1//===- DeadStoreElimination.cpp - MemorySSA Backed Dead Store Elimination -===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// The code below implements dead store elimination using MemorySSA. It uses
10// the following general approach: given a MemoryDef, walk upwards to find
11// clobbering MemoryDefs that may be killed by the starting def. Then check
12// that there are no uses that may read the location of the original MemoryDef
13// in between both MemoryDefs. A bit more concretely:
14//
15// For all MemoryDefs StartDef:
16// 1. Get the next dominating clobbering MemoryDef (MaybeDeadAccess) by walking
17// upwards.
18// 2. Check that there are no reads between MaybeDeadAccess and the StartDef by
19// checking all uses starting at MaybeDeadAccess and walking until we see
20// StartDef.
21// 3. For each found CurrentDef, check that:
22// 1. There are no barrier instructions between CurrentDef and StartDef (like
23// throws or stores with ordering constraints).
24// 2. StartDef is executed whenever CurrentDef is executed.
25// 3. StartDef completely overwrites CurrentDef.
26// 4. Erase CurrentDef from the function and MemorySSA.
27//
28//===----------------------------------------------------------------------===//
29
30#include "llvm/Transforms/Scalar/DeadStoreElimination.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/DenseMap.h"
33#include "llvm/ADT/MapVector.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/SetVector.h"
36#include "llvm/ADT/SmallPtrSet.h"
37#include "llvm/ADT/SmallVector.h"
38#include "llvm/ADT/Statistic.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/Analysis/AliasAnalysis.h"
41#include "llvm/Analysis/CaptureTracking.h"
42#include "llvm/Analysis/GlobalsModRef.h"
43#include "llvm/Analysis/LoopInfo.h"
44#include "llvm/Analysis/MemoryBuiltins.h"
45#include "llvm/Analysis/MemoryLocation.h"
46#include "llvm/Analysis/MemorySSA.h"
47#include "llvm/Analysis/MemorySSAUpdater.h"
48#include "llvm/Analysis/MustExecute.h"
49#include "llvm/Analysis/PostDominators.h"
50#include "llvm/Analysis/TargetLibraryInfo.h"
51#include "llvm/Analysis/ValueTracking.h"
52#include "llvm/IR/Argument.h"
53#include "llvm/IR/BasicBlock.h"
54#include "llvm/IR/Constant.h"
55#include "llvm/IR/Constants.h"
56#include "llvm/IR/DataLayout.h"
57#include "llvm/IR/DebugInfo.h"
58#include "llvm/IR/Dominators.h"
59#include "llvm/IR/Function.h"
60#include "llvm/IR/IRBuilder.h"
61#include "llvm/IR/InstIterator.h"
62#include "llvm/IR/InstrTypes.h"
63#include "llvm/IR/Instruction.h"
64#include "llvm/IR/Instructions.h"
65#include "llvm/IR/IntrinsicInst.h"
66#include "llvm/IR/Module.h"
67#include "llvm/IR/PassManager.h"
68#include "llvm/IR/PatternMatch.h"
69#include "llvm/IR/Value.h"
70#include "llvm/Support/Casting.h"
71#include "llvm/Support/CommandLine.h"
72#include "llvm/Support/Debug.h"
73#include "llvm/Support/DebugCounter.h"
74#include "llvm/Support/ErrorHandling.h"
75#include "llvm/Support/raw_ostream.h"
76#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
77#include "llvm/Transforms/Utils/BuildLibCalls.h"
78#include "llvm/Transforms/Utils/Local.h"
79#include <algorithm>
80#include <cassert>
81#include <cstdint>
82#include <iterator>
83#include <map>
84#include <optional>
85#include <utility>
86
87using namespace llvm;
88using namespace PatternMatch;
89
90#define DEBUG_TYPE "dse"
91
92STATISTIC(NumRemainingStores, "Number of stores remaining after DSE");
93STATISTIC(NumRedundantStores, "Number of redundant stores deleted");
94STATISTIC(NumFastStores, "Number of stores deleted");
95STATISTIC(NumFastOther, "Number of other instrs removed");
96STATISTIC(NumCompletePartials, "Number of stores dead by later partials");
97STATISTIC(NumModifiedStores, "Number of stores modified");
98STATISTIC(NumCFGChecks, "Number of stores modified");
99STATISTIC(NumCFGTries, "Number of stores modified");
100STATISTIC(NumCFGSuccess, "Number of stores modified");
101STATISTIC(NumGetDomMemoryDefPassed,
102 "Number of times a valid candidate is returned from getDomMemoryDef");
103STATISTIC(NumDomMemDefChecks,
104 "Number iterations check for reads in getDomMemoryDef");
105
106DEBUG_COUNTER(MemorySSACounter, "dse-memoryssa",
107 "Controls which MemoryDefs are eliminated.");
108
109static cl::opt<bool>
110EnablePartialOverwriteTracking("enable-dse-partial-overwrite-tracking",
111 cl::init(Val: true), cl::Hidden,
112 cl::desc("Enable partial-overwrite tracking in DSE"));
113
114static cl::opt<bool>
115EnablePartialStoreMerging("enable-dse-partial-store-merging",
116 cl::init(Val: true), cl::Hidden,
117 cl::desc("Enable partial store merging in DSE"));
118
119static cl::opt<unsigned>
120 MemorySSAScanLimit("dse-memoryssa-scanlimit", cl::init(Val: 150), cl::Hidden,
121 cl::desc("The number of memory instructions to scan for "
122 "dead store elimination (default = 150)"));
123static cl::opt<unsigned> MemorySSAUpwardsStepLimit(
124 "dse-memoryssa-walklimit", cl::init(Val: 90), cl::Hidden,
125 cl::desc("The maximum number of steps while walking upwards to find "
126 "MemoryDefs that may be killed (default = 90)"));
127
128static cl::opt<unsigned> MemorySSAPartialStoreLimit(
129 "dse-memoryssa-partial-store-limit", cl::init(Val: 5), cl::Hidden,
130 cl::desc("The maximum number candidates that only partially overwrite the "
131 "killing MemoryDef to consider"
132 " (default = 5)"));
133
134static cl::opt<unsigned> MemorySSADefsPerBlockLimit(
135 "dse-memoryssa-defs-per-block-limit", cl::init(Val: 5000), cl::Hidden,
136 cl::desc("The number of MemoryDefs we consider as candidates to eliminated "
137 "other stores per basic block (default = 5000)"));
138
139static cl::opt<unsigned> MemorySSASameBBStepCost(
140 "dse-memoryssa-samebb-cost", cl::init(Val: 1), cl::Hidden,
141 cl::desc(
142 "The cost of a step in the same basic block as the killing MemoryDef"
143 "(default = 1)"));
144
145static cl::opt<unsigned>
146 MemorySSAOtherBBStepCost("dse-memoryssa-otherbb-cost", cl::init(Val: 5),
147 cl::Hidden,
148 cl::desc("The cost of a step in a different basic "
149 "block than the killing MemoryDef"
150 "(default = 5)"));
151
152static cl::opt<unsigned> MemorySSAPathCheckLimit(
153 "dse-memoryssa-path-check-limit", cl::init(Val: 50), cl::Hidden,
154 cl::desc("The maximum number of blocks to check when trying to prove that "
155 "all paths to an exit go through a killing block (default = 50)"));
156
157// This flags allows or disallows DSE to optimize MemorySSA during its
158// traversal. Note that DSE optimizing MemorySSA may impact other passes
159// downstream of the DSE invocation and can lead to issues not being
160// reproducible in isolation (i.e. when MemorySSA is built from scratch). In
161// those cases, the flag can be used to check if DSE's MemorySSA optimizations
162// impact follow-up passes.
163static cl::opt<bool>
164 OptimizeMemorySSA("dse-optimize-memoryssa", cl::init(Val: true), cl::Hidden,
165 cl::desc("Allow DSE to optimize memory accesses."));
166
167//===----------------------------------------------------------------------===//
168// Helper functions
169//===----------------------------------------------------------------------===//
170using OverlapIntervalsTy = std::map<int64_t, int64_t>;
171using InstOverlapIntervalsTy = DenseMap<Instruction *, OverlapIntervalsTy>;
172
173/// Returns true if the end of this instruction can be safely shortened in
174/// length.
175static bool isShortenableAtTheEnd(Instruction *I) {
176 // Don't shorten stores for now
177 if (isa<StoreInst>(Val: I))
178 return false;
179
180 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) {
181 switch (II->getIntrinsicID()) {
182 default: return false;
183 case Intrinsic::memset:
184 case Intrinsic::memcpy:
185 case Intrinsic::memcpy_element_unordered_atomic:
186 case Intrinsic::memset_element_unordered_atomic:
187 // Do shorten memory intrinsics.
188 // FIXME: Add memmove if it's also safe to transform.
189 return true;
190 }
191 }
192
193 // Don't shorten libcalls calls for now.
194
195 return false;
196}
197
198/// Returns true if the beginning of this instruction can be safely shortened
199/// in length.
200static bool isShortenableAtTheBeginning(Instruction *I) {
201 // FIXME: Handle only memset for now. Supporting memcpy/memmove should be
202 // easily done by offsetting the source address.
203 return isa<AnyMemSetInst>(Val: I);
204}
205
206static std::optional<TypeSize> getPointerSize(const Value *V,
207 const DataLayout &DL,
208 const TargetLibraryInfo &TLI,
209 const Function *F) {
210 uint64_t Size;
211 ObjectSizeOpts Opts;
212 Opts.NullIsUnknownSize = NullPointerIsDefined(F);
213
214 if (getObjectSize(Ptr: V, Size, DL, TLI: &TLI, Opts))
215 return TypeSize::getFixed(ExactSize: Size);
216 return std::nullopt;
217}
218
219namespace {
220
221enum OverwriteResult {
222 OW_Begin,
223 OW_Complete,
224 OW_End,
225 OW_PartialEarlierWithFullLater,
226 OW_MaybePartial,
227 OW_None,
228 OW_Unknown
229};
230
231} // end anonymous namespace
232
233/// Check if two instruction are masked stores that completely
234/// overwrite one another. More specifically, \p KillingI has to
235/// overwrite \p DeadI.
236static OverwriteResult isMaskedStoreOverwrite(const Instruction *KillingI,
237 const Instruction *DeadI,
238 BatchAAResults &AA) {
239 const auto *KillingII = dyn_cast<IntrinsicInst>(Val: KillingI);
240 const auto *DeadII = dyn_cast<IntrinsicInst>(Val: DeadI);
241 if (KillingII == nullptr || DeadII == nullptr)
242 return OW_Unknown;
243 if (KillingII->getIntrinsicID() != DeadII->getIntrinsicID())
244 return OW_Unknown;
245 if (KillingII->getIntrinsicID() == Intrinsic::masked_store) {
246 // Type size.
247 VectorType *KillingTy =
248 cast<VectorType>(Val: KillingII->getArgOperand(i: 0)->getType());
249 VectorType *DeadTy = cast<VectorType>(Val: DeadII->getArgOperand(i: 0)->getType());
250 if (KillingTy->getScalarSizeInBits() != DeadTy->getScalarSizeInBits())
251 return OW_Unknown;
252 // Element count.
253 if (KillingTy->getElementCount() != DeadTy->getElementCount())
254 return OW_Unknown;
255 // Pointers.
256 Value *KillingPtr = KillingII->getArgOperand(i: 1)->stripPointerCasts();
257 Value *DeadPtr = DeadII->getArgOperand(i: 1)->stripPointerCasts();
258 if (KillingPtr != DeadPtr && !AA.isMustAlias(V1: KillingPtr, V2: DeadPtr))
259 return OW_Unknown;
260 // Masks.
261 // TODO: check that KillingII's mask is a superset of the DeadII's mask.
262 if (KillingII->getArgOperand(i: 3) != DeadII->getArgOperand(i: 3))
263 return OW_Unknown;
264 return OW_Complete;
265 }
266 return OW_Unknown;
267}
268
269/// Return 'OW_Complete' if a store to the 'KillingLoc' location completely
270/// overwrites a store to the 'DeadLoc' location, 'OW_End' if the end of the
271/// 'DeadLoc' location is completely overwritten by 'KillingLoc', 'OW_Begin'
272/// if the beginning of the 'DeadLoc' location is overwritten by 'KillingLoc'.
273/// 'OW_PartialEarlierWithFullLater' means that a dead (big) store was
274/// overwritten by a killing (smaller) store which doesn't write outside the big
275/// store's memory locations. Returns 'OW_Unknown' if nothing can be determined.
276/// NOTE: This function must only be called if both \p KillingLoc and \p
277/// DeadLoc belong to the same underlying object with valid \p KillingOff and
278/// \p DeadOff.
279static OverwriteResult isPartialOverwrite(const MemoryLocation &KillingLoc,
280 const MemoryLocation &DeadLoc,
281 int64_t KillingOff, int64_t DeadOff,
282 Instruction *DeadI,
283 InstOverlapIntervalsTy &IOL) {
284 const uint64_t KillingSize = KillingLoc.Size.getValue();
285 const uint64_t DeadSize = DeadLoc.Size.getValue();
286 // We may now overlap, although the overlap is not complete. There might also
287 // be other incomplete overlaps, and together, they might cover the complete
288 // dead store.
289 // Note: The correctness of this logic depends on the fact that this function
290 // is not even called providing DepWrite when there are any intervening reads.
291 if (EnablePartialOverwriteTracking &&
292 KillingOff < int64_t(DeadOff + DeadSize) &&
293 int64_t(KillingOff + KillingSize) >= DeadOff) {
294
295 // Insert our part of the overlap into the map.
296 auto &IM = IOL[DeadI];
297 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite: DeadLoc [" << DeadOff << ", "
298 << int64_t(DeadOff + DeadSize) << ") KillingLoc ["
299 << KillingOff << ", " << int64_t(KillingOff + KillingSize)
300 << ")\n");
301
302 // Make sure that we only insert non-overlapping intervals and combine
303 // adjacent intervals. The intervals are stored in the map with the ending
304 // offset as the key (in the half-open sense) and the starting offset as
305 // the value.
306 int64_t KillingIntStart = KillingOff;
307 int64_t KillingIntEnd = KillingOff + KillingSize;
308
309 // Find any intervals ending at, or after, KillingIntStart which start
310 // before KillingIntEnd.
311 auto ILI = IM.lower_bound(x: KillingIntStart);
312 if (ILI != IM.end() && ILI->second <= KillingIntEnd) {
313 // This existing interval is overlapped with the current store somewhere
314 // in [KillingIntStart, KillingIntEnd]. Merge them by erasing the existing
315 // intervals and adjusting our start and end.
316 KillingIntStart = std::min(a: KillingIntStart, b: ILI->second);
317 KillingIntEnd = std::max(a: KillingIntEnd, b: ILI->first);
318 ILI = IM.erase(position: ILI);
319
320 // Continue erasing and adjusting our end in case other previous
321 // intervals are also overlapped with the current store.
322 //
323 // |--- dead 1 ---| |--- dead 2 ---|
324 // |------- killing---------|
325 //
326 while (ILI != IM.end() && ILI->second <= KillingIntEnd) {
327 assert(ILI->second > KillingIntStart && "Unexpected interval");
328 KillingIntEnd = std::max(a: KillingIntEnd, b: ILI->first);
329 ILI = IM.erase(position: ILI);
330 }
331 }
332
333 IM[KillingIntEnd] = KillingIntStart;
334
335 ILI = IM.begin();
336 if (ILI->second <= DeadOff && ILI->first >= int64_t(DeadOff + DeadSize)) {
337 LLVM_DEBUG(dbgs() << "DSE: Full overwrite from partials: DeadLoc ["
338 << DeadOff << ", " << int64_t(DeadOff + DeadSize)
339 << ") Composite KillingLoc [" << ILI->second << ", "
340 << ILI->first << ")\n");
341 ++NumCompletePartials;
342 return OW_Complete;
343 }
344 }
345
346 // Check for a dead store which writes to all the memory locations that
347 // the killing store writes to.
348 if (EnablePartialStoreMerging && KillingOff >= DeadOff &&
349 int64_t(DeadOff + DeadSize) > KillingOff &&
350 uint64_t(KillingOff - DeadOff) + KillingSize <= DeadSize) {
351 LLVM_DEBUG(dbgs() << "DSE: Partial overwrite a dead load [" << DeadOff
352 << ", " << int64_t(DeadOff + DeadSize)
353 << ") by a killing store [" << KillingOff << ", "
354 << int64_t(KillingOff + KillingSize) << ")\n");
355 // TODO: Maybe come up with a better name?
356 return OW_PartialEarlierWithFullLater;
357 }
358
359 // Another interesting case is if the killing store overwrites the end of the
360 // dead store.
361 //
362 // |--dead--|
363 // |-- killing --|
364 //
365 // In this case we may want to trim the size of dead store to avoid
366 // generating stores to addresses which will definitely be overwritten killing
367 // store.
368 if (!EnablePartialOverwriteTracking &&
369 (KillingOff > DeadOff && KillingOff < int64_t(DeadOff + DeadSize) &&
370 int64_t(KillingOff + KillingSize) >= int64_t(DeadOff + DeadSize)))
371 return OW_End;
372
373 // Finally, we also need to check if the killing store overwrites the
374 // beginning of the dead store.
375 //
376 // |--dead--|
377 // |-- killing --|
378 //
379 // In this case we may want to move the destination address and trim the size
380 // of dead store to avoid generating stores to addresses which will definitely
381 // be overwritten killing store.
382 if (!EnablePartialOverwriteTracking &&
383 (KillingOff <= DeadOff && int64_t(KillingOff + KillingSize) > DeadOff)) {
384 assert(int64_t(KillingOff + KillingSize) < int64_t(DeadOff + DeadSize) &&
385 "Expect to be handled as OW_Complete");
386 return OW_Begin;
387 }
388 // Otherwise, they don't completely overlap.
389 return OW_Unknown;
390}
391
392/// Returns true if the memory which is accessed by the second instruction is not
393/// modified between the first and the second instruction.
394/// Precondition: Second instruction must be dominated by the first
395/// instruction.
396static bool
397memoryIsNotModifiedBetween(Instruction *FirstI, Instruction *SecondI,
398 BatchAAResults &AA, const DataLayout &DL,
399 DominatorTree *DT) {
400 // Do a backwards scan through the CFG from SecondI to FirstI. Look for
401 // instructions which can modify the memory location accessed by SecondI.
402 //
403 // While doing the walk keep track of the address to check. It might be
404 // different in different basic blocks due to PHI translation.
405 using BlockAddressPair = std::pair<BasicBlock *, PHITransAddr>;
406 SmallVector<BlockAddressPair, 16> WorkList;
407 // Keep track of the address we visited each block with. Bail out if we
408 // visit a block with different addresses.
409 DenseMap<BasicBlock *, Value *> Visited;
410
411 BasicBlock::iterator FirstBBI(FirstI);
412 ++FirstBBI;
413 BasicBlock::iterator SecondBBI(SecondI);
414 BasicBlock *FirstBB = FirstI->getParent();
415 BasicBlock *SecondBB = SecondI->getParent();
416 MemoryLocation MemLoc;
417 if (auto *MemSet = dyn_cast<MemSetInst>(Val: SecondI))
418 MemLoc = MemoryLocation::getForDest(MI: MemSet);
419 else
420 MemLoc = MemoryLocation::get(Inst: SecondI);
421
422 auto *MemLocPtr = const_cast<Value *>(MemLoc.Ptr);
423
424 // Start checking the SecondBB.
425 WorkList.push_back(
426 Elt: std::make_pair(x&: SecondBB, y: PHITransAddr(MemLocPtr, DL, nullptr)));
427 bool isFirstBlock = true;
428
429 // Check all blocks going backward until we reach the FirstBB.
430 while (!WorkList.empty()) {
431 BlockAddressPair Current = WorkList.pop_back_val();
432 BasicBlock *B = Current.first;
433 PHITransAddr &Addr = Current.second;
434 Value *Ptr = Addr.getAddr();
435
436 // Ignore instructions before FirstI if this is the FirstBB.
437 BasicBlock::iterator BI = (B == FirstBB ? FirstBBI : B->begin());
438
439 BasicBlock::iterator EI;
440 if (isFirstBlock) {
441 // Ignore instructions after SecondI if this is the first visit of SecondBB.
442 assert(B == SecondBB && "first block is not the store block");
443 EI = SecondBBI;
444 isFirstBlock = false;
445 } else {
446 // It's not SecondBB or (in case of a loop) the second visit of SecondBB.
447 // In this case we also have to look at instructions after SecondI.
448 EI = B->end();
449 }
450 for (; BI != EI; ++BI) {
451 Instruction *I = &*BI;
452 if (I->mayWriteToMemory() && I != SecondI)
453 if (isModSet(MRI: AA.getModRefInfo(I, OptLoc: MemLoc.getWithNewPtr(NewPtr: Ptr))))
454 return false;
455 }
456 if (B != FirstBB) {
457 assert(B != &FirstBB->getParent()->getEntryBlock() &&
458 "Should not hit the entry block because SI must be dominated by LI");
459 for (BasicBlock *Pred : predecessors(BB: B)) {
460 PHITransAddr PredAddr = Addr;
461 if (PredAddr.needsPHITranslationFromBlock(BB: B)) {
462 if (!PredAddr.isPotentiallyPHITranslatable())
463 return false;
464 if (!PredAddr.translateValue(CurBB: B, PredBB: Pred, DT, MustDominate: false))
465 return false;
466 }
467 Value *TranslatedPtr = PredAddr.getAddr();
468 auto Inserted = Visited.insert(KV: std::make_pair(x&: Pred, y&: TranslatedPtr));
469 if (!Inserted.second) {
470 // We already visited this block before. If it was with a different
471 // address - bail out!
472 if (TranslatedPtr != Inserted.first->second)
473 return false;
474 // ... otherwise just skip it.
475 continue;
476 }
477 WorkList.push_back(Elt: std::make_pair(x&: Pred, y&: PredAddr));
478 }
479 }
480 }
481 return true;
482}
483
484static void shortenAssignment(Instruction *Inst, Value *OriginalDest,
485 uint64_t OldOffsetInBits, uint64_t OldSizeInBits,
486 uint64_t NewSizeInBits, bool IsOverwriteEnd) {
487 const DataLayout &DL = Inst->getModule()->getDataLayout();
488 uint64_t DeadSliceSizeInBits = OldSizeInBits - NewSizeInBits;
489 uint64_t DeadSliceOffsetInBits =
490 OldOffsetInBits + (IsOverwriteEnd ? NewSizeInBits : 0);
491 auto SetDeadFragExpr = [](auto *Assign,
492 DIExpression::FragmentInfo DeadFragment) {
493 // createFragmentExpression expects an offset relative to the existing
494 // fragment offset if there is one.
495 uint64_t RelativeOffset = DeadFragment.OffsetInBits -
496 Assign->getExpression()
497 ->getFragmentInfo()
498 .value_or(DIExpression::FragmentInfo(0, 0))
499 .OffsetInBits;
500 if (auto NewExpr = DIExpression::createFragmentExpression(
501 Expr: Assign->getExpression(), OffsetInBits: RelativeOffset, SizeInBits: DeadFragment.SizeInBits)) {
502 Assign->setExpression(*NewExpr);
503 return;
504 }
505 // Failed to create a fragment expression for this so discard the value,
506 // making this a kill location.
507 auto *Expr = *DIExpression::createFragmentExpression(
508 Expr: DIExpression::get(Context&: Assign->getContext(), Elements: std::nullopt),
509 OffsetInBits: DeadFragment.OffsetInBits, SizeInBits: DeadFragment.SizeInBits);
510 Assign->setExpression(Expr);
511 Assign->setKillLocation();
512 };
513
514 // A DIAssignID to use so that the inserted dbg.assign intrinsics do not
515 // link to any instructions. Created in the loop below (once).
516 DIAssignID *LinkToNothing = nullptr;
517 LLVMContext &Ctx = Inst->getContext();
518 auto GetDeadLink = [&Ctx, &LinkToNothing]() {
519 if (!LinkToNothing)
520 LinkToNothing = DIAssignID::getDistinct(Context&: Ctx);
521 return LinkToNothing;
522 };
523
524 // Insert an unlinked dbg.assign intrinsic for the dead fragment after each
525 // overlapping dbg.assign intrinsic. The loop invalidates the iterators
526 // returned by getAssignmentMarkers so save a copy of the markers to iterate
527 // over.
528 auto LinkedRange = at::getAssignmentMarkers(Inst);
529 SmallVector<DbgVariableRecord *> LinkedDVRAssigns =
530 at::getDVRAssignmentMarkers(Inst);
531 SmallVector<DbgAssignIntrinsic *> Linked(LinkedRange.begin(),
532 LinkedRange.end());
533 auto InsertAssignForOverlap = [&](auto *Assign) {
534 std::optional<DIExpression::FragmentInfo> NewFragment;
535 if (!at::calculateFragmentIntersect(DL, OriginalDest, DeadSliceOffsetInBits,
536 DeadSliceSizeInBits, Assign,
537 NewFragment) ||
538 !NewFragment) {
539 // We couldn't calculate the intersecting fragment for some reason. Be
540 // cautious and unlink the whole assignment from the store.
541 Assign->setKillAddress();
542 Assign->setAssignId(GetDeadLink());
543 return;
544 }
545 // No intersect.
546 if (NewFragment->SizeInBits == 0)
547 return;
548
549 // Fragments overlap: insert a new dbg.assign for this dead part.
550 auto *NewAssign = static_cast<decltype(Assign)>(Assign->clone());
551 NewAssign->insertAfter(Assign);
552 NewAssign->setAssignId(GetDeadLink());
553 if (NewFragment)
554 SetDeadFragExpr(NewAssign, *NewFragment);
555 NewAssign->setKillAddress();
556 };
557 for_each(Range&: Linked, F: InsertAssignForOverlap);
558 for_each(Range&: LinkedDVRAssigns, F: InsertAssignForOverlap);
559}
560
561static bool tryToShorten(Instruction *DeadI, int64_t &DeadStart,
562 uint64_t &DeadSize, int64_t KillingStart,
563 uint64_t KillingSize, bool IsOverwriteEnd) {
564 auto *DeadIntrinsic = cast<AnyMemIntrinsic>(Val: DeadI);
565 Align PrefAlign = DeadIntrinsic->getDestAlign().valueOrOne();
566
567 // We assume that memet/memcpy operates in chunks of the "largest" native
568 // type size and aligned on the same value. That means optimal start and size
569 // of memset/memcpy should be modulo of preferred alignment of that type. That
570 // is it there is no any sense in trying to reduce store size any further
571 // since any "extra" stores comes for free anyway.
572 // On the other hand, maximum alignment we can achieve is limited by alignment
573 // of initial store.
574
575 // TODO: Limit maximum alignment by preferred (or abi?) alignment of the
576 // "largest" native type.
577 // Note: What is the proper way to get that value?
578 // Should TargetTransformInfo::getRegisterBitWidth be used or anything else?
579 // PrefAlign = std::min(DL.getPrefTypeAlign(LargestType), PrefAlign);
580
581 int64_t ToRemoveStart = 0;
582 uint64_t ToRemoveSize = 0;
583 // Compute start and size of the region to remove. Make sure 'PrefAlign' is
584 // maintained on the remaining store.
585 if (IsOverwriteEnd) {
586 // Calculate required adjustment for 'KillingStart' in order to keep
587 // remaining store size aligned on 'PerfAlign'.
588 uint64_t Off =
589 offsetToAlignment(Value: uint64_t(KillingStart - DeadStart), Alignment: PrefAlign);
590 ToRemoveStart = KillingStart + Off;
591 if (DeadSize <= uint64_t(ToRemoveStart - DeadStart))
592 return false;
593 ToRemoveSize = DeadSize - uint64_t(ToRemoveStart - DeadStart);
594 } else {
595 ToRemoveStart = DeadStart;
596 assert(KillingSize >= uint64_t(DeadStart - KillingStart) &&
597 "Not overlapping accesses?");
598 ToRemoveSize = KillingSize - uint64_t(DeadStart - KillingStart);
599 // Calculate required adjustment for 'ToRemoveSize'in order to keep
600 // start of the remaining store aligned on 'PerfAlign'.
601 uint64_t Off = offsetToAlignment(Value: ToRemoveSize, Alignment: PrefAlign);
602 if (Off != 0) {
603 if (ToRemoveSize <= (PrefAlign.value() - Off))
604 return false;
605 ToRemoveSize -= PrefAlign.value() - Off;
606 }
607 assert(isAligned(PrefAlign, ToRemoveSize) &&
608 "Should preserve selected alignment");
609 }
610
611 assert(ToRemoveSize > 0 && "Shouldn't reach here if nothing to remove");
612 assert(DeadSize > ToRemoveSize && "Can't remove more than original size");
613
614 uint64_t NewSize = DeadSize - ToRemoveSize;
615 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(Val: DeadI)) {
616 // When shortening an atomic memory intrinsic, the newly shortened
617 // length must remain an integer multiple of the element size.
618 const uint32_t ElementSize = AMI->getElementSizeInBytes();
619 if (0 != NewSize % ElementSize)
620 return false;
621 }
622
623 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n OW "
624 << (IsOverwriteEnd ? "END" : "BEGIN") << ": " << *DeadI
625 << "\n KILLER [" << ToRemoveStart << ", "
626 << int64_t(ToRemoveStart + ToRemoveSize) << ")\n");
627
628 Value *DeadWriteLength = DeadIntrinsic->getLength();
629 Value *TrimmedLength = ConstantInt::get(Ty: DeadWriteLength->getType(), V: NewSize);
630 DeadIntrinsic->setLength(TrimmedLength);
631 DeadIntrinsic->setDestAlignment(PrefAlign);
632
633 Value *OrigDest = DeadIntrinsic->getRawDest();
634 if (!IsOverwriteEnd) {
635 Value *Indices[1] = {
636 ConstantInt::get(Ty: DeadWriteLength->getType(), V: ToRemoveSize)};
637 Instruction *NewDestGEP = GetElementPtrInst::CreateInBounds(
638 PointeeType: Type::getInt8Ty(C&: DeadIntrinsic->getContext()), Ptr: OrigDest, IdxList: Indices, NameStr: "",
639 InsertBefore: DeadI->getIterator());
640 NewDestGEP->setDebugLoc(DeadIntrinsic->getDebugLoc());
641 DeadIntrinsic->setDest(NewDestGEP);
642 }
643
644 // Update attached dbg.assign intrinsics. Assume 8-bit byte.
645 shortenAssignment(Inst: DeadI, OriginalDest: OrigDest, OldOffsetInBits: DeadStart * 8, OldSizeInBits: DeadSize * 8, NewSizeInBits: NewSize * 8,
646 IsOverwriteEnd);
647
648 // Finally update start and size of dead access.
649 if (!IsOverwriteEnd)
650 DeadStart += ToRemoveSize;
651 DeadSize = NewSize;
652
653 return true;
654}
655
656static bool tryToShortenEnd(Instruction *DeadI, OverlapIntervalsTy &IntervalMap,
657 int64_t &DeadStart, uint64_t &DeadSize) {
658 if (IntervalMap.empty() || !isShortenableAtTheEnd(I: DeadI))
659 return false;
660
661 OverlapIntervalsTy::iterator OII = --IntervalMap.end();
662 int64_t KillingStart = OII->second;
663 uint64_t KillingSize = OII->first - KillingStart;
664
665 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
666
667 if (KillingStart > DeadStart &&
668 // Note: "KillingStart - KillingStart" is known to be positive due to
669 // preceding check.
670 (uint64_t)(KillingStart - DeadStart) < DeadSize &&
671 // Note: "DeadSize - (uint64_t)(KillingStart - DeadStart)" is known to
672 // be non negative due to preceding checks.
673 KillingSize >= DeadSize - (uint64_t)(KillingStart - DeadStart)) {
674 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
675 IsOverwriteEnd: true)) {
676 IntervalMap.erase(position: OII);
677 return true;
678 }
679 }
680 return false;
681}
682
683static bool tryToShortenBegin(Instruction *DeadI,
684 OverlapIntervalsTy &IntervalMap,
685 int64_t &DeadStart, uint64_t &DeadSize) {
686 if (IntervalMap.empty() || !isShortenableAtTheBeginning(I: DeadI))
687 return false;
688
689 OverlapIntervalsTy::iterator OII = IntervalMap.begin();
690 int64_t KillingStart = OII->second;
691 uint64_t KillingSize = OII->first - KillingStart;
692
693 assert(OII->first - KillingStart >= 0 && "Size expected to be positive");
694
695 if (KillingStart <= DeadStart &&
696 // Note: "DeadStart - KillingStart" is known to be non negative due to
697 // preceding check.
698 KillingSize > (uint64_t)(DeadStart - KillingStart)) {
699 // Note: "KillingSize - (uint64_t)(DeadStart - DeadStart)" is known to
700 // be positive due to preceding checks.
701 assert(KillingSize - (uint64_t)(DeadStart - KillingStart) < DeadSize &&
702 "Should have been handled as OW_Complete");
703 if (tryToShorten(DeadI, DeadStart, DeadSize, KillingStart, KillingSize,
704 IsOverwriteEnd: false)) {
705 IntervalMap.erase(position: OII);
706 return true;
707 }
708 }
709 return false;
710}
711
712static Constant *
713tryToMergePartialOverlappingStores(StoreInst *KillingI, StoreInst *DeadI,
714 int64_t KillingOffset, int64_t DeadOffset,
715 const DataLayout &DL, BatchAAResults &AA,
716 DominatorTree *DT) {
717
718 if (DeadI && isa<ConstantInt>(Val: DeadI->getValueOperand()) &&
719 DL.typeSizeEqualsStoreSize(Ty: DeadI->getValueOperand()->getType()) &&
720 KillingI && isa<ConstantInt>(Val: KillingI->getValueOperand()) &&
721 DL.typeSizeEqualsStoreSize(Ty: KillingI->getValueOperand()->getType()) &&
722 memoryIsNotModifiedBetween(FirstI: DeadI, SecondI: KillingI, AA, DL, DT)) {
723 // If the store we find is:
724 // a) partially overwritten by the store to 'Loc'
725 // b) the killing store is fully contained in the dead one and
726 // c) they both have a constant value
727 // d) none of the two stores need padding
728 // Merge the two stores, replacing the dead store's value with a
729 // merge of both values.
730 // TODO: Deal with other constant types (vectors, etc), and probably
731 // some mem intrinsics (if needed)
732
733 APInt DeadValue = cast<ConstantInt>(Val: DeadI->getValueOperand())->getValue();
734 APInt KillingValue =
735 cast<ConstantInt>(Val: KillingI->getValueOperand())->getValue();
736 unsigned KillingBits = KillingValue.getBitWidth();
737 assert(DeadValue.getBitWidth() > KillingValue.getBitWidth());
738 KillingValue = KillingValue.zext(width: DeadValue.getBitWidth());
739
740 // Offset of the smaller store inside the larger store
741 unsigned BitOffsetDiff = (KillingOffset - DeadOffset) * 8;
742 unsigned LShiftAmount =
743 DL.isBigEndian() ? DeadValue.getBitWidth() - BitOffsetDiff - KillingBits
744 : BitOffsetDiff;
745 APInt Mask = APInt::getBitsSet(numBits: DeadValue.getBitWidth(), loBit: LShiftAmount,
746 hiBit: LShiftAmount + KillingBits);
747 // Clear the bits we'll be replacing, then OR with the smaller
748 // store, shifted appropriately.
749 APInt Merged = (DeadValue & ~Mask) | (KillingValue << LShiftAmount);
750 LLVM_DEBUG(dbgs() << "DSE: Merge Stores:\n Dead: " << *DeadI
751 << "\n Killing: " << *KillingI
752 << "\n Merged Value: " << Merged << '\n');
753 return ConstantInt::get(Ty: DeadI->getValueOperand()->getType(), V: Merged);
754 }
755 return nullptr;
756}
757
758namespace {
759// Returns true if \p I is an intrinsic that does not read or write memory.
760bool isNoopIntrinsic(Instruction *I) {
761 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Val: I)) {
762 switch (II->getIntrinsicID()) {
763 case Intrinsic::lifetime_start:
764 case Intrinsic::lifetime_end:
765 case Intrinsic::invariant_end:
766 case Intrinsic::launder_invariant_group:
767 case Intrinsic::assume:
768 return true;
769 case Intrinsic::dbg_declare:
770 case Intrinsic::dbg_label:
771 case Intrinsic::dbg_value:
772 llvm_unreachable("Intrinsic should not be modeled in MemorySSA");
773 default:
774 return false;
775 }
776 }
777 return false;
778}
779
780// Check if we can ignore \p D for DSE.
781bool canSkipDef(MemoryDef *D, bool DefVisibleToCaller) {
782 Instruction *DI = D->getMemoryInst();
783 // Calls that only access inaccessible memory cannot read or write any memory
784 // locations we consider for elimination.
785 if (auto *CB = dyn_cast<CallBase>(Val: DI))
786 if (CB->onlyAccessesInaccessibleMemory())
787 return true;
788
789 // We can eliminate stores to locations not visible to the caller across
790 // throwing instructions.
791 if (DI->mayThrow() && !DefVisibleToCaller)
792 return true;
793
794 // We can remove the dead stores, irrespective of the fence and its ordering
795 // (release/acquire/seq_cst). Fences only constraints the ordering of
796 // already visible stores, it does not make a store visible to other
797 // threads. So, skipping over a fence does not change a store from being
798 // dead.
799 if (isa<FenceInst>(Val: DI))
800 return true;
801
802 // Skip intrinsics that do not really read or modify memory.
803 if (isNoopIntrinsic(I: DI))
804 return true;
805
806 return false;
807}
808
809struct DSEState {
810 Function &F;
811 AliasAnalysis &AA;
812 EarliestEscapeInfo EI;
813
814 /// The single BatchAA instance that is used to cache AA queries. It will
815 /// not be invalidated over the whole run. This is safe, because:
816 /// 1. Only memory writes are removed, so the alias cache for memory
817 /// locations remains valid.
818 /// 2. No new instructions are added (only instructions removed), so cached
819 /// information for a deleted value cannot be accessed by a re-used new
820 /// value pointer.
821 BatchAAResults BatchAA;
822
823 MemorySSA &MSSA;
824 DominatorTree &DT;
825 PostDominatorTree &PDT;
826 const TargetLibraryInfo &TLI;
827 const DataLayout &DL;
828 const LoopInfo &LI;
829
830 // Whether the function contains any irreducible control flow, useful for
831 // being accurately able to detect loops.
832 bool ContainsIrreducibleLoops;
833
834 // All MemoryDefs that potentially could kill other MemDefs.
835 SmallVector<MemoryDef *, 64> MemDefs;
836 // Any that should be skipped as they are already deleted
837 SmallPtrSet<MemoryAccess *, 4> SkipStores;
838 // Keep track whether a given object is captured before return or not.
839 DenseMap<const Value *, bool> CapturedBeforeReturn;
840 // Keep track of all of the objects that are invisible to the caller after
841 // the function returns.
842 DenseMap<const Value *, bool> InvisibleToCallerAfterRet;
843 // Keep track of blocks with throwing instructions not modeled in MemorySSA.
844 SmallPtrSet<BasicBlock *, 16> ThrowingBlocks;
845 // Post-order numbers for each basic block. Used to figure out if memory
846 // accesses are executed before another access.
847 DenseMap<BasicBlock *, unsigned> PostOrderNumbers;
848
849 /// Keep track of instructions (partly) overlapping with killing MemoryDefs per
850 /// basic block.
851 MapVector<BasicBlock *, InstOverlapIntervalsTy> IOLs;
852 // Check if there are root nodes that are terminated by UnreachableInst.
853 // Those roots pessimize post-dominance queries. If there are such roots,
854 // fall back to CFG scan starting from all non-unreachable roots.
855 bool AnyUnreachableExit;
856
857 // Whether or not we should iterate on removing dead stores at the end of the
858 // function due to removing a store causing a previously captured pointer to
859 // no longer be captured.
860 bool ShouldIterateEndOfFunctionDSE;
861
862 /// Dead instructions to be removed at the end of DSE.
863 SmallVector<Instruction *> ToRemove;
864
865 // Class contains self-reference, make sure it's not copied/moved.
866 DSEState(const DSEState &) = delete;
867 DSEState &operator=(const DSEState &) = delete;
868
869 DSEState(Function &F, AliasAnalysis &AA, MemorySSA &MSSA, DominatorTree &DT,
870 PostDominatorTree &PDT, const TargetLibraryInfo &TLI,
871 const LoopInfo &LI)
872 : F(F), AA(AA), EI(DT, &LI), BatchAA(AA, &EI), MSSA(MSSA), DT(DT),
873 PDT(PDT), TLI(TLI), DL(F.getParent()->getDataLayout()), LI(LI) {
874 // Collect blocks with throwing instructions not modeled in MemorySSA and
875 // alloc-like objects.
876 unsigned PO = 0;
877 for (BasicBlock *BB : post_order(G: &F)) {
878 PostOrderNumbers[BB] = PO++;
879 for (Instruction &I : *BB) {
880 MemoryAccess *MA = MSSA.getMemoryAccess(I: &I);
881 if (I.mayThrow() && !MA)
882 ThrowingBlocks.insert(Ptr: I.getParent());
883
884 auto *MD = dyn_cast_or_null<MemoryDef>(Val: MA);
885 if (MD && MemDefs.size() < MemorySSADefsPerBlockLimit &&
886 (getLocForWrite(I: &I) || isMemTerminatorInst(I: &I)))
887 MemDefs.push_back(Elt: MD);
888 }
889 }
890
891 // Treat byval or inalloca arguments the same as Allocas, stores to them are
892 // dead at the end of the function.
893 for (Argument &AI : F.args())
894 if (AI.hasPassPointeeByValueCopyAttr())
895 InvisibleToCallerAfterRet.insert(KV: {&AI, true});
896
897 // Collect whether there is any irreducible control flow in the function.
898 ContainsIrreducibleLoops = mayContainIrreducibleControl(F, LI: &LI);
899
900 AnyUnreachableExit = any_of(Range: PDT.roots(), P: [](const BasicBlock *E) {
901 return isa<UnreachableInst>(Val: E->getTerminator());
902 });
903 }
904
905 LocationSize strengthenLocationSize(const Instruction *I,
906 LocationSize Size) const {
907 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
908 LibFunc F;
909 if (TLI.getLibFunc(CB: *CB, F) && TLI.has(F) &&
910 (F == LibFunc_memset_chk || F == LibFunc_memcpy_chk)) {
911 // Use the precise location size specified by the 3rd argument
912 // for determining KillingI overwrites DeadLoc if it is a memset_chk
913 // instruction. memset_chk will write either the amount specified as 3rd
914 // argument or the function will immediately abort and exit the program.
915 // NOTE: AA may determine NoAlias if it can prove that the access size
916 // is larger than the allocation size due to that being UB. To avoid
917 // returning potentially invalid NoAlias results by AA, limit the use of
918 // the precise location size to isOverwrite.
919 if (const auto *Len = dyn_cast<ConstantInt>(Val: CB->getArgOperand(i: 2)))
920 return LocationSize::precise(Value: Len->getZExtValue());
921 }
922 }
923 return Size;
924 }
925
926 /// Return 'OW_Complete' if a store to the 'KillingLoc' location (by \p
927 /// KillingI instruction) completely overwrites a store to the 'DeadLoc'
928 /// location (by \p DeadI instruction).
929 /// Return OW_MaybePartial if \p KillingI does not completely overwrite
930 /// \p DeadI, but they both write to the same underlying object. In that
931 /// case, use isPartialOverwrite to check if \p KillingI partially overwrites
932 /// \p DeadI. Returns 'OR_None' if \p KillingI is known to not overwrite the
933 /// \p DeadI. Returns 'OW_Unknown' if nothing can be determined.
934 OverwriteResult isOverwrite(const Instruction *KillingI,
935 const Instruction *DeadI,
936 const MemoryLocation &KillingLoc,
937 const MemoryLocation &DeadLoc,
938 int64_t &KillingOff, int64_t &DeadOff) {
939 // AliasAnalysis does not always account for loops. Limit overwrite checks
940 // to dependencies for which we can guarantee they are independent of any
941 // loops they are in.
942 if (!isGuaranteedLoopIndependent(Current: DeadI, KillingDef: KillingI, CurrentLoc: DeadLoc))
943 return OW_Unknown;
944
945 LocationSize KillingLocSize =
946 strengthenLocationSize(I: KillingI, Size: KillingLoc.Size);
947 const Value *DeadPtr = DeadLoc.Ptr->stripPointerCasts();
948 const Value *KillingPtr = KillingLoc.Ptr->stripPointerCasts();
949 const Value *DeadUndObj = getUnderlyingObject(V: DeadPtr);
950 const Value *KillingUndObj = getUnderlyingObject(V: KillingPtr);
951
952 // Check whether the killing store overwrites the whole object, in which
953 // case the size/offset of the dead store does not matter.
954 if (DeadUndObj == KillingUndObj && KillingLocSize.isPrecise() &&
955 isIdentifiedObject(V: KillingUndObj)) {
956 std::optional<TypeSize> KillingUndObjSize =
957 getPointerSize(V: KillingUndObj, DL, TLI, F: &F);
958 if (KillingUndObjSize && *KillingUndObjSize == KillingLocSize.getValue())
959 return OW_Complete;
960 }
961
962 // FIXME: Vet that this works for size upper-bounds. Seems unlikely that we'll
963 // get imprecise values here, though (except for unknown sizes).
964 if (!KillingLocSize.isPrecise() || !DeadLoc.Size.isPrecise()) {
965 // In case no constant size is known, try to an IR values for the number
966 // of bytes written and check if they match.
967 const auto *KillingMemI = dyn_cast<MemIntrinsic>(Val: KillingI);
968 const auto *DeadMemI = dyn_cast<MemIntrinsic>(Val: DeadI);
969 if (KillingMemI && DeadMemI) {
970 const Value *KillingV = KillingMemI->getLength();
971 const Value *DeadV = DeadMemI->getLength();
972 if (KillingV == DeadV && BatchAA.isMustAlias(LocA: DeadLoc, LocB: KillingLoc))
973 return OW_Complete;
974 }
975
976 // Masked stores have imprecise locations, but we can reason about them
977 // to some extent.
978 return isMaskedStoreOverwrite(KillingI, DeadI, AA&: BatchAA);
979 }
980
981 const TypeSize KillingSize = KillingLocSize.getValue();
982 const TypeSize DeadSize = DeadLoc.Size.getValue();
983 // Bail on doing Size comparison which depends on AA for now
984 // TODO: Remove AnyScalable once Alias Analysis deal with scalable vectors
985 const bool AnyScalable =
986 DeadSize.isScalable() || KillingLocSize.isScalable();
987
988 if (AnyScalable)
989 return OW_Unknown;
990 // Query the alias information
991 AliasResult AAR = BatchAA.alias(LocA: KillingLoc, LocB: DeadLoc);
992
993 // If the start pointers are the same, we just have to compare sizes to see if
994 // the killing store was larger than the dead store.
995 if (AAR == AliasResult::MustAlias) {
996 // Make sure that the KillingSize size is >= the DeadSize size.
997 if (KillingSize >= DeadSize)
998 return OW_Complete;
999 }
1000
1001 // If we hit a partial alias we may have a full overwrite
1002 if (AAR == AliasResult::PartialAlias && AAR.hasOffset()) {
1003 int32_t Off = AAR.getOffset();
1004 if (Off >= 0 && (uint64_t)Off + DeadSize <= KillingSize)
1005 return OW_Complete;
1006 }
1007
1008 // If we can't resolve the same pointers to the same object, then we can't
1009 // analyze them at all.
1010 if (DeadUndObj != KillingUndObj) {
1011 // Non aliasing stores to different objects don't overlap. Note that
1012 // if the killing store is known to overwrite whole object (out of
1013 // bounds access overwrites whole object as well) then it is assumed to
1014 // completely overwrite any store to the same object even if they don't
1015 // actually alias (see next check).
1016 if (AAR == AliasResult::NoAlias)
1017 return OW_None;
1018 return OW_Unknown;
1019 }
1020
1021 // Okay, we have stores to two completely different pointers. Try to
1022 // decompose the pointer into a "base + constant_offset" form. If the base
1023 // pointers are equal, then we can reason about the two stores.
1024 DeadOff = 0;
1025 KillingOff = 0;
1026 const Value *DeadBasePtr =
1027 GetPointerBaseWithConstantOffset(Ptr: DeadPtr, Offset&: DeadOff, DL);
1028 const Value *KillingBasePtr =
1029 GetPointerBaseWithConstantOffset(Ptr: KillingPtr, Offset&: KillingOff, DL);
1030
1031 // If the base pointers still differ, we have two completely different
1032 // stores.
1033 if (DeadBasePtr != KillingBasePtr)
1034 return OW_Unknown;
1035
1036 // The killing access completely overlaps the dead store if and only if
1037 // both start and end of the dead one is "inside" the killing one:
1038 // |<->|--dead--|<->|
1039 // |-----killing------|
1040 // Accesses may overlap if and only if start of one of them is "inside"
1041 // another one:
1042 // |<->|--dead--|<-------->|
1043 // |-------killing--------|
1044 // OR
1045 // |-------dead-------|
1046 // |<->|---killing---|<----->|
1047 //
1048 // We have to be careful here as *Off is signed while *.Size is unsigned.
1049
1050 // Check if the dead access starts "not before" the killing one.
1051 if (DeadOff >= KillingOff) {
1052 // If the dead access ends "not after" the killing access then the
1053 // dead one is completely overwritten by the killing one.
1054 if (uint64_t(DeadOff - KillingOff) + DeadSize <= KillingSize)
1055 return OW_Complete;
1056 // If start of the dead access is "before" end of the killing access
1057 // then accesses overlap.
1058 else if ((uint64_t)(DeadOff - KillingOff) < KillingSize)
1059 return OW_MaybePartial;
1060 }
1061 // If start of the killing access is "before" end of the dead access then
1062 // accesses overlap.
1063 else if ((uint64_t)(KillingOff - DeadOff) < DeadSize) {
1064 return OW_MaybePartial;
1065 }
1066
1067 // Can reach here only if accesses are known not to overlap.
1068 return OW_None;
1069 }
1070
1071 bool isInvisibleToCallerAfterRet(const Value *V) {
1072 if (isa<AllocaInst>(Val: V))
1073 return true;
1074 auto I = InvisibleToCallerAfterRet.insert(KV: {V, false});
1075 if (I.second) {
1076 if (!isInvisibleToCallerOnUnwind(V)) {
1077 I.first->second = false;
1078 } else if (isNoAliasCall(V)) {
1079 I.first->second = !PointerMayBeCaptured(V, ReturnCaptures: true, StoreCaptures: false);
1080 }
1081 }
1082 return I.first->second;
1083 }
1084
1085 bool isInvisibleToCallerOnUnwind(const Value *V) {
1086 bool RequiresNoCaptureBeforeUnwind;
1087 if (!isNotVisibleOnUnwind(Object: V, RequiresNoCaptureBeforeUnwind))
1088 return false;
1089 if (!RequiresNoCaptureBeforeUnwind)
1090 return true;
1091
1092 auto I = CapturedBeforeReturn.insert(KV: {V, true});
1093 if (I.second)
1094 // NOTE: This could be made more precise by PointerMayBeCapturedBefore
1095 // with the killing MemoryDef. But we refrain from doing so for now to
1096 // limit compile-time and this does not cause any changes to the number
1097 // of stores removed on a large test set in practice.
1098 I.first->second = PointerMayBeCaptured(V, ReturnCaptures: false, StoreCaptures: true);
1099 return !I.first->second;
1100 }
1101
1102 std::optional<MemoryLocation> getLocForWrite(Instruction *I) const {
1103 if (!I->mayWriteToMemory())
1104 return std::nullopt;
1105
1106 if (auto *CB = dyn_cast<CallBase>(Val: I))
1107 return MemoryLocation::getForDest(CI: CB, TLI);
1108
1109 return MemoryLocation::getOrNone(Inst: I);
1110 }
1111
1112 /// Assuming this instruction has a dead analyzable write, can we delete
1113 /// this instruction?
1114 bool isRemovable(Instruction *I) {
1115 assert(getLocForWrite(I) && "Must have analyzable write");
1116
1117 // Don't remove volatile/atomic stores.
1118 if (StoreInst *SI = dyn_cast<StoreInst>(Val: I))
1119 return SI->isUnordered();
1120
1121 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1122 // Don't remove volatile memory intrinsics.
1123 if (auto *MI = dyn_cast<MemIntrinsic>(Val: CB))
1124 return !MI->isVolatile();
1125
1126 // Never remove dead lifetime intrinsics, e.g. because they are followed
1127 // by a free.
1128 if (CB->isLifetimeStartOrEnd())
1129 return false;
1130
1131 return CB->use_empty() && CB->willReturn() && CB->doesNotThrow() &&
1132 !CB->isTerminator();
1133 }
1134
1135 return false;
1136 }
1137
1138 /// Returns true if \p UseInst completely overwrites \p DefLoc
1139 /// (stored by \p DefInst).
1140 bool isCompleteOverwrite(const MemoryLocation &DefLoc, Instruction *DefInst,
1141 Instruction *UseInst) {
1142 // UseInst has a MemoryDef associated in MemorySSA. It's possible for a
1143 // MemoryDef to not write to memory, e.g. a volatile load is modeled as a
1144 // MemoryDef.
1145 if (!UseInst->mayWriteToMemory())
1146 return false;
1147
1148 if (auto *CB = dyn_cast<CallBase>(Val: UseInst))
1149 if (CB->onlyAccessesInaccessibleMemory())
1150 return false;
1151
1152 int64_t InstWriteOffset, DepWriteOffset;
1153 if (auto CC = getLocForWrite(I: UseInst))
1154 return isOverwrite(KillingI: UseInst, DeadI: DefInst, KillingLoc: *CC, DeadLoc: DefLoc, KillingOff&: InstWriteOffset,
1155 DeadOff&: DepWriteOffset) == OW_Complete;
1156 return false;
1157 }
1158
1159 /// Returns true if \p Def is not read before returning from the function.
1160 bool isWriteAtEndOfFunction(MemoryDef *Def) {
1161 LLVM_DEBUG(dbgs() << " Check if def " << *Def << " ("
1162 << *Def->getMemoryInst()
1163 << ") is at the end the function \n");
1164
1165 auto MaybeLoc = getLocForWrite(I: Def->getMemoryInst());
1166 if (!MaybeLoc) {
1167 LLVM_DEBUG(dbgs() << " ... could not get location for write.\n");
1168 return false;
1169 }
1170
1171 SmallVector<MemoryAccess *, 4> WorkList;
1172 SmallPtrSet<MemoryAccess *, 8> Visited;
1173 auto PushMemUses = [&WorkList, &Visited](MemoryAccess *Acc) {
1174 if (!Visited.insert(Ptr: Acc).second)
1175 return;
1176 for (Use &U : Acc->uses())
1177 WorkList.push_back(Elt: cast<MemoryAccess>(Val: U.getUser()));
1178 };
1179 PushMemUses(Def);
1180 for (unsigned I = 0; I < WorkList.size(); I++) {
1181 if (WorkList.size() >= MemorySSAScanLimit) {
1182 LLVM_DEBUG(dbgs() << " ... hit exploration limit.\n");
1183 return false;
1184 }
1185
1186 MemoryAccess *UseAccess = WorkList[I];
1187 if (isa<MemoryPhi>(Val: UseAccess)) {
1188 // AliasAnalysis does not account for loops. Limit elimination to
1189 // candidates for which we can guarantee they always store to the same
1190 // memory location.
1191 if (!isGuaranteedLoopInvariant(Ptr: MaybeLoc->Ptr))
1192 return false;
1193
1194 PushMemUses(cast<MemoryPhi>(Val: UseAccess));
1195 continue;
1196 }
1197 // TODO: Checking for aliasing is expensive. Consider reducing the amount
1198 // of times this is called and/or caching it.
1199 Instruction *UseInst = cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst();
1200 if (isReadClobber(DefLoc: *MaybeLoc, UseInst)) {
1201 LLVM_DEBUG(dbgs() << " ... hit read clobber " << *UseInst << ".\n");
1202 return false;
1203 }
1204
1205 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(Val: UseAccess))
1206 PushMemUses(UseDef);
1207 }
1208 return true;
1209 }
1210
1211 /// If \p I is a memory terminator like llvm.lifetime.end or free, return a
1212 /// pair with the MemoryLocation terminated by \p I and a boolean flag
1213 /// indicating whether \p I is a free-like call.
1214 std::optional<std::pair<MemoryLocation, bool>>
1215 getLocForTerminator(Instruction *I) const {
1216 uint64_t Len;
1217 Value *Ptr;
1218 if (match(I, m_Intrinsic<Intrinsic::lifetime_end>(m_ConstantInt(Len),
1219 m_Value(Ptr))))
1220 return {std::make_pair(x: MemoryLocation(Ptr, Len), y: false)};
1221
1222 if (auto *CB = dyn_cast<CallBase>(Val: I)) {
1223 if (Value *FreedOp = getFreedOperand(CB, TLI: &TLI))
1224 return {std::make_pair(x: MemoryLocation::getAfter(Ptr: FreedOp), y: true)};
1225 }
1226
1227 return std::nullopt;
1228 }
1229
1230 /// Returns true if \p I is a memory terminator instruction like
1231 /// llvm.lifetime.end or free.
1232 bool isMemTerminatorInst(Instruction *I) const {
1233 auto *CB = dyn_cast<CallBase>(Val: I);
1234 return CB && (CB->getIntrinsicID() == Intrinsic::lifetime_end ||
1235 getFreedOperand(CB, TLI: &TLI) != nullptr);
1236 }
1237
1238 /// Returns true if \p MaybeTerm is a memory terminator for \p Loc from
1239 /// instruction \p AccessI.
1240 bool isMemTerminator(const MemoryLocation &Loc, Instruction *AccessI,
1241 Instruction *MaybeTerm) {
1242 std::optional<std::pair<MemoryLocation, bool>> MaybeTermLoc =
1243 getLocForTerminator(I: MaybeTerm);
1244
1245 if (!MaybeTermLoc)
1246 return false;
1247
1248 // If the terminator is a free-like call, all accesses to the underlying
1249 // object can be considered terminated.
1250 if (getUnderlyingObject(V: Loc.Ptr) !=
1251 getUnderlyingObject(V: MaybeTermLoc->first.Ptr))
1252 return false;
1253
1254 auto TermLoc = MaybeTermLoc->first;
1255 if (MaybeTermLoc->second) {
1256 const Value *LocUO = getUnderlyingObject(V: Loc.Ptr);
1257 return BatchAA.isMustAlias(V1: TermLoc.Ptr, V2: LocUO);
1258 }
1259 int64_t InstWriteOffset = 0;
1260 int64_t DepWriteOffset = 0;
1261 return isOverwrite(KillingI: MaybeTerm, DeadI: AccessI, KillingLoc: TermLoc, DeadLoc: Loc, KillingOff&: InstWriteOffset,
1262 DeadOff&: DepWriteOffset) == OW_Complete;
1263 }
1264
1265 // Returns true if \p Use may read from \p DefLoc.
1266 bool isReadClobber(const MemoryLocation &DefLoc, Instruction *UseInst) {
1267 if (isNoopIntrinsic(I: UseInst))
1268 return false;
1269
1270 // Monotonic or weaker atomic stores can be re-ordered and do not need to be
1271 // treated as read clobber.
1272 if (auto SI = dyn_cast<StoreInst>(Val: UseInst))
1273 return isStrongerThan(AO: SI->getOrdering(), Other: AtomicOrdering::Monotonic);
1274
1275 if (!UseInst->mayReadFromMemory())
1276 return false;
1277
1278 if (auto *CB = dyn_cast<CallBase>(Val: UseInst))
1279 if (CB->onlyAccessesInaccessibleMemory())
1280 return false;
1281
1282 return isRefSet(MRI: BatchAA.getModRefInfo(I: UseInst, OptLoc: DefLoc));
1283 }
1284
1285 /// Returns true if a dependency between \p Current and \p KillingDef is
1286 /// guaranteed to be loop invariant for the loops that they are in. Either
1287 /// because they are known to be in the same block, in the same loop level or
1288 /// by guaranteeing that \p CurrentLoc only references a single MemoryLocation
1289 /// during execution of the containing function.
1290 bool isGuaranteedLoopIndependent(const Instruction *Current,
1291 const Instruction *KillingDef,
1292 const MemoryLocation &CurrentLoc) {
1293 // If the dependency is within the same block or loop level (being careful
1294 // of irreducible loops), we know that AA will return a valid result for the
1295 // memory dependency. (Both at the function level, outside of any loop,
1296 // would also be valid but we currently disable that to limit compile time).
1297 if (Current->getParent() == KillingDef->getParent())
1298 return true;
1299 const Loop *CurrentLI = LI.getLoopFor(BB: Current->getParent());
1300 if (!ContainsIrreducibleLoops && CurrentLI &&
1301 CurrentLI == LI.getLoopFor(BB: KillingDef->getParent()))
1302 return true;
1303 // Otherwise check the memory location is invariant to any loops.
1304 return isGuaranteedLoopInvariant(Ptr: CurrentLoc.Ptr);
1305 }
1306
1307 /// Returns true if \p Ptr is guaranteed to be loop invariant for any possible
1308 /// loop. In particular, this guarantees that it only references a single
1309 /// MemoryLocation during execution of the containing function.
1310 bool isGuaranteedLoopInvariant(const Value *Ptr) {
1311 Ptr = Ptr->stripPointerCasts();
1312 if (auto *GEP = dyn_cast<GEPOperator>(Val: Ptr))
1313 if (GEP->hasAllConstantIndices())
1314 Ptr = GEP->getPointerOperand()->stripPointerCasts();
1315
1316 if (auto *I = dyn_cast<Instruction>(Val: Ptr)) {
1317 return I->getParent()->isEntryBlock() ||
1318 (!ContainsIrreducibleLoops && !LI.getLoopFor(BB: I->getParent()));
1319 }
1320 return true;
1321 }
1322
1323 // Find a MemoryDef writing to \p KillingLoc and dominating \p StartAccess,
1324 // with no read access between them or on any other path to a function exit
1325 // block if \p KillingLoc is not accessible after the function returns. If
1326 // there is no such MemoryDef, return std::nullopt. The returned value may not
1327 // (completely) overwrite \p KillingLoc. Currently we bail out when we
1328 // encounter an aliasing MemoryUse (read).
1329 std::optional<MemoryAccess *>
1330 getDomMemoryDef(MemoryDef *KillingDef, MemoryAccess *StartAccess,
1331 const MemoryLocation &KillingLoc, const Value *KillingUndObj,
1332 unsigned &ScanLimit, unsigned &WalkerStepLimit,
1333 bool IsMemTerm, unsigned &PartialLimit) {
1334 if (ScanLimit == 0 || WalkerStepLimit == 0) {
1335 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1336 return std::nullopt;
1337 }
1338
1339 MemoryAccess *Current = StartAccess;
1340 Instruction *KillingI = KillingDef->getMemoryInst();
1341 LLVM_DEBUG(dbgs() << " trying to get dominating access\n");
1342
1343 // Only optimize defining access of KillingDef when directly starting at its
1344 // defining access. The defining access also must only access KillingLoc. At
1345 // the moment we only support instructions with a single write location, so
1346 // it should be sufficient to disable optimizations for instructions that
1347 // also read from memory.
1348 bool CanOptimize = OptimizeMemorySSA &&
1349 KillingDef->getDefiningAccess() == StartAccess &&
1350 !KillingI->mayReadFromMemory();
1351
1352 // Find the next clobbering Mod access for DefLoc, starting at StartAccess.
1353 std::optional<MemoryLocation> CurrentLoc;
1354 for (;; Current = cast<MemoryDef>(Val: Current)->getDefiningAccess()) {
1355 LLVM_DEBUG({
1356 dbgs() << " visiting " << *Current;
1357 if (!MSSA.isLiveOnEntryDef(Current) && isa<MemoryUseOrDef>(Current))
1358 dbgs() << " (" << *cast<MemoryUseOrDef>(Current)->getMemoryInst()
1359 << ")";
1360 dbgs() << "\n";
1361 });
1362
1363 // Reached TOP.
1364 if (MSSA.isLiveOnEntryDef(MA: Current)) {
1365 LLVM_DEBUG(dbgs() << " ... found LiveOnEntryDef\n");
1366 if (CanOptimize && Current != KillingDef->getDefiningAccess())
1367 // The first clobbering def is... none.
1368 KillingDef->setOptimized(Current);
1369 return std::nullopt;
1370 }
1371
1372 // Cost of a step. Accesses in the same block are more likely to be valid
1373 // candidates for elimination, hence consider them cheaper.
1374 unsigned StepCost = KillingDef->getBlock() == Current->getBlock()
1375 ? MemorySSASameBBStepCost
1376 : MemorySSAOtherBBStepCost;
1377 if (WalkerStepLimit <= StepCost) {
1378 LLVM_DEBUG(dbgs() << " ... hit walker step limit\n");
1379 return std::nullopt;
1380 }
1381 WalkerStepLimit -= StepCost;
1382
1383 // Return for MemoryPhis. They cannot be eliminated directly and the
1384 // caller is responsible for traversing them.
1385 if (isa<MemoryPhi>(Val: Current)) {
1386 LLVM_DEBUG(dbgs() << " ... found MemoryPhi\n");
1387 return Current;
1388 }
1389
1390 // Below, check if CurrentDef is a valid candidate to be eliminated by
1391 // KillingDef. If it is not, check the next candidate.
1392 MemoryDef *CurrentDef = cast<MemoryDef>(Val: Current);
1393 Instruction *CurrentI = CurrentDef->getMemoryInst();
1394
1395 if (canSkipDef(D: CurrentDef, DefVisibleToCaller: !isInvisibleToCallerOnUnwind(V: KillingUndObj))) {
1396 CanOptimize = false;
1397 continue;
1398 }
1399
1400 // Before we try to remove anything, check for any extra throwing
1401 // instructions that block us from DSEing
1402 if (mayThrowBetween(KillingI, DeadI: CurrentI, KillingUndObj)) {
1403 LLVM_DEBUG(dbgs() << " ... skip, may throw!\n");
1404 return std::nullopt;
1405 }
1406
1407 // Check for anything that looks like it will be a barrier to further
1408 // removal
1409 if (isDSEBarrier(KillingUndObj, DeadI: CurrentI)) {
1410 LLVM_DEBUG(dbgs() << " ... skip, barrier\n");
1411 return std::nullopt;
1412 }
1413
1414 // If Current is known to be on path that reads DefLoc or is a read
1415 // clobber, bail out, as the path is not profitable. We skip this check
1416 // for intrinsic calls, because the code knows how to handle memcpy
1417 // intrinsics.
1418 if (!isa<IntrinsicInst>(Val: CurrentI) && isReadClobber(DefLoc: KillingLoc, UseInst: CurrentI))
1419 return std::nullopt;
1420
1421 // Quick check if there are direct uses that are read-clobbers.
1422 if (any_of(Range: Current->uses(), P: [this, &KillingLoc, StartAccess](Use &U) {
1423 if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(Val: U.getUser()))
1424 return !MSSA.dominates(A: StartAccess, B: UseOrDef) &&
1425 isReadClobber(DefLoc: KillingLoc, UseInst: UseOrDef->getMemoryInst());
1426 return false;
1427 })) {
1428 LLVM_DEBUG(dbgs() << " ... found a read clobber\n");
1429 return std::nullopt;
1430 }
1431
1432 // If Current does not have an analyzable write location or is not
1433 // removable, skip it.
1434 CurrentLoc = getLocForWrite(I: CurrentI);
1435 if (!CurrentLoc || !isRemovable(I: CurrentI)) {
1436 CanOptimize = false;
1437 continue;
1438 }
1439
1440 // AliasAnalysis does not account for loops. Limit elimination to
1441 // candidates for which we can guarantee they always store to the same
1442 // memory location and not located in different loops.
1443 if (!isGuaranteedLoopIndependent(Current: CurrentI, KillingDef: KillingI, CurrentLoc: *CurrentLoc)) {
1444 LLVM_DEBUG(dbgs() << " ... not guaranteed loop independent\n");
1445 CanOptimize = false;
1446 continue;
1447 }
1448
1449 if (IsMemTerm) {
1450 // If the killing def is a memory terminator (e.g. lifetime.end), check
1451 // the next candidate if the current Current does not write the same
1452 // underlying object as the terminator.
1453 if (!isMemTerminator(Loc: *CurrentLoc, AccessI: CurrentI, MaybeTerm: KillingI)) {
1454 CanOptimize = false;
1455 continue;
1456 }
1457 } else {
1458 int64_t KillingOffset = 0;
1459 int64_t DeadOffset = 0;
1460 auto OR = isOverwrite(KillingI, DeadI: CurrentI, KillingLoc, DeadLoc: *CurrentLoc,
1461 KillingOff&: KillingOffset, DeadOff&: DeadOffset);
1462 if (CanOptimize) {
1463 // CurrentDef is the earliest write clobber of KillingDef. Use it as
1464 // optimized access. Do not optimize if CurrentDef is already the
1465 // defining access of KillingDef.
1466 if (CurrentDef != KillingDef->getDefiningAccess() &&
1467 (OR == OW_Complete || OR == OW_MaybePartial))
1468 KillingDef->setOptimized(CurrentDef);
1469
1470 // Once a may-aliasing def is encountered do not set an optimized
1471 // access.
1472 if (OR != OW_None)
1473 CanOptimize = false;
1474 }
1475
1476 // If Current does not write to the same object as KillingDef, check
1477 // the next candidate.
1478 if (OR == OW_Unknown || OR == OW_None)
1479 continue;
1480 else if (OR == OW_MaybePartial) {
1481 // If KillingDef only partially overwrites Current, check the next
1482 // candidate if the partial step limit is exceeded. This aggressively
1483 // limits the number of candidates for partial store elimination,
1484 // which are less likely to be removable in the end.
1485 if (PartialLimit <= 1) {
1486 WalkerStepLimit -= 1;
1487 LLVM_DEBUG(dbgs() << " ... reached partial limit ... continue with next access\n");
1488 continue;
1489 }
1490 PartialLimit -= 1;
1491 }
1492 }
1493 break;
1494 };
1495
1496 // Accesses to objects accessible after the function returns can only be
1497 // eliminated if the access is dead along all paths to the exit. Collect
1498 // the blocks with killing (=completely overwriting MemoryDefs) and check if
1499 // they cover all paths from MaybeDeadAccess to any function exit.
1500 SmallPtrSet<Instruction *, 16> KillingDefs;
1501 KillingDefs.insert(Ptr: KillingDef->getMemoryInst());
1502 MemoryAccess *MaybeDeadAccess = Current;
1503 MemoryLocation MaybeDeadLoc = *CurrentLoc;
1504 Instruction *MaybeDeadI = cast<MemoryDef>(Val: MaybeDeadAccess)->getMemoryInst();
1505 LLVM_DEBUG(dbgs() << " Checking for reads of " << *MaybeDeadAccess << " ("
1506 << *MaybeDeadI << ")\n");
1507
1508 SmallSetVector<MemoryAccess *, 32> WorkList;
1509 auto PushMemUses = [&WorkList](MemoryAccess *Acc) {
1510 for (Use &U : Acc->uses())
1511 WorkList.insert(X: cast<MemoryAccess>(Val: U.getUser()));
1512 };
1513 PushMemUses(MaybeDeadAccess);
1514
1515 // Check if DeadDef may be read.
1516 for (unsigned I = 0; I < WorkList.size(); I++) {
1517 MemoryAccess *UseAccess = WorkList[I];
1518
1519 LLVM_DEBUG(dbgs() << " " << *UseAccess);
1520 // Bail out if the number of accesses to check exceeds the scan limit.
1521 if (ScanLimit < (WorkList.size() - I)) {
1522 LLVM_DEBUG(dbgs() << "\n ... hit scan limit\n");
1523 return std::nullopt;
1524 }
1525 --ScanLimit;
1526 NumDomMemDefChecks++;
1527
1528 if (isa<MemoryPhi>(Val: UseAccess)) {
1529 if (any_of(Range&: KillingDefs, P: [this, UseAccess](Instruction *KI) {
1530 return DT.properlyDominates(A: KI->getParent(),
1531 B: UseAccess->getBlock());
1532 })) {
1533 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing block\n");
1534 continue;
1535 }
1536 LLVM_DEBUG(dbgs() << "\n ... adding PHI uses\n");
1537 PushMemUses(UseAccess);
1538 continue;
1539 }
1540
1541 Instruction *UseInst = cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst();
1542 LLVM_DEBUG(dbgs() << " (" << *UseInst << ")\n");
1543
1544 if (any_of(Range&: KillingDefs, P: [this, UseInst](Instruction *KI) {
1545 return DT.dominates(Def: KI, User: UseInst);
1546 })) {
1547 LLVM_DEBUG(dbgs() << " ... skipping, dominated by killing def\n");
1548 continue;
1549 }
1550
1551 // A memory terminator kills all preceeding MemoryDefs and all succeeding
1552 // MemoryAccesses. We do not have to check it's users.
1553 if (isMemTerminator(Loc: MaybeDeadLoc, AccessI: MaybeDeadI, MaybeTerm: UseInst)) {
1554 LLVM_DEBUG(
1555 dbgs()
1556 << " ... skipping, memterminator invalidates following accesses\n");
1557 continue;
1558 }
1559
1560 if (isNoopIntrinsic(I: cast<MemoryUseOrDef>(Val: UseAccess)->getMemoryInst())) {
1561 LLVM_DEBUG(dbgs() << " ... adding uses of intrinsic\n");
1562 PushMemUses(UseAccess);
1563 continue;
1564 }
1565
1566 if (UseInst->mayThrow() && !isInvisibleToCallerOnUnwind(V: KillingUndObj)) {
1567 LLVM_DEBUG(dbgs() << " ... found throwing instruction\n");
1568 return std::nullopt;
1569 }
1570
1571 // Uses which may read the original MemoryDef mean we cannot eliminate the
1572 // original MD. Stop walk.
1573 if (isReadClobber(DefLoc: MaybeDeadLoc, UseInst)) {
1574 LLVM_DEBUG(dbgs() << " ... found read clobber\n");
1575 return std::nullopt;
1576 }
1577
1578 // If this worklist walks back to the original memory access (and the
1579 // pointer is not guarenteed loop invariant) then we cannot assume that a
1580 // store kills itself.
1581 if (MaybeDeadAccess == UseAccess &&
1582 !isGuaranteedLoopInvariant(Ptr: MaybeDeadLoc.Ptr)) {
1583 LLVM_DEBUG(dbgs() << " ... found not loop invariant self access\n");
1584 return std::nullopt;
1585 }
1586 // Otherwise, for the KillingDef and MaybeDeadAccess we only have to check
1587 // if it reads the memory location.
1588 // TODO: It would probably be better to check for self-reads before
1589 // calling the function.
1590 if (KillingDef == UseAccess || MaybeDeadAccess == UseAccess) {
1591 LLVM_DEBUG(dbgs() << " ... skipping killing def/dom access\n");
1592 continue;
1593 }
1594
1595 // Check all uses for MemoryDefs, except for defs completely overwriting
1596 // the original location. Otherwise we have to check uses of *all*
1597 // MemoryDefs we discover, including non-aliasing ones. Otherwise we might
1598 // miss cases like the following
1599 // 1 = Def(LoE) ; <----- DeadDef stores [0,1]
1600 // 2 = Def(1) ; (2, 1) = NoAlias, stores [2,3]
1601 // Use(2) ; MayAlias 2 *and* 1, loads [0, 3].
1602 // (The Use points to the *first* Def it may alias)
1603 // 3 = Def(1) ; <---- Current (3, 2) = NoAlias, (3,1) = MayAlias,
1604 // stores [0,1]
1605 if (MemoryDef *UseDef = dyn_cast<MemoryDef>(Val: UseAccess)) {
1606 if (isCompleteOverwrite(DefLoc: MaybeDeadLoc, DefInst: MaybeDeadI, UseInst)) {
1607 BasicBlock *MaybeKillingBlock = UseInst->getParent();
1608 if (PostOrderNumbers.find(Val: MaybeKillingBlock)->second <
1609 PostOrderNumbers.find(Val: MaybeDeadAccess->getBlock())->second) {
1610 if (!isInvisibleToCallerAfterRet(V: KillingUndObj)) {
1611 LLVM_DEBUG(dbgs()
1612 << " ... found killing def " << *UseInst << "\n");
1613 KillingDefs.insert(Ptr: UseInst);
1614 }
1615 } else {
1616 LLVM_DEBUG(dbgs()
1617 << " ... found preceeding def " << *UseInst << "\n");
1618 return std::nullopt;
1619 }
1620 } else
1621 PushMemUses(UseDef);
1622 }
1623 }
1624
1625 // For accesses to locations visible after the function returns, make sure
1626 // that the location is dead (=overwritten) along all paths from
1627 // MaybeDeadAccess to the exit.
1628 if (!isInvisibleToCallerAfterRet(V: KillingUndObj)) {
1629 SmallPtrSet<BasicBlock *, 16> KillingBlocks;
1630 for (Instruction *KD : KillingDefs)
1631 KillingBlocks.insert(Ptr: KD->getParent());
1632 assert(!KillingBlocks.empty() &&
1633 "Expected at least a single killing block");
1634
1635 // Find the common post-dominator of all killing blocks.
1636 BasicBlock *CommonPred = *KillingBlocks.begin();
1637 for (BasicBlock *BB : llvm::drop_begin(RangeOrContainer&: KillingBlocks)) {
1638 if (!CommonPred)
1639 break;
1640 CommonPred = PDT.findNearestCommonDominator(A: CommonPred, B: BB);
1641 }
1642
1643 // If the common post-dominator does not post-dominate MaybeDeadAccess,
1644 // there is a path from MaybeDeadAccess to an exit not going through a
1645 // killing block.
1646 if (!PDT.dominates(A: CommonPred, B: MaybeDeadAccess->getBlock())) {
1647 if (!AnyUnreachableExit)
1648 return std::nullopt;
1649
1650 // Fall back to CFG scan starting at all non-unreachable roots if not
1651 // all paths to the exit go through CommonPred.
1652 CommonPred = nullptr;
1653 }
1654
1655 // If CommonPred itself is in the set of killing blocks, we're done.
1656 if (KillingBlocks.count(Ptr: CommonPred))
1657 return {MaybeDeadAccess};
1658
1659 SetVector<BasicBlock *> WorkList;
1660 // If CommonPred is null, there are multiple exits from the function.
1661 // They all have to be added to the worklist.
1662 if (CommonPred)
1663 WorkList.insert(X: CommonPred);
1664 else
1665 for (BasicBlock *R : PDT.roots()) {
1666 if (!isa<UnreachableInst>(Val: R->getTerminator()))
1667 WorkList.insert(X: R);
1668 }
1669
1670 NumCFGTries++;
1671 // Check if all paths starting from an exit node go through one of the
1672 // killing blocks before reaching MaybeDeadAccess.
1673 for (unsigned I = 0; I < WorkList.size(); I++) {
1674 NumCFGChecks++;
1675 BasicBlock *Current = WorkList[I];
1676 if (KillingBlocks.count(Ptr: Current))
1677 continue;
1678 if (Current == MaybeDeadAccess->getBlock())
1679 return std::nullopt;
1680
1681 // MaybeDeadAccess is reachable from the entry, so we don't have to
1682 // explore unreachable blocks further.
1683 if (!DT.isReachableFromEntry(A: Current))
1684 continue;
1685
1686 for (BasicBlock *Pred : predecessors(BB: Current))
1687 WorkList.insert(X: Pred);
1688
1689 if (WorkList.size() >= MemorySSAPathCheckLimit)
1690 return std::nullopt;
1691 }
1692 NumCFGSuccess++;
1693 }
1694
1695 // No aliasing MemoryUses of MaybeDeadAccess found, MaybeDeadAccess is
1696 // potentially dead.
1697 return {MaybeDeadAccess};
1698 }
1699
1700 /// Delete dead memory defs and recursively add their operands to ToRemove if
1701 /// they became dead.
1702 void
1703 deleteDeadInstruction(Instruction *SI,
1704 SmallPtrSetImpl<MemoryAccess *> *Deleted = nullptr) {
1705 MemorySSAUpdater Updater(&MSSA);
1706 SmallVector<Instruction *, 32> NowDeadInsts;
1707 NowDeadInsts.push_back(Elt: SI);
1708 --NumFastOther;
1709
1710 while (!NowDeadInsts.empty()) {
1711 Instruction *DeadInst = NowDeadInsts.pop_back_val();
1712 ++NumFastOther;
1713
1714 // Try to preserve debug information attached to the dead instruction.
1715 salvageDebugInfo(I&: *DeadInst);
1716 salvageKnowledge(I: DeadInst);
1717
1718 // Remove the Instruction from MSSA.
1719 MemoryAccess *MA = MSSA.getMemoryAccess(I: DeadInst);
1720 bool IsMemDef = MA && isa<MemoryDef>(Val: MA);
1721 if (MA) {
1722 if (IsMemDef) {
1723 auto *MD = cast<MemoryDef>(Val: MA);
1724 SkipStores.insert(Ptr: MD);
1725 if (Deleted)
1726 Deleted->insert(Ptr: MD);
1727 if (auto *SI = dyn_cast<StoreInst>(Val: MD->getMemoryInst())) {
1728 if (SI->getValueOperand()->getType()->isPointerTy()) {
1729 const Value *UO = getUnderlyingObject(V: SI->getValueOperand());
1730 if (CapturedBeforeReturn.erase(Val: UO))
1731 ShouldIterateEndOfFunctionDSE = true;
1732 InvisibleToCallerAfterRet.erase(Val: UO);
1733 }
1734 }
1735 }
1736
1737 Updater.removeMemoryAccess(MA);
1738 }
1739
1740 auto I = IOLs.find(Key: DeadInst->getParent());
1741 if (I != IOLs.end())
1742 I->second.erase(Val: DeadInst);
1743 // Remove its operands
1744 for (Use &O : DeadInst->operands())
1745 if (Instruction *OpI = dyn_cast<Instruction>(Val&: O)) {
1746 O.set(PoisonValue::get(T: O->getType()));
1747 if (isInstructionTriviallyDead(I: OpI, TLI: &TLI))
1748 NowDeadInsts.push_back(Elt: OpI);
1749 }
1750
1751 EI.removeInstruction(I: DeadInst);
1752 // Remove memory defs directly if they don't produce results, but only
1753 // queue other dead instructions for later removal. They may have been
1754 // used as memory locations that have been cached by BatchAA. Removing
1755 // them here may lead to newly created instructions to be allocated at the
1756 // same address, yielding stale cache entries.
1757 if (IsMemDef && DeadInst->getType()->isVoidTy())
1758 DeadInst->eraseFromParent();
1759 else
1760 ToRemove.push_back(Elt: DeadInst);
1761 }
1762 }
1763
1764 // Check for any extra throws between \p KillingI and \p DeadI that block
1765 // DSE. This only checks extra maythrows (those that aren't MemoryDef's).
1766 // MemoryDef that may throw are handled during the walk from one def to the
1767 // next.
1768 bool mayThrowBetween(Instruction *KillingI, Instruction *DeadI,
1769 const Value *KillingUndObj) {
1770 // First see if we can ignore it by using the fact that KillingI is an
1771 // alloca/alloca like object that is not visible to the caller during
1772 // execution of the function.
1773 if (KillingUndObj && isInvisibleToCallerOnUnwind(V: KillingUndObj))
1774 return false;
1775
1776 if (KillingI->getParent() == DeadI->getParent())
1777 return ThrowingBlocks.count(Ptr: KillingI->getParent());
1778 return !ThrowingBlocks.empty();
1779 }
1780
1781 // Check if \p DeadI acts as a DSE barrier for \p KillingI. The following
1782 // instructions act as barriers:
1783 // * A memory instruction that may throw and \p KillingI accesses a non-stack
1784 // object.
1785 // * Atomic stores stronger that monotonic.
1786 bool isDSEBarrier(const Value *KillingUndObj, Instruction *DeadI) {
1787 // If DeadI may throw it acts as a barrier, unless we are to an
1788 // alloca/alloca like object that does not escape.
1789 if (DeadI->mayThrow() && !isInvisibleToCallerOnUnwind(V: KillingUndObj))
1790 return true;
1791
1792 // If DeadI is an atomic load/store stronger than monotonic, do not try to
1793 // eliminate/reorder it.
1794 if (DeadI->isAtomic()) {
1795 if (auto *LI = dyn_cast<LoadInst>(Val: DeadI))
1796 return isStrongerThanMonotonic(AO: LI->getOrdering());
1797 if (auto *SI = dyn_cast<StoreInst>(Val: DeadI))
1798 return isStrongerThanMonotonic(AO: SI->getOrdering());
1799 if (auto *ARMW = dyn_cast<AtomicRMWInst>(Val: DeadI))
1800 return isStrongerThanMonotonic(AO: ARMW->getOrdering());
1801 if (auto *CmpXchg = dyn_cast<AtomicCmpXchgInst>(Val: DeadI))
1802 return isStrongerThanMonotonic(AO: CmpXchg->getSuccessOrdering()) ||
1803 isStrongerThanMonotonic(AO: CmpXchg->getFailureOrdering());
1804 llvm_unreachable("other instructions should be skipped in MemorySSA");
1805 }
1806 return false;
1807 }
1808
1809 /// Eliminate writes to objects that are not visible in the caller and are not
1810 /// accessed before returning from the function.
1811 bool eliminateDeadWritesAtEndOfFunction() {
1812 bool MadeChange = false;
1813 LLVM_DEBUG(
1814 dbgs()
1815 << "Trying to eliminate MemoryDefs at the end of the function\n");
1816 do {
1817 ShouldIterateEndOfFunctionDSE = false;
1818 for (MemoryDef *Def : llvm::reverse(C&: MemDefs)) {
1819 if (SkipStores.contains(Ptr: Def))
1820 continue;
1821
1822 Instruction *DefI = Def->getMemoryInst();
1823 auto DefLoc = getLocForWrite(I: DefI);
1824 if (!DefLoc || !isRemovable(I: DefI))
1825 continue;
1826
1827 // NOTE: Currently eliminating writes at the end of a function is
1828 // limited to MemoryDefs with a single underlying object, to save
1829 // compile-time. In practice it appears the case with multiple
1830 // underlying objects is very uncommon. If it turns out to be important,
1831 // we can use getUnderlyingObjects here instead.
1832 const Value *UO = getUnderlyingObject(V: DefLoc->Ptr);
1833 if (!isInvisibleToCallerAfterRet(V: UO))
1834 continue;
1835
1836 if (isWriteAtEndOfFunction(Def)) {
1837 // See through pointer-to-pointer bitcasts
1838 LLVM_DEBUG(dbgs() << " ... MemoryDef is not accessed until the end "
1839 "of the function\n");
1840 deleteDeadInstruction(SI: DefI);
1841 ++NumFastStores;
1842 MadeChange = true;
1843 }
1844 }
1845 } while (ShouldIterateEndOfFunctionDSE);
1846 return MadeChange;
1847 }
1848
1849 /// If we have a zero initializing memset following a call to malloc,
1850 /// try folding it into a call to calloc.
1851 bool tryFoldIntoCalloc(MemoryDef *Def, const Value *DefUO) {
1852 Instruction *DefI = Def->getMemoryInst();
1853 MemSetInst *MemSet = dyn_cast<MemSetInst>(Val: DefI);
1854 if (!MemSet)
1855 // TODO: Could handle zero store to small allocation as well.
1856 return false;
1857 Constant *StoredConstant = dyn_cast<Constant>(Val: MemSet->getValue());
1858 if (!StoredConstant || !StoredConstant->isNullValue())
1859 return false;
1860
1861 if (!isRemovable(I: DefI))
1862 // The memset might be volatile..
1863 return false;
1864
1865 if (F.hasFnAttribute(Attribute::SanitizeMemory) ||
1866 F.hasFnAttribute(Attribute::SanitizeAddress) ||
1867 F.hasFnAttribute(Attribute::SanitizeHWAddress) ||
1868 F.getName() == "calloc")
1869 return false;
1870 auto *Malloc = const_cast<CallInst *>(dyn_cast<CallInst>(Val: DefUO));
1871 if (!Malloc)
1872 return false;
1873 auto *InnerCallee = Malloc->getCalledFunction();
1874 if (!InnerCallee)
1875 return false;
1876 LibFunc Func;
1877 if (!TLI.getLibFunc(FDecl: *InnerCallee, F&: Func) || !TLI.has(F: Func) ||
1878 Func != LibFunc_malloc)
1879 return false;
1880 // Gracefully handle malloc with unexpected memory attributes.
1881 auto *MallocDef = dyn_cast_or_null<MemoryDef>(Val: MSSA.getMemoryAccess(I: Malloc));
1882 if (!MallocDef)
1883 return false;
1884
1885 auto shouldCreateCalloc = [](CallInst *Malloc, CallInst *Memset) {
1886 // Check for br(icmp ptr, null), truebb, falsebb) pattern at the end
1887 // of malloc block
1888 auto *MallocBB = Malloc->getParent(),
1889 *MemsetBB = Memset->getParent();
1890 if (MallocBB == MemsetBB)
1891 return true;
1892 auto *Ptr = Memset->getArgOperand(i: 0);
1893 auto *TI = MallocBB->getTerminator();
1894 ICmpInst::Predicate Pred;
1895 BasicBlock *TrueBB, *FalseBB;
1896 if (!match(V: TI, P: m_Br(C: m_ICmp(Pred, L: m_Specific(V: Ptr), R: m_Zero()), T&: TrueBB,
1897 F&: FalseBB)))
1898 return false;
1899 if (Pred != ICmpInst::ICMP_EQ || MemsetBB != FalseBB)
1900 return false;
1901 return true;
1902 };
1903
1904 if (Malloc->getOperand(i_nocapture: 0) != MemSet->getLength())
1905 return false;
1906 if (!shouldCreateCalloc(Malloc, MemSet) ||
1907 !DT.dominates(Def: Malloc, User: MemSet) ||
1908 !memoryIsNotModifiedBetween(FirstI: Malloc, SecondI: MemSet, AA&: BatchAA, DL, DT: &DT))
1909 return false;
1910 IRBuilder<> IRB(Malloc);
1911 Type *SizeTTy = Malloc->getArgOperand(i: 0)->getType();
1912 auto *Calloc = emitCalloc(Num: ConstantInt::get(Ty: SizeTTy, V: 1),
1913 Size: Malloc->getArgOperand(i: 0), B&: IRB, TLI);
1914 if (!Calloc)
1915 return false;
1916
1917 MemorySSAUpdater Updater(&MSSA);
1918 auto *NewAccess =
1919 Updater.createMemoryAccessAfter(I: cast<Instruction>(Val: Calloc), Definition: nullptr,
1920 InsertPt: MallocDef);
1921 auto *NewAccessMD = cast<MemoryDef>(Val: NewAccess);
1922 Updater.insertDef(Def: NewAccessMD, /*RenameUses=*/true);
1923 Malloc->replaceAllUsesWith(V: Calloc);
1924 deleteDeadInstruction(SI: Malloc);
1925 return true;
1926 }
1927
1928 // Check if there is a dominating condition, that implies that the value
1929 // being stored in a ptr is already present in the ptr.
1930 bool dominatingConditionImpliesValue(MemoryDef *Def) {
1931 auto *StoreI = cast<StoreInst>(Val: Def->getMemoryInst());
1932 BasicBlock *StoreBB = StoreI->getParent();
1933 Value *StorePtr = StoreI->getPointerOperand();
1934 Value *StoreVal = StoreI->getValueOperand();
1935
1936 DomTreeNode *IDom = DT.getNode(BB: StoreBB)->getIDom();
1937 if (!IDom)
1938 return false;
1939
1940 auto *BI = dyn_cast<BranchInst>(Val: IDom->getBlock()->getTerminator());
1941 if (!BI || !BI->isConditional())
1942 return false;
1943
1944 // In case both blocks are the same, it is not possible to determine
1945 // if optimization is possible. (We would not want to optimize a store
1946 // in the FalseBB if condition is true and vice versa.)
1947 if (BI->getSuccessor(i: 0) == BI->getSuccessor(i: 1))
1948 return false;
1949
1950 Instruction *ICmpL;
1951 ICmpInst::Predicate Pred;
1952 if (!match(V: BI->getCondition(),
1953 P: m_c_ICmp(Pred,
1954 L: m_CombineAnd(L: m_Load(Op: m_Specific(V: StorePtr)),
1955 R: m_Instruction(I&: ICmpL)),
1956 R: m_Specific(V: StoreVal))) ||
1957 !ICmpInst::isEquality(P: Pred))
1958 return false;
1959
1960 // In case the else blocks also branches to the if block or the other way
1961 // around it is not possible to determine if the optimization is possible.
1962 if (Pred == ICmpInst::ICMP_EQ &&
1963 !DT.dominates(BBE: BasicBlockEdge(BI->getParent(), BI->getSuccessor(i: 0)),
1964 BB: StoreBB))
1965 return false;
1966
1967 if (Pred == ICmpInst::ICMP_NE &&
1968 !DT.dominates(BBE: BasicBlockEdge(BI->getParent(), BI->getSuccessor(i: 1)),
1969 BB: StoreBB))
1970 return false;
1971
1972 MemoryAccess *LoadAcc = MSSA.getMemoryAccess(I: ICmpL);
1973 MemoryAccess *ClobAcc =
1974 MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA);
1975
1976 return MSSA.dominates(A: ClobAcc, B: LoadAcc);
1977 }
1978
1979 /// \returns true if \p Def is a no-op store, either because it
1980 /// directly stores back a loaded value or stores zero to a calloced object.
1981 bool storeIsNoop(MemoryDef *Def, const Value *DefUO) {
1982 Instruction *DefI = Def->getMemoryInst();
1983 StoreInst *Store = dyn_cast<StoreInst>(Val: DefI);
1984 MemSetInst *MemSet = dyn_cast<MemSetInst>(Val: DefI);
1985 Constant *StoredConstant = nullptr;
1986 if (Store)
1987 StoredConstant = dyn_cast<Constant>(Val: Store->getOperand(i_nocapture: 0));
1988 else if (MemSet)
1989 StoredConstant = dyn_cast<Constant>(Val: MemSet->getValue());
1990 else
1991 return false;
1992
1993 if (!isRemovable(I: DefI))
1994 return false;
1995
1996 if (StoredConstant) {
1997 Constant *InitC =
1998 getInitialValueOfAllocation(V: DefUO, TLI: &TLI, Ty: StoredConstant->getType());
1999 // If the clobbering access is LiveOnEntry, no instructions between them
2000 // can modify the memory location.
2001 if (InitC && InitC == StoredConstant)
2002 return MSSA.isLiveOnEntryDef(
2003 MA: MSSA.getSkipSelfWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA));
2004 }
2005
2006 if (!Store)
2007 return false;
2008
2009 if (dominatingConditionImpliesValue(Def))
2010 return true;
2011
2012 if (auto *LoadI = dyn_cast<LoadInst>(Val: Store->getOperand(i_nocapture: 0))) {
2013 if (LoadI->getPointerOperand() == Store->getOperand(i_nocapture: 1)) {
2014 // Get the defining access for the load.
2015 auto *LoadAccess = MSSA.getMemoryAccess(I: LoadI)->getDefiningAccess();
2016 // Fast path: the defining accesses are the same.
2017 if (LoadAccess == Def->getDefiningAccess())
2018 return true;
2019
2020 // Look through phi accesses. Recursively scan all phi accesses by
2021 // adding them to a worklist. Bail when we run into a memory def that
2022 // does not match LoadAccess.
2023 SetVector<MemoryAccess *> ToCheck;
2024 MemoryAccess *Current =
2025 MSSA.getWalker()->getClobberingMemoryAccess(Def, AA&: BatchAA);
2026 // We don't want to bail when we run into the store memory def. But,
2027 // the phi access may point to it. So, pretend like we've already
2028 // checked it.
2029 ToCheck.insert(X: Def);
2030 ToCheck.insert(X: Current);
2031 // Start at current (1) to simulate already having checked Def.
2032 for (unsigned I = 1; I < ToCheck.size(); ++I) {
2033 Current = ToCheck[I];
2034 if (auto PhiAccess = dyn_cast<MemoryPhi>(Val: Current)) {
2035 // Check all the operands.
2036 for (auto &Use : PhiAccess->incoming_values())
2037 ToCheck.insert(X: cast<MemoryAccess>(Val: &Use));
2038 continue;
2039 }
2040
2041 // If we found a memory def, bail. This happens when we have an
2042 // unrelated write in between an otherwise noop store.
2043 assert(isa<MemoryDef>(Current) &&
2044 "Only MemoryDefs should reach here.");
2045 // TODO: Skip no alias MemoryDefs that have no aliasing reads.
2046 // We are searching for the definition of the store's destination.
2047 // So, if that is the same definition as the load, then this is a
2048 // noop. Otherwise, fail.
2049 if (LoadAccess != Current)
2050 return false;
2051 }
2052 return true;
2053 }
2054 }
2055
2056 return false;
2057 }
2058
2059 bool removePartiallyOverlappedStores(InstOverlapIntervalsTy &IOL) {
2060 bool Changed = false;
2061 for (auto OI : IOL) {
2062 Instruction *DeadI = OI.first;
2063 MemoryLocation Loc = *getLocForWrite(I: DeadI);
2064 assert(isRemovable(DeadI) && "Expect only removable instruction");
2065
2066 const Value *Ptr = Loc.Ptr->stripPointerCasts();
2067 int64_t DeadStart = 0;
2068 uint64_t DeadSize = Loc.Size.getValue();
2069 GetPointerBaseWithConstantOffset(Ptr, Offset&: DeadStart, DL);
2070 OverlapIntervalsTy &IntervalMap = OI.second;
2071 Changed |= tryToShortenEnd(DeadI, IntervalMap, DeadStart, DeadSize);
2072 if (IntervalMap.empty())
2073 continue;
2074 Changed |= tryToShortenBegin(DeadI, IntervalMap, DeadStart, DeadSize);
2075 }
2076 return Changed;
2077 }
2078
2079 /// Eliminates writes to locations where the value that is being written
2080 /// is already stored at the same location.
2081 bool eliminateRedundantStoresOfExistingValues() {
2082 bool MadeChange = false;
2083 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs that write the "
2084 "already existing value\n");
2085 for (auto *Def : MemDefs) {
2086 if (SkipStores.contains(Ptr: Def) || MSSA.isLiveOnEntryDef(MA: Def))
2087 continue;
2088
2089 Instruction *DefInst = Def->getMemoryInst();
2090 auto MaybeDefLoc = getLocForWrite(I: DefInst);
2091 if (!MaybeDefLoc || !isRemovable(I: DefInst))
2092 continue;
2093
2094 MemoryDef *UpperDef;
2095 // To conserve compile-time, we avoid walking to the next clobbering def.
2096 // Instead, we just try to get the optimized access, if it exists. DSE
2097 // will try to optimize defs during the earlier traversal.
2098 if (Def->isOptimized())
2099 UpperDef = dyn_cast<MemoryDef>(Val: Def->getOptimized());
2100 else
2101 UpperDef = dyn_cast<MemoryDef>(Val: Def->getDefiningAccess());
2102 if (!UpperDef || MSSA.isLiveOnEntryDef(MA: UpperDef))
2103 continue;
2104
2105 Instruction *UpperInst = UpperDef->getMemoryInst();
2106 auto IsRedundantStore = [&]() {
2107 if (DefInst->isIdenticalTo(I: UpperInst))
2108 return true;
2109 if (auto *MemSetI = dyn_cast<MemSetInst>(Val: UpperInst)) {
2110 if (auto *SI = dyn_cast<StoreInst>(Val: DefInst)) {
2111 // MemSetInst must have a write location.
2112 MemoryLocation UpperLoc = *getLocForWrite(I: UpperInst);
2113 int64_t InstWriteOffset = 0;
2114 int64_t DepWriteOffset = 0;
2115 auto OR = isOverwrite(KillingI: UpperInst, DeadI: DefInst, KillingLoc: UpperLoc, DeadLoc: *MaybeDefLoc,
2116 KillingOff&: InstWriteOffset, DeadOff&: DepWriteOffset);
2117 Value *StoredByte = isBytewiseValue(V: SI->getValueOperand(), DL);
2118 return StoredByte && StoredByte == MemSetI->getOperand(i_nocapture: 1) &&
2119 OR == OW_Complete;
2120 }
2121 }
2122 return false;
2123 };
2124
2125 if (!IsRedundantStore() || isReadClobber(DefLoc: *MaybeDefLoc, UseInst: DefInst))
2126 continue;
2127 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *DefInst
2128 << '\n');
2129 deleteDeadInstruction(SI: DefInst);
2130 NumRedundantStores++;
2131 MadeChange = true;
2132 }
2133 return MadeChange;
2134 }
2135};
2136
2137static bool eliminateDeadStores(Function &F, AliasAnalysis &AA, MemorySSA &MSSA,
2138 DominatorTree &DT, PostDominatorTree &PDT,
2139 const TargetLibraryInfo &TLI,
2140 const LoopInfo &LI) {
2141 bool MadeChange = false;
2142
2143 DSEState State(F, AA, MSSA, DT, PDT, TLI, LI);
2144 // For each store:
2145 for (unsigned I = 0; I < State.MemDefs.size(); I++) {
2146 MemoryDef *KillingDef = State.MemDefs[I];
2147 if (State.SkipStores.count(Ptr: KillingDef))
2148 continue;
2149 Instruction *KillingI = KillingDef->getMemoryInst();
2150
2151 std::optional<MemoryLocation> MaybeKillingLoc;
2152 if (State.isMemTerminatorInst(I: KillingI)) {
2153 if (auto KillingLoc = State.getLocForTerminator(I: KillingI))
2154 MaybeKillingLoc = KillingLoc->first;
2155 } else {
2156 MaybeKillingLoc = State.getLocForWrite(I: KillingI);
2157 }
2158
2159 if (!MaybeKillingLoc) {
2160 LLVM_DEBUG(dbgs() << "Failed to find analyzable write location for "
2161 << *KillingI << "\n");
2162 continue;
2163 }
2164 MemoryLocation KillingLoc = *MaybeKillingLoc;
2165 assert(KillingLoc.Ptr && "KillingLoc should not be null");
2166 const Value *KillingUndObj = getUnderlyingObject(V: KillingLoc.Ptr);
2167 LLVM_DEBUG(dbgs() << "Trying to eliminate MemoryDefs killed by "
2168 << *KillingDef << " (" << *KillingI << ")\n");
2169
2170 unsigned ScanLimit = MemorySSAScanLimit;
2171 unsigned WalkerStepLimit = MemorySSAUpwardsStepLimit;
2172 unsigned PartialLimit = MemorySSAPartialStoreLimit;
2173 // Worklist of MemoryAccesses that may be killed by KillingDef.
2174 SmallSetVector<MemoryAccess *, 8> ToCheck;
2175 // Track MemoryAccesses that have been deleted in the loop below, so we can
2176 // skip them. Don't use SkipStores for this, which may contain reused
2177 // MemoryAccess addresses.
2178 SmallPtrSet<MemoryAccess *, 8> Deleted;
2179 [[maybe_unused]] unsigned OrigNumSkipStores = State.SkipStores.size();
2180 ToCheck.insert(X: KillingDef->getDefiningAccess());
2181
2182 bool Shortend = false;
2183 bool IsMemTerm = State.isMemTerminatorInst(I: KillingI);
2184 // Check if MemoryAccesses in the worklist are killed by KillingDef.
2185 for (unsigned I = 0; I < ToCheck.size(); I++) {
2186 MemoryAccess *Current = ToCheck[I];
2187 if (Deleted.contains(Ptr: Current))
2188 continue;
2189
2190 std::optional<MemoryAccess *> MaybeDeadAccess = State.getDomMemoryDef(
2191 KillingDef, StartAccess: Current, KillingLoc, KillingUndObj, ScanLimit,
2192 WalkerStepLimit, IsMemTerm, PartialLimit);
2193
2194 if (!MaybeDeadAccess) {
2195 LLVM_DEBUG(dbgs() << " finished walk\n");
2196 continue;
2197 }
2198
2199 MemoryAccess *DeadAccess = *MaybeDeadAccess;
2200 LLVM_DEBUG(dbgs() << " Checking if we can kill " << *DeadAccess);
2201 if (isa<MemoryPhi>(Val: DeadAccess)) {
2202 LLVM_DEBUG(dbgs() << "\n ... adding incoming values to worklist\n");
2203 for (Value *V : cast<MemoryPhi>(Val: DeadAccess)->incoming_values()) {
2204 MemoryAccess *IncomingAccess = cast<MemoryAccess>(Val: V);
2205 BasicBlock *IncomingBlock = IncomingAccess->getBlock();
2206 BasicBlock *PhiBlock = DeadAccess->getBlock();
2207
2208 // We only consider incoming MemoryAccesses that come before the
2209 // MemoryPhi. Otherwise we could discover candidates that do not
2210 // strictly dominate our starting def.
2211 if (State.PostOrderNumbers[IncomingBlock] >
2212 State.PostOrderNumbers[PhiBlock])
2213 ToCheck.insert(X: IncomingAccess);
2214 }
2215 continue;
2216 }
2217 auto *DeadDefAccess = cast<MemoryDef>(Val: DeadAccess);
2218 Instruction *DeadI = DeadDefAccess->getMemoryInst();
2219 LLVM_DEBUG(dbgs() << " (" << *DeadI << ")\n");
2220 ToCheck.insert(X: DeadDefAccess->getDefiningAccess());
2221 NumGetDomMemoryDefPassed++;
2222
2223 if (!DebugCounter::shouldExecute(CounterName: MemorySSACounter))
2224 continue;
2225
2226 MemoryLocation DeadLoc = *State.getLocForWrite(I: DeadI);
2227
2228 if (IsMemTerm) {
2229 const Value *DeadUndObj = getUnderlyingObject(V: DeadLoc.Ptr);
2230 if (KillingUndObj != DeadUndObj)
2231 continue;
2232 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2233 << "\n KILLER: " << *KillingI << '\n');
2234 State.deleteDeadInstruction(SI: DeadI, Deleted: &Deleted);
2235 ++NumFastStores;
2236 MadeChange = true;
2237 } else {
2238 // Check if DeadI overwrites KillingI.
2239 int64_t KillingOffset = 0;
2240 int64_t DeadOffset = 0;
2241 OverwriteResult OR = State.isOverwrite(
2242 KillingI, DeadI, KillingLoc, DeadLoc, KillingOff&: KillingOffset, DeadOff&: DeadOffset);
2243 if (OR == OW_MaybePartial) {
2244 auto Iter = State.IOLs.insert(
2245 KV: std::make_pair<BasicBlock *, InstOverlapIntervalsTy>(
2246 x: DeadI->getParent(), y: InstOverlapIntervalsTy()));
2247 auto &IOL = Iter.first->second;
2248 OR = isPartialOverwrite(KillingLoc, DeadLoc, KillingOff: KillingOffset,
2249 DeadOff: DeadOffset, DeadI, IOL);
2250 }
2251
2252 if (EnablePartialStoreMerging && OR == OW_PartialEarlierWithFullLater) {
2253 auto *DeadSI = dyn_cast<StoreInst>(Val: DeadI);
2254 auto *KillingSI = dyn_cast<StoreInst>(Val: KillingI);
2255 // We are re-using tryToMergePartialOverlappingStores, which requires
2256 // DeadSI to dominate KillingSI.
2257 // TODO: implement tryToMergeParialOverlappingStores using MemorySSA.
2258 if (DeadSI && KillingSI && DT.dominates(Def: DeadSI, User: KillingSI)) {
2259 if (Constant *Merged = tryToMergePartialOverlappingStores(
2260 KillingI: KillingSI, DeadI: DeadSI, KillingOffset, DeadOffset, DL: State.DL,
2261 AA&: State.BatchAA, DT: &DT)) {
2262
2263 // Update stored value of earlier store to merged constant.
2264 DeadSI->setOperand(i_nocapture: 0, Val_nocapture: Merged);
2265 ++NumModifiedStores;
2266 MadeChange = true;
2267
2268 Shortend = true;
2269 // Remove killing store and remove any outstanding overlap
2270 // intervals for the updated store.
2271 State.deleteDeadInstruction(SI: KillingSI, Deleted: &Deleted);
2272 auto I = State.IOLs.find(Key: DeadSI->getParent());
2273 if (I != State.IOLs.end())
2274 I->second.erase(Val: DeadSI);
2275 break;
2276 }
2277 }
2278 }
2279
2280 if (OR == OW_Complete) {
2281 LLVM_DEBUG(dbgs() << "DSE: Remove Dead Store:\n DEAD: " << *DeadI
2282 << "\n KILLER: " << *KillingI << '\n');
2283 State.deleteDeadInstruction(SI: DeadI, Deleted: &Deleted);
2284 ++NumFastStores;
2285 MadeChange = true;
2286 }
2287 }
2288 }
2289
2290 assert(State.SkipStores.size() - OrigNumSkipStores == Deleted.size() &&
2291 "SkipStores and Deleted out of sync?");
2292
2293 // Check if the store is a no-op.
2294 if (!Shortend && State.storeIsNoop(Def: KillingDef, DefUO: KillingUndObj)) {
2295 LLVM_DEBUG(dbgs() << "DSE: Remove No-Op Store:\n DEAD: " << *KillingI
2296 << '\n');
2297 State.deleteDeadInstruction(SI: KillingI);
2298 NumRedundantStores++;
2299 MadeChange = true;
2300 continue;
2301 }
2302
2303 // Can we form a calloc from a memset/malloc pair?
2304 if (!Shortend && State.tryFoldIntoCalloc(Def: KillingDef, DefUO: KillingUndObj)) {
2305 LLVM_DEBUG(dbgs() << "DSE: Remove memset after forming calloc:\n"
2306 << " DEAD: " << *KillingI << '\n');
2307 State.deleteDeadInstruction(SI: KillingI);
2308 MadeChange = true;
2309 continue;
2310 }
2311 }
2312
2313 if (EnablePartialOverwriteTracking)
2314 for (auto &KV : State.IOLs)
2315 MadeChange |= State.removePartiallyOverlappedStores(IOL&: KV.second);
2316
2317 MadeChange |= State.eliminateRedundantStoresOfExistingValues();
2318 MadeChange |= State.eliminateDeadWritesAtEndOfFunction();
2319
2320 while (!State.ToRemove.empty()) {
2321 Instruction *DeadInst = State.ToRemove.pop_back_val();
2322 DeadInst->eraseFromParent();
2323 }
2324
2325 return MadeChange;
2326}
2327} // end anonymous namespace
2328
2329//===----------------------------------------------------------------------===//
2330// DSE Pass
2331//===----------------------------------------------------------------------===//
2332PreservedAnalyses DSEPass::run(Function &F, FunctionAnalysisManager &AM) {
2333 AliasAnalysis &AA = AM.getResult<AAManager>(IR&: F);
2334 const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(IR&: F);
2335 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(IR&: F);
2336 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(IR&: F).getMSSA();
2337 PostDominatorTree &PDT = AM.getResult<PostDominatorTreeAnalysis>(IR&: F);
2338 LoopInfo &LI = AM.getResult<LoopAnalysis>(IR&: F);
2339
2340 bool Changed = eliminateDeadStores(F, AA, MSSA, DT, PDT, TLI, LI);
2341
2342#ifdef LLVM_ENABLE_STATS
2343 if (AreStatisticsEnabled())
2344 for (auto &I : instructions(F))
2345 NumRemainingStores += isa<StoreInst>(Val: &I);
2346#endif
2347
2348 if (!Changed)
2349 return PreservedAnalyses::all();
2350
2351 PreservedAnalyses PA;
2352 PA.preserveSet<CFGAnalyses>();
2353 PA.preserve<MemorySSAAnalysis>();
2354 PA.preserve<LoopAnalysis>();
2355 return PA;
2356}
2357

source code of llvm/lib/Transforms/Scalar/DeadStoreElimination.cpp