1//===- InstCombineCalls.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the visitCall, visitInvoke, and visitCallBr functions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "InstCombineInternal.h"
14#include "llvm/ADT/APFloat.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/STLFunctionalExtras.h"
19#include "llvm/ADT/SmallBitVector.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/Statistic.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/AssumeBundleQueries.h"
24#include "llvm/Analysis/AssumptionCache.h"
25#include "llvm/Analysis/InstructionSimplify.h"
26#include "llvm/Analysis/Loads.h"
27#include "llvm/Analysis/MemoryBuiltins.h"
28#include "llvm/Analysis/ValueTracking.h"
29#include "llvm/Analysis/VectorUtils.h"
30#include "llvm/IR/AttributeMask.h"
31#include "llvm/IR/Attributes.h"
32#include "llvm/IR/BasicBlock.h"
33#include "llvm/IR/Constant.h"
34#include "llvm/IR/Constants.h"
35#include "llvm/IR/DataLayout.h"
36#include "llvm/IR/DebugInfo.h"
37#include "llvm/IR/DerivedTypes.h"
38#include "llvm/IR/Function.h"
39#include "llvm/IR/GlobalVariable.h"
40#include "llvm/IR/InlineAsm.h"
41#include "llvm/IR/InstrTypes.h"
42#include "llvm/IR/Instruction.h"
43#include "llvm/IR/Instructions.h"
44#include "llvm/IR/IntrinsicInst.h"
45#include "llvm/IR/Intrinsics.h"
46#include "llvm/IR/IntrinsicsAArch64.h"
47#include "llvm/IR/IntrinsicsAMDGPU.h"
48#include "llvm/IR/IntrinsicsARM.h"
49#include "llvm/IR/IntrinsicsHexagon.h"
50#include "llvm/IR/LLVMContext.h"
51#include "llvm/IR/Metadata.h"
52#include "llvm/IR/PatternMatch.h"
53#include "llvm/IR/Statepoint.h"
54#include "llvm/IR/Type.h"
55#include "llvm/IR/User.h"
56#include "llvm/IR/Value.h"
57#include "llvm/IR/ValueHandle.h"
58#include "llvm/Support/AtomicOrdering.h"
59#include "llvm/Support/Casting.h"
60#include "llvm/Support/CommandLine.h"
61#include "llvm/Support/Compiler.h"
62#include "llvm/Support/Debug.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/KnownBits.h"
65#include "llvm/Support/MathExtras.h"
66#include "llvm/Support/raw_ostream.h"
67#include "llvm/Transforms/InstCombine/InstCombiner.h"
68#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69#include "llvm/Transforms/Utils/Local.h"
70#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71#include <algorithm>
72#include <cassert>
73#include <cstdint>
74#include <optional>
75#include <utility>
76#include <vector>
77
78#define DEBUG_TYPE "instcombine"
79#include "llvm/Transforms/Utils/InstructionWorklist.h"
80
81using namespace llvm;
82using namespace PatternMatch;
83
84STATISTIC(NumSimplified, "Number of library calls simplified");
85
86static cl::opt<unsigned> GuardWideningWindow(
87 "instcombine-guard-widening-window",
88 cl::init(Val: 3),
89 cl::desc("How wide an instruction window to bypass looking for "
90 "another guard"));
91
92/// Return the specified type promoted as it would be to pass though a va_arg
93/// area.
94static Type *getPromotedType(Type *Ty) {
95 if (IntegerType* ITy = dyn_cast<IntegerType>(Val: Ty)) {
96 if (ITy->getBitWidth() < 32)
97 return Type::getInt32Ty(C&: Ty->getContext());
98 }
99 return Ty;
100}
101
102/// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
103/// TODO: This should probably be integrated with visitAllocSites, but that
104/// requires a deeper change to allow either unread or unwritten objects.
105static bool hasUndefSource(AnyMemTransferInst *MI) {
106 auto *Src = MI->getRawSource();
107 while (isa<GetElementPtrInst>(Val: Src) || isa<BitCastInst>(Val: Src)) {
108 if (!Src->hasOneUse())
109 return false;
110 Src = cast<Instruction>(Val: Src)->getOperand(i: 0);
111 }
112 return isa<AllocaInst>(Val: Src) && Src->hasOneUse();
113}
114
115Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
116 Align DstAlign = getKnownAlignment(V: MI->getRawDest(), DL, CxtI: MI, AC: &AC, DT: &DT);
117 MaybeAlign CopyDstAlign = MI->getDestAlign();
118 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
119 MI->setDestAlignment(DstAlign);
120 return MI;
121 }
122
123 Align SrcAlign = getKnownAlignment(V: MI->getRawSource(), DL, CxtI: MI, AC: &AC, DT: &DT);
124 MaybeAlign CopySrcAlign = MI->getSourceAlign();
125 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
126 MI->setSourceAlignment(SrcAlign);
127 return MI;
128 }
129
130 // If we have a store to a location which is known constant, we can conclude
131 // that the store must be storing the constant value (else the memory
132 // wouldn't be constant), and this must be a noop.
133 if (!isModSet(MRI: AA->getModRefInfoMask(P: MI->getDest()))) {
134 // Set the size of the copy to 0, it will be deleted on the next iteration.
135 MI->setLength(Constant::getNullValue(Ty: MI->getLength()->getType()));
136 return MI;
137 }
138
139 // If the source is provably undef, the memcpy/memmove doesn't do anything
140 // (unless the transfer is volatile).
141 if (hasUndefSource(MI) && !MI->isVolatile()) {
142 // Set the size of the copy to 0, it will be deleted on the next iteration.
143 MI->setLength(Constant::getNullValue(Ty: MI->getLength()->getType()));
144 return MI;
145 }
146
147 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
148 // load/store.
149 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(Val: MI->getLength());
150 if (!MemOpLength) return nullptr;
151
152 // Source and destination pointer types are always "i8*" for intrinsic. See
153 // if the size is something we can handle with a single primitive load/store.
154 // A single load+store correctly handles overlapping memory in the memmove
155 // case.
156 uint64_t Size = MemOpLength->getLimitedValue();
157 assert(Size && "0-sized memory transferring should be removed already.");
158
159 if (Size > 8 || (Size&(Size-1)))
160 return nullptr; // If not 1/2/4/8 bytes, exit.
161
162 // If it is an atomic and alignment is less than the size then we will
163 // introduce the unaligned memory access which will be later transformed
164 // into libcall in CodeGen. This is not evident performance gain so disable
165 // it now.
166 if (isa<AtomicMemTransferInst>(Val: MI))
167 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
168 return nullptr;
169
170 // Use an integer load+store unless we can find something better.
171 IntegerType* IntType = IntegerType::get(C&: MI->getContext(), NumBits: Size<<3);
172
173 // If the memcpy has metadata describing the members, see if we can get the
174 // TBAA tag describing our copy.
175 AAMDNodes AACopyMD = MI->getAAMetadata().adjustForAccess(AccessSize: Size);
176
177 Value *Src = MI->getArgOperand(i: 1);
178 Value *Dest = MI->getArgOperand(i: 0);
179 LoadInst *L = Builder.CreateLoad(Ty: IntType, Ptr: Src);
180 // Alignment from the mem intrinsic will be better, so use it.
181 L->setAlignment(*CopySrcAlign);
182 L->setAAMetadata(AACopyMD);
183 MDNode *LoopMemParallelMD =
184 MI->getMetadata(KindID: LLVMContext::MD_mem_parallel_loop_access);
185 if (LoopMemParallelMD)
186 L->setMetadata(KindID: LLVMContext::MD_mem_parallel_loop_access, Node: LoopMemParallelMD);
187 MDNode *AccessGroupMD = MI->getMetadata(KindID: LLVMContext::MD_access_group);
188 if (AccessGroupMD)
189 L->setMetadata(KindID: LLVMContext::MD_access_group, Node: AccessGroupMD);
190
191 StoreInst *S = Builder.CreateStore(Val: L, Ptr: Dest);
192 // Alignment from the mem intrinsic will be better, so use it.
193 S->setAlignment(*CopyDstAlign);
194 S->setAAMetadata(AACopyMD);
195 if (LoopMemParallelMD)
196 S->setMetadata(KindID: LLVMContext::MD_mem_parallel_loop_access, Node: LoopMemParallelMD);
197 if (AccessGroupMD)
198 S->setMetadata(KindID: LLVMContext::MD_access_group, Node: AccessGroupMD);
199 S->copyMetadata(SrcInst: *MI, WL: LLVMContext::MD_DIAssignID);
200
201 if (auto *MT = dyn_cast<MemTransferInst>(Val: MI)) {
202 // non-atomics can be volatile
203 L->setVolatile(MT->isVolatile());
204 S->setVolatile(MT->isVolatile());
205 }
206 if (isa<AtomicMemTransferInst>(Val: MI)) {
207 // atomics have to be unordered
208 L->setOrdering(AtomicOrdering::Unordered);
209 S->setOrdering(AtomicOrdering::Unordered);
210 }
211
212 // Set the size of the copy to 0, it will be deleted on the next iteration.
213 MI->setLength(Constant::getNullValue(Ty: MemOpLength->getType()));
214 return MI;
215}
216
217Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
218 const Align KnownAlignment =
219 getKnownAlignment(V: MI->getDest(), DL, CxtI: MI, AC: &AC, DT: &DT);
220 MaybeAlign MemSetAlign = MI->getDestAlign();
221 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
222 MI->setDestAlignment(KnownAlignment);
223 return MI;
224 }
225
226 // If we have a store to a location which is known constant, we can conclude
227 // that the store must be storing the constant value (else the memory
228 // wouldn't be constant), and this must be a noop.
229 if (!isModSet(MRI: AA->getModRefInfoMask(P: MI->getDest()))) {
230 // Set the size of the copy to 0, it will be deleted on the next iteration.
231 MI->setLength(Constant::getNullValue(Ty: MI->getLength()->getType()));
232 return MI;
233 }
234
235 // Remove memset with an undef value.
236 // FIXME: This is technically incorrect because it might overwrite a poison
237 // value. Change to PoisonValue once #52930 is resolved.
238 if (isa<UndefValue>(Val: MI->getValue())) {
239 // Set the size of the copy to 0, it will be deleted on the next iteration.
240 MI->setLength(Constant::getNullValue(Ty: MI->getLength()->getType()));
241 return MI;
242 }
243
244 // Extract the length and alignment and fill if they are constant.
245 ConstantInt *LenC = dyn_cast<ConstantInt>(Val: MI->getLength());
246 ConstantInt *FillC = dyn_cast<ConstantInt>(Val: MI->getValue());
247 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(Bitwidth: 8))
248 return nullptr;
249 const uint64_t Len = LenC->getLimitedValue();
250 assert(Len && "0-sized memory setting should be removed already.");
251 const Align Alignment = MI->getDestAlign().valueOrOne();
252
253 // If it is an atomic and alignment is less than the size then we will
254 // introduce the unaligned memory access which will be later transformed
255 // into libcall in CodeGen. This is not evident performance gain so disable
256 // it now.
257 if (isa<AtomicMemSetInst>(Val: MI))
258 if (Alignment < Len)
259 return nullptr;
260
261 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
262 if (Len <= 8 && isPowerOf2_32(Value: (uint32_t)Len)) {
263 Type *ITy = IntegerType::get(C&: MI->getContext(), NumBits: Len*8); // n=1 -> i8.
264
265 Value *Dest = MI->getDest();
266
267 // Extract the fill value and store.
268 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
269 Constant *FillVal = ConstantInt::get(Ty: ITy, V: Fill);
270 StoreInst *S = Builder.CreateStore(Val: FillVal, Ptr: Dest, isVolatile: MI->isVolatile());
271 S->copyMetadata(SrcInst: *MI, WL: LLVMContext::MD_DIAssignID);
272 auto replaceOpForAssignmentMarkers = [FillC, FillVal](auto *DbgAssign) {
273 if (llvm::is_contained(DbgAssign->location_ops(), FillC))
274 DbgAssign->replaceVariableLocationOp(FillC, FillVal);
275 };
276 for_each(Range: at::getAssignmentMarkers(Inst: S), F: replaceOpForAssignmentMarkers);
277 for_each(Range: at::getDVRAssignmentMarkers(Inst: S), F: replaceOpForAssignmentMarkers);
278
279 S->setAlignment(Alignment);
280 if (isa<AtomicMemSetInst>(Val: MI))
281 S->setOrdering(AtomicOrdering::Unordered);
282
283 // Set the size of the copy to 0, it will be deleted on the next iteration.
284 MI->setLength(Constant::getNullValue(Ty: LenC->getType()));
285 return MI;
286 }
287
288 return nullptr;
289}
290
291// TODO, Obvious Missing Transforms:
292// * Narrow width by halfs excluding zero/undef lanes
293Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
294 Value *LoadPtr = II.getArgOperand(i: 0);
295 const Align Alignment =
296 cast<ConstantInt>(Val: II.getArgOperand(i: 1))->getAlignValue();
297
298 // If the mask is all ones or undefs, this is a plain vector load of the 1st
299 // argument.
300 if (maskIsAllOneOrUndef(Mask: II.getArgOperand(i: 2))) {
301 LoadInst *L = Builder.CreateAlignedLoad(Ty: II.getType(), Ptr: LoadPtr, Align: Alignment,
302 Name: "unmaskedload");
303 L->copyMetadata(SrcInst: II);
304 return L;
305 }
306
307 // If we can unconditionally load from this address, replace with a
308 // load/select idiom. TODO: use DT for context sensitive query
309 if (isDereferenceablePointer(V: LoadPtr, Ty: II.getType(),
310 DL: II.getModule()->getDataLayout(), CtxI: &II, AC: &AC)) {
311 LoadInst *LI = Builder.CreateAlignedLoad(Ty: II.getType(), Ptr: LoadPtr, Align: Alignment,
312 Name: "unmaskedload");
313 LI->copyMetadata(SrcInst: II);
314 return Builder.CreateSelect(C: II.getArgOperand(i: 2), True: LI, False: II.getArgOperand(i: 3));
315 }
316
317 return nullptr;
318}
319
320// TODO, Obvious Missing Transforms:
321// * Single constant active lane -> store
322// * Narrow width by halfs excluding zero/undef lanes
323Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
324 auto *ConstMask = dyn_cast<Constant>(Val: II.getArgOperand(i: 3));
325 if (!ConstMask)
326 return nullptr;
327
328 // If the mask is all zeros, this instruction does nothing.
329 if (ConstMask->isNullValue())
330 return eraseInstFromFunction(I&: II);
331
332 // If the mask is all ones, this is a plain vector store of the 1st argument.
333 if (ConstMask->isAllOnesValue()) {
334 Value *StorePtr = II.getArgOperand(i: 1);
335 Align Alignment = cast<ConstantInt>(Val: II.getArgOperand(i: 2))->getAlignValue();
336 StoreInst *S =
337 new StoreInst(II.getArgOperand(i: 0), StorePtr, false, Alignment);
338 S->copyMetadata(SrcInst: II);
339 return S;
340 }
341
342 if (isa<ScalableVectorType>(Val: ConstMask->getType()))
343 return nullptr;
344
345 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
346 APInt DemandedElts = possiblyDemandedEltsInMask(Mask: ConstMask);
347 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
348 if (Value *V = SimplifyDemandedVectorElts(V: II.getOperand(i_nocapture: 0), DemandedElts,
349 PoisonElts))
350 return replaceOperand(I&: II, OpNum: 0, V);
351
352 return nullptr;
353}
354
355// TODO, Obvious Missing Transforms:
356// * Single constant active lane load -> load
357// * Dereferenceable address & few lanes -> scalarize speculative load/selects
358// * Adjacent vector addresses -> masked.load
359// * Narrow width by halfs excluding zero/undef lanes
360// * Vector incrementing address -> vector masked load
361Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
362 auto *ConstMask = dyn_cast<Constant>(Val: II.getArgOperand(i: 2));
363 if (!ConstMask)
364 return nullptr;
365
366 // Vector splat address w/known mask -> scalar load
367 // Fold the gather to load the source vector first lane
368 // because it is reloading the same value each time
369 if (ConstMask->isAllOnesValue())
370 if (auto *SplatPtr = getSplatValue(V: II.getArgOperand(i: 0))) {
371 auto *VecTy = cast<VectorType>(Val: II.getType());
372 const Align Alignment =
373 cast<ConstantInt>(Val: II.getArgOperand(i: 1))->getAlignValue();
374 LoadInst *L = Builder.CreateAlignedLoad(Ty: VecTy->getElementType(), Ptr: SplatPtr,
375 Align: Alignment, Name: "load.scalar");
376 Value *Shuf =
377 Builder.CreateVectorSplat(EC: VecTy->getElementCount(), V: L, Name: "broadcast");
378 return replaceInstUsesWith(I&: II, V: cast<Instruction>(Val: Shuf));
379 }
380
381 return nullptr;
382}
383
384// TODO, Obvious Missing Transforms:
385// * Single constant active lane -> store
386// * Adjacent vector addresses -> masked.store
387// * Narrow store width by halfs excluding zero/undef lanes
388// * Vector incrementing address -> vector masked store
389Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
390 auto *ConstMask = dyn_cast<Constant>(Val: II.getArgOperand(i: 3));
391 if (!ConstMask)
392 return nullptr;
393
394 // If the mask is all zeros, a scatter does nothing.
395 if (ConstMask->isNullValue())
396 return eraseInstFromFunction(I&: II);
397
398 // Vector splat address -> scalar store
399 if (auto *SplatPtr = getSplatValue(V: II.getArgOperand(i: 1))) {
400 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
401 if (auto *SplatValue = getSplatValue(V: II.getArgOperand(i: 0))) {
402 if (maskContainsAllOneOrUndef(Mask: ConstMask)) {
403 Align Alignment =
404 cast<ConstantInt>(Val: II.getArgOperand(i: 2))->getAlignValue();
405 StoreInst *S = new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false,
406 Alignment);
407 S->copyMetadata(SrcInst: II);
408 return S;
409 }
410 }
411 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
412 // lastlane), ptr
413 if (ConstMask->isAllOnesValue()) {
414 Align Alignment = cast<ConstantInt>(Val: II.getArgOperand(i: 2))->getAlignValue();
415 VectorType *WideLoadTy = cast<VectorType>(Val: II.getArgOperand(i: 1)->getType());
416 ElementCount VF = WideLoadTy->getElementCount();
417 Value *RunTimeVF = Builder.CreateElementCount(DstType: Builder.getInt32Ty(), EC: VF);
418 Value *LastLane = Builder.CreateSub(LHS: RunTimeVF, RHS: Builder.getInt32(C: 1));
419 Value *Extract =
420 Builder.CreateExtractElement(Vec: II.getArgOperand(i: 0), Idx: LastLane);
421 StoreInst *S =
422 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
423 S->copyMetadata(SrcInst: II);
424 return S;
425 }
426 }
427 if (isa<ScalableVectorType>(Val: ConstMask->getType()))
428 return nullptr;
429
430 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
431 APInt DemandedElts = possiblyDemandedEltsInMask(Mask: ConstMask);
432 APInt PoisonElts(DemandedElts.getBitWidth(), 0);
433 if (Value *V = SimplifyDemandedVectorElts(V: II.getOperand(i_nocapture: 0), DemandedElts,
434 PoisonElts))
435 return replaceOperand(I&: II, OpNum: 0, V);
436 if (Value *V = SimplifyDemandedVectorElts(V: II.getOperand(i_nocapture: 1), DemandedElts,
437 PoisonElts))
438 return replaceOperand(I&: II, OpNum: 1, V);
439
440 return nullptr;
441}
442
443/// This function transforms launder.invariant.group and strip.invariant.group
444/// like:
445/// launder(launder(%x)) -> launder(%x) (the result is not the argument)
446/// launder(strip(%x)) -> launder(%x)
447/// strip(strip(%x)) -> strip(%x) (the result is not the argument)
448/// strip(launder(%x)) -> strip(%x)
449/// This is legal because it preserves the most recent information about
450/// the presence or absence of invariant.group.
451static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
452 InstCombinerImpl &IC) {
453 auto *Arg = II.getArgOperand(i: 0);
454 auto *StrippedArg = Arg->stripPointerCasts();
455 auto *StrippedInvariantGroupsArg = StrippedArg;
456 while (auto *Intr = dyn_cast<IntrinsicInst>(Val: StrippedInvariantGroupsArg)) {
457 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
458 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
459 break;
460 StrippedInvariantGroupsArg = Intr->getArgOperand(i: 0)->stripPointerCasts();
461 }
462 if (StrippedArg == StrippedInvariantGroupsArg)
463 return nullptr; // No launders/strips to remove.
464
465 Value *Result = nullptr;
466
467 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
468 Result = IC.Builder.CreateLaunderInvariantGroup(Ptr: StrippedInvariantGroupsArg);
469 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
470 Result = IC.Builder.CreateStripInvariantGroup(Ptr: StrippedInvariantGroupsArg);
471 else
472 llvm_unreachable(
473 "simplifyInvariantGroupIntrinsic only handles launder and strip");
474 if (Result->getType()->getPointerAddressSpace() !=
475 II.getType()->getPointerAddressSpace())
476 Result = IC.Builder.CreateAddrSpaceCast(V: Result, DestTy: II.getType());
477
478 return cast<Instruction>(Val: Result);
479}
480
481static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
482 assert((II.getIntrinsicID() == Intrinsic::cttz ||
483 II.getIntrinsicID() == Intrinsic::ctlz) &&
484 "Expected cttz or ctlz intrinsic");
485 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
486 Value *Op0 = II.getArgOperand(i: 0);
487 Value *Op1 = II.getArgOperand(i: 1);
488 Value *X;
489 // ctlz(bitreverse(x)) -> cttz(x)
490 // cttz(bitreverse(x)) -> ctlz(x)
491 if (match(V: Op0, P: m_BitReverse(Op0: m_Value(V&: X)))) {
492 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
493 Function *F = Intrinsic::getDeclaration(M: II.getModule(), id: ID, Tys: II.getType());
494 return CallInst::Create(Func: F, Args: {X, II.getArgOperand(i: 1)});
495 }
496
497 if (II.getType()->isIntOrIntVectorTy(BitWidth: 1)) {
498 // ctlz/cttz i1 Op0 --> not Op0
499 if (match(V: Op1, P: m_Zero()))
500 return BinaryOperator::CreateNot(Op: Op0);
501 // If zero is poison, then the input can be assumed to be "true", so the
502 // instruction simplifies to "false".
503 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
504 return IC.replaceInstUsesWith(I&: II, V: ConstantInt::getNullValue(Ty: II.getType()));
505 }
506
507 // If ctlz/cttz is only used as a shift amount, set is_zero_poison to true.
508 if (II.hasOneUse() && match(V: Op1, P: m_Zero()) &&
509 match(V: II.user_back(), P: m_Shift(L: m_Value(), R: m_Specific(V: &II))))
510 return IC.replaceOperand(I&: II, OpNum: 1, V: IC.Builder.getTrue());
511
512 Constant *C;
513
514 if (IsTZ) {
515 // cttz(-x) -> cttz(x)
516 if (match(V: Op0, P: m_Neg(V: m_Value(V&: X))))
517 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
518
519 // cttz(-x & x) -> cttz(x)
520 if (match(V: Op0, P: m_c_And(L: m_Neg(V: m_Value(V&: X)), R: m_Deferred(V: X))))
521 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
522
523 // cttz(sext(x)) -> cttz(zext(x))
524 if (match(V: Op0, P: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: X))))) {
525 auto *Zext = IC.Builder.CreateZExt(V: X, DestTy: II.getType());
526 auto *CttzZext =
527 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
528 return IC.replaceInstUsesWith(I&: II, V: CttzZext);
529 }
530
531 // Zext doesn't change the number of trailing zeros, so narrow:
532 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
533 if (match(V: Op0, P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X)))) && match(V: Op1, P: m_One())) {
534 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
535 IC.Builder.getTrue());
536 auto *ZextCttz = IC.Builder.CreateZExt(V: Cttz, DestTy: II.getType());
537 return IC.replaceInstUsesWith(I&: II, V: ZextCttz);
538 }
539
540 // cttz(abs(x)) -> cttz(x)
541 // cttz(nabs(x)) -> cttz(x)
542 Value *Y;
543 SelectPatternFlavor SPF = matchSelectPattern(V: Op0, LHS&: X, RHS&: Y).Flavor;
544 if (SPF == SPF_ABS || SPF == SPF_NABS)
545 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
546
547 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(V&: X))))
548 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
549
550 // cttz(shl(%const, %val), 1) --> add(cttz(%const, 1), %val)
551 if (match(V: Op0, P: m_Shl(L: m_ImmConstant(C), R: m_Value(V&: X))) &&
552 match(V: Op1, P: m_One())) {
553 Value *ConstCttz =
554 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ID: cttz, LHS: C, RHS: Op1);
555 return BinaryOperator::CreateAdd(V1: ConstCttz, V2: X);
556 }
557
558 // cttz(lshr exact (%const, %val), 1) --> sub(cttz(%const, 1), %val)
559 if (match(V: Op0, P: m_Exact(SubPattern: m_LShr(L: m_ImmConstant(C), R: m_Value(V&: X)))) &&
560 match(V: Op1, P: m_One())) {
561 Value *ConstCttz =
562 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ID: cttz, LHS: C, RHS: Op1);
563 return BinaryOperator::CreateSub(V1: ConstCttz, V2: X);
564 }
565 } else {
566 // ctlz(lshr(%const, %val), 1) --> add(ctlz(%const, 1), %val)
567 if (match(V: Op0, P: m_LShr(L: m_ImmConstant(C), R: m_Value(V&: X))) &&
568 match(V: Op1, P: m_One())) {
569 Value *ConstCtlz =
570 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ID: ctlz, LHS: C, RHS: Op1);
571 return BinaryOperator::CreateAdd(V1: ConstCtlz, V2: X);
572 }
573
574 // ctlz(shl nuw (%const, %val), 1) --> sub(ctlz(%const, 1), %val)
575 if (match(V: Op0, P: m_NUWShl(L: m_ImmConstant(C), R: m_Value(V&: X))) &&
576 match(V: Op1, P: m_One())) {
577 Value *ConstCtlz =
578 IC.Builder.CreateBinaryIntrinsic(Intrinsic::ID: ctlz, LHS: C, RHS: Op1);
579 return BinaryOperator::CreateSub(V1: ConstCtlz, V2: X);
580 }
581 }
582
583 KnownBits Known = IC.computeKnownBits(V: Op0, Depth: 0, CxtI: &II);
584
585 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
586 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
587 : Known.countMaxLeadingZeros();
588 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
589 : Known.countMinLeadingZeros();
590
591 // If all bits above (ctlz) or below (cttz) the first known one are known
592 // zero, this value is constant.
593 // FIXME: This should be in InstSimplify because we're replacing an
594 // instruction with a constant.
595 if (PossibleZeros == DefiniteZeros) {
596 auto *C = ConstantInt::get(Ty: Op0->getType(), V: DefiniteZeros);
597 return IC.replaceInstUsesWith(I&: II, V: C);
598 }
599
600 // If the input to cttz/ctlz is known to be non-zero,
601 // then change the 'ZeroIsPoison' parameter to 'true'
602 // because we know the zero behavior can't affect the result.
603 if (!Known.One.isZero() ||
604 isKnownNonZero(V: Op0, Q: IC.getSimplifyQuery().getWithInstruction(I: &II))) {
605 if (!match(V: II.getArgOperand(i: 1), P: m_One()))
606 return IC.replaceOperand(I&: II, OpNum: 1, V: IC.Builder.getTrue());
607 }
608
609 // Add range attribute since known bits can't completely reflect what we know.
610 unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
611 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
612 !II.getMetadata(KindID: LLVMContext::MD_range)) {
613 ConstantRange Range(APInt(BitWidth, DefiniteZeros),
614 APInt(BitWidth, PossibleZeros + 1));
615 II.addRangeRetAttr(CR: Range);
616 return &II;
617 }
618
619 return nullptr;
620}
621
622static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
623 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
624 "Expected ctpop intrinsic");
625 Type *Ty = II.getType();
626 unsigned BitWidth = Ty->getScalarSizeInBits();
627 Value *Op0 = II.getArgOperand(i: 0);
628 Value *X, *Y;
629
630 // ctpop(bitreverse(x)) -> ctpop(x)
631 // ctpop(bswap(x)) -> ctpop(x)
632 if (match(V: Op0, P: m_BitReverse(Op0: m_Value(V&: X))) || match(V: Op0, P: m_BSwap(Op0: m_Value(V&: X))))
633 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
634
635 // ctpop(rot(x)) -> ctpop(x)
636 if ((match(V: Op0, P: m_FShl(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_Value())) ||
637 match(V: Op0, P: m_FShr(Op0: m_Value(V&: X), Op1: m_Value(V&: Y), Op2: m_Value()))) &&
638 X == Y)
639 return IC.replaceOperand(I&: II, OpNum: 0, V: X);
640
641 // ctpop(x | -x) -> bitwidth - cttz(x, false)
642 if (Op0->hasOneUse() &&
643 match(V: Op0, P: m_c_Or(L: m_Value(V&: X), R: m_Neg(V: m_Deferred(V: X))))) {
644 Function *F =
645 Intrinsic::getDeclaration(M: II.getModule(), Intrinsic::id: cttz, Tys: Ty);
646 auto *Cttz = IC.Builder.CreateCall(Callee: F, Args: {X, IC.Builder.getFalse()});
647 auto *Bw = ConstantInt::get(Ty, V: APInt(BitWidth, BitWidth));
648 return IC.replaceInstUsesWith(I&: II, V: IC.Builder.CreateSub(LHS: Bw, RHS: Cttz));
649 }
650
651 // ctpop(~x & (x - 1)) -> cttz(x, false)
652 if (match(V: Op0,
653 P: m_c_And(L: m_Not(V: m_Value(V&: X)), R: m_Add(L: m_Deferred(V: X), R: m_AllOnes())))) {
654 Function *F =
655 Intrinsic::getDeclaration(M: II.getModule(), Intrinsic::id: cttz, Tys: Ty);
656 return CallInst::Create(Func: F, Args: {X, IC.Builder.getFalse()});
657 }
658
659 // Zext doesn't change the number of set bits, so narrow:
660 // ctpop (zext X) --> zext (ctpop X)
661 if (match(V: Op0, P: m_OneUse(SubPattern: m_ZExt(Op: m_Value(V&: X))))) {
662 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ID: ctpop, V: X);
663 return CastInst::Create(Instruction::ZExt, S: NarrowPop, Ty);
664 }
665
666 KnownBits Known(BitWidth);
667 IC.computeKnownBits(V: Op0, Known, Depth: 0, CxtI: &II);
668
669 // If all bits are zero except for exactly one fixed bit, then the result
670 // must be 0 or 1, and we can get that answer by shifting to LSB:
671 // ctpop (X & 32) --> (X & 32) >> 5
672 // TODO: Investigate removing this as its likely unnecessary given the below
673 // `isKnownToBeAPowerOfTwo` check.
674 if ((~Known.Zero).isPowerOf2())
675 return BinaryOperator::CreateLShr(
676 V1: Op0, V2: ConstantInt::get(Ty, V: (~Known.Zero).exactLogBase2()));
677
678 // More generally we can also handle non-constant power of 2 patterns such as
679 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
680 // ctpop(Pow2OrZero) --> icmp ne X, 0
681 if (IC.isKnownToBeAPowerOfTwo(V: Op0, /* OrZero */ true))
682 return CastInst::Create(Instruction::ZExt,
683 S: IC.Builder.CreateICmp(P: ICmpInst::ICMP_NE, LHS: Op0,
684 RHS: Constant::getNullValue(Ty)),
685 Ty);
686
687 // Add range attribute since known bits can't completely reflect what we know.
688 if (BitWidth != 1 && !II.hasRetAttr(Attribute::Range) &&
689 !II.getMetadata(KindID: LLVMContext::MD_range)) {
690 ConstantRange Range(APInt(BitWidth, Known.countMinPopulation()),
691 APInt(BitWidth, Known.countMaxPopulation() + 1));
692 II.addRangeRetAttr(CR: Range);
693 return &II;
694 }
695
696 return nullptr;
697}
698
699/// Convert a table lookup to shufflevector if the mask is constant.
700/// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
701/// which case we could lower the shufflevector with rev64 instructions
702/// as it's actually a byte reverse.
703static Value *simplifyNeonTbl1(const IntrinsicInst &II,
704 InstCombiner::BuilderTy &Builder) {
705 // Bail out if the mask is not a constant.
706 auto *C = dyn_cast<Constant>(Val: II.getArgOperand(i: 1));
707 if (!C)
708 return nullptr;
709
710 auto *VecTy = cast<FixedVectorType>(Val: II.getType());
711 unsigned NumElts = VecTy->getNumElements();
712
713 // Only perform this transformation for <8 x i8> vector types.
714 if (!VecTy->getElementType()->isIntegerTy(Bitwidth: 8) || NumElts != 8)
715 return nullptr;
716
717 int Indexes[8];
718
719 for (unsigned I = 0; I < NumElts; ++I) {
720 Constant *COp = C->getAggregateElement(Elt: I);
721
722 if (!COp || !isa<ConstantInt>(Val: COp))
723 return nullptr;
724
725 Indexes[I] = cast<ConstantInt>(Val: COp)->getLimitedValue();
726
727 // Make sure the mask indices are in range.
728 if ((unsigned)Indexes[I] >= NumElts)
729 return nullptr;
730 }
731
732 auto *V1 = II.getArgOperand(i: 0);
733 auto *V2 = Constant::getNullValue(Ty: V1->getType());
734 return Builder.CreateShuffleVector(V1, V2, Mask: ArrayRef(Indexes));
735}
736
737// Returns true iff the 2 intrinsics have the same operands, limiting the
738// comparison to the first NumOperands.
739static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
740 unsigned NumOperands) {
741 assert(I.arg_size() >= NumOperands && "Not enough operands");
742 assert(E.arg_size() >= NumOperands && "Not enough operands");
743 for (unsigned i = 0; i < NumOperands; i++)
744 if (I.getArgOperand(i) != E.getArgOperand(i))
745 return false;
746 return true;
747}
748
749// Remove trivially empty start/end intrinsic ranges, i.e. a start
750// immediately followed by an end (ignoring debuginfo or other
751// start/end intrinsics in between). As this handles only the most trivial
752// cases, tracking the nesting level is not needed:
753//
754// call @llvm.foo.start(i1 0)
755// call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
756// call @llvm.foo.end(i1 0)
757// call @llvm.foo.end(i1 0) ; &I
758static bool
759removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
760 std::function<bool(const IntrinsicInst &)> IsStart) {
761 // We start from the end intrinsic and scan backwards, so that InstCombine
762 // has already processed (and potentially removed) all the instructions
763 // before the end intrinsic.
764 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
765 for (; BI != BE; ++BI) {
766 if (auto *I = dyn_cast<IntrinsicInst>(Val: &*BI)) {
767 if (I->isDebugOrPseudoInst() ||
768 I->getIntrinsicID() == EndI.getIntrinsicID())
769 continue;
770 if (IsStart(*I)) {
771 if (haveSameOperands(I: EndI, E: *I, NumOperands: EndI.arg_size())) {
772 IC.eraseInstFromFunction(I&: *I);
773 IC.eraseInstFromFunction(I&: EndI);
774 return true;
775 }
776 // Skip start intrinsics that don't pair with this end intrinsic.
777 continue;
778 }
779 }
780 break;
781 }
782
783 return false;
784}
785
786Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
787 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
788 return I.getIntrinsicID() == Intrinsic::vastart ||
789 I.getIntrinsicID() == Intrinsic::vacopy;
790 });
791 return nullptr;
792}
793
794static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
795 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
796 Value *Arg0 = Call.getArgOperand(i: 0), *Arg1 = Call.getArgOperand(i: 1);
797 if (isa<Constant>(Val: Arg0) && !isa<Constant>(Val: Arg1)) {
798 Call.setArgOperand(i: 0, v: Arg1);
799 Call.setArgOperand(i: 1, v: Arg0);
800 return &Call;
801 }
802 return nullptr;
803}
804
805/// Creates a result tuple for an overflow intrinsic \p II with a given
806/// \p Result and a constant \p Overflow value.
807static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
808 Constant *Overflow) {
809 Constant *V[] = {PoisonValue::get(T: Result->getType()), Overflow};
810 StructType *ST = cast<StructType>(Val: II->getType());
811 Constant *Struct = ConstantStruct::get(T: ST, V);
812 return InsertValueInst::Create(Agg: Struct, Val: Result, Idxs: 0);
813}
814
815Instruction *
816InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
817 WithOverflowInst *WO = cast<WithOverflowInst>(Val: II);
818 Value *OperationResult = nullptr;
819 Constant *OverflowResult = nullptr;
820 if (OptimizeOverflowCheck(BinaryOp: WO->getBinaryOp(), IsSigned: WO->isSigned(), LHS: WO->getLHS(),
821 RHS: WO->getRHS(), CtxI&: *WO, OperationResult, OverflowResult))
822 return createOverflowTuple(II: WO, Result: OperationResult, Overflow: OverflowResult);
823 return nullptr;
824}
825
826static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
827 Ty = Ty->getScalarType();
828 return F.getDenormalMode(FPType: Ty->getFltSemantics()).Input == DenormalMode::IEEE;
829}
830
831static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
832 Ty = Ty->getScalarType();
833 return F.getDenormalMode(FPType: Ty->getFltSemantics()).inputsAreZero();
834}
835
836/// \returns the compare predicate type if the test performed by
837/// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
838/// floating-point environment assumed for \p F for type \p Ty
839static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
840 const Function &F, Type *Ty) {
841 switch (static_cast<unsigned>(Mask)) {
842 case fcZero:
843 if (inputDenormalIsIEEE(F, Ty))
844 return FCmpInst::FCMP_OEQ;
845 break;
846 case fcZero | fcSubnormal:
847 if (inputDenormalIsDAZ(F, Ty))
848 return FCmpInst::FCMP_OEQ;
849 break;
850 case fcPositive | fcNegZero:
851 if (inputDenormalIsIEEE(F, Ty))
852 return FCmpInst::FCMP_OGE;
853 break;
854 case fcPositive | fcNegZero | fcNegSubnormal:
855 if (inputDenormalIsDAZ(F, Ty))
856 return FCmpInst::FCMP_OGE;
857 break;
858 case fcPosSubnormal | fcPosNormal | fcPosInf:
859 if (inputDenormalIsIEEE(F, Ty))
860 return FCmpInst::FCMP_OGT;
861 break;
862 case fcNegative | fcPosZero:
863 if (inputDenormalIsIEEE(F, Ty))
864 return FCmpInst::FCMP_OLE;
865 break;
866 case fcNegative | fcPosZero | fcPosSubnormal:
867 if (inputDenormalIsDAZ(F, Ty))
868 return FCmpInst::FCMP_OLE;
869 break;
870 case fcNegSubnormal | fcNegNormal | fcNegInf:
871 if (inputDenormalIsIEEE(F, Ty))
872 return FCmpInst::FCMP_OLT;
873 break;
874 case fcPosNormal | fcPosInf:
875 if (inputDenormalIsDAZ(F, Ty))
876 return FCmpInst::FCMP_OGT;
877 break;
878 case fcNegNormal | fcNegInf:
879 if (inputDenormalIsDAZ(F, Ty))
880 return FCmpInst::FCMP_OLT;
881 break;
882 case ~fcZero & ~fcNan:
883 if (inputDenormalIsIEEE(F, Ty))
884 return FCmpInst::FCMP_ONE;
885 break;
886 case ~(fcZero | fcSubnormal) & ~fcNan:
887 if (inputDenormalIsDAZ(F, Ty))
888 return FCmpInst::FCMP_ONE;
889 break;
890 default:
891 break;
892 }
893
894 return FCmpInst::BAD_FCMP_PREDICATE;
895}
896
897Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
898 Value *Src0 = II.getArgOperand(i: 0);
899 Value *Src1 = II.getArgOperand(i: 1);
900 const ConstantInt *CMask = cast<ConstantInt>(Val: Src1);
901 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
902 const bool IsUnordered = (Mask & fcNan) == fcNan;
903 const bool IsOrdered = (Mask & fcNan) == fcNone;
904 const FPClassTest OrderedMask = Mask & ~fcNan;
905 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
906
907 const bool IsStrict =
908 II.getFunction()->getAttributes().hasFnAttr(Attribute::StrictFP);
909
910 Value *FNegSrc;
911 if (match(V: Src0, P: m_FNeg(X: m_Value(V&: FNegSrc)))) {
912 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
913
914 II.setArgOperand(i: 1, v: ConstantInt::get(Ty: Src1->getType(), V: fneg(Mask)));
915 return replaceOperand(I&: II, OpNum: 0, V: FNegSrc);
916 }
917
918 Value *FAbsSrc;
919 if (match(V: Src0, P: m_FAbs(Op0: m_Value(V&: FAbsSrc)))) {
920 II.setArgOperand(i: 1, v: ConstantInt::get(Ty: Src1->getType(), V: inverse_fabs(Mask)));
921 return replaceOperand(I&: II, OpNum: 0, V: FAbsSrc);
922 }
923
924 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
925 (IsOrdered || IsUnordered) && !IsStrict) {
926 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
927 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
928 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
929 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
930 Constant *Inf = ConstantFP::getInfinity(Ty: Src0->getType());
931 FCmpInst::Predicate Pred =
932 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
933 if (OrderedInvertedMask == fcInf)
934 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
935
936 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::ID: fabs, V: Src0);
937 Value *CmpInf = Builder.CreateFCmp(P: Pred, LHS: Fabs, RHS: Inf);
938 CmpInf->takeName(V: &II);
939 return replaceInstUsesWith(I&: II, V: CmpInf);
940 }
941
942 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
943 (IsOrdered || IsUnordered) && !IsStrict) {
944 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
945 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
946 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
947 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
948 Constant *Inf =
949 ConstantFP::getInfinity(Ty: Src0->getType(), Negative: OrderedMask == fcNegInf);
950 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(LHS: Src0, RHS: Inf)
951 : Builder.CreateFCmpOEQ(LHS: Src0, RHS: Inf);
952
953 EqInf->takeName(V: &II);
954 return replaceInstUsesWith(I&: II, V: EqInf);
955 }
956
957 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
958 (IsOrdered || IsUnordered) && !IsStrict) {
959 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
960 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
961 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
962 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
963 Constant *Inf = ConstantFP::getInfinity(Ty: Src0->getType(),
964 Negative: OrderedInvertedMask == fcNegInf);
965 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(LHS: Src0, RHS: Inf)
966 : Builder.CreateFCmpONE(LHS: Src0, RHS: Inf);
967 NeInf->takeName(V: &II);
968 return replaceInstUsesWith(I&: II, V: NeInf);
969 }
970
971 if (Mask == fcNan && !IsStrict) {
972 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
973 // exceptions.
974 Value *IsNan =
975 Builder.CreateFCmpUNO(LHS: Src0, RHS: ConstantFP::getZero(Ty: Src0->getType()));
976 IsNan->takeName(V: &II);
977 return replaceInstUsesWith(I&: II, V: IsNan);
978 }
979
980 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
981 // Equivalent of !isnan. Replace with standard fcmp.
982 Value *FCmp =
983 Builder.CreateFCmpORD(LHS: Src0, RHS: ConstantFP::getZero(Ty: Src0->getType()));
984 FCmp->takeName(V: &II);
985 return replaceInstUsesWith(I&: II, V: FCmp);
986 }
987
988 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
989
990 // Try to replace with an fcmp with 0
991 //
992 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
993 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
994 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
995 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
996 //
997 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
998 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
999 //
1000 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
1001 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
1002 //
1003 if (!IsStrict && (IsOrdered || IsUnordered) &&
1004 (PredType = fpclassTestIsFCmp0(Mask: OrderedMask, F: *II.getFunction(),
1005 Ty: Src0->getType())) !=
1006 FCmpInst::BAD_FCMP_PREDICATE) {
1007 Constant *Zero = ConstantFP::getZero(Ty: Src0->getType());
1008 // Equivalent of == 0.
1009 Value *FCmp = Builder.CreateFCmp(
1010 P: IsUnordered ? FCmpInst::getUnorderedPredicate(Pred: PredType) : PredType,
1011 LHS: Src0, RHS: Zero);
1012
1013 FCmp->takeName(V: &II);
1014 return replaceInstUsesWith(I&: II, V: FCmp);
1015 }
1016
1017 KnownFPClass Known = computeKnownFPClass(Val: Src0, Interested: Mask, CtxI: &II);
1018
1019 // Clear test bits we know must be false from the source value.
1020 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1021 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1022 if ((Mask & Known.KnownFPClasses) != Mask) {
1023 II.setArgOperand(
1024 i: 1, v: ConstantInt::get(Ty: Src1->getType(), V: Mask & Known.KnownFPClasses));
1025 return &II;
1026 }
1027
1028 // If none of the tests which can return false are possible, fold to true.
1029 // fp_class (nnan x), ~(qnan|snan) -> true
1030 // fp_class (ninf x), ~(ninf|pinf) -> true
1031 if (Mask == Known.KnownFPClasses)
1032 return replaceInstUsesWith(I&: II, V: ConstantInt::get(Ty: II.getType(), V: true));
1033
1034 return nullptr;
1035}
1036
1037static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
1038 const DataLayout &DL, AssumptionCache *AC,
1039 DominatorTree *DT) {
1040 KnownBits Known = computeKnownBits(V: Op, DL, Depth: 0, AC, CxtI, DT);
1041 if (Known.isNonNegative())
1042 return false;
1043 if (Known.isNegative())
1044 return true;
1045
1046 Value *X, *Y;
1047 if (match(V: Op, P: m_NSWSub(L: m_Value(V&: X), R: m_Value(V&: Y))))
1048 return isImpliedByDomCondition(Pred: ICmpInst::ICMP_SLT, LHS: X, RHS: Y, ContextI: CxtI, DL);
1049
1050 return isImpliedByDomCondition(
1051 Pred: ICmpInst::ICMP_SLT, LHS: Op, RHS: Constant::getNullValue(Ty: Op->getType()), ContextI: CxtI, DL);
1052}
1053
1054static std::optional<bool> getKnownSignOrZero(Value *Op, Instruction *CxtI,
1055 const DataLayout &DL,
1056 AssumptionCache *AC,
1057 DominatorTree *DT) {
1058 if (std::optional<bool> Sign = getKnownSign(Op, CxtI, DL, AC, DT))
1059 return Sign;
1060
1061 Value *X, *Y;
1062 if (match(V: Op, P: m_NSWSub(L: m_Value(V&: X), R: m_Value(V&: Y))))
1063 return isImpliedByDomCondition(Pred: ICmpInst::ICMP_SLE, LHS: X, RHS: Y, ContextI: CxtI, DL);
1064
1065 return std::nullopt;
1066}
1067
1068/// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1069static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI,
1070 const DataLayout &DL, AssumptionCache *AC,
1071 DominatorTree *DT) {
1072 std::optional<bool> Known1 = getKnownSign(Op: Op1, CxtI, DL, AC, DT);
1073 if (!Known1)
1074 return false;
1075 std::optional<bool> Known0 = getKnownSign(Op: Op0, CxtI, DL, AC, DT);
1076 if (!Known0)
1077 return false;
1078 return *Known0 == *Known1;
1079}
1080
1081/// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1082/// can trigger other combines.
1083static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
1084 InstCombiner::BuilderTy &Builder) {
1085 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1086 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1087 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1088 "Expected a min or max intrinsic");
1089
1090 // TODO: Match vectors with undef elements, but undef may not propagate.
1091 Value *Op0 = II->getArgOperand(i: 0), *Op1 = II->getArgOperand(i: 1);
1092 Value *X;
1093 const APInt *C0, *C1;
1094 if (!match(V: Op0, P: m_OneUse(SubPattern: m_Add(L: m_Value(V&: X), R: m_APInt(Res&: C0)))) ||
1095 !match(V: Op1, P: m_APInt(Res&: C1)))
1096 return nullptr;
1097
1098 // Check for necessary no-wrap and overflow constraints.
1099 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1100 auto *Add = cast<BinaryOperator>(Val: Op0);
1101 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1102 (!IsSigned && !Add->hasNoUnsignedWrap()))
1103 return nullptr;
1104
1105 // If the constant difference overflows, then instsimplify should reduce the
1106 // min/max to the add or C1.
1107 bool Overflow;
1108 APInt CDiff =
1109 IsSigned ? C1->ssub_ov(RHS: *C0, Overflow) : C1->usub_ov(RHS: *C0, Overflow);
1110 assert(!Overflow && "Expected simplify of min/max");
1111
1112 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1113 // Note: the "mismatched" no-overflow setting does not propagate.
1114 Constant *NewMinMaxC = ConstantInt::get(Ty: II->getType(), V: CDiff);
1115 Value *NewMinMax = Builder.CreateBinaryIntrinsic(ID: MinMaxID, LHS: X, RHS: NewMinMaxC);
1116 return IsSigned ? BinaryOperator::CreateNSWAdd(V1: NewMinMax, V2: Add->getOperand(i_nocapture: 1))
1117 : BinaryOperator::CreateNUWAdd(V1: NewMinMax, V2: Add->getOperand(i_nocapture: 1));
1118}
1119/// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1120Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1121 Type *Ty = MinMax1.getType();
1122
1123 // We are looking for a tree of:
1124 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1125 // Where the min and max could be reversed
1126 Instruction *MinMax2;
1127 BinaryOperator *AddSub;
1128 const APInt *MinValue, *MaxValue;
1129 if (match(V: &MinMax1, P: m_SMin(L: m_Instruction(I&: MinMax2), R: m_APInt(Res&: MaxValue)))) {
1130 if (!match(V: MinMax2, P: m_SMax(L: m_BinOp(I&: AddSub), R: m_APInt(Res&: MinValue))))
1131 return nullptr;
1132 } else if (match(V: &MinMax1,
1133 P: m_SMax(L: m_Instruction(I&: MinMax2), R: m_APInt(Res&: MinValue)))) {
1134 if (!match(V: MinMax2, P: m_SMin(L: m_BinOp(I&: AddSub), R: m_APInt(Res&: MaxValue))))
1135 return nullptr;
1136 } else
1137 return nullptr;
1138
1139 // Check that the constants clamp a saturate, and that the new type would be
1140 // sensible to convert to.
1141 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1142 return nullptr;
1143 // In what bitwidth can this be treated as saturating arithmetics?
1144 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1145 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1146 // good first approximation for what should be done there.
1147 if (!shouldChangeType(FromBitWidth: Ty->getScalarType()->getIntegerBitWidth(), ToBitWidth: NewBitWidth))
1148 return nullptr;
1149
1150 // Also make sure that the inner min/max and the add/sub have one use.
1151 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1152 return nullptr;
1153
1154 // Create the new type (which can be a vector type)
1155 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1156
1157 Intrinsic::ID IntrinsicID;
1158 if (AddSub->getOpcode() == Instruction::Add)
1159 IntrinsicID = Intrinsic::sadd_sat;
1160 else if (AddSub->getOpcode() == Instruction::Sub)
1161 IntrinsicID = Intrinsic::ssub_sat;
1162 else
1163 return nullptr;
1164
1165 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1166 // is usually achieved via a sext from a smaller type.
1167 if (ComputeMaxSignificantBits(Op: AddSub->getOperand(i_nocapture: 0), Depth: 0, CxtI: AddSub) >
1168 NewBitWidth ||
1169 ComputeMaxSignificantBits(Op: AddSub->getOperand(i_nocapture: 1), Depth: 0, CxtI: AddSub) > NewBitWidth)
1170 return nullptr;
1171
1172 // Finally create and return the sat intrinsic, truncated to the new type
1173 Function *F = Intrinsic::getDeclaration(M: MinMax1.getModule(), id: IntrinsicID, Tys: NewTy);
1174 Value *AT = Builder.CreateTrunc(V: AddSub->getOperand(i_nocapture: 0), DestTy: NewTy);
1175 Value *BT = Builder.CreateTrunc(V: AddSub->getOperand(i_nocapture: 1), DestTy: NewTy);
1176 Value *Sat = Builder.CreateCall(Callee: F, Args: {AT, BT});
1177 return CastInst::Create(Instruction::SExt, S: Sat, Ty);
1178}
1179
1180
1181/// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1182/// can only be one of two possible constant values -- turn that into a select
1183/// of constants.
1184static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
1185 InstCombiner::BuilderTy &Builder) {
1186 Value *I0 = II->getArgOperand(i: 0), *I1 = II->getArgOperand(i: 1);
1187 Value *X;
1188 const APInt *C0, *C1;
1189 if (!match(V: I1, P: m_APInt(Res&: C1)) || !I0->hasOneUse())
1190 return nullptr;
1191
1192 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
1193 switch (II->getIntrinsicID()) {
1194 case Intrinsic::smax:
1195 if (match(V: I0, P: m_SMin(L: m_Value(V&: X), R: m_APInt(Res&: C0))) && *C0 == *C1 + 1)
1196 Pred = ICmpInst::ICMP_SGT;
1197 break;
1198 case Intrinsic::smin:
1199 if (match(V: I0, P: m_SMax(L: m_Value(V&: X), R: m_APInt(Res&: C0))) && *C1 == *C0 + 1)
1200 Pred = ICmpInst::ICMP_SLT;
1201 break;
1202 case Intrinsic::umax:
1203 if (match(V: I0, P: m_UMin(L: m_Value(V&: X), R: m_APInt(Res&: C0))) && *C0 == *C1 + 1)
1204 Pred = ICmpInst::ICMP_UGT;
1205 break;
1206 case Intrinsic::umin:
1207 if (match(V: I0, P: m_UMax(L: m_Value(V&: X), R: m_APInt(Res&: C0))) && *C1 == *C0 + 1)
1208 Pred = ICmpInst::ICMP_ULT;
1209 break;
1210 default:
1211 llvm_unreachable("Expected min/max intrinsic");
1212 }
1213 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1214 return nullptr;
1215
1216 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1217 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1218 Value *Cmp = Builder.CreateICmp(P: Pred, LHS: X, RHS: I1);
1219 return SelectInst::Create(C: Cmp, S1: ConstantInt::get(Ty: II->getType(), V: *C0), S2: I1);
1220}
1221
1222/// If this min/max has a constant operand and an operand that is a matching
1223/// min/max with a constant operand, constant-fold the 2 constant operands.
1224static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
1225 IRBuilderBase &Builder,
1226 const SimplifyQuery &SQ) {
1227 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1228 auto *LHS = dyn_cast<MinMaxIntrinsic>(Val: II->getArgOperand(i: 0));
1229 if (!LHS)
1230 return nullptr;
1231
1232 Constant *C0, *C1;
1233 if (!match(V: LHS->getArgOperand(i: 1), P: m_ImmConstant(C&: C0)) ||
1234 !match(V: II->getArgOperand(i: 1), P: m_ImmConstant(C&: C1)))
1235 return nullptr;
1236
1237 // max (max X, C0), C1 --> max X, (max C0, C1)
1238 // min (min X, C0), C1 --> min X, (min C0, C1)
1239 // umax (smax X, nneg C0), nneg C1 --> smax X, (umax C0, C1)
1240 // smin (umin X, nneg C0), nneg C1 --> umin X, (smin C0, C1)
1241 Intrinsic::ID InnerMinMaxID = LHS->getIntrinsicID();
1242 if (InnerMinMaxID != MinMaxID &&
1243 !(((MinMaxID == Intrinsic::umax && InnerMinMaxID == Intrinsic::smax) ||
1244 (MinMaxID == Intrinsic::smin && InnerMinMaxID == Intrinsic::umin)) &&
1245 isKnownNonNegative(V: C0, SQ) && isKnownNonNegative(V: C1, SQ)))
1246 return nullptr;
1247
1248 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(ID: MinMaxID);
1249 Value *CondC = Builder.CreateICmp(P: Pred, LHS: C0, RHS: C1);
1250 Value *NewC = Builder.CreateSelect(C: CondC, True: C0, False: C1);
1251 return Builder.CreateIntrinsic(ID: InnerMinMaxID, Types: II->getType(),
1252 Args: {LHS->getArgOperand(i: 0), NewC});
1253}
1254
1255/// If this min/max has a matching min/max operand with a constant, try to push
1256/// the constant operand into this instruction. This can enable more folds.
1257static Instruction *
1258reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1259 InstCombiner::BuilderTy &Builder) {
1260 // Match and capture a min/max operand candidate.
1261 Value *X, *Y;
1262 Constant *C;
1263 Instruction *Inner;
1264 if (!match(V: II, P: m_c_MaxOrMin(L: m_OneUse(SubPattern: m_CombineAnd(
1265 L: m_Instruction(I&: Inner),
1266 R: m_MaxOrMin(L: m_Value(V&: X), R: m_ImmConstant(C)))),
1267 R: m_Value(V&: Y))))
1268 return nullptr;
1269
1270 // The inner op must match. Check for constants to avoid infinite loops.
1271 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1272 auto *InnerMM = dyn_cast<IntrinsicInst>(Val: Inner);
1273 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1274 match(V: X, P: m_ImmConstant()) || match(V: Y, P: m_ImmConstant()))
1275 return nullptr;
1276
1277 // max (max X, C), Y --> max (max X, Y), C
1278 Function *MinMax =
1279 Intrinsic::getDeclaration(M: II->getModule(), id: MinMaxID, Tys: II->getType());
1280 Value *NewInner = Builder.CreateBinaryIntrinsic(ID: MinMaxID, LHS: X, RHS: Y);
1281 NewInner->takeName(V: Inner);
1282 return CallInst::Create(Func: MinMax, Args: {NewInner, C});
1283}
1284
1285/// Reduce a sequence of min/max intrinsics with a common operand.
1286static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1287 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1288 auto *LHS = dyn_cast<IntrinsicInst>(Val: II->getArgOperand(i: 0));
1289 auto *RHS = dyn_cast<IntrinsicInst>(Val: II->getArgOperand(i: 1));
1290 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1291 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1292 RHS->getIntrinsicID() != MinMaxID ||
1293 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1294 return nullptr;
1295
1296 Value *A = LHS->getArgOperand(i: 0);
1297 Value *B = LHS->getArgOperand(i: 1);
1298 Value *C = RHS->getArgOperand(i: 0);
1299 Value *D = RHS->getArgOperand(i: 1);
1300
1301 // Look for a common operand.
1302 Value *MinMaxOp = nullptr;
1303 Value *ThirdOp = nullptr;
1304 if (LHS->hasOneUse()) {
1305 // If the LHS is only used in this chain and the RHS is used outside of it,
1306 // reuse the RHS min/max because that will eliminate the LHS.
1307 if (D == A || C == A) {
1308 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1309 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1310 MinMaxOp = RHS;
1311 ThirdOp = B;
1312 } else if (D == B || C == B) {
1313 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1314 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1315 MinMaxOp = RHS;
1316 ThirdOp = A;
1317 }
1318 } else {
1319 assert(RHS->hasOneUse() && "Expected one-use operand");
1320 // Reuse the LHS. This will eliminate the RHS.
1321 if (D == A || D == B) {
1322 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1323 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1324 MinMaxOp = LHS;
1325 ThirdOp = C;
1326 } else if (C == A || C == B) {
1327 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1328 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1329 MinMaxOp = LHS;
1330 ThirdOp = D;
1331 }
1332 }
1333
1334 if (!MinMaxOp || !ThirdOp)
1335 return nullptr;
1336
1337 Module *Mod = II->getModule();
1338 Function *MinMax = Intrinsic::getDeclaration(M: Mod, id: MinMaxID, Tys: II->getType());
1339 return CallInst::Create(Func: MinMax, Args: { MinMaxOp, ThirdOp });
1340}
1341
1342/// If all arguments of the intrinsic are unary shuffles with the same mask,
1343/// try to shuffle after the intrinsic.
1344static Instruction *
1345foldShuffledIntrinsicOperands(IntrinsicInst *II,
1346 InstCombiner::BuilderTy &Builder) {
1347 // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1348 // etc. Use llvm::isTriviallyVectorizable() and related to determine
1349 // which intrinsics are safe to shuffle?
1350 switch (II->getIntrinsicID()) {
1351 case Intrinsic::smax:
1352 case Intrinsic::smin:
1353 case Intrinsic::umax:
1354 case Intrinsic::umin:
1355 case Intrinsic::fma:
1356 case Intrinsic::fshl:
1357 case Intrinsic::fshr:
1358 break;
1359 default:
1360 return nullptr;
1361 }
1362
1363 Value *X;
1364 ArrayRef<int> Mask;
1365 if (!match(V: II->getArgOperand(i: 0),
1366 P: m_Shuffle(v1: m_Value(V&: X), v2: m_Undef(), mask: m_Mask(Mask))))
1367 return nullptr;
1368
1369 // At least 1 operand must have 1 use because we are creating 2 instructions.
1370 if (none_of(Range: II->args(), P: [](Value *V) { return V->hasOneUse(); }))
1371 return nullptr;
1372
1373 // See if all arguments are shuffled with the same mask.
1374 SmallVector<Value *, 4> NewArgs(II->arg_size());
1375 NewArgs[0] = X;
1376 Type *SrcTy = X->getType();
1377 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1378 if (!match(V: II->getArgOperand(i),
1379 P: m_Shuffle(v1: m_Value(V&: X), v2: m_Undef(), mask: m_SpecificMask(Mask))) ||
1380 X->getType() != SrcTy)
1381 return nullptr;
1382 NewArgs[i] = X;
1383 }
1384
1385 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1386 Instruction *FPI = isa<FPMathOperator>(Val: II) ? II : nullptr;
1387 Value *NewIntrinsic =
1388 Builder.CreateIntrinsic(ID: II->getIntrinsicID(), Types: SrcTy, Args: NewArgs, FMFSource: FPI);
1389 return new ShuffleVectorInst(NewIntrinsic, Mask);
1390}
1391
1392/// Fold the following cases and accepts bswap and bitreverse intrinsics:
1393/// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1394/// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1395template <Intrinsic::ID IntrID>
1396static Instruction *foldBitOrderCrossLogicOp(Value *V,
1397 InstCombiner::BuilderTy &Builder) {
1398 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1399 "This helper only supports BSWAP and BITREVERSE intrinsics");
1400
1401 Value *X, *Y;
1402 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1403 // don't match ConstantExpr that aren't meaningful for this transform.
1404 if (match(V, P: m_OneUse(SubPattern: m_BitwiseLogic(L: m_Value(V&: X), R: m_Value(V&: Y)))) &&
1405 isa<BinaryOperator>(Val: V)) {
1406 Value *OldReorderX, *OldReorderY;
1407 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(Val: V)->getOpcode();
1408
1409 // If both X and Y are bswap/bitreverse, the transform reduces the number
1410 // of instructions even if there's multiuse.
1411 // If only one operand is bswap/bitreverse, we need to ensure the operand
1412 // have only one use.
1413 if (match(X, m_Intrinsic<IntrID>(m_Value(V&: OldReorderX))) &&
1414 match(Y, m_Intrinsic<IntrID>(m_Value(V&: OldReorderY)))) {
1415 return BinaryOperator::Create(Op, S1: OldReorderX, S2: OldReorderY);
1416 }
1417
1418 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(V&: OldReorderX))))) {
1419 Value *NewReorder = Builder.CreateUnaryIntrinsic(ID: IntrID, V: Y);
1420 return BinaryOperator::Create(Op, S1: OldReorderX, S2: NewReorder);
1421 }
1422
1423 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(V&: OldReorderY))))) {
1424 Value *NewReorder = Builder.CreateUnaryIntrinsic(ID: IntrID, V: X);
1425 return BinaryOperator::Create(Op, S1: NewReorder, S2: OldReorderY);
1426 }
1427 }
1428 return nullptr;
1429}
1430
1431/// CallInst simplification. This mostly only handles folding of intrinsic
1432/// instructions. For normal calls, it allows visitCallBase to do the heavy
1433/// lifting.
1434Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1435 // Don't try to simplify calls without uses. It will not do anything useful,
1436 // but will result in the following folds being skipped.
1437 if (!CI.use_empty()) {
1438 SmallVector<Value *, 4> Args;
1439 Args.reserve(N: CI.arg_size());
1440 for (Value *Op : CI.args())
1441 Args.push_back(Elt: Op);
1442 if (Value *V = simplifyCall(Call: &CI, Callee: CI.getCalledOperand(), Args,
1443 Q: SQ.getWithInstruction(I: &CI)))
1444 return replaceInstUsesWith(I&: CI, V);
1445 }
1446
1447 if (Value *FreedOp = getFreedOperand(CB: &CI, TLI: &TLI))
1448 return visitFree(FI&: CI, FreedOp);
1449
1450 // If the caller function (i.e. us, the function that contains this CallInst)
1451 // is nounwind, mark the call as nounwind, even if the callee isn't.
1452 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1453 CI.setDoesNotThrow();
1454 return &CI;
1455 }
1456
1457 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: &CI);
1458 if (!II) return visitCallBase(Call&: CI);
1459
1460 // For atomic unordered mem intrinsics if len is not a positive or
1461 // not a multiple of element size then behavior is undefined.
1462 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(Val: II))
1463 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(Val: AMI->getLength()))
1464 if (NumBytes->isNegative() ||
1465 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1466 CreateNonTerminatorUnreachable(InsertAt: AMI);
1467 assert(AMI->getType()->isVoidTy() &&
1468 "non void atomic unordered mem intrinsic");
1469 return eraseInstFromFunction(I&: *AMI);
1470 }
1471
1472 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1473 // instead of in visitCallBase.
1474 if (auto *MI = dyn_cast<AnyMemIntrinsic>(Val: II)) {
1475 bool Changed = false;
1476
1477 // memmove/cpy/set of zero bytes is a noop.
1478 if (Constant *NumBytes = dyn_cast<Constant>(Val: MI->getLength())) {
1479 if (NumBytes->isNullValue())
1480 return eraseInstFromFunction(I&: CI);
1481 }
1482
1483 // No other transformations apply to volatile transfers.
1484 if (auto *M = dyn_cast<MemIntrinsic>(Val: MI))
1485 if (M->isVolatile())
1486 return nullptr;
1487
1488 // If we have a memmove and the source operation is a constant global,
1489 // then the source and dest pointers can't alias, so we can change this
1490 // into a call to memcpy.
1491 if (auto *MMI = dyn_cast<AnyMemMoveInst>(Val: MI)) {
1492 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(Val: MMI->getSource()))
1493 if (GVSrc->isConstant()) {
1494 Module *M = CI.getModule();
1495 Intrinsic::ID MemCpyID =
1496 isa<AtomicMemMoveInst>(MMI)
1497 ? Intrinsic::memcpy_element_unordered_atomic
1498 : Intrinsic::memcpy;
1499 Type *Tys[3] = { CI.getArgOperand(i: 0)->getType(),
1500 CI.getArgOperand(i: 1)->getType(),
1501 CI.getArgOperand(i: 2)->getType() };
1502 CI.setCalledFunction(Intrinsic::getDeclaration(M, id: MemCpyID, Tys));
1503 Changed = true;
1504 }
1505 }
1506
1507 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(Val: MI)) {
1508 // memmove(x,x,size) -> noop.
1509 if (MTI->getSource() == MTI->getDest())
1510 return eraseInstFromFunction(I&: CI);
1511 }
1512
1513 // If we can determine a pointer alignment that is bigger than currently
1514 // set, update the alignment.
1515 if (auto *MTI = dyn_cast<AnyMemTransferInst>(Val: MI)) {
1516 if (Instruction *I = SimplifyAnyMemTransfer(MI: MTI))
1517 return I;
1518 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(Val: MI)) {
1519 if (Instruction *I = SimplifyAnyMemSet(MI: MSI))
1520 return I;
1521 }
1522
1523 if (Changed) return II;
1524 }
1525
1526 // For fixed width vector result intrinsics, use the generic demanded vector
1527 // support.
1528 if (auto *IIFVTy = dyn_cast<FixedVectorType>(Val: II->getType())) {
1529 auto VWidth = IIFVTy->getNumElements();
1530 APInt PoisonElts(VWidth, 0);
1531 APInt AllOnesEltMask(APInt::getAllOnes(numBits: VWidth));
1532 if (Value *V = SimplifyDemandedVectorElts(V: II, DemandedElts: AllOnesEltMask, PoisonElts)) {
1533 if (V != II)
1534 return replaceInstUsesWith(I&: *II, V);
1535 return II;
1536 }
1537 }
1538
1539 if (II->isCommutative()) {
1540 if (auto Pair = matchSymmetricPair(LHS: II->getOperand(i_nocapture: 0), RHS: II->getOperand(i_nocapture: 1))) {
1541 replaceOperand(I&: *II, OpNum: 0, V: Pair->first);
1542 replaceOperand(I&: *II, OpNum: 1, V: Pair->second);
1543 return II;
1544 }
1545
1546 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(Call&: CI))
1547 return NewCall;
1548 }
1549
1550 // Unused constrained FP intrinsic calls may have declared side effect, which
1551 // prevents it from being removed. In some cases however the side effect is
1552 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1553 // returns a replacement, the call may be removed.
1554 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(Val: CI)) {
1555 if (simplifyConstrainedFPCall(Call: &CI, Q: SQ.getWithInstruction(I: &CI)))
1556 return eraseInstFromFunction(I&: CI);
1557 }
1558
1559 Intrinsic::ID IID = II->getIntrinsicID();
1560 switch (IID) {
1561 case Intrinsic::objectsize: {
1562 SmallVector<Instruction *> InsertedInstructions;
1563 if (Value *V = lowerObjectSizeCall(ObjectSize: II, DL, TLI: &TLI, AA, /*MustSucceed=*/false,
1564 InsertedInstructions: &InsertedInstructions)) {
1565 for (Instruction *Inserted : InsertedInstructions)
1566 Worklist.add(I: Inserted);
1567 return replaceInstUsesWith(I&: CI, V);
1568 }
1569 return nullptr;
1570 }
1571 case Intrinsic::abs: {
1572 Value *IIOperand = II->getArgOperand(i: 0);
1573 bool IntMinIsPoison = cast<Constant>(Val: II->getArgOperand(i: 1))->isOneValue();
1574
1575 // abs(-x) -> abs(x)
1576 // TODO: Copy nsw if it was present on the neg?
1577 Value *X;
1578 if (match(V: IIOperand, P: m_Neg(V: m_Value(V&: X))))
1579 return replaceOperand(I&: *II, OpNum: 0, V: X);
1580 if (match(V: IIOperand, P: m_Select(C: m_Value(), L: m_Value(V&: X), R: m_Neg(V: m_Deferred(V: X)))))
1581 return replaceOperand(I&: *II, OpNum: 0, V: X);
1582 if (match(V: IIOperand, P: m_Select(C: m_Value(), L: m_Neg(V: m_Value(V&: X)), R: m_Deferred(V: X))))
1583 return replaceOperand(I&: *II, OpNum: 0, V: X);
1584
1585 Value *Y;
1586 // abs(a * abs(b)) -> abs(a * b)
1587 if (match(IIOperand,
1588 m_OneUse(m_c_Mul(m_Value(X),
1589 m_Intrinsic<Intrinsic::abs>(m_Value(Y)))))) {
1590 bool NSW =
1591 cast<Instruction>(Val: IIOperand)->hasNoSignedWrap() && IntMinIsPoison;
1592 auto *XY = NSW ? Builder.CreateNSWMul(LHS: X, RHS: Y) : Builder.CreateMul(LHS: X, RHS: Y);
1593 return replaceOperand(I&: *II, OpNum: 0, V: XY);
1594 }
1595
1596 if (std::optional<bool> Known =
1597 getKnownSignOrZero(Op: IIOperand, CxtI: II, DL, AC: &AC, DT: &DT)) {
1598 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1599 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1600 if (!*Known)
1601 return replaceInstUsesWith(I&: *II, V: IIOperand);
1602
1603 // abs(x) -> -x if x < 0
1604 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1605 if (IntMinIsPoison)
1606 return BinaryOperator::CreateNSWNeg(Op: IIOperand);
1607 return BinaryOperator::CreateNeg(Op: IIOperand);
1608 }
1609
1610 // abs (sext X) --> zext (abs X*)
1611 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1612 if (match(V: IIOperand, P: m_OneUse(SubPattern: m_SExt(Op: m_Value(V&: X))))) {
1613 Value *NarrowAbs =
1614 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1615 return CastInst::Create(Instruction::ZExt, S: NarrowAbs, Ty: II->getType());
1616 }
1617
1618 // Match a complicated way to check if a number is odd/even:
1619 // abs (srem X, 2) --> and X, 1
1620 const APInt *C;
1621 if (match(V: IIOperand, P: m_SRem(L: m_Value(V&: X), R: m_APInt(Res&: C))) && *C == 2)
1622 return BinaryOperator::CreateAnd(V1: X, V2: ConstantInt::get(Ty: II->getType(), V: 1));
1623
1624 break;
1625 }
1626 case Intrinsic::umin: {
1627 Value *I0 = II->getArgOperand(i: 0), *I1 = II->getArgOperand(i: 1);
1628 // umin(x, 1) == zext(x != 0)
1629 if (match(V: I1, P: m_One())) {
1630 assert(II->getType()->getScalarSizeInBits() != 1 &&
1631 "Expected simplify of umin with max constant");
1632 Value *Zero = Constant::getNullValue(Ty: I0->getType());
1633 Value *Cmp = Builder.CreateICmpNE(LHS: I0, RHS: Zero);
1634 return CastInst::Create(Instruction::ZExt, S: Cmp, Ty: II->getType());
1635 }
1636 [[fallthrough]];
1637 }
1638 case Intrinsic::umax: {
1639 Value *I0 = II->getArgOperand(i: 0), *I1 = II->getArgOperand(i: 1);
1640 Value *X, *Y;
1641 if (match(V: I0, P: m_ZExt(Op: m_Value(V&: X))) && match(V: I1, P: m_ZExt(Op: m_Value(V&: Y))) &&
1642 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1643 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: Y);
1644 return CastInst::Create(Instruction::ZExt, S: NarrowMaxMin, Ty: II->getType());
1645 }
1646 Constant *C;
1647 if (match(V: I0, P: m_ZExt(Op: m_Value(V&: X))) && match(V: I1, P: m_Constant(C)) &&
1648 I0->hasOneUse()) {
1649 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, TruncTy: X->getType())) {
1650 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: NarrowC);
1651 return CastInst::Create(Instruction::ZExt, S: NarrowMaxMin, Ty: II->getType());
1652 }
1653 }
1654 // If both operands of unsigned min/max are sign-extended, it is still ok
1655 // to narrow the operation.
1656 [[fallthrough]];
1657 }
1658 case Intrinsic::smax:
1659 case Intrinsic::smin: {
1660 Value *I0 = II->getArgOperand(i: 0), *I1 = II->getArgOperand(i: 1);
1661 Value *X, *Y;
1662 if (match(V: I0, P: m_SExt(Op: m_Value(V&: X))) && match(V: I1, P: m_SExt(Op: m_Value(V&: Y))) &&
1663 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1664 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: Y);
1665 return CastInst::Create(Instruction::SExt, S: NarrowMaxMin, Ty: II->getType());
1666 }
1667
1668 Constant *C;
1669 if (match(V: I0, P: m_SExt(Op: m_Value(V&: X))) && match(V: I1, P: m_Constant(C)) &&
1670 I0->hasOneUse()) {
1671 if (Constant *NarrowC = getLosslessSignedTrunc(C, TruncTy: X->getType())) {
1672 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: NarrowC);
1673 return CastInst::Create(Instruction::SExt, S: NarrowMaxMin, Ty: II->getType());
1674 }
1675 }
1676
1677 // umin(i1 X, i1 Y) -> and i1 X, Y
1678 // smax(i1 X, i1 Y) -> and i1 X, Y
1679 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1680 II->getType()->isIntOrIntVectorTy(1)) {
1681 return BinaryOperator::CreateAnd(V1: I0, V2: I1);
1682 }
1683
1684 // umax(i1 X, i1 Y) -> or i1 X, Y
1685 // smin(i1 X, i1 Y) -> or i1 X, Y
1686 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1687 II->getType()->isIntOrIntVectorTy(1)) {
1688 return BinaryOperator::CreateOr(V1: I0, V2: I1);
1689 }
1690
1691 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1692 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1693 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1694 // TODO: Canonicalize neg after min/max if I1 is constant.
1695 if (match(V: I0, P: m_NSWNeg(V: m_Value(V&: X))) && match(V: I1, P: m_NSWNeg(V: m_Value(V&: Y))) &&
1696 (I0->hasOneUse() || I1->hasOneUse())) {
1697 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMaxID: IID);
1698 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(ID: InvID, LHS: X, RHS: Y);
1699 return BinaryOperator::CreateNSWNeg(Op: InvMaxMin);
1700 }
1701 }
1702
1703 // (umax X, (xor X, Pow2))
1704 // -> (or X, Pow2)
1705 // (umin X, (xor X, Pow2))
1706 // -> (and X, ~Pow2)
1707 // (smax X, (xor X, Pos_Pow2))
1708 // -> (or X, Pos_Pow2)
1709 // (smin X, (xor X, Pos_Pow2))
1710 // -> (and X, ~Pos_Pow2)
1711 // (smax X, (xor X, Neg_Pow2))
1712 // -> (and X, ~Neg_Pow2)
1713 // (smin X, (xor X, Neg_Pow2))
1714 // -> (or X, Neg_Pow2)
1715 if ((match(V: I0, P: m_c_Xor(L: m_Specific(V: I1), R: m_Value(V&: X))) ||
1716 match(V: I1, P: m_c_Xor(L: m_Specific(V: I0), R: m_Value(V&: X)))) &&
1717 isKnownToBeAPowerOfTwo(V: X, /* OrZero */ true)) {
1718 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1719 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1720
1721 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1722 auto KnownSign = getKnownSign(Op: X, CxtI: II, DL, AC: &AC, DT: &DT);
1723 if (KnownSign == std::nullopt) {
1724 UseOr = false;
1725 UseAndN = false;
1726 } else if (*KnownSign /* true is Signed. */) {
1727 UseOr ^= true;
1728 UseAndN ^= true;
1729 Type *Ty = I0->getType();
1730 // Negative power of 2 must be IntMin. It's possible to be able to
1731 // prove negative / power of 2 without actually having known bits, so
1732 // just get the value by hand.
1733 X = Constant::getIntegerValue(
1734 Ty, V: APInt::getSignedMinValue(numBits: Ty->getScalarSizeInBits()));
1735 }
1736 }
1737 if (UseOr)
1738 return BinaryOperator::CreateOr(V1: I0, V2: X);
1739 else if (UseAndN)
1740 return BinaryOperator::CreateAnd(V1: I0, V2: Builder.CreateNot(V: X));
1741 }
1742
1743 // If we can eliminate ~A and Y is free to invert:
1744 // max ~A, Y --> ~(min A, ~Y)
1745 //
1746 // Examples:
1747 // max ~A, ~Y --> ~(min A, Y)
1748 // max ~A, C --> ~(min A, ~C)
1749 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1750 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1751 Value *A;
1752 if (match(V: X, P: m_OneUse(SubPattern: m_Not(V: m_Value(V&: A)))) &&
1753 !isFreeToInvert(V: A, WillInvertAllUses: A->hasOneUse())) {
1754 if (Value *NotY = getFreelyInverted(V: Y, WillInvertAllUses: Y->hasOneUse(), Builder: &Builder)) {
1755 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(MinMaxID: IID);
1756 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(ID: InvID, LHS: A, RHS: NotY);
1757 return BinaryOperator::CreateNot(Op: InvMaxMin);
1758 }
1759 }
1760 return nullptr;
1761 };
1762
1763 if (Instruction *I = moveNotAfterMinMax(I0, I1))
1764 return I;
1765 if (Instruction *I = moveNotAfterMinMax(I1, I0))
1766 return I;
1767
1768 if (Instruction *I = moveAddAfterMinMax(II, Builder))
1769 return I;
1770
1771 // minmax (X & NegPow2C, Y & NegPow2C) --> minmax(X, Y) & NegPow2C
1772 const APInt *RHSC;
1773 if (match(V: I0, P: m_OneUse(SubPattern: m_And(L: m_Value(V&: X), R: m_NegatedPower2(V&: RHSC)))) &&
1774 match(V: I1, P: m_OneUse(SubPattern: m_And(L: m_Value(V&: Y), R: m_SpecificInt(V: *RHSC)))))
1775 return BinaryOperator::CreateAnd(V1: Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: Y),
1776 V2: ConstantInt::get(Ty: II->getType(), V: *RHSC));
1777
1778 // smax(X, -X) --> abs(X)
1779 // smin(X, -X) --> -abs(X)
1780 // umax(X, -X) --> -abs(X)
1781 // umin(X, -X) --> abs(X)
1782 if (isKnownNegation(X: I0, Y: I1)) {
1783 // We can choose either operand as the input to abs(), but if we can
1784 // eliminate the only use of a value, that's better for subsequent
1785 // transforms/analysis.
1786 if (I0->hasOneUse() && !I1->hasOneUse())
1787 std::swap(a&: I0, b&: I1);
1788
1789 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1790 // operation and potentially its negation.
1791 bool IntMinIsPoison = isKnownNegation(X: I0, Y: I1, /* NeedNSW */ true);
1792 Value *Abs = Builder.CreateBinaryIntrinsic(
1793 Intrinsic::abs, I0,
1794 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1795
1796 // We don't have a "nabs" intrinsic, so negate if needed based on the
1797 // max/min operation.
1798 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1799 Abs = Builder.CreateNeg(V: Abs, Name: "nabs", HasNSW: IntMinIsPoison);
1800 return replaceInstUsesWith(I&: CI, V: Abs);
1801 }
1802
1803 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1804 return Sel;
1805
1806 if (Instruction *SAdd = matchSAddSubSat(MinMax1&: *II))
1807 return SAdd;
1808
1809 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder, SQ))
1810 return replaceInstUsesWith(I&: *II, V: NewMinMax);
1811
1812 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1813 return R;
1814
1815 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1816 return NewMinMax;
1817
1818 // Try to fold minmax with constant RHS based on range information
1819 if (match(V: I1, P: m_APIntAllowPoison(Res&: RHSC))) {
1820 ICmpInst::Predicate Pred =
1821 ICmpInst::getNonStrictPredicate(pred: MinMaxIntrinsic::getPredicate(ID: IID));
1822 bool IsSigned = MinMaxIntrinsic::isSigned(ID: IID);
1823 ConstantRange LHS_CR = computeConstantRangeIncludingKnownBits(
1824 V: I0, ForSigned: IsSigned, SQ: SQ.getWithInstruction(I: II));
1825 if (!LHS_CR.isFullSet()) {
1826 if (LHS_CR.icmp(Pred, Other: *RHSC))
1827 return replaceInstUsesWith(I&: *II, V: I0);
1828 if (LHS_CR.icmp(Pred: ICmpInst::getSwappedPredicate(pred: Pred), Other: *RHSC))
1829 return replaceInstUsesWith(I&: *II,
1830 V: ConstantInt::get(Ty: II->getType(), V: *RHSC));
1831 }
1832 }
1833
1834 break;
1835 }
1836 case Intrinsic::bitreverse: {
1837 Value *IIOperand = II->getArgOperand(i: 0);
1838 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1839 Value *X;
1840 if (match(V: IIOperand, P: m_ZExt(Op: m_Value(V&: X))) &&
1841 X->getType()->isIntOrIntVectorTy(BitWidth: 1)) {
1842 Type *Ty = II->getType();
1843 APInt SignBit = APInt::getSignMask(BitWidth: Ty->getScalarSizeInBits());
1844 return SelectInst::Create(C: X, S1: ConstantInt::get(Ty, V: SignBit),
1845 S2: ConstantInt::getNullValue(Ty));
1846 }
1847
1848 if (Instruction *crossLogicOpFold =
1849 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
1850 return crossLogicOpFold;
1851
1852 break;
1853 }
1854 case Intrinsic::bswap: {
1855 Value *IIOperand = II->getArgOperand(i: 0);
1856
1857 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1858 // inverse-shift-of-bswap:
1859 // bswap (shl X, Y) --> lshr (bswap X), Y
1860 // bswap (lshr X, Y) --> shl (bswap X), Y
1861 Value *X, *Y;
1862 if (match(V: IIOperand, P: m_OneUse(SubPattern: m_LogicalShift(L: m_Value(V&: X), R: m_Value(V&: Y))))) {
1863 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1864 if (MaskedValueIsZero(V: Y, Mask: APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: 3))) {
1865 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1866 BinaryOperator::BinaryOps InverseShift =
1867 cast<BinaryOperator>(Val: IIOperand)->getOpcode() == Instruction::Shl
1868 ? Instruction::LShr
1869 : Instruction::Shl;
1870 return BinaryOperator::Create(Op: InverseShift, S1: NewSwap, S2: Y);
1871 }
1872 }
1873
1874 KnownBits Known = computeKnownBits(V: IIOperand, Depth: 0, CxtI: II);
1875 uint64_t LZ = alignDown(Value: Known.countMinLeadingZeros(), Align: 8);
1876 uint64_t TZ = alignDown(Value: Known.countMinTrailingZeros(), Align: 8);
1877 unsigned BW = Known.getBitWidth();
1878
1879 // bswap(x) -> shift(x) if x has exactly one "active byte"
1880 if (BW - LZ - TZ == 8) {
1881 assert(LZ != TZ && "active byte cannot be in the middle");
1882 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
1883 return BinaryOperator::CreateNUWShl(
1884 V1: IIOperand, V2: ConstantInt::get(Ty: IIOperand->getType(), V: LZ - TZ));
1885 // -> lshr(x) if the "active byte" is in the high part of x
1886 return BinaryOperator::CreateExactLShr(
1887 V1: IIOperand, V2: ConstantInt::get(Ty: IIOperand->getType(), V: TZ - LZ));
1888 }
1889
1890 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1891 if (match(V: IIOperand, P: m_Trunc(Op: m_BSwap(Op0: m_Value(V&: X))))) {
1892 unsigned C = X->getType()->getScalarSizeInBits() - BW;
1893 Value *CV = ConstantInt::get(Ty: X->getType(), V: C);
1894 Value *V = Builder.CreateLShr(LHS: X, RHS: CV);
1895 return new TruncInst(V, IIOperand->getType());
1896 }
1897
1898 if (Instruction *crossLogicOpFold =
1899 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
1900 return crossLogicOpFold;
1901 }
1902
1903 // Try to fold into bitreverse if bswap is the root of the expression tree.
1904 if (Instruction *BitOp = matchBSwapOrBitReverse(I&: *II, /*MatchBSwaps*/ false,
1905 /*MatchBitReversals*/ true))
1906 return BitOp;
1907 break;
1908 }
1909 case Intrinsic::masked_load:
1910 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(II&: *II))
1911 return replaceInstUsesWith(I&: CI, V: SimplifiedMaskedOp);
1912 break;
1913 case Intrinsic::masked_store:
1914 return simplifyMaskedStore(II&: *II);
1915 case Intrinsic::masked_gather:
1916 return simplifyMaskedGather(II&: *II);
1917 case Intrinsic::masked_scatter:
1918 return simplifyMaskedScatter(II&: *II);
1919 case Intrinsic::launder_invariant_group:
1920 case Intrinsic::strip_invariant_group:
1921 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(II&: *II, IC&: *this))
1922 return replaceInstUsesWith(I&: *II, V: SkippedBarrier);
1923 break;
1924 case Intrinsic::powi:
1925 if (ConstantInt *Power = dyn_cast<ConstantInt>(Val: II->getArgOperand(i: 1))) {
1926 // 0 and 1 are handled in instsimplify
1927 // powi(x, -1) -> 1/x
1928 if (Power->isMinusOne())
1929 return BinaryOperator::CreateFDivFMF(V1: ConstantFP::get(Ty: CI.getType(), V: 1.0),
1930 V2: II->getArgOperand(i: 0), FMFSource: II);
1931 // powi(x, 2) -> x*x
1932 if (Power->equalsInt(V: 2))
1933 return BinaryOperator::CreateFMulFMF(V1: II->getArgOperand(i: 0),
1934 V2: II->getArgOperand(i: 0), FMFSource: II);
1935
1936 if (!Power->getValue()[0]) {
1937 Value *X;
1938 // If power is even:
1939 // powi(-x, p) -> powi(x, p)
1940 // powi(fabs(x), p) -> powi(x, p)
1941 // powi(copysign(x, y), p) -> powi(x, p)
1942 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1943 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1944 match(II->getArgOperand(0),
1945 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1946 return replaceOperand(I&: *II, OpNum: 0, V: X);
1947 }
1948 }
1949 break;
1950
1951 case Intrinsic::cttz:
1952 case Intrinsic::ctlz:
1953 if (auto *I = foldCttzCtlz(II&: *II, IC&: *this))
1954 return I;
1955 break;
1956
1957 case Intrinsic::ctpop:
1958 if (auto *I = foldCtpop(II&: *II, IC&: *this))
1959 return I;
1960 break;
1961
1962 case Intrinsic::fshl:
1963 case Intrinsic::fshr: {
1964 Value *Op0 = II->getArgOperand(i: 0), *Op1 = II->getArgOperand(i: 1);
1965 Type *Ty = II->getType();
1966 unsigned BitWidth = Ty->getScalarSizeInBits();
1967 Constant *ShAmtC;
1968 if (match(V: II->getArgOperand(i: 2), P: m_ImmConstant(C&: ShAmtC))) {
1969 // Canonicalize a shift amount constant operand to modulo the bit-width.
1970 Constant *WidthC = ConstantInt::get(Ty, V: BitWidth);
1971 Constant *ModuloC =
1972 ConstantFoldBinaryOpOperands(Opcode: Instruction::URem, LHS: ShAmtC, RHS: WidthC, DL);
1973 if (!ModuloC)
1974 return nullptr;
1975 if (ModuloC != ShAmtC)
1976 return replaceOperand(I&: *II, OpNum: 2, V: ModuloC);
1977
1978 assert(match(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC),
1979 m_One()) &&
1980 "Shift amount expected to be modulo bitwidth");
1981
1982 // Canonicalize funnel shift right by constant to funnel shift left. This
1983 // is not entirely arbitrary. For historical reasons, the backend may
1984 // recognize rotate left patterns but miss rotate right patterns.
1985 if (IID == Intrinsic::fshr) {
1986 // fshr X, Y, C --> fshl X, Y, (BitWidth - C) if C is not zero.
1987 if (!isKnownNonZero(V: ShAmtC, Q: SQ.getWithInstruction(I: II)))
1988 return nullptr;
1989
1990 Constant *LeftShiftC = ConstantExpr::getSub(C1: WidthC, C2: ShAmtC);
1991 Module *Mod = II->getModule();
1992 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1993 return CallInst::Create(Func: Fshl, Args: { Op0, Op1, LeftShiftC });
1994 }
1995 assert(IID == Intrinsic::fshl &&
1996 "All funnel shifts by simple constants should go left");
1997
1998 // fshl(X, 0, C) --> shl X, C
1999 // fshl(X, undef, C) --> shl X, C
2000 if (match(V: Op1, P: m_ZeroInt()) || match(V: Op1, P: m_Undef()))
2001 return BinaryOperator::CreateShl(V1: Op0, V2: ShAmtC);
2002
2003 // fshl(0, X, C) --> lshr X, (BW-C)
2004 // fshl(undef, X, C) --> lshr X, (BW-C)
2005 if (match(V: Op0, P: m_ZeroInt()) || match(V: Op0, P: m_Undef()))
2006 return BinaryOperator::CreateLShr(V1: Op1,
2007 V2: ConstantExpr::getSub(C1: WidthC, C2: ShAmtC));
2008
2009 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
2010 if (Op0 == Op1 && BitWidth == 16 && match(V: ShAmtC, P: m_SpecificInt(V: 8))) {
2011 Module *Mod = II->getModule();
2012 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
2013 return CallInst::Create(Func: Bswap, Args: { Op0 });
2014 }
2015 if (Instruction *BitOp =
2016 matchBSwapOrBitReverse(I&: *II, /*MatchBSwaps*/ true,
2017 /*MatchBitReversals*/ true))
2018 return BitOp;
2019 }
2020
2021 // Left or right might be masked.
2022 if (SimplifyDemandedInstructionBits(Inst&: *II))
2023 return &CI;
2024
2025 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
2026 // so only the low bits of the shift amount are demanded if the bitwidth is
2027 // a power-of-2.
2028 if (!isPowerOf2_32(Value: BitWidth))
2029 break;
2030 APInt Op2Demanded = APInt::getLowBitsSet(numBits: BitWidth, loBitsSet: Log2_32_Ceil(Value: BitWidth));
2031 KnownBits Op2Known(BitWidth);
2032 if (SimplifyDemandedBits(I: II, Op: 2, DemandedMask: Op2Demanded, Known&: Op2Known))
2033 return &CI;
2034 break;
2035 }
2036 case Intrinsic::ptrmask: {
2037 unsigned BitWidth = DL.getPointerTypeSizeInBits(II->getType());
2038 KnownBits Known(BitWidth);
2039 if (SimplifyDemandedInstructionBits(Inst&: *II, Known))
2040 return II;
2041
2042 Value *InnerPtr, *InnerMask;
2043 bool Changed = false;
2044 // Combine:
2045 // (ptrmask (ptrmask p, A), B)
2046 // -> (ptrmask p, (and A, B))
2047 if (match(II->getArgOperand(0),
2048 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
2049 m_Value(InnerMask))))) {
2050 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
2051 "Mask types must match");
2052 // TODO: If InnerMask == Op1, we could copy attributes from inner
2053 // callsite -> outer callsite.
2054 Value *NewMask = Builder.CreateAnd(LHS: II->getArgOperand(i: 1), RHS: InnerMask);
2055 replaceOperand(I&: CI, OpNum: 0, V: InnerPtr);
2056 replaceOperand(I&: CI, OpNum: 1, V: NewMask);
2057 Changed = true;
2058 }
2059
2060 // See if we can deduce non-null.
2061 if (!CI.hasRetAttr(Attribute::NonNull) &&
2062 (Known.isNonZero() ||
2063 isKnownNonZero(II, getSimplifyQuery().getWithInstruction(II)))) {
2064 CI.addRetAttr(Attribute::NonNull);
2065 Changed = true;
2066 }
2067
2068 unsigned NewAlignmentLog =
2069 std::min(a: Value::MaxAlignmentExponent,
2070 b: std::min(a: BitWidth - 1, b: Known.countMinTrailingZeros()));
2071 // Known bits will capture if we had alignment information associated with
2072 // the pointer argument.
2073 if (NewAlignmentLog > Log2(A: CI.getRetAlign().valueOrOne())) {
2074 CI.addRetAttr(Attr: Attribute::getWithAlignment(
2075 Context&: CI.getContext(), Alignment: Align(uint64_t(1) << NewAlignmentLog)));
2076 Changed = true;
2077 }
2078 if (Changed)
2079 return &CI;
2080 break;
2081 }
2082 case Intrinsic::uadd_with_overflow:
2083 case Intrinsic::sadd_with_overflow: {
2084 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2085 return I;
2086
2087 // Given 2 constant operands whose sum does not overflow:
2088 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
2089 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
2090 Value *X;
2091 const APInt *C0, *C1;
2092 Value *Arg0 = II->getArgOperand(i: 0);
2093 Value *Arg1 = II->getArgOperand(i: 1);
2094 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
2095 bool HasNWAdd = IsSigned
2096 ? match(V: Arg0, P: m_NSWAddLike(L: m_Value(V&: X), R: m_APInt(Res&: C0)))
2097 : match(V: Arg0, P: m_NUWAddLike(L: m_Value(V&: X), R: m_APInt(Res&: C0)));
2098 if (HasNWAdd && match(V: Arg1, P: m_APInt(Res&: C1))) {
2099 bool Overflow;
2100 APInt NewC =
2101 IsSigned ? C1->sadd_ov(RHS: *C0, Overflow) : C1->uadd_ov(RHS: *C0, Overflow);
2102 if (!Overflow)
2103 return replaceInstUsesWith(
2104 I&: *II, V: Builder.CreateBinaryIntrinsic(
2105 ID: IID, LHS: X, RHS: ConstantInt::get(Ty: Arg1->getType(), V: NewC)));
2106 }
2107 break;
2108 }
2109
2110 case Intrinsic::umul_with_overflow:
2111 case Intrinsic::smul_with_overflow:
2112 case Intrinsic::usub_with_overflow:
2113 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2114 return I;
2115 break;
2116
2117 case Intrinsic::ssub_with_overflow: {
2118 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2119 return I;
2120
2121 Constant *C;
2122 Value *Arg0 = II->getArgOperand(i: 0);
2123 Value *Arg1 = II->getArgOperand(i: 1);
2124 // Given a constant C that is not the minimum signed value
2125 // for an integer of a given bit width:
2126 //
2127 // ssubo X, C -> saddo X, -C
2128 if (match(V: Arg1, P: m_Constant(C)) && C->isNotMinSignedValue()) {
2129 Value *NegVal = ConstantExpr::getNeg(C);
2130 // Build a saddo call that is equivalent to the discovered
2131 // ssubo call.
2132 return replaceInstUsesWith(
2133 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2134 Arg0, NegVal));
2135 }
2136
2137 break;
2138 }
2139
2140 case Intrinsic::uadd_sat:
2141 case Intrinsic::sadd_sat:
2142 case Intrinsic::usub_sat:
2143 case Intrinsic::ssub_sat: {
2144 SaturatingInst *SI = cast<SaturatingInst>(Val: II);
2145 Type *Ty = SI->getType();
2146 Value *Arg0 = SI->getLHS();
2147 Value *Arg1 = SI->getRHS();
2148
2149 // Make use of known overflow information.
2150 OverflowResult OR = computeOverflow(BinaryOp: SI->getBinaryOp(), IsSigned: SI->isSigned(),
2151 LHS: Arg0, RHS: Arg1, CxtI: SI);
2152 switch (OR) {
2153 case OverflowResult::MayOverflow:
2154 break;
2155 case OverflowResult::NeverOverflows:
2156 if (SI->isSigned())
2157 return BinaryOperator::CreateNSW(Opc: SI->getBinaryOp(), V1: Arg0, V2: Arg1);
2158 else
2159 return BinaryOperator::CreateNUW(Opc: SI->getBinaryOp(), V1: Arg0, V2: Arg1);
2160 case OverflowResult::AlwaysOverflowsLow: {
2161 unsigned BitWidth = Ty->getScalarSizeInBits();
2162 APInt Min = APSInt::getMinValue(numBits: BitWidth, Unsigned: !SI->isSigned());
2163 return replaceInstUsesWith(I&: *SI, V: ConstantInt::get(Ty, V: Min));
2164 }
2165 case OverflowResult::AlwaysOverflowsHigh: {
2166 unsigned BitWidth = Ty->getScalarSizeInBits();
2167 APInt Max = APSInt::getMaxValue(numBits: BitWidth, Unsigned: !SI->isSigned());
2168 return replaceInstUsesWith(I&: *SI, V: ConstantInt::get(Ty, V: Max));
2169 }
2170 }
2171
2172 // usub_sat((sub nuw C, A), C1) -> usub_sat(usub_sat(C, C1), A)
2173 // which after that:
2174 // usub_sat((sub nuw C, A), C1) -> usub_sat(C - C1, A) if C1 u< C
2175 // usub_sat((sub nuw C, A), C1) -> 0 otherwise
2176 Constant *C, *C1;
2177 Value *A;
2178 if (IID == Intrinsic::usub_sat &&
2179 match(Arg0, m_NUWSub(m_ImmConstant(C), m_Value(A))) &&
2180 match(Arg1, m_ImmConstant(C1))) {
2181 auto *NewC = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, C, C1);
2182 auto *NewSub =
2183 Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, NewC, A);
2184 return replaceInstUsesWith(I&: *SI, V: NewSub);
2185 }
2186
2187 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2188 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2189 C->isNotMinSignedValue()) {
2190 Value *NegVal = ConstantExpr::getNeg(C);
2191 return replaceInstUsesWith(
2192 *II, Builder.CreateBinaryIntrinsic(
2193 Intrinsic::sadd_sat, Arg0, NegVal));
2194 }
2195
2196 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2197 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2198 // if Val and Val2 have the same sign
2199 if (auto *Other = dyn_cast<IntrinsicInst>(Val: Arg0)) {
2200 Value *X;
2201 const APInt *Val, *Val2;
2202 APInt NewVal;
2203 bool IsUnsigned =
2204 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2205 if (Other->getIntrinsicID() == IID &&
2206 match(V: Arg1, P: m_APInt(Res&: Val)) &&
2207 match(V: Other->getArgOperand(i: 0), P: m_Value(V&: X)) &&
2208 match(V: Other->getArgOperand(i: 1), P: m_APInt(Res&: Val2))) {
2209 if (IsUnsigned)
2210 NewVal = Val->uadd_sat(RHS: *Val2);
2211 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2212 bool Overflow;
2213 NewVal = Val->sadd_ov(RHS: *Val2, Overflow);
2214 if (Overflow) {
2215 // Both adds together may add more than SignedMaxValue
2216 // without saturating the final result.
2217 break;
2218 }
2219 } else {
2220 // Cannot fold saturated addition with different signs.
2221 break;
2222 }
2223
2224 return replaceInstUsesWith(
2225 I&: *II, V: Builder.CreateBinaryIntrinsic(
2226 ID: IID, LHS: X, RHS: ConstantInt::get(Ty: II->getType(), V: NewVal)));
2227 }
2228 }
2229 break;
2230 }
2231
2232 case Intrinsic::minnum:
2233 case Intrinsic::maxnum:
2234 case Intrinsic::minimum:
2235 case Intrinsic::maximum: {
2236 Value *Arg0 = II->getArgOperand(i: 0);
2237 Value *Arg1 = II->getArgOperand(i: 1);
2238 Value *X, *Y;
2239 if (match(V: Arg0, P: m_FNeg(X: m_Value(V&: X))) && match(V: Arg1, P: m_FNeg(X: m_Value(V&: Y))) &&
2240 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2241 // If both operands are negated, invert the call and negate the result:
2242 // min(-X, -Y) --> -(max(X, Y))
2243 // max(-X, -Y) --> -(min(X, Y))
2244 Intrinsic::ID NewIID;
2245 switch (IID) {
2246 case Intrinsic::maxnum:
2247 NewIID = Intrinsic::minnum;
2248 break;
2249 case Intrinsic::minnum:
2250 NewIID = Intrinsic::maxnum;
2251 break;
2252 case Intrinsic::maximum:
2253 NewIID = Intrinsic::minimum;
2254 break;
2255 case Intrinsic::minimum:
2256 NewIID = Intrinsic::maximum;
2257 break;
2258 default:
2259 llvm_unreachable("unexpected intrinsic ID");
2260 }
2261 Value *NewCall = Builder.CreateBinaryIntrinsic(ID: NewIID, LHS: X, RHS: Y, FMFSource: II);
2262 Instruction *FNeg = UnaryOperator::CreateFNeg(V: NewCall);
2263 FNeg->copyIRFlags(V: II);
2264 return FNeg;
2265 }
2266
2267 // m(m(X, C2), C1) -> m(X, C)
2268 const APFloat *C1, *C2;
2269 if (auto *M = dyn_cast<IntrinsicInst>(Val: Arg0)) {
2270 if (M->getIntrinsicID() == IID && match(V: Arg1, P: m_APFloat(Res&: C1)) &&
2271 ((match(V: M->getArgOperand(i: 0), P: m_Value(V&: X)) &&
2272 match(V: M->getArgOperand(i: 1), P: m_APFloat(Res&: C2))) ||
2273 (match(V: M->getArgOperand(i: 1), P: m_Value(V&: X)) &&
2274 match(V: M->getArgOperand(i: 0), P: m_APFloat(Res&: C2))))) {
2275 APFloat Res(0.0);
2276 switch (IID) {
2277 case Intrinsic::maxnum:
2278 Res = maxnum(A: *C1, B: *C2);
2279 break;
2280 case Intrinsic::minnum:
2281 Res = minnum(A: *C1, B: *C2);
2282 break;
2283 case Intrinsic::maximum:
2284 Res = maximum(A: *C1, B: *C2);
2285 break;
2286 case Intrinsic::minimum:
2287 Res = minimum(A: *C1, B: *C2);
2288 break;
2289 default:
2290 llvm_unreachable("unexpected intrinsic ID");
2291 }
2292 Value *V = Builder.CreateBinaryIntrinsic(
2293 ID: IID, LHS: X, RHS: ConstantFP::get(Ty: Arg0->getType(), V: Res), FMFSource: II);
2294 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2295 // was a simplification (so Arg0 and its original flags could
2296 // propagate?)
2297 if (auto *CI = dyn_cast<CallInst>(Val: V))
2298 CI->andIRFlags(V: M);
2299 return replaceInstUsesWith(I&: *II, V);
2300 }
2301 }
2302
2303 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2304 if (match(V: Arg0, P: m_OneUse(SubPattern: m_FPExt(Op: m_Value(V&: X)))) &&
2305 match(V: Arg1, P: m_OneUse(SubPattern: m_FPExt(Op: m_Value(V&: Y)))) &&
2306 X->getType() == Y->getType()) {
2307 Value *NewCall =
2308 Builder.CreateBinaryIntrinsic(ID: IID, LHS: X, RHS: Y, FMFSource: II, Name: II->getName());
2309 return new FPExtInst(NewCall, II->getType());
2310 }
2311
2312 // max X, -X --> fabs X
2313 // min X, -X --> -(fabs X)
2314 // TODO: Remove one-use limitation? That is obviously better for max,
2315 // hence why we don't check for one-use for that. However,
2316 // it would be an extra instruction for min (fnabs), but
2317 // that is still likely better for analysis and codegen.
2318 auto IsMinMaxOrXNegX = [IID, &X](Value *Op0, Value *Op1) {
2319 if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Specific(X)))
2320 return Op0->hasOneUse() ||
2321 (IID != Intrinsic::minimum && IID != Intrinsic::minnum);
2322 return false;
2323 };
2324
2325 if (IsMinMaxOrXNegX(Arg0, Arg1) || IsMinMaxOrXNegX(Arg1, Arg0)) {
2326 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2327 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2328 R = Builder.CreateFNegFMF(V: R, FMFSource: II);
2329 return replaceInstUsesWith(I&: *II, V: R);
2330 }
2331
2332 break;
2333 }
2334 case Intrinsic::matrix_multiply: {
2335 // Optimize negation in matrix multiplication.
2336
2337 // -A * -B -> A * B
2338 Value *A, *B;
2339 if (match(V: II->getArgOperand(i: 0), P: m_FNeg(X: m_Value(V&: A))) &&
2340 match(V: II->getArgOperand(i: 1), P: m_FNeg(X: m_Value(V&: B)))) {
2341 replaceOperand(I&: *II, OpNum: 0, V: A);
2342 replaceOperand(I&: *II, OpNum: 1, V: B);
2343 return II;
2344 }
2345
2346 Value *Op0 = II->getOperand(i_nocapture: 0);
2347 Value *Op1 = II->getOperand(i_nocapture: 1);
2348 Value *OpNotNeg, *NegatedOp;
2349 unsigned NegatedOpArg, OtherOpArg;
2350 if (match(V: Op0, P: m_FNeg(X: m_Value(V&: OpNotNeg)))) {
2351 NegatedOp = Op0;
2352 NegatedOpArg = 0;
2353 OtherOpArg = 1;
2354 } else if (match(V: Op1, P: m_FNeg(X: m_Value(V&: OpNotNeg)))) {
2355 NegatedOp = Op1;
2356 NegatedOpArg = 1;
2357 OtherOpArg = 0;
2358 } else
2359 // Multiplication doesn't have a negated operand.
2360 break;
2361
2362 // Only optimize if the negated operand has only one use.
2363 if (!NegatedOp->hasOneUse())
2364 break;
2365
2366 Value *OtherOp = II->getOperand(i_nocapture: OtherOpArg);
2367 VectorType *RetTy = cast<VectorType>(Val: II->getType());
2368 VectorType *NegatedOpTy = cast<VectorType>(Val: NegatedOp->getType());
2369 VectorType *OtherOpTy = cast<VectorType>(Val: OtherOp->getType());
2370 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2371 ElementCount OtherCount = OtherOpTy->getElementCount();
2372 ElementCount RetCount = RetTy->getElementCount();
2373 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2374 if (ElementCount::isKnownGT(LHS: NegatedCount, RHS: OtherCount) &&
2375 ElementCount::isKnownLT(LHS: OtherCount, RHS: RetCount)) {
2376 Value *InverseOtherOp = Builder.CreateFNeg(V: OtherOp);
2377 replaceOperand(I&: *II, OpNum: NegatedOpArg, V: OpNotNeg);
2378 replaceOperand(I&: *II, OpNum: OtherOpArg, V: InverseOtherOp);
2379 return II;
2380 }
2381 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2382 if (ElementCount::isKnownGT(LHS: NegatedCount, RHS: RetCount)) {
2383 SmallVector<Value *, 5> NewArgs(II->args());
2384 NewArgs[NegatedOpArg] = OpNotNeg;
2385 Instruction *NewMul =
2386 Builder.CreateIntrinsic(RetTy: II->getType(), ID: IID, Args: NewArgs, FMFSource: II);
2387 return replaceInstUsesWith(I&: *II, V: Builder.CreateFNegFMF(V: NewMul, FMFSource: II));
2388 }
2389 break;
2390 }
2391 case Intrinsic::fmuladd: {
2392 // Canonicalize fast fmuladd to the separate fmul + fadd.
2393 if (II->isFast()) {
2394 BuilderTy::FastMathFlagGuard Guard(Builder);
2395 Builder.setFastMathFlags(II->getFastMathFlags());
2396 Value *Mul = Builder.CreateFMul(L: II->getArgOperand(i: 0),
2397 R: II->getArgOperand(i: 1));
2398 Value *Add = Builder.CreateFAdd(L: Mul, R: II->getArgOperand(i: 2));
2399 Add->takeName(V: II);
2400 return replaceInstUsesWith(I&: *II, V: Add);
2401 }
2402
2403 // Try to simplify the underlying FMul.
2404 if (Value *V = simplifyFMulInst(LHS: II->getArgOperand(i: 0), RHS: II->getArgOperand(i: 1),
2405 FMF: II->getFastMathFlags(),
2406 Q: SQ.getWithInstruction(I: II))) {
2407 auto *FAdd = BinaryOperator::CreateFAdd(V1: V, V2: II->getArgOperand(i: 2));
2408 FAdd->copyFastMathFlags(I: II);
2409 return FAdd;
2410 }
2411
2412 [[fallthrough]];
2413 }
2414 case Intrinsic::fma: {
2415 // fma fneg(x), fneg(y), z -> fma x, y, z
2416 Value *Src0 = II->getArgOperand(i: 0);
2417 Value *Src1 = II->getArgOperand(i: 1);
2418 Value *X, *Y;
2419 if (match(V: Src0, P: m_FNeg(X: m_Value(V&: X))) && match(V: Src1, P: m_FNeg(X: m_Value(V&: Y)))) {
2420 replaceOperand(I&: *II, OpNum: 0, V: X);
2421 replaceOperand(I&: *II, OpNum: 1, V: Y);
2422 return II;
2423 }
2424
2425 // fma fabs(x), fabs(x), z -> fma x, x, z
2426 if (match(V: Src0, P: m_FAbs(Op0: m_Value(V&: X))) &&
2427 match(V: Src1, P: m_FAbs(Op0: m_Specific(V: X)))) {
2428 replaceOperand(I&: *II, OpNum: 0, V: X);
2429 replaceOperand(I&: *II, OpNum: 1, V: X);
2430 return II;
2431 }
2432
2433 // Try to simplify the underlying FMul. We can only apply simplifications
2434 // that do not require rounding.
2435 if (Value *V = simplifyFMAFMul(LHS: II->getArgOperand(i: 0), RHS: II->getArgOperand(i: 1),
2436 FMF: II->getFastMathFlags(),
2437 Q: SQ.getWithInstruction(I: II))) {
2438 auto *FAdd = BinaryOperator::CreateFAdd(V1: V, V2: II->getArgOperand(i: 2));
2439 FAdd->copyFastMathFlags(I: II);
2440 return FAdd;
2441 }
2442
2443 // fma x, y, 0 -> fmul x, y
2444 // This is always valid for -0.0, but requires nsz for +0.0 as
2445 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2446 if (match(V: II->getArgOperand(i: 2), P: m_NegZeroFP()) ||
2447 (match(V: II->getArgOperand(i: 2), P: m_PosZeroFP()) &&
2448 II->getFastMathFlags().noSignedZeros()))
2449 return BinaryOperator::CreateFMulFMF(V1: Src0, V2: Src1, FMFSource: II);
2450
2451 break;
2452 }
2453 case Intrinsic::copysign: {
2454 Value *Mag = II->getArgOperand(i: 0), *Sign = II->getArgOperand(i: 1);
2455 if (std::optional<bool> KnownSignBit = computeKnownFPSignBit(
2456 V: Sign, /*Depth=*/0, SQ: getSimplifyQuery().getWithInstruction(I: II))) {
2457 if (*KnownSignBit) {
2458 // If we know that the sign argument is negative, reduce to FNABS:
2459 // copysign Mag, -Sign --> fneg (fabs Mag)
2460 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2461 return replaceInstUsesWith(I&: *II, V: Builder.CreateFNegFMF(V: Fabs, FMFSource: II));
2462 }
2463
2464 // If we know that the sign argument is positive, reduce to FABS:
2465 // copysign Mag, +Sign --> fabs Mag
2466 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2467 return replaceInstUsesWith(I&: *II, V: Fabs);
2468 }
2469
2470 // Propagate sign argument through nested calls:
2471 // copysign Mag, (copysign ?, X) --> copysign Mag, X
2472 Value *X;
2473 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2474 return replaceOperand(I&: *II, OpNum: 1, V: X);
2475
2476 // Clear sign-bit of constant magnitude:
2477 // copysign -MagC, X --> copysign MagC, X
2478 // TODO: Support constant folding for fabs
2479 const APFloat *MagC;
2480 if (match(V: Mag, P: m_APFloat(Res&: MagC)) && MagC->isNegative()) {
2481 APFloat PosMagC = *MagC;
2482 PosMagC.clearSign();
2483 return replaceOperand(I&: *II, OpNum: 0, V: ConstantFP::get(Ty: Mag->getType(), V: PosMagC));
2484 }
2485
2486 // Peek through changes of magnitude's sign-bit. This call rewrites those:
2487 // copysign (fabs X), Sign --> copysign X, Sign
2488 // copysign (fneg X), Sign --> copysign X, Sign
2489 if (match(V: Mag, P: m_FAbs(Op0: m_Value(V&: X))) || match(V: Mag, P: m_FNeg(X: m_Value(V&: X))))
2490 return replaceOperand(I&: *II, OpNum: 0, V: X);
2491
2492 break;
2493 }
2494 case Intrinsic::fabs: {
2495 Value *Cond, *TVal, *FVal;
2496 if (match(V: II->getArgOperand(i: 0),
2497 P: m_Select(C: m_Value(V&: Cond), L: m_Value(V&: TVal), R: m_Value(V&: FVal)))) {
2498 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2499 if (isa<Constant>(Val: TVal) || isa<Constant>(Val: FVal)) {
2500 CallInst *AbsT = Builder.CreateCall(Callee: II->getCalledFunction(), Args: {TVal});
2501 CallInst *AbsF = Builder.CreateCall(Callee: II->getCalledFunction(), Args: {FVal});
2502 SelectInst *SI = SelectInst::Create(C: Cond, S1: AbsT, S2: AbsF);
2503 FastMathFlags FMF1 = II->getFastMathFlags();
2504 FastMathFlags FMF2 =
2505 cast<SelectInst>(Val: II->getArgOperand(i: 0))->getFastMathFlags();
2506 FMF2.setNoSignedZeros(false);
2507 SI->setFastMathFlags(FMF1 | FMF2);
2508 return SI;
2509 }
2510 // fabs (select Cond, -FVal, FVal) --> fabs FVal
2511 if (match(V: TVal, P: m_FNeg(X: m_Specific(V: FVal))))
2512 return replaceOperand(I&: *II, OpNum: 0, V: FVal);
2513 // fabs (select Cond, TVal, -TVal) --> fabs TVal
2514 if (match(V: FVal, P: m_FNeg(X: m_Specific(V: TVal))))
2515 return replaceOperand(I&: *II, OpNum: 0, V: TVal);
2516 }
2517
2518 Value *Magnitude, *Sign;
2519 if (match(V: II->getArgOperand(i: 0),
2520 P: m_CopySign(Op0: m_Value(V&: Magnitude), Op1: m_Value(V&: Sign)))) {
2521 // fabs (copysign x, y) -> (fabs x)
2522 CallInst *AbsSign =
2523 Builder.CreateCall(Callee: II->getCalledFunction(), Args: {Magnitude});
2524 AbsSign->copyFastMathFlags(I: II);
2525 return replaceInstUsesWith(I&: *II, V: AbsSign);
2526 }
2527
2528 [[fallthrough]];
2529 }
2530 case Intrinsic::ceil:
2531 case Intrinsic::floor:
2532 case Intrinsic::round:
2533 case Intrinsic::roundeven:
2534 case Intrinsic::nearbyint:
2535 case Intrinsic::rint:
2536 case Intrinsic::trunc: {
2537 Value *ExtSrc;
2538 if (match(V: II->getArgOperand(i: 0), P: m_OneUse(SubPattern: m_FPExt(Op: m_Value(V&: ExtSrc))))) {
2539 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2540 Value *NarrowII = Builder.CreateUnaryIntrinsic(ID: IID, V: ExtSrc, FMFSource: II);
2541 return new FPExtInst(NarrowII, II->getType());
2542 }
2543 break;
2544 }
2545 case Intrinsic::cos:
2546 case Intrinsic::amdgcn_cos: {
2547 Value *X, *Sign;
2548 Value *Src = II->getArgOperand(i: 0);
2549 if (match(V: Src, P: m_FNeg(X: m_Value(V&: X))) || match(V: Src, P: m_FAbs(Op0: m_Value(V&: X))) ||
2550 match(V: Src, P: m_CopySign(Op0: m_Value(V&: X), Op1: m_Value(V&: Sign)))) {
2551 // cos(-x) --> cos(x)
2552 // cos(fabs(x)) --> cos(x)
2553 // cos(copysign(x, y)) --> cos(x)
2554 return replaceOperand(I&: *II, OpNum: 0, V: X);
2555 }
2556 break;
2557 }
2558 case Intrinsic::sin: {
2559 Value *X;
2560 if (match(V: II->getArgOperand(i: 0), P: m_OneUse(SubPattern: m_FNeg(X: m_Value(V&: X))))) {
2561 // sin(-x) --> -sin(x)
2562 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2563 Instruction *FNeg = UnaryOperator::CreateFNeg(V: NewSin);
2564 FNeg->copyFastMathFlags(I: II);
2565 return FNeg;
2566 }
2567 break;
2568 }
2569 case Intrinsic::ldexp: {
2570 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2571 //
2572 // The danger is if the first ldexp would overflow to infinity or underflow
2573 // to zero, but the combined exponent avoids it. We ignore this with
2574 // reassoc.
2575 //
2576 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2577 // it would just double down on the overflow/underflow which would occur
2578 // anyway.
2579 //
2580 // TODO: Could do better if we had range tracking for the input value
2581 // exponent. Also could broaden sign check to cover == 0 case.
2582 Value *Src = II->getArgOperand(i: 0);
2583 Value *Exp = II->getArgOperand(i: 1);
2584 Value *InnerSrc;
2585 Value *InnerExp;
2586 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2587 m_Value(InnerSrc), m_Value(InnerExp)))) &&
2588 Exp->getType() == InnerExp->getType()) {
2589 FastMathFlags FMF = II->getFastMathFlags();
2590 FastMathFlags InnerFlags = cast<FPMathOperator>(Val: Src)->getFastMathFlags();
2591
2592 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2593 signBitMustBeTheSame(Op0: Exp, Op1: InnerExp, CxtI: II, DL, AC: &AC, DT: &DT)) {
2594 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2595 // width.
2596 Value *NewExp = Builder.CreateAdd(LHS: InnerExp, RHS: Exp);
2597 II->setArgOperand(i: 1, v: NewExp);
2598 II->setFastMathFlags(InnerFlags); // Or the inner flags.
2599 return replaceOperand(I&: *II, OpNum: 0, V: InnerSrc);
2600 }
2601 }
2602
2603 break;
2604 }
2605 case Intrinsic::ptrauth_auth:
2606 case Intrinsic::ptrauth_resign: {
2607 // (sign|resign) + (auth|resign) can be folded by omitting the middle
2608 // sign+auth component if the key and discriminator match.
2609 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2610 Value *Key = II->getArgOperand(i: 1);
2611 Value *Disc = II->getArgOperand(i: 2);
2612
2613 // AuthKey will be the key we need to end up authenticating against in
2614 // whatever we replace this sequence with.
2615 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2616 if (auto CI = dyn_cast<CallBase>(Val: II->getArgOperand(i: 0))) {
2617 BasePtr = CI->getArgOperand(i: 0);
2618 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2619 if (CI->getArgOperand(i: 1) != Key || CI->getArgOperand(i: 2) != Disc)
2620 break;
2621 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2622 if (CI->getArgOperand(i: 3) != Key || CI->getArgOperand(i: 4) != Disc)
2623 break;
2624 AuthKey = CI->getArgOperand(i: 1);
2625 AuthDisc = CI->getArgOperand(i: 2);
2626 } else
2627 break;
2628 } else
2629 break;
2630
2631 unsigned NewIntrin;
2632 if (AuthKey && NeedSign) {
2633 // resign(0,1) + resign(1,2) = resign(0, 2)
2634 NewIntrin = Intrinsic::ptrauth_resign;
2635 } else if (AuthKey) {
2636 // resign(0,1) + auth(1) = auth(0)
2637 NewIntrin = Intrinsic::ptrauth_auth;
2638 } else if (NeedSign) {
2639 // sign(0) + resign(0, 1) = sign(1)
2640 NewIntrin = Intrinsic::ptrauth_sign;
2641 } else {
2642 // sign(0) + auth(0) = nop
2643 replaceInstUsesWith(I&: *II, V: BasePtr);
2644 eraseInstFromFunction(I&: *II);
2645 return nullptr;
2646 }
2647
2648 SmallVector<Value *, 4> CallArgs;
2649 CallArgs.push_back(Elt: BasePtr);
2650 if (AuthKey) {
2651 CallArgs.push_back(Elt: AuthKey);
2652 CallArgs.push_back(Elt: AuthDisc);
2653 }
2654
2655 if (NeedSign) {
2656 CallArgs.push_back(Elt: II->getArgOperand(i: 3));
2657 CallArgs.push_back(Elt: II->getArgOperand(i: 4));
2658 }
2659
2660 Function *NewFn = Intrinsic::getDeclaration(M: II->getModule(), id: NewIntrin);
2661 return CallInst::Create(Func: NewFn, Args: CallArgs);
2662 }
2663 case Intrinsic::arm_neon_vtbl1:
2664 case Intrinsic::aarch64_neon_tbl1:
2665 if (Value *V = simplifyNeonTbl1(II: *II, Builder))
2666 return replaceInstUsesWith(I&: *II, V);
2667 break;
2668
2669 case Intrinsic::arm_neon_vmulls:
2670 case Intrinsic::arm_neon_vmullu:
2671 case Intrinsic::aarch64_neon_smull:
2672 case Intrinsic::aarch64_neon_umull: {
2673 Value *Arg0 = II->getArgOperand(i: 0);
2674 Value *Arg1 = II->getArgOperand(i: 1);
2675
2676 // Handle mul by zero first:
2677 if (isa<ConstantAggregateZero>(Val: Arg0) || isa<ConstantAggregateZero>(Val: Arg1)) {
2678 return replaceInstUsesWith(I&: CI, V: ConstantAggregateZero::get(Ty: II->getType()));
2679 }
2680
2681 // Check for constant LHS & RHS - in this case we just simplify.
2682 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2683 IID == Intrinsic::aarch64_neon_umull);
2684 VectorType *NewVT = cast<VectorType>(Val: II->getType());
2685 if (Constant *CV0 = dyn_cast<Constant>(Val: Arg0)) {
2686 if (Constant *CV1 = dyn_cast<Constant>(Val: Arg1)) {
2687 Value *V0 = Builder.CreateIntCast(V: CV0, DestTy: NewVT, /*isSigned=*/!Zext);
2688 Value *V1 = Builder.CreateIntCast(V: CV1, DestTy: NewVT, /*isSigned=*/!Zext);
2689 return replaceInstUsesWith(I&: CI, V: Builder.CreateMul(LHS: V0, RHS: V1));
2690 }
2691
2692 // Couldn't simplify - canonicalize constant to the RHS.
2693 std::swap(a&: Arg0, b&: Arg1);
2694 }
2695
2696 // Handle mul by one:
2697 if (Constant *CV1 = dyn_cast<Constant>(Val: Arg1))
2698 if (ConstantInt *Splat =
2699 dyn_cast_or_null<ConstantInt>(Val: CV1->getSplatValue()))
2700 if (Splat->isOne())
2701 return CastInst::CreateIntegerCast(S: Arg0, Ty: II->getType(),
2702 /*isSigned=*/!Zext);
2703
2704 break;
2705 }
2706 case Intrinsic::arm_neon_aesd:
2707 case Intrinsic::arm_neon_aese:
2708 case Intrinsic::aarch64_crypto_aesd:
2709 case Intrinsic::aarch64_crypto_aese: {
2710 Value *DataArg = II->getArgOperand(i: 0);
2711 Value *KeyArg = II->getArgOperand(i: 1);
2712
2713 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2714 Value *Data, *Key;
2715 if (match(V: KeyArg, P: m_ZeroInt()) &&
2716 match(V: DataArg, P: m_Xor(L: m_Value(V&: Data), R: m_Value(V&: Key)))) {
2717 replaceOperand(I&: *II, OpNum: 0, V: Data);
2718 replaceOperand(I&: *II, OpNum: 1, V: Key);
2719 return II;
2720 }
2721 break;
2722 }
2723 case Intrinsic::hexagon_V6_vandvrt:
2724 case Intrinsic::hexagon_V6_vandvrt_128B: {
2725 // Simplify Q -> V -> Q conversion.
2726 if (auto Op0 = dyn_cast<IntrinsicInst>(Val: II->getArgOperand(i: 0))) {
2727 Intrinsic::ID ID0 = Op0->getIntrinsicID();
2728 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2729 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2730 break;
2731 Value *Bytes = Op0->getArgOperand(i: 1), *Mask = II->getArgOperand(i: 1);
2732 uint64_t Bytes1 = computeKnownBits(V: Bytes, Depth: 0, CxtI: Op0).One.getZExtValue();
2733 uint64_t Mask1 = computeKnownBits(V: Mask, Depth: 0, CxtI: II).One.getZExtValue();
2734 // Check if every byte has common bits in Bytes and Mask.
2735 uint64_t C = Bytes1 & Mask1;
2736 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2737 return replaceInstUsesWith(I&: *II, V: Op0->getArgOperand(i: 0));
2738 }
2739 break;
2740 }
2741 case Intrinsic::stackrestore: {
2742 enum class ClassifyResult {
2743 None,
2744 Alloca,
2745 StackRestore,
2746 CallWithSideEffects,
2747 };
2748 auto Classify = [](const Instruction *I) {
2749 if (isa<AllocaInst>(Val: I))
2750 return ClassifyResult::Alloca;
2751
2752 if (auto *CI = dyn_cast<CallInst>(Val: I)) {
2753 if (auto *II = dyn_cast<IntrinsicInst>(Val: CI)) {
2754 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2755 return ClassifyResult::StackRestore;
2756
2757 if (II->mayHaveSideEffects())
2758 return ClassifyResult::CallWithSideEffects;
2759 } else {
2760 // Consider all non-intrinsic calls to be side effects
2761 return ClassifyResult::CallWithSideEffects;
2762 }
2763 }
2764
2765 return ClassifyResult::None;
2766 };
2767
2768 // If the stacksave and the stackrestore are in the same BB, and there is
2769 // no intervening call, alloca, or stackrestore of a different stacksave,
2770 // remove the restore. This can happen when variable allocas are DCE'd.
2771 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(Val: II->getArgOperand(i: 0))) {
2772 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2773 SS->getParent() == II->getParent()) {
2774 BasicBlock::iterator BI(SS);
2775 bool CannotRemove = false;
2776 for (++BI; &*BI != II; ++BI) {
2777 switch (Classify(&*BI)) {
2778 case ClassifyResult::None:
2779 // So far so good, look at next instructions.
2780 break;
2781
2782 case ClassifyResult::StackRestore:
2783 // If we found an intervening stackrestore for a different
2784 // stacksave, we can't remove the stackrestore. Otherwise, continue.
2785 if (cast<IntrinsicInst>(Val&: *BI).getArgOperand(i: 0) != SS)
2786 CannotRemove = true;
2787 break;
2788
2789 case ClassifyResult::Alloca:
2790 case ClassifyResult::CallWithSideEffects:
2791 // If we found an alloca, a non-intrinsic call, or an intrinsic
2792 // call with side effects, we can't remove the stackrestore.
2793 CannotRemove = true;
2794 break;
2795 }
2796 if (CannotRemove)
2797 break;
2798 }
2799
2800 if (!CannotRemove)
2801 return eraseInstFromFunction(I&: CI);
2802 }
2803 }
2804
2805 // Scan down this block to see if there is another stack restore in the
2806 // same block without an intervening call/alloca.
2807 BasicBlock::iterator BI(II);
2808 Instruction *TI = II->getParent()->getTerminator();
2809 bool CannotRemove = false;
2810 for (++BI; &*BI != TI; ++BI) {
2811 switch (Classify(&*BI)) {
2812 case ClassifyResult::None:
2813 // So far so good, look at next instructions.
2814 break;
2815
2816 case ClassifyResult::StackRestore:
2817 // If there is a stackrestore below this one, remove this one.
2818 return eraseInstFromFunction(I&: CI);
2819
2820 case ClassifyResult::Alloca:
2821 case ClassifyResult::CallWithSideEffects:
2822 // If we found an alloca, a non-intrinsic call, or an intrinsic call
2823 // with side effects (such as llvm.stacksave and llvm.read_register),
2824 // we can't remove the stack restore.
2825 CannotRemove = true;
2826 break;
2827 }
2828 if (CannotRemove)
2829 break;
2830 }
2831
2832 // If the stack restore is in a return, resume, or unwind block and if there
2833 // are no allocas or calls between the restore and the return, nuke the
2834 // restore.
2835 if (!CannotRemove && (isa<ReturnInst>(Val: TI) || isa<ResumeInst>(Val: TI)))
2836 return eraseInstFromFunction(I&: CI);
2837 break;
2838 }
2839 case Intrinsic::lifetime_end:
2840 // Asan needs to poison memory to detect invalid access which is possible
2841 // even for empty lifetime range.
2842 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2843 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2844 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2845 break;
2846
2847 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2848 return I.getIntrinsicID() == Intrinsic::lifetime_start;
2849 }))
2850 return nullptr;
2851 break;
2852 case Intrinsic::assume: {
2853 Value *IIOperand = II->getArgOperand(i: 0);
2854 SmallVector<OperandBundleDef, 4> OpBundles;
2855 II->getOperandBundlesAsDefs(Defs&: OpBundles);
2856
2857 /// This will remove the boolean Condition from the assume given as
2858 /// argument and remove the assume if it becomes useless.
2859 /// always returns nullptr for use as a return values.
2860 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2861 assert(isa<AssumeInst>(Assume));
2862 if (isAssumeWithEmptyBundle(Assume: *cast<AssumeInst>(Val: II)))
2863 return eraseInstFromFunction(I&: CI);
2864 replaceUse(U&: II->getOperandUse(i: 0), NewValue: ConstantInt::getTrue(Context&: II->getContext()));
2865 return nullptr;
2866 };
2867 // Remove an assume if it is followed by an identical assume.
2868 // TODO: Do we need this? Unless there are conflicting assumptions, the
2869 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2870 Instruction *Next = II->getNextNonDebugInstruction();
2871 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2872 return RemoveConditionFromAssume(Next);
2873
2874 // Canonicalize assume(a && b) -> assume(a); assume(b);
2875 // Note: New assumption intrinsics created here are registered by
2876 // the InstCombineIRInserter object.
2877 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2878 Value *AssumeIntrinsic = II->getCalledOperand();
2879 Value *A, *B;
2880 if (match(V: IIOperand, P: m_LogicalAnd(L: m_Value(V&: A), R: m_Value(V&: B)))) {
2881 Builder.CreateCall(FTy: AssumeIntrinsicTy, Callee: AssumeIntrinsic, Args: A, OpBundles,
2882 Name: II->getName());
2883 Builder.CreateCall(FTy: AssumeIntrinsicTy, Callee: AssumeIntrinsic, Args: B, Name: II->getName());
2884 return eraseInstFromFunction(I&: *II);
2885 }
2886 // assume(!(a || b)) -> assume(!a); assume(!b);
2887 if (match(V: IIOperand, P: m_Not(V: m_LogicalOr(L: m_Value(V&: A), R: m_Value(V&: B))))) {
2888 Builder.CreateCall(FTy: AssumeIntrinsicTy, Callee: AssumeIntrinsic,
2889 Args: Builder.CreateNot(V: A), OpBundles, Name: II->getName());
2890 Builder.CreateCall(FTy: AssumeIntrinsicTy, Callee: AssumeIntrinsic,
2891 Args: Builder.CreateNot(V: B), Name: II->getName());
2892 return eraseInstFromFunction(I&: *II);
2893 }
2894
2895 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2896 // (if assume is valid at the load)
2897 CmpInst::Predicate Pred;
2898 Instruction *LHS;
2899 if (match(V: IIOperand, P: m_ICmp(Pred, L: m_Instruction(I&: LHS), R: m_Zero())) &&
2900 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2901 LHS->getType()->isPointerTy() &&
2902 isValidAssumeForContext(I: II, CxtI: LHS, DT: &DT)) {
2903 MDNode *MD = MDNode::get(Context&: II->getContext(), MDs: std::nullopt);
2904 LHS->setMetadata(KindID: LLVMContext::MD_nonnull, Node: MD);
2905 LHS->setMetadata(KindID: LLVMContext::MD_noundef, Node: MD);
2906 return RemoveConditionFromAssume(II);
2907
2908 // TODO: apply nonnull return attributes to calls and invokes
2909 // TODO: apply range metadata for range check patterns?
2910 }
2911
2912 // Separate storage assumptions apply to the underlying allocations, not any
2913 // particular pointer within them. When evaluating the hints for AA purposes
2914 // we getUnderlyingObject them; by precomputing the answers here we can
2915 // avoid having to do so repeatedly there.
2916 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2917 OperandBundleUse OBU = II->getOperandBundleAt(Index: Idx);
2918 if (OBU.getTagName() == "separate_storage") {
2919 assert(OBU.Inputs.size() == 2);
2920 auto MaybeSimplifyHint = [&](const Use &U) {
2921 Value *Hint = U.get();
2922 // Not having a limit is safe because InstCombine removes unreachable
2923 // code.
2924 Value *UnderlyingObject = getUnderlyingObject(V: Hint, /*MaxLookup*/ 0);
2925 if (Hint != UnderlyingObject)
2926 replaceUse(U&: const_cast<Use &>(U), NewValue: UnderlyingObject);
2927 };
2928 MaybeSimplifyHint(OBU.Inputs[0]);
2929 MaybeSimplifyHint(OBU.Inputs[1]);
2930 }
2931 }
2932
2933 // Convert nonnull assume like:
2934 // %A = icmp ne i32* %PTR, null
2935 // call void @llvm.assume(i1 %A)
2936 // into
2937 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2938 if (EnableKnowledgeRetention &&
2939 match(V: IIOperand, P: m_Cmp(Pred, L: m_Value(V&: A), R: m_Zero())) &&
2940 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2941 if (auto *Replacement = buildAssumeFromKnowledge(
2942 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2943
2944 Replacement->insertBefore(Next);
2945 AC.registerAssumption(CI: Replacement);
2946 return RemoveConditionFromAssume(II);
2947 }
2948 }
2949
2950 // Convert alignment assume like:
2951 // %B = ptrtoint i32* %A to i64
2952 // %C = and i64 %B, Constant
2953 // %D = icmp eq i64 %C, 0
2954 // call void @llvm.assume(i1 %D)
2955 // into
2956 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
2957 uint64_t AlignMask;
2958 if (EnableKnowledgeRetention &&
2959 match(V: IIOperand,
2960 P: m_Cmp(Pred, L: m_And(L: m_Value(V&: A), R: m_ConstantInt(V&: AlignMask)),
2961 R: m_Zero())) &&
2962 Pred == CmpInst::ICMP_EQ) {
2963 if (isPowerOf2_64(Value: AlignMask + 1)) {
2964 uint64_t Offset = 0;
2965 match(V: A, P: m_Add(L: m_Value(V&: A), R: m_ConstantInt(V&: Offset)));
2966 if (match(V: A, P: m_PtrToInt(Op: m_Value(V&: A)))) {
2967 /// Note: this doesn't preserve the offset information but merges
2968 /// offset and alignment.
2969 /// TODO: we can generate a GEP instead of merging the alignment with
2970 /// the offset.
2971 RetainedKnowledge RK{Attribute::Alignment,
2972 (unsigned)MinAlign(Offset, AlignMask + 1), A};
2973 if (auto *Replacement =
2974 buildAssumeFromKnowledge(Knowledge: RK, CtxI: Next, AC: &AC, DT: &DT)) {
2975
2976 Replacement->insertAfter(InsertPos: II);
2977 AC.registerAssumption(CI: Replacement);
2978 }
2979 return RemoveConditionFromAssume(II);
2980 }
2981 }
2982 }
2983
2984 /// Canonicalize Knowledge in operand bundles.
2985 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2986 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2987 auto &BOI = II->bundle_op_info_begin()[Idx];
2988 RetainedKnowledge RK =
2989 llvm::getKnowledgeFromBundle(Assume&: cast<AssumeInst>(Val&: *II), BOI);
2990 if (BOI.End - BOI.Begin > 2)
2991 continue; // Prevent reducing knowledge in an align with offset since
2992 // extracting a RetainedKnowledge from them looses offset
2993 // information
2994 RetainedKnowledge CanonRK =
2995 llvm::simplifyRetainedKnowledge(Assume: cast<AssumeInst>(Val: II), RK,
2996 AC: &getAssumptionCache(),
2997 DT: &getDominatorTree());
2998 if (CanonRK == RK)
2999 continue;
3000 if (!CanonRK) {
3001 if (BOI.End - BOI.Begin > 0) {
3002 Worklist.pushValue(V: II->op_begin()[BOI.Begin]);
3003 Value::dropDroppableUse(U&: II->op_begin()[BOI.Begin]);
3004 }
3005 continue;
3006 }
3007 assert(RK.AttrKind == CanonRK.AttrKind);
3008 if (BOI.End - BOI.Begin > 0)
3009 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
3010 if (BOI.End - BOI.Begin > 1)
3011 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
3012 Ty: Type::getInt64Ty(C&: II->getContext()), V: CanonRK.ArgValue));
3013 if (RK.WasOn)
3014 Worklist.pushValue(V: RK.WasOn);
3015 return II;
3016 }
3017 }
3018
3019 // If there is a dominating assume with the same condition as this one,
3020 // then this one is redundant, and should be removed.
3021 KnownBits Known(1);
3022 computeKnownBits(V: IIOperand, Known, Depth: 0, CxtI: II);
3023 if (Known.isAllOnes() && isAssumeWithEmptyBundle(Assume: cast<AssumeInst>(Val&: *II)))
3024 return eraseInstFromFunction(I&: *II);
3025
3026 // assume(false) is unreachable.
3027 if (match(V: IIOperand, P: m_CombineOr(L: m_Zero(), R: m_Undef()))) {
3028 CreateNonTerminatorUnreachable(InsertAt: II);
3029 return eraseInstFromFunction(I&: *II);
3030 }
3031
3032 // Update the cache of affected values for this assumption (we might be
3033 // here because we just simplified the condition).
3034 AC.updateAffectedValues(CI: cast<AssumeInst>(Val: II));
3035 break;
3036 }
3037 case Intrinsic::experimental_guard: {
3038 // Is this guard followed by another guard? We scan forward over a small
3039 // fixed window of instructions to handle common cases with conditions
3040 // computed between guards.
3041 Instruction *NextInst = II->getNextNonDebugInstruction();
3042 for (unsigned i = 0; i < GuardWideningWindow; i++) {
3043 // Note: Using context-free form to avoid compile time blow up
3044 if (!isSafeToSpeculativelyExecute(I: NextInst))
3045 break;
3046 NextInst = NextInst->getNextNonDebugInstruction();
3047 }
3048 Value *NextCond = nullptr;
3049 if (match(NextInst,
3050 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
3051 Value *CurrCond = II->getArgOperand(i: 0);
3052
3053 // Remove a guard that it is immediately preceded by an identical guard.
3054 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
3055 if (CurrCond != NextCond) {
3056 Instruction *MoveI = II->getNextNonDebugInstruction();
3057 while (MoveI != NextInst) {
3058 auto *Temp = MoveI;
3059 MoveI = MoveI->getNextNonDebugInstruction();
3060 Temp->moveBefore(MovePos: II);
3061 }
3062 replaceOperand(I&: *II, OpNum: 0, V: Builder.CreateAnd(LHS: CurrCond, RHS: NextCond));
3063 }
3064 eraseInstFromFunction(I&: *NextInst);
3065 return II;
3066 }
3067 break;
3068 }
3069 case Intrinsic::vector_insert: {
3070 Value *Vec = II->getArgOperand(i: 0);
3071 Value *SubVec = II->getArgOperand(i: 1);
3072 Value *Idx = II->getArgOperand(i: 2);
3073 auto *DstTy = dyn_cast<FixedVectorType>(Val: II->getType());
3074 auto *VecTy = dyn_cast<FixedVectorType>(Val: Vec->getType());
3075 auto *SubVecTy = dyn_cast<FixedVectorType>(Val: SubVec->getType());
3076
3077 // Only canonicalize if the destination vector, Vec, and SubVec are all
3078 // fixed vectors.
3079 if (DstTy && VecTy && SubVecTy) {
3080 unsigned DstNumElts = DstTy->getNumElements();
3081 unsigned VecNumElts = VecTy->getNumElements();
3082 unsigned SubVecNumElts = SubVecTy->getNumElements();
3083 unsigned IdxN = cast<ConstantInt>(Val: Idx)->getZExtValue();
3084
3085 // An insert that entirely overwrites Vec with SubVec is a nop.
3086 if (VecNumElts == SubVecNumElts)
3087 return replaceInstUsesWith(I&: CI, V: SubVec);
3088
3089 // Widen SubVec into a vector of the same width as Vec, since
3090 // shufflevector requires the two input vectors to be the same width.
3091 // Elements beyond the bounds of SubVec within the widened vector are
3092 // undefined.
3093 SmallVector<int, 8> WidenMask;
3094 unsigned i;
3095 for (i = 0; i != SubVecNumElts; ++i)
3096 WidenMask.push_back(Elt: i);
3097 for (; i != VecNumElts; ++i)
3098 WidenMask.push_back(Elt: PoisonMaskElem);
3099
3100 Value *WidenShuffle = Builder.CreateShuffleVector(V: SubVec, Mask: WidenMask);
3101
3102 SmallVector<int, 8> Mask;
3103 for (unsigned i = 0; i != IdxN; ++i)
3104 Mask.push_back(Elt: i);
3105 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
3106 Mask.push_back(Elt: i);
3107 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
3108 Mask.push_back(Elt: i);
3109
3110 Value *Shuffle = Builder.CreateShuffleVector(V1: Vec, V2: WidenShuffle, Mask);
3111 return replaceInstUsesWith(I&: CI, V: Shuffle);
3112 }
3113 break;
3114 }
3115 case Intrinsic::vector_extract: {
3116 Value *Vec = II->getArgOperand(i: 0);
3117 Value *Idx = II->getArgOperand(i: 1);
3118
3119 Type *ReturnType = II->getType();
3120 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
3121 // ExtractIdx)
3122 unsigned ExtractIdx = cast<ConstantInt>(Val: Idx)->getZExtValue();
3123 Value *InsertTuple, *InsertIdx, *InsertValue;
3124 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
3125 m_Value(InsertValue),
3126 m_Value(InsertIdx))) &&
3127 InsertValue->getType() == ReturnType) {
3128 unsigned Index = cast<ConstantInt>(Val: InsertIdx)->getZExtValue();
3129 // Case where we get the same index right after setting it.
3130 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
3131 // InsertValue
3132 if (ExtractIdx == Index)
3133 return replaceInstUsesWith(I&: CI, V: InsertValue);
3134 // If we are getting a different index than what was set in the
3135 // insert.vector intrinsic. We can just set the input tuple to the one up
3136 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
3137 // InsertIndex), ExtractIndex)
3138 // --> extract.vector(InsertTuple, ExtractIndex)
3139 else
3140 return replaceOperand(I&: CI, OpNum: 0, V: InsertTuple);
3141 }
3142
3143 auto *DstTy = dyn_cast<VectorType>(Val: ReturnType);
3144 auto *VecTy = dyn_cast<VectorType>(Val: Vec->getType());
3145
3146 if (DstTy && VecTy) {
3147 auto DstEltCnt = DstTy->getElementCount();
3148 auto VecEltCnt = VecTy->getElementCount();
3149 unsigned IdxN = cast<ConstantInt>(Val: Idx)->getZExtValue();
3150
3151 // Extracting the entirety of Vec is a nop.
3152 if (DstEltCnt == VecTy->getElementCount()) {
3153 replaceInstUsesWith(I&: CI, V: Vec);
3154 return eraseInstFromFunction(I&: CI);
3155 }
3156
3157 // Only canonicalize to shufflevector if the destination vector and
3158 // Vec are fixed vectors.
3159 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3160 break;
3161
3162 SmallVector<int, 8> Mask;
3163 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3164 Mask.push_back(Elt: IdxN + i);
3165
3166 Value *Shuffle = Builder.CreateShuffleVector(V: Vec, Mask);
3167 return replaceInstUsesWith(I&: CI, V: Shuffle);
3168 }
3169 break;
3170 }
3171 case Intrinsic::experimental_vector_reverse: {
3172 Value *BO0, *BO1, *X, *Y;
3173 Value *Vec = II->getArgOperand(i: 0);
3174 if (match(V: Vec, P: m_OneUse(SubPattern: m_BinOp(L: m_Value(V&: BO0), R: m_Value(V&: BO1))))) {
3175 auto *OldBinOp = cast<BinaryOperator>(Val: Vec);
3176 if (match(V: BO0, P: m_VecReverse(Op0: m_Value(V&: X)))) {
3177 // rev(binop rev(X), rev(Y)) --> binop X, Y
3178 if (match(V: BO1, P: m_VecReverse(Op0: m_Value(V&: Y))))
3179 return replaceInstUsesWith(I&: CI, V: BinaryOperator::CreateWithCopiedFlags(
3180 Opc: OldBinOp->getOpcode(), V1: X, V2: Y,
3181 CopyO: OldBinOp, Name: OldBinOp->getName(),
3182 InsertBefore: II->getIterator()));
3183 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3184 if (isSplatValue(V: BO1))
3185 return replaceInstUsesWith(I&: CI, V: BinaryOperator::CreateWithCopiedFlags(
3186 Opc: OldBinOp->getOpcode(), V1: X, V2: BO1,
3187 CopyO: OldBinOp, Name: OldBinOp->getName(),
3188 InsertBefore: II->getIterator()));
3189 }
3190 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3191 if (match(V: BO1, P: m_VecReverse(Op0: m_Value(V&: Y))) && isSplatValue(V: BO0))
3192 return replaceInstUsesWith(I&: CI,
3193 V: BinaryOperator::CreateWithCopiedFlags(
3194 Opc: OldBinOp->getOpcode(), V1: BO0, V2: Y, CopyO: OldBinOp,
3195 Name: OldBinOp->getName(), InsertBefore: II->getIterator()));
3196 }
3197 // rev(unop rev(X)) --> unop X
3198 if (match(V: Vec, P: m_OneUse(SubPattern: m_UnOp(X: m_VecReverse(Op0: m_Value(V&: X)))))) {
3199 auto *OldUnOp = cast<UnaryOperator>(Val: Vec);
3200 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
3201 Opc: OldUnOp->getOpcode(), V: X, CopyO: OldUnOp, Name: OldUnOp->getName(),
3202 InsertBefore: II->getIterator());
3203 return replaceInstUsesWith(I&: CI, V: NewUnOp);
3204 }
3205 break;
3206 }
3207 case Intrinsic::vector_reduce_or:
3208 case Intrinsic::vector_reduce_and: {
3209 // Canonicalize logical or/and reductions:
3210 // Or reduction for i1 is represented as:
3211 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3212 // %res = cmp ne iReduxWidth %val, 0
3213 // And reduction for i1 is represented as:
3214 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3215 // %res = cmp eq iReduxWidth %val, 11111
3216 Value *Arg = II->getArgOperand(i: 0);
3217 Value *Vect;
3218 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3219 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3220 if (FTy->getElementType() == Builder.getInt1Ty()) {
3221 Value *Res = Builder.CreateBitCast(
3222 V: Vect, DestTy: Builder.getIntNTy(N: FTy->getNumElements()));
3223 if (IID == Intrinsic::vector_reduce_and) {
3224 Res = Builder.CreateICmpEQ(
3225 LHS: Res, RHS: ConstantInt::getAllOnesValue(Ty: Res->getType()));
3226 } else {
3227 assert(IID == Intrinsic::vector_reduce_or &&
3228 "Expected or reduction.");
3229 Res = Builder.CreateIsNotNull(Arg: Res);
3230 }
3231 if (Arg != Vect)
3232 Res = Builder.CreateCast(Op: cast<CastInst>(Val: Arg)->getOpcode(), V: Res,
3233 DestTy: II->getType());
3234 return replaceInstUsesWith(I&: CI, V: Res);
3235 }
3236 }
3237 [[fallthrough]];
3238 }
3239 case Intrinsic::vector_reduce_add: {
3240 if (IID == Intrinsic::vector_reduce_add) {
3241 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3242 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3243 // Convert vector_reduce_add(SExt(<n x i1>)) to
3244 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3245 // Convert vector_reduce_add(<n x i1>) to
3246 // Trunc(ctpop(bitcast <n x i1> to in)).
3247 Value *Arg = II->getArgOperand(i: 0);
3248 Value *Vect;
3249 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3250 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3251 if (FTy->getElementType() == Builder.getInt1Ty()) {
3252 Value *V = Builder.CreateBitCast(
3253 V: Vect, DestTy: Builder.getIntNTy(N: FTy->getNumElements()));
3254 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3255 if (Res->getType() != II->getType())
3256 Res = Builder.CreateZExtOrTrunc(V: Res, DestTy: II->getType());
3257 if (Arg != Vect &&
3258 cast<Instruction>(Val: Arg)->getOpcode() == Instruction::SExt)
3259 Res = Builder.CreateNeg(V: Res);
3260 return replaceInstUsesWith(I&: CI, V: Res);
3261 }
3262 }
3263 }
3264 [[fallthrough]];
3265 }
3266 case Intrinsic::vector_reduce_xor: {
3267 if (IID == Intrinsic::vector_reduce_xor) {
3268 // Exclusive disjunction reduction over the vector with
3269 // (potentially-extended) i1 element type is actually a
3270 // (potentially-extended) arithmetic `add` reduction over the original
3271 // non-extended value:
3272 // vector_reduce_xor(?ext(<n x i1>))
3273 // -->
3274 // ?ext(vector_reduce_add(<n x i1>))
3275 Value *Arg = II->getArgOperand(i: 0);
3276 Value *Vect;
3277 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3278 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3279 if (FTy->getElementType() == Builder.getInt1Ty()) {
3280 Value *Res = Builder.CreateAddReduce(Src: Vect);
3281 if (Arg != Vect)
3282 Res = Builder.CreateCast(Op: cast<CastInst>(Val: Arg)->getOpcode(), V: Res,
3283 DestTy: II->getType());
3284 return replaceInstUsesWith(I&: CI, V: Res);
3285 }
3286 }
3287 }
3288 [[fallthrough]];
3289 }
3290 case Intrinsic::vector_reduce_mul: {
3291 if (IID == Intrinsic::vector_reduce_mul) {
3292 // Multiplicative reduction over the vector with (potentially-extended)
3293 // i1 element type is actually a (potentially zero-extended)
3294 // logical `and` reduction over the original non-extended value:
3295 // vector_reduce_mul(?ext(<n x i1>))
3296 // -->
3297 // zext(vector_reduce_and(<n x i1>))
3298 Value *Arg = II->getArgOperand(i: 0);
3299 Value *Vect;
3300 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3301 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3302 if (FTy->getElementType() == Builder.getInt1Ty()) {
3303 Value *Res = Builder.CreateAndReduce(Src: Vect);
3304 if (Res->getType() != II->getType())
3305 Res = Builder.CreateZExt(V: Res, DestTy: II->getType());
3306 return replaceInstUsesWith(I&: CI, V: Res);
3307 }
3308 }
3309 }
3310 [[fallthrough]];
3311 }
3312 case Intrinsic::vector_reduce_umin:
3313 case Intrinsic::vector_reduce_umax: {
3314 if (IID == Intrinsic::vector_reduce_umin ||
3315 IID == Intrinsic::vector_reduce_umax) {
3316 // UMin/UMax reduction over the vector with (potentially-extended)
3317 // i1 element type is actually a (potentially-extended)
3318 // logical `and`/`or` reduction over the original non-extended value:
3319 // vector_reduce_u{min,max}(?ext(<n x i1>))
3320 // -->
3321 // ?ext(vector_reduce_{and,or}(<n x i1>))
3322 Value *Arg = II->getArgOperand(i: 0);
3323 Value *Vect;
3324 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3325 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3326 if (FTy->getElementType() == Builder.getInt1Ty()) {
3327 Value *Res = IID == Intrinsic::vector_reduce_umin
3328 ? Builder.CreateAndReduce(Vect)
3329 : Builder.CreateOrReduce(Vect);
3330 if (Arg != Vect)
3331 Res = Builder.CreateCast(Op: cast<CastInst>(Val: Arg)->getOpcode(), V: Res,
3332 DestTy: II->getType());
3333 return replaceInstUsesWith(I&: CI, V: Res);
3334 }
3335 }
3336 }
3337 [[fallthrough]];
3338 }
3339 case Intrinsic::vector_reduce_smin:
3340 case Intrinsic::vector_reduce_smax: {
3341 if (IID == Intrinsic::vector_reduce_smin ||
3342 IID == Intrinsic::vector_reduce_smax) {
3343 // SMin/SMax reduction over the vector with (potentially-extended)
3344 // i1 element type is actually a (potentially-extended)
3345 // logical `and`/`or` reduction over the original non-extended value:
3346 // vector_reduce_s{min,max}(<n x i1>)
3347 // -->
3348 // vector_reduce_{or,and}(<n x i1>)
3349 // and
3350 // vector_reduce_s{min,max}(sext(<n x i1>))
3351 // -->
3352 // sext(vector_reduce_{or,and}(<n x i1>))
3353 // and
3354 // vector_reduce_s{min,max}(zext(<n x i1>))
3355 // -->
3356 // zext(vector_reduce_{and,or}(<n x i1>))
3357 Value *Arg = II->getArgOperand(i: 0);
3358 Value *Vect;
3359 if (match(V: Arg, P: m_ZExtOrSExtOrSelf(Op: m_Value(V&: Vect)))) {
3360 if (auto *FTy = dyn_cast<FixedVectorType>(Val: Vect->getType()))
3361 if (FTy->getElementType() == Builder.getInt1Ty()) {
3362 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3363 if (Arg != Vect)
3364 ExtOpc = cast<CastInst>(Val: Arg)->getOpcode();
3365 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3366 (ExtOpc == Instruction::CastOps::ZExt))
3367 ? Builder.CreateAndReduce(Vect)
3368 : Builder.CreateOrReduce(Vect);
3369 if (Arg != Vect)
3370 Res = Builder.CreateCast(Op: ExtOpc, V: Res, DestTy: II->getType());
3371 return replaceInstUsesWith(I&: CI, V: Res);
3372 }
3373 }
3374 }
3375 [[fallthrough]];
3376 }
3377 case Intrinsic::vector_reduce_fmax:
3378 case Intrinsic::vector_reduce_fmin:
3379 case Intrinsic::vector_reduce_fadd:
3380 case Intrinsic::vector_reduce_fmul: {
3381 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
3382 IID != Intrinsic::vector_reduce_fmul) ||
3383 II->hasAllowReassoc();
3384 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3385 IID == Intrinsic::vector_reduce_fmul)
3386 ? 1
3387 : 0;
3388 Value *Arg = II->getArgOperand(i: ArgIdx);
3389 Value *V;
3390 ArrayRef<int> Mask;
3391 if (!isa<FixedVectorType>(Val: Arg->getType()) || !CanBeReassociated ||
3392 !match(V: Arg, P: m_Shuffle(v1: m_Value(V), v2: m_Undef(), mask: m_Mask(Mask))) ||
3393 !cast<ShuffleVectorInst>(Val: Arg)->isSingleSource())
3394 break;
3395 int Sz = Mask.size();
3396 SmallBitVector UsedIndices(Sz);
3397 for (int Idx : Mask) {
3398 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
3399 break;
3400 UsedIndices.set(Idx);
3401 }
3402 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
3403 // other changes.
3404 if (UsedIndices.all()) {
3405 replaceUse(U&: II->getOperandUse(i: ArgIdx), NewValue: V);
3406 return nullptr;
3407 }
3408 break;
3409 }
3410 case Intrinsic::is_fpclass: {
3411 if (Instruction *I = foldIntrinsicIsFPClass(II&: *II))
3412 return I;
3413 break;
3414 }
3415 case Intrinsic::threadlocal_address: {
3416 Align MinAlign = getKnownAlignment(V: II->getArgOperand(i: 0), DL, CxtI: II, AC: &AC, DT: &DT);
3417 MaybeAlign Align = II->getRetAlign();
3418 if (MinAlign > Align.valueOrOne()) {
3419 II->addRetAttr(Attr: Attribute::getWithAlignment(Context&: II->getContext(), Alignment: MinAlign));
3420 return II;
3421 }
3422 break;
3423 }
3424 default: {
3425 // Handle target specific intrinsics
3426 std::optional<Instruction *> V = targetInstCombineIntrinsic(II&: *II);
3427 if (V)
3428 return *V;
3429 break;
3430 }
3431 }
3432
3433 // Try to fold intrinsic into select operands. This is legal if:
3434 // * The intrinsic is speculatable.
3435 // * The select condition is not a vector, or the intrinsic does not
3436 // perform cross-lane operations.
3437 switch (IID) {
3438 case Intrinsic::ctlz:
3439 case Intrinsic::cttz:
3440 case Intrinsic::ctpop:
3441 case Intrinsic::umin:
3442 case Intrinsic::umax:
3443 case Intrinsic::smin:
3444 case Intrinsic::smax:
3445 case Intrinsic::usub_sat:
3446 case Intrinsic::uadd_sat:
3447 case Intrinsic::ssub_sat:
3448 case Intrinsic::sadd_sat:
3449 for (Value *Op : II->args())
3450 if (auto *Sel = dyn_cast<SelectInst>(Val: Op))
3451 if (Instruction *R = FoldOpIntoSelect(Op&: *II, SI: Sel))
3452 return R;
3453 [[fallthrough]];
3454 default:
3455 break;
3456 }
3457
3458 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
3459 return Shuf;
3460
3461 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3462 // context, so it is handled in visitCallBase and we should trigger it.
3463 return visitCallBase(Call&: *II);
3464}
3465
3466// Fence instruction simplification
3467Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
3468 auto *NFI = dyn_cast<FenceInst>(Val: FI.getNextNonDebugInstruction());
3469 // This check is solely here to handle arbitrary target-dependent syncscopes.
3470 // TODO: Can remove if does not matter in practice.
3471 if (NFI && FI.isIdenticalTo(I: NFI))
3472 return eraseInstFromFunction(I&: FI);
3473
3474 // Returns true if FI1 is identical or stronger fence than FI2.
3475 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3476 auto FI1SyncScope = FI1->getSyncScopeID();
3477 // Consider same scope, where scope is global or single-thread.
3478 if (FI1SyncScope != FI2->getSyncScopeID() ||
3479 (FI1SyncScope != SyncScope::System &&
3480 FI1SyncScope != SyncScope::SingleThread))
3481 return false;
3482
3483 return isAtLeastOrStrongerThan(AO: FI1->getOrdering(), Other: FI2->getOrdering());
3484 };
3485 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3486 return eraseInstFromFunction(I&: FI);
3487
3488 if (auto *PFI = dyn_cast_or_null<FenceInst>(Val: FI.getPrevNonDebugInstruction()))
3489 if (isIdenticalOrStrongerFence(PFI, &FI))
3490 return eraseInstFromFunction(I&: FI);
3491 return nullptr;
3492}
3493
3494// InvokeInst simplification
3495Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
3496 return visitCallBase(Call&: II);
3497}
3498
3499// CallBrInst simplification
3500Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
3501 return visitCallBase(Call&: CBI);
3502}
3503
3504Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3505 if (!CI->getCalledFunction()) return nullptr;
3506
3507 // Skip optimizing notail and musttail calls so
3508 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3509 // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
3510 if (CI->isMustTailCall() || CI->isNoTailCall())
3511 return nullptr;
3512
3513 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3514 replaceInstUsesWith(I&: *From, V: With);
3515 };
3516 auto InstCombineErase = [this](Instruction *I) {
3517 eraseInstFromFunction(I&: *I);
3518 };
3519 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
3520 InstCombineErase);
3521 if (Value *With = Simplifier.optimizeCall(CI, B&: Builder)) {
3522 ++NumSimplified;
3523 return CI->use_empty() ? CI : replaceInstUsesWith(I&: *CI, V: With);
3524 }
3525
3526 return nullptr;
3527}
3528
3529static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3530 // Strip off at most one level of pointer casts, looking for an alloca. This
3531 // is good enough in practice and simpler than handling any number of casts.
3532 Value *Underlying = TrampMem->stripPointerCasts();
3533 if (Underlying != TrampMem &&
3534 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3535 return nullptr;
3536 if (!isa<AllocaInst>(Val: Underlying))
3537 return nullptr;
3538
3539 IntrinsicInst *InitTrampoline = nullptr;
3540 for (User *U : TrampMem->users()) {
3541 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: U);
3542 if (!II)
3543 return nullptr;
3544 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3545 if (InitTrampoline)
3546 // More than one init_trampoline writes to this value. Give up.
3547 return nullptr;
3548 InitTrampoline = II;
3549 continue;
3550 }
3551 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3552 // Allow any number of calls to adjust.trampoline.
3553 continue;
3554 return nullptr;
3555 }
3556
3557 // No call to init.trampoline found.
3558 if (!InitTrampoline)
3559 return nullptr;
3560
3561 // Check that the alloca is being used in the expected way.
3562 if (InitTrampoline->getOperand(i_nocapture: 0) != TrampMem)
3563 return nullptr;
3564
3565 return InitTrampoline;
3566}
3567
3568static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3569 Value *TrampMem) {
3570 // Visit all the previous instructions in the basic block, and try to find a
3571 // init.trampoline which has a direct path to the adjust.trampoline.
3572 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3573 E = AdjustTramp->getParent()->begin();
3574 I != E;) {
3575 Instruction *Inst = &*--I;
3576 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val&: I))
3577 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3578 II->getOperand(0) == TrampMem)
3579 return II;
3580 if (Inst->mayWriteToMemory())
3581 return nullptr;
3582 }
3583 return nullptr;
3584}
3585
3586// Given a call to llvm.adjust.trampoline, find and return the corresponding
3587// call to llvm.init.trampoline if the call to the trampoline can be optimized
3588// to a direct call to a function. Otherwise return NULL.
3589static IntrinsicInst *findInitTrampoline(Value *Callee) {
3590 Callee = Callee->stripPointerCasts();
3591 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Val: Callee);
3592 if (!AdjustTramp ||
3593 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3594 return nullptr;
3595
3596 Value *TrampMem = AdjustTramp->getOperand(i_nocapture: 0);
3597
3598 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3599 return IT;
3600 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3601 return IT;
3602 return nullptr;
3603}
3604
3605bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3606 const TargetLibraryInfo *TLI) {
3607 // Note: We only handle cases which can't be driven from generic attributes
3608 // here. So, for example, nonnull and noalias (which are common properties
3609 // of some allocation functions) are expected to be handled via annotation
3610 // of the respective allocator declaration with generic attributes.
3611 bool Changed = false;
3612
3613 if (!Call.getType()->isPointerTy())
3614 return Changed;
3615
3616 std::optional<APInt> Size = getAllocSize(CB: &Call, TLI);
3617 if (Size && *Size != 0) {
3618 // TODO: We really should just emit deref_or_null here and then
3619 // let the generic inference code combine that with nonnull.
3620 if (Call.hasRetAttr(Attribute::NonNull)) {
3621 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3622 Call.addRetAttr(Attr: Attribute::getWithDereferenceableBytes(
3623 Context&: Call.getContext(), Bytes: Size->getLimitedValue()));
3624 } else {
3625 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3626 Call.addRetAttr(Attr: Attribute::getWithDereferenceableOrNullBytes(
3627 Context&: Call.getContext(), Bytes: Size->getLimitedValue()));
3628 }
3629 }
3630
3631 // Add alignment attribute if alignment is a power of two constant.
3632 Value *Alignment = getAllocAlignment(V: &Call, TLI);
3633 if (!Alignment)
3634 return Changed;
3635
3636 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Val: Alignment);
3637 if (AlignOpC && AlignOpC->getValue().ult(RHS: llvm::Value::MaximumAlignment)) {
3638 uint64_t AlignmentVal = AlignOpC->getZExtValue();
3639 if (llvm::isPowerOf2_64(Value: AlignmentVal)) {
3640 Align ExistingAlign = Call.getRetAlign().valueOrOne();
3641 Align NewAlign = Align(AlignmentVal);
3642 if (NewAlign > ExistingAlign) {
3643 Call.addRetAttr(
3644 Attr: Attribute::getWithAlignment(Context&: Call.getContext(), Alignment: NewAlign));
3645 Changed = true;
3646 }
3647 }
3648 }
3649 return Changed;
3650}
3651
3652/// Improvements for call, callbr and invoke instructions.
3653Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3654 bool Changed = annotateAnyAllocSite(Call, TLI: &TLI);
3655
3656 // Mark any parameters that are known to be non-null with the nonnull
3657 // attribute. This is helpful for inlining calls to functions with null
3658 // checks on their arguments.
3659 SmallVector<unsigned, 4> ArgNos;
3660 unsigned ArgNo = 0;
3661
3662 for (Value *V : Call.args()) {
3663 if (V->getType()->isPointerTy() &&
3664 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3665 isKnownNonZero(V, getSimplifyQuery().getWithInstruction(&Call)))
3666 ArgNos.push_back(Elt: ArgNo);
3667 ArgNo++;
3668 }
3669
3670 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3671
3672 if (!ArgNos.empty()) {
3673 AttributeList AS = Call.getAttributes();
3674 LLVMContext &Ctx = Call.getContext();
3675 AS = AS.addParamAttribute(Ctx, ArgNos,
3676 Attribute::get(Ctx, Attribute::NonNull));
3677 Call.setAttributes(AS);
3678 Changed = true;
3679 }
3680
3681 // If the callee is a pointer to a function, attempt to move any casts to the
3682 // arguments of the call/callbr/invoke.
3683 Value *Callee = Call.getCalledOperand();
3684 Function *CalleeF = dyn_cast<Function>(Val: Callee);
3685 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3686 transformConstExprCastCall(Call))
3687 return nullptr;
3688
3689 if (CalleeF) {
3690 // Remove the convergent attr on calls when the callee is not convergent.
3691 if (Call.isConvergent() && !CalleeF->isConvergent() &&
3692 !CalleeF->isIntrinsic()) {
3693 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3694 << "\n");
3695 Call.setNotConvergent();
3696 return &Call;
3697 }
3698
3699 // If the call and callee calling conventions don't match, and neither one
3700 // of the calling conventions is compatible with C calling convention
3701 // this call must be unreachable, as the call is undefined.
3702 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3703 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3704 TargetLibraryInfoImpl::isCallingConvCCompatible(CI: &Call)) &&
3705 !(Call.getCallingConv() == llvm::CallingConv::C &&
3706 TargetLibraryInfoImpl::isCallingConvCCompatible(Callee: CalleeF))) &&
3707 // Only do this for calls to a function with a body. A prototype may
3708 // not actually end up matching the implementation's calling conv for a
3709 // variety of reasons (e.g. it may be written in assembly).
3710 !CalleeF->isDeclaration()) {
3711 Instruction *OldCall = &Call;
3712 CreateNonTerminatorUnreachable(InsertAt: OldCall);
3713 // If OldCall does not return void then replaceInstUsesWith poison.
3714 // This allows ValueHandlers and custom metadata to adjust itself.
3715 if (!OldCall->getType()->isVoidTy())
3716 replaceInstUsesWith(I&: *OldCall, V: PoisonValue::get(T: OldCall->getType()));
3717 if (isa<CallInst>(Val: OldCall))
3718 return eraseInstFromFunction(I&: *OldCall);
3719
3720 // We cannot remove an invoke or a callbr, because it would change thexi
3721 // CFG, just change the callee to a null pointer.
3722 cast<CallBase>(Val: OldCall)->setCalledFunction(
3723 FTy: CalleeF->getFunctionType(),
3724 Fn: Constant::getNullValue(Ty: CalleeF->getType()));
3725 return nullptr;
3726 }
3727 }
3728
3729 // Calling a null function pointer is undefined if a null address isn't
3730 // dereferenceable.
3731 if ((isa<ConstantPointerNull>(Val: Callee) &&
3732 !NullPointerIsDefined(F: Call.getFunction())) ||
3733 isa<UndefValue>(Val: Callee)) {
3734 // If Call does not return void then replaceInstUsesWith poison.
3735 // This allows ValueHandlers and custom metadata to adjust itself.
3736 if (!Call.getType()->isVoidTy())
3737 replaceInstUsesWith(I&: Call, V: PoisonValue::get(T: Call.getType()));
3738
3739 if (Call.isTerminator()) {
3740 // Can't remove an invoke or callbr because we cannot change the CFG.
3741 return nullptr;
3742 }
3743
3744 // This instruction is not reachable, just remove it.
3745 CreateNonTerminatorUnreachable(InsertAt: &Call);
3746 return eraseInstFromFunction(I&: Call);
3747 }
3748
3749 if (IntrinsicInst *II = findInitTrampoline(Callee))
3750 return transformCallThroughTrampoline(Call, Tramp&: *II);
3751
3752 if (isa<InlineAsm>(Val: Callee) && !Call.doesNotThrow()) {
3753 InlineAsm *IA = cast<InlineAsm>(Val: Callee);
3754 if (!IA->canThrow()) {
3755 // Normal inline asm calls cannot throw - mark them
3756 // 'nounwind'.
3757 Call.setDoesNotThrow();
3758 Changed = true;
3759 }
3760 }
3761
3762 // Try to optimize the call if possible, we require DataLayout for most of
3763 // this. None of these calls are seen as possibly dead so go ahead and
3764 // delete the instruction now.
3765 if (CallInst *CI = dyn_cast<CallInst>(Val: &Call)) {
3766 Instruction *I = tryOptimizeCall(CI);
3767 // If we changed something return the result, etc. Otherwise let
3768 // the fallthrough check.
3769 if (I) return eraseInstFromFunction(I&: *I);
3770 }
3771
3772 if (!Call.use_empty() && !Call.isMustTailCall())
3773 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3774 Type *CallTy = Call.getType();
3775 Type *RetArgTy = ReturnedArg->getType();
3776 if (RetArgTy->canLosslesslyBitCastTo(Ty: CallTy))
3777 return replaceInstUsesWith(
3778 I&: Call, V: Builder.CreateBitOrPointerCast(V: ReturnedArg, DestTy: CallTy));
3779 }
3780
3781 // Drop unnecessary kcfi operand bundles from calls that were converted
3782 // into direct calls.
3783 auto Bundle = Call.getOperandBundle(ID: LLVMContext::OB_kcfi);
3784 if (Bundle && !Call.isIndirectCall()) {
3785 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3786 if (CalleeF) {
3787 ConstantInt *FunctionType = nullptr;
3788 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3789
3790 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3791 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3792
3793 if (FunctionType &&
3794 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3795 dbgs() << Call.getModule()->getName()
3796 << ": warning: kcfi: " << Call.getCaller()->getName()
3797 << ": call to " << CalleeF->getName()
3798 << " using a mismatching function pointer type\n";
3799 }
3800 });
3801
3802 return CallBase::removeOperandBundle(CB: &Call, ID: LLVMContext::OB_kcfi);
3803 }
3804
3805 if (isRemovableAlloc(V: &Call, TLI: &TLI))
3806 return visitAllocSite(FI&: Call);
3807
3808 // Handle intrinsics which can be used in both call and invoke context.
3809 switch (Call.getIntrinsicID()) {
3810 case Intrinsic::experimental_gc_statepoint: {
3811 GCStatepointInst &GCSP = *cast<GCStatepointInst>(Val: &Call);
3812 SmallPtrSet<Value *, 32> LiveGcValues;
3813 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3814 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3815
3816 // Remove the relocation if unused.
3817 if (GCR.use_empty()) {
3818 eraseInstFromFunction(I&: GCR);
3819 continue;
3820 }
3821
3822 Value *DerivedPtr = GCR.getDerivedPtr();
3823 Value *BasePtr = GCR.getBasePtr();
3824
3825 // Undef is undef, even after relocation.
3826 if (isa<UndefValue>(Val: DerivedPtr) || isa<UndefValue>(Val: BasePtr)) {
3827 replaceInstUsesWith(I&: GCR, V: UndefValue::get(T: GCR.getType()));
3828 eraseInstFromFunction(I&: GCR);
3829 continue;
3830 }
3831
3832 if (auto *PT = dyn_cast<PointerType>(Val: GCR.getType())) {
3833 // The relocation of null will be null for most any collector.
3834 // TODO: provide a hook for this in GCStrategy. There might be some
3835 // weird collector this property does not hold for.
3836 if (isa<ConstantPointerNull>(Val: DerivedPtr)) {
3837 // Use null-pointer of gc_relocate's type to replace it.
3838 replaceInstUsesWith(I&: GCR, V: ConstantPointerNull::get(T: PT));
3839 eraseInstFromFunction(I&: GCR);
3840 continue;
3841 }
3842
3843 // isKnownNonNull -> nonnull attribute
3844 if (!GCR.hasRetAttr(Attribute::NonNull) &&
3845 isKnownNonZero(DerivedPtr,
3846 getSimplifyQuery().getWithInstruction(&Call))) {
3847 GCR.addRetAttr(Attribute::NonNull);
3848 // We discovered new fact, re-check users.
3849 Worklist.pushUsersToWorkList(I&: GCR);
3850 }
3851 }
3852
3853 // If we have two copies of the same pointer in the statepoint argument
3854 // list, canonicalize to one. This may let us common gc.relocates.
3855 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3856 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3857 auto *OpIntTy = GCR.getOperand(i_nocapture: 2)->getType();
3858 GCR.setOperand(i_nocapture: 2, Val_nocapture: ConstantInt::get(Ty: OpIntTy, V: GCR.getBasePtrIndex()));
3859 }
3860
3861 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3862 // Canonicalize on the type from the uses to the defs
3863
3864 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3865 LiveGcValues.insert(Ptr: BasePtr);
3866 LiveGcValues.insert(Ptr: DerivedPtr);
3867 }
3868 std::optional<OperandBundleUse> Bundle =
3869 GCSP.getOperandBundle(ID: LLVMContext::OB_gc_live);
3870 unsigned NumOfGCLives = LiveGcValues.size();
3871 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3872 break;
3873 // We can reduce the size of gc live bundle.
3874 DenseMap<Value *, unsigned> Val2Idx;
3875 std::vector<Value *> NewLiveGc;
3876 for (Value *V : Bundle->Inputs) {
3877 if (Val2Idx.count(Val: V))
3878 continue;
3879 if (LiveGcValues.count(Ptr: V)) {
3880 Val2Idx[V] = NewLiveGc.size();
3881 NewLiveGc.push_back(x: V);
3882 } else
3883 Val2Idx[V] = NumOfGCLives;
3884 }
3885 // Update all gc.relocates
3886 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3887 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3888 Value *BasePtr = GCR.getBasePtr();
3889 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3890 "Missed live gc for base pointer");
3891 auto *OpIntTy1 = GCR.getOperand(i_nocapture: 1)->getType();
3892 GCR.setOperand(i_nocapture: 1, Val_nocapture: ConstantInt::get(Ty: OpIntTy1, V: Val2Idx[BasePtr]));
3893 Value *DerivedPtr = GCR.getDerivedPtr();
3894 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3895 "Missed live gc for derived pointer");
3896 auto *OpIntTy2 = GCR.getOperand(i_nocapture: 2)->getType();
3897 GCR.setOperand(i_nocapture: 2, Val_nocapture: ConstantInt::get(Ty: OpIntTy2, V: Val2Idx[DerivedPtr]));
3898 }
3899 // Create new statepoint instruction.
3900 OperandBundleDef NewBundle("gc-live", NewLiveGc);
3901 return CallBase::Create(CB: &Call, Bundle: NewBundle);
3902 }
3903 default: { break; }
3904 }
3905
3906 return Changed ? &Call : nullptr;
3907}
3908
3909/// If the callee is a constexpr cast of a function, attempt to move the cast to
3910/// the arguments of the call/invoke.
3911/// CallBrInst is not supported.
3912bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3913 auto *Callee =
3914 dyn_cast<Function>(Val: Call.getCalledOperand()->stripPointerCasts());
3915 if (!Callee)
3916 return false;
3917
3918 assert(!isa<CallBrInst>(Call) &&
3919 "CallBr's don't have a single point after a def to insert at");
3920
3921 // If this is a call to a thunk function, don't remove the cast. Thunks are
3922 // used to transparently forward all incoming parameters and outgoing return
3923 // values, so it's important to leave the cast in place.
3924 if (Callee->hasFnAttribute(Kind: "thunk"))
3925 return false;
3926
3927 // If this is a call to a naked function, the assembly might be
3928 // using an argument, or otherwise rely on the frame layout,
3929 // the function prototype will mismatch.
3930 if (Callee->hasFnAttribute(Attribute::Naked))
3931 return false;
3932
3933 // If this is a musttail call, the callee's prototype must match the caller's
3934 // prototype with the exception of pointee types. The code below doesn't
3935 // implement that, so we can't do this transform.
3936 // TODO: Do the transform if it only requires adding pointer casts.
3937 if (Call.isMustTailCall())
3938 return false;
3939
3940 Instruction *Caller = &Call;
3941 const AttributeList &CallerPAL = Call.getAttributes();
3942
3943 // Okay, this is a cast from a function to a different type. Unless doing so
3944 // would cause a type conversion of one of our arguments, change this call to
3945 // be a direct call with arguments casted to the appropriate types.
3946 FunctionType *FT = Callee->getFunctionType();
3947 Type *OldRetTy = Caller->getType();
3948 Type *NewRetTy = FT->getReturnType();
3949
3950 // Check to see if we are changing the return type...
3951 if (OldRetTy != NewRetTy) {
3952
3953 if (NewRetTy->isStructTy())
3954 return false; // TODO: Handle multiple return values.
3955
3956 if (!CastInst::isBitOrNoopPointerCastable(SrcTy: NewRetTy, DestTy: OldRetTy, DL)) {
3957 if (Callee->isDeclaration())
3958 return false; // Cannot transform this return value.
3959
3960 if (!Caller->use_empty() &&
3961 // void -> non-void is handled specially
3962 !NewRetTy->isVoidTy())
3963 return false; // Cannot transform this return value.
3964 }
3965
3966 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3967 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3968 if (RAttrs.overlaps(AM: AttributeFuncs::typeIncompatible(Ty: NewRetTy)))
3969 return false; // Attribute not compatible with transformed value.
3970 }
3971
3972 // If the callbase is an invoke instruction, and the return value is
3973 // used by a PHI node in a successor, we cannot change the return type of
3974 // the call because there is no place to put the cast instruction (without
3975 // breaking the critical edge). Bail out in this case.
3976 if (!Caller->use_empty()) {
3977 BasicBlock *PhisNotSupportedBlock = nullptr;
3978 if (auto *II = dyn_cast<InvokeInst>(Val: Caller))
3979 PhisNotSupportedBlock = II->getNormalDest();
3980 if (PhisNotSupportedBlock)
3981 for (User *U : Caller->users())
3982 if (PHINode *PN = dyn_cast<PHINode>(Val: U))
3983 if (PN->getParent() == PhisNotSupportedBlock)
3984 return false;
3985 }
3986 }
3987
3988 unsigned NumActualArgs = Call.arg_size();
3989 unsigned NumCommonArgs = std::min(a: FT->getNumParams(), b: NumActualArgs);
3990
3991 // Prevent us turning:
3992 // declare void @takes_i32_inalloca(i32* inalloca)
3993 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3994 //
3995 // into:
3996 // call void @takes_i32_inalloca(i32* null)
3997 //
3998 // Similarly, avoid folding away bitcasts of byval calls.
3999 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
4000 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
4001 return false;
4002
4003 auto AI = Call.arg_begin();
4004 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
4005 Type *ParamTy = FT->getParamType(i);
4006 Type *ActTy = (*AI)->getType();
4007
4008 if (!CastInst::isBitOrNoopPointerCastable(SrcTy: ActTy, DestTy: ParamTy, DL))
4009 return false; // Cannot transform this parameter value.
4010
4011 // Check if there are any incompatible attributes we cannot drop safely.
4012 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(ArgNo: i))
4013 .overlaps(AM: AttributeFuncs::typeIncompatible(
4014 Ty: ParamTy, ASK: AttributeFuncs::ASK_UNSAFE_TO_DROP)))
4015 return false; // Attribute not compatible with transformed value.
4016
4017 if (Call.isInAllocaArgument(i) ||
4018 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
4019 return false; // Cannot transform to and from inalloca/preallocated.
4020
4021 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
4022 return false;
4023
4024 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
4025 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
4026 return false; // Cannot transform to or from byval.
4027 }
4028
4029 if (Callee->isDeclaration()) {
4030 // Do not delete arguments unless we have a function body.
4031 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
4032 return false;
4033
4034 // If the callee is just a declaration, don't change the varargsness of the
4035 // call. We don't want to introduce a varargs call where one doesn't
4036 // already exist.
4037 if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
4038 return false;
4039
4040 // If both the callee and the cast type are varargs, we still have to make
4041 // sure the number of fixed parameters are the same or we have the same
4042 // ABI issues as if we introduce a varargs call.
4043 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
4044 FT->getNumParams() != Call.getFunctionType()->getNumParams())
4045 return false;
4046 }
4047
4048 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
4049 !CallerPAL.isEmpty()) {
4050 // In this case we have more arguments than the new function type, but we
4051 // won't be dropping them. Check that these extra arguments have attributes
4052 // that are compatible with being a vararg call argument.
4053 unsigned SRetIdx;
4054 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
4055 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
4056 return false;
4057 }
4058
4059 // Okay, we decided that this is a safe thing to do: go ahead and start
4060 // inserting cast instructions as necessary.
4061 SmallVector<Value *, 8> Args;
4062 SmallVector<AttributeSet, 8> ArgAttrs;
4063 Args.reserve(N: NumActualArgs);
4064 ArgAttrs.reserve(N: NumActualArgs);
4065
4066 // Get any return attributes.
4067 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
4068
4069 // If the return value is not being used, the type may not be compatible
4070 // with the existing attributes. Wipe out any problematic attributes.
4071 RAttrs.remove(AM: AttributeFuncs::typeIncompatible(Ty: NewRetTy));
4072
4073 LLVMContext &Ctx = Call.getContext();
4074 AI = Call.arg_begin();
4075 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
4076 Type *ParamTy = FT->getParamType(i);
4077
4078 Value *NewArg = *AI;
4079 if ((*AI)->getType() != ParamTy)
4080 NewArg = Builder.CreateBitOrPointerCast(V: *AI, DestTy: ParamTy);
4081 Args.push_back(Elt: NewArg);
4082
4083 // Add any parameter attributes except the ones incompatible with the new
4084 // type. Note that we made sure all incompatible ones are safe to drop.
4085 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
4086 Ty: ParamTy, ASK: AttributeFuncs::ASK_SAFE_TO_DROP);
4087 ArgAttrs.push_back(
4088 Elt: CallerPAL.getParamAttrs(ArgNo: i).removeAttributes(C&: Ctx, AttrsToRemove: IncompatibleAttrs));
4089 }
4090
4091 // If the function takes more arguments than the call was taking, add them
4092 // now.
4093 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
4094 Args.push_back(Elt: Constant::getNullValue(Ty: FT->getParamType(i)));
4095 ArgAttrs.push_back(Elt: AttributeSet());
4096 }
4097
4098 // If we are removing arguments to the function, emit an obnoxious warning.
4099 if (FT->getNumParams() < NumActualArgs) {
4100 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
4101 if (FT->isVarArg()) {
4102 // Add all of the arguments in their promoted form to the arg list.
4103 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
4104 Type *PTy = getPromotedType(Ty: (*AI)->getType());
4105 Value *NewArg = *AI;
4106 if (PTy != (*AI)->getType()) {
4107 // Must promote to pass through va_arg area!
4108 Instruction::CastOps opcode =
4109 CastInst::getCastOpcode(Val: *AI, SrcIsSigned: false, Ty: PTy, DstIsSigned: false);
4110 NewArg = Builder.CreateCast(Op: opcode, V: *AI, DestTy: PTy);
4111 }
4112 Args.push_back(Elt: NewArg);
4113
4114 // Add any parameter attributes.
4115 ArgAttrs.push_back(Elt: CallerPAL.getParamAttrs(ArgNo: i));
4116 }
4117 }
4118 }
4119
4120 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
4121
4122 if (NewRetTy->isVoidTy())
4123 Caller->setName(""); // Void type should not have a name.
4124
4125 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
4126 "missing argument attributes");
4127 AttributeList NewCallerPAL = AttributeList::get(
4128 C&: Ctx, FnAttrs, RetAttrs: AttributeSet::get(C&: Ctx, B: RAttrs), ArgAttrs);
4129
4130 SmallVector<OperandBundleDef, 1> OpBundles;
4131 Call.getOperandBundlesAsDefs(Defs&: OpBundles);
4132
4133 CallBase *NewCall;
4134 if (InvokeInst *II = dyn_cast<InvokeInst>(Val: Caller)) {
4135 NewCall = Builder.CreateInvoke(Callee, NormalDest: II->getNormalDest(),
4136 UnwindDest: II->getUnwindDest(), Args, OpBundles);
4137 } else {
4138 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
4139 cast<CallInst>(Val: NewCall)->setTailCallKind(
4140 cast<CallInst>(Val: Caller)->getTailCallKind());
4141 }
4142 NewCall->takeName(V: Caller);
4143 NewCall->setCallingConv(Call.getCallingConv());
4144 NewCall->setAttributes(NewCallerPAL);
4145
4146 // Preserve prof metadata if any.
4147 NewCall->copyMetadata(SrcInst: *Caller, WL: {LLVMContext::MD_prof});
4148
4149 // Insert a cast of the return type as necessary.
4150 Instruction *NC = NewCall;
4151 Value *NV = NC;
4152 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
4153 if (!NV->getType()->isVoidTy()) {
4154 NV = NC = CastInst::CreateBitOrPointerCast(S: NC, Ty: OldRetTy);
4155 NC->setDebugLoc(Caller->getDebugLoc());
4156
4157 auto OptInsertPt = NewCall->getInsertionPointAfterDef();
4158 assert(OptInsertPt && "No place to insert cast");
4159 InsertNewInstBefore(New: NC, Old: *OptInsertPt);
4160 Worklist.pushUsersToWorkList(I&: *Caller);
4161 } else {
4162 NV = PoisonValue::get(T: Caller->getType());
4163 }
4164 }
4165
4166 if (!Caller->use_empty())
4167 replaceInstUsesWith(I&: *Caller, V: NV);
4168 else if (Caller->hasValueHandle()) {
4169 if (OldRetTy == NV->getType())
4170 ValueHandleBase::ValueIsRAUWd(Old: Caller, New: NV);
4171 else
4172 // We cannot call ValueIsRAUWd with a different type, and the
4173 // actual tracked value will disappear.
4174 ValueHandleBase::ValueIsDeleted(V: Caller);
4175 }
4176
4177 eraseInstFromFunction(I&: *Caller);
4178 return true;
4179}
4180
4181/// Turn a call to a function created by init_trampoline / adjust_trampoline
4182/// intrinsic pair into a direct call to the underlying function.
4183Instruction *
4184InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4185 IntrinsicInst &Tramp) {
4186 FunctionType *FTy = Call.getFunctionType();
4187 AttributeList Attrs = Call.getAttributes();
4188
4189 // If the call already has the 'nest' attribute somewhere then give up -
4190 // otherwise 'nest' would occur twice after splicing in the chain.
4191 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4192 return nullptr;
4193
4194 Function *NestF = cast<Function>(Val: Tramp.getArgOperand(i: 1)->stripPointerCasts());
4195 FunctionType *NestFTy = NestF->getFunctionType();
4196
4197 AttributeList NestAttrs = NestF->getAttributes();
4198 if (!NestAttrs.isEmpty()) {
4199 unsigned NestArgNo = 0;
4200 Type *NestTy = nullptr;
4201 AttributeSet NestAttr;
4202
4203 // Look for a parameter marked with the 'nest' attribute.
4204 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4205 E = NestFTy->param_end();
4206 I != E; ++NestArgNo, ++I) {
4207 AttributeSet AS = NestAttrs.getParamAttrs(ArgNo: NestArgNo);
4208 if (AS.hasAttribute(Attribute::Nest)) {
4209 // Record the parameter type and any other attributes.
4210 NestTy = *I;
4211 NestAttr = AS;
4212 break;
4213 }
4214 }
4215
4216 if (NestTy) {
4217 std::vector<Value*> NewArgs;
4218 std::vector<AttributeSet> NewArgAttrs;
4219 NewArgs.reserve(n: Call.arg_size() + 1);
4220 NewArgAttrs.reserve(n: Call.arg_size());
4221
4222 // Insert the nest argument into the call argument list, which may
4223 // mean appending it. Likewise for attributes.
4224
4225 {
4226 unsigned ArgNo = 0;
4227 auto I = Call.arg_begin(), E = Call.arg_end();
4228 do {
4229 if (ArgNo == NestArgNo) {
4230 // Add the chain argument and attributes.
4231 Value *NestVal = Tramp.getArgOperand(i: 2);
4232 if (NestVal->getType() != NestTy)
4233 NestVal = Builder.CreateBitCast(V: NestVal, DestTy: NestTy, Name: "nest");
4234 NewArgs.push_back(x: NestVal);
4235 NewArgAttrs.push_back(x: NestAttr);
4236 }
4237
4238 if (I == E)
4239 break;
4240
4241 // Add the original argument and attributes.
4242 NewArgs.push_back(x: *I);
4243 NewArgAttrs.push_back(x: Attrs.getParamAttrs(ArgNo));
4244
4245 ++ArgNo;
4246 ++I;
4247 } while (true);
4248 }
4249
4250 // The trampoline may have been bitcast to a bogus type (FTy).
4251 // Handle this by synthesizing a new function type, equal to FTy
4252 // with the chain parameter inserted.
4253
4254 std::vector<Type*> NewTypes;
4255 NewTypes.reserve(n: FTy->getNumParams()+1);
4256
4257 // Insert the chain's type into the list of parameter types, which may
4258 // mean appending it.
4259 {
4260 unsigned ArgNo = 0;
4261 FunctionType::param_iterator I = FTy->param_begin(),
4262 E = FTy->param_end();
4263
4264 do {
4265 if (ArgNo == NestArgNo)
4266 // Add the chain's type.
4267 NewTypes.push_back(x: NestTy);
4268
4269 if (I == E)
4270 break;
4271
4272 // Add the original type.
4273 NewTypes.push_back(x: *I);
4274
4275 ++ArgNo;
4276 ++I;
4277 } while (true);
4278 }
4279
4280 // Replace the trampoline call with a direct call. Let the generic
4281 // code sort out any function type mismatches.
4282 FunctionType *NewFTy =
4283 FunctionType::get(Result: FTy->getReturnType(), Params: NewTypes, isVarArg: FTy->isVarArg());
4284 AttributeList NewPAL =
4285 AttributeList::get(C&: FTy->getContext(), FnAttrs: Attrs.getFnAttrs(),
4286 RetAttrs: Attrs.getRetAttrs(), ArgAttrs: NewArgAttrs);
4287
4288 SmallVector<OperandBundleDef, 1> OpBundles;
4289 Call.getOperandBundlesAsDefs(Defs&: OpBundles);
4290
4291 Instruction *NewCaller;
4292 if (InvokeInst *II = dyn_cast<InvokeInst>(Val: &Call)) {
4293 NewCaller = InvokeInst::Create(Ty: NewFTy, Func: NestF, IfNormal: II->getNormalDest(),
4294 IfException: II->getUnwindDest(), Args: NewArgs, Bundles: OpBundles);
4295 cast<InvokeInst>(Val: NewCaller)->setCallingConv(II->getCallingConv());
4296 cast<InvokeInst>(Val: NewCaller)->setAttributes(NewPAL);
4297 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(Val: &Call)) {
4298 NewCaller =
4299 CallBrInst::Create(Ty: NewFTy, Func: NestF, DefaultDest: CBI->getDefaultDest(),
4300 IndirectDests: CBI->getIndirectDests(), Args: NewArgs, Bundles: OpBundles);
4301 cast<CallBrInst>(Val: NewCaller)->setCallingConv(CBI->getCallingConv());
4302 cast<CallBrInst>(Val: NewCaller)->setAttributes(NewPAL);
4303 } else {
4304 NewCaller = CallInst::Create(Ty: NewFTy, Func: NestF, Args: NewArgs, Bundles: OpBundles);
4305 cast<CallInst>(Val: NewCaller)->setTailCallKind(
4306 cast<CallInst>(Val&: Call).getTailCallKind());
4307 cast<CallInst>(Val: NewCaller)->setCallingConv(
4308 cast<CallInst>(Val&: Call).getCallingConv());
4309 cast<CallInst>(Val: NewCaller)->setAttributes(NewPAL);
4310 }
4311 NewCaller->setDebugLoc(Call.getDebugLoc());
4312
4313 return NewCaller;
4314 }
4315 }
4316
4317 // Replace the trampoline call with a direct call. Since there is no 'nest'
4318 // parameter, there is no need to adjust the argument list. Let the generic
4319 // code sort out any function type mismatches.
4320 Call.setCalledFunction(FTy, Fn: NestF);
4321 return &Call;
4322}
4323

source code of llvm/lib/Transforms/InstCombine/InstCombineCalls.cpp