &RegOp,
2741 MachineOperand &NonRegOp) {
2742 Register Reg = RegOp.getReg();
2743 unsigned SubReg = RegOp.getSubReg();
2744 bool IsKill = RegOp.isKill();
2745 bool IsDead = RegOp.isDead();
2746 bool IsUndef = RegOp.isUndef();
2747 bool IsDebug = RegOp.isDebug();
2748
2749 if (NonRegOp.isImm())
2750 RegOp.ChangeToImmediate(ImmVal: NonRegOp.getImm());
2751 else if (NonRegOp.isFI())
2752 RegOp.ChangeToFrameIndex(Idx: NonRegOp.getIndex());
2753 else if (NonRegOp.isGlobal()) {
2754 RegOp.ChangeToGA(GV: NonRegOp.getGlobal(), Offset: NonRegOp.getOffset(),
2755 TargetFlags: NonRegOp.getTargetFlags());
2756 } else
2757 return nullptr;
2758
2759 // Make sure we don't reinterpret a subreg index in the target flags.
2760 RegOp.setTargetFlags(NonRegOp.getTargetFlags());
2761
2762 NonRegOp.ChangeToRegister(Reg, isDef: false, isImp: false, isKill: IsKill, isDead: IsDead, isUndef: IsUndef, isDebug: IsDebug);
2763 NonRegOp.setSubReg(SubReg);
2764
2765 return &MI;
2766}
2767
2768MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI,
2769 unsigned Src0Idx,
2770 unsigned Src1Idx) const {
2771 assert(!NewMI && "this should never be used");
2772
2773 unsigned Opc = MI.getOpcode();
2774 int CommutedOpcode = commuteOpcode(Opcode: Opc);
2775 if (CommutedOpcode == -1)
2776 return nullptr;
2777
2778 if (Src0Idx > Src1Idx)
2779 std::swap(a&: Src0Idx, b&: Src1Idx);
2780
2781 assert(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) ==
2782 static_cast<int>(Src0Idx) &&
2783 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1) ==
2784 static_cast<int>(Src1Idx) &&
2785 "inconsistency with findCommutedOpIndices");
2786
2787 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
2788 MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
2789
2790 MachineInstr *CommutedMI = nullptr;
2791 if (Src0.isReg() && Src1.isReg()) {
2792 if (isOperandLegal(MI, OpIdx: Src1Idx, MO: &Src0)) {
2793 // Be sure to copy the source modifiers to the right place.
2794 CommutedMI
2795 = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, Src0Idx, Src1Idx);
2796 }
2797
2798 } else if (Src0.isReg() && !Src1.isReg()) {
2799 // src0 should always be able to support any operand type, so no need to
2800 // check operand legality.
2801 CommutedMI = swapRegAndNonRegOperand(MI, RegOp&: Src0, NonRegOp&: Src1);
2802 } else if (!Src0.isReg() && Src1.isReg()) {
2803 if (isOperandLegal(MI, OpIdx: Src1Idx, MO: &Src0))
2804 CommutedMI = swapRegAndNonRegOperand(MI, RegOp&: Src1, NonRegOp&: Src0);
2805 } else {
2806 // FIXME: Found two non registers to commute. This does happen.
2807 return nullptr;
2808 }
2809
2810 if (CommutedMI) {
2811 swapSourceModifiers(MI, Src0, AMDGPU::OpName::src0_modifiers,
2812 Src1, AMDGPU::OpName::src1_modifiers);
2813
2814 CommutedMI->setDesc(get(CommutedOpcode));
2815 }
2816
2817 return CommutedMI;
2818}
2819
2820// This needs to be implemented because the source modifiers may be inserted
2821// between the true commutable operands, and the base
2822// TargetInstrInfo::commuteInstruction uses it.
2823bool SIInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
2824 unsigned &SrcOpIdx0,
2825 unsigned &SrcOpIdx1) const {
2826 return findCommutedOpIndices(Desc: MI.getDesc(), SrcOpIdx0, SrcOpIdx1);
2827}
2828
2829bool SIInstrInfo::findCommutedOpIndices(const MCInstrDesc &Desc,
2830 unsigned &SrcOpIdx0,
2831 unsigned &SrcOpIdx1) const {
2832 if (!Desc.isCommutable())
2833 return false;
2834
2835 unsigned Opc = Desc.getOpcode();
2836 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
2837 if (Src0Idx == -1)
2838 return false;
2839
2840 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
2841 if (Src1Idx == -1)
2842 return false;
2843
2844 return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx);
2845}
2846
2847bool SIInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
2848 int64_t BrOffset) const {
2849 // BranchRelaxation should never have to check s_setpc_b64 because its dest
2850 // block is unanalyzable.
2851 assert(BranchOp != AMDGPU::S_SETPC_B64);
2852
2853 // Convert to dwords.
2854 BrOffset /= 4;
2855
2856 // The branch instructions do PC += signext(SIMM16 * 4) + 4, so the offset is
2857 // from the next instruction.
2858 BrOffset -= 1;
2859
2860 return isIntN(N: BranchOffsetBits, x: BrOffset);
2861}
2862
2863MachineBasicBlock *
2864SIInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
2865 return MI.getOperand(i: 0).getMBB();
2866}
2867
2868bool SIInstrInfo::hasDivergentBranch(const MachineBasicBlock *MBB) const {
2869 for (const MachineInstr &MI : MBB->terminators()) {
2870 if (MI.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO ||
2871 MI.getOpcode() == AMDGPU::SI_IF || MI.getOpcode() == AMDGPU::SI_ELSE ||
2872 MI.getOpcode() == AMDGPU::SI_LOOP)
2873 return true;
2874 }
2875 return false;
2876}
2877
2878void SIInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
2879 MachineBasicBlock &DestBB,
2880 MachineBasicBlock &RestoreBB,
2881 const DebugLoc &DL, int64_t BrOffset,
2882 RegScavenger *RS) const {
2883 assert(RS && "RegScavenger required for long branching");
2884 assert(MBB.empty() &&
2885 "new block should be inserted for expanding unconditional branch");
2886 assert(MBB.pred_size() == 1);
2887 assert(RestoreBB.empty() &&
2888 "restore block should be inserted for restoring clobbered registers");
2889
2890 MachineFunction *MF = MBB.getParent();
2891 MachineRegisterInfo &MRI = MF->getRegInfo();
2892 const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
2893
2894 // FIXME: Virtual register workaround for RegScavenger not working with empty
2895 // blocks.
2896 Register PCReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
2897
2898 auto I = MBB.end();
2899
2900 // We need to compute the offset relative to the instruction immediately after
2901 // s_getpc_b64. Insert pc arithmetic code before last terminator.
2902 MachineInstr *GetPC = BuildMI(MBB, I, DL, get(AMDGPU::S_GETPC_B64), PCReg);
2903
2904 auto &MCCtx = MF->getContext();
2905 MCSymbol *PostGetPCLabel =
2906 MCCtx.createTempSymbol(Name: "post_getpc", /*AlwaysAddSuffix=*/true);
2907 GetPC->setPostInstrSymbol(MF&: *MF, Symbol: PostGetPCLabel);
2908
2909 MCSymbol *OffsetLo =
2910 MCCtx.createTempSymbol(Name: "offset_lo", /*AlwaysAddSuffix=*/true);
2911 MCSymbol *OffsetHi =
2912 MCCtx.createTempSymbol(Name: "offset_hi", /*AlwaysAddSuffix=*/true);
2913 BuildMI(MBB, I, DL, get(AMDGPU::S_ADD_U32))
2914 .addReg(PCReg, RegState::Define, AMDGPU::sub0)
2915 .addReg(PCReg, 0, AMDGPU::sub0)
2916 .addSym(OffsetLo, MO_FAR_BRANCH_OFFSET);
2917 BuildMI(MBB, I, DL, get(AMDGPU::S_ADDC_U32))
2918 .addReg(PCReg, RegState::Define, AMDGPU::sub1)
2919 .addReg(PCReg, 0, AMDGPU::sub1)
2920 .addSym(OffsetHi, MO_FAR_BRANCH_OFFSET);
2921
2922 // Insert the indirect branch after the other terminator.
2923 BuildMI(&MBB, DL, get(AMDGPU::S_SETPC_B64))
2924 .addReg(PCReg);
2925
2926 // If a spill is needed for the pc register pair, we need to insert a spill
2927 // restore block right before the destination block, and insert a short branch
2928 // into the old destination block's fallthrough predecessor.
2929 // e.g.:
2930 //
2931 // s_cbranch_scc0 skip_long_branch:
2932 //
2933 // long_branch_bb:
2934 // spill s[8:9]
2935 // s_getpc_b64 s[8:9]
2936 // s_add_u32 s8, s8, restore_bb
2937 // s_addc_u32 s9, s9, 0
2938 // s_setpc_b64 s[8:9]
2939 //
2940 // skip_long_branch:
2941 // foo;
2942 //
2943 // .....
2944 //
2945 // dest_bb_fallthrough_predecessor:
2946 // bar;
2947 // s_branch dest_bb
2948 //
2949 // restore_bb:
2950 // restore s[8:9]
2951 // fallthrough dest_bb
2952 ///
2953 // dest_bb:
2954 // buzz;
2955
2956 Register LongBranchReservedReg = MFI->getLongBranchReservedReg();
2957 Register Scav;
2958
2959 // If we've previously reserved a register for long branches
2960 // avoid running the scavenger and just use those registers
2961 if (LongBranchReservedReg) {
2962 RS->enterBasicBlock(MBB);
2963 Scav = LongBranchReservedReg;
2964 } else {
2965 RS->enterBasicBlockEnd(MBB);
2966 Scav = RS->scavengeRegisterBackwards(
2967 AMDGPU::SReg_64RegClass, MachineBasicBlock::iterator(GetPC),
2968 /* RestoreAfter */ false, 0, /* AllowSpill */ false);
2969 }
2970 if (Scav) {
2971 RS->setRegUsed(Reg: Scav);
2972 MRI.replaceRegWith(FromReg: PCReg, ToReg: Scav);
2973 MRI.clearVirtRegs();
2974 } else {
2975 // As SGPR needs VGPR to be spilled, we reuse the slot of temporary VGPR for
2976 // SGPR spill.
2977 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
2978 const SIRegisterInfo *TRI = ST.getRegisterInfo();
2979 TRI->spillEmergencySGPR(GetPC, RestoreBB, AMDGPU::SGPR0_SGPR1, RS);
2980 MRI.replaceRegWith(PCReg, AMDGPU::SGPR0_SGPR1);
2981 MRI.clearVirtRegs();
2982 }
2983
2984 MCSymbol *DestLabel = Scav ? DestBB.getSymbol() : RestoreBB.getSymbol();
2985 // Now, the distance could be defined.
2986 auto *Offset = MCBinaryExpr::createSub(
2987 LHS: MCSymbolRefExpr::create(Symbol: DestLabel, Ctx&: MCCtx),
2988 RHS: MCSymbolRefExpr::create(Symbol: PostGetPCLabel, Ctx&: MCCtx), Ctx&: MCCtx);
2989 // Add offset assignments.
2990 auto *Mask = MCConstantExpr::create(Value: 0xFFFFFFFFULL, Ctx&: MCCtx);
2991 OffsetLo->setVariableValue(MCBinaryExpr::createAnd(LHS: Offset, RHS: Mask, Ctx&: MCCtx));
2992 auto *ShAmt = MCConstantExpr::create(Value: 32, Ctx&: MCCtx);
2993 OffsetHi->setVariableValue(MCBinaryExpr::createAShr(LHS: Offset, RHS: ShAmt, Ctx&: MCCtx));
2994}
2995
2996unsigned SIInstrInfo::getBranchOpcode(SIInstrInfo::BranchPredicate Cond) {
2997 switch (Cond) {
2998 case SIInstrInfo::SCC_TRUE:
2999 return AMDGPU::S_CBRANCH_SCC1;
3000 case SIInstrInfo::SCC_FALSE:
3001 return AMDGPU::S_CBRANCH_SCC0;
3002 case SIInstrInfo::VCCNZ:
3003 return AMDGPU::S_CBRANCH_VCCNZ;
3004 case SIInstrInfo::VCCZ:
3005 return AMDGPU::S_CBRANCH_VCCZ;
3006 case SIInstrInfo::EXECNZ:
3007 return AMDGPU::S_CBRANCH_EXECNZ;
3008 case SIInstrInfo::EXECZ:
3009 return AMDGPU::S_CBRANCH_EXECZ;
3010 default:
3011 llvm_unreachable("invalid branch predicate");
3012 }
3013}
3014
3015SIInstrInfo::BranchPredicate SIInstrInfo::getBranchPredicate(unsigned Opcode) {
3016 switch (Opcode) {
3017 case AMDGPU::S_CBRANCH_SCC0:
3018 return SCC_FALSE;
3019 case AMDGPU::S_CBRANCH_SCC1:
3020 return SCC_TRUE;
3021 case AMDGPU::S_CBRANCH_VCCNZ:
3022 return VCCNZ;
3023 case AMDGPU::S_CBRANCH_VCCZ:
3024 return VCCZ;
3025 case AMDGPU::S_CBRANCH_EXECNZ:
3026 return EXECNZ;
3027 case AMDGPU::S_CBRANCH_EXECZ:
3028 return EXECZ;
3029 default:
3030 return INVALID_BR;
3031 }
3032}
3033
3034bool SIInstrInfo::analyzeBranchImpl(MachineBasicBlock &MBB,
3035 MachineBasicBlock::iterator I,
3036 MachineBasicBlock *&TBB,
3037 MachineBasicBlock *&FBB,
3038 SmallVectorImpl<MachineOperand> &Cond,
3039 bool AllowModify) const {
3040 if (I->getOpcode() == AMDGPU::S_BRANCH) {
3041 // Unconditional Branch
3042 TBB = I->getOperand(i: 0).getMBB();
3043 return false;
3044 }
3045
3046 MachineBasicBlock *CondBB = nullptr;
3047
3048 if (I->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
3049 CondBB = I->getOperand(i: 1).getMBB();
3050 Cond.push_back(Elt: I->getOperand(i: 0));
3051 } else {
3052 BranchPredicate Pred = getBranchPredicate(Opcode: I->getOpcode());
3053 if (Pred == INVALID_BR)
3054 return true;
3055
3056 CondBB = I->getOperand(i: 0).getMBB();
3057 Cond.push_back(Elt: MachineOperand::CreateImm(Val: Pred));
3058 Cond.push_back(Elt: I->getOperand(i: 1)); // Save the branch register.
3059 }
3060 ++I;
3061
3062 if (I == MBB.end()) {
3063 // Conditional branch followed by fall-through.
3064 TBB = CondBB;
3065 return false;
3066 }
3067
3068 if (I->getOpcode() == AMDGPU::S_BRANCH) {
3069 TBB = CondBB;
3070 FBB = I->getOperand(i: 0).getMBB();
3071 return false;
3072 }
3073
3074 return true;
3075}
3076
3077bool SIInstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
3078 MachineBasicBlock *&FBB,
3079 SmallVectorImpl<MachineOperand> &Cond,
3080 bool AllowModify) const {
3081 MachineBasicBlock::iterator I = MBB.getFirstTerminator();
3082 auto E = MBB.end();
3083 if (I == E)
3084 return false;
3085
3086 // Skip over the instructions that are artificially terminators for special
3087 // exec management.
3088 while (I != E && !I->isBranch() && !I->isReturn()) {
3089 switch (I->getOpcode()) {
3090 case AMDGPU::S_MOV_B64_term:
3091 case AMDGPU::S_XOR_B64_term:
3092 case AMDGPU::S_OR_B64_term:
3093 case AMDGPU::S_ANDN2_B64_term:
3094 case AMDGPU::S_AND_B64_term:
3095 case AMDGPU::S_AND_SAVEEXEC_B64_term:
3096 case AMDGPU::S_MOV_B32_term:
3097 case AMDGPU::S_XOR_B32_term:
3098 case AMDGPU::S_OR_B32_term:
3099 case AMDGPU::S_ANDN2_B32_term:
3100 case AMDGPU::S_AND_B32_term:
3101 case AMDGPU::S_AND_SAVEEXEC_B32_term:
3102 break;
3103 case AMDGPU::SI_IF:
3104 case AMDGPU::SI_ELSE:
3105 case AMDGPU::SI_KILL_I1_TERMINATOR:
3106 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
3107 // FIXME: It's messy that these need to be considered here at all.
3108 return true;
3109 default:
3110 llvm_unreachable("unexpected non-branch terminator inst");
3111 }
3112
3113 ++I;
3114 }
3115
3116 if (I == E)
3117 return false;
3118
3119 return analyzeBranchImpl(MBB, I, TBB, FBB, Cond, AllowModify);
3120}
3121
3122unsigned SIInstrInfo::removeBranch(MachineBasicBlock &MBB,
3123 int *BytesRemoved) const {
3124 unsigned Count = 0;
3125 unsigned RemovedSize = 0;
3126 for (MachineInstr &MI : llvm::make_early_inc_range(Range: MBB.terminators())) {
3127 // Skip over artificial terminators when removing instructions.
3128 if (MI.isBranch() || MI.isReturn()) {
3129 RemovedSize += getInstSizeInBytes(MI);
3130 MI.eraseFromParent();
3131 ++Count;
3132 }
3133 }
3134
3135 if (BytesRemoved)
3136 *BytesRemoved = RemovedSize;
3137
3138 return Count;
3139}
3140
3141// Copy the flags onto the implicit condition register operand.
3142static void preserveCondRegFlags(MachineOperand &CondReg,
3143 const MachineOperand &OrigCond) {
3144 CondReg.setIsUndef(OrigCond.isUndef());
3145 CondReg.setIsKill(OrigCond.isKill());
3146}
3147
3148unsigned SIInstrInfo::insertBranch(MachineBasicBlock &MBB,
3149 MachineBasicBlock *TBB,
3150 MachineBasicBlock *FBB,
3151 ArrayRef<MachineOperand> Cond,
3152 const DebugLoc &DL,
3153 int *BytesAdded) const {
3154 if (!FBB && Cond.empty()) {
3155 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
3156 .addMBB(TBB);
3157 if (BytesAdded)
3158 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
3159 return 1;
3160 }
3161
3162 if(Cond.size() == 1 && Cond[0].isReg()) {
3163 BuildMI(&MBB, DL, get(AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO))
3164 .add(Cond[0])
3165 .addMBB(TBB);
3166 return 1;
3167 }
3168
3169 assert(TBB && Cond[0].isImm());
3170
3171 unsigned Opcode
3172 = getBranchOpcode(Cond: static_cast<BranchPredicate>(Cond[0].getImm()));
3173
3174 if (!FBB) {
3175 MachineInstr *CondBr =
3176 BuildMI(&MBB, DL, get(Opcode))
3177 .addMBB(TBB);
3178
3179 // Copy the flags onto the implicit condition register operand.
3180 preserveCondRegFlags(CondReg&: CondBr->getOperand(i: 1), OrigCond: Cond[1]);
3181 fixImplicitOperands(MI&: *CondBr);
3182
3183 if (BytesAdded)
3184 *BytesAdded = ST.hasOffset3fBug() ? 8 : 4;
3185 return 1;
3186 }
3187
3188 assert(TBB && FBB);
3189
3190 MachineInstr *CondBr =
3191 BuildMI(&MBB, DL, get(Opcode))
3192 .addMBB(TBB);
3193 fixImplicitOperands(MI&: *CondBr);
3194 BuildMI(&MBB, DL, get(AMDGPU::S_BRANCH))
3195 .addMBB(FBB);
3196
3197 MachineOperand &CondReg = CondBr->getOperand(i: 1);
3198 CondReg.setIsUndef(Cond[1].isUndef());
3199 CondReg.setIsKill(Cond[1].isKill());
3200
3201 if (BytesAdded)
3202 *BytesAdded = ST.hasOffset3fBug() ? 16 : 8;
3203
3204 return 2;
3205}
3206
3207bool SIInstrInfo::reverseBranchCondition(
3208 SmallVectorImpl<MachineOperand> &Cond) const {
3209 if (Cond.size() != 2) {
3210 return true;
3211 }
3212
3213 if (Cond[0].isImm()) {
3214 Cond[0].setImm(-Cond[0].getImm());
3215 return false;
3216 }
3217
3218 return true;
3219}
3220
3221bool SIInstrInfo::canInsertSelect(const MachineBasicBlock &MBB,
3222 ArrayRef<MachineOperand> Cond,
3223 Register DstReg, Register TrueReg,
3224 Register FalseReg, int &CondCycles,
3225 int &TrueCycles, int &FalseCycles) const {
3226 switch (Cond[0].getImm()) {
3227 case VCCNZ:
3228 case VCCZ: {
3229 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3230 const TargetRegisterClass *RC = MRI.getRegClass(Reg: TrueReg);
3231 if (MRI.getRegClass(Reg: FalseReg) != RC)
3232 return false;
3233
3234 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32;
3235 CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
3236
3237 // Limit to equal cost for branch vs. N v_cndmask_b32s.
3238 return RI.hasVGPRs(RC) && NumInsts <= 6;
3239 }
3240 case SCC_TRUE:
3241 case SCC_FALSE: {
3242 // FIXME: We could insert for VGPRs if we could replace the original compare
3243 // with a vector one.
3244 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3245 const TargetRegisterClass *RC = MRI.getRegClass(Reg: TrueReg);
3246 if (MRI.getRegClass(Reg: FalseReg) != RC)
3247 return false;
3248
3249 int NumInsts = AMDGPU::getRegBitWidth(*RC) / 32;
3250
3251 // Multiples of 8 can do s_cselect_b64
3252 if (NumInsts % 2 == 0)
3253 NumInsts /= 2;
3254
3255 CondCycles = TrueCycles = FalseCycles = NumInsts; // ???
3256 return RI.isSGPRClass(RC);
3257 }
3258 default:
3259 return false;
3260 }
3261}
3262
3263void SIInstrInfo::insertSelect(MachineBasicBlock &MBB,
3264 MachineBasicBlock::iterator I, const DebugLoc &DL,
3265 Register DstReg, ArrayRef<MachineOperand> Cond,
3266 Register TrueReg, Register FalseReg) const {
3267 BranchPredicate Pred = static_cast<BranchPredicate>(Cond[0].getImm());
3268 if (Pred == VCCZ || Pred == SCC_FALSE) {
3269 Pred = static_cast<BranchPredicate>(-Pred);
3270 std::swap(a&: TrueReg, b&: FalseReg);
3271 }
3272
3273 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3274 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: DstReg);
3275 unsigned DstSize = RI.getRegSizeInBits(*DstRC);
3276
3277 if (DstSize == 32) {
3278 MachineInstr *Select;
3279 if (Pred == SCC_TRUE) {
3280 Select = BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B32), DstReg)
3281 .addReg(TrueReg)
3282 .addReg(FalseReg);
3283 } else {
3284 // Instruction's operands are backwards from what is expected.
3285 Select = BuildMI(MBB, I, DL, get(AMDGPU::V_CNDMASK_B32_e32), DstReg)
3286 .addReg(FalseReg)
3287 .addReg(TrueReg);
3288 }
3289
3290 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3291 return;
3292 }
3293
3294 if (DstSize == 64 && Pred == SCC_TRUE) {
3295 MachineInstr *Select =
3296 BuildMI(MBB, I, DL, get(AMDGPU::S_CSELECT_B64), DstReg)
3297 .addReg(TrueReg)
3298 .addReg(FalseReg);
3299
3300 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3301 return;
3302 }
3303
3304 static const int16_t Sub0_15[] = {
3305 AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3,
3306 AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7,
3307 AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11,
3308 AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15,
3309 };
3310
3311 static const int16_t Sub0_15_64[] = {
3312 AMDGPU::sub0_sub1, AMDGPU::sub2_sub3,
3313 AMDGPU::sub4_sub5, AMDGPU::sub6_sub7,
3314 AMDGPU::sub8_sub9, AMDGPU::sub10_sub11,
3315 AMDGPU::sub12_sub13, AMDGPU::sub14_sub15,
3316 };
3317
3318 unsigned SelOp = AMDGPU::V_CNDMASK_B32_e32;
3319 const TargetRegisterClass *EltRC = &AMDGPU::VGPR_32RegClass;
3320 const int16_t *SubIndices = Sub0_15;
3321 int NElts = DstSize / 32;
3322
3323 // 64-bit select is only available for SALU.
3324 // TODO: Split 96-bit into 64-bit and 32-bit, not 3x 32-bit.
3325 if (Pred == SCC_TRUE) {
3326 if (NElts % 2) {
3327 SelOp = AMDGPU::S_CSELECT_B32;
3328 EltRC = &AMDGPU::SGPR_32RegClass;
3329 } else {
3330 SelOp = AMDGPU::S_CSELECT_B64;
3331 EltRC = &AMDGPU::SGPR_64RegClass;
3332 SubIndices = Sub0_15_64;
3333 NElts /= 2;
3334 }
3335 }
3336
3337 MachineInstrBuilder MIB = BuildMI(
3338 MBB, I, DL, get(AMDGPU::REG_SEQUENCE), DstReg);
3339
3340 I = MIB->getIterator();
3341
3342 SmallVector<Register, 8> Regs;
3343 for (int Idx = 0; Idx != NElts; ++Idx) {
3344 Register DstElt = MRI.createVirtualRegister(RegClass: EltRC);
3345 Regs.push_back(Elt: DstElt);
3346
3347 unsigned SubIdx = SubIndices[Idx];
3348
3349 MachineInstr *Select;
3350 if (SelOp == AMDGPU::V_CNDMASK_B32_e32) {
3351 Select =
3352 BuildMI(MBB, I, DL, get(SelOp), DstElt)
3353 .addReg(FalseReg, 0, SubIdx)
3354 .addReg(TrueReg, 0, SubIdx);
3355 } else {
3356 Select =
3357 BuildMI(MBB, I, DL, get(SelOp), DstElt)
3358 .addReg(TrueReg, 0, SubIdx)
3359 .addReg(FalseReg, 0, SubIdx);
3360 }
3361
3362 preserveCondRegFlags(CondReg&: Select->getOperand(i: 3), OrigCond: Cond[1]);
3363 fixImplicitOperands(MI&: *Select);
3364
3365 MIB.addReg(RegNo: DstElt)
3366 .addImm(Val: SubIdx);
3367 }
3368}
3369
3370bool SIInstrInfo::isFoldableCopy(const MachineInstr &MI) {
3371 switch (MI.getOpcode()) {
3372 case AMDGPU::V_MOV_B32_e32:
3373 case AMDGPU::V_MOV_B32_e64:
3374 case AMDGPU::V_MOV_B64_PSEUDO:
3375 case AMDGPU::V_MOV_B64_e32:
3376 case AMDGPU::V_MOV_B64_e64:
3377 case AMDGPU::S_MOV_B32:
3378 case AMDGPU::S_MOV_B64:
3379 case AMDGPU::S_MOV_B64_IMM_PSEUDO:
3380 case AMDGPU::COPY:
3381 case AMDGPU::WWM_COPY:
3382 case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
3383 case AMDGPU::V_ACCVGPR_READ_B32_e64:
3384 case AMDGPU::V_ACCVGPR_MOV_B32:
3385 return true;
3386 default:
3387 return false;
3388 }
3389}
3390
3391static constexpr unsigned ModifierOpNames[] = {
3392 AMDGPU::OpName::src0_modifiers, AMDGPU::OpName::src1_modifiers,
3393 AMDGPU::OpName::src2_modifiers, AMDGPU::OpName::clamp,
3394 AMDGPU::OpName::omod, AMDGPU::OpName::op_sel};
3395
3396void SIInstrInfo::removeModOperands(MachineInstr &MI) const {
3397 unsigned Opc = MI.getOpcode();
3398 for (unsigned Name : reverse(ModifierOpNames)) {
3399 int Idx = AMDGPU::getNamedOperandIdx(Opc, Name);
3400 if (Idx >= 0)
3401 MI.removeOperand(Idx);
3402 }
3403}
3404
3405bool SIInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3406 Register Reg, MachineRegisterInfo *MRI) const {
3407 if (!MRI->hasOneNonDBGUse(RegNo: Reg))
3408 return false;
3409
3410 switch (DefMI.getOpcode()) {
3411 default:
3412 return false;
3413 case AMDGPU::V_MOV_B64_e32:
3414 case AMDGPU::S_MOV_B64:
3415 case AMDGPU::V_MOV_B64_PSEUDO:
3416 case AMDGPU::S_MOV_B64_IMM_PSEUDO:
3417 case AMDGPU::V_MOV_B32_e32:
3418 case AMDGPU::S_MOV_B32:
3419 case AMDGPU::V_ACCVGPR_WRITE_B32_e64:
3420 break;
3421 }
3422
3423 const MachineOperand *ImmOp = getNamedOperand(DefMI, AMDGPU::OpName::src0);
3424 assert(ImmOp);
3425 // FIXME: We could handle FrameIndex values here.
3426 if (!ImmOp->isImm())
3427 return false;
3428
3429 auto getImmFor = [ImmOp](const MachineOperand &UseOp) -> int64_t {
3430 int64_t Imm = ImmOp->getImm();
3431 switch (UseOp.getSubReg()) {
3432 default:
3433 return Imm;
3434 case AMDGPU::sub0:
3435 return Lo_32(Value: Imm);
3436 case AMDGPU::sub1:
3437 return Hi_32(Value: Imm);
3438 case AMDGPU::lo16:
3439 return APInt(16, Imm).getSExtValue();
3440 case AMDGPU::hi16:
3441 return APInt(32, Imm).ashr(ShiftAmt: 16).getSExtValue();
3442 case AMDGPU::sub1_lo16:
3443 return APInt(16, Hi_32(Value: Imm)).getSExtValue();
3444 case AMDGPU::sub1_hi16:
3445 return APInt(32, Hi_32(Value: Imm)).ashr(ShiftAmt: 16).getSExtValue();
3446 }
3447 };
3448
3449 assert(!DefMI.getOperand(0).getSubReg() && "Expected SSA form");
3450
3451 unsigned Opc = UseMI.getOpcode();
3452 if (Opc == AMDGPU::COPY) {
3453 assert(!UseMI.getOperand(0).getSubReg() && "Expected SSA form");
3454
3455 Register DstReg = UseMI.getOperand(i: 0).getReg();
3456 unsigned OpSize = getOpSize(MI: UseMI, OpNo: 0);
3457 bool Is16Bit = OpSize == 2;
3458 bool Is64Bit = OpSize == 8;
3459 bool isVGPRCopy = RI.isVGPR(*MRI, DstReg);
3460 unsigned NewOpc = isVGPRCopy ? Is64Bit ? AMDGPU::V_MOV_B64_PSEUDO
3461 : AMDGPU::V_MOV_B32_e32
3462 : Is64Bit ? AMDGPU::S_MOV_B64_IMM_PSEUDO
3463 : AMDGPU::S_MOV_B32;
3464 APInt Imm(Is64Bit ? 64 : 32, getImmFor(UseMI.getOperand(i: 1)));
3465
3466 if (RI.isAGPR(*MRI, DstReg)) {
3467 if (Is64Bit || !isInlineConstant(Imm))
3468 return false;
3469 NewOpc = AMDGPU::V_ACCVGPR_WRITE_B32_e64;
3470 }
3471
3472 if (Is16Bit) {
3473 if (isVGPRCopy)
3474 return false; // Do not clobber vgpr_hi16
3475
3476 if (DstReg.isVirtual() && UseMI.getOperand(0).getSubReg() != AMDGPU::lo16)
3477 return false;
3478
3479 UseMI.getOperand(i: 0).setSubReg(0);
3480 if (DstReg.isPhysical()) {
3481 DstReg = RI.get32BitRegister(Reg: DstReg);
3482 UseMI.getOperand(i: 0).setReg(DstReg);
3483 }
3484 assert(UseMI.getOperand(1).getReg().isVirtual());
3485 }
3486
3487 const MCInstrDesc &NewMCID = get(NewOpc);
3488 if (DstReg.isPhysical() &&
3489 !RI.getRegClass(NewMCID.operands()[0].RegClass)->contains(DstReg))
3490 return false;
3491
3492 UseMI.setDesc(NewMCID);
3493 UseMI.getOperand(i: 1).ChangeToImmediate(ImmVal: Imm.getSExtValue());
3494 UseMI.addImplicitDefUseOperands(MF&: *UseMI.getParent()->getParent());
3495 return true;
3496 }
3497
3498 if (Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
3499 Opc == AMDGPU::V_MAD_F16_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3500 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3501 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3502 Opc == AMDGPU::V_FMAC_F16_t16_e64) {
3503 // Don't fold if we are using source or output modifiers. The new VOP2
3504 // instructions don't have them.
3505 if (hasAnyModifiersSet(MI: UseMI))
3506 return false;
3507
3508 // If this is a free constant, there's no reason to do this.
3509 // TODO: We could fold this here instead of letting SIFoldOperands do it
3510 // later.
3511 MachineOperand *Src0 = getNamedOperand(UseMI, AMDGPU::OpName::src0);
3512
3513 // Any src operand can be used for the legality check.
3514 if (isInlineConstant(MI: UseMI, UseMO: *Src0, DefMO: *ImmOp))
3515 return false;
3516
3517 bool IsF32 = Opc == AMDGPU::V_MAD_F32_e64 || Opc == AMDGPU::V_MAC_F32_e64 ||
3518 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64;
3519 bool IsFMA =
3520 Opc == AMDGPU::V_FMA_F32_e64 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3521 Opc == AMDGPU::V_FMA_F16_e64 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3522 Opc == AMDGPU::V_FMAC_F16_t16_e64;
3523 MachineOperand *Src1 = getNamedOperand(UseMI, AMDGPU::OpName::src1);
3524 MachineOperand *Src2 = getNamedOperand(UseMI, AMDGPU::OpName::src2);
3525
3526 // Multiplied part is the constant: Use v_madmk_{f16, f32}.
3527 if ((Src0->isReg() && Src0->getReg() == Reg) ||
3528 (Src1->isReg() && Src1->getReg() == Reg)) {
3529 MachineOperand *RegSrc =
3530 Src1->isReg() && Src1->getReg() == Reg ? Src0 : Src1;
3531 if (!RegSrc->isReg())
3532 return false;
3533 if (RI.isSGPRClass(MRI->getRegClass(Reg: RegSrc->getReg())) &&
3534 ST.getConstantBusLimit(Opcode: Opc) < 2)
3535 return false;
3536
3537 if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Reg: Src2->getReg())))
3538 return false;
3539
3540 // If src2 is also a literal constant then we have to choose which one to
3541 // fold. In general it is better to choose madak so that the other literal
3542 // can be materialized in an sgpr instead of a vgpr:
3543 // s_mov_b32 s0, literal
3544 // v_madak_f32 v0, s0, v0, literal
3545 // Instead of:
3546 // v_mov_b32 v1, literal
3547 // v_madmk_f32 v0, v0, literal, v1
3548 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src2->getReg());
3549 if (Def && Def->isMoveImmediate() &&
3550 !isInlineConstant(MO: Def->getOperand(i: 1)))
3551 return false;
3552
3553 unsigned NewOpc =
3554 IsFMA ? (IsF32 ? AMDGPU::V_FMAMK_F32
3555 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16
3556 : AMDGPU::V_FMAMK_F16)
3557 : (IsF32 ? AMDGPU::V_MADMK_F32 : AMDGPU::V_MADMK_F16);
3558 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
3559 return false;
3560
3561 // V_FMAMK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite
3562 // would also require restricting their register classes. For now
3563 // just bail out.
3564 if (NewOpc == AMDGPU::V_FMAMK_F16_t16)
3565 return false;
3566
3567 const int64_t Imm = getImmFor(RegSrc == Src1 ? *Src0 : *Src1);
3568
3569 // FIXME: This would be a lot easier if we could return a new instruction
3570 // instead of having to modify in place.
3571
3572 Register SrcReg = RegSrc->getReg();
3573 unsigned SrcSubReg = RegSrc->getSubReg();
3574 Src0->setReg(SrcReg);
3575 Src0->setSubReg(SrcSubReg);
3576 Src0->setIsKill(RegSrc->isKill());
3577
3578 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3579 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3580 Opc == AMDGPU::V_FMAC_F16_e64)
3581 UseMI.untieRegOperand(
3582 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
3583
3584 Src1->ChangeToImmediate(ImmVal: Imm);
3585
3586 removeModOperands(MI&: UseMI);
3587 UseMI.setDesc(get(NewOpc));
3588
3589 bool DeleteDef = MRI->use_nodbg_empty(RegNo: Reg);
3590 if (DeleteDef)
3591 DefMI.eraseFromParent();
3592
3593 return true;
3594 }
3595
3596 // Added part is the constant: Use v_madak_{f16, f32}.
3597 if (Src2->isReg() && Src2->getReg() == Reg) {
3598 if (ST.getConstantBusLimit(Opcode: Opc) < 2) {
3599 // Not allowed to use constant bus for another operand.
3600 // We can however allow an inline immediate as src0.
3601 bool Src0Inlined = false;
3602 if (Src0->isReg()) {
3603 // Try to inline constant if possible.
3604 // If the Def moves immediate and the use is single
3605 // We are saving VGPR here.
3606 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src0->getReg());
3607 if (Def && Def->isMoveImmediate() &&
3608 isInlineConstant(MO: Def->getOperand(i: 1)) &&
3609 MRI->hasOneUse(RegNo: Src0->getReg())) {
3610 Src0->ChangeToImmediate(ImmVal: Def->getOperand(i: 1).getImm());
3611 Src0Inlined = true;
3612 } else if (ST.getConstantBusLimit(Opcode: Opc) <= 1 &&
3613 RI.isSGPRReg(*MRI, Src0->getReg())) {
3614 return false;
3615 }
3616 // VGPR is okay as Src0 - fallthrough
3617 }
3618
3619 if (Src1->isReg() && !Src0Inlined) {
3620 // We have one slot for inlinable constant so far - try to fill it
3621 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: Src1->getReg());
3622 if (Def && Def->isMoveImmediate() &&
3623 isInlineConstant(MO: Def->getOperand(i: 1)) &&
3624 MRI->hasOneUse(RegNo: Src1->getReg()) && commuteInstruction(UseMI))
3625 Src0->ChangeToImmediate(ImmVal: Def->getOperand(i: 1).getImm());
3626 else if (RI.isSGPRReg(*MRI, Src1->getReg()))
3627 return false;
3628 // VGPR is okay as Src1 - fallthrough
3629 }
3630 }
3631
3632 unsigned NewOpc =
3633 IsFMA ? (IsF32 ? AMDGPU::V_FMAAK_F32
3634 : ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16
3635 : AMDGPU::V_FMAAK_F16)
3636 : (IsF32 ? AMDGPU::V_MADAK_F32 : AMDGPU::V_MADAK_F16);
3637 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
3638 return false;
3639
3640 // V_FMAAK_F16_t16 takes VGPR_32_Lo128 operands, so the rewrite
3641 // would also require restricting their register classes. For now
3642 // just bail out.
3643 if (NewOpc == AMDGPU::V_FMAAK_F16_t16)
3644 return false;
3645
3646 // FIXME: This would be a lot easier if we could return a new instruction
3647 // instead of having to modify in place.
3648
3649 if (Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
3650 Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3651 Opc == AMDGPU::V_FMAC_F16_e64)
3652 UseMI.untieRegOperand(
3653 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2));
3654
3655 // ChangingToImmediate adds Src2 back to the instruction.
3656 Src2->ChangeToImmediate(ImmVal: getImmFor(*Src2));
3657
3658 // These come before src2.
3659 removeModOperands(MI&: UseMI);
3660 UseMI.setDesc(get(NewOpc));
3661 // It might happen that UseMI was commuted
3662 // and we now have SGPR as SRC1. If so 2 inlined
3663 // constant and SGPR are illegal.
3664 legalizeOperands(MI&: UseMI);
3665
3666 bool DeleteDef = MRI->use_nodbg_empty(RegNo: Reg);
3667 if (DeleteDef)
3668 DefMI.eraseFromParent();
3669
3670 return true;
3671 }
3672 }
3673
3674 return false;
3675}
3676
3677static bool
3678memOpsHaveSameBaseOperands(ArrayRef<const MachineOperand *> BaseOps1,
3679 ArrayRef<const MachineOperand *> BaseOps2) {
3680 if (BaseOps1.size() != BaseOps2.size())
3681 return false;
3682 for (size_t I = 0, E = BaseOps1.size(); I < E; ++I) {
3683 if (!BaseOps1[I]->isIdenticalTo(Other: *BaseOps2[I]))
3684 return false;
3685 }
3686 return true;
3687}
3688
3689static bool offsetsDoNotOverlap(LocationSize WidthA, int OffsetA,
3690 LocationSize WidthB, int OffsetB) {
3691 int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB;
3692 int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA;
3693 LocationSize LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
3694 return LowWidth.hasValue() &&
3695 LowOffset + (int)LowWidth.getValue() <= HighOffset;
3696}
3697
3698bool SIInstrInfo::checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
3699 const MachineInstr &MIb) const {
3700 SmallVector<const MachineOperand *, 4> BaseOps0, BaseOps1;
3701 int64_t Offset0, Offset1;
3702 LocationSize Dummy0 = 0, Dummy1 = 0;
3703 bool Offset0IsScalable, Offset1IsScalable;
3704 if (!getMemOperandsWithOffsetWidth(MIa, BaseOps0, Offset0, Offset0IsScalable,
3705 Dummy0, &RI) ||
3706 !getMemOperandsWithOffsetWidth(MIb, BaseOps1, Offset1, Offset1IsScalable,
3707 Dummy1, &RI))
3708 return false;
3709
3710 if (!memOpsHaveSameBaseOperands(BaseOps1: BaseOps0, BaseOps2: BaseOps1))
3711 return false;
3712
3713 if (!MIa.hasOneMemOperand() || !MIb.hasOneMemOperand()) {
3714 // FIXME: Handle ds_read2 / ds_write2.
3715 return false;
3716 }
3717 LocationSize Width0 = MIa.memoperands().front()->getSize();
3718 LocationSize Width1 = MIb.memoperands().front()->getSize();
3719 return offsetsDoNotOverlap(WidthA: Width0, OffsetA: Offset0, WidthB: Width1, OffsetB: Offset1);
3720}
3721
3722bool SIInstrInfo::areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
3723 const MachineInstr &MIb) const {
3724 assert(MIa.mayLoadOrStore() &&
3725 "MIa must load from or modify a memory location");
3726 assert(MIb.mayLoadOrStore() &&
3727 "MIb must load from or modify a memory location");
3728
3729 if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects())
3730 return false;
3731
3732 // XXX - Can we relax this between address spaces?
3733 if (MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
3734 return false;
3735
3736 if (isLDSDMA(MI: MIa) || isLDSDMA(MI: MIb))
3737 return false;
3738
3739 // TODO: Should we check the address space from the MachineMemOperand? That
3740 // would allow us to distinguish objects we know don't alias based on the
3741 // underlying address space, even if it was lowered to a different one,
3742 // e.g. private accesses lowered to use MUBUF instructions on a scratch
3743 // buffer.
3744 if (isDS(MI: MIa)) {
3745 if (isDS(MI: MIb))
3746 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3747
3748 return !isFLAT(MI: MIb) || isSegmentSpecificFLAT(MI: MIb);
3749 }
3750
3751 if (isMUBUF(MI: MIa) || isMTBUF(MI: MIa)) {
3752 if (isMUBUF(MI: MIb) || isMTBUF(MI: MIb))
3753 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3754
3755 if (isFLAT(MI: MIb))
3756 return isFLATScratch(MI: MIb);
3757
3758 return !isSMRD(MI: MIb);
3759 }
3760
3761 if (isSMRD(MI: MIa)) {
3762 if (isSMRD(MI: MIb))
3763 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3764
3765 if (isFLAT(MI: MIb))
3766 return isFLATScratch(MI: MIb);
3767
3768 return !isMUBUF(MI: MIb) && !isMTBUF(MI: MIb);
3769 }
3770
3771 if (isFLAT(MI: MIa)) {
3772 if (isFLAT(MI: MIb)) {
3773 if ((isFLATScratch(MI: MIa) && isFLATGlobal(MI: MIb)) ||
3774 (isFLATGlobal(MI: MIa) && isFLATScratch(MI: MIb)))
3775 return true;
3776
3777 return checkInstOffsetsDoNotOverlap(MIa, MIb);
3778 }
3779
3780 return false;
3781 }
3782
3783 return false;
3784}
3785
3786static bool getFoldableImm(Register Reg, const MachineRegisterInfo &MRI,
3787 int64_t &Imm, MachineInstr **DefMI = nullptr) {
3788 if (Reg.isPhysical())
3789 return false;
3790 auto *Def = MRI.getUniqueVRegDef(Reg);
3791 if (Def && SIInstrInfo::isFoldableCopy(MI: *Def) && Def->getOperand(i: 1).isImm()) {
3792 Imm = Def->getOperand(i: 1).getImm();
3793 if (DefMI)
3794 *DefMI = Def;
3795 return true;
3796 }
3797 return false;
3798}
3799
3800static bool getFoldableImm(const MachineOperand *MO, int64_t &Imm,
3801 MachineInstr **DefMI = nullptr) {
3802 if (!MO->isReg())
3803 return false;
3804 const MachineFunction *MF = MO->getParent()->getParent()->getParent();
3805 const MachineRegisterInfo &MRI = MF->getRegInfo();
3806 return getFoldableImm(Reg: MO->getReg(), MRI, Imm, DefMI);
3807}
3808
3809static void updateLiveVariables(LiveVariables *LV, MachineInstr &MI,
3810 MachineInstr &NewMI) {
3811 if (LV) {
3812 unsigned NumOps = MI.getNumOperands();
3813 for (unsigned I = 1; I < NumOps; ++I) {
3814 MachineOperand &Op = MI.getOperand(i: I);
3815 if (Op.isReg() && Op.isKill())
3816 LV->replaceKillInstruction(Reg: Op.getReg(), OldMI&: MI, NewMI);
3817 }
3818 }
3819}
3820
3821MachineInstr *SIInstrInfo::convertToThreeAddress(MachineInstr &MI,
3822 LiveVariables *LV,
3823 LiveIntervals *LIS) const {
3824 MachineBasicBlock &MBB = *MI.getParent();
3825 unsigned Opc = MI.getOpcode();
3826
3827 // Handle MFMA.
3828 int NewMFMAOpc = AMDGPU::getMFMAEarlyClobberOp(Opcode: Opc);
3829 if (NewMFMAOpc != -1) {
3830 MachineInstrBuilder MIB =
3831 BuildMI(MBB, MI, MI.getDebugLoc(), get(NewMFMAOpc));
3832 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3833 MIB.add(MO: MI.getOperand(i: I));
3834 updateLiveVariables(LV, MI, NewMI&: *MIB);
3835 if (LIS) {
3836 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3837 // SlotIndex of defs needs to be updated when converting to early-clobber
3838 MachineOperand &Def = MIB->getOperand(i: 0);
3839 if (Def.isEarlyClobber() && Def.isReg() &&
3840 LIS->hasInterval(Reg: Def.getReg())) {
3841 SlotIndex OldIndex = LIS->getInstructionIndex(Instr: *MIB).getRegSlot(EC: false);
3842 SlotIndex NewIndex = LIS->getInstructionIndex(Instr: *MIB).getRegSlot(EC: true);
3843 auto &LI = LIS->getInterval(Reg: Def.getReg());
3844 auto UpdateDefIndex = [&](LiveRange &LR) {
3845 auto S = LR.find(Pos: OldIndex);
3846 if (S != LR.end() && S->start == OldIndex) {
3847 assert(S->valno && S->valno->def == OldIndex);
3848 S->start = NewIndex;
3849 S->valno->def = NewIndex;
3850 }
3851 };
3852 UpdateDefIndex(LI);
3853 for (auto &SR : LI.subranges())
3854 UpdateDefIndex(SR);
3855 }
3856 }
3857 return MIB;
3858 }
3859
3860 if (SIInstrInfo::isWMMA(MI)) {
3861 unsigned NewOpc = AMDGPU::mapWMMA2AddrTo3AddrOpcode(Opc: MI.getOpcode());
3862 MachineInstrBuilder MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3863 .setMIFlags(MI.getFlags());
3864 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3865 MIB->addOperand(Op: MI.getOperand(i: I));
3866
3867 updateLiveVariables(LV, MI, NewMI&: *MIB);
3868 if (LIS)
3869 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3870
3871 return MIB;
3872 }
3873
3874 assert(Opc != AMDGPU::V_FMAC_F16_t16_e32 &&
3875 "V_FMAC_F16_t16_e32 is not supported and not expected to be present "
3876 "pre-RA");
3877
3878 // Handle MAC/FMAC.
3879 bool IsF16 = Opc == AMDGPU::V_MAC_F16_e32 || Opc == AMDGPU::V_MAC_F16_e64 ||
3880 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3881 Opc == AMDGPU::V_FMAC_F16_t16_e64;
3882 bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F32_e64 ||
3883 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 ||
3884 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64 ||
3885 Opc == AMDGPU::V_FMAC_F16_e32 || Opc == AMDGPU::V_FMAC_F16_e64 ||
3886 Opc == AMDGPU::V_FMAC_F16_t16_e64 ||
3887 Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
3888 bool IsF64 = Opc == AMDGPU::V_FMAC_F64_e32 || Opc == AMDGPU::V_FMAC_F64_e64;
3889 bool IsLegacy = Opc == AMDGPU::V_MAC_LEGACY_F32_e32 ||
3890 Opc == AMDGPU::V_MAC_LEGACY_F32_e64 ||
3891 Opc == AMDGPU::V_FMAC_LEGACY_F32_e32 ||
3892 Opc == AMDGPU::V_FMAC_LEGACY_F32_e64;
3893 bool Src0Literal = false;
3894
3895 switch (Opc) {
3896 default:
3897 return nullptr;
3898 case AMDGPU::V_MAC_F16_e64:
3899 case AMDGPU::V_FMAC_F16_e64:
3900 case AMDGPU::V_FMAC_F16_t16_e64:
3901 case AMDGPU::V_MAC_F32_e64:
3902 case AMDGPU::V_MAC_LEGACY_F32_e64:
3903 case AMDGPU::V_FMAC_F32_e64:
3904 case AMDGPU::V_FMAC_LEGACY_F32_e64:
3905 case AMDGPU::V_FMAC_F64_e64:
3906 break;
3907 case AMDGPU::V_MAC_F16_e32:
3908 case AMDGPU::V_FMAC_F16_e32:
3909 case AMDGPU::V_MAC_F32_e32:
3910 case AMDGPU::V_MAC_LEGACY_F32_e32:
3911 case AMDGPU::V_FMAC_F32_e32:
3912 case AMDGPU::V_FMAC_LEGACY_F32_e32:
3913 case AMDGPU::V_FMAC_F64_e32: {
3914 int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(),
3915 AMDGPU::OpName::src0);
3916 const MachineOperand *Src0 = &MI.getOperand(i: Src0Idx);
3917 if (!Src0->isReg() && !Src0->isImm())
3918 return nullptr;
3919
3920 if (Src0->isImm() && !isInlineConstant(MI, OpIdx: Src0Idx, MO: *Src0))
3921 Src0Literal = true;
3922
3923 break;
3924 }
3925 }
3926
3927 MachineInstrBuilder MIB;
3928 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
3929 const MachineOperand *Src0 = getNamedOperand(MI, AMDGPU::OpName::src0);
3930 const MachineOperand *Src0Mods =
3931 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
3932 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
3933 const MachineOperand *Src1Mods =
3934 getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);
3935 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
3936 const MachineOperand *Src2Mods =
3937 getNamedOperand(MI, AMDGPU::OpName::src2_modifiers);
3938 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
3939 const MachineOperand *Omod = getNamedOperand(MI, AMDGPU::OpName::omod);
3940 const MachineOperand *OpSel = getNamedOperand(MI, AMDGPU::OpName::op_sel);
3941
3942 if (!Src0Mods && !Src1Mods && !Src2Mods && !Clamp && !Omod && !IsF64 &&
3943 !IsLegacy &&
3944 // If we have an SGPR input, we will violate the constant bus restriction.
3945 (ST.getConstantBusLimit(Opcode: Opc) > 1 || !Src0->isReg() ||
3946 !RI.isSGPRReg(MBB.getParent()->getRegInfo(), Src0->getReg()))) {
3947 MachineInstr *DefMI;
3948 const auto killDef = [&]() -> void {
3949 const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
3950 // The only user is the instruction which will be killed.
3951 Register DefReg = DefMI->getOperand(i: 0).getReg();
3952 if (!MRI.hasOneNonDBGUse(RegNo: DefReg))
3953 return;
3954 // We cannot just remove the DefMI here, calling pass will crash.
3955 DefMI->setDesc(get(AMDGPU::IMPLICIT_DEF));
3956 for (unsigned I = DefMI->getNumOperands() - 1; I != 0; --I)
3957 DefMI->removeOperand(OpNo: I);
3958 if (LV)
3959 LV->getVarInfo(Reg: DefReg).AliveBlocks.clear();
3960 };
3961
3962 int64_t Imm;
3963 if (!Src0Literal && getFoldableImm(MO: Src2, Imm, DefMI: &DefMI)) {
3964 unsigned NewOpc =
3965 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAAK_F16_t16
3966 : AMDGPU::V_FMAAK_F16)
3967 : AMDGPU::V_FMAAK_F32)
3968 : (IsF16 ? AMDGPU::V_MADAK_F16 : AMDGPU::V_MADAK_F32);
3969 if (pseudoToMCOpcode(Opcode: NewOpc) != -1) {
3970 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3971 .add(*Dst)
3972 .add(*Src0)
3973 .add(*Src1)
3974 .addImm(Imm);
3975 updateLiveVariables(LV, MI, NewMI&: *MIB);
3976 if (LIS)
3977 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3978 killDef();
3979 return MIB;
3980 }
3981 }
3982 unsigned NewOpc =
3983 IsFMA ? (IsF16 ? (ST.hasTrue16BitInsts() ? AMDGPU::V_FMAMK_F16_t16
3984 : AMDGPU::V_FMAMK_F16)
3985 : AMDGPU::V_FMAMK_F32)
3986 : (IsF16 ? AMDGPU::V_MADMK_F16 : AMDGPU::V_MADMK_F32);
3987 if (!Src0Literal && getFoldableImm(MO: Src1, Imm, DefMI: &DefMI)) {
3988 if (pseudoToMCOpcode(Opcode: NewOpc) != -1) {
3989 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
3990 .add(*Dst)
3991 .add(*Src0)
3992 .addImm(Imm)
3993 .add(*Src2);
3994 updateLiveVariables(LV, MI, NewMI&: *MIB);
3995 if (LIS)
3996 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
3997 killDef();
3998 return MIB;
3999 }
4000 }
4001 if (Src0Literal || getFoldableImm(MO: Src0, Imm, DefMI: &DefMI)) {
4002 if (Src0Literal) {
4003 Imm = Src0->getImm();
4004 DefMI = nullptr;
4005 }
4006 if (pseudoToMCOpcode(NewOpc) != -1 &&
4007 isOperandLegal(
4008 MI, AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::src0),
4009 Src1)) {
4010 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
4011 .add(*Dst)
4012 .add(*Src1)
4013 .addImm(Imm)
4014 .add(*Src2);
4015 updateLiveVariables(LV, MI, NewMI&: *MIB);
4016 if (LIS)
4017 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
4018 if (DefMI)
4019 killDef();
4020 return MIB;
4021 }
4022 }
4023 }
4024
4025 // VOP2 mac/fmac with a literal operand cannot be converted to VOP3 mad/fma
4026 // if VOP3 does not allow a literal operand.
4027 if (Src0Literal && !ST.hasVOP3Literal())
4028 return nullptr;
4029
4030 unsigned NewOpc = IsFMA ? IsF16 ? AMDGPU::V_FMA_F16_gfx9_e64
4031 : IsF64 ? AMDGPU::V_FMA_F64_e64
4032 : IsLegacy
4033 ? AMDGPU::V_FMA_LEGACY_F32_e64
4034 : AMDGPU::V_FMA_F32_e64
4035 : IsF16 ? AMDGPU::V_MAD_F16_e64
4036 : IsLegacy ? AMDGPU::V_MAD_LEGACY_F32_e64
4037 : AMDGPU::V_MAD_F32_e64;
4038 if (pseudoToMCOpcode(Opcode: NewOpc) == -1)
4039 return nullptr;
4040
4041 MIB = BuildMI(MBB, MI, MI.getDebugLoc(), get(NewOpc))
4042 .add(*Dst)
4043 .addImm(Src0Mods ? Src0Mods->getImm() : 0)
4044 .add(*Src0)
4045 .addImm(Src1Mods ? Src1Mods->getImm() : 0)
4046 .add(*Src1)
4047 .addImm(Src2Mods ? Src2Mods->getImm() : 0)
4048 .add(*Src2)
4049 .addImm(Clamp ? Clamp->getImm() : 0)
4050 .addImm(Omod ? Omod->getImm() : 0);
4051 if (AMDGPU::hasNamedOperand(NewOpc, AMDGPU::OpName::op_sel))
4052 MIB.addImm(Val: OpSel ? OpSel->getImm() : 0);
4053 updateLiveVariables(LV, MI, NewMI&: *MIB);
4054 if (LIS)
4055 LIS->ReplaceMachineInstrInMaps(MI, NewMI&: *MIB);
4056 return MIB;
4057}
4058
4059// It's not generally safe to move VALU instructions across these since it will
4060// start using the register as a base index rather than directly.
4061// XXX - Why isn't hasSideEffects sufficient for these?
4062static bool changesVGPRIndexingMode(const MachineInstr &MI) {
4063 switch (MI.getOpcode()) {
4064 case AMDGPU::S_SET_GPR_IDX_ON:
4065 case AMDGPU::S_SET_GPR_IDX_MODE:
4066 case AMDGPU::S_SET_GPR_IDX_OFF:
4067 return true;
4068 default:
4069 return false;
4070 }
4071}
4072
4073bool SIInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
4074 const MachineBasicBlock *MBB,
4075 const MachineFunction &MF) const {
4076 // Skipping the check for SP writes in the base implementation. The reason it
4077 // was added was apparently due to compile time concerns.
4078 //
4079 // TODO: Do we really want this barrier? It triggers unnecessary hazard nops
4080 // but is probably avoidable.
4081
4082 // Copied from base implementation.
4083 // Terminators and labels can't be scheduled around.
4084 if (MI.isTerminator() || MI.isPosition())
4085 return true;
4086
4087 // INLINEASM_BR can jump to another block
4088 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
4089 return true;
4090
4091 if (MI.getOpcode() == AMDGPU::SCHED_BARRIER && MI.getOperand(0).getImm() == 0)
4092 return true;
4093
4094 // Target-independent instructions do not have an implicit-use of EXEC, even
4095 // when they operate on VGPRs. Treating EXEC modifications as scheduling
4096 // boundaries prevents incorrect movements of such instructions.
4097 return MI.modifiesRegister(AMDGPU::EXEC, &RI) ||
4098 MI.getOpcode() == AMDGPU::S_SETREG_IMM32_B32 ||
4099 MI.getOpcode() == AMDGPU::S_SETREG_B32 ||
4100 MI.getOpcode() == AMDGPU::S_SETPRIO ||
4101 changesVGPRIndexingMode(MI);
4102}
4103
4104bool SIInstrInfo::isAlwaysGDS(uint16_t Opcode) const {
4105 return Opcode == AMDGPU::DS_ORDERED_COUNT || isGWS(Opcode);
4106}
4107
4108bool SIInstrInfo::modifiesModeRegister(const MachineInstr &MI) {
4109 // Skip the full operand and register alias search modifiesRegister
4110 // does. There's only a handful of instructions that touch this, it's only an
4111 // implicit def, and doesn't alias any other registers.
4112 return is_contained(MI.getDesc().implicit_defs(), AMDGPU::MODE);
4113}
4114
4115bool SIInstrInfo::hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const {
4116 unsigned Opcode = MI.getOpcode();
4117
4118 if (MI.mayStore() && isSMRD(MI))
4119 return true; // scalar store or atomic
4120
4121 // This will terminate the function when other lanes may need to continue.
4122 if (MI.isReturn())
4123 return true;
4124
4125 // These instructions cause shader I/O that may cause hardware lockups
4126 // when executed with an empty EXEC mask.
4127 //
4128 // Note: exp with VM = DONE = 0 is automatically skipped by hardware when
4129 // EXEC = 0, but checking for that case here seems not worth it
4130 // given the typical code patterns.
4131 if (Opcode == AMDGPU::S_SENDMSG || Opcode == AMDGPU::S_SENDMSGHALT ||
4132 isEXP(Opcode) ||
4133 Opcode == AMDGPU::DS_ORDERED_COUNT || Opcode == AMDGPU::S_TRAP ||
4134 Opcode == AMDGPU::DS_GWS_INIT || Opcode == AMDGPU::DS_GWS_BARRIER)
4135 return true;
4136
4137 if (MI.isCall() || MI.isInlineAsm())
4138 return true; // conservative assumption
4139
4140 // A mode change is a scalar operation that influences vector instructions.
4141 if (modifiesModeRegister(MI))
4142 return true;
4143
4144 // These are like SALU instructions in terms of effects, so it's questionable
4145 // whether we should return true for those.
4146 //
4147 // However, executing them with EXEC = 0 causes them to operate on undefined
4148 // data, which we avoid by returning true here.
4149 if (Opcode == AMDGPU::V_READFIRSTLANE_B32 ||
4150 Opcode == AMDGPU::V_READLANE_B32 || Opcode == AMDGPU::V_WRITELANE_B32 ||
4151 Opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR ||
4152 Opcode == AMDGPU::SI_SPILL_S32_TO_VGPR)
4153 return true;
4154
4155 return false;
4156}
4157
4158bool SIInstrInfo::mayReadEXEC(const MachineRegisterInfo &MRI,
4159 const MachineInstr &MI) const {
4160 if (MI.isMetaInstruction())
4161 return false;
4162
4163 // This won't read exec if this is an SGPR->SGPR copy.
4164 if (MI.isCopyLike()) {
4165 if (!RI.isSGPRReg(MRI, MI.getOperand(i: 0).getReg()))
4166 return true;
4167
4168 // Make sure this isn't copying exec as a normal operand
4169 return MI.readsRegister(AMDGPU::EXEC, &RI);
4170 }
4171
4172 // Make a conservative assumption about the callee.
4173 if (MI.isCall())
4174 return true;
4175
4176 // Be conservative with any unhandled generic opcodes.
4177 if (!isTargetSpecificOpcode(Opcode: MI.getOpcode()))
4178 return true;
4179
4180 return !isSALU(MI) || MI.readsRegister(AMDGPU::EXEC, &RI);
4181}
4182
4183bool SIInstrInfo::isInlineConstant(const APInt &Imm) const {
4184 switch (Imm.getBitWidth()) {
4185 case 1: // This likely will be a condition code mask.
4186 return true;
4187
4188 case 32:
4189 return AMDGPU::isInlinableLiteral32(Literal: Imm.getSExtValue(),
4190 HasInv2Pi: ST.hasInv2PiInlineImm());
4191 case 64:
4192 return AMDGPU::isInlinableLiteral64(Literal: Imm.getSExtValue(),
4193 HasInv2Pi: ST.hasInv2PiInlineImm());
4194 case 16:
4195 return ST.has16BitInsts() &&
4196 AMDGPU::isInlinableLiteralI16(Literal: Imm.getSExtValue(),
4197 HasInv2Pi: ST.hasInv2PiInlineImm());
4198 default:
4199 llvm_unreachable("invalid bitwidth");
4200 }
4201}
4202
4203bool SIInstrInfo::isInlineConstant(const APFloat &Imm) const {
4204 APInt IntImm = Imm.bitcastToAPInt();
4205 int64_t IntImmVal = IntImm.getSExtValue();
4206 bool HasInv2Pi = ST.hasInv2PiInlineImm();
4207 switch (APFloat::SemanticsToEnum(Sem: Imm.getSemantics())) {
4208 default:
4209 llvm_unreachable("invalid fltSemantics");
4210 case APFloatBase::S_IEEEsingle:
4211 case APFloatBase::S_IEEEdouble:
4212 return isInlineConstant(Imm: IntImm);
4213 case APFloatBase::S_BFloat:
4214 return ST.has16BitInsts() &&
4215 AMDGPU::isInlinableLiteralBF16(Literal: IntImmVal, HasInv2Pi);
4216 case APFloatBase::S_IEEEhalf:
4217 return ST.has16BitInsts() &&
4218 AMDGPU::isInlinableLiteralFP16(Literal: IntImmVal, HasInv2Pi);
4219 }
4220}
4221
4222bool SIInstrInfo::isInlineConstant(const MachineOperand &MO,
4223 uint8_t OperandType) const {
4224 assert(!MO.isReg() && "isInlineConstant called on register operand!");
4225 if (!MO.isImm())
4226 return false;
4227
4228 // MachineOperand provides no way to tell the true operand size, since it only
4229 // records a 64-bit value. We need to know the size to determine if a 32-bit
4230 // floating point immediate bit pattern is legal for an integer immediate. It
4231 // would be for any 32-bit integer operand, but would not be for a 64-bit one.
4232
4233 int64_t Imm = MO.getImm();
4234 switch (OperandType) {
4235 case AMDGPU::OPERAND_REG_IMM_INT32:
4236 case AMDGPU::OPERAND_REG_IMM_FP32:
4237 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
4238 case AMDGPU::OPERAND_REG_INLINE_C_INT32:
4239 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
4240 case AMDGPU::OPERAND_REG_IMM_V2FP32:
4241 case AMDGPU::OPERAND_REG_INLINE_C_V2FP32:
4242 case AMDGPU::OPERAND_REG_IMM_V2INT32:
4243 case AMDGPU::OPERAND_REG_INLINE_C_V2INT32:
4244 case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
4245 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
4246 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32: {
4247 int32_t Trunc = static_cast<int32_t>(Imm);
4248 return AMDGPU::isInlinableLiteral32(Literal: Trunc, HasInv2Pi: ST.hasInv2PiInlineImm());
4249 }
4250 case AMDGPU::OPERAND_REG_IMM_INT64:
4251 case AMDGPU::OPERAND_REG_IMM_FP64:
4252 case AMDGPU::OPERAND_REG_INLINE_C_INT64:
4253 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
4254 case AMDGPU::OPERAND_REG_INLINE_AC_FP64:
4255 return AMDGPU::isInlinableLiteral64(Literal: MO.getImm(),
4256 HasInv2Pi: ST.hasInv2PiInlineImm());
4257 case AMDGPU::OPERAND_REG_IMM_INT16:
4258 case AMDGPU::OPERAND_REG_INLINE_C_INT16:
4259 case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
4260 // We would expect inline immediates to not be concerned with an integer/fp
4261 // distinction. However, in the case of 16-bit integer operations, the
4262 // "floating point" values appear to not work. It seems read the low 16-bits
4263 // of 32-bit immediates, which happens to always work for the integer
4264 // values.
4265 //
4266 // See llvm bugzilla 46302.
4267 //
4268 // TODO: Theoretically we could use op-sel to use the high bits of the
4269 // 32-bit FP values.
4270 return AMDGPU::isInlinableIntLiteral(Literal: Imm);
4271 case AMDGPU::OPERAND_REG_IMM_V2INT16:
4272 case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
4273 case AMDGPU::OPERAND_REG_INLINE_AC_V2INT16:
4274 return AMDGPU::isInlinableLiteralV2I16(Literal: Imm);
4275 case AMDGPU::OPERAND_REG_IMM_V2FP16:
4276 case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
4277 case AMDGPU::OPERAND_REG_INLINE_AC_V2FP16:
4278 return AMDGPU::isInlinableLiteralV2F16(Literal: Imm);
4279 case AMDGPU::OPERAND_REG_IMM_V2BF16:
4280 case AMDGPU::OPERAND_REG_INLINE_C_V2BF16:
4281 case AMDGPU::OPERAND_REG_INLINE_AC_V2BF16:
4282 return AMDGPU::isInlinableLiteralV2BF16(Literal: Imm);
4283 case AMDGPU::OPERAND_REG_IMM_FP16:
4284 case AMDGPU::OPERAND_REG_IMM_FP16_DEFERRED:
4285 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
4286 case AMDGPU::OPERAND_REG_INLINE_AC_FP16: {
4287 if (isInt<16>(x: Imm) || isUInt<16>(x: Imm)) {
4288 // A few special case instructions have 16-bit operands on subtargets
4289 // where 16-bit instructions are not legal.
4290 // TODO: Do the 32-bit immediates work? We shouldn't really need to handle
4291 // constants in these cases
4292 int16_t Trunc = static_cast<int16_t>(Imm);
4293 return ST.has16BitInsts() &&
4294 AMDGPU::isInlinableLiteralFP16(Literal: Trunc, HasInv2Pi: ST.hasInv2PiInlineImm());
4295 }
4296
4297 return false;
4298 }
4299 case AMDGPU::OPERAND_REG_IMM_BF16:
4300 case AMDGPU::OPERAND_REG_IMM_BF16_DEFERRED:
4301 case AMDGPU::OPERAND_REG_INLINE_C_BF16:
4302 case AMDGPU::OPERAND_REG_INLINE_AC_BF16: {
4303 if (isInt<16>(x: Imm) || isUInt<16>(x: Imm)) {
4304 int16_t Trunc = static_cast<int16_t>(Imm);
4305 return ST.has16BitInsts() &&
4306 AMDGPU::isInlinableLiteralBF16(Literal: Trunc, HasInv2Pi: ST.hasInv2PiInlineImm());
4307 }
4308 return false;
4309 }
4310 case AMDGPU::OPERAND_KIMM32:
4311 case AMDGPU::OPERAND_KIMM16:
4312 return false;
4313 case AMDGPU::OPERAND_INPUT_MODS:
4314 case MCOI::OPERAND_IMMEDIATE:
4315 // Always embedded in the instruction for free.
4316 return true;
4317 case MCOI::OPERAND_UNKNOWN:
4318 case MCOI::OPERAND_REGISTER:
4319 case MCOI::OPERAND_PCREL:
4320 case MCOI::OPERAND_GENERIC_0:
4321 case MCOI::OPERAND_GENERIC_1:
4322 case MCOI::OPERAND_GENERIC_2:
4323 case MCOI::OPERAND_GENERIC_3:
4324 case MCOI::OPERAND_GENERIC_4:
4325 case MCOI::OPERAND_GENERIC_5:
4326 // Just ignore anything else.
4327 return true;
4328 default:
4329 llvm_unreachable("invalid operand type");
4330 }
4331}
4332
4333static bool compareMachineOp(const MachineOperand &Op0,
4334 const MachineOperand &Op1) {
4335 if (Op0.getType() != Op1.getType())
4336 return false;
4337
4338 switch (Op0.getType()) {
4339 case MachineOperand::MO_Register:
4340 return Op0.getReg() == Op1.getReg();
4341 case MachineOperand::MO_Immediate:
4342 return Op0.getImm() == Op1.getImm();
4343 default:
4344 llvm_unreachable("Didn't expect to be comparing these operand types");
4345 }
4346}
4347
4348bool SIInstrInfo::isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
4349 const MachineOperand &MO) const {
4350 const MCInstrDesc &InstDesc = MI.getDesc();
4351 const MCOperandInfo &OpInfo = InstDesc.operands()[OpNo];
4352
4353 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
4354
4355 if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE)
4356 return true;
4357
4358 if (OpInfo.RegClass < 0)
4359 return false;
4360
4361 if (MO.isImm() && isInlineConstant(MO, OpInfo)) {
4362 if (isMAI(MI) && ST.hasMFMAInlineLiteralBug() &&
4363 OpNo ==(unsigned)AMDGPU::getNamedOperandIdx(MI.getOpcode(),
4364 AMDGPU::OpName::src2))
4365 return false;
4366 return RI.opCanUseInlineConstant(OpType: OpInfo.OperandType);
4367 }
4368
4369 if (!RI.opCanUseLiteralConstant(OpType: OpInfo.OperandType))
4370 return false;
4371
4372 if (!isVOP3(MI) || !AMDGPU::isSISrcOperand(Desc: InstDesc, OpNo))
4373 return true;
4374
4375 return ST.hasVOP3Literal();
4376}
4377
4378bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const {
4379 // GFX90A does not have V_MUL_LEGACY_F32_e32.
4380 if (Opcode == AMDGPU::V_MUL_LEGACY_F32_e64 && ST.hasGFX90AInsts())
4381 return false;
4382
4383 int Op32 = AMDGPU::getVOPe32(Opcode);
4384 if (Op32 == -1)
4385 return false;
4386
4387 return pseudoToMCOpcode(Opcode: Op32) != -1;
4388}
4389
4390bool SIInstrInfo::hasModifiers(unsigned Opcode) const {
4391 // The src0_modifier operand is present on all instructions
4392 // that have modifiers.
4393
4394 return AMDGPU::hasNamedOperand(Opcode, AMDGPU::OpName::src0_modifiers);
4395}
4396
4397bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI,
4398 unsigned OpName) const {
4399 const MachineOperand *Mods = getNamedOperand(MI, OpName);
4400 return Mods && Mods->getImm();
4401}
4402
4403bool SIInstrInfo::hasAnyModifiersSet(const MachineInstr &MI) const {
4404 return any_of(Range: ModifierOpNames,
4405 P: [&](unsigned Name) { return hasModifiersSet(MI, OpName: Name); });
4406}
4407
4408bool SIInstrInfo::canShrink(const MachineInstr &MI,
4409 const MachineRegisterInfo &MRI) const {
4410 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
4411 // Can't shrink instruction with three operands.
4412 if (Src2) {
4413 switch (MI.getOpcode()) {
4414 default: return false;
4415
4416 case AMDGPU::V_ADDC_U32_e64:
4417 case AMDGPU::V_SUBB_U32_e64:
4418 case AMDGPU::V_SUBBREV_U32_e64: {
4419 const MachineOperand *Src1
4420 = getNamedOperand(MI, AMDGPU::OpName::src1);
4421 if (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()))
4422 return false;
4423 // Additional verification is needed for sdst/src2.
4424 return true;
4425 }
4426 case AMDGPU::V_MAC_F16_e64:
4427 case AMDGPU::V_MAC_F32_e64:
4428 case AMDGPU::V_MAC_LEGACY_F32_e64:
4429 case AMDGPU::V_FMAC_F16_e64:
4430 case AMDGPU::V_FMAC_F16_t16_e64:
4431 case AMDGPU::V_FMAC_F32_e64:
4432 case AMDGPU::V_FMAC_F64_e64:
4433 case AMDGPU::V_FMAC_LEGACY_F32_e64:
4434 if (!Src2->isReg() || !RI.isVGPR(MRI, Src2->getReg()) ||
4435 hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
4436 return false;
4437 break;
4438
4439 case AMDGPU::V_CNDMASK_B32_e64:
4440 break;
4441 }
4442 }
4443
4444 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
4445 if (Src1 && (!Src1->isReg() || !RI.isVGPR(MRI, Src1->getReg()) ||
4446 hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers)))
4447 return false;
4448
4449 // We don't need to check src0, all input types are legal, so just make sure
4450 // src0 isn't using any modifiers.
4451 if (hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
4452 return false;
4453
4454 // Can it be shrunk to a valid 32 bit opcode?
4455 if (!hasVALU32BitEncoding(Opcode: MI.getOpcode()))
4456 return false;
4457
4458 // Check output modifiers
4459 return !hasModifiersSet(MI, AMDGPU::OpName::omod) &&
4460 !hasModifiersSet(MI, AMDGPU::OpName::clamp);
4461}
4462
4463// Set VCC operand with all flags from \p Orig, except for setting it as
4464// implicit.
4465static void copyFlagsToImplicitVCC(MachineInstr &MI,
4466 const MachineOperand &Orig) {
4467
4468 for (MachineOperand &Use : MI.implicit_operands()) {
4469 if (Use.isUse() &&
4470 (Use.getReg() == AMDGPU::VCC || Use.getReg() == AMDGPU::VCC_LO)) {
4471 Use.setIsUndef(Orig.isUndef());
4472 Use.setIsKill(Orig.isKill());
4473 return;
4474 }
4475 }
4476}
4477
4478MachineInstr *SIInstrInfo::buildShrunkInst(MachineInstr &MI,
4479 unsigned Op32) const {
4480 MachineBasicBlock *MBB = MI.getParent();
4481 MachineInstrBuilder Inst32 =
4482 BuildMI(*MBB, MI, MI.getDebugLoc(), get(Op32))
4483 .setMIFlags(MI.getFlags());
4484
4485 // Add the dst operand if the 32-bit encoding also has an explicit $vdst.
4486 // For VOPC instructions, this is replaced by an implicit def of vcc.
4487 if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::vdst)) {
4488 // dst
4489 Inst32.add(MO: MI.getOperand(i: 0));
4490 } else if (AMDGPU::hasNamedOperand(Op32, AMDGPU::OpName::sdst)) {
4491 // VOPCX instructions won't be writing to an explicit dst, so this should
4492 // not fail for these instructions.
4493 assert(((MI.getOperand(0).getReg() == AMDGPU::VCC) ||
4494 (MI.getOperand(0).getReg() == AMDGPU::VCC_LO)) &&
4495 "Unexpected case");
4496 }
4497
4498 Inst32.add(*getNamedOperand(MI, AMDGPU::OpName::src0));
4499
4500 const MachineOperand *Src1 = getNamedOperand(MI, AMDGPU::OpName::src1);
4501 if (Src1)
4502 Inst32.add(MO: *Src1);
4503
4504 const MachineOperand *Src2 = getNamedOperand(MI, AMDGPU::OpName::src2);
4505
4506 if (Src2) {
4507 int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
4508 if (Op32Src2Idx != -1) {
4509 Inst32.add(MO: *Src2);
4510 } else {
4511 // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
4512 // replaced with an implicit read of vcc or vcc_lo. The implicit read
4513 // of vcc was already added during the initial BuildMI, but we
4514 // 1) may need to change vcc to vcc_lo to preserve the original register
4515 // 2) have to preserve the original flags.
4516 fixImplicitOperands(MI&: *Inst32);
4517 copyFlagsToImplicitVCC(MI&: *Inst32, Orig: *Src2);
4518 }
4519 }
4520
4521 return Inst32;
4522}
4523
4524bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI,
4525 const MachineOperand &MO,
4526 const MCOperandInfo &OpInfo) const {
4527 // Literal constants use the constant bus.
4528 if (!MO.isReg())
4529 return !isInlineConstant(MO, OpInfo);
4530
4531 if (!MO.isUse())
4532 return false;
4533
4534 if (MO.getReg().isVirtual())
4535 return RI.isSGPRClass(MRI.getRegClass(Reg: MO.getReg()));
4536
4537 // Null is free
4538 if (MO.getReg() == AMDGPU::SGPR_NULL || MO.getReg() == AMDGPU::SGPR_NULL64)
4539 return false;
4540
4541 // SGPRs use the constant bus
4542 if (MO.isImplicit()) {
4543 return MO.getReg() == AMDGPU::M0 ||
4544 MO.getReg() == AMDGPU::VCC ||
4545 MO.getReg() == AMDGPU::VCC_LO;
4546 } else {
4547 return AMDGPU::SReg_32RegClass.contains(MO.getReg()) ||
4548 AMDGPU::SReg_64RegClass.contains(MO.getReg());
4549 }
4550}
4551
4552static Register findImplicitSGPRRead(const MachineInstr &MI) {
4553 for (const MachineOperand &MO : MI.implicit_operands()) {
4554 // We only care about reads.
4555 if (MO.isDef())
4556 continue;
4557
4558 switch (MO.getReg()) {
4559 case AMDGPU::VCC:
4560 case AMDGPU::VCC_LO:
4561 case AMDGPU::VCC_HI:
4562 case AMDGPU::M0:
4563 case AMDGPU::FLAT_SCR:
4564 return MO.getReg();
4565
4566 default:
4567 break;
4568 }
4569 }
4570
4571 return Register();
4572}
4573
4574static bool shouldReadExec(const MachineInstr &MI) {
4575 if (SIInstrInfo::isVALU(MI)) {
4576 switch (MI.getOpcode()) {
4577 case AMDGPU::V_READLANE_B32:
4578 case AMDGPU::SI_RESTORE_S32_FROM_VGPR:
4579 case AMDGPU::V_WRITELANE_B32:
4580 case AMDGPU::SI_SPILL_S32_TO_VGPR:
4581 return false;
4582 }
4583
4584 return true;
4585 }
4586
4587 if (MI.isPreISelOpcode() ||
4588 SIInstrInfo::isGenericOpcode(MI.getOpcode()) ||
4589 SIInstrInfo::isSALU(MI) ||
4590 SIInstrInfo::isSMRD(MI))
4591 return false;
4592
4593 return true;
4594}
4595
4596static bool isSubRegOf(const SIRegisterInfo &TRI,
4597 const MachineOperand &SuperVec,
4598 const MachineOperand &SubReg) {
4599 if (SubReg.getReg().isPhysical())
4600 return TRI.isSubRegister(SuperVec.getReg(), SubReg.getReg());
4601
4602 return SubReg.getSubReg() != AMDGPU::NoSubRegister &&
4603 SubReg.getReg() == SuperVec.getReg();
4604}
4605
4606bool SIInstrInfo::verifyInstruction(const MachineInstr &MI,
4607 StringRef &ErrInfo) const {
4608 uint16_t Opcode = MI.getOpcode();
4609 if (SIInstrInfo::isGenericOpcode(MI.getOpcode()))
4610 return true;
4611
4612 const MachineFunction *MF = MI.getParent()->getParent();
4613 const MachineRegisterInfo &MRI = MF->getRegInfo();
4614
4615 int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0);
4616 int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1);
4617 int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2);
4618 int Src3Idx = -1;
4619 if (Src0Idx == -1) {
4620 // VOPD V_DUAL_* instructions use different operand names.
4621 Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0X);
4622 Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1X);
4623 Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0Y);
4624 Src3Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vsrc1Y);
4625 }
4626
4627 // Make sure the number of operands is correct.
4628 const MCInstrDesc &Desc = get(Opcode);
4629 if (!Desc.isVariadic() &&
4630 Desc.getNumOperands() != MI.getNumExplicitOperands()) {
4631 ErrInfo = "Instruction has wrong number of operands.";
4632 return false;
4633 }
4634
4635 if (MI.isInlineAsm()) {
4636 // Verify register classes for inlineasm constraints.
4637 for (unsigned I = InlineAsm::MIOp_FirstOperand, E = MI.getNumOperands();
4638 I != E; ++I) {
4639 const TargetRegisterClass *RC = MI.getRegClassConstraint(I, this, &RI);
4640 if (!RC)
4641 continue;
4642
4643 const MachineOperand &Op = MI.getOperand(i: I);
4644 if (!Op.isReg())
4645 continue;
4646
4647 Register Reg = Op.getReg();
4648 if (!Reg.isVirtual() && !RC->contains(Reg)) {
4649 ErrInfo = "inlineasm operand has incorrect register class.";
4650 return false;
4651 }
4652 }
4653
4654 return true;
4655 }
4656
4657 if (isImage(MI) && MI.memoperands_empty() && MI.mayLoadOrStore()) {
4658 ErrInfo = "missing memory operand from image instruction.";
4659 return false;
4660 }
4661
4662 // Make sure the register classes are correct.
4663 for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) {
4664 const MachineOperand &MO = MI.getOperand(i);
4665 if (MO.isFPImm()) {
4666 ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast "
4667 "all fp values to integers.";
4668 return false;
4669 }
4670
4671 int RegClass = Desc.operands()[i].RegClass;
4672
4673 switch (Desc.operands()[i].OperandType) {
4674 case MCOI::OPERAND_REGISTER:
4675 if (MI.getOperand(i).isImm() || MI.getOperand(i).isGlobal()) {
4676 ErrInfo = "Illegal immediate value for operand.";
4677 return false;
4678 }
4679 break;
4680 case AMDGPU::OPERAND_REG_IMM_INT32:
4681 case AMDGPU::OPERAND_REG_IMM_FP32:
4682 case AMDGPU::OPERAND_REG_IMM_FP32_DEFERRED:
4683 case AMDGPU::OPERAND_REG_IMM_V2FP32:
4684 break;
4685 case AMDGPU::OPERAND_REG_INLINE_C_INT32:
4686 case AMDGPU::OPERAND_REG_INLINE_C_FP32:
4687 case AMDGPU::OPERAND_REG_INLINE_C_INT64:
4688 case AMDGPU::OPERAND_REG_INLINE_C_FP64:
4689 case AMDGPU::OPERAND_REG_INLINE_C_INT16:
4690 case AMDGPU::OPERAND_REG_INLINE_C_FP16:
4691 case AMDGPU::OPERAND_REG_INLINE_AC_INT32:
4692 case AMDGPU::OPERAND_REG_INLINE_AC_FP32:
4693 case AMDGPU::OPERAND_REG_INLINE_AC_INT16:
4694 case AMDGPU::OPERAND_REG_INLINE_AC_FP16:
4695 case AMDGPU::OPERAND_REG_INLINE_AC_FP64: {
4696 if (!MO.isReg() && (!MO.isImm() || !isInlineConstant(MI, OpIdx: i))) {
4697 ErrInfo = "Illegal immediate value for operand.";
4698 return false;
4699 }
4700 break;
4701 }
4702 case AMDGPU::OPERAND_INLINE_SPLIT_BARRIER_INT32:
4703 if (!MI.getOperand(i).isImm() || !isInlineConstant(MI, OpIdx: i)) {
4704 ErrInfo = "Expected inline constant for operand.";
4705 return false;
4706 }
4707 break;
4708 case MCOI::OPERAND_IMMEDIATE:
4709 case AMDGPU::OPERAND_KIMM32:
4710 // Check if this operand is an immediate.
4711 // FrameIndex operands will be replaced by immediates, so they are
4712 // allowed.
4713 if (!MI.getOperand(i).isImm() && !MI.getOperand(i).isFI()) {
4714 ErrInfo = "Expected immediate, but got non-immediate";
4715 return false;
4716 }
4717 [[fallthrough]];
4718 default:
4719 continue;
4720 }
4721
4722 if (!MO.isReg())
4723 continue;
4724 Register Reg = MO.getReg();
4725 if (!Reg)
4726 continue;
4727
4728 // FIXME: Ideally we would have separate instruction definitions with the
4729 // aligned register constraint.
4730 // FIXME: We do not verify inline asm operands, but custom inline asm
4731 // verification is broken anyway
4732 if (ST.needsAlignedVGPRs()) {
4733 const TargetRegisterClass *RC = RI.getRegClassForReg(MRI, Reg);
4734 if (RI.hasVectorRegisters(RC) && MO.getSubReg()) {
4735 const TargetRegisterClass *SubRC =
4736 RI.getSubRegisterClass(RC, MO.getSubReg());
4737 RC = RI.getCompatibleSubRegClass(RC, SubRC, MO.getSubReg());
4738 if (RC)
4739 RC = SubRC;
4740 }
4741
4742 // Check that this is the aligned version of the class.
4743 if (!RC || !RI.isProperlyAlignedRC(*RC)) {
4744 ErrInfo = "Subtarget requires even aligned vector registers";
4745 return false;
4746 }
4747 }
4748
4749 if (RegClass != -1) {
4750 if (Reg.isVirtual())
4751 continue;
4752
4753 const TargetRegisterClass *RC = RI.getRegClass(RegClass);
4754 if (!RC->contains(Reg)) {
4755 ErrInfo = "Operand has incorrect register class.";
4756 return false;
4757 }
4758 }
4759 }
4760
4761 // Verify SDWA
4762 if (isSDWA(MI)) {
4763 if (!ST.hasSDWA()) {
4764 ErrInfo = "SDWA is not supported on this target";
4765 return false;
4766 }
4767
4768 int DstIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::vdst);
4769
4770 for (int OpIdx : {DstIdx, Src0Idx, Src1Idx, Src2Idx}) {
4771 if (OpIdx == -1)
4772 continue;
4773 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4774
4775 if (!ST.hasSDWAScalar()) {
4776 // Only VGPRS on VI
4777 if (!MO.isReg() || !RI.hasVGPRs(RI.getRegClassForReg(MRI, MO.getReg()))) {
4778 ErrInfo = "Only VGPRs allowed as operands in SDWA instructions on VI";
4779 return false;
4780 }
4781 } else {
4782 // No immediates on GFX9
4783 if (!MO.isReg()) {
4784 ErrInfo =
4785 "Only reg allowed as operands in SDWA instructions on GFX9+";
4786 return false;
4787 }
4788 }
4789 }
4790
4791 if (!ST.hasSDWAOmod()) {
4792 // No omod allowed on VI
4793 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
4794 if (OMod != nullptr &&
4795 (!OMod->isImm() || OMod->getImm() != 0)) {
4796 ErrInfo = "OMod not allowed in SDWA instructions on VI";
4797 return false;
4798 }
4799 }
4800
4801 if (Opcode == AMDGPU::V_CVT_F32_FP8_sdwa ||
4802 Opcode == AMDGPU::V_CVT_F32_BF8_sdwa ||
4803 Opcode == AMDGPU::V_CVT_PK_F32_FP8_sdwa ||
4804 Opcode == AMDGPU::V_CVT_PK_F32_BF8_sdwa) {
4805 const MachineOperand *Src0ModsMO =
4806 getNamedOperand(MI, AMDGPU::OpName::src0_modifiers);
4807 unsigned Mods = Src0ModsMO->getImm();
4808 if (Mods & SISrcMods::ABS || Mods & SISrcMods::NEG ||
4809 Mods & SISrcMods::SEXT) {
4810 ErrInfo = "sext, abs and neg are not allowed on this instruction";
4811 return false;
4812 }
4813 }
4814
4815 uint16_t BasicOpcode = AMDGPU::getBasicFromSDWAOp(Opcode);
4816 if (isVOPC(Opcode: BasicOpcode)) {
4817 if (!ST.hasSDWASdst() && DstIdx != -1) {
4818 // Only vcc allowed as dst on VI for VOPC
4819 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4820 if (!Dst.isReg() || Dst.getReg() != AMDGPU::VCC) {
4821 ErrInfo = "Only VCC allowed as dst in SDWA instructions on VI";
4822 return false;
4823 }
4824 } else if (!ST.hasSDWAOutModsVOPC()) {
4825 // No clamp allowed on GFX9 for VOPC
4826 const MachineOperand *Clamp = getNamedOperand(MI, AMDGPU::OpName::clamp);
4827 if (Clamp && (!Clamp->isImm() || Clamp->getImm() != 0)) {
4828 ErrInfo = "Clamp not allowed in VOPC SDWA instructions on VI";
4829 return false;
4830 }
4831
4832 // No omod allowed on GFX9 for VOPC
4833 const MachineOperand *OMod = getNamedOperand(MI, AMDGPU::OpName::omod);
4834 if (OMod && (!OMod->isImm() || OMod->getImm() != 0)) {
4835 ErrInfo = "OMod not allowed in VOPC SDWA instructions on VI";
4836 return false;
4837 }
4838 }
4839 }
4840
4841 const MachineOperand *DstUnused = getNamedOperand(MI, AMDGPU::OpName::dst_unused);
4842 if (DstUnused && DstUnused->isImm() &&
4843 DstUnused->getImm() == AMDGPU::SDWA::UNUSED_PRESERVE) {
4844 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4845 if (!Dst.isReg() || !Dst.isTied()) {
4846 ErrInfo = "Dst register should have tied register";
4847 return false;
4848 }
4849
4850 const MachineOperand &TiedMO =
4851 MI.getOperand(i: MI.findTiedOperandIdx(OpIdx: DstIdx));
4852 if (!TiedMO.isReg() || !TiedMO.isImplicit() || !TiedMO.isUse()) {
4853 ErrInfo =
4854 "Dst register should be tied to implicit use of preserved register";
4855 return false;
4856 } else if (TiedMO.getReg().isPhysical() &&
4857 Dst.getReg() != TiedMO.getReg()) {
4858 ErrInfo = "Dst register should use same physical register as preserved";
4859 return false;
4860 }
4861 }
4862 }
4863
4864 // Verify MIMG / VIMAGE / VSAMPLE
4865 if (isImage(Opcode: MI.getOpcode()) && !MI.mayStore()) {
4866 // Ensure that the return type used is large enough for all the options
4867 // being used TFE/LWE require an extra result register.
4868 const MachineOperand *DMask = getNamedOperand(MI, AMDGPU::OpName::dmask);
4869 if (DMask) {
4870 uint64_t DMaskImm = DMask->getImm();
4871 uint32_t RegCount =
4872 isGather4(Opcode: MI.getOpcode()) ? 4 : llvm::popcount(Value: DMaskImm);
4873 const MachineOperand *TFE = getNamedOperand(MI, AMDGPU::OpName::tfe);
4874 const MachineOperand *LWE = getNamedOperand(MI, AMDGPU::OpName::lwe);
4875 const MachineOperand *D16 = getNamedOperand(MI, AMDGPU::OpName::d16);
4876
4877 // Adjust for packed 16 bit values
4878 if (D16 && D16->getImm() && !ST.hasUnpackedD16VMem())
4879 RegCount = divideCeil(Numerator: RegCount, Denominator: 2);
4880
4881 // Adjust if using LWE or TFE
4882 if ((LWE && LWE->getImm()) || (TFE && TFE->getImm()))
4883 RegCount += 1;
4884
4885 const uint32_t DstIdx =
4886 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata);
4887 const MachineOperand &Dst = MI.getOperand(i: DstIdx);
4888 if (Dst.isReg()) {
4889 const TargetRegisterClass *DstRC = getOpRegClass(MI, OpNo: DstIdx);
4890 uint32_t DstSize = RI.getRegSizeInBits(*DstRC) / 32;
4891 if (RegCount > DstSize) {
4892 ErrInfo = "Image instruction returns too many registers for dst "
4893 "register class";
4894 return false;
4895 }
4896 }
4897 }
4898 }
4899
4900 // Verify VOP*. Ignore multiple sgpr operands on writelane.
4901 if (isVALU(MI) && Desc.getOpcode() != AMDGPU::V_WRITELANE_B32) {
4902 unsigned ConstantBusCount = 0;
4903 bool UsesLiteral = false;
4904 const MachineOperand *LiteralVal = nullptr;
4905
4906 int ImmIdx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::imm);
4907 if (ImmIdx != -1) {
4908 ++ConstantBusCount;
4909 UsesLiteral = true;
4910 LiteralVal = &MI.getOperand(i: ImmIdx);
4911 }
4912
4913 SmallVector<Register, 2> SGPRsUsed;
4914 Register SGPRUsed;
4915
4916 // Only look at the true operands. Only a real operand can use the constant
4917 // bus, and we don't want to check pseudo-operands like the source modifier
4918 // flags.
4919 for (int OpIdx : {Src0Idx, Src1Idx, Src2Idx, Src3Idx}) {
4920 if (OpIdx == -1)
4921 continue;
4922 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4923 if (usesConstantBus(MRI, MO, OpInfo: MI.getDesc().operands()[OpIdx])) {
4924 if (MO.isReg()) {
4925 SGPRUsed = MO.getReg();
4926 if (!llvm::is_contained(Range&: SGPRsUsed, Element: SGPRUsed)) {
4927 ++ConstantBusCount;
4928 SGPRsUsed.push_back(Elt: SGPRUsed);
4929 }
4930 } else {
4931 if (!UsesLiteral) {
4932 ++ConstantBusCount;
4933 UsesLiteral = true;
4934 LiteralVal = &MO;
4935 } else if (!MO.isIdenticalTo(Other: *LiteralVal)) {
4936 assert(isVOP2(MI) || isVOP3(MI));
4937 ErrInfo = "VOP2/VOP3 instruction uses more than one literal";
4938 return false;
4939 }
4940 }
4941 }
4942 }
4943
4944 SGPRUsed = findImplicitSGPRRead(MI);
4945 if (SGPRUsed) {
4946 // Implicit uses may safely overlap true operands
4947 if (llvm::all_of(Range&: SGPRsUsed, P: [this, SGPRUsed](unsigned SGPR) {
4948 return !RI.regsOverlap(SGPRUsed, SGPR);
4949 })) {
4950 ++ConstantBusCount;
4951 SGPRsUsed.push_back(Elt: SGPRUsed);
4952 }
4953 }
4954
4955 // v_writelane_b32 is an exception from constant bus restriction:
4956 // vsrc0 can be sgpr, const or m0 and lane select sgpr, m0 or inline-const
4957 if (ConstantBusCount > ST.getConstantBusLimit(Opcode) &&
4958 Opcode != AMDGPU::V_WRITELANE_B32) {
4959 ErrInfo = "VOP* instruction violates constant bus restriction";
4960 return false;
4961 }
4962
4963 if (isVOP3(MI) && UsesLiteral && !ST.hasVOP3Literal()) {
4964 ErrInfo = "VOP3 instruction uses literal";
4965 return false;
4966 }
4967 }
4968
4969 // Special case for writelane - this can break the multiple constant bus rule,
4970 // but still can't use more than one SGPR register
4971 if (Desc.getOpcode() == AMDGPU::V_WRITELANE_B32) {
4972 unsigned SGPRCount = 0;
4973 Register SGPRUsed;
4974
4975 for (int OpIdx : {Src0Idx, Src1Idx}) {
4976 if (OpIdx == -1)
4977 break;
4978
4979 const MachineOperand &MO = MI.getOperand(i: OpIdx);
4980
4981 if (usesConstantBus(MRI, MO, OpInfo: MI.getDesc().operands()[OpIdx])) {
4982 if (MO.isReg() && MO.getReg() != AMDGPU::M0) {
4983 if (MO.getReg() != SGPRUsed)
4984 ++SGPRCount;
4985 SGPRUsed = MO.getReg();
4986 }
4987 }
4988 if (SGPRCount > ST.getConstantBusLimit(Opcode)) {
4989 ErrInfo = "WRITELANE instruction violates constant bus restriction";
4990 return false;
4991 }
4992 }
4993 }
4994
4995 // Verify misc. restrictions on specific instructions.
4996 if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32_e64 ||
4997 Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64_e64) {
4998 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
4999 const MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
5000 const MachineOperand &Src2 = MI.getOperand(i: Src2Idx);
5001 if (Src0.isReg() && Src1.isReg() && Src2.isReg()) {
5002 if (!compareMachineOp(Op0: Src0, Op1: Src1) &&
5003 !compareMachineOp(Op0: Src0, Op1: Src2)) {
5004 ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2";
5005 return false;
5006 }
5007 }
5008 if ((getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm() &
5009 SISrcMods::ABS) ||
5010 (getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm() &
5011 SISrcMods::ABS) ||
5012 (getNamedOperand(MI, AMDGPU::OpName::src2_modifiers)->getImm() &
5013 SISrcMods::ABS)) {
5014 ErrInfo = "ABS not allowed in VOP3B instructions";
5015 return false;
5016 }
5017 }
5018
5019 if (isSOP2(MI) || isSOPC(MI)) {
5020 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
5021 const MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
5022
5023 if (!Src0.isReg() && !Src1.isReg() &&
5024 !isInlineConstant(MO: Src0, OpInfo: Desc.operands()[Src0Idx]) &&
5025 !isInlineConstant(MO: Src1, OpInfo: Desc.operands()[Src1Idx]) &&
5026 !Src0.isIdenticalTo(Other: Src1)) {
5027 ErrInfo = "SOP2/SOPC instruction requires too many immediate constants";
5028 return false;
5029 }
5030 }
5031
5032 if (isSOPK(MI)) {
5033 auto Op = getNamedOperand(MI, AMDGPU::OpName::simm16);
5034 if (Desc.isBranch()) {
5035 if (!Op->isMBB()) {
5036 ErrInfo = "invalid branch target for SOPK instruction";
5037 return false;
5038 }
5039 } else {
5040 uint64_t Imm = Op->getImm();
5041 if (sopkIsZext(Opcode)) {
5042 if (!isUInt<16>(x: Imm)) {
5043 ErrInfo = "invalid immediate for SOPK instruction";
5044 return false;
5045 }
5046 } else {
5047 if (!isInt<16>(x: Imm)) {
5048 ErrInfo = "invalid immediate for SOPK instruction";
5049 return false;
5050 }
5051 }
5052 }
5053 }
5054
5055 if (Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e32 ||
5056 Desc.getOpcode() == AMDGPU::V_MOVRELS_B32_e64 ||
5057 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
5058 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64) {
5059 const bool IsDst = Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e32 ||
5060 Desc.getOpcode() == AMDGPU::V_MOVRELD_B32_e64;
5061
5062 const unsigned StaticNumOps =
5063 Desc.getNumOperands() + Desc.implicit_uses().size();
5064 const unsigned NumImplicitOps = IsDst ? 2 : 1;
5065
5066 // Allow additional implicit operands. This allows a fixup done by the post
5067 // RA scheduler where the main implicit operand is killed and implicit-defs
5068 // are added for sub-registers that remain live after this instruction.
5069 if (MI.getNumOperands() < StaticNumOps + NumImplicitOps) {
5070 ErrInfo = "missing implicit register operands";
5071 return false;
5072 }
5073
5074 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
5075 if (IsDst) {
5076 if (!Dst->isUse()) {
5077 ErrInfo = "v_movreld_b32 vdst should be a use operand";
5078 return false;
5079 }
5080
5081 unsigned UseOpIdx;
5082 if (!MI.isRegTiedToUseOperand(DefOpIdx: StaticNumOps, UseOpIdx: &UseOpIdx) ||
5083 UseOpIdx != StaticNumOps + 1) {
5084 ErrInfo = "movrel implicit operands should be tied";
5085 return false;
5086 }
5087 }
5088
5089 const MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
5090 const MachineOperand &ImpUse
5091 = MI.getOperand(i: StaticNumOps + NumImplicitOps - 1);
5092 if (!ImpUse.isReg() || !ImpUse.isUse() ||
5093 !isSubRegOf(TRI: RI, SuperVec: ImpUse, SubReg: IsDst ? *Dst : Src0)) {
5094 ErrInfo = "src0 should be subreg of implicit vector use";
5095 return false;
5096 }
5097 }
5098
5099 // Make sure we aren't losing exec uses in the td files. This mostly requires
5100 // being careful when using let Uses to try to add other use registers.
5101 if (shouldReadExec(MI)) {
5102 if (!MI.hasRegisterImplicitUseOperand(AMDGPU::EXEC)) {
5103 ErrInfo = "VALU instruction does not implicitly read exec mask";
5104 return false;
5105 }
5106 }
5107
5108 if (isSMRD(MI)) {
5109 if (MI.mayStore() &&
5110 ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
5111 // The register offset form of scalar stores may only use m0 as the
5112 // soffset register.
5113 const MachineOperand *Soff = getNamedOperand(MI, AMDGPU::OpName::soffset);
5114 if (Soff && Soff->getReg() != AMDGPU::M0) {
5115 ErrInfo = "scalar stores must use m0 as offset register";
5116 return false;
5117 }
5118 }
5119 }
5120
5121 if (isFLAT(MI) && !ST.hasFlatInstOffsets()) {
5122 const MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
5123 if (Offset->getImm() != 0) {
5124 ErrInfo = "subtarget does not support offsets in flat instructions";
5125 return false;
5126 }
5127 }
5128
5129 if (isDS(MI) && !ST.hasGDS()) {
5130 const MachineOperand *GDSOp = getNamedOperand(MI, AMDGPU::OpName::gds);
5131 if (GDSOp && GDSOp->getImm() != 0) {
5132 ErrInfo = "GDS is not supported on this subtarget";
5133 return false;
5134 }
5135 }
5136
5137 if (isImage(MI)) {
5138 const MachineOperand *DimOp = getNamedOperand(MI, AMDGPU::OpName::dim);
5139 if (DimOp) {
5140 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opcode,
5141 AMDGPU::OpName::vaddr0);
5142 int RSrcOpName =
5143 isMIMG(MI) ? AMDGPU::OpName::srsrc : AMDGPU::OpName::rsrc;
5144 int RsrcIdx = AMDGPU::getNamedOperandIdx(Opcode, NamedIdx: RSrcOpName);
5145 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Opc: Opcode);
5146 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5147 AMDGPU::getMIMGBaseOpcodeInfo(BaseOpcode: Info->BaseOpcode);
5148 const AMDGPU::MIMGDimInfo *Dim =
5149 AMDGPU::getMIMGDimInfoByEncoding(DimEnc: DimOp->getImm());
5150
5151 if (!Dim) {
5152 ErrInfo = "dim is out of range";
5153 return false;
5154 }
5155
5156 bool IsA16 = false;
5157 if (ST.hasR128A16()) {
5158 const MachineOperand *R128A16 = getNamedOperand(MI, AMDGPU::OpName::r128);
5159 IsA16 = R128A16->getImm() != 0;
5160 } else if (ST.hasA16()) {
5161 const MachineOperand *A16 = getNamedOperand(MI, AMDGPU::OpName::a16);
5162 IsA16 = A16->getImm() != 0;
5163 }
5164
5165 bool IsNSA = RsrcIdx - VAddr0Idx > 1;
5166
5167 unsigned AddrWords =
5168 AMDGPU::getAddrSizeMIMGOp(BaseOpcode, Dim, IsA16, IsG16Supported: ST.hasG16());
5169
5170 unsigned VAddrWords;
5171 if (IsNSA) {
5172 VAddrWords = RsrcIdx - VAddr0Idx;
5173 if (ST.hasPartialNSAEncoding() &&
5174 AddrWords > ST.getNSAMaxSize(HasSampler: isVSAMPLE(MI))) {
5175 unsigned LastVAddrIdx = RsrcIdx - 1;
5176 VAddrWords += getOpSize(MI, OpNo: LastVAddrIdx) / 4 - 1;
5177 }
5178 } else {
5179 VAddrWords = getOpSize(MI, OpNo: VAddr0Idx) / 4;
5180 if (AddrWords > 12)
5181 AddrWords = 16;
5182 }
5183
5184 if (VAddrWords != AddrWords) {
5185 LLVM_DEBUG(dbgs() << "bad vaddr size, expected " << AddrWords
5186 << " but got " << VAddrWords << "\n");
5187 ErrInfo = "bad vaddr size";
5188 return false;
5189 }
5190 }
5191 }
5192
5193 const MachineOperand *DppCt = getNamedOperand(MI, AMDGPU::OpName::dpp_ctrl);
5194 if (DppCt) {
5195 using namespace AMDGPU::DPP;
5196
5197 unsigned DC = DppCt->getImm();
5198 if (DC == DppCtrl::DPP_UNUSED1 || DC == DppCtrl::DPP_UNUSED2 ||
5199 DC == DppCtrl::DPP_UNUSED3 || DC > DppCtrl::DPP_LAST ||
5200 (DC >= DppCtrl::DPP_UNUSED4_FIRST && DC <= DppCtrl::DPP_UNUSED4_LAST) ||
5201 (DC >= DppCtrl::DPP_UNUSED5_FIRST && DC <= DppCtrl::DPP_UNUSED5_LAST) ||
5202 (DC >= DppCtrl::DPP_UNUSED6_FIRST && DC <= DppCtrl::DPP_UNUSED6_LAST) ||
5203 (DC >= DppCtrl::DPP_UNUSED7_FIRST && DC <= DppCtrl::DPP_UNUSED7_LAST) ||
5204 (DC >= DppCtrl::DPP_UNUSED8_FIRST && DC <= DppCtrl::DPP_UNUSED8_LAST)) {
5205 ErrInfo = "Invalid dpp_ctrl value";
5206 return false;
5207 }
5208 if (DC >= DppCtrl::WAVE_SHL1 && DC <= DppCtrl::WAVE_ROR1 &&
5209 ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
5210 ErrInfo = "Invalid dpp_ctrl value: "
5211 "wavefront shifts are not supported on GFX10+";
5212 return false;
5213 }
5214 if (DC >= DppCtrl::BCAST15 && DC <= DppCtrl::BCAST31 &&
5215 ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
5216 ErrInfo = "Invalid dpp_ctrl value: "
5217 "broadcasts are not supported on GFX10+";
5218 return false;
5219 }
5220 if (DC >= DppCtrl::ROW_SHARE_FIRST && DC <= DppCtrl::ROW_XMASK_LAST &&
5221 ST.getGeneration() < AMDGPUSubtarget::GFX10) {
5222 if (DC >= DppCtrl::ROW_NEWBCAST_FIRST &&
5223 DC <= DppCtrl::ROW_NEWBCAST_LAST &&
5224 !ST.hasGFX90AInsts()) {
5225 ErrInfo = "Invalid dpp_ctrl value: "
5226 "row_newbroadcast/row_share is not supported before "
5227 "GFX90A/GFX10";
5228 return false;
5229 } else if (DC > DppCtrl::ROW_NEWBCAST_LAST || !ST.hasGFX90AInsts()) {
5230 ErrInfo = "Invalid dpp_ctrl value: "
5231 "row_share and row_xmask are not supported before GFX10";
5232 return false;
5233 }
5234 }
5235
5236 if (Opcode != AMDGPU::V_MOV_B64_DPP_PSEUDO &&
5237 !AMDGPU::isLegalDPALU_DPPControl(DC) && AMDGPU::isDPALU_DPP(Desc)) {
5238 ErrInfo = "Invalid dpp_ctrl value: "
5239 "DP ALU dpp only support row_newbcast";
5240 return false;
5241 }
5242 }
5243
5244 if ((MI.mayStore() || MI.mayLoad()) && !isVGPRSpill(MI)) {
5245 const MachineOperand *Dst = getNamedOperand(MI, AMDGPU::OpName::vdst);
5246 uint16_t DataNameIdx = isDS(Opcode) ? AMDGPU::OpName::data0
5247 : AMDGPU::OpName::vdata;
5248 const MachineOperand *Data = getNamedOperand(MI, OpName: DataNameIdx);
5249 const MachineOperand *Data2 = getNamedOperand(MI, AMDGPU::OpName::data1);
5250 if (Data && !Data->isReg())
5251 Data = nullptr;
5252
5253 if (ST.hasGFX90AInsts()) {
5254 if (Dst && Data &&
5255 (RI.isAGPR(MRI, Dst->getReg()) != RI.isAGPR(MRI, Data->getReg()))) {
5256 ErrInfo = "Invalid register class: "
5257 "vdata and vdst should be both VGPR or AGPR";
5258 return false;
5259 }
5260 if (Data && Data2 &&
5261 (RI.isAGPR(MRI, Data->getReg()) != RI.isAGPR(MRI, Data2->getReg()))) {
5262 ErrInfo = "Invalid register class: "
5263 "both data operands should be VGPR or AGPR";
5264 return false;
5265 }
5266 } else {
5267 if ((Dst && RI.isAGPR(MRI, Dst->getReg())) ||
5268 (Data && RI.isAGPR(MRI, Data->getReg())) ||
5269 (Data2 && RI.isAGPR(MRI, Data2->getReg()))) {
5270 ErrInfo = "Invalid register class: "
5271 "agpr loads and stores not supported on this GPU";
5272 return false;
5273 }
5274 }
5275 }
5276
5277 if (ST.needsAlignedVGPRs()) {
5278 const auto isAlignedReg = [&MI, &MRI, this](unsigned OpName) -> bool {
5279 const MachineOperand *Op = getNamedOperand(MI, OpName);
5280 if (!Op)
5281 return true;
5282 Register Reg = Op->getReg();
5283 if (Reg.isPhysical())
5284 return !(RI.getHWRegIndex(Reg) & 1);
5285 const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
5286 return RI.getRegSizeInBits(RC) > 32 && RI.isProperlyAlignedRC(RC) &&
5287 !(RI.getChannelFromSubReg(SubReg: Op->getSubReg()) & 1);
5288 };
5289
5290 if (MI.getOpcode() == AMDGPU::DS_GWS_INIT ||
5291 MI.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
5292 MI.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
5293
5294 if (!isAlignedReg(AMDGPU::OpName::data0)) {
5295 ErrInfo = "Subtarget requires even aligned vector registers "
5296 "for DS_GWS instructions";
5297 return false;
5298 }
5299 }
5300
5301 if (isMIMG(MI)) {
5302 if (!isAlignedReg(AMDGPU::OpName::vaddr)) {
5303 ErrInfo = "Subtarget requires even aligned vector registers "
5304 "for vaddr operand of image instructions";
5305 return false;
5306 }
5307 }
5308 }
5309
5310 if (MI.getOpcode() == AMDGPU::V_ACCVGPR_WRITE_B32_e64 &&
5311 !ST.hasGFX90AInsts()) {
5312 const MachineOperand *Src = getNamedOperand(MI, AMDGPU::OpName::src0);
5313 if (Src->isReg() && RI.isSGPRReg(MRI, Src->getReg())) {
5314 ErrInfo = "Invalid register class: "
5315 "v_accvgpr_write with an SGPR is not supported on this GPU";
5316 return false;
5317 }
5318 }
5319
5320 if (Desc.getOpcode() == AMDGPU::G_AMDGPU_WAVE_ADDRESS) {
5321 const MachineOperand &SrcOp = MI.getOperand(i: 1);
5322 if (!SrcOp.isReg() || SrcOp.getReg().isVirtual()) {
5323 ErrInfo = "pseudo expects only physical SGPRs";
5324 return false;
5325 }
5326 }
5327
5328 return true;
5329}
5330
5331// It is more readable to list mapped opcodes on the same line.
5332// clang-format off
5333
5334unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) const {
5335 switch (MI.getOpcode()) {
5336 default: return AMDGPU::INSTRUCTION_LIST_END;
5337 case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE;
5338 case AMDGPU::COPY: return AMDGPU::COPY;
5339 case AMDGPU::PHI: return AMDGPU::PHI;
5340 case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG;
5341 case AMDGPU::WQM: return AMDGPU::WQM;
5342 case AMDGPU::SOFT_WQM: return AMDGPU::SOFT_WQM;
5343 case AMDGPU::STRICT_WWM: return AMDGPU::STRICT_WWM;
5344 case AMDGPU::STRICT_WQM: return AMDGPU::STRICT_WQM;
5345 case AMDGPU::S_MOV_B32: {
5346 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5347 return MI.getOperand(1).isReg() ||
5348 RI.isAGPR(MRI, MI.getOperand(0).getReg()) ?
5349 AMDGPU::COPY : AMDGPU::V_MOV_B32_e32;
5350 }
5351 case AMDGPU::S_ADD_I32:
5352 return ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
5353 case AMDGPU::S_ADDC_U32:
5354 return AMDGPU::V_ADDC_U32_e32;
5355 case AMDGPU::S_SUB_I32:
5356 return ST.hasAddNoCarry() ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_SUB_CO_U32_e32;
5357 // FIXME: These are not consistently handled, and selected when the carry is
5358 // used.
5359 case AMDGPU::S_ADD_U32:
5360 return AMDGPU::V_ADD_CO_U32_e32;
5361 case AMDGPU::S_SUB_U32:
5362 return AMDGPU::V_SUB_CO_U32_e32;
5363 case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32;
5364 case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_U32_e64;
5365 case AMDGPU::S_MUL_HI_U32: return AMDGPU::V_MUL_HI_U32_e64;
5366 case AMDGPU::S_MUL_HI_I32: return AMDGPU::V_MUL_HI_I32_e64;
5367 case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e64;
5368 case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e64;
5369 case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e64;
5370 case AMDGPU::S_XNOR_B32:
5371 return ST.hasDLInsts() ? AMDGPU::V_XNOR_B32_e64 : AMDGPU::INSTRUCTION_LIST_END;
5372 case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e64;
5373 case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e64;
5374 case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e64;
5375 case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e64;
5376 case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32;
5377 case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64_e64;
5378 case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32;
5379 case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64_e64;
5380 case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32;
5381 case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64_e64;
5382 case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32_e64;
5383 case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32_e64;
5384 case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32_e64;
5385 case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32_e64;
5386 case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64;
5387 case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32;
5388 case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32;
5389 case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32;
5390 case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e64;
5391 case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e64;
5392 case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e64;
5393 case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e64;
5394 case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e64;
5395 case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e64;
5396 case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e64;
5397 case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e64;
5398 case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e64;
5399 case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e64;
5400 case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e64;
5401 case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e64;
5402 case AMDGPU::S_CMP_EQ_U64: return AMDGPU::V_CMP_EQ_U64_e64;
5403 case AMDGPU::S_CMP_LG_U64: return AMDGPU::V_CMP_NE_U64_e64;
5404 case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64;
5405 case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32;
5406 case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32;
5407 case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64;
5408 case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ;
5409 case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ;
5410 case AMDGPU::S_CVT_F32_I32: return AMDGPU::V_CVT_F32_I32_e64;
5411 case AMDGPU::S_CVT_F32_U32: return AMDGPU::V_CVT_F32_U32_e64;
5412 case AMDGPU::S_CVT_I32_F32: return AMDGPU::V_CVT_I32_F32_e64;
5413 case AMDGPU::S_CVT_U32_F32: return AMDGPU::V_CVT_U32_F32_e64;
5414 case AMDGPU::S_CVT_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64;
5415 case AMDGPU::S_CVT_HI_F32_F16: return AMDGPU::V_CVT_F32_F16_t16_e64;
5416 case AMDGPU::S_CVT_F16_F32: return AMDGPU::V_CVT_F16_F32_t16_e64;
5417 case AMDGPU::S_CEIL_F32: return AMDGPU::V_CEIL_F32_e64;
5418 case AMDGPU::S_FLOOR_F32: return AMDGPU::V_FLOOR_F32_e64;
5419 case AMDGPU::S_TRUNC_F32: return AMDGPU::V_TRUNC_F32_e64;
5420 case AMDGPU::S_RNDNE_F32: return AMDGPU::V_RNDNE_F32_e64;
5421 case AMDGPU::S_CEIL_F16:
5422 return ST.useRealTrue16Insts() ? AMDGPU::V_CEIL_F16_t16_e64
5423 : AMDGPU::V_CEIL_F16_fake16_e64;
5424 case AMDGPU::S_FLOOR_F16:
5425 return ST.useRealTrue16Insts() ? AMDGPU::V_FLOOR_F16_t16_e64
5426 : AMDGPU::V_FLOOR_F16_fake16_e64;
5427 case AMDGPU::S_TRUNC_F16:
5428 return AMDGPU::V_TRUNC_F16_fake16_e64;
5429 case AMDGPU::S_RNDNE_F16:
5430 return AMDGPU::V_RNDNE_F16_fake16_e64;
5431 case AMDGPU::S_ADD_F32: return AMDGPU::V_ADD_F32_e64;
5432 case AMDGPU::S_SUB_F32: return AMDGPU::V_SUB_F32_e64;
5433 case AMDGPU::S_MIN_F32: return AMDGPU::V_MIN_F32_e64;
5434 case AMDGPU::S_MAX_F32: return AMDGPU::V_MAX_F32_e64;
5435 case AMDGPU::S_MINIMUM_F32: return AMDGPU::V_MINIMUM_F32_e64;
5436 case AMDGPU::S_MAXIMUM_F32: return AMDGPU::V_MAXIMUM_F32_e64;
5437 case AMDGPU::S_MUL_F32: return AMDGPU::V_MUL_F32_e64;
5438 case AMDGPU::S_ADD_F16: return AMDGPU::V_ADD_F16_fake16_e64;
5439 case AMDGPU::S_SUB_F16: return AMDGPU::V_SUB_F16_fake16_e64;
5440 case AMDGPU::S_MIN_F16: return AMDGPU::V_MIN_F16_fake16_e64;
5441 case AMDGPU::S_MAX_F16: return AMDGPU::V_MAX_F16_fake16_e64;
5442 case AMDGPU::S_MINIMUM_F16: return AMDGPU::V_MINIMUM_F16_e64;
5443 case AMDGPU::S_MAXIMUM_F16: return AMDGPU::V_MAXIMUM_F16_e64;
5444 case AMDGPU::S_MUL_F16: return AMDGPU::V_MUL_F16_fake16_e64;
5445 case AMDGPU::S_CVT_PK_RTZ_F16_F32: return AMDGPU::V_CVT_PKRTZ_F16_F32_e64;
5446 case AMDGPU::S_FMAC_F32: return AMDGPU::V_FMAC_F32_e64;
5447 case AMDGPU::S_FMAC_F16: return AMDGPU::V_FMAC_F16_t16_e64;
5448 case AMDGPU::S_FMAMK_F32: return AMDGPU::V_FMAMK_F32;
5449 case AMDGPU::S_FMAAK_F32: return AMDGPU::V_FMAAK_F32;
5450 case AMDGPU::S_CMP_LT_F32: return AMDGPU::V_CMP_LT_F32_e64;
5451 case AMDGPU::S_CMP_EQ_F32: return AMDGPU::V_CMP_EQ_F32_e64;
5452 case AMDGPU::S_CMP_LE_F32: return AMDGPU::V_CMP_LE_F32_e64;
5453 case AMDGPU::S_CMP_GT_F32: return AMDGPU::V_CMP_GT_F32_e64;
5454 case AMDGPU::S_CMP_LG_F32: return AMDGPU::V_CMP_LG_F32_e64;
5455 case AMDGPU::S_CMP_GE_F32: return AMDGPU::V_CMP_GE_F32_e64;
5456 case AMDGPU::S_CMP_O_F32: return AMDGPU::V_CMP_O_F32_e64;
5457 case AMDGPU::S_CMP_U_F32: return AMDGPU::V_CMP_U_F32_e64;
5458 case AMDGPU::S_CMP_NGE_F32: return AMDGPU::V_CMP_NGE_F32_e64;
5459 case AMDGPU::S_CMP_NLG_F32: return AMDGPU::V_CMP_NLG_F32_e64;
5460 case AMDGPU::S_CMP_NGT_F32: return AMDGPU::V_CMP_NGT_F32_e64;
5461 case AMDGPU::S_CMP_NLE_F32: return AMDGPU::V_CMP_NLE_F32_e64;
5462 case AMDGPU::S_CMP_NEQ_F32: return AMDGPU::V_CMP_NEQ_F32_e64;
5463 case AMDGPU::S_CMP_NLT_F32: return AMDGPU::V_CMP_NLT_F32_e64;
5464 case AMDGPU::S_CMP_LT_F16: return AMDGPU::V_CMP_LT_F16_t16_e64;
5465 case AMDGPU::S_CMP_EQ_F16: return AMDGPU::V_CMP_EQ_F16_t16_e64;
5466 case AMDGPU::S_CMP_LE_F16: return AMDGPU::V_CMP_LE_F16_t16_e64;
5467 case AMDGPU::S_CMP_GT_F16: return AMDGPU::V_CMP_GT_F16_t16_e64;
5468 case AMDGPU::S_CMP_LG_F16: return AMDGPU::V_CMP_LG_F16_t16_e64;
5469 case AMDGPU::S_CMP_GE_F16: return AMDGPU::V_CMP_GE_F16_t16_e64;
5470 case AMDGPU::S_CMP_O_F16: return AMDGPU::V_CMP_O_F16_t16_e64;
5471 case AMDGPU::S_CMP_U_F16: return AMDGPU::V_CMP_U_F16_t16_e64;
5472 case AMDGPU::S_CMP_NGE_F16: return AMDGPU::V_CMP_NGE_F16_t16_e64;
5473 case AMDGPU::S_CMP_NLG_F16: return AMDGPU::V_CMP_NLG_F16_t16_e64;
5474 case AMDGPU::S_CMP_NGT_F16: return AMDGPU::V_CMP_NGT_F16_t16_e64;
5475 case AMDGPU::S_CMP_NLE_F16: return AMDGPU::V_CMP_NLE_F16_t16_e64;
5476 case AMDGPU::S_CMP_NEQ_F16: return AMDGPU::V_CMP_NEQ_F16_t16_e64;
5477 case AMDGPU::S_CMP_NLT_F16: return AMDGPU::V_CMP_NLT_F16_t16_e64;
5478 case AMDGPU::V_S_EXP_F32_e64: return AMDGPU::V_EXP_F32_e64;
5479 case AMDGPU::V_S_EXP_F16_e64: return AMDGPU::V_EXP_F16_fake16_e64;
5480 case AMDGPU::V_S_LOG_F32_e64: return AMDGPU::V_LOG_F32_e64;
5481 case AMDGPU::V_S_LOG_F16_e64: return AMDGPU::V_LOG_F16_fake16_e64;
5482 case AMDGPU::V_S_RCP_F32_e64: return AMDGPU::V_RCP_F32_e64;
5483 case AMDGPU::V_S_RCP_F16_e64: return AMDGPU::V_RCP_F16_fake16_e64;
5484 case AMDGPU::V_S_RSQ_F32_e64: return AMDGPU::V_RSQ_F32_e64;
5485 case AMDGPU::V_S_RSQ_F16_e64: return AMDGPU::V_RSQ_F16_fake16_e64;
5486 case AMDGPU::V_S_SQRT_F32_e64: return AMDGPU::V_SQRT_F32_e64;
5487 case AMDGPU::V_S_SQRT_F16_e64: return AMDGPU::V_SQRT_F16_fake16_e64;
5488 }
5489 llvm_unreachable(
5490 "Unexpected scalar opcode without corresponding vector one!");
5491}
5492
5493// clang-format on
5494
5495void SIInstrInfo::insertScratchExecCopy(MachineFunction &MF,
5496 MachineBasicBlock &MBB,
5497 MachineBasicBlock::iterator MBBI,
5498 const DebugLoc &DL, Register Reg,
5499 bool IsSCCLive,
5500 SlotIndexes *Indexes) const {
5501 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
5502 const SIInstrInfo *TII = ST.getInstrInfo();
5503 bool IsWave32 = ST.isWave32();
5504 if (IsSCCLive) {
5505 // Insert two move instructions, one to save the original value of EXEC and
5506 // the other to turn on all bits in EXEC. This is required as we can't use
5507 // the single instruction S_OR_SAVEEXEC that clobbers SCC.
5508 unsigned MovOpc = IsWave32 ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5509 MCRegister Exec = IsWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5510 auto StoreExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Reg)
5511 .addReg(Exec, RegState::Kill);
5512 auto FlipExecMI = BuildMI(MBB, MBBI, DL, TII->get(MovOpc), Exec).addImm(-1);
5513 if (Indexes) {
5514 Indexes->insertMachineInstrInMaps(MI&: *StoreExecMI);
5515 Indexes->insertMachineInstrInMaps(MI&: *FlipExecMI);
5516 }
5517 } else {
5518 const unsigned OrSaveExec =
5519 IsWave32 ? AMDGPU::S_OR_SAVEEXEC_B32 : AMDGPU::S_OR_SAVEEXEC_B64;
5520 auto SaveExec =
5521 BuildMI(MBB, MBBI, DL, TII->get(OrSaveExec), Reg).addImm(-1);
5522 SaveExec->getOperand(3).setIsDead(); // Mark SCC as dead.
5523 if (Indexes)
5524 Indexes->insertMachineInstrInMaps(MI&: *SaveExec);
5525 }
5526}
5527
5528void SIInstrInfo::restoreExec(MachineFunction &MF, MachineBasicBlock &MBB,
5529 MachineBasicBlock::iterator MBBI,
5530 const DebugLoc &DL, Register Reg,
5531 SlotIndexes *Indexes) const {
5532 unsigned ExecMov = isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
5533 MCRegister Exec = isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
5534 auto ExecRestoreMI =
5535 BuildMI(MBB, MBBI, DL, get(ExecMov), Exec).addReg(Reg, RegState::Kill);
5536 if (Indexes)
5537 Indexes->insertMachineInstrInMaps(MI&: *ExecRestoreMI);
5538}
5539
5540static const TargetRegisterClass *
5541adjustAllocatableRegClass(const GCNSubtarget &ST, const SIRegisterInfo &RI,
5542 const MachineRegisterInfo &MRI,
5543 const MCInstrDesc &TID, unsigned RCID,
5544 bool IsAllocatable) {
5545 if ((IsAllocatable || !ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
5546 (((TID.mayLoad() || TID.mayStore()) &&
5547 !(TID.TSFlags & SIInstrFlags::Spill)) ||
5548 (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::MIMG)))) {
5549 switch (RCID) {
5550 case AMDGPU::AV_32RegClassID:
5551 RCID = AMDGPU::VGPR_32RegClassID;
5552 break;
5553 case AMDGPU::AV_64RegClassID:
5554 RCID = AMDGPU::VReg_64RegClassID;
5555 break;
5556 case AMDGPU::AV_96RegClassID:
5557 RCID = AMDGPU::VReg_96RegClassID;
5558 break;
5559 case AMDGPU::AV_128RegClassID:
5560 RCID = AMDGPU::VReg_128RegClassID;
5561 break;
5562 case AMDGPU::AV_160RegClassID:
5563 RCID = AMDGPU::VReg_160RegClassID;
5564 break;
5565 case AMDGPU::AV_512RegClassID:
5566 RCID = AMDGPU::VReg_512RegClassID;
5567 break;
5568 default:
5569 break;
5570 }
5571 }
5572
5573 return RI.getProperlyAlignedRC(RI.getRegClass(RCID));
5574}
5575
5576const TargetRegisterClass *SIInstrInfo::getRegClass(const MCInstrDesc &TID,
5577 unsigned OpNum, const TargetRegisterInfo *TRI,
5578 const MachineFunction &MF)
5579 const {
5580 if (OpNum >= TID.getNumOperands())
5581 return nullptr;
5582 auto RegClass = TID.operands()[OpNum].RegClass;
5583 bool IsAllocatable = false;
5584 if (TID.TSFlags & (SIInstrFlags::DS | SIInstrFlags::FLAT)) {
5585 // vdst and vdata should be both VGPR or AGPR, same for the DS instructions
5586 // with two data operands. Request register class constrained to VGPR only
5587 // of both operands present as Machine Copy Propagation can not check this
5588 // constraint and possibly other passes too.
5589 //
5590 // The check is limited to FLAT and DS because atomics in non-flat encoding
5591 // have their vdst and vdata tied to be the same register.
5592 const int VDstIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
5593 AMDGPU::OpName::vdst);
5594 const int DataIdx = AMDGPU::getNamedOperandIdx(TID.Opcode,
5595 (TID.TSFlags & SIInstrFlags::DS) ? AMDGPU::OpName::data0
5596 : AMDGPU::OpName::vdata);
5597 if (DataIdx != -1) {
5598 IsAllocatable = VDstIdx != -1 || AMDGPU::hasNamedOperand(
5599 TID.Opcode, AMDGPU::OpName::data1);
5600 }
5601 }
5602 return adjustAllocatableRegClass(ST, RI, MRI: MF.getRegInfo(), TID, RCID: RegClass,
5603 IsAllocatable);
5604}
5605
5606const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI,
5607 unsigned OpNo) const {
5608 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
5609 const MCInstrDesc &Desc = get(MI.getOpcode());
5610 if (MI.isVariadic() || OpNo >= Desc.getNumOperands() ||
5611 Desc.operands()[OpNo].RegClass == -1) {
5612 Register Reg = MI.getOperand(i: OpNo).getReg();
5613
5614 if (Reg.isVirtual())
5615 return MRI.getRegClass(Reg);
5616 return RI.getPhysRegBaseClass(Reg);
5617 }
5618
5619 unsigned RCID = Desc.operands()[OpNo].RegClass;
5620 return adjustAllocatableRegClass(ST, RI, MRI, TID: Desc, RCID, IsAllocatable: true);
5621}
5622
5623void SIInstrInfo::legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const {
5624 MachineBasicBlock::iterator I = MI;
5625 MachineBasicBlock *MBB = MI.getParent();
5626 MachineOperand &MO = MI.getOperand(i: OpIdx);
5627 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
5628 unsigned RCID = get(MI.getOpcode()).operands()[OpIdx].RegClass;
5629 const TargetRegisterClass *RC = RI.getRegClass(RCID);
5630 unsigned Size = RI.getRegSizeInBits(*RC);
5631 unsigned Opcode = (Size == 64) ? AMDGPU::V_MOV_B64_PSEUDO : AMDGPU::V_MOV_B32_e32;
5632 if (MO.isReg())
5633 Opcode = AMDGPU::COPY;
5634 else if (RI.isSGPRClass(RC))
5635 Opcode = (Size == 64) ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32;
5636
5637 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC);
5638 Register Reg = MRI.createVirtualRegister(RegClass: VRC);
5639 DebugLoc DL = MBB->findDebugLoc(MBBI: I);
5640 BuildMI(*MI.getParent(), I, DL, get(Opcode), Reg).add(MO);
5641 MO.ChangeToRegister(Reg, isDef: false);
5642}
5643
5644unsigned SIInstrInfo::buildExtractSubReg(
5645 MachineBasicBlock::iterator MI, MachineRegisterInfo &MRI,
5646 const MachineOperand &SuperReg, const TargetRegisterClass *SuperRC,
5647 unsigned SubIdx, const TargetRegisterClass *SubRC) const {
5648 MachineBasicBlock *MBB = MI->getParent();
5649 DebugLoc DL = MI->getDebugLoc();
5650 Register SubReg = MRI.createVirtualRegister(RegClass: SubRC);
5651
5652 if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) {
5653 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
5654 .addReg(SuperReg.getReg(), 0, SubIdx);
5655 return SubReg;
5656 }
5657
5658 // Just in case the super register is itself a sub-register, copy it to a new
5659 // value so we don't need to worry about merging its subreg index with the
5660 // SubIdx passed to this function. The register coalescer should be able to
5661 // eliminate this extra copy.
5662 Register NewSuperReg = MRI.createVirtualRegister(RegClass: SuperRC);
5663
5664 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg)
5665 .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg());
5666
5667 BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg)
5668 .addReg(NewSuperReg, 0, SubIdx);
5669
5670 return SubReg;
5671}
5672
5673MachineOperand SIInstrInfo::buildExtractSubRegOrImm(
5674 MachineBasicBlock::iterator MII, MachineRegisterInfo &MRI,
5675 const MachineOperand &Op, const TargetRegisterClass *SuperRC,
5676 unsigned SubIdx, const TargetRegisterClass *SubRC) const {
5677 if (Op.isImm()) {
5678 if (SubIdx == AMDGPU::sub0)
5679 return MachineOperand::CreateImm(Val: static_cast<int32_t>(Op.getImm()));
5680 if (SubIdx == AMDGPU::sub1)
5681 return MachineOperand::CreateImm(Val: static_cast<int32_t>(Op.getImm() >> 32));
5682
5683 llvm_unreachable("Unhandled register index for immediate");
5684 }
5685
5686 unsigned SubReg = buildExtractSubReg(MI: MII, MRI, SuperReg: Op, SuperRC,
5687 SubIdx, SubRC);
5688 return MachineOperand::CreateReg(Reg: SubReg, isDef: false);
5689}
5690
5691// Change the order of operands from (0, 1, 2) to (0, 2, 1)
5692void SIInstrInfo::swapOperands(MachineInstr &Inst) const {
5693 assert(Inst.getNumExplicitOperands() == 3);
5694 MachineOperand Op1 = Inst.getOperand(i: 1);
5695 Inst.removeOperand(OpNo: 1);
5696 Inst.addOperand(Op: Op1);
5697}
5698
5699bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI,
5700 const MCOperandInfo &OpInfo,
5701 const MachineOperand &MO) const {
5702 if (!MO.isReg())
5703 return false;
5704
5705 Register Reg = MO.getReg();
5706
5707 const TargetRegisterClass *DRC = RI.getRegClass(OpInfo.RegClass);
5708 if (Reg.isPhysical())
5709 return DRC->contains(Reg);
5710
5711 const TargetRegisterClass *RC = MRI.getRegClass(Reg);
5712
5713 if (MO.getSubReg()) {
5714 const MachineFunction *MF = MO.getParent()->getParent()->getParent();
5715 const TargetRegisterClass *SuperRC = RI.getLargestLegalSuperClass(RC, *MF);
5716 if (!SuperRC)
5717 return false;
5718
5719 DRC = RI.getMatchingSuperRegClass(SuperRC, DRC, MO.getSubReg());
5720 if (!DRC)
5721 return false;
5722 }
5723 return RC->hasSuperClassEq(RC: DRC);
5724}
5725
5726bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI,
5727 const MCOperandInfo &OpInfo,
5728 const MachineOperand &MO) const {
5729 if (MO.isReg())
5730 return isLegalRegOperand(MRI, OpInfo, MO);
5731
5732 // Handle non-register types that are treated like immediates.
5733 assert(MO.isImm() || MO.isTargetIndex() || MO.isFI() || MO.isGlobal());
5734 return true;
5735}
5736
5737bool SIInstrInfo::isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
5738 const MachineOperand *MO) const {
5739 const MachineFunction &MF = *MI.getParent()->getParent();
5740 const MachineRegisterInfo &MRI = MF.getRegInfo();
5741 const MCInstrDesc &InstDesc = MI.getDesc();
5742 const MCOperandInfo &OpInfo = InstDesc.operands()[OpIdx];
5743 const TargetRegisterClass *DefinedRC =
5744 OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr;
5745 if (!MO)
5746 MO = &MI.getOperand(i: OpIdx);
5747
5748 int ConstantBusLimit = ST.getConstantBusLimit(Opcode: MI.getOpcode());
5749 int LiteralLimit = !isVOP3(MI) || ST.hasVOP3Literal() ? 1 : 0;
5750 if (isVALU(MI) && usesConstantBus(MRI, MO: *MO, OpInfo)) {
5751 if (!MO->isReg() && !isInlineConstant(MO: *MO, OpInfo) && !LiteralLimit--)
5752 return false;
5753
5754 SmallDenseSet<RegSubRegPair> SGPRsUsed;
5755 if (MO->isReg())
5756 SGPRsUsed.insert(RegSubRegPair(MO->getReg(), MO->getSubReg()));
5757
5758 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
5759 if (i == OpIdx)
5760 continue;
5761 const MachineOperand &Op = MI.getOperand(i);
5762 if (Op.isReg()) {
5763 RegSubRegPair SGPR(Op.getReg(), Op.getSubReg());
5764 if (!SGPRsUsed.count(SGPR) &&
5765 // FIXME: This can access off the end of the operands() array.
5766 usesConstantBus(MRI, MO: Op, OpInfo: InstDesc.operands().begin()[i])) {
5767 if (--ConstantBusLimit <= 0)
5768 return false;
5769 SGPRsUsed.insert(SGPR);
5770 }
5771 } else if (AMDGPU::isSISrcOperand(Desc: InstDesc, OpNo: i) &&
5772 !isInlineConstant(MO: Op, OpInfo: InstDesc.operands()[i])) {
5773 if (!LiteralLimit--)
5774 return false;
5775 if (--ConstantBusLimit <= 0)
5776 return false;
5777 }
5778 }
5779 }
5780
5781 if (MO->isReg()) {
5782 if (!DefinedRC)
5783 return OpInfo.OperandType == MCOI::OPERAND_UNKNOWN;
5784 if (!isLegalRegOperand(MRI, OpInfo, MO: *MO))
5785 return false;
5786 bool IsAGPR = RI.isAGPR(MRI, MO->getReg());
5787 if (IsAGPR && !ST.hasMAIInsts())
5788 return false;
5789 unsigned Opc = MI.getOpcode();
5790 if (IsAGPR &&
5791 (!ST.hasGFX90AInsts() || !MRI.reservedRegsFrozen()) &&
5792 (MI.mayLoad() || MI.mayStore() || isDS(Opcode: Opc) || isMIMG(Opcode: Opc)))
5793 return false;
5794 // Atomics should have both vdst and vdata either vgpr or agpr.
5795 const int VDstIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst);
5796 const int DataIdx = AMDGPU::getNamedOperandIdx(Opc,
5797 isDS(Opc) ? AMDGPU::OpName::data0 : AMDGPU::OpName::vdata);
5798 if ((int)OpIdx == VDstIdx && DataIdx != -1 &&
5799 MI.getOperand(i: DataIdx).isReg() &&
5800 RI.isAGPR(MRI, MI.getOperand(i: DataIdx).getReg()) != IsAGPR)
5801 return false;
5802 if ((int)OpIdx == DataIdx) {
5803 if (VDstIdx != -1 &&
5804 RI.isAGPR(MRI, MI.getOperand(i: VDstIdx).getReg()) != IsAGPR)
5805 return false;
5806 // DS instructions with 2 src operands also must have tied RC.
5807 const int Data1Idx = AMDGPU::getNamedOperandIdx(Opc,
5808 AMDGPU::OpName::data1);
5809 if (Data1Idx != -1 && MI.getOperand(i: Data1Idx).isReg() &&
5810 RI.isAGPR(MRI, MI.getOperand(i: Data1Idx).getReg()) != IsAGPR)
5811 return false;
5812 }
5813 if (Opc == AMDGPU::V_ACCVGPR_WRITE_B32_e64 && !ST.hasGFX90AInsts() &&
5814 (int)OpIdx == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0) &&
5815 RI.isSGPRReg(MRI, MO->getReg()))
5816 return false;
5817 return true;
5818 }
5819
5820 if (MO->isImm()) {
5821 uint64_t Imm = MO->getImm();
5822 bool Is64BitFPOp = OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_FP64;
5823 bool Is64BitOp = Is64BitFPOp ||
5824 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_INT64 ||
5825 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2INT32 ||
5826 OpInfo.OperandType == AMDGPU::OPERAND_REG_IMM_V2FP32;
5827 if (Is64BitOp &&
5828 !AMDGPU::isInlinableLiteral64(Literal: Imm, HasInv2Pi: ST.hasInv2PiInlineImm())) {
5829 if (!AMDGPU::isValid32BitLiteral(Val: Imm, IsFP64: Is64BitFPOp))
5830 return false;
5831
5832 // FIXME: We can use sign extended 64-bit literals, but only for signed
5833 // operands. At the moment we do not know if an operand is signed.
5834 // Such operand will be encoded as its low 32 bits and then either
5835 // correctly sign extended or incorrectly zero extended by HW.
5836 if (!Is64BitFPOp && (int32_t)Imm < 0)
5837 return false;
5838 }
5839 }
5840
5841 // Handle non-register types that are treated like immediates.
5842 assert(MO->isImm() || MO->isTargetIndex() || MO->isFI() || MO->isGlobal());
5843
5844 if (!DefinedRC) {
5845 // This operand expects an immediate.
5846 return true;
5847 }
5848
5849 return isImmOperandLegal(MI, OpNo: OpIdx, MO: *MO);
5850}
5851
5852void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI,
5853 MachineInstr &MI) const {
5854 unsigned Opc = MI.getOpcode();
5855 const MCInstrDesc &InstrDesc = get(Opc);
5856
5857 int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
5858 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
5859
5860 int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
5861 MachineOperand &Src1 = MI.getOperand(i: Src1Idx);
5862
5863 // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32
5864 // we need to only have one constant bus use before GFX10.
5865 bool HasImplicitSGPR = findImplicitSGPRRead(MI);
5866 if (HasImplicitSGPR && ST.getConstantBusLimit(Opcode: Opc) <= 1 && Src0.isReg() &&
5867 RI.isSGPRReg(MRI, Src0.getReg()))
5868 legalizeOpWithMove(MI, OpIdx: Src0Idx);
5869
5870 // Special case: V_WRITELANE_B32 accepts only immediate or SGPR operands for
5871 // both the value to write (src0) and lane select (src1). Fix up non-SGPR
5872 // src0/src1 with V_READFIRSTLANE.
5873 if (Opc == AMDGPU::V_WRITELANE_B32) {
5874 const DebugLoc &DL = MI.getDebugLoc();
5875 if (Src0.isReg() && RI.isVGPR(MRI, Src0.getReg())) {
5876 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5877 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5878 .add(Src0);
5879 Src0.ChangeToRegister(Reg, isDef: false);
5880 }
5881 if (Src1.isReg() && RI.isVGPR(MRI, Src1.getReg())) {
5882 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5883 const DebugLoc &DL = MI.getDebugLoc();
5884 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5885 .add(Src1);
5886 Src1.ChangeToRegister(Reg, isDef: false);
5887 }
5888 return;
5889 }
5890
5891 // No VOP2 instructions support AGPRs.
5892 if (Src0.isReg() && RI.isAGPR(MRI, Src0.getReg()))
5893 legalizeOpWithMove(MI, OpIdx: Src0Idx);
5894
5895 if (Src1.isReg() && RI.isAGPR(MRI, Src1.getReg()))
5896 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5897
5898 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2.
5899 if (Opc == AMDGPU::V_FMAC_F32_e32 || Opc == AMDGPU::V_FMAC_F16_e32) {
5900 int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
5901 if (!RI.isVGPR(MRI, MI.getOperand(i: Src2Idx).getReg()))
5902 legalizeOpWithMove(MI, OpIdx: Src2Idx);
5903 }
5904
5905 // VOP2 src0 instructions support all operand types, so we don't need to check
5906 // their legality. If src1 is already legal, we don't need to do anything.
5907 if (isLegalRegOperand(MRI, OpInfo: InstrDesc.operands()[Src1Idx], MO: Src1))
5908 return;
5909
5910 // Special case: V_READLANE_B32 accepts only immediate or SGPR operands for
5911 // lane select. Fix up using V_READFIRSTLANE, since we assume that the lane
5912 // select is uniform.
5913 if (Opc == AMDGPU::V_READLANE_B32 && Src1.isReg() &&
5914 RI.isVGPR(MRI, Src1.getReg())) {
5915 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5916 const DebugLoc &DL = MI.getDebugLoc();
5917 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5918 .add(Src1);
5919 Src1.ChangeToRegister(Reg, isDef: false);
5920 return;
5921 }
5922
5923 // We do not use commuteInstruction here because it is too aggressive and will
5924 // commute if it is possible. We only want to commute here if it improves
5925 // legality. This can be called a fairly large number of times so don't waste
5926 // compile time pointlessly swapping and checking legality again.
5927 if (HasImplicitSGPR || !MI.isCommutable()) {
5928 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5929 return;
5930 }
5931
5932 // If src0 can be used as src1, commuting will make the operands legal.
5933 // Otherwise we have to give up and insert a move.
5934 //
5935 // TODO: Other immediate-like operand kinds could be commuted if there was a
5936 // MachineOperand::ChangeTo* for them.
5937 if ((!Src1.isImm() && !Src1.isReg()) ||
5938 !isLegalRegOperand(MRI, OpInfo: InstrDesc.operands()[Src1Idx], MO: Src0)) {
5939 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5940 return;
5941 }
5942
5943 int CommutedOpc = commuteOpcode(MI);
5944 if (CommutedOpc == -1) {
5945 legalizeOpWithMove(MI, OpIdx: Src1Idx);
5946 return;
5947 }
5948
5949 MI.setDesc(get(CommutedOpc));
5950
5951 Register Src0Reg = Src0.getReg();
5952 unsigned Src0SubReg = Src0.getSubReg();
5953 bool Src0Kill = Src0.isKill();
5954
5955 if (Src1.isImm())
5956 Src0.ChangeToImmediate(ImmVal: Src1.getImm());
5957 else if (Src1.isReg()) {
5958 Src0.ChangeToRegister(Reg: Src1.getReg(), isDef: false, isImp: false, isKill: Src1.isKill());
5959 Src0.setSubReg(Src1.getSubReg());
5960 } else
5961 llvm_unreachable("Should only have register or immediate operands");
5962
5963 Src1.ChangeToRegister(Reg: Src0Reg, isDef: false, isImp: false, isKill: Src0Kill);
5964 Src1.setSubReg(Src0SubReg);
5965 fixImplicitOperands(MI);
5966}
5967
5968// Legalize VOP3 operands. All operand types are supported for any operand
5969// but only one literal constant and only starting from GFX10.
5970void SIInstrInfo::legalizeOperandsVOP3(MachineRegisterInfo &MRI,
5971 MachineInstr &MI) const {
5972 unsigned Opc = MI.getOpcode();
5973
5974 int VOP3Idx[3] = {
5975 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0),
5976 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1),
5977 AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)
5978 };
5979
5980 if (Opc == AMDGPU::V_PERMLANE16_B32_e64 ||
5981 Opc == AMDGPU::V_PERMLANEX16_B32_e64) {
5982 // src1 and src2 must be scalar
5983 MachineOperand &Src1 = MI.getOperand(i: VOP3Idx[1]);
5984 MachineOperand &Src2 = MI.getOperand(i: VOP3Idx[2]);
5985 const DebugLoc &DL = MI.getDebugLoc();
5986 if (Src1.isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Src1.getReg()))) {
5987 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5988 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5989 .add(Src1);
5990 Src1.ChangeToRegister(Reg, isDef: false);
5991 }
5992 if (Src2.isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Src2.getReg()))) {
5993 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
5994 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
5995 .add(Src2);
5996 Src2.ChangeToRegister(Reg, isDef: false);
5997 }
5998 }
5999
6000 // Find the one SGPR operand we are allowed to use.
6001 int ConstantBusLimit = ST.getConstantBusLimit(Opcode: Opc);
6002 int LiteralLimit = ST.hasVOP3Literal() ? 1 : 0;
6003 SmallDenseSet<unsigned> SGPRsUsed;
6004 Register SGPRReg = findUsedSGPR(MI, OpIndices: VOP3Idx);
6005 if (SGPRReg) {
6006 SGPRsUsed.insert(V: SGPRReg);
6007 --ConstantBusLimit;
6008 }
6009
6010 for (int Idx : VOP3Idx) {
6011 if (Idx == -1)
6012 break;
6013 MachineOperand &MO = MI.getOperand(i: Idx);
6014
6015 if (!MO.isReg()) {
6016 if (isInlineConstant(MO, get(Opc).operands()[Idx]))
6017 continue;
6018
6019 if (LiteralLimit > 0 && ConstantBusLimit > 0) {
6020 --LiteralLimit;
6021 --ConstantBusLimit;
6022 continue;
6023 }
6024
6025 --LiteralLimit;
6026 --ConstantBusLimit;
6027 legalizeOpWithMove(MI, OpIdx: Idx);
6028 continue;
6029 }
6030
6031 if (RI.hasAGPRs(RI.getRegClassForReg(MRI, MO.getReg())) &&
6032 !isOperandLegal(MI, OpIdx: Idx, MO: &MO)) {
6033 legalizeOpWithMove(MI, OpIdx: Idx);
6034 continue;
6035 }
6036
6037 if (!RI.isSGPRClass(RI.getRegClassForReg(MRI, MO.getReg())))
6038 continue; // VGPRs are legal
6039
6040 // We can use one SGPR in each VOP3 instruction prior to GFX10
6041 // and two starting from GFX10.
6042 if (SGPRsUsed.count(V: MO.getReg()))
6043 continue;
6044 if (ConstantBusLimit > 0) {
6045 SGPRsUsed.insert(V: MO.getReg());
6046 --ConstantBusLimit;
6047 continue;
6048 }
6049
6050 // If we make it this far, then the operand is not legal and we must
6051 // legalize it.
6052 legalizeOpWithMove(MI, OpIdx: Idx);
6053 }
6054
6055 // Special case: V_FMAC_F32 and V_FMAC_F16 have src2 tied to vdst.
6056 if ((Opc == AMDGPU::V_FMAC_F32_e64 || Opc == AMDGPU::V_FMAC_F16_e64) &&
6057 !RI.isVGPR(MRI, MI.getOperand(VOP3Idx[2]).getReg()))
6058 legalizeOpWithMove(MI, OpIdx: VOP3Idx[2]);
6059}
6060
6061Register SIInstrInfo::readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
6062 MachineRegisterInfo &MRI) const {
6063 const TargetRegisterClass *VRC = MRI.getRegClass(Reg: SrcReg);
6064 const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC);
6065 Register DstReg = MRI.createVirtualRegister(RegClass: SRC);
6066 unsigned SubRegs = RI.getRegSizeInBits(*VRC) / 32;
6067
6068 if (RI.hasAGPRs(VRC)) {
6069 VRC = RI.getEquivalentVGPRClass(VRC);
6070 Register NewSrcReg = MRI.createVirtualRegister(RegClass: VRC);
6071 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
6072 get(TargetOpcode::COPY), NewSrcReg)
6073 .addReg(SrcReg);
6074 SrcReg = NewSrcReg;
6075 }
6076
6077 if (SubRegs == 1) {
6078 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
6079 get(AMDGPU::V_READFIRSTLANE_B32), DstReg)
6080 .addReg(SrcReg);
6081 return DstReg;
6082 }
6083
6084 SmallVector<Register, 8> SRegs;
6085 for (unsigned i = 0; i < SubRegs; ++i) {
6086 Register SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6087 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
6088 get(AMDGPU::V_READFIRSTLANE_B32), SGPR)
6089 .addReg(SrcReg, 0, RI.getSubRegFromChannel(i));
6090 SRegs.push_back(Elt: SGPR);
6091 }
6092
6093 MachineInstrBuilder MIB =
6094 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(),
6095 get(AMDGPU::REG_SEQUENCE), DstReg);
6096 for (unsigned i = 0; i < SubRegs; ++i) {
6097 MIB.addReg(RegNo: SRegs[i]);
6098 MIB.addImm(Val: RI.getSubRegFromChannel(Channel: i));
6099 }
6100 return DstReg;
6101}
6102
6103void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI,
6104 MachineInstr &MI) const {
6105
6106 // If the pointer is store in VGPRs, then we need to move them to
6107 // SGPRs using v_readfirstlane. This is safe because we only select
6108 // loads with uniform pointers to SMRD instruction so we know the
6109 // pointer value is uniform.
6110 MachineOperand *SBase = getNamedOperand(MI, AMDGPU::OpName::sbase);
6111 if (SBase && !RI.isSGPRClass(MRI.getRegClass(Reg: SBase->getReg()))) {
6112 Register SGPR = readlaneVGPRToSGPR(SrcReg: SBase->getReg(), UseMI&: MI, MRI);
6113 SBase->setReg(SGPR);
6114 }
6115 MachineOperand *SOff = getNamedOperand(MI, AMDGPU::OpName::soffset);
6116 if (SOff && !RI.isSGPRClass(MRI.getRegClass(Reg: SOff->getReg()))) {
6117 Register SGPR = readlaneVGPRToSGPR(SrcReg: SOff->getReg(), UseMI&: MI, MRI);
6118 SOff->setReg(SGPR);
6119 }
6120}
6121
6122bool SIInstrInfo::moveFlatAddrToVGPR(MachineInstr &Inst) const {
6123 unsigned Opc = Inst.getOpcode();
6124 int OldSAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::saddr);
6125 if (OldSAddrIdx < 0)
6126 return false;
6127
6128 assert(isSegmentSpecificFLAT(Inst));
6129
6130 int NewOpc = AMDGPU::getGlobalVaddrOp(Opcode: Opc);
6131 if (NewOpc < 0)
6132 NewOpc = AMDGPU::getFlatScratchInstSVfromSS(Opcode: Opc);
6133 if (NewOpc < 0)
6134 return false;
6135
6136 MachineRegisterInfo &MRI = Inst.getMF()->getRegInfo();
6137 MachineOperand &SAddr = Inst.getOperand(i: OldSAddrIdx);
6138 if (RI.isSGPRReg(MRI, SAddr.getReg()))
6139 return false;
6140
6141 int NewVAddrIdx = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vaddr);
6142 if (NewVAddrIdx < 0)
6143 return false;
6144
6145 int OldVAddrIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr);
6146
6147 // Check vaddr, it shall be zero or absent.
6148 MachineInstr *VAddrDef = nullptr;
6149 if (OldVAddrIdx >= 0) {
6150 MachineOperand &VAddr = Inst.getOperand(i: OldVAddrIdx);
6151 VAddrDef = MRI.getUniqueVRegDef(Reg: VAddr.getReg());
6152 if (!VAddrDef || VAddrDef->getOpcode() != AMDGPU::V_MOV_B32_e32 ||
6153 !VAddrDef->getOperand(1).isImm() ||
6154 VAddrDef->getOperand(1).getImm() != 0)
6155 return false;
6156 }
6157
6158 const MCInstrDesc &NewDesc = get(NewOpc);
6159 Inst.setDesc(NewDesc);
6160
6161 // Callers expect iterator to be valid after this call, so modify the
6162 // instruction in place.
6163 if (OldVAddrIdx == NewVAddrIdx) {
6164 MachineOperand &NewVAddr = Inst.getOperand(i: NewVAddrIdx);
6165 // Clear use list from the old vaddr holding a zero register.
6166 MRI.removeRegOperandFromUseList(MO: &NewVAddr);
6167 MRI.moveOperands(Dst: &NewVAddr, Src: &SAddr, NumOps: 1);
6168 Inst.removeOperand(OpNo: OldSAddrIdx);
6169 // Update the use list with the pointer we have just moved from vaddr to
6170 // saddr position. Otherwise new vaddr will be missing from the use list.
6171 MRI.removeRegOperandFromUseList(MO: &NewVAddr);
6172 MRI.addRegOperandToUseList(MO: &NewVAddr);
6173 } else {
6174 assert(OldSAddrIdx == NewVAddrIdx);
6175
6176 if (OldVAddrIdx >= 0) {
6177 int NewVDstIn = AMDGPU::getNamedOperandIdx(NewOpc,
6178 AMDGPU::OpName::vdst_in);
6179
6180 // removeOperand doesn't try to fixup tied operand indexes at it goes, so
6181 // it asserts. Untie the operands for now and retie them afterwards.
6182 if (NewVDstIn != -1) {
6183 int OldVDstIn = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vdst_in);
6184 Inst.untieRegOperand(OpIdx: OldVDstIn);
6185 }
6186
6187 Inst.removeOperand(OpNo: OldVAddrIdx);
6188
6189 if (NewVDstIn != -1) {
6190 int NewVDst = AMDGPU::getNamedOperandIdx(NewOpc, AMDGPU::OpName::vdst);
6191 Inst.tieOperands(DefIdx: NewVDst, UseIdx: NewVDstIn);
6192 }
6193 }
6194 }
6195
6196 if (VAddrDef && MRI.use_nodbg_empty(RegNo: VAddrDef->getOperand(i: 0).getReg()))
6197 VAddrDef->eraseFromParent();
6198
6199 return true;
6200}
6201
6202// FIXME: Remove this when SelectionDAG is obsoleted.
6203void SIInstrInfo::legalizeOperandsFLAT(MachineRegisterInfo &MRI,
6204 MachineInstr &MI) const {
6205 if (!isSegmentSpecificFLAT(MI))
6206 return;
6207
6208 // Fixup SGPR operands in VGPRs. We only select these when the DAG divergence
6209 // thinks they are uniform, so a readfirstlane should be valid.
6210 MachineOperand *SAddr = getNamedOperand(MI, AMDGPU::OpName::saddr);
6211 if (!SAddr || RI.isSGPRClass(MRI.getRegClass(Reg: SAddr->getReg())))
6212 return;
6213
6214 if (moveFlatAddrToVGPR(Inst&: MI))
6215 return;
6216
6217 Register ToSGPR = readlaneVGPRToSGPR(SrcReg: SAddr->getReg(), UseMI&: MI, MRI);
6218 SAddr->setReg(ToSGPR);
6219}
6220
6221void SIInstrInfo::legalizeGenericOperand(MachineBasicBlock &InsertMBB,
6222 MachineBasicBlock::iterator I,
6223 const TargetRegisterClass *DstRC,
6224 MachineOperand &Op,
6225 MachineRegisterInfo &MRI,
6226 const DebugLoc &DL) const {
6227 Register OpReg = Op.getReg();
6228 unsigned OpSubReg = Op.getSubReg();
6229
6230 const TargetRegisterClass *OpRC = RI.getSubClassWithSubReg(
6231 RI.getRegClassForReg(MRI, OpReg), OpSubReg);
6232
6233 // Check if operand is already the correct register class.
6234 if (DstRC == OpRC)
6235 return;
6236
6237 Register DstReg = MRI.createVirtualRegister(RegClass: DstRC);
6238 auto Copy = BuildMI(InsertMBB, I, DL, get(AMDGPU::COPY), DstReg).add(Op);
6239
6240 Op.setReg(DstReg);
6241 Op.setSubReg(0);
6242
6243 MachineInstr *Def = MRI.getVRegDef(Reg: OpReg);
6244 if (!Def)
6245 return;
6246
6247 // Try to eliminate the copy if it is copying an immediate value.
6248 if (Def->isMoveImmediate() && DstRC != &AMDGPU::VReg_1RegClass)
6249 foldImmediate(UseMI&: *Copy, DefMI&: *Def, Reg: OpReg, MRI: &MRI);
6250
6251 bool ImpDef = Def->isImplicitDef();
6252 while (!ImpDef && Def && Def->isCopy()) {
6253 if (Def->getOperand(i: 1).getReg().isPhysical())
6254 break;
6255 Def = MRI.getUniqueVRegDef(Reg: Def->getOperand(i: 1).getReg());
6256 ImpDef = Def && Def->isImplicitDef();
6257 }
6258 if (!RI.isSGPRClass(DstRC) && !Copy->readsRegister(AMDGPU::EXEC, &RI) &&
6259 !ImpDef)
6260 Copy.addReg(AMDGPU::EXEC, RegState::Implicit);
6261}
6262
6263// Emit the actual waterfall loop, executing the wrapped instruction for each
6264// unique value of \p ScalarOps across all lanes. In the best case we execute 1
6265// iteration, in the worst case we execute 64 (once per lane).
6266static void emitLoadScalarOpsFromVGPRLoop(
6267 const SIInstrInfo &TII, MachineRegisterInfo &MRI, MachineBasicBlock &OrigBB,
6268 MachineBasicBlock &LoopBB, MachineBasicBlock &BodyBB, const DebugLoc &DL,
6269 ArrayRef<MachineOperand *> ScalarOps) {
6270 MachineFunction &MF = *OrigBB.getParent();
6271 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6272 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6273 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
6274 unsigned SaveExecOpc =
6275 ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
6276 unsigned XorTermOpc =
6277 ST.isWave32() ? AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
6278 unsigned AndOpc =
6279 ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
6280 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6281
6282 MachineBasicBlock::iterator I = LoopBB.begin();
6283
6284 SmallVector<Register, 8> ReadlanePieces;
6285 Register CondReg;
6286
6287 for (MachineOperand *ScalarOp : ScalarOps) {
6288 unsigned RegSize = TRI->getRegSizeInBits(ScalarOp->getReg(), MRI);
6289 unsigned NumSubRegs = RegSize / 32;
6290 Register VScalarOp = ScalarOp->getReg();
6291
6292 if (NumSubRegs == 1) {
6293 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6294
6295 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurReg)
6296 .addReg(VScalarOp);
6297
6298 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
6299
6300 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U32_e64), NewCondReg)
6301 .addReg(CurReg)
6302 .addReg(VScalarOp);
6303
6304 // Combine the comparison results with AND.
6305 if (!CondReg) // First.
6306 CondReg = NewCondReg;
6307 else { // If not the first, we create an AND.
6308 Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
6309 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
6310 .addReg(CondReg)
6311 .addReg(NewCondReg);
6312 CondReg = AndReg;
6313 }
6314
6315 // Update ScalarOp operand to use the SGPR ScalarOp.
6316 ScalarOp->setReg(CurReg);
6317 ScalarOp->setIsKill();
6318 } else {
6319 unsigned VScalarOpUndef = getUndefRegState(B: ScalarOp->isUndef());
6320 assert(NumSubRegs % 2 == 0 && NumSubRegs <= 32 &&
6321 "Unhandled register size");
6322
6323 for (unsigned Idx = 0; Idx < NumSubRegs; Idx += 2) {
6324 Register CurRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6325 Register CurRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6326
6327 // Read the next variant <- also loop target.
6328 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegLo)
6329 .addReg(VScalarOp, VScalarOpUndef, TRI->getSubRegFromChannel(Idx));
6330
6331 // Read the next variant <- also loop target.
6332 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_READFIRSTLANE_B32), CurRegHi)
6333 .addReg(VScalarOp, VScalarOpUndef,
6334 TRI->getSubRegFromChannel(Idx + 1));
6335
6336 ReadlanePieces.push_back(Elt: CurRegLo);
6337 ReadlanePieces.push_back(Elt: CurRegHi);
6338
6339 // Comparison is to be done as 64-bit.
6340 Register CurReg = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
6341 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), CurReg)
6342 .addReg(CurRegLo)
6343 .addImm(AMDGPU::sub0)
6344 .addReg(CurRegHi)
6345 .addImm(AMDGPU::sub1);
6346
6347 Register NewCondReg = MRI.createVirtualRegister(BoolXExecRC);
6348 auto Cmp = BuildMI(LoopBB, I, DL, TII.get(AMDGPU::V_CMP_EQ_U64_e64),
6349 NewCondReg)
6350 .addReg(CurReg);
6351 if (NumSubRegs <= 2)
6352 Cmp.addReg(VScalarOp);
6353 else
6354 Cmp.addReg(VScalarOp, VScalarOpUndef,
6355 TRI->getSubRegFromChannel(Channel: Idx, NumRegs: 2));
6356
6357 // Combine the comparison results with AND.
6358 if (!CondReg) // First.
6359 CondReg = NewCondReg;
6360 else { // If not the first, we create an AND.
6361 Register AndReg = MRI.createVirtualRegister(BoolXExecRC);
6362 BuildMI(LoopBB, I, DL, TII.get(AndOpc), AndReg)
6363 .addReg(CondReg)
6364 .addReg(NewCondReg);
6365 CondReg = AndReg;
6366 }
6367 } // End for loop.
6368
6369 auto SScalarOpRC =
6370 TRI->getEquivalentSGPRClass(MRI.getRegClass(Reg: VScalarOp));
6371 Register SScalarOp = MRI.createVirtualRegister(SScalarOpRC);
6372
6373 // Build scalar ScalarOp.
6374 auto Merge =
6375 BuildMI(LoopBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), SScalarOp);
6376 unsigned Channel = 0;
6377 for (Register Piece : ReadlanePieces) {
6378 Merge.addReg(Piece).addImm(TRI->getSubRegFromChannel(Channel: Channel++));
6379 }
6380
6381 // Update ScalarOp operand to use the SGPR ScalarOp.
6382 ScalarOp->setReg(SScalarOp);
6383 ScalarOp->setIsKill();
6384 }
6385 }
6386
6387 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
6388 MRI.setSimpleHint(VReg: SaveExec, PrefReg: CondReg);
6389
6390 // Update EXEC to matching lanes, saving original to SaveExec.
6391 BuildMI(LoopBB, I, DL, TII.get(SaveExecOpc), SaveExec)
6392 .addReg(CondReg, RegState::Kill);
6393
6394 // The original instruction is here; we insert the terminators after it.
6395 I = BodyBB.end();
6396
6397 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
6398 BuildMI(BodyBB, I, DL, TII.get(XorTermOpc), Exec)
6399 .addReg(Exec)
6400 .addReg(SaveExec);
6401
6402 BuildMI(BodyBB, I, DL, TII.get(AMDGPU::SI_WATERFALL_LOOP)).addMBB(&LoopBB);
6403}
6404
6405// Build a waterfall loop around \p MI, replacing the VGPR \p ScalarOp register
6406// with SGPRs by iterating over all unique values across all lanes.
6407// Returns the loop basic block that now contains \p MI.
6408static MachineBasicBlock *
6409loadMBUFScalarOperandsFromVGPR(const SIInstrInfo &TII, MachineInstr &MI,
6410 ArrayRef<MachineOperand *> ScalarOps,
6411 MachineDominatorTree *MDT,
6412 MachineBasicBlock::iterator Begin = nullptr,
6413 MachineBasicBlock::iterator End = nullptr) {
6414 MachineBasicBlock &MBB = *MI.getParent();
6415 MachineFunction &MF = *MBB.getParent();
6416 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
6417 const SIRegisterInfo *TRI = ST.getRegisterInfo();
6418 MachineRegisterInfo &MRI = MF.getRegInfo();
6419 if (!Begin.isValid())
6420 Begin = &MI;
6421 if (!End.isValid()) {
6422 End = &MI;
6423 ++End;
6424 }
6425 const DebugLoc &DL = MI.getDebugLoc();
6426 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
6427 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
6428 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6429
6430 // Save SCC. Waterfall Loop may overwrite SCC.
6431 Register SaveSCCReg;
6432 bool SCCNotDead = (MBB.computeRegisterLiveness(TRI, AMDGPU::SCC, MI, 30) !=
6433 MachineBasicBlock::LQR_Dead);
6434 if (SCCNotDead) {
6435 SaveSCCReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
6436 BuildMI(MBB, Begin, DL, TII.get(AMDGPU::S_CSELECT_B32), SaveSCCReg)
6437 .addImm(1)
6438 .addImm(0);
6439 }
6440
6441 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
6442
6443 // Save the EXEC mask
6444 BuildMI(MBB, Begin, DL, TII.get(MovExecOpc), SaveExec).addReg(Exec);
6445
6446 // Killed uses in the instruction we are waterfalling around will be
6447 // incorrect due to the added control-flow.
6448 MachineBasicBlock::iterator AfterMI = MI;
6449 ++AfterMI;
6450 for (auto I = Begin; I != AfterMI; I++) {
6451 for (auto &MO : I->all_uses())
6452 MRI.clearKillFlags(Reg: MO.getReg());
6453 }
6454
6455 // To insert the loop we need to split the block. Move everything after this
6456 // point to a new block, and insert a new empty block between the two.
6457 MachineBasicBlock *LoopBB = MF.CreateMachineBasicBlock();
6458 MachineBasicBlock *BodyBB = MF.CreateMachineBasicBlock();
6459 MachineBasicBlock *RemainderBB = MF.CreateMachineBasicBlock();
6460 MachineFunction::iterator MBBI(MBB);
6461 ++MBBI;
6462
6463 MF.insert(MBBI, MBB: LoopBB);
6464 MF.insert(MBBI, MBB: BodyBB);
6465 MF.insert(MBBI, MBB: RemainderBB);
6466
6467 LoopBB->addSuccessor(Succ: BodyBB);
6468 BodyBB->addSuccessor(Succ: LoopBB);
6469 BodyBB->addSuccessor(Succ: RemainderBB);
6470
6471 // Move Begin to MI to the BodyBB, and the remainder of the block to
6472 // RemainderBB.
6473 RemainderBB->transferSuccessorsAndUpdatePHIs(FromMBB: &MBB);
6474 RemainderBB->splice(Where: RemainderBB->begin(), Other: &MBB, From: End, To: MBB.end());
6475 BodyBB->splice(Where: BodyBB->begin(), Other: &MBB, From: Begin, To: MBB.end());
6476
6477 MBB.addSuccessor(Succ: LoopBB);
6478
6479 // Update dominators. We know that MBB immediately dominates LoopBB, that
6480 // LoopBB immediately dominates BodyBB, and BodyBB immediately dominates
6481 // RemainderBB. RemainderBB immediately dominates all of the successors
6482 // transferred to it from MBB that MBB used to properly dominate.
6483 if (MDT) {
6484 MDT->addNewBlock(BB: LoopBB, DomBB: &MBB);
6485 MDT->addNewBlock(BB: BodyBB, DomBB: LoopBB);
6486 MDT->addNewBlock(BB: RemainderBB, DomBB: BodyBB);
6487 for (auto &Succ : RemainderBB->successors()) {
6488 if (MDT->properlyDominates(A: &MBB, B: Succ)) {
6489 MDT->changeImmediateDominator(N: Succ, NewIDom: RemainderBB);
6490 }
6491 }
6492 }
6493
6494 emitLoadScalarOpsFromVGPRLoop(TII, MRI, OrigBB&: MBB, LoopBB&: *LoopBB, BodyBB&: *BodyBB, DL, ScalarOps);
6495
6496 MachineBasicBlock::iterator First = RemainderBB->begin();
6497 // Restore SCC
6498 if (SCCNotDead) {
6499 BuildMI(*RemainderBB, First, DL, TII.get(AMDGPU::S_CMP_LG_U32))
6500 .addReg(SaveSCCReg, RegState::Kill)
6501 .addImm(0);
6502 }
6503
6504 // Restore the EXEC mask
6505 BuildMI(*RemainderBB, First, DL, TII.get(MovExecOpc), Exec).addReg(SaveExec);
6506 return BodyBB;
6507}
6508
6509// Extract pointer from Rsrc and return a zero-value Rsrc replacement.
6510static std::tuple<unsigned, unsigned>
6511extractRsrcPtr(const SIInstrInfo &TII, MachineInstr &MI, MachineOperand &Rsrc) {
6512 MachineBasicBlock &MBB = *MI.getParent();
6513 MachineFunction &MF = *MBB.getParent();
6514 MachineRegisterInfo &MRI = MF.getRegInfo();
6515
6516 // Extract the ptr from the resource descriptor.
6517 unsigned RsrcPtr =
6518 TII.buildExtractSubReg(MI, MRI, Rsrc, &AMDGPU::VReg_128RegClass,
6519 AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass);
6520
6521 // Create an empty resource descriptor
6522 Register Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
6523 Register SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6524 Register SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
6525 Register NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
6526 uint64_t RsrcDataFormat = TII.getDefaultRsrcDataFormat();
6527
6528 // Zero64 = 0
6529 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B64), Zero64)
6530 .addImm(0);
6531
6532 // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0}
6533 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatLo)
6534 .addImm(RsrcDataFormat & 0xFFFFFFFF);
6535
6536 // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32}
6537 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), SRsrcFormatHi)
6538 .addImm(RsrcDataFormat >> 32);
6539
6540 // NewSRsrc = {Zero64, SRsrcFormat}
6541 BuildMI(MBB, MI, MI.getDebugLoc(), TII.get(AMDGPU::REG_SEQUENCE), NewSRsrc)
6542 .addReg(Zero64)
6543 .addImm(AMDGPU::sub0_sub1)
6544 .addReg(SRsrcFormatLo)
6545 .addImm(AMDGPU::sub2)
6546 .addReg(SRsrcFormatHi)
6547 .addImm(AMDGPU::sub3);
6548
6549 return std::tuple(RsrcPtr, NewSRsrc);
6550}
6551
6552MachineBasicBlock *
6553SIInstrInfo::legalizeOperands(MachineInstr &MI,
6554 MachineDominatorTree *MDT) const {
6555 MachineFunction &MF = *MI.getParent()->getParent();
6556 MachineRegisterInfo &MRI = MF.getRegInfo();
6557 MachineBasicBlock *CreatedBB = nullptr;
6558
6559 // Legalize VOP2
6560 if (isVOP2(MI) || isVOPC(MI)) {
6561 legalizeOperandsVOP2(MRI, MI);
6562 return CreatedBB;
6563 }
6564
6565 // Legalize VOP3
6566 if (isVOP3(MI)) {
6567 legalizeOperandsVOP3(MRI, MI);
6568 return CreatedBB;
6569 }
6570
6571 // Legalize SMRD
6572 if (isSMRD(MI)) {
6573 legalizeOperandsSMRD(MRI, MI);
6574 return CreatedBB;
6575 }
6576
6577 // Legalize FLAT
6578 if (isFLAT(MI)) {
6579 legalizeOperandsFLAT(MRI, MI);
6580 return CreatedBB;
6581 }
6582
6583 // Legalize REG_SEQUENCE and PHI
6584 // The register class of the operands much be the same type as the register
6585 // class of the output.
6586 if (MI.getOpcode() == AMDGPU::PHI) {
6587 const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr;
6588 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
6589 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).getReg().isVirtual())
6590 continue;
6591 const TargetRegisterClass *OpRC =
6592 MRI.getRegClass(Reg: MI.getOperand(i).getReg());
6593 if (RI.hasVectorRegisters(OpRC)) {
6594 VRC = OpRC;
6595 } else {
6596 SRC = OpRC;
6597 }
6598 }
6599
6600 // If any of the operands are VGPR registers, then they all most be
6601 // otherwise we will create illegal VGPR->SGPR copies when legalizing
6602 // them.
6603 if (VRC || !RI.isSGPRClass(getOpRegClass(MI, OpNo: 0))) {
6604 if (!VRC) {
6605 assert(SRC);
6606 if (getOpRegClass(MI, 0) == &AMDGPU::VReg_1RegClass) {
6607 VRC = &AMDGPU::VReg_1RegClass;
6608 } else
6609 VRC = RI.isAGPRClass(getOpRegClass(MI, OpNo: 0))
6610 ? RI.getEquivalentAGPRClass(SRC)
6611 : RI.getEquivalentVGPRClass(SRC);
6612 } else {
6613 VRC = RI.isAGPRClass(getOpRegClass(MI, OpNo: 0))
6614 ? RI.getEquivalentAGPRClass(VRC)
6615 : RI.getEquivalentVGPRClass(VRC);
6616 }
6617 RC = VRC;
6618 } else {
6619 RC = SRC;
6620 }
6621
6622 // Update all the operands so they have the same type.
6623 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
6624 MachineOperand &Op = MI.getOperand(i: I);
6625 if (!Op.isReg() || !Op.getReg().isVirtual())
6626 continue;
6627
6628 // MI is a PHI instruction.
6629 MachineBasicBlock *InsertBB = MI.getOperand(i: I + 1).getMBB();
6630 MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator();
6631
6632 // Avoid creating no-op copies with the same src and dst reg class. These
6633 // confuse some of the machine passes.
6634 legalizeGenericOperand(InsertMBB&: *InsertBB, I: Insert, DstRC: RC, Op, MRI, DL: MI.getDebugLoc());
6635 }
6636 }
6637
6638 // REG_SEQUENCE doesn't really require operand legalization, but if one has a
6639 // VGPR dest type and SGPR sources, insert copies so all operands are
6640 // VGPRs. This seems to help operand folding / the register coalescer.
6641 if (MI.getOpcode() == AMDGPU::REG_SEQUENCE) {
6642 MachineBasicBlock *MBB = MI.getParent();
6643 const TargetRegisterClass *DstRC = getOpRegClass(MI, OpNo: 0);
6644 if (RI.hasVGPRs(DstRC)) {
6645 // Update all the operands so they are VGPR register classes. These may
6646 // not be the same register class because REG_SEQUENCE supports mixing
6647 // subregister index types e.g. sub0_sub1 + sub2 + sub3
6648 for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
6649 MachineOperand &Op = MI.getOperand(i: I);
6650 if (!Op.isReg() || !Op.getReg().isVirtual())
6651 continue;
6652
6653 const TargetRegisterClass *OpRC = MRI.getRegClass(Reg: Op.getReg());
6654 const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC);
6655 if (VRC == OpRC)
6656 continue;
6657
6658 legalizeGenericOperand(InsertMBB&: *MBB, I: MI, DstRC: VRC, Op, MRI, DL: MI.getDebugLoc());
6659 Op.setIsKill();
6660 }
6661 }
6662
6663 return CreatedBB;
6664 }
6665
6666 // Legalize INSERT_SUBREG
6667 // src0 must have the same register class as dst
6668 if (MI.getOpcode() == AMDGPU::INSERT_SUBREG) {
6669 Register Dst = MI.getOperand(i: 0).getReg();
6670 Register Src0 = MI.getOperand(i: 1).getReg();
6671 const TargetRegisterClass *DstRC = MRI.getRegClass(Reg: Dst);
6672 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0);
6673 if (DstRC != Src0RC) {
6674 MachineBasicBlock *MBB = MI.getParent();
6675 MachineOperand &Op = MI.getOperand(i: 1);
6676 legalizeGenericOperand(InsertMBB&: *MBB, I: MI, DstRC, Op, MRI, DL: MI.getDebugLoc());
6677 }
6678 return CreatedBB;
6679 }
6680
6681 // Legalize SI_INIT_M0
6682 if (MI.getOpcode() == AMDGPU::SI_INIT_M0) {
6683 MachineOperand &Src = MI.getOperand(i: 0);
6684 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Reg: Src.getReg())))
6685 Src.setReg(readlaneVGPRToSGPR(SrcReg: Src.getReg(), UseMI&: MI, MRI));
6686 return CreatedBB;
6687 }
6688
6689 // Legalize S_BITREPLICATE, S_QUADMASK and S_WQM
6690 if (MI.getOpcode() == AMDGPU::S_BITREPLICATE_B64_B32 ||
6691 MI.getOpcode() == AMDGPU::S_QUADMASK_B32 ||
6692 MI.getOpcode() == AMDGPU::S_QUADMASK_B64 ||
6693 MI.getOpcode() == AMDGPU::S_WQM_B32 ||
6694 MI.getOpcode() == AMDGPU::S_WQM_B64) {
6695 MachineOperand &Src = MI.getOperand(i: 1);
6696 if (Src.isReg() && RI.hasVectorRegisters(MRI.getRegClass(Reg: Src.getReg())))
6697 Src.setReg(readlaneVGPRToSGPR(SrcReg: Src.getReg(), UseMI&: MI, MRI));
6698 return CreatedBB;
6699 }
6700
6701 // Legalize MIMG/VIMAGE/VSAMPLE and MUBUF/MTBUF for shaders.
6702 //
6703 // Shaders only generate MUBUF/MTBUF instructions via intrinsics or via
6704 // scratch memory access. In both cases, the legalization never involves
6705 // conversion to the addr64 form.
6706 if (isImage(MI) || (AMDGPU::isGraphics(CC: MF.getFunction().getCallingConv()) &&
6707 (isMUBUF(MI) || isMTBUF(MI)))) {
6708 int RSrcOpName = (isVIMAGE(MI) || isVSAMPLE(MI)) ? AMDGPU::OpName::rsrc
6709 : AMDGPU::OpName::srsrc;
6710 MachineOperand *SRsrc = getNamedOperand(MI, OperandName: RSrcOpName);
6711 if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(Reg: SRsrc->getReg())))
6712 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {SRsrc}, MDT);
6713
6714 int SampOpName = isMIMG(MI) ? AMDGPU::OpName::ssamp : AMDGPU::OpName::samp;
6715 MachineOperand *SSamp = getNamedOperand(MI, OperandName: SampOpName);
6716 if (SSamp && !RI.isSGPRClass(MRI.getRegClass(Reg: SSamp->getReg())))
6717 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {SSamp}, MDT);
6718
6719 return CreatedBB;
6720 }
6721
6722 // Legalize SI_CALL
6723 if (MI.getOpcode() == AMDGPU::SI_CALL_ISEL) {
6724 MachineOperand *Dest = &MI.getOperand(i: 0);
6725 if (!RI.isSGPRClass(MRI.getRegClass(Reg: Dest->getReg()))) {
6726 // Move everything between ADJCALLSTACKUP and ADJCALLSTACKDOWN and
6727 // following copies, we also need to move copies from and to physical
6728 // registers into the loop block.
6729 unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
6730 unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
6731
6732 // Also move the copies to physical registers into the loop block
6733 MachineBasicBlock &MBB = *MI.getParent();
6734 MachineBasicBlock::iterator Start(&MI);
6735 while (Start->getOpcode() != FrameSetupOpcode)
6736 --Start;
6737 MachineBasicBlock::iterator End(&MI);
6738 while (End->getOpcode() != FrameDestroyOpcode)
6739 ++End;
6740 // Also include following copies of the return value
6741 ++End;
6742 while (End != MBB.end() && End->isCopy() && End->getOperand(i: 1).isReg() &&
6743 MI.definesRegister(Reg: End->getOperand(i: 1).getReg(), /*TRI=*/nullptr))
6744 ++End;
6745 CreatedBB =
6746 loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Dest}, MDT, Begin: Start, End);
6747 }
6748 }
6749
6750 // Legalize s_sleep_var.
6751 if (MI.getOpcode() == AMDGPU::S_SLEEP_VAR) {
6752 const DebugLoc &DL = MI.getDebugLoc();
6753 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
6754 int Src0Idx =
6755 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
6756 MachineOperand &Src0 = MI.getOperand(i: Src0Idx);
6757 BuildMI(*MI.getParent(), MI, DL, get(AMDGPU::V_READFIRSTLANE_B32), Reg)
6758 .add(Src0);
6759 Src0.ChangeToRegister(Reg, isDef: false);
6760 return nullptr;
6761 }
6762
6763 // Legalize MUBUF instructions.
6764 bool isSoffsetLegal = true;
6765 int SoffsetIdx =
6766 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::soffset);
6767 if (SoffsetIdx != -1) {
6768 MachineOperand *Soffset = &MI.getOperand(i: SoffsetIdx);
6769 if (Soffset->isReg() && Soffset->getReg().isVirtual() &&
6770 !RI.isSGPRClass(MRI.getRegClass(Reg: Soffset->getReg()))) {
6771 isSoffsetLegal = false;
6772 }
6773 }
6774
6775 bool isRsrcLegal = true;
6776 int RsrcIdx =
6777 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::srsrc);
6778 if (RsrcIdx != -1) {
6779 MachineOperand *Rsrc = &MI.getOperand(i: RsrcIdx);
6780 if (Rsrc->isReg() && !RI.isSGPRClass(MRI.getRegClass(Reg: Rsrc->getReg()))) {
6781 isRsrcLegal = false;
6782 }
6783 }
6784
6785 // The operands are legal.
6786 if (isRsrcLegal && isSoffsetLegal)
6787 return CreatedBB;
6788
6789 if (!isRsrcLegal) {
6790 // Legalize a VGPR Rsrc
6791 //
6792 // If the instruction is _ADDR64, we can avoid a waterfall by extracting
6793 // the base pointer from the VGPR Rsrc, adding it to the VAddr, then using
6794 // a zero-value SRsrc.
6795 //
6796 // If the instruction is _OFFSET (both idxen and offen disabled), and we
6797 // support ADDR64 instructions, we can convert to ADDR64 and do the same as
6798 // above.
6799 //
6800 // Otherwise we are on non-ADDR64 hardware, and/or we have
6801 // idxen/offen/bothen and we fall back to a waterfall loop.
6802
6803 MachineOperand *Rsrc = &MI.getOperand(i: RsrcIdx);
6804 MachineBasicBlock &MBB = *MI.getParent();
6805
6806 MachineOperand *VAddr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
6807 if (VAddr && AMDGPU::getIfAddr64Inst(Opcode: MI.getOpcode()) != -1) {
6808 // This is already an ADDR64 instruction so we need to add the pointer
6809 // extracted from the resource descriptor to the current value of VAddr.
6810 Register NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6811 Register NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
6812 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
6813
6814 const auto *BoolXExecRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
6815 Register CondReg0 = MRI.createVirtualRegister(BoolXExecRC);
6816 Register CondReg1 = MRI.createVirtualRegister(BoolXExecRC);
6817
6818 unsigned RsrcPtr, NewSRsrc;
6819 std::tie(args&: RsrcPtr, args&: NewSRsrc) = extractRsrcPtr(TII: *this, MI, Rsrc&: *Rsrc);
6820
6821 // NewVaddrLo = RsrcPtr:sub0 + VAddr:sub0
6822 const DebugLoc &DL = MI.getDebugLoc();
6823 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_CO_U32_e64), NewVAddrLo)
6824 .addDef(CondReg0)
6825 .addReg(RsrcPtr, 0, AMDGPU::sub0)
6826 .addReg(VAddr->getReg(), 0, AMDGPU::sub0)
6827 .addImm(0);
6828
6829 // NewVaddrHi = RsrcPtr:sub1 + VAddr:sub1
6830 BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e64), NewVAddrHi)
6831 .addDef(CondReg1, RegState::Dead)
6832 .addReg(RsrcPtr, 0, AMDGPU::sub1)
6833 .addReg(VAddr->getReg(), 0, AMDGPU::sub1)
6834 .addReg(CondReg0, RegState::Kill)
6835 .addImm(0);
6836
6837 // NewVaddr = {NewVaddrHi, NewVaddrLo}
6838 BuildMI(MBB, MI, MI.getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr)
6839 .addReg(NewVAddrLo)
6840 .addImm(AMDGPU::sub0)
6841 .addReg(NewVAddrHi)
6842 .addImm(AMDGPU::sub1);
6843
6844 VAddr->setReg(NewVAddr);
6845 Rsrc->setReg(NewSRsrc);
6846 } else if (!VAddr && ST.hasAddr64()) {
6847 // This instructions is the _OFFSET variant, so we need to convert it to
6848 // ADDR64.
6849 assert(ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS &&
6850 "FIXME: Need to emit flat atomics here");
6851
6852 unsigned RsrcPtr, NewSRsrc;
6853 std::tie(args&: RsrcPtr, args&: NewSRsrc) = extractRsrcPtr(TII: *this, MI, Rsrc&: *Rsrc);
6854
6855 Register NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
6856 MachineOperand *VData = getNamedOperand(MI, AMDGPU::OpName::vdata);
6857 MachineOperand *Offset = getNamedOperand(MI, AMDGPU::OpName::offset);
6858 MachineOperand *SOffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6859 unsigned Addr64Opcode = AMDGPU::getAddr64Inst(Opcode: MI.getOpcode());
6860
6861 // Atomics with return have an additional tied operand and are
6862 // missing some of the special bits.
6863 MachineOperand *VDataIn = getNamedOperand(MI, AMDGPU::OpName::vdata_in);
6864 MachineInstr *Addr64;
6865
6866 if (!VDataIn) {
6867 // Regular buffer load / store.
6868 MachineInstrBuilder MIB =
6869 BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
6870 .add(*VData)
6871 .addReg(NewVAddr)
6872 .addReg(NewSRsrc)
6873 .add(*SOffset)
6874 .add(*Offset);
6875
6876 if (const MachineOperand *CPol =
6877 getNamedOperand(MI, AMDGPU::OpName::cpol)) {
6878 MIB.addImm(Val: CPol->getImm());
6879 }
6880
6881 if (const MachineOperand *TFE =
6882 getNamedOperand(MI, AMDGPU::OpName::tfe)) {
6883 MIB.addImm(Val: TFE->getImm());
6884 }
6885
6886 MIB.addImm(getNamedImmOperand(MI, AMDGPU::OpName::swz));
6887
6888 MIB.cloneMemRefs(OtherMI: MI);
6889 Addr64 = MIB;
6890 } else {
6891 // Atomics with return.
6892 Addr64 = BuildMI(MBB, MI, MI.getDebugLoc(), get(Addr64Opcode))
6893 .add(*VData)
6894 .add(*VDataIn)
6895 .addReg(NewVAddr)
6896 .addReg(NewSRsrc)
6897 .add(*SOffset)
6898 .add(*Offset)
6899 .addImm(getNamedImmOperand(MI, AMDGPU::OpName::cpol))
6900 .cloneMemRefs(MI);
6901 }
6902
6903 MI.removeFromParent();
6904
6905 // NewVaddr = {NewVaddrHi, NewVaddrLo}
6906 BuildMI(MBB, Addr64, Addr64->getDebugLoc(), get(AMDGPU::REG_SEQUENCE),
6907 NewVAddr)
6908 .addReg(RsrcPtr, 0, AMDGPU::sub0)
6909 .addImm(AMDGPU::sub0)
6910 .addReg(RsrcPtr, 0, AMDGPU::sub1)
6911 .addImm(AMDGPU::sub1);
6912 } else {
6913 // Legalize a VGPR Rsrc and soffset together.
6914 if (!isSoffsetLegal) {
6915 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6916 CreatedBB =
6917 loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Rsrc, Soffset}, MDT);
6918 return CreatedBB;
6919 }
6920 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Rsrc}, MDT);
6921 return CreatedBB;
6922 }
6923 }
6924
6925 // Legalize a VGPR soffset.
6926 if (!isSoffsetLegal) {
6927 MachineOperand *Soffset = getNamedOperand(MI, AMDGPU::OpName::soffset);
6928 CreatedBB = loadMBUFScalarOperandsFromVGPR(TII: *this, MI, ScalarOps: {Soffset}, MDT);
6929 return CreatedBB;
6930 }
6931 return CreatedBB;
6932}
6933
6934void SIInstrWorklist::insert(MachineInstr *MI) {
6935 InstrList.insert(MI);
6936 // Add MBUF instructiosn to deferred list.
6937 int RsrcIdx =
6938 AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc);
6939 if (RsrcIdx != -1) {
6940 DeferredList.insert(MI);
6941 }
6942}
6943
6944bool SIInstrWorklist::isDeferred(MachineInstr *MI) {
6945 return DeferredList.contains(MI);
6946}
6947
6948void SIInstrInfo::moveToVALU(SIInstrWorklist &Worklist,
6949 MachineDominatorTree *MDT) const {
6950
6951 while (!Worklist.empty()) {
6952 MachineInstr &Inst = *Worklist.top();
6953 Worklist.erase_top();
6954 // Skip MachineInstr in the deferred list.
6955 if (Worklist.isDeferred(MI: &Inst))
6956 continue;
6957 moveToVALUImpl(Worklist, MDT, Inst);
6958 }
6959
6960 // Deferred list of instructions will be processed once
6961 // all the MachineInstr in the worklist are done.
6962 for (MachineInstr *Inst : Worklist.getDeferredList()) {
6963 moveToVALUImpl(Worklist, MDT, *Inst);
6964 assert(Worklist.empty() &&
6965 "Deferred MachineInstr are not supposed to re-populate worklist");
6966 }
6967}
6968
6969void SIInstrInfo::moveToVALUImpl(SIInstrWorklist &Worklist,
6970 MachineDominatorTree *MDT,
6971 MachineInstr &Inst) const {
6972
6973 MachineBasicBlock *MBB = Inst.getParent();
6974 if (!MBB)
6975 return;
6976 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
6977 unsigned Opcode = Inst.getOpcode();
6978 unsigned NewOpcode = getVALUOp(MI: Inst);
6979 // Handle some special cases
6980 switch (Opcode) {
6981 default:
6982 break;
6983 case AMDGPU::S_ADD_U64_PSEUDO:
6984 NewOpcode = AMDGPU::V_ADD_U64_PSEUDO;
6985 break;
6986 case AMDGPU::S_SUB_U64_PSEUDO:
6987 NewOpcode = AMDGPU::V_SUB_U64_PSEUDO;
6988 break;
6989 case AMDGPU::S_ADD_I32:
6990 case AMDGPU::S_SUB_I32: {
6991 // FIXME: The u32 versions currently selected use the carry.
6992 bool Changed;
6993 MachineBasicBlock *CreatedBBTmp = nullptr;
6994 std::tie(args&: Changed, args&: CreatedBBTmp) = moveScalarAddSub(Worklist, Inst, MDT);
6995 if (Changed)
6996 return;
6997
6998 // Default handling
6999 break;
7000 }
7001
7002 case AMDGPU::S_MUL_U64:
7003 // Split s_mul_u64 in 32-bit vector multiplications.
7004 splitScalarSMulU64(Worklist, Inst, MDT);
7005 Inst.eraseFromParent();
7006 return;
7007
7008 case AMDGPU::S_MUL_U64_U32_PSEUDO:
7009 case AMDGPU::S_MUL_I64_I32_PSEUDO:
7010 // This is a special case of s_mul_u64 where all the operands are either
7011 // zero extended or sign extended.
7012 splitScalarSMulPseudo(Worklist, Inst, MDT);
7013 Inst.eraseFromParent();
7014 return;
7015
7016 case AMDGPU::S_AND_B64:
7017 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_AND_B32, MDT);
7018 Inst.eraseFromParent();
7019 return;
7020
7021 case AMDGPU::S_OR_B64:
7022 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_OR_B32, MDT);
7023 Inst.eraseFromParent();
7024 return;
7025
7026 case AMDGPU::S_XOR_B64:
7027 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XOR_B32, MDT);
7028 Inst.eraseFromParent();
7029 return;
7030
7031 case AMDGPU::S_NAND_B64:
7032 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NAND_B32, MDT);
7033 Inst.eraseFromParent();
7034 return;
7035
7036 case AMDGPU::S_NOR_B64:
7037 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_NOR_B32, MDT);
7038 Inst.eraseFromParent();
7039 return;
7040
7041 case AMDGPU::S_XNOR_B64:
7042 if (ST.hasDLInsts())
7043 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_XNOR_B32, MDT);
7044 else
7045 splitScalar64BitXnor(Worklist, Inst, MDT);
7046 Inst.eraseFromParent();
7047 return;
7048
7049 case AMDGPU::S_ANDN2_B64:
7050 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ANDN2_B32, MDT);
7051 Inst.eraseFromParent();
7052 return;
7053
7054 case AMDGPU::S_ORN2_B64:
7055 splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::S_ORN2_B32, MDT);
7056 Inst.eraseFromParent();
7057 return;
7058
7059 case AMDGPU::S_BREV_B64:
7060 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_BREV_B32, true);
7061 Inst.eraseFromParent();
7062 return;
7063
7064 case AMDGPU::S_NOT_B64:
7065 splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::S_NOT_B32);
7066 Inst.eraseFromParent();
7067 return;
7068
7069 case AMDGPU::S_BCNT1_I32_B64:
7070 splitScalar64BitBCNT(Worklist, Inst);
7071 Inst.eraseFromParent();
7072 return;
7073
7074 case AMDGPU::S_BFE_I64:
7075 splitScalar64BitBFE(Worklist, Inst);
7076 Inst.eraseFromParent();
7077 return;
7078
7079 case AMDGPU::S_FLBIT_I32_B64:
7080 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBH_U32_e32);
7081 Inst.eraseFromParent();
7082 return;
7083 case AMDGPU::S_FF1_I32_B64:
7084 splitScalar64BitCountOp(Worklist, Inst, AMDGPU::V_FFBL_B32_e32);
7085 Inst.eraseFromParent();
7086 return;
7087
7088 case AMDGPU::S_LSHL_B32:
7089 if (ST.hasOnlyRevVALUShifts()) {
7090 NewOpcode = AMDGPU::V_LSHLREV_B32_e64;
7091 swapOperands(Inst);
7092 }
7093 break;
7094 case AMDGPU::S_ASHR_I32:
7095 if (ST.hasOnlyRevVALUShifts()) {
7096 NewOpcode = AMDGPU::V_ASHRREV_I32_e64;
7097 swapOperands(Inst);
7098 }
7099 break;
7100 case AMDGPU::S_LSHR_B32:
7101 if (ST.hasOnlyRevVALUShifts()) {
7102 NewOpcode = AMDGPU::V_LSHRREV_B32_e64;
7103 swapOperands(Inst);
7104 }
7105 break;
7106 case AMDGPU::S_LSHL_B64:
7107 if (ST.hasOnlyRevVALUShifts()) {
7108 NewOpcode = ST.getGeneration() >= AMDGPUSubtarget::GFX12
7109 ? AMDGPU::V_LSHLREV_B64_pseudo_e64
7110 : AMDGPU::V_LSHLREV_B64_e64;
7111 swapOperands(Inst);
7112 }
7113 break;
7114 case AMDGPU::S_ASHR_I64:
7115 if (ST.hasOnlyRevVALUShifts()) {
7116 NewOpcode = AMDGPU::V_ASHRREV_I64_e64;
7117 swapOperands(Inst);
7118 }
7119 break;
7120 case AMDGPU::S_LSHR_B64:
7121 if (ST.hasOnlyRevVALUShifts()) {
7122 NewOpcode = AMDGPU::V_LSHRREV_B64_e64;
7123 swapOperands(Inst);
7124 }
7125 break;
7126
7127 case AMDGPU::S_ABS_I32:
7128 lowerScalarAbs(Worklist, Inst);
7129 Inst.eraseFromParent();
7130 return;
7131
7132 case AMDGPU::S_CBRANCH_SCC0:
7133 case AMDGPU::S_CBRANCH_SCC1: {
7134 // Clear unused bits of vcc
7135 Register CondReg = Inst.getOperand(i: 1).getReg();
7136 bool IsSCC = CondReg == AMDGPU::SCC;
7137 Register VCC = RI.getVCC();
7138 Register EXEC = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
7139 unsigned Opc = ST.isWave32() ? AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
7140 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(Opc), VCC)
7141 .addReg(EXEC)
7142 .addReg(IsSCC ? VCC : CondReg);
7143 Inst.removeOperand(OpNo: 1);
7144 } break;
7145
7146 case AMDGPU::S_BFE_U64:
7147 case AMDGPU::S_BFM_B64:
7148 llvm_unreachable("Moving this op to VALU not implemented");
7149
7150 case AMDGPU::S_PACK_LL_B32_B16:
7151 case AMDGPU::S_PACK_LH_B32_B16:
7152 case AMDGPU::S_PACK_HL_B32_B16:
7153 case AMDGPU::S_PACK_HH_B32_B16:
7154 movePackToVALU(Worklist, MRI, Inst);
7155 Inst.eraseFromParent();
7156 return;
7157
7158 case AMDGPU::S_XNOR_B32:
7159 lowerScalarXnor(Worklist, Inst);
7160 Inst.eraseFromParent();
7161 return;
7162
7163 case AMDGPU::S_NAND_B32:
7164 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_AND_B32);
7165 Inst.eraseFromParent();
7166 return;
7167
7168 case AMDGPU::S_NOR_B32:
7169 splitScalarNotBinop(Worklist, Inst, AMDGPU::S_OR_B32);
7170 Inst.eraseFromParent();
7171 return;
7172
7173 case AMDGPU::S_ANDN2_B32:
7174 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_AND_B32);
7175 Inst.eraseFromParent();
7176 return;
7177
7178 case AMDGPU::S_ORN2_B32:
7179 splitScalarBinOpN2(Worklist, Inst, AMDGPU::S_OR_B32);
7180 Inst.eraseFromParent();
7181 return;
7182
7183 // TODO: remove as soon as everything is ready
7184 // to replace VGPR to SGPR copy with V_READFIRSTLANEs.
7185 // S_ADD/SUB_CO_PSEUDO as well as S_UADDO/USUBO_PSEUDO
7186 // can only be selected from the uniform SDNode.
7187 case AMDGPU::S_ADD_CO_PSEUDO:
7188 case AMDGPU::S_SUB_CO_PSEUDO: {
7189 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_ADD_CO_PSEUDO)
7190 ? AMDGPU::V_ADDC_U32_e64
7191 : AMDGPU::V_SUBB_U32_e64;
7192 const auto *CarryRC = RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
7193
7194 Register CarryInReg = Inst.getOperand(i: 4).getReg();
7195 if (!MRI.constrainRegClass(Reg: CarryInReg, RC: CarryRC)) {
7196 Register NewCarryReg = MRI.createVirtualRegister(CarryRC);
7197 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(AMDGPU::COPY), NewCarryReg)
7198 .addReg(CarryInReg);
7199 }
7200
7201 Register CarryOutReg = Inst.getOperand(i: 1).getReg();
7202
7203 Register DestReg = MRI.createVirtualRegister(RI.getEquivalentVGPRClass(
7204 MRI.getRegClass(Reg: Inst.getOperand(i: 0).getReg())));
7205 MachineInstr *CarryOp =
7206 BuildMI(*MBB, &Inst, Inst.getDebugLoc(), get(Opc), DestReg)
7207 .addReg(CarryOutReg, RegState::Define)
7208 .add(Inst.getOperand(i: 2))
7209 .add(Inst.getOperand(i: 3))
7210 .addReg(CarryInReg)
7211 .addImm(0);
7212 legalizeOperands(MI&: *CarryOp);
7213 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: DestReg);
7214 addUsersToMoveToVALUWorklist(Reg: DestReg, MRI, Worklist);
7215 Inst.eraseFromParent();
7216 }
7217 return;
7218 case AMDGPU::S_UADDO_PSEUDO:
7219 case AMDGPU::S_USUBO_PSEUDO: {
7220 const DebugLoc &DL = Inst.getDebugLoc();
7221 MachineOperand &Dest0 = Inst.getOperand(i: 0);
7222 MachineOperand &Dest1 = Inst.getOperand(i: 1);
7223 MachineOperand &Src0 = Inst.getOperand(i: 2);
7224 MachineOperand &Src1 = Inst.getOperand(i: 3);
7225
7226 unsigned Opc = (Inst.getOpcode() == AMDGPU::S_UADDO_PSEUDO)
7227 ? AMDGPU::V_ADD_CO_U32_e64
7228 : AMDGPU::V_SUB_CO_U32_e64;
7229 const TargetRegisterClass *NewRC =
7230 RI.getEquivalentVGPRClass(MRI.getRegClass(Reg: Dest0.getReg()));
7231 Register DestReg = MRI.createVirtualRegister(RegClass: NewRC);
7232 MachineInstr *NewInstr = BuildMI(*MBB, &Inst, DL, get(Opc), DestReg)
7233 .addReg(Dest1.getReg(), RegState::Define)
7234 .add(Src0)
7235 .add(Src1)
7236 .addImm(0); // clamp bit
7237
7238 legalizeOperands(MI&: *NewInstr, MDT);
7239 MRI.replaceRegWith(FromReg: Dest0.getReg(), ToReg: DestReg);
7240 addUsersToMoveToVALUWorklist(Reg: NewInstr->getOperand(i: 0).getReg(), MRI,
7241 Worklist);
7242 Inst.eraseFromParent();
7243 }
7244 return;
7245
7246 case AMDGPU::S_CSELECT_B32:
7247 case AMDGPU::S_CSELECT_B64:
7248 lowerSelect(Worklist, Inst, MDT);
7249 Inst.eraseFromParent();
7250 return;
7251 case AMDGPU::S_CMP_EQ_I32:
7252 case AMDGPU::S_CMP_LG_I32:
7253 case AMDGPU::S_CMP_GT_I32:
7254 case AMDGPU::S_CMP_GE_I32:
7255 case AMDGPU::S_CMP_LT_I32:
7256 case AMDGPU::S_CMP_LE_I32:
7257 case AMDGPU::S_CMP_EQ_U32:
7258 case AMDGPU::S_CMP_LG_U32:
7259 case AMDGPU::S_CMP_GT_U32:
7260 case AMDGPU::S_CMP_GE_U32:
7261 case AMDGPU::S_CMP_LT_U32:
7262 case AMDGPU::S_CMP_LE_U32:
7263 case AMDGPU::S_CMP_EQ_U64:
7264 case AMDGPU::S_CMP_LG_U64:
7265 case AMDGPU::S_CMP_LT_F32:
7266 case AMDGPU::S_CMP_EQ_F32:
7267 case AMDGPU::S_CMP_LE_F32:
7268 case AMDGPU::S_CMP_GT_F32:
7269 case AMDGPU::S_CMP_LG_F32:
7270 case AMDGPU::S_CMP_GE_F32:
7271 case AMDGPU::S_CMP_O_F32:
7272 case AMDGPU::S_CMP_U_F32:
7273 case AMDGPU::S_CMP_NGE_F32:
7274 case AMDGPU::S_CMP_NLG_F32:
7275 case AMDGPU::S_CMP_NGT_F32:
7276 case AMDGPU::S_CMP_NLE_F32:
7277 case AMDGPU::S_CMP_NEQ_F32:
7278 case AMDGPU::S_CMP_NLT_F32:
7279 case AMDGPU::S_CMP_LT_F16:
7280 case AMDGPU::S_CMP_EQ_F16:
7281 case AMDGPU::S_CMP_LE_F16:
7282 case AMDGPU::S_CMP_GT_F16:
7283 case AMDGPU::S_CMP_LG_F16:
7284 case AMDGPU::S_CMP_GE_F16:
7285 case AMDGPU::S_CMP_O_F16:
7286 case AMDGPU::S_CMP_U_F16:
7287 case AMDGPU::S_CMP_NGE_F16:
7288 case AMDGPU::S_CMP_NLG_F16:
7289 case AMDGPU::S_CMP_NGT_F16:
7290 case AMDGPU::S_CMP_NLE_F16:
7291 case AMDGPU::S_CMP_NEQ_F16:
7292 case AMDGPU::S_CMP_NLT_F16: {
7293 Register CondReg = MRI.createVirtualRegister(RI.getWaveMaskRegClass());
7294 auto NewInstr =
7295 BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode), CondReg)
7296 .setMIFlags(Inst.getFlags());
7297 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7298 AMDGPU::OpName::src0_modifiers) >= 0) {
7299 NewInstr
7300 .addImm(0) // src0_modifiers
7301 .add(Inst.getOperand(i: 0)) // src0
7302 .addImm(0) // src1_modifiers
7303 .add(Inst.getOperand(i: 1)) // src1
7304 .addImm(0); // clamp
7305 } else {
7306 NewInstr
7307 .add(Inst.getOperand(i: 0))
7308 .add(Inst.getOperand(i: 1));
7309 }
7310 legalizeOperands(MI&: *NewInstr, MDT);
7311 int SCCIdx = Inst.findRegisterDefOperandIdx(AMDGPU::SCC, /*TRI=*/nullptr);
7312 MachineOperand SCCOp = Inst.getOperand(i: SCCIdx);
7313 addSCCDefUsersToVALUWorklist(Op&: SCCOp, SCCDefInst&: Inst, Worklist, NewCond: CondReg);
7314 Inst.eraseFromParent();
7315 return;
7316 }
7317 case AMDGPU::S_CVT_HI_F32_F16: {
7318 const DebugLoc &DL = Inst.getDebugLoc();
7319 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7320 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7321 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
7322 .addImm(16)
7323 .add(Inst.getOperand(1));
7324 BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst)
7325 .addImm(0) // src0_modifiers
7326 .addReg(TmpReg)
7327 .addImm(0) // clamp
7328 .addImm(0); // omod
7329
7330 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: NewDst);
7331 addUsersToMoveToVALUWorklist(Reg: NewDst, MRI, Worklist);
7332 Inst.eraseFromParent();
7333 return;
7334 }
7335 case AMDGPU::S_MINIMUM_F32:
7336 case AMDGPU::S_MAXIMUM_F32:
7337 case AMDGPU::S_MINIMUM_F16:
7338 case AMDGPU::S_MAXIMUM_F16: {
7339 const DebugLoc &DL = Inst.getDebugLoc();
7340 Register NewDst = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7341 MachineInstr *NewInstr = BuildMI(*MBB, Inst, DL, get(NewOpcode), NewDst)
7342 .addImm(0) // src0_modifiers
7343 .add(Inst.getOperand(i: 1))
7344 .addImm(0) // src1_modifiers
7345 .add(Inst.getOperand(i: 2))
7346 .addImm(0) // clamp
7347 .addImm(0); // omod
7348 MRI.replaceRegWith(FromReg: Inst.getOperand(i: 0).getReg(), ToReg: NewDst);
7349
7350 legalizeOperands(MI&: *NewInstr, MDT);
7351 addUsersToMoveToVALUWorklist(Reg: NewDst, MRI, Worklist);
7352 Inst.eraseFromParent();
7353 return;
7354 }
7355 }
7356
7357 if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) {
7358 // We cannot move this instruction to the VALU, so we should try to
7359 // legalize its operands instead.
7360 legalizeOperands(MI&: Inst, MDT);
7361 return;
7362 }
7363 // Handle converting generic instructions like COPY-to-SGPR into
7364 // COPY-to-VGPR.
7365 if (NewOpcode == Opcode) {
7366 Register DstReg = Inst.getOperand(i: 0).getReg();
7367 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst);
7368
7369 // If it's a copy of a VGPR to a physical SGPR, insert a V_READFIRSTLANE and
7370 // hope for the best.
7371 if (Inst.isCopy() && DstReg.isPhysical() &&
7372 RI.isVGPR(MRI, Inst.getOperand(i: 1).getReg())) {
7373 // TODO: Only works for 32 bit registers.
7374 BuildMI(*Inst.getParent(), &Inst, Inst.getDebugLoc(),
7375 get(AMDGPU::V_READFIRSTLANE_B32), Inst.getOperand(0).getReg())
7376 .add(Inst.getOperand(1));
7377 Inst.eraseFromParent();
7378 return;
7379 }
7380
7381 if (Inst.isCopy() && Inst.getOperand(i: 1).getReg().isVirtual() &&
7382 NewDstRC == RI.getRegClassForReg(MRI, Inst.getOperand(i: 1).getReg())) {
7383 // Instead of creating a copy where src and dst are the same register
7384 // class, we just replace all uses of dst with src. These kinds of
7385 // copies interfere with the heuristics MachineSink uses to decide
7386 // whether or not to split a critical edge. Since the pass assumes
7387 // that copies will end up as machine instructions and not be
7388 // eliminated.
7389 addUsersToMoveToVALUWorklist(Reg: DstReg, MRI, Worklist);
7390 MRI.replaceRegWith(FromReg: DstReg, ToReg: Inst.getOperand(i: 1).getReg());
7391 MRI.clearKillFlags(Reg: Inst.getOperand(i: 1).getReg());
7392 Inst.getOperand(i: 0).setReg(DstReg);
7393 // Make sure we don't leave around a dead VGPR->SGPR copy. Normally
7394 // these are deleted later, but at -O0 it would leave a suspicious
7395 // looking illegal copy of an undef register.
7396 for (unsigned I = Inst.getNumOperands() - 1; I != 0; --I)
7397 Inst.removeOperand(OpNo: I);
7398 Inst.setDesc(get(AMDGPU::IMPLICIT_DEF));
7399 return;
7400 }
7401 Register NewDstReg = MRI.createVirtualRegister(RegClass: NewDstRC);
7402 MRI.replaceRegWith(FromReg: DstReg, ToReg: NewDstReg);
7403 legalizeOperands(MI&: Inst, MDT);
7404 addUsersToMoveToVALUWorklist(Reg: NewDstReg, MRI, Worklist);
7405 return;
7406 }
7407
7408 // Use the new VALU Opcode.
7409 auto NewInstr = BuildMI(*MBB, Inst, Inst.getDebugLoc(), get(NewOpcode))
7410 .setMIFlags(Inst.getFlags());
7411 if (isVOP3(Opcode: NewOpcode) && !isVOP3(Opcode)) {
7412 // Intersperse VOP3 modifiers among the SALU operands.
7413 NewInstr->addOperand(Inst.getOperand(i: 0));
7414 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7415 AMDGPU::OpName::src0_modifiers) >= 0)
7416 NewInstr.addImm(0);
7417 if (AMDGPU::hasNamedOperand(NewOpcode, AMDGPU::OpName::src0)) {
7418 MachineOperand Src = Inst.getOperand(i: 1);
7419 if (AMDGPU::isTrue16Inst(Opc: NewOpcode) && ST.useRealTrue16Insts() &&
7420 Src.isReg() && RI.isVGPR(MRI, Src.getReg()))
7421 NewInstr.addReg(Src.getReg(), 0, AMDGPU::lo16);
7422 else
7423 NewInstr->addOperand(Src);
7424 }
7425
7426 if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) {
7427 // We are converting these to a BFE, so we need to add the missing
7428 // operands for the size and offset.
7429 unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16;
7430 NewInstr.addImm(0);
7431 NewInstr.addImm(Size);
7432 } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) {
7433 // The VALU version adds the second operand to the result, so insert an
7434 // extra 0 operand.
7435 NewInstr.addImm(0);
7436 } else if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) {
7437 const MachineOperand &OffsetWidthOp = Inst.getOperand(i: 2);
7438 // If we need to move this to VGPRs, we need to unpack the second
7439 // operand back into the 2 separate ones for bit offset and width.
7440 assert(OffsetWidthOp.isImm() &&
7441 "Scalar BFE is only implemented for constant width and offset");
7442 uint32_t Imm = OffsetWidthOp.getImm();
7443
7444 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
7445 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
7446 NewInstr.addImm(Offset);
7447 NewInstr.addImm(BitWidth);
7448 } else {
7449 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7450 AMDGPU::OpName::src1_modifiers) >= 0)
7451 NewInstr.addImm(0);
7452 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src1) >= 0)
7453 NewInstr->addOperand(Inst.getOperand(i: 2));
7454 if (AMDGPU::getNamedOperandIdx(NewOpcode,
7455 AMDGPU::OpName::src2_modifiers) >= 0)
7456 NewInstr.addImm(0);
7457 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::src2) >= 0)
7458 NewInstr->addOperand(Inst.getOperand(i: 3));
7459 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::clamp) >= 0)
7460 NewInstr.addImm(0);
7461 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::omod) >= 0)
7462 NewInstr.addImm(0);
7463 if (AMDGPU::getNamedOperandIdx(NewOpcode, AMDGPU::OpName::op_sel) >= 0)
7464 NewInstr.addImm(0);
7465 }
7466 } else {
7467 // Just copy the SALU operands.
7468 for (const MachineOperand &Op : Inst.explicit_operands())
7469 NewInstr->addOperand(Op);
7470 }
7471
7472 // Remove any references to SCC. Vector instructions can't read from it, and
7473 // We're just about to add the implicit use / defs of VCC, and we don't want
7474 // both.
7475 for (MachineOperand &Op : Inst.implicit_operands()) {
7476 if (Op.getReg() == AMDGPU::SCC) {
7477 // Only propagate through live-def of SCC.
7478 if (Op.isDef() && !Op.isDead())
7479 addSCCDefUsersToVALUWorklist(Op, SCCDefInst&: Inst, Worklist);
7480 if (Op.isUse())
7481 addSCCDefsToVALUWorklist(SCCUseInst: NewInstr, Worklist);
7482 }
7483 }
7484 Inst.eraseFromParent();
7485 Register NewDstReg;
7486 if (NewInstr->getOperand(0).isReg() && NewInstr->getOperand(0).isDef()) {
7487 Register DstReg = NewInstr->getOperand(0).getReg();
7488 assert(DstReg.isVirtual());
7489 // Update the destination register class.
7490 const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(Inst: *NewInstr);
7491 assert(NewDstRC);
7492 NewDstReg = MRI.createVirtualRegister(RegClass: NewDstRC);
7493 MRI.replaceRegWith(FromReg: DstReg, ToReg: NewDstReg);
7494 }
7495 fixImplicitOperands(MI&: *NewInstr);
7496 // Legalize the operands
7497 legalizeOperands(MI&: *NewInstr, MDT);
7498 if (NewDstReg)
7499 addUsersToMoveToVALUWorklist(Reg: NewDstReg, MRI, Worklist);
7500}
7501
7502// Add/sub require special handling to deal with carry outs.
7503std::pair<bool, MachineBasicBlock *>
7504SIInstrInfo::moveScalarAddSub(SIInstrWorklist &Worklist, MachineInstr &Inst,
7505 MachineDominatorTree *MDT) const {
7506 if (ST.hasAddNoCarry()) {
7507 // Assume there is no user of scc since we don't select this in that case.
7508 // Since scc isn't used, it doesn't really matter if the i32 or u32 variant
7509 // is used.
7510
7511 MachineBasicBlock &MBB = *Inst.getParent();
7512 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7513
7514 Register OldDstReg = Inst.getOperand(i: 0).getReg();
7515 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7516
7517 unsigned Opc = Inst.getOpcode();
7518 assert(Opc == AMDGPU::S_ADD_I32 || Opc == AMDGPU::S_SUB_I32);
7519
7520 unsigned NewOpc = Opc == AMDGPU::S_ADD_I32 ?
7521 AMDGPU::V_ADD_U32_e64 : AMDGPU::V_SUB_U32_e64;
7522
7523 assert(Inst.getOperand(3).getReg() == AMDGPU::SCC);
7524 Inst.removeOperand(OpNo: 3);
7525
7526 Inst.setDesc(get(NewOpc));
7527 Inst.addOperand(Op: MachineOperand::CreateImm(Val: 0)); // clamp bit
7528 Inst.addImplicitDefUseOperands(MF&: *MBB.getParent());
7529 MRI.replaceRegWith(FromReg: OldDstReg, ToReg: ResultReg);
7530 MachineBasicBlock *NewBB = legalizeOperands(MI&: Inst, MDT);
7531
7532 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
7533 return std::pair(true, NewBB);
7534 }
7535
7536 return std::pair(false, nullptr);
7537}
7538
7539void SIInstrInfo::lowerSelect(SIInstrWorklist &Worklist, MachineInstr &Inst,
7540 MachineDominatorTree *MDT) const {
7541
7542 MachineBasicBlock &MBB = *Inst.getParent();
7543 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7544 MachineBasicBlock::iterator MII = Inst;
7545 DebugLoc DL = Inst.getDebugLoc();
7546
7547 MachineOperand &Dest = Inst.getOperand(i: 0);
7548 MachineOperand &Src0 = Inst.getOperand(i: 1);
7549 MachineOperand &Src1 = Inst.getOperand(i: 2);
7550 MachineOperand &Cond = Inst.getOperand(i: 3);
7551
7552 Register CondReg = Cond.getReg();
7553 bool IsSCC = (CondReg == AMDGPU::SCC);
7554
7555 // If this is a trivial select where the condition is effectively not SCC
7556 // (CondReg is a source of copy to SCC), then the select is semantically
7557 // equivalent to copying CondReg. Hence, there is no need to create
7558 // V_CNDMASK, we can just use that and bail out.
7559 if (!IsSCC && Src0.isImm() && (Src0.getImm() == -1) && Src1.isImm() &&
7560 (Src1.getImm() == 0)) {
7561 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: CondReg);
7562 return;
7563 }
7564
7565 Register NewCondReg = CondReg;
7566 if (IsSCC) {
7567 const TargetRegisterClass *TC =
7568 RI.getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
7569 NewCondReg = MRI.createVirtualRegister(RegClass: TC);
7570
7571 // Now look for the closest SCC def if it is a copy
7572 // replacing the CondReg with the COPY source register
7573 bool CopyFound = false;
7574 for (MachineInstr &CandI :
7575 make_range(x: std::next(x: MachineBasicBlock::reverse_iterator(Inst)),
7576 y: Inst.getParent()->rend())) {
7577 if (CandI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) !=
7578 -1) {
7579 if (CandI.isCopy() && CandI.getOperand(0).getReg() == AMDGPU::SCC) {
7580 BuildMI(MBB, MII, DL, get(AMDGPU::COPY), NewCondReg)
7581 .addReg(CandI.getOperand(1).getReg());
7582 CopyFound = true;
7583 }
7584 break;
7585 }
7586 }
7587 if (!CopyFound) {
7588 // SCC def is not a copy
7589 // Insert a trivial select instead of creating a copy, because a copy from
7590 // SCC would semantically mean just copying a single bit, but we may need
7591 // the result to be a vector condition mask that needs preserving.
7592 unsigned Opcode = (ST.getWavefrontSize() == 64) ? AMDGPU::S_CSELECT_B64
7593 : AMDGPU::S_CSELECT_B32;
7594 auto NewSelect =
7595 BuildMI(MBB, MII, DL, get(Opcode), NewCondReg).addImm(-1).addImm(0);
7596 NewSelect->getOperand(3).setIsUndef(Cond.isUndef());
7597 }
7598 }
7599
7600 Register NewDestReg = MRI.createVirtualRegister(
7601 RI.getEquivalentVGPRClass(MRI.getRegClass(Reg: Dest.getReg())));
7602 MachineInstr *NewInst;
7603 if (Inst.getOpcode() == AMDGPU::S_CSELECT_B32) {
7604 NewInst = BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B32_e64), NewDestReg)
7605 .addImm(0)
7606 .add(Src1) // False
7607 .addImm(0)
7608 .add(Src0) // True
7609 .addReg(NewCondReg);
7610 } else {
7611 NewInst =
7612 BuildMI(MBB, MII, DL, get(AMDGPU::V_CNDMASK_B64_PSEUDO), NewDestReg)
7613 .add(Src1) // False
7614 .add(Src0) // True
7615 .addReg(NewCondReg);
7616 }
7617 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDestReg);
7618 legalizeOperands(MI&: *NewInst, MDT);
7619 addUsersToMoveToVALUWorklist(Reg: NewDestReg, MRI, Worklist);
7620}
7621
7622void SIInstrInfo::lowerScalarAbs(SIInstrWorklist &Worklist,
7623 MachineInstr &Inst) const {
7624 MachineBasicBlock &MBB = *Inst.getParent();
7625 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7626 MachineBasicBlock::iterator MII = Inst;
7627 DebugLoc DL = Inst.getDebugLoc();
7628
7629 MachineOperand &Dest = Inst.getOperand(i: 0);
7630 MachineOperand &Src = Inst.getOperand(i: 1);
7631 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7632 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7633
7634 unsigned SubOp = ST.hasAddNoCarry() ?
7635 AMDGPU::V_SUB_U32_e32 : AMDGPU::V_SUB_CO_U32_e32;
7636
7637 BuildMI(MBB, MII, DL, get(SubOp), TmpReg)
7638 .addImm(0)
7639 .addReg(Src.getReg());
7640
7641 BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg)
7642 .addReg(Src.getReg())
7643 .addReg(TmpReg);
7644
7645 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
7646 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
7647}
7648
7649void SIInstrInfo::lowerScalarXnor(SIInstrWorklist &Worklist,
7650 MachineInstr &Inst) const {
7651 MachineBasicBlock &MBB = *Inst.getParent();
7652 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7653 MachineBasicBlock::iterator MII = Inst;
7654 const DebugLoc &DL = Inst.getDebugLoc();
7655
7656 MachineOperand &Dest = Inst.getOperand(i: 0);
7657 MachineOperand &Src0 = Inst.getOperand(i: 1);
7658 MachineOperand &Src1 = Inst.getOperand(i: 2);
7659
7660 if (ST.hasDLInsts()) {
7661 Register NewDest = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7662 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src0, MRI, DL);
7663 legalizeGenericOperand(MBB, MII, &AMDGPU::VGPR_32RegClass, Src1, MRI, DL);
7664
7665 BuildMI(MBB, MII, DL, get(AMDGPU::V_XNOR_B32_e64), NewDest)
7666 .add(Src0)
7667 .add(Src1);
7668
7669 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7670 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7671 } else {
7672 // Using the identity !(x ^ y) == (!x ^ y) == (x ^ !y), we can
7673 // invert either source and then perform the XOR. If either source is a
7674 // scalar register, then we can leave the inversion on the scalar unit to
7675 // achieve a better distribution of scalar and vector instructions.
7676 bool Src0IsSGPR = Src0.isReg() &&
7677 RI.isSGPRClass(MRI.getRegClass(Reg: Src0.getReg()));
7678 bool Src1IsSGPR = Src1.isReg() &&
7679 RI.isSGPRClass(MRI.getRegClass(Reg: Src1.getReg()));
7680 MachineInstr *Xor;
7681 Register Temp = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7682 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7683
7684 // Build a pair of scalar instructions and add them to the work list.
7685 // The next iteration over the work list will lower these to the vector
7686 // unit as necessary.
7687 if (Src0IsSGPR) {
7688 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src0);
7689 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
7690 .addReg(Temp)
7691 .add(Src1);
7692 } else if (Src1IsSGPR) {
7693 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Temp).add(Src1);
7694 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), NewDest)
7695 .add(Src0)
7696 .addReg(Temp);
7697 } else {
7698 Xor = BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B32), Temp)
7699 .add(Src0)
7700 .add(Src1);
7701 MachineInstr *Not =
7702 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest).addReg(Temp);
7703 Worklist.insert(MI: Not);
7704 }
7705
7706 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7707
7708 Worklist.insert(MI: Xor);
7709
7710 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7711 }
7712}
7713
7714void SIInstrInfo::splitScalarNotBinop(SIInstrWorklist &Worklist,
7715 MachineInstr &Inst,
7716 unsigned Opcode) const {
7717 MachineBasicBlock &MBB = *Inst.getParent();
7718 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7719 MachineBasicBlock::iterator MII = Inst;
7720 const DebugLoc &DL = Inst.getDebugLoc();
7721
7722 MachineOperand &Dest = Inst.getOperand(i: 0);
7723 MachineOperand &Src0 = Inst.getOperand(i: 1);
7724 MachineOperand &Src1 = Inst.getOperand(i: 2);
7725
7726 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7727 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
7728
7729 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), Interm)
7730 .add(Src0)
7731 .add(Src1);
7732
7733 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), NewDest)
7734 .addReg(Interm);
7735
7736 Worklist.insert(MI: &Op);
7737 Worklist.insert(MI: &Not);
7738
7739 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7740 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7741}
7742
7743void SIInstrInfo::splitScalarBinOpN2(SIInstrWorklist &Worklist,
7744 MachineInstr &Inst,
7745 unsigned Opcode) const {
7746 MachineBasicBlock &MBB = *Inst.getParent();
7747 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7748 MachineBasicBlock::iterator MII = Inst;
7749 const DebugLoc &DL = Inst.getDebugLoc();
7750
7751 MachineOperand &Dest = Inst.getOperand(i: 0);
7752 MachineOperand &Src0 = Inst.getOperand(i: 1);
7753 MachineOperand &Src1 = Inst.getOperand(i: 2);
7754
7755 Register NewDest = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
7756 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
7757
7758 MachineInstr &Not = *BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B32), Interm)
7759 .add(Src1);
7760
7761 MachineInstr &Op = *BuildMI(MBB, MII, DL, get(Opcode), NewDest)
7762 .add(Src0)
7763 .addReg(Interm);
7764
7765 Worklist.insert(MI: &Not);
7766 Worklist.insert(MI: &Op);
7767
7768 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
7769 addUsersToMoveToVALUWorklist(Reg: NewDest, MRI, Worklist);
7770}
7771
7772void SIInstrInfo::splitScalar64BitUnaryOp(SIInstrWorklist &Worklist,
7773 MachineInstr &Inst, unsigned Opcode,
7774 bool Swap) const {
7775 MachineBasicBlock &MBB = *Inst.getParent();
7776 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7777
7778 MachineOperand &Dest = Inst.getOperand(i: 0);
7779 MachineOperand &Src0 = Inst.getOperand(i: 1);
7780 DebugLoc DL = Inst.getDebugLoc();
7781
7782 MachineBasicBlock::iterator MII = Inst;
7783
7784 const MCInstrDesc &InstDesc = get(Opcode);
7785 const TargetRegisterClass *Src0RC = Src0.isReg() ?
7786 MRI.getRegClass(Src0.getReg()) :
7787 &AMDGPU::SGPR_32RegClass;
7788
7789 const TargetRegisterClass *Src0SubRC =
7790 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7791
7792 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7793 AMDGPU::sub0, Src0SubRC);
7794
7795 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
7796 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
7797 const TargetRegisterClass *NewDestSubRC =
7798 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0);
7799
7800 Register DestSub0 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7801 MachineInstr &LoHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub0).add(MO: SrcReg0Sub0);
7802
7803 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
7804 AMDGPU::sub1, Src0SubRC);
7805
7806 Register DestSub1 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
7807 MachineInstr &HiHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub1).add(MO: SrcReg0Sub1);
7808
7809 if (Swap)
7810 std::swap(a&: DestSub0, b&: DestSub1);
7811
7812 Register FullDestReg = MRI.createVirtualRegister(RegClass: NewDestRC);
7813 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7814 .addReg(DestSub0)
7815 .addImm(AMDGPU::sub0)
7816 .addReg(DestSub1)
7817 .addImm(AMDGPU::sub1);
7818
7819 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7820
7821 Worklist.insert(MI: &LoHalf);
7822 Worklist.insert(MI: &HiHalf);
7823
7824 // We don't need to legalizeOperands here because for a single operand, src0
7825 // will support any kind of input.
7826
7827 // Move all users of this moved value.
7828 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7829}
7830
7831// There is not a vector equivalent of s_mul_u64. For this reason, we need to
7832// split the s_mul_u64 in 32-bit vector multiplications.
7833void SIInstrInfo::splitScalarSMulU64(SIInstrWorklist &Worklist,
7834 MachineInstr &Inst,
7835 MachineDominatorTree *MDT) const {
7836 MachineBasicBlock &MBB = *Inst.getParent();
7837 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7838
7839 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
7840 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7841 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7842
7843 MachineOperand &Dest = Inst.getOperand(i: 0);
7844 MachineOperand &Src0 = Inst.getOperand(i: 1);
7845 MachineOperand &Src1 = Inst.getOperand(i: 2);
7846 const DebugLoc &DL = Inst.getDebugLoc();
7847 MachineBasicBlock::iterator MII = Inst;
7848
7849 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0.getReg());
7850 const TargetRegisterClass *Src1RC = MRI.getRegClass(Reg: Src1.getReg());
7851 const TargetRegisterClass *Src0SubRC =
7852 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7853 if (RI.isSGPRClass(Src0SubRC))
7854 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC);
7855 const TargetRegisterClass *Src1SubRC =
7856 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
7857 if (RI.isSGPRClass(Src1SubRC))
7858 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC);
7859
7860 // First, we extract the low 32-bit and high 32-bit values from each of the
7861 // operands.
7862 MachineOperand Op0L =
7863 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
7864 MachineOperand Op1L =
7865 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
7866 MachineOperand Op0H =
7867 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub1, Src0SubRC);
7868 MachineOperand Op1H =
7869 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub1, Src1SubRC);
7870
7871 // The multilication is done as follows:
7872 //
7873 // Op1H Op1L
7874 // * Op0H Op0L
7875 // --------------------
7876 // Op1H*Op0L Op1L*Op0L
7877 // + Op1H*Op0H Op1L*Op0H
7878 // -----------------------------------------
7879 // (Op1H*Op0L + Op1L*Op0H + carry) Op1L*Op0L
7880 //
7881 // We drop Op1H*Op0H because the result of the multiplication is a 64-bit
7882 // value and that would overflow.
7883 // The low 32-bit value is Op1L*Op0L.
7884 // The high 32-bit value is Op1H*Op0L + Op1L*Op0H + carry (from Op1L*Op0L).
7885
7886 Register Op1L_Op0H_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7887 MachineInstr *Op1L_Op0H =
7888 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1L_Op0H_Reg)
7889 .add(Op1L)
7890 .add(Op0H);
7891
7892 Register Op1H_Op0L_Reg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7893 MachineInstr *Op1H_Op0L =
7894 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), Op1H_Op0L_Reg)
7895 .add(Op1H)
7896 .add(Op0L);
7897
7898 Register CarryReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7899 MachineInstr *Carry =
7900 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_HI_U32_e64), CarryReg)
7901 .add(Op1L)
7902 .add(Op0L);
7903
7904 MachineInstr *LoHalf =
7905 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0)
7906 .add(Op1L)
7907 .add(Op0L);
7908
7909 Register AddReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7910 MachineInstr *Add = BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), AddReg)
7911 .addReg(Op1L_Op0H_Reg)
7912 .addReg(Op1H_Op0L_Reg);
7913
7914 MachineInstr *HiHalf =
7915 BuildMI(MBB, MII, DL, get(AMDGPU::V_ADD_U32_e32), DestSub1)
7916 .addReg(AddReg)
7917 .addReg(CarryReg);
7918
7919 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7920 .addReg(DestSub0)
7921 .addImm(AMDGPU::sub0)
7922 .addReg(DestSub1)
7923 .addImm(AMDGPU::sub1);
7924
7925 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7926
7927 // Try to legalize the operands in case we need to swap the order to keep it
7928 // valid.
7929 legalizeOperands(MI&: *Op1L_Op0H, MDT);
7930 legalizeOperands(MI&: *Op1H_Op0L, MDT);
7931 legalizeOperands(MI&: *Carry, MDT);
7932 legalizeOperands(MI&: *LoHalf, MDT);
7933 legalizeOperands(MI&: *Add, MDT);
7934 legalizeOperands(MI&: *HiHalf, MDT);
7935
7936 // Move all users of this moved value.
7937 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
7938}
7939
7940// Lower S_MUL_U64_U32_PSEUDO/S_MUL_I64_I32_PSEUDO in two 32-bit vector
7941// multiplications.
7942void SIInstrInfo::splitScalarSMulPseudo(SIInstrWorklist &Worklist,
7943 MachineInstr &Inst,
7944 MachineDominatorTree *MDT) const {
7945 MachineBasicBlock &MBB = *Inst.getParent();
7946 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
7947
7948 Register FullDestReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
7949 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7950 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
7951
7952 MachineOperand &Dest = Inst.getOperand(i: 0);
7953 MachineOperand &Src0 = Inst.getOperand(i: 1);
7954 MachineOperand &Src1 = Inst.getOperand(i: 2);
7955 const DebugLoc &DL = Inst.getDebugLoc();
7956 MachineBasicBlock::iterator MII = Inst;
7957
7958 const TargetRegisterClass *Src0RC = MRI.getRegClass(Reg: Src0.getReg());
7959 const TargetRegisterClass *Src1RC = MRI.getRegClass(Reg: Src1.getReg());
7960 const TargetRegisterClass *Src0SubRC =
7961 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
7962 if (RI.isSGPRClass(Src0SubRC))
7963 Src0SubRC = RI.getEquivalentVGPRClass(Src0SubRC);
7964 const TargetRegisterClass *Src1SubRC =
7965 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
7966 if (RI.isSGPRClass(Src1SubRC))
7967 Src1SubRC = RI.getEquivalentVGPRClass(Src1SubRC);
7968
7969 // First, we extract the low 32-bit and high 32-bit values from each of the
7970 // operands.
7971 MachineOperand Op0L =
7972 buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, AMDGPU::sub0, Src0SubRC);
7973 MachineOperand Op1L =
7974 buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, AMDGPU::sub0, Src1SubRC);
7975
7976 unsigned Opc = Inst.getOpcode();
7977 unsigned NewOpc = Opc == AMDGPU::S_MUL_U64_U32_PSEUDO
7978 ? AMDGPU::V_MUL_HI_U32_e64
7979 : AMDGPU::V_MUL_HI_I32_e64;
7980 MachineInstr *HiHalf =
7981 BuildMI(MBB, MII, DL, get(NewOpc), DestSub1).add(Op1L).add(Op0L);
7982
7983 MachineInstr *LoHalf =
7984 BuildMI(MBB, MII, DL, get(AMDGPU::V_MUL_LO_U32_e64), DestSub0)
7985 .add(Op1L)
7986 .add(Op0L);
7987
7988 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
7989 .addReg(DestSub0)
7990 .addImm(AMDGPU::sub0)
7991 .addReg(DestSub1)
7992 .addImm(AMDGPU::sub1);
7993
7994 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
7995
7996 // Try to legalize the operands in case we need to swap the order to keep it
7997 // valid.
7998 legalizeOperands(MI&: *HiHalf, MDT);
7999 legalizeOperands(MI&: *LoHalf, MDT);
8000
8001 // Move all users of this moved value.
8002 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
8003}
8004
8005void SIInstrInfo::splitScalar64BitBinaryOp(SIInstrWorklist &Worklist,
8006 MachineInstr &Inst, unsigned Opcode,
8007 MachineDominatorTree *MDT) const {
8008 MachineBasicBlock &MBB = *Inst.getParent();
8009 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8010
8011 MachineOperand &Dest = Inst.getOperand(i: 0);
8012 MachineOperand &Src0 = Inst.getOperand(i: 1);
8013 MachineOperand &Src1 = Inst.getOperand(i: 2);
8014 DebugLoc DL = Inst.getDebugLoc();
8015
8016 MachineBasicBlock::iterator MII = Inst;
8017
8018 const MCInstrDesc &InstDesc = get(Opcode);
8019 const TargetRegisterClass *Src0RC = Src0.isReg() ?
8020 MRI.getRegClass(Src0.getReg()) :
8021 &AMDGPU::SGPR_32RegClass;
8022
8023 const TargetRegisterClass *Src0SubRC =
8024 RI.getSubRegisterClass(Src0RC, AMDGPU::sub0);
8025 const TargetRegisterClass *Src1RC = Src1.isReg() ?
8026 MRI.getRegClass(Src1.getReg()) :
8027 &AMDGPU::SGPR_32RegClass;
8028
8029 const TargetRegisterClass *Src1SubRC =
8030 RI.getSubRegisterClass(Src1RC, AMDGPU::sub0);
8031
8032 MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
8033 AMDGPU::sub0, Src0SubRC);
8034 MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
8035 AMDGPU::sub0, Src1SubRC);
8036 MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC,
8037 AMDGPU::sub1, Src0SubRC);
8038 MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC,
8039 AMDGPU::sub1, Src1SubRC);
8040
8041 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
8042 const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC);
8043 const TargetRegisterClass *NewDestSubRC =
8044 RI.getSubRegisterClass(NewDestRC, AMDGPU::sub0);
8045
8046 Register DestSub0 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
8047 MachineInstr &LoHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub0)
8048 .add(MO: SrcReg0Sub0)
8049 .add(MO: SrcReg1Sub0);
8050
8051 Register DestSub1 = MRI.createVirtualRegister(RegClass: NewDestSubRC);
8052 MachineInstr &HiHalf = *BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: DestSub1)
8053 .add(MO: SrcReg0Sub1)
8054 .add(MO: SrcReg1Sub1);
8055
8056 Register FullDestReg = MRI.createVirtualRegister(RegClass: NewDestRC);
8057 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg)
8058 .addReg(DestSub0)
8059 .addImm(AMDGPU::sub0)
8060 .addReg(DestSub1)
8061 .addImm(AMDGPU::sub1);
8062
8063 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: FullDestReg);
8064
8065 Worklist.insert(MI: &LoHalf);
8066 Worklist.insert(MI: &HiHalf);
8067
8068 // Move all users of this moved value.
8069 addUsersToMoveToVALUWorklist(Reg: FullDestReg, MRI, Worklist);
8070}
8071
8072void SIInstrInfo::splitScalar64BitXnor(SIInstrWorklist &Worklist,
8073 MachineInstr &Inst,
8074 MachineDominatorTree *MDT) const {
8075 MachineBasicBlock &MBB = *Inst.getParent();
8076 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8077
8078 MachineOperand &Dest = Inst.getOperand(i: 0);
8079 MachineOperand &Src0 = Inst.getOperand(i: 1);
8080 MachineOperand &Src1 = Inst.getOperand(i: 2);
8081 const DebugLoc &DL = Inst.getDebugLoc();
8082
8083 MachineBasicBlock::iterator MII = Inst;
8084
8085 const TargetRegisterClass *DestRC = MRI.getRegClass(Reg: Dest.getReg());
8086
8087 Register Interm = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
8088
8089 MachineOperand* Op0;
8090 MachineOperand* Op1;
8091
8092 if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) {
8093 Op0 = &Src0;
8094 Op1 = &Src1;
8095 } else {
8096 Op0 = &Src1;
8097 Op1 = &Src0;
8098 }
8099
8100 BuildMI(MBB, MII, DL, get(AMDGPU::S_NOT_B64), Interm)
8101 .add(*Op0);
8102
8103 Register NewDest = MRI.createVirtualRegister(RegClass: DestRC);
8104
8105 MachineInstr &Xor = *BuildMI(MBB, MII, DL, get(AMDGPU::S_XOR_B64), NewDest)
8106 .addReg(Interm)
8107 .add(*Op1);
8108
8109 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: NewDest);
8110
8111 Worklist.insert(MI: &Xor);
8112}
8113
8114void SIInstrInfo::splitScalar64BitBCNT(SIInstrWorklist &Worklist,
8115 MachineInstr &Inst) const {
8116 MachineBasicBlock &MBB = *Inst.getParent();
8117 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8118
8119 MachineBasicBlock::iterator MII = Inst;
8120 const DebugLoc &DL = Inst.getDebugLoc();
8121
8122 MachineOperand &Dest = Inst.getOperand(i: 0);
8123 MachineOperand &Src = Inst.getOperand(i: 1);
8124
8125 const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64);
8126 const TargetRegisterClass *SrcRC = Src.isReg() ?
8127 MRI.getRegClass(Src.getReg()) :
8128 &AMDGPU::SGPR_32RegClass;
8129
8130 Register MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8131 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8132
8133 const TargetRegisterClass *SrcSubRC =
8134 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0);
8135
8136 MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
8137 AMDGPU::sub0, SrcSubRC);
8138 MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC,
8139 AMDGPU::sub1, SrcSubRC);
8140
8141 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg).add(MO: SrcRegSub0).addImm(Val: 0);
8142
8143 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: ResultReg).add(MO: SrcRegSub1).addReg(RegNo: MidReg);
8144
8145 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8146
8147 // We don't need to legalize operands here. src0 for either instruction can be
8148 // an SGPR, and the second input is unused or determined here.
8149 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8150}
8151
8152void SIInstrInfo::splitScalar64BitBFE(SIInstrWorklist &Worklist,
8153 MachineInstr &Inst) const {
8154 MachineBasicBlock &MBB = *Inst.getParent();
8155 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8156 MachineBasicBlock::iterator MII = Inst;
8157 const DebugLoc &DL = Inst.getDebugLoc();
8158
8159 MachineOperand &Dest = Inst.getOperand(i: 0);
8160 uint32_t Imm = Inst.getOperand(i: 2).getImm();
8161 uint32_t Offset = Imm & 0x3f; // Extract bits [5:0].
8162 uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16].
8163
8164 (void) Offset;
8165
8166 // Only sext_inreg cases handled.
8167 assert(Inst.getOpcode() == AMDGPU::S_BFE_I64 && BitWidth <= 32 &&
8168 Offset == 0 && "Not implemented");
8169
8170 if (BitWidth < 32) {
8171 Register MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8172 Register MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8173 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
8174
8175 BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32_e64), MidRegLo)
8176 .addReg(Inst.getOperand(1).getReg(), 0, AMDGPU::sub0)
8177 .addImm(0)
8178 .addImm(BitWidth);
8179
8180 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi)
8181 .addImm(31)
8182 .addReg(MidRegLo);
8183
8184 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
8185 .addReg(MidRegLo)
8186 .addImm(AMDGPU::sub0)
8187 .addReg(MidRegHi)
8188 .addImm(AMDGPU::sub1);
8189
8190 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8191 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8192 return;
8193 }
8194
8195 MachineOperand &Src = Inst.getOperand(i: 1);
8196 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8197 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass);
8198
8199 BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg)
8200 .addImm(31)
8201 .addReg(Src.getReg(), 0, AMDGPU::sub0);
8202
8203 BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg)
8204 .addReg(Src.getReg(), 0, AMDGPU::sub0)
8205 .addImm(AMDGPU::sub0)
8206 .addReg(TmpReg)
8207 .addImm(AMDGPU::sub1);
8208
8209 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8210 addUsersToMoveToVALUWorklist(Reg: ResultReg, MRI, Worklist);
8211}
8212
8213void SIInstrInfo::splitScalar64BitCountOp(SIInstrWorklist &Worklist,
8214 MachineInstr &Inst, unsigned Opcode,
8215 MachineDominatorTree *MDT) const {
8216 // (S_FLBIT_I32_B64 hi:lo) ->
8217 // -> (umin (V_FFBH_U32_e32 hi), (uaddsat (V_FFBH_U32_e32 lo), 32))
8218 // (S_FF1_I32_B64 hi:lo) ->
8219 // ->(umin (uaddsat (V_FFBL_B32_e32 hi), 32) (V_FFBL_B32_e32 lo))
8220
8221 MachineBasicBlock &MBB = *Inst.getParent();
8222 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8223 MachineBasicBlock::iterator MII = Inst;
8224 const DebugLoc &DL = Inst.getDebugLoc();
8225
8226 MachineOperand &Dest = Inst.getOperand(i: 0);
8227 MachineOperand &Src = Inst.getOperand(i: 1);
8228
8229 const MCInstrDesc &InstDesc = get(Opcode);
8230
8231 bool IsCtlz = Opcode == AMDGPU::V_FFBH_U32_e32;
8232 unsigned OpcodeAdd =
8233 ST.hasAddNoCarry() ? AMDGPU::V_ADD_U32_e64 : AMDGPU::V_ADD_CO_U32_e32;
8234
8235 const TargetRegisterClass *SrcRC =
8236 Src.isReg() ? MRI.getRegClass(Src.getReg()) : &AMDGPU::SGPR_32RegClass;
8237 const TargetRegisterClass *SrcSubRC =
8238 RI.getSubRegisterClass(SrcRC, AMDGPU::sub0);
8239
8240 MachineOperand SrcRegSub0 =
8241 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub0, SrcSubRC);
8242 MachineOperand SrcRegSub1 =
8243 buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, AMDGPU::sub1, SrcSubRC);
8244
8245 Register MidReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8246 Register MidReg2 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8247 Register MidReg3 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8248 Register MidReg4 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8249
8250 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg1).add(MO: SrcRegSub0);
8251
8252 BuildMI(BB&: MBB, I: MII, MIMD: DL, MCID: InstDesc, DestReg: MidReg2).add(MO: SrcRegSub1);
8253
8254 BuildMI(MBB, MII, DL, get(OpcodeAdd), MidReg3)
8255 .addReg(IsCtlz ? MidReg1 : MidReg2)
8256 .addImm(32)
8257 .addImm(1); // enable clamp
8258
8259 BuildMI(MBB, MII, DL, get(AMDGPU::V_MIN_U32_e64), MidReg4)
8260 .addReg(MidReg3)
8261 .addReg(IsCtlz ? MidReg2 : MidReg1);
8262
8263 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: MidReg4);
8264
8265 addUsersToMoveToVALUWorklist(Reg: MidReg4, MRI, Worklist);
8266}
8267
8268void SIInstrInfo::addUsersToMoveToVALUWorklist(
8269 Register DstReg, MachineRegisterInfo &MRI,
8270 SIInstrWorklist &Worklist) const {
8271 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(RegNo: DstReg),
8272 E = MRI.use_end(); I != E;) {
8273 MachineInstr &UseMI = *I->getParent();
8274
8275 unsigned OpNo = 0;
8276
8277 switch (UseMI.getOpcode()) {
8278 case AMDGPU::COPY:
8279 case AMDGPU::WQM:
8280 case AMDGPU::SOFT_WQM:
8281 case AMDGPU::STRICT_WWM:
8282 case AMDGPU::STRICT_WQM:
8283 case AMDGPU::REG_SEQUENCE:
8284 case AMDGPU::PHI:
8285 case AMDGPU::INSERT_SUBREG:
8286 break;
8287 default:
8288 OpNo = I.getOperandNo();
8289 break;
8290 }
8291
8292 if (!RI.hasVectorRegisters(getOpRegClass(MI: UseMI, OpNo))) {
8293 Worklist.insert(MI: &UseMI);
8294
8295 do {
8296 ++I;
8297 } while (I != E && I->getParent() == &UseMI);
8298 } else {
8299 ++I;
8300 }
8301 }
8302}
8303
8304void SIInstrInfo::movePackToVALU(SIInstrWorklist &Worklist,
8305 MachineRegisterInfo &MRI,
8306 MachineInstr &Inst) const {
8307 Register ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8308 MachineBasicBlock *MBB = Inst.getParent();
8309 MachineOperand &Src0 = Inst.getOperand(i: 1);
8310 MachineOperand &Src1 = Inst.getOperand(i: 2);
8311 const DebugLoc &DL = Inst.getDebugLoc();
8312
8313 switch (Inst.getOpcode()) {
8314 case AMDGPU::S_PACK_LL_B32_B16: {
8315 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8316 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8317
8318 // FIXME: Can do a lot better if we know the high bits of src0 or src1 are
8319 // 0.
8320 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8321 .addImm(0xffff);
8322
8323 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_B32_e64), TmpReg)
8324 .addReg(ImmReg, RegState::Kill)
8325 .add(Src0);
8326
8327 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
8328 .add(Src1)
8329 .addImm(16)
8330 .addReg(TmpReg, RegState::Kill);
8331 break;
8332 }
8333 case AMDGPU::S_PACK_LH_B32_B16: {
8334 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8335 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8336 .addImm(0xffff);
8337 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_BFI_B32_e64), ResultReg)
8338 .addReg(ImmReg, RegState::Kill)
8339 .add(Src0)
8340 .add(Src1);
8341 break;
8342 }
8343 case AMDGPU::S_PACK_HL_B32_B16: {
8344 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8345 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
8346 .addImm(16)
8347 .add(Src0);
8348 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHL_OR_B32_e64), ResultReg)
8349 .add(Src1)
8350 .addImm(16)
8351 .addReg(TmpReg, RegState::Kill);
8352 break;
8353 }
8354 case AMDGPU::S_PACK_HH_B32_B16: {
8355 Register ImmReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8356 Register TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
8357 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_LSHRREV_B32_e64), TmpReg)
8358 .addImm(16)
8359 .add(Src0);
8360 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_MOV_B32_e32), ImmReg)
8361 .addImm(0xffff0000);
8362 BuildMI(*MBB, Inst, DL, get(AMDGPU::V_AND_OR_B32_e64), ResultReg)
8363 .add(Src1)
8364 .addReg(ImmReg, RegState::Kill)
8365 .addReg(TmpReg, RegState::Kill);
8366 break;
8367 }
8368 default:
8369 llvm_unreachable("unhandled s_pack_* instruction");
8370 }
8371
8372 MachineOperand &Dest = Inst.getOperand(i: 0);
8373 MRI.replaceRegWith(FromReg: Dest.getReg(), ToReg: ResultReg);
8374 addUsersToMoveToVALUWorklist(DstReg: ResultReg, MRI, Worklist);
8375}
8376
8377void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineOperand &Op,
8378 MachineInstr &SCCDefInst,
8379 SIInstrWorklist &Worklist,
8380 Register NewCond) const {
8381
8382 // Ensure that def inst defines SCC, which is still live.
8383 assert(Op.isReg() && Op.getReg() == AMDGPU::SCC && Op.isDef() &&
8384 !Op.isDead() && Op.getParent() == &SCCDefInst);
8385 SmallVector<MachineInstr *, 4> CopyToDelete;
8386 // This assumes that all the users of SCC are in the same block
8387 // as the SCC def.
8388 for (MachineInstr &MI : // Skip the def inst itself.
8389 make_range(x: std::next(x: MachineBasicBlock::iterator(SCCDefInst)),
8390 y: SCCDefInst.getParent()->end())) {
8391 // Check if SCC is used first.
8392 int SCCIdx = MI.findRegisterUseOperandIdx(AMDGPU::SCC, &RI, false);
8393 if (SCCIdx != -1) {
8394 if (MI.isCopy()) {
8395 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8396 Register DestReg = MI.getOperand(i: 0).getReg();
8397
8398 MRI.replaceRegWith(FromReg: DestReg, ToReg: NewCond);
8399 CopyToDelete.push_back(Elt: &MI);
8400 } else {
8401
8402 if (NewCond.isValid())
8403 MI.getOperand(i: SCCIdx).setReg(NewCond);
8404
8405 Worklist.insert(MI: &MI);
8406 }
8407 }
8408 // Exit if we find another SCC def.
8409 if (MI.findRegisterDefOperandIdx(AMDGPU::SCC, &RI, false, false) != -1)
8410 break;
8411 }
8412 for (auto &Copy : CopyToDelete)
8413 Copy->eraseFromParent();
8414}
8415
8416// Instructions that use SCC may be converted to VALU instructions. When that
8417// happens, the SCC register is changed to VCC_LO. The instruction that defines
8418// SCC must be changed to an instruction that defines VCC. This function makes
8419// sure that the instruction that defines SCC is added to the moveToVALU
8420// worklist.
8421void SIInstrInfo::addSCCDefsToVALUWorklist(MachineInstr *SCCUseInst,
8422 SIInstrWorklist &Worklist) const {
8423 // Look for a preceding instruction that either defines VCC or SCC. If VCC
8424 // then there is nothing to do because the defining instruction has been
8425 // converted to a VALU already. If SCC then that instruction needs to be
8426 // converted to a VALU.
8427 for (MachineInstr &MI :
8428 make_range(x: std::next(x: MachineBasicBlock::reverse_iterator(SCCUseInst)),
8429 y: SCCUseInst->getParent()->rend())) {
8430 if (MI.modifiesRegister(AMDGPU::VCC, &RI))
8431 break;
8432 if (MI.definesRegister(AMDGPU::SCC, &RI)) {
8433 Worklist.insert(MI: &MI);
8434 break;
8435 }
8436 }
8437}
8438
8439const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass(
8440 const MachineInstr &Inst) const {
8441 const TargetRegisterClass *NewDstRC = getOpRegClass(MI: Inst, OpNo: 0);
8442
8443 switch (Inst.getOpcode()) {
8444 // For target instructions, getOpRegClass just returns the virtual register
8445 // class associated with the operand, so we need to find an equivalent VGPR
8446 // register class in order to move the instruction to the VALU.
8447 case AMDGPU::COPY:
8448 case AMDGPU::PHI:
8449 case AMDGPU::REG_SEQUENCE:
8450 case AMDGPU::INSERT_SUBREG:
8451 case AMDGPU::WQM:
8452 case AMDGPU::SOFT_WQM:
8453 case AMDGPU::STRICT_WWM:
8454 case AMDGPU::STRICT_WQM: {
8455 const TargetRegisterClass *SrcRC = getOpRegClass(MI: Inst, OpNo: 1);
8456 if (RI.isAGPRClass(SrcRC)) {
8457 if (RI.isAGPRClass(NewDstRC))
8458 return nullptr;
8459
8460 switch (Inst.getOpcode()) {
8461 case AMDGPU::PHI:
8462 case AMDGPU::REG_SEQUENCE:
8463 case AMDGPU::INSERT_SUBREG:
8464 NewDstRC = RI.getEquivalentAGPRClass(NewDstRC);
8465 break;
8466 default:
8467 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
8468 }
8469
8470 if (!NewDstRC)
8471 return nullptr;
8472 } else {
8473 if (RI.isVGPRClass(NewDstRC) || NewDstRC == &AMDGPU::VReg_1RegClass)
8474 return nullptr;
8475
8476 NewDstRC = RI.getEquivalentVGPRClass(NewDstRC);
8477 if (!NewDstRC)
8478 return nullptr;
8479 }
8480
8481 return NewDstRC;
8482 }
8483 default:
8484 return NewDstRC;
8485 }
8486}
8487
8488// Find the one SGPR operand we are allowed to use.
8489Register SIInstrInfo::findUsedSGPR(const MachineInstr &MI,
8490 int OpIndices[3]) const {
8491 const MCInstrDesc &Desc = MI.getDesc();
8492
8493 // Find the one SGPR operand we are allowed to use.
8494 //
8495 // First we need to consider the instruction's operand requirements before
8496 // legalizing. Some operands are required to be SGPRs, such as implicit uses
8497 // of VCC, but we are still bound by the constant bus requirement to only use
8498 // one.
8499 //
8500 // If the operand's class is an SGPR, we can never move it.
8501
8502 Register SGPRReg = findImplicitSGPRRead(MI);
8503 if (SGPRReg)
8504 return SGPRReg;
8505
8506 Register UsedSGPRs[3] = {Register()};
8507 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8508
8509 for (unsigned i = 0; i < 3; ++i) {
8510 int Idx = OpIndices[i];
8511 if (Idx == -1)
8512 break;
8513
8514 const MachineOperand &MO = MI.getOperand(i: Idx);
8515 if (!MO.isReg())
8516 continue;
8517
8518 // Is this operand statically required to be an SGPR based on the operand
8519 // constraints?
8520 const TargetRegisterClass *OpRC =
8521 RI.getRegClass(Desc.operands()[Idx].RegClass);
8522 bool IsRequiredSGPR = RI.isSGPRClass(OpRC);
8523 if (IsRequiredSGPR)
8524 return MO.getReg();
8525
8526 // If this could be a VGPR or an SGPR, Check the dynamic register class.
8527 Register Reg = MO.getReg();
8528 const TargetRegisterClass *RegRC = MRI.getRegClass(Reg);
8529 if (RI.isSGPRClass(RegRC))
8530 UsedSGPRs[i] = Reg;
8531 }
8532
8533 // We don't have a required SGPR operand, so we have a bit more freedom in
8534 // selecting operands to move.
8535
8536 // Try to select the most used SGPR. If an SGPR is equal to one of the
8537 // others, we choose that.
8538 //
8539 // e.g.
8540 // V_FMA_F32 v0, s0, s0, s0 -> No moves
8541 // V_FMA_F32 v0, s0, s1, s0 -> Move s1
8542
8543 // TODO: If some of the operands are 64-bit SGPRs and some 32, we should
8544 // prefer those.
8545
8546 if (UsedSGPRs[0]) {
8547 if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2])
8548 SGPRReg = UsedSGPRs[0];
8549 }
8550
8551 if (!SGPRReg && UsedSGPRs[1]) {
8552 if (UsedSGPRs[1] == UsedSGPRs[2])
8553 SGPRReg = UsedSGPRs[1];
8554 }
8555
8556 return SGPRReg;
8557}
8558
8559MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI,
8560 unsigned OperandName) const {
8561 int Idx = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: OperandName);
8562 if (Idx == -1)
8563 return nullptr;
8564
8565 return &MI.getOperand(i: Idx);
8566}
8567
8568uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const {
8569 if (ST.getGeneration() >= AMDGPUSubtarget::GFX10) {
8570 int64_t Format = ST.getGeneration() >= AMDGPUSubtarget::GFX11
8571 ? (int64_t)AMDGPU::UfmtGFX11::UFMT_32_FLOAT
8572 : (int64_t)AMDGPU::UfmtGFX10::UFMT_32_FLOAT;
8573 return (Format << 44) |
8574 (1ULL << 56) | // RESOURCE_LEVEL = 1
8575 (3ULL << 60); // OOB_SELECT = 3
8576 }
8577
8578 uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT;
8579 if (ST.isAmdHsaOS()) {
8580 // Set ATC = 1. GFX9 doesn't have this bit.
8581 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS)
8582 RsrcDataFormat |= (1ULL << 56);
8583
8584 // Set MTYPE = 2 (MTYPE_UC = uncached). GFX9 doesn't have this.
8585 // BTW, it disables TC L2 and therefore decreases performance.
8586 if (ST.getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS)
8587 RsrcDataFormat |= (2ULL << 59);
8588 }
8589
8590 return RsrcDataFormat;
8591}
8592
8593uint64_t SIInstrInfo::getScratchRsrcWords23() const {
8594 uint64_t Rsrc23 = getDefaultRsrcDataFormat() |
8595 AMDGPU::RSRC_TID_ENABLE |
8596 0xffffffff; // Size;
8597
8598 // GFX9 doesn't have ELEMENT_SIZE.
8599 if (ST.getGeneration() <= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
8600 uint64_t EltSizeValue = Log2_32(Value: ST.getMaxPrivateElementSize(ForBufferRSrc: true)) - 1;
8601 Rsrc23 |= EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT;
8602 }
8603
8604 // IndexStride = 64 / 32.
8605 uint64_t IndexStride = ST.getWavefrontSize() == 64 ? 3 : 2;
8606 Rsrc23 |= IndexStride << AMDGPU::RSRC_INDEX_STRIDE_SHIFT;
8607
8608 // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17].
8609 // Clear them unless we want a huge stride.
8610 if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
8611 ST.getGeneration() <= AMDGPUSubtarget::GFX9)
8612 Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT;
8613
8614 return Rsrc23;
8615}
8616
8617bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr &MI) const {
8618 unsigned Opc = MI.getOpcode();
8619
8620 return isSMRD(Opcode: Opc);
8621}
8622
8623bool SIInstrInfo::isHighLatencyDef(int Opc) const {
8624 return get(Opc).mayLoad() &&
8625 (isMUBUF(Opcode: Opc) || isMTBUF(Opcode: Opc) || isMIMG(Opcode: Opc) || isFLAT(Opcode: Opc));
8626}
8627
8628unsigned SIInstrInfo::isStackAccess(const MachineInstr &MI,
8629 int &FrameIndex) const {
8630 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::vaddr);
8631 if (!Addr || !Addr->isFI())
8632 return Register();
8633
8634 assert(!MI.memoperands_empty() &&
8635 (*MI.memoperands_begin())->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS);
8636
8637 FrameIndex = Addr->getIndex();
8638 return getNamedOperand(MI, AMDGPU::OpName::vdata)->getReg();
8639}
8640
8641unsigned SIInstrInfo::isSGPRStackAccess(const MachineInstr &MI,
8642 int &FrameIndex) const {
8643 const MachineOperand *Addr = getNamedOperand(MI, AMDGPU::OpName::addr);
8644 assert(Addr && Addr->isFI());
8645 FrameIndex = Addr->getIndex();
8646 return getNamedOperand(MI, AMDGPU::OpName::data)->getReg();
8647}
8648
8649Register SIInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
8650 int &FrameIndex) const {
8651 if (!MI.mayLoad())
8652 return Register();
8653
8654 if (isMUBUF(MI) || isVGPRSpill(MI))
8655 return isStackAccess(MI, FrameIndex);
8656
8657 if (isSGPRSpill(MI))
8658 return isSGPRStackAccess(MI, FrameIndex);
8659
8660 return Register();
8661}
8662
8663Register SIInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
8664 int &FrameIndex) const {
8665 if (!MI.mayStore())
8666 return Register();
8667
8668 if (isMUBUF(MI) || isVGPRSpill(MI))
8669 return isStackAccess(MI, FrameIndex);
8670
8671 if (isSGPRSpill(MI))
8672 return isSGPRStackAccess(MI, FrameIndex);
8673
8674 return Register();
8675}
8676
8677unsigned SIInstrInfo::getInstBundleSize(const MachineInstr &MI) const {
8678 unsigned Size = 0;
8679 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
8680 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
8681 while (++I != E && I->isInsideBundle()) {
8682 assert(!I->isBundle() && "No nested bundle!");
8683 Size += getInstSizeInBytes(MI: *I);
8684 }
8685
8686 return Size;
8687}
8688
8689unsigned SIInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
8690 unsigned Opc = MI.getOpcode();
8691 const MCInstrDesc &Desc = getMCOpcodeFromPseudo(Opcode: Opc);
8692 unsigned DescSize = Desc.getSize();
8693
8694 // If we have a definitive size, we can use it. Otherwise we need to inspect
8695 // the operands to know the size.
8696 if (isFixedSize(MI)) {
8697 unsigned Size = DescSize;
8698
8699 // If we hit the buggy offset, an extra nop will be inserted in MC so
8700 // estimate the worst case.
8701 if (MI.isBranch() && ST.hasOffset3fBug())
8702 Size += 4;
8703
8704 return Size;
8705 }
8706
8707 // Instructions may have a 32-bit literal encoded after them. Check
8708 // operands that could ever be literals.
8709 if (isVALU(MI) || isSALU(MI)) {
8710 if (isDPP(MI))
8711 return DescSize;
8712 bool HasLiteral = false;
8713 for (int I = 0, E = MI.getNumExplicitOperands(); I != E; ++I) {
8714 const MachineOperand &Op = MI.getOperand(i: I);
8715 const MCOperandInfo &OpInfo = Desc.operands()[I];
8716 if (!Op.isReg() && !isInlineConstant(MO: Op, OpInfo)) {
8717 HasLiteral = true;
8718 break;
8719 }
8720 }
8721 return HasLiteral ? DescSize + 4 : DescSize;
8722 }
8723
8724 // Check whether we have extra NSA words.
8725 if (isMIMG(MI)) {
8726 int VAddr0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::vaddr0);
8727 if (VAddr0Idx < 0)
8728 return 8;
8729
8730 int RSrcIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::srsrc);
8731 return 8 + 4 * ((RSrcIdx - VAddr0Idx + 2) / 4);
8732 }
8733
8734 switch (Opc) {
8735 case TargetOpcode::BUNDLE:
8736 return getInstBundleSize(MI);
8737 case TargetOpcode::INLINEASM:
8738 case TargetOpcode::INLINEASM_BR: {
8739 const MachineFunction *MF = MI.getParent()->getParent();
8740 const char *AsmStr = MI.getOperand(i: 0).getSymbolName();
8741 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo(), &ST);
8742 }
8743 default:
8744 if (MI.isMetaInstruction())
8745 return 0;
8746 return DescSize;
8747 }
8748}
8749
8750bool SIInstrInfo::mayAccessFlatAddressSpace(const MachineInstr &MI) const {
8751 if (!isFLAT(MI))
8752 return false;
8753
8754 if (MI.memoperands_empty())
8755 return true;
8756
8757 for (const MachineMemOperand *MMO : MI.memoperands()) {
8758 if (MMO->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS)
8759 return true;
8760 }
8761 return false;
8762}
8763
8764bool SIInstrInfo::isNonUniformBranchInstr(MachineInstr &Branch) const {
8765 return Branch.getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO;
8766}
8767
8768void SIInstrInfo::convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
8769 MachineBasicBlock *IfEnd) const {
8770 MachineBasicBlock::iterator TI = IfEntry->getFirstTerminator();
8771 assert(TI != IfEntry->end());
8772
8773 MachineInstr *Branch = &(*TI);
8774 MachineFunction *MF = IfEntry->getParent();
8775 MachineRegisterInfo &MRI = IfEntry->getParent()->getRegInfo();
8776
8777 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
8778 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
8779 MachineInstr *SIIF =
8780 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_IF), DstReg)
8781 .add(Branch->getOperand(0))
8782 .add(Branch->getOperand(1));
8783 MachineInstr *SIEND =
8784 BuildMI(*MF, Branch->getDebugLoc(), get(AMDGPU::SI_END_CF))
8785 .addReg(DstReg);
8786
8787 IfEntry->erase(I: TI);
8788 IfEntry->insert(I: IfEntry->end(), MI: SIIF);
8789 IfEnd->insert(I: IfEnd->getFirstNonPHI(), MI: SIEND);
8790 }
8791}
8792
8793void SIInstrInfo::convertNonUniformLoopRegion(
8794 MachineBasicBlock *LoopEntry, MachineBasicBlock *LoopEnd) const {
8795 MachineBasicBlock::iterator TI = LoopEnd->getFirstTerminator();
8796 // We expect 2 terminators, one conditional and one unconditional.
8797 assert(TI != LoopEnd->end());
8798
8799 MachineInstr *Branch = &(*TI);
8800 MachineFunction *MF = LoopEnd->getParent();
8801 MachineRegisterInfo &MRI = LoopEnd->getParent()->getRegInfo();
8802
8803 if (Branch->getOpcode() == AMDGPU::SI_NON_UNIFORM_BRCOND_PSEUDO) {
8804
8805 Register DstReg = MRI.createVirtualRegister(RI.getBoolRC());
8806 Register BackEdgeReg = MRI.createVirtualRegister(RI.getBoolRC());
8807 MachineInstrBuilder HeaderPHIBuilder =
8808 BuildMI(*(MF), Branch->getDebugLoc(), get(TargetOpcode::PHI), DstReg);
8809 for (MachineBasicBlock *PMBB : LoopEntry->predecessors()) {
8810 if (PMBB == LoopEnd) {
8811 HeaderPHIBuilder.addReg(RegNo: BackEdgeReg);
8812 } else {
8813 Register ZeroReg = MRI.createVirtualRegister(RI.getBoolRC());
8814 materializeImmediate(MBB&: *PMBB, MI: PMBB->getFirstTerminator(), DL: DebugLoc(),
8815 DestReg: ZeroReg, Value: 0);
8816 HeaderPHIBuilder.addReg(RegNo: ZeroReg);
8817 }
8818 HeaderPHIBuilder.addMBB(MBB: PMBB);
8819 }
8820 MachineInstr *HeaderPhi = HeaderPHIBuilder;
8821 MachineInstr *SIIFBREAK = BuildMI(*(MF), Branch->getDebugLoc(),
8822 get(AMDGPU::SI_IF_BREAK), BackEdgeReg)
8823 .addReg(DstReg)
8824 .add(Branch->getOperand(0));
8825 MachineInstr *SILOOP =
8826 BuildMI(*(MF), Branch->getDebugLoc(), get(AMDGPU::SI_LOOP))
8827 .addReg(BackEdgeReg)
8828 .addMBB(LoopEntry);
8829
8830 LoopEntry->insert(I: LoopEntry->begin(), MI: HeaderPhi);
8831 LoopEnd->erase(I: TI);
8832 LoopEnd->insert(I: LoopEnd->end(), MI: SIIFBREAK);
8833 LoopEnd->insert(I: LoopEnd->end(), MI: SILOOP);
8834 }
8835}
8836
8837ArrayRef<std::pair<int, const char *>>
8838SIInstrInfo::getSerializableTargetIndices() const {
8839 static const std::pair<int, const char *> TargetIndices[] = {
8840 {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"},
8841 {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"},
8842 {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"},
8843 {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"},
8844 {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}};
8845 return ArrayRef(TargetIndices);
8846}
8847
8848/// This is used by the post-RA scheduler (SchedulePostRAList.cpp). The
8849/// post-RA version of misched uses CreateTargetMIHazardRecognizer.
8850ScheduleHazardRecognizer *
8851SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
8852 const ScheduleDAG *DAG) const {
8853 return new GCNHazardRecognizer(DAG->MF);
8854}
8855
8856/// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer
8857/// pass.
8858ScheduleHazardRecognizer *
8859SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const {
8860 return new GCNHazardRecognizer(MF);
8861}
8862
8863// Called during:
8864// - pre-RA scheduling and post-RA scheduling
8865ScheduleHazardRecognizer *
8866SIInstrInfo::CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
8867 const ScheduleDAGMI *DAG) const {
8868 // Borrowed from Arm Target
8869 // We would like to restrict this hazard recognizer to only
8870 // post-RA scheduling; we can tell that we're post-RA because we don't
8871 // track VRegLiveness.
8872 if (!DAG->hasVRegLiveness())
8873 return new GCNHazardRecognizer(DAG->MF);
8874 return TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
8875}
8876
8877std::pair<unsigned, unsigned>
8878SIInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
8879 return std::pair(TF & MO_MASK, TF & ~MO_MASK);
8880}
8881
8882ArrayRef<std::pair<unsigned, const char *>>
8883SIInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
8884 static const std::pair<unsigned, const char *> TargetFlags[] = {
8885 { MO_GOTPCREL, "amdgpu-gotprel" },
8886 { MO_GOTPCREL32_LO, "amdgpu-gotprel32-lo" },
8887 { MO_GOTPCREL32_HI, "amdgpu-gotprel32-hi" },
8888 { MO_REL32_LO, "amdgpu-rel32-lo" },
8889 { MO_REL32_HI, "amdgpu-rel32-hi" },
8890 { MO_ABS32_LO, "amdgpu-abs32-lo" },
8891 { MO_ABS32_HI, "amdgpu-abs32-hi" },
8892 };
8893
8894 return ArrayRef(TargetFlags);
8895}
8896
8897ArrayRef<std::pair<MachineMemOperand::Flags, const char *>>
8898SIInstrInfo::getSerializableMachineMemOperandTargetFlags() const {
8899 static const std::pair<MachineMemOperand::Flags, const char *> TargetFlags[] =
8900 {
8901 {MONoClobber, "amdgpu-noclobber"},
8902 {MOLastUse, "amdgpu-last-use"},
8903 };
8904
8905 return ArrayRef(TargetFlags);
8906}
8907
8908unsigned SIInstrInfo::getLiveRangeSplitOpcode(Register SrcReg,
8909 const MachineFunction &MF) const {
8910 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
8911 assert(SrcReg.isVirtual());
8912 if (MFI->checkFlag(SrcReg, AMDGPU::VirtRegFlag::WWM_REG))
8913 return AMDGPU::WWM_COPY;
8914
8915 return AMDGPU::COPY;
8916}
8917
8918bool SIInstrInfo::isBasicBlockPrologue(const MachineInstr &MI,
8919 Register Reg) const {
8920 // We need to handle instructions which may be inserted during register
8921 // allocation to handle the prolog. The initial prolog instruction may have
8922 // been separated from the start of the block by spills and copies inserted
8923 // needed by the prolog. However, the insertions for scalar registers can
8924 // always be placed at the BB top as they are independent of the exec mask
8925 // value.
8926 bool IsNullOrVectorRegister = true;
8927 if (Reg) {
8928 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
8929 IsNullOrVectorRegister = !RI.isSGPRClass(RI.getRegClassForReg(MRI, Reg));
8930 }
8931
8932 uint16_t Opcode = MI.getOpcode();
8933 // FIXME: Copies inserted in the block prolog for live-range split should also
8934 // be included.
8935 return IsNullOrVectorRegister &&
8936 (isSpill(Opcode) || (!MI.isTerminator() && Opcode != AMDGPU::COPY &&
8937 MI.modifiesRegister(AMDGPU::EXEC, &RI)));
8938}
8939
8940MachineInstrBuilder
8941SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
8942 MachineBasicBlock::iterator I,
8943 const DebugLoc &DL,
8944 Register DestReg) const {
8945 if (ST.hasAddNoCarry())
8946 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e64), DestReg);
8947
8948 MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
8949 Register UnusedCarry = MRI.createVirtualRegister(RI.getBoolRC());
8950 MRI.setRegAllocationHint(VReg: UnusedCarry, Type: 0, PrefReg: RI.getVCC());
8951
8952 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
8953 .addReg(UnusedCarry, RegState::Define | RegState::Dead);
8954}
8955
8956MachineInstrBuilder SIInstrInfo::getAddNoCarry(MachineBasicBlock &MBB,
8957 MachineBasicBlock::iterator I,
8958 const DebugLoc &DL,
8959 Register DestReg,
8960 RegScavenger &RS) const {
8961 if (ST.hasAddNoCarry())
8962 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_U32_e32), DestReg);
8963
8964 // If available, prefer to use vcc.
8965 Register UnusedCarry = !RS.isRegUsed(AMDGPU::VCC)
8966 ? Register(RI.getVCC())
8967 : RS.scavengeRegisterBackwards(
8968 *RI.getBoolRC(), I, /* RestoreAfter */ false,
8969 0, /* AllowSpill */ false);
8970
8971 // TODO: Users need to deal with this.
8972 if (!UnusedCarry.isValid())
8973 return MachineInstrBuilder();
8974
8975 return BuildMI(MBB, I, DL, get(AMDGPU::V_ADD_CO_U32_e64), DestReg)
8976 .addReg(UnusedCarry, RegState::Define | RegState::Dead);
8977}
8978
8979bool SIInstrInfo::isKillTerminator(unsigned Opcode) {
8980 switch (Opcode) {
8981 case AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR:
8982 case AMDGPU::SI_KILL_I1_TERMINATOR:
8983 return true;
8984 default:
8985 return false;
8986 }
8987}
8988
8989const MCInstrDesc &SIInstrInfo::getKillTerminatorFromPseudo(unsigned Opcode) const {
8990 switch (Opcode) {
8991 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
8992 return get(AMDGPU::SI_KILL_F32_COND_IMM_TERMINATOR);
8993 case AMDGPU::SI_KILL_I1_PSEUDO:
8994 return get(AMDGPU::SI_KILL_I1_TERMINATOR);
8995 default:
8996 llvm_unreachable("invalid opcode, expected SI_KILL_*_PSEUDO");
8997 }
8998}
8999
9000bool SIInstrInfo::isLegalMUBUFImmOffset(unsigned Imm) const {
9001 return Imm <= getMaxMUBUFImmOffset(ST);
9002}
9003
9004unsigned SIInstrInfo::getMaxMUBUFImmOffset(const GCNSubtarget &ST) {
9005 // GFX12 field is non-negative 24-bit signed byte offset.
9006 const unsigned OffsetBits =
9007 ST.getGeneration() >= AMDGPUSubtarget::GFX12 ? 23 : 12;
9008 return (1 << OffsetBits) - 1;
9009}
9010
9011void SIInstrInfo::fixImplicitOperands(MachineInstr &MI) const {
9012 if (!ST.isWave32())
9013 return;
9014
9015 if (MI.isInlineAsm())
9016 return;
9017
9018 for (auto &Op : MI.implicit_operands()) {
9019 if (Op.isReg() && Op.getReg() == AMDGPU::VCC)
9020 Op.setReg(AMDGPU::VCC_LO);
9021 }
9022}
9023
9024bool SIInstrInfo::isBufferSMRD(const MachineInstr &MI) const {
9025 if (!isSMRD(MI))
9026 return false;
9027
9028 // Check that it is using a buffer resource.
9029 int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::sbase);
9030 if (Idx == -1) // e.g. s_memtime
9031 return false;
9032
9033 const auto RCID = MI.getDesc().operands()[Idx].RegClass;
9034 return RI.getRegClass(RCID)->hasSubClassEq(&AMDGPU::SGPR_128RegClass);
9035}
9036
9037// Given Imm, split it into the values to put into the SOffset and ImmOffset
9038// fields in an MUBUF instruction. Return false if it is not possible (due to a
9039// hardware bug needing a workaround).
9040//
9041// The required alignment ensures that individual address components remain
9042// aligned if they are aligned to begin with. It also ensures that additional
9043// offsets within the given alignment can be added to the resulting ImmOffset.
9044bool SIInstrInfo::splitMUBUFOffset(uint32_t Imm, uint32_t &SOffset,
9045 uint32_t &ImmOffset, Align Alignment) const {
9046 const uint32_t MaxOffset = SIInstrInfo::getMaxMUBUFImmOffset(ST);
9047 const uint32_t MaxImm = alignDown(Value: MaxOffset, Align: Alignment.value());
9048 uint32_t Overflow = 0;
9049
9050 if (Imm > MaxImm) {
9051 if (Imm <= MaxImm + 64) {
9052 // Use an SOffset inline constant for 4..64
9053 Overflow = Imm - MaxImm;
9054 Imm = MaxImm;
9055 } else {
9056 // Try to keep the same value in SOffset for adjacent loads, so that
9057 // the corresponding register contents can be re-used.
9058 //
9059 // Load values with all low-bits (except for alignment bits) set into
9060 // SOffset, so that a larger range of values can be covered using
9061 // s_movk_i32.
9062 //
9063 // Atomic operations fail to work correctly when individual address
9064 // components are unaligned, even if their sum is aligned.
9065 uint32_t High = (Imm + Alignment.value()) & ~MaxOffset;
9066 uint32_t Low = (Imm + Alignment.value()) & MaxOffset;
9067 Imm = Low;
9068 Overflow = High - Alignment.value();
9069 }
9070 }
9071
9072 if (Overflow > 0) {
9073 // There is a hardware bug in SI and CI which prevents address clamping in
9074 // MUBUF instructions from working correctly with SOffsets. The immediate
9075 // offset is unaffected.
9076 if (ST.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
9077 return false;
9078
9079 // It is not possible to set immediate in SOffset field on some targets.
9080 if (ST.hasRestrictedSOffset())
9081 return false;
9082 }
9083
9084 ImmOffset = Imm;
9085 SOffset = Overflow;
9086 return true;
9087}
9088
9089// Depending on the used address space and instructions, some immediate offsets
9090// are allowed and some are not.
9091// Pre-GFX12, flat instruction offsets can only be non-negative, global and
9092// scratch instruction offsets can also be negative. On GFX12, offsets can be
9093// negative for all variants.
9094//
9095// There are several bugs related to these offsets:
9096// On gfx10.1, flat instructions that go into the global address space cannot
9097// use an offset.
9098//
9099// For scratch instructions, the address can be either an SGPR or a VGPR.
9100// The following offsets can be used, depending on the architecture (x means
9101// cannot be used):
9102// +----------------------------+------+------+
9103// | Address-Mode | SGPR | VGPR |
9104// +----------------------------+------+------+
9105// | gfx9 | | |
9106// | negative, 4-aligned offset | x | ok |
9107// | negative, unaligned offset | x | ok |
9108// +----------------------------+------+------+
9109// | gfx10 | | |
9110// | negative, 4-aligned offset | ok | ok |
9111// | negative, unaligned offset | ok | x |
9112// +----------------------------+------+------+
9113// | gfx10.3 | | |
9114// | negative, 4-aligned offset | ok | ok |
9115// | negative, unaligned offset | ok | ok |
9116// +----------------------------+------+------+
9117//
9118// This function ignores the addressing mode, so if an offset cannot be used in
9119// one addressing mode, it is considered illegal.
9120bool SIInstrInfo::isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
9121 uint64_t FlatVariant) const {
9122 // TODO: Should 0 be special cased?
9123 if (!ST.hasFlatInstOffsets())
9124 return false;
9125
9126 if (ST.hasFlatSegmentOffsetBug() && FlatVariant == SIInstrFlags::FLAT &&
9127 (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
9128 AddrSpace == AMDGPUAS::GLOBAL_ADDRESS))
9129 return false;
9130
9131 if (ST.hasNegativeUnalignedScratchOffsetBug() &&
9132 FlatVariant == SIInstrFlags::FlatScratch && Offset < 0 &&
9133 (Offset % 4) != 0) {
9134 return false;
9135 }
9136
9137 bool AllowNegative = allowNegativeFlatOffset(FlatVariant);
9138 unsigned N = AMDGPU::getNumFlatOffsetBits(ST);
9139 return isIntN(N, x: Offset) && (AllowNegative || Offset >= 0);
9140}
9141
9142// See comment on SIInstrInfo::isLegalFLATOffset for what is legal and what not.
9143std::pair<int64_t, int64_t>
9144SIInstrInfo::splitFlatOffset(int64_t COffsetVal, unsigned AddrSpace,
9145 uint64_t FlatVariant) const {
9146 int64_t RemainderOffset = COffsetVal;
9147 int64_t ImmField = 0;
9148
9149 bool AllowNegative = allowNegativeFlatOffset(FlatVariant);
9150 const unsigned NumBits = AMDGPU::getNumFlatOffsetBits(ST) - 1;
9151
9152 if (AllowNegative) {
9153 // Use signed division by a power of two to truncate towards 0.
9154 int64_t D = 1LL << NumBits;
9155 RemainderOffset = (COffsetVal / D) * D;
9156 ImmField = COffsetVal - RemainderOffset;
9157
9158 if (ST.hasNegativeUnalignedScratchOffsetBug() &&
9159 FlatVariant == SIInstrFlags::FlatScratch && ImmField < 0 &&
9160 (ImmField % 4) != 0) {
9161 // Make ImmField a multiple of 4
9162 RemainderOffset += ImmField % 4;
9163 ImmField -= ImmField % 4;
9164 }
9165 } else if (COffsetVal >= 0) {
9166 ImmField = COffsetVal & maskTrailingOnes<uint64_t>(N: NumBits);
9167 RemainderOffset = COffsetVal - ImmField;
9168 }
9169
9170 assert(isLegalFLATOffset(ImmField, AddrSpace, FlatVariant));
9171 assert(RemainderOffset + ImmField == COffsetVal);
9172 return {ImmField, RemainderOffset};
9173}
9174
9175bool SIInstrInfo::allowNegativeFlatOffset(uint64_t FlatVariant) const {
9176 if (ST.hasNegativeScratchOffsetBug() &&
9177 FlatVariant == SIInstrFlags::FlatScratch)
9178 return false;
9179
9180 return FlatVariant != SIInstrFlags::FLAT || AMDGPU::isGFX12Plus(ST);
9181}
9182
9183static unsigned subtargetEncodingFamily(const GCNSubtarget &ST) {
9184 switch (ST.getGeneration()) {
9185 default:
9186 break;
9187 case AMDGPUSubtarget::SOUTHERN_ISLANDS:
9188 case AMDGPUSubtarget::SEA_ISLANDS:
9189 return SIEncodingFamily::SI;
9190 case AMDGPUSubtarget::VOLCANIC_ISLANDS:
9191 case AMDGPUSubtarget::GFX9:
9192 return SIEncodingFamily::VI;
9193 case AMDGPUSubtarget::GFX10:
9194 return SIEncodingFamily::GFX10;
9195 case AMDGPUSubtarget::GFX11:
9196 return SIEncodingFamily::GFX11;
9197 case AMDGPUSubtarget::GFX12:
9198 return SIEncodingFamily::GFX12;
9199 }
9200 llvm_unreachable("Unknown subtarget generation!");
9201}
9202
9203bool SIInstrInfo::isAsmOnlyOpcode(int MCOp) const {
9204 switch(MCOp) {
9205 // These opcodes use indirect register addressing so
9206 // they need special handling by codegen (currently missing).
9207 // Therefore it is too risky to allow these opcodes
9208 // to be selected by dpp combiner or sdwa peepholer.
9209 case AMDGPU::V_MOVRELS_B32_dpp_gfx10:
9210 case AMDGPU::V_MOVRELS_B32_sdwa_gfx10:
9211 case AMDGPU::V_MOVRELD_B32_dpp_gfx10:
9212 case AMDGPU::V_MOVRELD_B32_sdwa_gfx10:
9213 case AMDGPU::V_MOVRELSD_B32_dpp_gfx10:
9214 case AMDGPU::V_MOVRELSD_B32_sdwa_gfx10:
9215 case AMDGPU::V_MOVRELSD_2_B32_dpp_gfx10:
9216 case AMDGPU::V_MOVRELSD_2_B32_sdwa_gfx10:
9217 return true;
9218 default:
9219 return false;
9220 }
9221}
9222
9223int SIInstrInfo::pseudoToMCOpcode(int Opcode) const {
9224 Opcode = SIInstrInfo::getNonSoftWaitcntOpcode(Opcode);
9225
9226 unsigned Gen = subtargetEncodingFamily(ST);
9227
9228 if ((get(Opcode).TSFlags & SIInstrFlags::renamedInGFX9) != 0 &&
9229 ST.getGeneration() == AMDGPUSubtarget::GFX9)
9230 Gen = SIEncodingFamily::GFX9;
9231
9232 // Adjust the encoding family to GFX80 for D16 buffer instructions when the
9233 // subtarget has UnpackedD16VMem feature.
9234 // TODO: remove this when we discard GFX80 encoding.
9235 if (ST.hasUnpackedD16VMem() && (get(Opcode).TSFlags & SIInstrFlags::D16Buf))
9236 Gen = SIEncodingFamily::GFX80;
9237
9238 if (get(Opcode).TSFlags & SIInstrFlags::SDWA) {
9239 switch (ST.getGeneration()) {
9240 default:
9241 Gen = SIEncodingFamily::SDWA;
9242 break;
9243 case AMDGPUSubtarget::GFX9:
9244 Gen = SIEncodingFamily::SDWA9;
9245 break;
9246 case AMDGPUSubtarget::GFX10:
9247 Gen = SIEncodingFamily::SDWA10;
9248 break;
9249 }
9250 }
9251
9252 if (isMAI(Opcode)) {
9253 int MFMAOp = AMDGPU::getMFMAEarlyClobberOp(Opcode);
9254 if (MFMAOp != -1)
9255 Opcode = MFMAOp;
9256 }
9257
9258 int MCOp = AMDGPU::getMCOpcode(Opcode, Gen);
9259
9260 // -1 means that Opcode is already a native instruction.
9261 if (MCOp == -1)
9262 return Opcode;
9263
9264 if (ST.hasGFX90AInsts()) {
9265 uint16_t NMCOp = (uint16_t)-1;
9266 if (ST.hasGFX940Insts())
9267 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX940);
9268 if (NMCOp == (uint16_t)-1)
9269 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX90A);
9270 if (NMCOp == (uint16_t)-1)
9271 NMCOp = AMDGPU::getMCOpcode(Opcode, Gen: SIEncodingFamily::GFX9);
9272 if (NMCOp != (uint16_t)-1)
9273 MCOp = NMCOp;
9274 }
9275
9276 // (uint16_t)-1 means that Opcode is a pseudo instruction that has
9277 // no encoding in the given subtarget generation.
9278 if (MCOp == (uint16_t)-1)
9279 return -1;
9280
9281 if (isAsmOnlyOpcode(MCOp))
9282 return -1;
9283
9284 return MCOp;
9285}
9286
9287static
9288TargetInstrInfo::RegSubRegPair getRegOrUndef(const MachineOperand &RegOpnd) {
9289 assert(RegOpnd.isReg());
9290 return RegOpnd.isUndef() ? TargetInstrInfo::RegSubRegPair() :
9291 getRegSubRegPair(O: RegOpnd);
9292}
9293
9294TargetInstrInfo::RegSubRegPair
9295llvm::getRegSequenceSubReg(MachineInstr &MI, unsigned SubReg) {
9296 assert(MI.isRegSequence());
9297 for (unsigned I = 0, E = (MI.getNumOperands() - 1)/ 2; I < E; ++I)
9298 if (MI.getOperand(i: 1 + 2 * I + 1).getImm() == SubReg) {
9299 auto &RegOp = MI.getOperand(i: 1 + 2 * I);
9300 return getRegOrUndef(RegOpnd: RegOp);
9301 }
9302 return TargetInstrInfo::RegSubRegPair();
9303}
9304
9305// Try to find the definition of reg:subreg in subreg-manipulation pseudos
9306// Following a subreg of reg:subreg isn't supported
9307static bool followSubRegDef(MachineInstr &MI,
9308 TargetInstrInfo::RegSubRegPair &RSR) {
9309 if (!RSR.SubReg)
9310 return false;
9311 switch (MI.getOpcode()) {
9312 default: break;
9313 case AMDGPU::REG_SEQUENCE:
9314 RSR = getRegSequenceSubReg(MI, SubReg: RSR.SubReg);
9315 return true;
9316 // EXTRACT_SUBREG ins't supported as this would follow a subreg of subreg
9317 case AMDGPU::INSERT_SUBREG:
9318 if (RSR.SubReg == (unsigned)MI.getOperand(i: 3).getImm())
9319 // inserted the subreg we're looking for
9320 RSR = getRegOrUndef(RegOpnd: MI.getOperand(i: 2));
9321 else { // the subreg in the rest of the reg
9322 auto R1 = getRegOrUndef(RegOpnd: MI.getOperand(i: 1));
9323 if (R1.SubReg) // subreg of subreg isn't supported
9324 return false;
9325 RSR.Reg = R1.Reg;
9326 }
9327 return true;
9328 }
9329 return false;
9330}
9331
9332MachineInstr *llvm::getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
9333 MachineRegisterInfo &MRI) {
9334 assert(MRI.isSSA());
9335 if (!P.Reg.isVirtual())
9336 return nullptr;
9337
9338 auto RSR = P;
9339 auto *DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9340 while (auto *MI = DefInst) {
9341 DefInst = nullptr;
9342 switch (MI->getOpcode()) {
9343 case AMDGPU::COPY:
9344 case AMDGPU::V_MOV_B32_e32: {
9345 auto &Op1 = MI->getOperand(i: 1);
9346 if (Op1.isReg() && Op1.getReg().isVirtual()) {
9347 if (Op1.isUndef())
9348 return nullptr;
9349 RSR = getRegSubRegPair(O: Op1);
9350 DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9351 }
9352 break;
9353 }
9354 default:
9355 if (followSubRegDef(MI&: *MI, RSR)) {
9356 if (!RSR.Reg)
9357 return nullptr;
9358 DefInst = MRI.getVRegDef(Reg: RSR.Reg);
9359 }
9360 }
9361 if (!DefInst)
9362 return MI;
9363 }
9364 return nullptr;
9365}
9366
9367bool llvm::execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
9368 Register VReg,
9369 const MachineInstr &DefMI,
9370 const MachineInstr &UseMI) {
9371 assert(MRI.isSSA() && "Must be run on SSA");
9372
9373 auto *TRI = MRI.getTargetRegisterInfo();
9374 auto *DefBB = DefMI.getParent();
9375
9376 // Don't bother searching between blocks, although it is possible this block
9377 // doesn't modify exec.
9378 if (UseMI.getParent() != DefBB)
9379 return true;
9380
9381 const int MaxInstScan = 20;
9382 int NumInst = 0;
9383
9384 // Stop scan at the use.
9385 auto E = UseMI.getIterator();
9386 for (auto I = std::next(x: DefMI.getIterator()); I != E; ++I) {
9387 if (I->isDebugInstr())
9388 continue;
9389
9390 if (++NumInst > MaxInstScan)
9391 return true;
9392
9393 if (I->modifiesRegister(AMDGPU::EXEC, TRI))
9394 return true;
9395 }
9396
9397 return false;
9398}
9399
9400bool llvm::execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
9401 Register VReg,
9402 const MachineInstr &DefMI) {
9403 assert(MRI.isSSA() && "Must be run on SSA");
9404
9405 auto *TRI = MRI.getTargetRegisterInfo();
9406 auto *DefBB = DefMI.getParent();
9407
9408 const int MaxUseScan = 10;
9409 int NumUse = 0;
9410
9411 for (auto &Use : MRI.use_nodbg_operands(Reg: VReg)) {
9412 auto &UseInst = *Use.getParent();
9413 // Don't bother searching between blocks, although it is possible this block
9414 // doesn't modify exec.
9415 if (UseInst.getParent() != DefBB || UseInst.isPHI())
9416 return true;
9417
9418 if (++NumUse > MaxUseScan)
9419 return true;
9420 }
9421
9422 if (NumUse == 0)
9423 return false;
9424
9425 const int MaxInstScan = 20;
9426 int NumInst = 0;
9427
9428 // Stop scan when we have seen all the uses.
9429 for (auto I = std::next(x: DefMI.getIterator()); ; ++I) {
9430 assert(I != DefBB->end());
9431
9432 if (I->isDebugInstr())
9433 continue;
9434
9435 if (++NumInst > MaxInstScan)
9436 return true;
9437
9438 for (const MachineOperand &Op : I->operands()) {
9439 // We don't check reg masks here as they're used only on calls:
9440 // 1. EXEC is only considered const within one BB
9441 // 2. Call should be a terminator instruction if present in a BB
9442
9443 if (!Op.isReg())
9444 continue;
9445
9446 Register Reg = Op.getReg();
9447 if (Op.isUse()) {
9448 if (Reg == VReg && --NumUse == 0)
9449 return false;
9450 } else if (TRI->regsOverlap(Reg, AMDGPU::EXEC))
9451 return true;
9452 }
9453 }
9454}
9455
9456MachineInstr *SIInstrInfo::createPHIDestinationCopy(
9457 MachineBasicBlock &MBB, MachineBasicBlock::iterator LastPHIIt,
9458 const DebugLoc &DL, Register Src, Register Dst) const {
9459 auto Cur = MBB.begin();
9460 if (Cur != MBB.end())
9461 do {
9462 if (!Cur->isPHI() && Cur->readsRegister(Reg: Dst, /*TRI=*/nullptr))
9463 return BuildMI(MBB, Cur, DL, get(TargetOpcode::COPY), Dst).addReg(Src);
9464 ++Cur;
9465 } while (Cur != MBB.end() && Cur != LastPHIIt);
9466
9467 return TargetInstrInfo::createPHIDestinationCopy(MBB, LastPHIIt, DL, Src,
9468 Dst);
9469}
9470
9471MachineInstr *SIInstrInfo::createPHISourceCopy(
9472 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsPt,
9473 const DebugLoc &DL, Register Src, unsigned SrcSubReg, Register Dst) const {
9474 if (InsPt != MBB.end() &&
9475 (InsPt->getOpcode() == AMDGPU::SI_IF ||
9476 InsPt->getOpcode() == AMDGPU::SI_ELSE ||
9477 InsPt->getOpcode() == AMDGPU::SI_IF_BREAK) &&
9478 InsPt->definesRegister(Src, /*TRI=*/nullptr)) {
9479 InsPt++;
9480 return BuildMI(MBB, InsPt, DL,
9481 get(ST.isWave32() ? AMDGPU::S_MOV_B32_term
9482 : AMDGPU::S_MOV_B64_term),
9483 Dst)
9484 .addReg(Src, 0, SrcSubReg)
9485 .addReg(AMDGPU::EXEC, RegState::Implicit);
9486 }
9487 return TargetInstrInfo::createPHISourceCopy(MBB, InsPt, DL, Src, SrcSubReg,
9488 Dst);
9489}
9490
9491bool llvm::SIInstrInfo::isWave32() const { return ST.isWave32(); }
9492
9493MachineInstr *SIInstrInfo::foldMemoryOperandImpl(
9494 MachineFunction &MF, MachineInstr &MI, ArrayRef<unsigned> Ops,
9495 MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS,
9496 VirtRegMap *VRM) const {
9497 // This is a bit of a hack (copied from AArch64). Consider this instruction:
9498 //
9499 // %0:sreg_32 = COPY $m0
9500 //
9501 // We explicitly chose SReg_32 for the virtual register so such a copy might
9502 // be eliminated by RegisterCoalescer. However, that may not be possible, and
9503 // %0 may even spill. We can't spill $m0 normally (it would require copying to
9504 // a numbered SGPR anyway), and since it is in the SReg_32 register class,
9505 // TargetInstrInfo::foldMemoryOperand() is going to try.
9506 // A similar issue also exists with spilling and reloading $exec registers.
9507 //
9508 // To prevent that, constrain the %0 register class here.
9509 if (isFullCopyInstr(MI)) {
9510 Register DstReg = MI.getOperand(i: 0).getReg();
9511 Register SrcReg = MI.getOperand(i: 1).getReg();
9512 if ((DstReg.isVirtual() || SrcReg.isVirtual()) &&
9513 (DstReg.isVirtual() != SrcReg.isVirtual())) {
9514 MachineRegisterInfo &MRI = MF.getRegInfo();
9515 Register VirtReg = DstReg.isVirtual() ? DstReg : SrcReg;
9516 const TargetRegisterClass *RC = MRI.getRegClass(Reg: VirtReg);
9517 if (RC->hasSuperClassEq(&AMDGPU::SReg_32RegClass)) {
9518 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_32_XM0_XEXECRegClass);
9519 return nullptr;
9520 } else if (RC->hasSuperClassEq(&AMDGPU::SReg_64RegClass)) {
9521 MRI.constrainRegClass(VirtReg, &AMDGPU::SReg_64_XEXECRegClass);
9522 return nullptr;
9523 }
9524 }
9525 }
9526
9527 return nullptr;
9528}
9529
9530unsigned SIInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
9531 const MachineInstr &MI,
9532 unsigned *PredCost) const {
9533 if (MI.isBundle()) {
9534 MachineBasicBlock::const_instr_iterator I(MI.getIterator());
9535 MachineBasicBlock::const_instr_iterator E(MI.getParent()->instr_end());
9536 unsigned Lat = 0, Count = 0;
9537 for (++I; I != E && I->isBundledWithPred(); ++I) {
9538 ++Count;
9539 Lat = std::max(a: Lat, b: SchedModel.computeInstrLatency(MI: &*I));
9540 }
9541 return Lat + Count - 1;
9542 }
9543
9544 return SchedModel.computeInstrLatency(MI: &MI);
9545}
9546
9547InstructionUniformity
9548SIInstrInfo::getGenericInstructionUniformity(const MachineInstr &MI) const {
9549 unsigned opcode = MI.getOpcode();
9550 if (auto *GI = dyn_cast<GIntrinsic>(Val: &MI)) {
9551 auto IID = GI->getIntrinsicID();
9552 if (AMDGPU::isIntrinsicSourceOfDivergence(IntrID: IID))
9553 return InstructionUniformity::NeverUniform;
9554 if (AMDGPU::isIntrinsicAlwaysUniform(IntrID: IID))
9555 return InstructionUniformity::AlwaysUniform;
9556
9557 switch (IID) {
9558 case Intrinsic::amdgcn_if:
9559 case Intrinsic::amdgcn_else:
9560 // FIXME: Uniform if second result
9561 break;
9562 }
9563
9564 return InstructionUniformity::Default;
9565 }
9566
9567 // Loads from the private and flat address spaces are divergent, because
9568 // threads can execute the load instruction with the same inputs and get
9569 // different results.
9570 //
9571 // All other loads are not divergent, because if threads issue loads with the
9572 // same arguments, they will always get the same result.
9573 if (opcode == AMDGPU::G_LOAD) {
9574 if (MI.memoperands_empty())
9575 return InstructionUniformity::NeverUniform; // conservative assumption
9576
9577 if (llvm::any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *mmo) {
9578 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
9579 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS;
9580 })) {
9581 // At least one MMO in a non-global address space.
9582 return InstructionUniformity::NeverUniform;
9583 }
9584 return InstructionUniformity::Default;
9585 }
9586
9587 if (SIInstrInfo::isGenericAtomicRMWOpcode(opcode) ||
9588 opcode == AMDGPU::G_ATOMIC_CMPXCHG ||
9589 opcode == AMDGPU::G_ATOMIC_CMPXCHG_WITH_SUCCESS ||
9590 AMDGPU::isGenericAtomic(opcode)) {
9591 return InstructionUniformity::NeverUniform;
9592 }
9593 return InstructionUniformity::Default;
9594}
9595
9596InstructionUniformity
9597SIInstrInfo::getInstructionUniformity(const MachineInstr &MI) const {
9598
9599 if (isNeverUniform(MI))
9600 return InstructionUniformity::NeverUniform;
9601
9602 unsigned opcode = MI.getOpcode();
9603 if (opcode == AMDGPU::V_READLANE_B32 ||
9604 opcode == AMDGPU::V_READFIRSTLANE_B32 ||
9605 opcode == AMDGPU::SI_RESTORE_S32_FROM_VGPR)
9606 return InstructionUniformity::AlwaysUniform;
9607
9608 if (isCopyInstr(MI)) {
9609 const MachineOperand &srcOp = MI.getOperand(i: 1);
9610 if (srcOp.isReg() && srcOp.getReg().isPhysical()) {
9611 const TargetRegisterClass *regClass =
9612 RI.getPhysRegBaseClass(srcOp.getReg());
9613 return RI.isSGPRClass(regClass) ? InstructionUniformity::AlwaysUniform
9614 : InstructionUniformity::NeverUniform;
9615 }
9616 return InstructionUniformity::Default;
9617 }
9618
9619 // GMIR handling
9620 if (MI.isPreISelOpcode())
9621 return SIInstrInfo::getGenericInstructionUniformity(MI);
9622
9623 // Atomics are divergent because they are executed sequentially: when an
9624 // atomic operation refers to the same address in each thread, then each
9625 // thread after the first sees the value written by the previous thread as
9626 // original value.
9627
9628 if (isAtomic(MI))
9629 return InstructionUniformity::NeverUniform;
9630
9631 // Loads from the private and flat address spaces are divergent, because
9632 // threads can execute the load instruction with the same inputs and get
9633 // different results.
9634 if (isFLAT(MI) && MI.mayLoad()) {
9635 if (MI.memoperands_empty())
9636 return InstructionUniformity::NeverUniform; // conservative assumption
9637
9638 if (llvm::any_of(Range: MI.memoperands(), P: [](const MachineMemOperand *mmo) {
9639 return mmo->getAddrSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
9640 mmo->getAddrSpace() == AMDGPUAS::FLAT_ADDRESS;
9641 })) {
9642 // At least one MMO in a non-global address space.
9643 return InstructionUniformity::NeverUniform;
9644 }
9645
9646 return InstructionUniformity::Default;
9647 }
9648
9649 const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
9650 const AMDGPURegisterBankInfo *RBI = ST.getRegBankInfo();
9651
9652 // FIXME: It's conceptually broken to report this for an instruction, and not
9653 // a specific def operand. For inline asm in particular, there could be mixed
9654 // uniform and divergent results.
9655 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
9656 const MachineOperand &SrcOp = MI.getOperand(i: I);
9657 if (!SrcOp.isReg())
9658 continue;
9659
9660 Register Reg = SrcOp.getReg();
9661 if (!Reg || !SrcOp.readsReg())
9662 continue;
9663
9664 // If RegBank is null, this is unassigned or an unallocatable special
9665 // register, which are all scalars.
9666 const RegisterBank *RegBank = RBI->getRegBank(Reg, MRI, RI);
9667 if (RegBank && RegBank->getID() != AMDGPU::SGPRRegBankID)
9668 return InstructionUniformity::NeverUniform;
9669 }
9670
9671 // TODO: Uniformity check condtions above can be rearranged for more
9672 // redability
9673
9674 // TODO: amdgcn.{ballot, [if]cmp} should be AlwaysUniform, but they are
9675 // currently turned into no-op COPYs by SelectionDAG ISel and are
9676 // therefore no longer recognizable.
9677
9678 return InstructionUniformity::Default;
9679}
9680
9681unsigned SIInstrInfo::getDSShaderTypeValue(const MachineFunction &MF) {
9682 switch (MF.getFunction().getCallingConv()) {
9683 case CallingConv::AMDGPU_PS:
9684 return 1;
9685 case CallingConv::AMDGPU_VS:
9686 return 2;
9687 case CallingConv::AMDGPU_GS:
9688 return 3;
9689 case CallingConv::AMDGPU_HS:
9690 case CallingConv::AMDGPU_LS:
9691 case CallingConv::AMDGPU_ES:
9692 report_fatal_error(reason: "ds_ordered_count unsupported for this calling conv");
9693 case CallingConv::AMDGPU_CS:
9694 case CallingConv::AMDGPU_KERNEL:
9695 case CallingConv::C:
9696 case CallingConv::Fast:
9697 default:
9698 // Assume other calling conventions are various compute callable functions
9699 return 0;
9700 }
9701}
9702
9703bool SIInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
9704 Register &SrcReg2, int64_t &CmpMask,
9705 int64_t &CmpValue) const {
9706 if (!MI.getOperand(i: 0).isReg() || MI.getOperand(i: 0).getSubReg())
9707 return false;
9708
9709 switch (MI.getOpcode()) {
9710 default:
9711 break;
9712 case AMDGPU::S_CMP_EQ_U32:
9713 case AMDGPU::S_CMP_EQ_I32:
9714 case AMDGPU::S_CMP_LG_U32:
9715 case AMDGPU::S_CMP_LG_I32:
9716 case AMDGPU::S_CMP_LT_U32:
9717 case AMDGPU::S_CMP_LT_I32:
9718 case AMDGPU::S_CMP_GT_U32:
9719 case AMDGPU::S_CMP_GT_I32:
9720 case AMDGPU::S_CMP_LE_U32:
9721 case AMDGPU::S_CMP_LE_I32:
9722 case AMDGPU::S_CMP_GE_U32:
9723 case AMDGPU::S_CMP_GE_I32:
9724 case AMDGPU::S_CMP_EQ_U64:
9725 case AMDGPU::S_CMP_LG_U64:
9726 SrcReg = MI.getOperand(i: 0).getReg();
9727 if (MI.getOperand(i: 1).isReg()) {
9728 if (MI.getOperand(i: 1).getSubReg())
9729 return false;
9730 SrcReg2 = MI.getOperand(i: 1).getReg();
9731 CmpValue = 0;
9732 } else if (MI.getOperand(i: 1).isImm()) {
9733 SrcReg2 = Register();
9734 CmpValue = MI.getOperand(i: 1).getImm();
9735 } else {
9736 return false;
9737 }
9738 CmpMask = ~0;
9739 return true;
9740 case AMDGPU::S_CMPK_EQ_U32:
9741 case AMDGPU::S_CMPK_EQ_I32:
9742 case AMDGPU::S_CMPK_LG_U32:
9743 case AMDGPU::S_CMPK_LG_I32:
9744 case AMDGPU::S_CMPK_LT_U32:
9745 case AMDGPU::S_CMPK_LT_I32:
9746 case AMDGPU::S_CMPK_GT_U32:
9747 case AMDGPU::S_CMPK_GT_I32:
9748 case AMDGPU::S_CMPK_LE_U32:
9749 case AMDGPU::S_CMPK_LE_I32:
9750 case AMDGPU::S_CMPK_GE_U32:
9751 case AMDGPU::S_CMPK_GE_I32:
9752 SrcReg = MI.getOperand(i: 0).getReg();
9753 SrcReg2 = Register();
9754 CmpValue = MI.getOperand(i: 1).getImm();
9755 CmpMask = ~0;
9756 return true;
9757 }
9758
9759 return false;
9760}
9761
9762bool SIInstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
9763 Register SrcReg2, int64_t CmpMask,
9764 int64_t CmpValue,
9765 const MachineRegisterInfo *MRI) const {
9766 if (!SrcReg || SrcReg.isPhysical())
9767 return false;
9768
9769 if (SrcReg2 && !getFoldableImm(Reg: SrcReg2, MRI: *MRI, Imm&: CmpValue))
9770 return false;
9771
9772 const auto optimizeCmpAnd = [&CmpInstr, SrcReg, CmpValue, MRI,
9773 this](int64_t ExpectedValue, unsigned SrcSize,
9774 bool IsReversible, bool IsSigned) -> bool {
9775 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9776 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9777 // s_cmp_ge_u32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9778 // s_cmp_ge_i32 (s_and_b32 $src, 1 << n), 1 << n => s_and_b32 $src, 1 << n
9779 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 1 << n => s_and_b64 $src, 1 << n
9780 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9781 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9782 // s_cmp_gt_u32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9783 // s_cmp_gt_i32 (s_and_b32 $src, 1 << n), 0 => s_and_b32 $src, 1 << n
9784 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 0 => s_and_b64 $src, 1 << n
9785 //
9786 // Signed ge/gt are not used for the sign bit.
9787 //
9788 // If result of the AND is unused except in the compare:
9789 // s_and_b(32|64) $src, 1 << n => s_bitcmp1_b(32|64) $src, n
9790 //
9791 // s_cmp_eq_u32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
9792 // s_cmp_eq_i32 (s_and_b32 $src, 1 << n), 0 => s_bitcmp0_b32 $src, n
9793 // s_cmp_eq_u64 (s_and_b64 $src, 1 << n), 0 => s_bitcmp0_b64 $src, n
9794 // s_cmp_lg_u32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
9795 // s_cmp_lg_i32 (s_and_b32 $src, 1 << n), 1 << n => s_bitcmp0_b32 $src, n
9796 // s_cmp_lg_u64 (s_and_b64 $src, 1 << n), 1 << n => s_bitcmp0_b64 $src, n
9797
9798 MachineInstr *Def = MRI->getUniqueVRegDef(Reg: SrcReg);
9799 if (!Def || Def->getParent() != CmpInstr.getParent())
9800 return false;
9801
9802 if (Def->getOpcode() != AMDGPU::S_AND_B32 &&
9803 Def->getOpcode() != AMDGPU::S_AND_B64)
9804 return false;
9805
9806 int64_t Mask;
9807 const auto isMask = [&Mask, SrcSize](const MachineOperand *MO) -> bool {
9808 if (MO->isImm())
9809 Mask = MO->getImm();
9810 else if (!getFoldableImm(MO, Imm&: Mask))
9811 return false;
9812 Mask &= maxUIntN(N: SrcSize);
9813 return isPowerOf2_64(Value: Mask);
9814 };
9815
9816 MachineOperand *SrcOp = &Def->getOperand(i: 1);
9817 if (isMask(SrcOp))
9818 SrcOp = &Def->getOperand(i: 2);
9819 else if (isMask(&Def->getOperand(i: 2)))
9820 SrcOp = &Def->getOperand(i: 1);
9821 else
9822 return false;
9823
9824 unsigned BitNo = llvm::countr_zero(Val: (uint64_t)Mask);
9825 if (IsSigned && BitNo == SrcSize - 1)
9826 return false;
9827
9828 ExpectedValue <<= BitNo;
9829
9830 bool IsReversedCC = false;
9831 if (CmpValue != ExpectedValue) {
9832 if (!IsReversible)
9833 return false;
9834 IsReversedCC = CmpValue == (ExpectedValue ^ Mask);
9835 if (!IsReversedCC)
9836 return false;
9837 }
9838
9839 Register DefReg = Def->getOperand(i: 0).getReg();
9840 if (IsReversedCC && !MRI->hasOneNonDBGUse(RegNo: DefReg))
9841 return false;
9842
9843 for (auto I = std::next(x: Def->getIterator()), E = CmpInstr.getIterator();
9844 I != E; ++I) {
9845 if (I->modifiesRegister(AMDGPU::SCC, &RI) ||
9846 I->killsRegister(AMDGPU::SCC, &RI))
9847 return false;
9848 }
9849
9850 MachineOperand *SccDef =
9851 Def->findRegisterDefOperand(AMDGPU::SCC, /*TRI=*/nullptr);
9852 SccDef->setIsDead(false);
9853 CmpInstr.eraseFromParent();
9854
9855 if (!MRI->use_nodbg_empty(RegNo: DefReg)) {
9856 assert(!IsReversedCC);
9857 return true;
9858 }
9859
9860 // Replace AND with unused result with a S_BITCMP.
9861 MachineBasicBlock *MBB = Def->getParent();
9862
9863 unsigned NewOpc = (SrcSize == 32) ? IsReversedCC ? AMDGPU::S_BITCMP0_B32
9864 : AMDGPU::S_BITCMP1_B32
9865 : IsReversedCC ? AMDGPU::S_BITCMP0_B64
9866 : AMDGPU::S_BITCMP1_B64;
9867
9868 BuildMI(*MBB, Def, Def->getDebugLoc(), get(NewOpc))
9869 .add(*SrcOp)
9870 .addImm(BitNo);
9871 Def->eraseFromParent();
9872
9873 return true;
9874 };
9875
9876 switch (CmpInstr.getOpcode()) {
9877 default:
9878 break;
9879 case AMDGPU::S_CMP_EQ_U32:
9880 case AMDGPU::S_CMP_EQ_I32:
9881 case AMDGPU::S_CMPK_EQ_U32:
9882 case AMDGPU::S_CMPK_EQ_I32:
9883 return optimizeCmpAnd(1, 32, true, false);
9884 case AMDGPU::S_CMP_GE_U32:
9885 case AMDGPU::S_CMPK_GE_U32:
9886 return optimizeCmpAnd(1, 32, false, false);
9887 case AMDGPU::S_CMP_GE_I32:
9888 case AMDGPU::S_CMPK_GE_I32:
9889 return optimizeCmpAnd(1, 32, false, true);
9890 case AMDGPU::S_CMP_EQ_U64:
9891 return optimizeCmpAnd(1, 64, true, false);
9892 case AMDGPU::S_CMP_LG_U32:
9893 case AMDGPU::S_CMP_LG_I32:
9894 case AMDGPU::S_CMPK_LG_U32:
9895 case AMDGPU::S_CMPK_LG_I32:
9896 return optimizeCmpAnd(0, 32, true, false);
9897 case AMDGPU::S_CMP_GT_U32:
9898 case AMDGPU::S_CMPK_GT_U32:
9899 return optimizeCmpAnd(0, 32, false, false);
9900 case AMDGPU::S_CMP_GT_I32:
9901 case AMDGPU::S_CMPK_GT_I32:
9902 return optimizeCmpAnd(0, 32, false, true);
9903 case AMDGPU::S_CMP_LG_U64:
9904 return optimizeCmpAnd(0, 64, true, false);
9905 }
9906
9907 return false;
9908}
9909
9910void SIInstrInfo::enforceOperandRCAlignment(MachineInstr &MI,
9911 unsigned OpName) const {
9912 if (!ST.needsAlignedVGPRs())
9913 return;
9914
9915 int OpNo = AMDGPU::getNamedOperandIdx(Opcode: MI.getOpcode(), NamedIdx: OpName);
9916 if (OpNo < 0)
9917 return;
9918 MachineOperand &Op = MI.getOperand(i: OpNo);
9919 if (getOpSize(MI, OpNo) > 4)
9920 return;
9921
9922 // Add implicit aligned super-reg to force alignment on the data operand.
9923 const DebugLoc &DL = MI.getDebugLoc();
9924 MachineBasicBlock *BB = MI.getParent();
9925 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
9926 Register DataReg = Op.getReg();
9927 bool IsAGPR = RI.isAGPR(MRI, DataReg);
9928 Register Undef = MRI.createVirtualRegister(
9929 IsAGPR ? &AMDGPU::AGPR_32RegClass : &AMDGPU::VGPR_32RegClass);
9930 BuildMI(*BB, MI, DL, get(AMDGPU::IMPLICIT_DEF), Undef);
9931 Register NewVR =
9932 MRI.createVirtualRegister(IsAGPR ? &AMDGPU::AReg_64_Align2RegClass
9933 : &AMDGPU::VReg_64_Align2RegClass);
9934 BuildMI(*BB, MI, DL, get(AMDGPU::REG_SEQUENCE), NewVR)
9935 .addReg(DataReg, 0, Op.getSubReg())
9936 .addImm(AMDGPU::sub0)
9937 .addReg(Undef)
9938 .addImm(AMDGPU::sub1);
9939 Op.setReg(NewVR);
9940 Op.setSubReg(AMDGPU::sub0);
9941 MI.addOperand(Op: MachineOperand::CreateReg(Reg: NewVR, isDef: false, isImp: true));
9942}
9943

source code of llvm/lib/Target/AMDGPU/SIInstrInfo.cpp