1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Transforms/Utils/SCCPSolver.h"
16#include "llvm/Analysis/ConstantFolding.h"
17#include "llvm/Analysis/InstructionSimplify.h"
18#include "llvm/Analysis/ValueLattice.h"
19#include "llvm/Analysis/ValueLatticeUtils.h"
20#include "llvm/Analysis/ValueTracking.h"
21#include "llvm/IR/InstVisitor.h"
22#include "llvm/Support/Casting.h"
23#include "llvm/Support/Debug.h"
24#include "llvm/Support/ErrorHandling.h"
25#include "llvm/Support/raw_ostream.h"
26#include "llvm/Transforms/Utils/Local.h"
27#include <cassert>
28#include <utility>
29#include <vector>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "sccp"
34
35// The maximum number of range extensions allowed for operations requiring
36// widening.
37static const unsigned MaxNumRangeExtensions = 10;
38
39/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
40static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts() {
41 return ValueLatticeElement::MergeOptions().setMaxWidenSteps(
42 MaxNumRangeExtensions);
43}
44
45static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty,
46 bool UndefAllowed = true) {
47 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48 if (LV.isConstantRange(UndefAllowed))
49 return LV.getConstantRange();
50 return ConstantRange::getFull(BitWidth: Ty->getScalarSizeInBits());
51}
52
53namespace llvm {
54
55bool SCCPSolver::isConstant(const ValueLatticeElement &LV) {
56 return LV.isConstant() ||
57 (LV.isConstantRange() && LV.getConstantRange().isSingleElement());
58}
59
60bool SCCPSolver::isOverdefined(const ValueLatticeElement &LV) {
61 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62}
63
64static bool canRemoveInstruction(Instruction *I) {
65 if (wouldInstructionBeTriviallyDead(I))
66 return true;
67
68 // Some instructions can be handled but are rejected above. Catch
69 // those cases by falling through to here.
70 // TODO: Mark globals as being constant earlier, so
71 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72 // TODO: are safe to remove.
73 return isa<LoadInst>(Val: I);
74}
75
76bool SCCPSolver::tryToReplaceWithConstant(Value *V) {
77 Constant *Const = getConstantOrNull(V);
78 if (!Const)
79 return false;
80 // Replacing `musttail` instructions with constant breaks `musttail` invariant
81 // unless the call itself can be removed.
82 // Calls with "clang.arc.attachedcall" implicitly use the return value and
83 // those uses cannot be updated with a constant.
84 CallBase *CB = dyn_cast<CallBase>(Val: V);
85 if (CB && ((CB->isMustTailCall() &&
86 !canRemoveInstruction(I: CB)) ||
87 CB->getOperandBundle(ID: LLVMContext::OB_clang_arc_attachedcall))) {
88 Function *F = CB->getCalledFunction();
89
90 // Don't zap returns of the callee
91 if (F)
92 addToMustPreserveReturnsInFunctions(F);
93
94 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
95 << " as a constant\n");
96 return false;
97 }
98
99 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
100
101 // Replaces all of the uses of a variable with uses of the constant.
102 V->replaceAllUsesWith(V: Const);
103 return true;
104}
105
106/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107static bool refineInstruction(SCCPSolver &Solver,
108 const SmallPtrSetImpl<Value *> &InsertedValues,
109 Instruction &Inst) {
110 bool Changed = false;
111 auto GetRange = [&Solver, &InsertedValues](Value *Op) {
112 if (auto *Const = dyn_cast<ConstantInt>(Val: Op))
113 return ConstantRange(Const->getValue());
114 if (isa<Constant>(Val: Op) || InsertedValues.contains(Ptr: Op)) {
115 unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
116 return ConstantRange::getFull(BitWidth: Bitwidth);
117 }
118 return getConstantRange(LV: Solver.getLatticeValueFor(V: Op), Ty: Op->getType(),
119 /*UndefAllowed=*/false);
120 };
121
122 if (isa<OverflowingBinaryOperator>(Val: Inst)) {
123 if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap())
124 return false;
125
126 auto RangeA = GetRange(Inst.getOperand(i: 0));
127 auto RangeB = GetRange(Inst.getOperand(i: 1));
128 if (!Inst.hasNoUnsignedWrap()) {
129 auto NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
130 BinOp: Instruction::BinaryOps(Inst.getOpcode()), Other: RangeB,
131 NoWrapKind: OverflowingBinaryOperator::NoUnsignedWrap);
132 if (NUWRange.contains(CR: RangeA)) {
133 Inst.setHasNoUnsignedWrap();
134 Changed = true;
135 }
136 }
137 if (!Inst.hasNoSignedWrap()) {
138 auto NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
139 BinOp: Instruction::BinaryOps(Inst.getOpcode()), Other: RangeB,
140 NoWrapKind: OverflowingBinaryOperator::NoSignedWrap);
141 if (NSWRange.contains(CR: RangeA)) {
142 Inst.setHasNoSignedWrap();
143 Changed = true;
144 }
145 }
146 } else if (isa<ZExtInst>(Val: Inst) && !Inst.hasNonNeg()) {
147 auto Range = GetRange(Inst.getOperand(i: 0));
148 if (Range.isAllNonNegative()) {
149 Inst.setNonNeg();
150 Changed = true;
151 }
152 } else if (TruncInst *TI = dyn_cast<TruncInst>(Val: &Inst)) {
153 if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap())
154 return false;
155
156 auto Range = GetRange(Inst.getOperand(i: 0));
157 uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits();
158 if (!TI->hasNoUnsignedWrap()) {
159 if (Range.getActiveBits() <= DestWidth) {
160 TI->setHasNoUnsignedWrap(true);
161 Changed = true;
162 }
163 }
164 if (!TI->hasNoSignedWrap()) {
165 if (Range.getMinSignedBits() <= DestWidth) {
166 TI->setHasNoSignedWrap(true);
167 Changed = true;
168 }
169 }
170 }
171
172 return Changed;
173}
174
175/// Try to replace signed instructions with their unsigned equivalent.
176static bool replaceSignedInst(SCCPSolver &Solver,
177 SmallPtrSetImpl<Value *> &InsertedValues,
178 Instruction &Inst) {
179 // Determine if a signed value is known to be >= 0.
180 auto isNonNegative = [&Solver](Value *V) {
181 // If this value was constant-folded, it may not have a solver entry.
182 // Handle integers. Otherwise, return false.
183 if (auto *C = dyn_cast<Constant>(Val: V)) {
184 auto *CInt = dyn_cast<ConstantInt>(Val: C);
185 return CInt && !CInt->isNegative();
186 }
187 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
188 return IV.isConstantRange(/*UndefAllowed=*/false) &&
189 IV.getConstantRange().isAllNonNegative();
190 };
191
192 Instruction *NewInst = nullptr;
193 switch (Inst.getOpcode()) {
194 // Note: We do not fold sitofp -> uitofp here because that could be more
195 // expensive in codegen and may not be reversible in the backend.
196 case Instruction::SExt: {
197 // If the source value is not negative, this is a zext.
198 Value *Op0 = Inst.getOperand(i: 0);
199 if (InsertedValues.count(Ptr: Op0) || !isNonNegative(Op0))
200 return false;
201 NewInst = new ZExtInst(Op0, Inst.getType(), "", Inst.getIterator());
202 NewInst->setNonNeg();
203 break;
204 }
205 case Instruction::AShr: {
206 // If the shifted value is not negative, this is a logical shift right.
207 Value *Op0 = Inst.getOperand(i: 0);
208 if (InsertedValues.count(Ptr: Op0) || !isNonNegative(Op0))
209 return false;
210 NewInst = BinaryOperator::CreateLShr(V1: Op0, V2: Inst.getOperand(i: 1), Name: "", It: Inst.getIterator());
211 NewInst->setIsExact(Inst.isExact());
212 break;
213 }
214 case Instruction::SDiv:
215 case Instruction::SRem: {
216 // If both operands are not negative, this is the same as udiv/urem.
217 Value *Op0 = Inst.getOperand(i: 0), *Op1 = Inst.getOperand(i: 1);
218 if (InsertedValues.count(Ptr: Op0) || InsertedValues.count(Ptr: Op1) ||
219 !isNonNegative(Op0) || !isNonNegative(Op1))
220 return false;
221 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
222 : Instruction::URem;
223 NewInst = BinaryOperator::Create(Op: NewOpcode, S1: Op0, S2: Op1, Name: "", InsertBefore: Inst.getIterator());
224 if (Inst.getOpcode() == Instruction::SDiv)
225 NewInst->setIsExact(Inst.isExact());
226 break;
227 }
228 default:
229 return false;
230 }
231
232 // Wire up the new instruction and update state.
233 assert(NewInst && "Expected replacement instruction");
234 NewInst->takeName(V: &Inst);
235 InsertedValues.insert(Ptr: NewInst);
236 Inst.replaceAllUsesWith(V: NewInst);
237 Solver.removeLatticeValueFor(V: &Inst);
238 Inst.eraseFromParent();
239 return true;
240}
241
242bool SCCPSolver::simplifyInstsInBlock(BasicBlock &BB,
243 SmallPtrSetImpl<Value *> &InsertedValues,
244 Statistic &InstRemovedStat,
245 Statistic &InstReplacedStat) {
246 bool MadeChanges = false;
247 for (Instruction &Inst : make_early_inc_range(Range&: BB)) {
248 if (Inst.getType()->isVoidTy())
249 continue;
250 if (tryToReplaceWithConstant(V: &Inst)) {
251 if (canRemoveInstruction(I: &Inst))
252 Inst.eraseFromParent();
253
254 MadeChanges = true;
255 ++InstRemovedStat;
256 } else if (replaceSignedInst(Solver&: *this, InsertedValues, Inst)) {
257 MadeChanges = true;
258 ++InstReplacedStat;
259 } else if (refineInstruction(Solver&: *this, InsertedValues, Inst)) {
260 MadeChanges = true;
261 }
262 }
263 return MadeChanges;
264}
265
266bool SCCPSolver::removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU,
267 BasicBlock *&NewUnreachableBB) const {
268 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
269 bool HasNonFeasibleEdges = false;
270 for (BasicBlock *Succ : successors(BB)) {
271 if (isEdgeFeasible(From: BB, To: Succ))
272 FeasibleSuccessors.insert(Ptr: Succ);
273 else
274 HasNonFeasibleEdges = true;
275 }
276
277 // All edges feasible, nothing to do.
278 if (!HasNonFeasibleEdges)
279 return false;
280
281 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
282 Instruction *TI = BB->getTerminator();
283 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
284 isa<IndirectBrInst>(TI)) &&
285 "Terminator must be a br, switch or indirectbr");
286
287 if (FeasibleSuccessors.size() == 0) {
288 // Branch on undef/poison, replace with unreachable.
289 SmallPtrSet<BasicBlock *, 8> SeenSuccs;
290 SmallVector<DominatorTree::UpdateType, 8> Updates;
291 for (BasicBlock *Succ : successors(BB)) {
292 Succ->removePredecessor(Pred: BB);
293 if (SeenSuccs.insert(Ptr: Succ).second)
294 Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ});
295 }
296 TI->eraseFromParent();
297 new UnreachableInst(BB->getContext(), BB);
298 DTU.applyUpdatesPermissive(Updates);
299 } else if (FeasibleSuccessors.size() == 1) {
300 // Replace with an unconditional branch to the only feasible successor.
301 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
302 SmallVector<DominatorTree::UpdateType, 8> Updates;
303 bool HaveSeenOnlyFeasibleSuccessor = false;
304 for (BasicBlock *Succ : successors(BB)) {
305 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
306 // Don't remove the edge to the only feasible successor the first time
307 // we see it. We still do need to remove any multi-edges to it though.
308 HaveSeenOnlyFeasibleSuccessor = true;
309 continue;
310 }
311
312 Succ->removePredecessor(Pred: BB);
313 Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ});
314 }
315
316 BranchInst::Create(IfTrue: OnlyFeasibleSuccessor, InsertAtEnd: BB);
317 TI->eraseFromParent();
318 DTU.applyUpdatesPermissive(Updates);
319 } else if (FeasibleSuccessors.size() > 1) {
320 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(Val: TI));
321 SmallVector<DominatorTree::UpdateType, 8> Updates;
322
323 // If the default destination is unfeasible it will never be taken. Replace
324 // it with a new block with a single Unreachable instruction.
325 BasicBlock *DefaultDest = SI->getDefaultDest();
326 if (!FeasibleSuccessors.contains(Ptr: DefaultDest)) {
327 if (!NewUnreachableBB) {
328 NewUnreachableBB =
329 BasicBlock::Create(Context&: DefaultDest->getContext(), Name: "default.unreachable",
330 Parent: DefaultDest->getParent(), InsertBefore: DefaultDest);
331 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
332 }
333
334 DefaultDest->removePredecessor(Pred: BB);
335 SI->setDefaultDest(NewUnreachableBB);
336 Updates.push_back(Elt: {DominatorTree::Delete, BB, DefaultDest});
337 Updates.push_back(Elt: {DominatorTree::Insert, BB, NewUnreachableBB});
338 }
339
340 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
341 if (FeasibleSuccessors.contains(Ptr: CI->getCaseSuccessor())) {
342 ++CI;
343 continue;
344 }
345
346 BasicBlock *Succ = CI->getCaseSuccessor();
347 Succ->removePredecessor(Pred: BB);
348 Updates.push_back(Elt: {DominatorTree::Delete, BB, Succ});
349 SI.removeCase(I: CI);
350 // Don't increment CI, as we removed a case.
351 }
352
353 DTU.applyUpdatesPermissive(Updates);
354 } else {
355 llvm_unreachable("Must have at least one feasible successor");
356 }
357 return true;
358}
359
360/// Helper class for SCCPSolver. This implements the instruction visitor and
361/// holds all the state.
362class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
363 const DataLayout &DL;
364 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
365 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
366 DenseMap<Value *, ValueLatticeElement>
367 ValueState; // The state each value is in.
368
369 /// StructValueState - This maintains ValueState for values that have
370 /// StructType, for example for formal arguments, calls, insertelement, etc.
371 DenseMap<std::pair<Value *, unsigned>, ValueLatticeElement> StructValueState;
372
373 /// GlobalValue - If we are tracking any values for the contents of a global
374 /// variable, we keep a mapping from the constant accessor to the element of
375 /// the global, to the currently known value. If the value becomes
376 /// overdefined, it's entry is simply removed from this map.
377 DenseMap<GlobalVariable *, ValueLatticeElement> TrackedGlobals;
378
379 /// TrackedRetVals - If we are tracking arguments into and the return
380 /// value out of a function, it will have an entry in this map, indicating
381 /// what the known return value for the function is.
382 MapVector<Function *, ValueLatticeElement> TrackedRetVals;
383
384 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
385 /// that return multiple values.
386 MapVector<std::pair<Function *, unsigned>, ValueLatticeElement>
387 TrackedMultipleRetVals;
388
389 /// The set of values whose lattice has been invalidated.
390 /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
391 DenseSet<Value *> Invalidated;
392
393 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
394 /// represented here for efficient lookup.
395 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
396
397 /// A list of functions whose return cannot be modified.
398 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
399
400 /// TrackingIncomingArguments - This is the set of functions for whose
401 /// arguments we make optimistic assumptions about and try to prove as
402 /// constants.
403 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
404
405 /// The reason for two worklists is that overdefined is the lowest state
406 /// on the lattice, and moving things to overdefined as fast as possible
407 /// makes SCCP converge much faster.
408 ///
409 /// By having a separate worklist, we accomplish this because everything
410 /// possibly overdefined will become overdefined at the soonest possible
411 /// point.
412 SmallVector<Value *, 64> OverdefinedInstWorkList;
413 SmallVector<Value *, 64> InstWorkList;
414
415 // The BasicBlock work list
416 SmallVector<BasicBlock *, 64> BBWorkList;
417
418 /// KnownFeasibleEdges - Entries in this set are edges which have already had
419 /// PHI nodes retriggered.
420 using Edge = std::pair<BasicBlock *, BasicBlock *>;
421 DenseSet<Edge> KnownFeasibleEdges;
422
423 DenseMap<Function *, std::unique_ptr<PredicateInfo>> FnPredicateInfo;
424
425 DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
426
427 LLVMContext &Ctx;
428
429private:
430 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
431 return dyn_cast_or_null<ConstantInt>(Val: getConstant(LV: IV, Ty));
432 }
433
434 // pushToWorkList - Helper for markConstant/markOverdefined
435 void pushToWorkList(ValueLatticeElement &IV, Value *V);
436
437 // Helper to push \p V to the worklist, after updating it to \p IV. Also
438 // prints a debug message with the updated value.
439 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
440
441 // markConstant - Make a value be marked as "constant". If the value
442 // is not already a constant, add it to the instruction work list so that
443 // the users of the instruction are updated later.
444 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
445 bool MayIncludeUndef = false);
446
447 bool markConstant(Value *V, Constant *C) {
448 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
449 return markConstant(IV&: ValueState[V], V, C);
450 }
451
452 /// markConstantRange - Mark the object as constant range with \p CR. If the
453 /// object is not a constant range with the range \p CR, add it to the
454 /// instruction work list so that the users of the instruction are updated
455 /// later.
456 bool markConstantRange(ValueLatticeElement &IV, Value *V,
457 const ConstantRange &CR);
458
459 // markOverdefined - Make a value be marked as "overdefined". If the
460 // value is not already overdefined, add it to the overdefined instruction
461 // work list so that the users of the instruction are updated later.
462 bool markOverdefined(ValueLatticeElement &IV, Value *V);
463
464 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
465 /// changes.
466 bool mergeInValue(ValueLatticeElement &IV, Value *V,
467 ValueLatticeElement MergeWithV,
468 ValueLatticeElement::MergeOptions Opts = {
469 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
470
471 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
472 ValueLatticeElement::MergeOptions Opts = {
473 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
474 assert(!V->getType()->isStructTy() &&
475 "non-structs should use markConstant");
476 return mergeInValue(IV&: ValueState[V], V, MergeWithV, Opts);
477 }
478
479 /// getValueState - Return the ValueLatticeElement object that corresponds to
480 /// the value. This function handles the case when the value hasn't been seen
481 /// yet by properly seeding constants etc.
482 ValueLatticeElement &getValueState(Value *V) {
483 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
484
485 auto I = ValueState.insert(KV: std::make_pair(x&: V, y: ValueLatticeElement()));
486 ValueLatticeElement &LV = I.first->second;
487
488 if (!I.second)
489 return LV; // Common case, already in the map.
490
491 if (auto *C = dyn_cast<Constant>(Val: V))
492 LV.markConstant(V: C); // Constants are constant
493
494 // All others are unknown by default.
495 return LV;
496 }
497
498 /// getStructValueState - Return the ValueLatticeElement object that
499 /// corresponds to the value/field pair. This function handles the case when
500 /// the value hasn't been seen yet by properly seeding constants etc.
501 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
502 assert(V->getType()->isStructTy() && "Should use getValueState");
503 assert(i < cast<StructType>(V->getType())->getNumElements() &&
504 "Invalid element #");
505
506 auto I = StructValueState.insert(
507 KV: std::make_pair(x: std::make_pair(x&: V, y&: i), y: ValueLatticeElement()));
508 ValueLatticeElement &LV = I.first->second;
509
510 if (!I.second)
511 return LV; // Common case, already in the map.
512
513 if (auto *C = dyn_cast<Constant>(Val: V)) {
514 Constant *Elt = C->getAggregateElement(Elt: i);
515
516 if (!Elt)
517 LV.markOverdefined(); // Unknown sort of constant.
518 else
519 LV.markConstant(V: Elt); // Constants are constant.
520 }
521
522 // All others are underdefined by default.
523 return LV;
524 }
525
526 /// Traverse the use-def chain of \p Call, marking itself and its users as
527 /// "unknown" on the way.
528 void invalidate(CallBase *Call) {
529 SmallVector<Instruction *, 64> ToInvalidate;
530 ToInvalidate.push_back(Elt: Call);
531
532 while (!ToInvalidate.empty()) {
533 Instruction *Inst = ToInvalidate.pop_back_val();
534
535 if (!Invalidated.insert(V: Inst).second)
536 continue;
537
538 if (!BBExecutable.count(Ptr: Inst->getParent()))
539 continue;
540
541 Value *V = nullptr;
542 // For return instructions we need to invalidate the tracked returns map.
543 // Anything else has its lattice in the value map.
544 if (auto *RetInst = dyn_cast<ReturnInst>(Val: Inst)) {
545 Function *F = RetInst->getParent()->getParent();
546 if (auto It = TrackedRetVals.find(Key: F); It != TrackedRetVals.end()) {
547 It->second = ValueLatticeElement();
548 V = F;
549 } else if (MRVFunctionsTracked.count(Ptr: F)) {
550 auto *STy = cast<StructType>(Val: F->getReturnType());
551 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
552 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
553 V = F;
554 }
555 } else if (auto *STy = dyn_cast<StructType>(Val: Inst->getType())) {
556 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
557 if (auto It = StructValueState.find(Val: {Inst, I});
558 It != StructValueState.end()) {
559 It->second = ValueLatticeElement();
560 V = Inst;
561 }
562 }
563 } else if (auto It = ValueState.find(Val: Inst); It != ValueState.end()) {
564 It->second = ValueLatticeElement();
565 V = Inst;
566 }
567
568 if (V) {
569 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
570
571 for (User *U : V->users())
572 if (auto *UI = dyn_cast<Instruction>(Val: U))
573 ToInvalidate.push_back(Elt: UI);
574
575 auto It = AdditionalUsers.find(Val: V);
576 if (It != AdditionalUsers.end())
577 for (User *U : It->second)
578 if (auto *UI = dyn_cast<Instruction>(Val: U))
579 ToInvalidate.push_back(Elt: UI);
580 }
581 }
582 }
583
584 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
585 /// work list if it is not already executable.
586 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
587
588 // getFeasibleSuccessors - Return a vector of booleans to indicate which
589 // successors are reachable from a given terminator instruction.
590 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
591
592 // OperandChangedState - This method is invoked on all of the users of an
593 // instruction that was just changed state somehow. Based on this
594 // information, we need to update the specified user of this instruction.
595 void operandChangedState(Instruction *I) {
596 if (BBExecutable.count(Ptr: I->getParent())) // Inst is executable?
597 visit(I&: *I);
598 }
599
600 // Add U as additional user of V.
601 void addAdditionalUser(Value *V, User *U) {
602 auto Iter = AdditionalUsers.insert(KV: {V, {}});
603 Iter.first->second.insert(Ptr: U);
604 }
605
606 // Mark I's users as changed, including AdditionalUsers.
607 void markUsersAsChanged(Value *I) {
608 // Functions include their arguments in the use-list. Changed function
609 // values mean that the result of the function changed. We only need to
610 // update the call sites with the new function result and do not have to
611 // propagate the call arguments.
612 if (isa<Function>(Val: I)) {
613 for (User *U : I->users()) {
614 if (auto *CB = dyn_cast<CallBase>(Val: U))
615 handleCallResult(CB&: *CB);
616 }
617 } else {
618 for (User *U : I->users())
619 if (auto *UI = dyn_cast<Instruction>(Val: U))
620 operandChangedState(I: UI);
621 }
622
623 auto Iter = AdditionalUsers.find(Val: I);
624 if (Iter != AdditionalUsers.end()) {
625 // Copy additional users before notifying them of changes, because new
626 // users may be added, potentially invalidating the iterator.
627 SmallVector<Instruction *, 2> ToNotify;
628 for (User *U : Iter->second)
629 if (auto *UI = dyn_cast<Instruction>(Val: U))
630 ToNotify.push_back(Elt: UI);
631 for (Instruction *UI : ToNotify)
632 operandChangedState(I: UI);
633 }
634 }
635 void handleCallOverdefined(CallBase &CB);
636 void handleCallResult(CallBase &CB);
637 void handleCallArguments(CallBase &CB);
638 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
639 const WithOverflowInst *WO, unsigned Idx);
640
641private:
642 friend class InstVisitor<SCCPInstVisitor>;
643
644 // visit implementations - Something changed in this instruction. Either an
645 // operand made a transition, or the instruction is newly executable. Change
646 // the value type of I to reflect these changes if appropriate.
647 void visitPHINode(PHINode &I);
648
649 // Terminators
650
651 void visitReturnInst(ReturnInst &I);
652 void visitTerminator(Instruction &TI);
653
654 void visitCastInst(CastInst &I);
655 void visitSelectInst(SelectInst &I);
656 void visitUnaryOperator(Instruction &I);
657 void visitFreezeInst(FreezeInst &I);
658 void visitBinaryOperator(Instruction &I);
659 void visitCmpInst(CmpInst &I);
660 void visitExtractValueInst(ExtractValueInst &EVI);
661 void visitInsertValueInst(InsertValueInst &IVI);
662
663 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
664 markOverdefined(V: &CPI);
665 visitTerminator(TI&: CPI);
666 }
667
668 // Instructions that cannot be folded away.
669
670 void visitStoreInst(StoreInst &I);
671 void visitLoadInst(LoadInst &I);
672 void visitGetElementPtrInst(GetElementPtrInst &I);
673
674 void visitInvokeInst(InvokeInst &II) {
675 visitCallBase(CB&: II);
676 visitTerminator(TI&: II);
677 }
678
679 void visitCallBrInst(CallBrInst &CBI) {
680 visitCallBase(CB&: CBI);
681 visitTerminator(TI&: CBI);
682 }
683
684 void visitCallBase(CallBase &CB);
685 void visitResumeInst(ResumeInst &I) { /*returns void*/
686 }
687 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
688 }
689 void visitFenceInst(FenceInst &I) { /*returns void*/
690 }
691
692 void visitInstruction(Instruction &I);
693
694public:
695 void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC) {
696 FnPredicateInfo.insert(KV: {&F, std::make_unique<PredicateInfo>(args&: F, args&: DT, args&: AC)});
697 }
698
699 void visitCallInst(CallInst &I) { visitCallBase(CB&: I); }
700
701 bool markBlockExecutable(BasicBlock *BB);
702
703 const PredicateBase *getPredicateInfoFor(Instruction *I) {
704 auto It = FnPredicateInfo.find(Val: I->getParent()->getParent());
705 if (It == FnPredicateInfo.end())
706 return nullptr;
707 return It->second->getPredicateInfoFor(V: I);
708 }
709
710 SCCPInstVisitor(const DataLayout &DL,
711 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
712 LLVMContext &Ctx)
713 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
714
715 void trackValueOfGlobalVariable(GlobalVariable *GV) {
716 // We only track the contents of scalar globals.
717 if (GV->getValueType()->isSingleValueType()) {
718 ValueLatticeElement &IV = TrackedGlobals[GV];
719 IV.markConstant(V: GV->getInitializer());
720 }
721 }
722
723 void addTrackedFunction(Function *F) {
724 // Add an entry, F -> undef.
725 if (auto *STy = dyn_cast<StructType>(Val: F->getReturnType())) {
726 MRVFunctionsTracked.insert(Ptr: F);
727 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
728 TrackedMultipleRetVals.insert(
729 KV: std::make_pair(x: std::make_pair(x&: F, y&: i), y: ValueLatticeElement()));
730 } else if (!F->getReturnType()->isVoidTy())
731 TrackedRetVals.insert(KV: std::make_pair(x&: F, y: ValueLatticeElement()));
732 }
733
734 void addToMustPreserveReturnsInFunctions(Function *F) {
735 MustPreserveReturnsInFunctions.insert(Ptr: F);
736 }
737
738 bool mustPreserveReturn(Function *F) {
739 return MustPreserveReturnsInFunctions.count(Ptr: F);
740 }
741
742 void addArgumentTrackedFunction(Function *F) {
743 TrackingIncomingArguments.insert(Ptr: F);
744 }
745
746 bool isArgumentTrackedFunction(Function *F) {
747 return TrackingIncomingArguments.count(Ptr: F);
748 }
749
750 void solve();
751
752 bool resolvedUndef(Instruction &I);
753
754 bool resolvedUndefsIn(Function &F);
755
756 bool isBlockExecutable(BasicBlock *BB) const {
757 return BBExecutable.count(Ptr: BB);
758 }
759
760 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
761
762 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
763 std::vector<ValueLatticeElement> StructValues;
764 auto *STy = dyn_cast<StructType>(Val: V->getType());
765 assert(STy && "getStructLatticeValueFor() can be called only on structs");
766 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
767 auto I = StructValueState.find(Val: std::make_pair(x&: V, y&: i));
768 assert(I != StructValueState.end() && "Value not in valuemap!");
769 StructValues.push_back(x: I->second);
770 }
771 return StructValues;
772 }
773
774 void removeLatticeValueFor(Value *V) { ValueState.erase(Val: V); }
775
776 /// Invalidate the Lattice Value of \p Call and its users after specializing
777 /// the call. Then recompute it.
778 void resetLatticeValueFor(CallBase *Call) {
779 // Calls to void returning functions do not need invalidation.
780 Function *F = Call->getCalledFunction();
781 (void)F;
782 assert(!F->getReturnType()->isVoidTy() &&
783 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
784 "All non void specializations should be tracked");
785 invalidate(Call);
786 handleCallResult(CB&: *Call);
787 }
788
789 const ValueLatticeElement &getLatticeValueFor(Value *V) const {
790 assert(!V->getType()->isStructTy() &&
791 "Should use getStructLatticeValueFor");
792 DenseMap<Value *, ValueLatticeElement>::const_iterator I =
793 ValueState.find(Val: V);
794 assert(I != ValueState.end() &&
795 "V not found in ValueState nor Paramstate map!");
796 return I->second;
797 }
798
799 const MapVector<Function *, ValueLatticeElement> &getTrackedRetVals() {
800 return TrackedRetVals;
801 }
802
803 const DenseMap<GlobalVariable *, ValueLatticeElement> &getTrackedGlobals() {
804 return TrackedGlobals;
805 }
806
807 const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
808 return MRVFunctionsTracked;
809 }
810
811 void markOverdefined(Value *V) {
812 if (auto *STy = dyn_cast<StructType>(Val: V->getType()))
813 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
814 markOverdefined(IV&: getStructValueState(V, i), V);
815 else
816 markOverdefined(IV&: ValueState[V], V);
817 }
818
819 void trackValueOfArgument(Argument *A) {
820 if (A->getType()->isIntegerTy()) {
821 if (std::optional<ConstantRange> Range = A->getRange()) {
822 markConstantRange(IV&: ValueState[A], V: A, CR: *Range);
823 return;
824 }
825 }
826 // Assume nothing about the incoming arguments without range.
827 markOverdefined(V: A);
828 }
829
830 bool isStructLatticeConstant(Function *F, StructType *STy);
831
832 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
833
834 Constant *getConstantOrNull(Value *V) const;
835
836 SmallPtrSetImpl<Function *> &getArgumentTrackedFunctions() {
837 return TrackingIncomingArguments;
838 }
839
840 void setLatticeValueForSpecializationArguments(Function *F,
841 const SmallVectorImpl<ArgInfo> &Args);
842
843 void markFunctionUnreachable(Function *F) {
844 for (auto &BB : *F)
845 BBExecutable.erase(Ptr: &BB);
846 }
847
848 void solveWhileResolvedUndefsIn(Module &M) {
849 bool ResolvedUndefs = true;
850 while (ResolvedUndefs) {
851 solve();
852 ResolvedUndefs = false;
853 for (Function &F : M)
854 ResolvedUndefs |= resolvedUndefsIn(F);
855 }
856 }
857
858 void solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
859 bool ResolvedUndefs = true;
860 while (ResolvedUndefs) {
861 solve();
862 ResolvedUndefs = false;
863 for (Function *F : WorkList)
864 ResolvedUndefs |= resolvedUndefsIn(F&: *F);
865 }
866 }
867
868 void solveWhileResolvedUndefs() {
869 bool ResolvedUndefs = true;
870 while (ResolvedUndefs) {
871 solve();
872 ResolvedUndefs = false;
873 for (Value *V : Invalidated)
874 if (auto *I = dyn_cast<Instruction>(Val: V))
875 ResolvedUndefs |= resolvedUndef(I&: *I);
876 }
877 Invalidated.clear();
878 }
879};
880
881} // namespace llvm
882
883bool SCCPInstVisitor::markBlockExecutable(BasicBlock *BB) {
884 if (!BBExecutable.insert(Ptr: BB).second)
885 return false;
886 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
887 BBWorkList.push_back(Elt: BB); // Add the block to the work list!
888 return true;
889}
890
891void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
892 if (IV.isOverdefined()) {
893 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
894 OverdefinedInstWorkList.push_back(Elt: V);
895 return;
896 }
897 if (InstWorkList.empty() || InstWorkList.back() != V)
898 InstWorkList.push_back(Elt: V);
899}
900
901void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
902 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
903 pushToWorkList(IV, V);
904}
905
906bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
907 Constant *C, bool MayIncludeUndef) {
908 if (!IV.markConstant(V: C, MayIncludeUndef))
909 return false;
910 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
911 pushToWorkList(IV, V);
912 return true;
913}
914
915bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V,
916 const ConstantRange &CR) {
917 if (!IV.markConstantRange(NewR: CR))
918 return false;
919 LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n');
920 pushToWorkList(IV, V);
921 return true;
922}
923
924bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
925 if (!IV.markOverdefined())
926 return false;
927
928 LLVM_DEBUG(dbgs() << "markOverdefined: ";
929 if (auto *F = dyn_cast<Function>(V)) dbgs()
930 << "Function '" << F->getName() << "'\n";
931 else dbgs() << *V << '\n');
932 // Only instructions go on the work list
933 pushToWorkList(IV, V);
934 return true;
935}
936
937bool SCCPInstVisitor::isStructLatticeConstant(Function *F, StructType *STy) {
938 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
939 const auto &It = TrackedMultipleRetVals.find(Key: std::make_pair(x&: F, y&: i));
940 assert(It != TrackedMultipleRetVals.end());
941 ValueLatticeElement LV = It->second;
942 if (!SCCPSolver::isConstant(LV))
943 return false;
944 }
945 return true;
946}
947
948Constant *SCCPInstVisitor::getConstant(const ValueLatticeElement &LV,
949 Type *Ty) const {
950 if (LV.isConstant()) {
951 Constant *C = LV.getConstant();
952 assert(C->getType() == Ty && "Type mismatch");
953 return C;
954 }
955
956 if (LV.isConstantRange()) {
957 const auto &CR = LV.getConstantRange();
958 if (CR.getSingleElement())
959 return ConstantInt::get(Ty, V: *CR.getSingleElement());
960 }
961 return nullptr;
962}
963
964Constant *SCCPInstVisitor::getConstantOrNull(Value *V) const {
965 Constant *Const = nullptr;
966 if (V->getType()->isStructTy()) {
967 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
968 if (any_of(Range&: LVs, P: SCCPSolver::isOverdefined))
969 return nullptr;
970 std::vector<Constant *> ConstVals;
971 auto *ST = cast<StructType>(Val: V->getType());
972 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
973 ValueLatticeElement LV = LVs[I];
974 ConstVals.push_back(x: SCCPSolver::isConstant(LV)
975 ? getConstant(LV, Ty: ST->getElementType(N: I))
976 : UndefValue::get(T: ST->getElementType(N: I)));
977 }
978 Const = ConstantStruct::get(T: ST, V: ConstVals);
979 } else {
980 const ValueLatticeElement &LV = getLatticeValueFor(V);
981 if (SCCPSolver::isOverdefined(LV))
982 return nullptr;
983 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, Ty: V->getType())
984 : UndefValue::get(T: V->getType());
985 }
986 assert(Const && "Constant is nullptr here!");
987 return Const;
988}
989
990void SCCPInstVisitor::setLatticeValueForSpecializationArguments(Function *F,
991 const SmallVectorImpl<ArgInfo> &Args) {
992 assert(!Args.empty() && "Specialization without arguments");
993 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
994 "Functions should have the same number of arguments");
995
996 auto Iter = Args.begin();
997 Function::arg_iterator NewArg = F->arg_begin();
998 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
999 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
1000
1001 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
1002 << NewArg->getNameOrAsOperand() << "\n");
1003
1004 // Mark the argument constants in the new function
1005 // or copy the lattice state over from the old function.
1006 if (Iter != Args.end() && Iter->Formal == &*OldArg) {
1007 if (auto *STy = dyn_cast<StructType>(Val: NewArg->getType())) {
1008 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1009 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1010 NewValue.markConstant(V: Iter->Actual->getAggregateElement(Elt: I));
1011 }
1012 } else {
1013 ValueState[&*NewArg].markConstant(V: Iter->Actual);
1014 }
1015 ++Iter;
1016 } else {
1017 if (auto *STy = dyn_cast<StructType>(Val: NewArg->getType())) {
1018 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1019 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1020 NewValue = StructValueState[{&*OldArg, I}];
1021 }
1022 } else {
1023 ValueLatticeElement &NewValue = ValueState[&*NewArg];
1024 NewValue = ValueState[&*OldArg];
1025 }
1026 }
1027 }
1028}
1029
1030void SCCPInstVisitor::visitInstruction(Instruction &I) {
1031 // All the instructions we don't do any special handling for just
1032 // go to overdefined.
1033 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
1034 markOverdefined(V: &I);
1035}
1036
1037bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
1038 ValueLatticeElement MergeWithV,
1039 ValueLatticeElement::MergeOptions Opts) {
1040 if (IV.mergeIn(RHS: MergeWithV, Opts)) {
1041 pushToWorkList(IV, V);
1042 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
1043 << IV << "\n");
1044 return true;
1045 }
1046 return false;
1047}
1048
1049bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
1050 if (!KnownFeasibleEdges.insert(V: Edge(Source, Dest)).second)
1051 return false; // This edge is already known to be executable!
1052
1053 if (!markBlockExecutable(BB: Dest)) {
1054 // If the destination is already executable, we just made an *edge*
1055 // feasible that wasn't before. Revisit the PHI nodes in the block
1056 // because they have potentially new operands.
1057 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
1058 << " -> " << Dest->getName() << '\n');
1059
1060 for (PHINode &PN : Dest->phis())
1061 visitPHINode(I&: PN);
1062 }
1063 return true;
1064}
1065
1066// getFeasibleSuccessors - Return a vector of booleans to indicate which
1067// successors are reachable from a given terminator instruction.
1068void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1069 SmallVectorImpl<bool> &Succs) {
1070 Succs.resize(N: TI.getNumSuccessors());
1071 if (auto *BI = dyn_cast<BranchInst>(Val: &TI)) {
1072 if (BI->isUnconditional()) {
1073 Succs[0] = true;
1074 return;
1075 }
1076
1077 ValueLatticeElement BCValue = getValueState(V: BI->getCondition());
1078 ConstantInt *CI = getConstantInt(IV: BCValue, Ty: BI->getCondition()->getType());
1079 if (!CI) {
1080 // Overdefined condition variables, and branches on unfoldable constant
1081 // conditions, mean the branch could go either way.
1082 if (!BCValue.isUnknownOrUndef())
1083 Succs[0] = Succs[1] = true;
1084 return;
1085 }
1086
1087 // Constant condition variables mean the branch can only go a single way.
1088 Succs[CI->isZero()] = true;
1089 return;
1090 }
1091
1092 // We cannot analyze special terminators, so consider all successors
1093 // executable.
1094 if (TI.isSpecialTerminator()) {
1095 Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true);
1096 return;
1097 }
1098
1099 if (auto *SI = dyn_cast<SwitchInst>(Val: &TI)) {
1100 if (!SI->getNumCases()) {
1101 Succs[0] = true;
1102 return;
1103 }
1104 const ValueLatticeElement &SCValue = getValueState(V: SI->getCondition());
1105 if (ConstantInt *CI =
1106 getConstantInt(IV: SCValue, Ty: SI->getCondition()->getType())) {
1107 Succs[SI->findCaseValue(C: CI)->getSuccessorIndex()] = true;
1108 return;
1109 }
1110
1111 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1112 // is ready.
1113 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1114 const ConstantRange &Range = SCValue.getConstantRange();
1115 unsigned ReachableCaseCount = 0;
1116 for (const auto &Case : SI->cases()) {
1117 const APInt &CaseValue = Case.getCaseValue()->getValue();
1118 if (Range.contains(Val: CaseValue)) {
1119 Succs[Case.getSuccessorIndex()] = true;
1120 ++ReachableCaseCount;
1121 }
1122 }
1123
1124 Succs[SI->case_default()->getSuccessorIndex()] =
1125 Range.isSizeLargerThan(MaxSize: ReachableCaseCount);
1126 return;
1127 }
1128
1129 // Overdefined or unknown condition? All destinations are executable!
1130 if (!SCValue.isUnknownOrUndef())
1131 Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true);
1132 return;
1133 }
1134
1135 // In case of indirect branch and its address is a blockaddress, we mark
1136 // the target as executable.
1137 if (auto *IBR = dyn_cast<IndirectBrInst>(Val: &TI)) {
1138 // Casts are folded by visitCastInst.
1139 ValueLatticeElement IBRValue = getValueState(V: IBR->getAddress());
1140 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1141 Val: getConstant(LV: IBRValue, Ty: IBR->getAddress()->getType()));
1142 if (!Addr) { // Overdefined or unknown condition?
1143 // All destinations are executable!
1144 if (!IBRValue.isUnknownOrUndef())
1145 Succs.assign(NumElts: TI.getNumSuccessors(), Elt: true);
1146 return;
1147 }
1148
1149 BasicBlock *T = Addr->getBasicBlock();
1150 assert(Addr->getFunction() == T->getParent() &&
1151 "Block address of a different function ?");
1152 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1153 // This is the target.
1154 if (IBR->getDestination(i) == T) {
1155 Succs[i] = true;
1156 return;
1157 }
1158 }
1159
1160 // If we didn't find our destination in the IBR successor list, then we
1161 // have undefined behavior. Its ok to assume no successor is executable.
1162 return;
1163 }
1164
1165 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1166 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1167}
1168
1169// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1170// block to the 'To' basic block is currently feasible.
1171bool SCCPInstVisitor::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
1172 // Check if we've called markEdgeExecutable on the edge yet. (We could
1173 // be more aggressive and try to consider edges which haven't been marked
1174 // yet, but there isn't any need.)
1175 return KnownFeasibleEdges.count(V: Edge(From, To));
1176}
1177
1178// visit Implementations - Something changed in this instruction, either an
1179// operand made a transition, or the instruction is newly executable. Change
1180// the value type of I to reflect these changes if appropriate. This method
1181// makes sure to do the following actions:
1182//
1183// 1. If a phi node merges two constants in, and has conflicting value coming
1184// from different branches, or if the PHI node merges in an overdefined
1185// value, then the PHI node becomes overdefined.
1186// 2. If a phi node merges only constants in, and they all agree on value, the
1187// PHI node becomes a constant value equal to that.
1188// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1189// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1190// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1191// 6. If a conditional branch has a value that is constant, make the selected
1192// destination executable
1193// 7. If a conditional branch has a value that is overdefined, make all
1194// successors executable.
1195void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1196 // If this PN returns a struct, just mark the result overdefined.
1197 // TODO: We could do a lot better than this if code actually uses this.
1198 if (PN.getType()->isStructTy())
1199 return (void)markOverdefined(V: &PN);
1200
1201 if (getValueState(V: &PN).isOverdefined())
1202 return; // Quick exit
1203
1204 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1205 // and slow us down a lot. Just mark them overdefined.
1206 if (PN.getNumIncomingValues() > 64)
1207 return (void)markOverdefined(V: &PN);
1208
1209 unsigned NumActiveIncoming = 0;
1210
1211 // Look at all of the executable operands of the PHI node. If any of them
1212 // are overdefined, the PHI becomes overdefined as well. If they are all
1213 // constant, and they agree with each other, the PHI becomes the identical
1214 // constant. If they are constant and don't agree, the PHI is a constant
1215 // range. If there are no executable operands, the PHI remains unknown.
1216 ValueLatticeElement PhiState = getValueState(V: &PN);
1217 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1218 if (!isEdgeFeasible(From: PN.getIncomingBlock(i), To: PN.getParent()))
1219 continue;
1220
1221 ValueLatticeElement IV = getValueState(V: PN.getIncomingValue(i));
1222 PhiState.mergeIn(RHS: IV);
1223 NumActiveIncoming++;
1224 if (PhiState.isOverdefined())
1225 break;
1226 }
1227
1228 // We allow up to 1 range extension per active incoming value and one
1229 // additional extension. Note that we manually adjust the number of range
1230 // extensions to match the number of active incoming values. This helps to
1231 // limit multiple extensions caused by the same incoming value, if other
1232 // incoming values are equal.
1233 mergeInValue(V: &PN, MergeWithV: PhiState,
1234 Opts: ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1235 NumActiveIncoming + 1));
1236 ValueLatticeElement &PhiStateRef = getValueState(V: &PN);
1237 PhiStateRef.setNumRangeExtensions(
1238 std::max(a: NumActiveIncoming, b: PhiStateRef.getNumRangeExtensions()));
1239}
1240
1241void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1242 if (I.getNumOperands() == 0)
1243 return; // ret void
1244
1245 Function *F = I.getParent()->getParent();
1246 Value *ResultOp = I.getOperand(i_nocapture: 0);
1247
1248 // If we are tracking the return value of this function, merge it in.
1249 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1250 auto TFRVI = TrackedRetVals.find(Key: F);
1251 if (TFRVI != TrackedRetVals.end()) {
1252 mergeInValue(IV&: TFRVI->second, V: F, MergeWithV: getValueState(V: ResultOp));
1253 return;
1254 }
1255 }
1256
1257 // Handle functions that return multiple values.
1258 if (!TrackedMultipleRetVals.empty()) {
1259 if (auto *STy = dyn_cast<StructType>(Val: ResultOp->getType()))
1260 if (MRVFunctionsTracked.count(Ptr: F))
1261 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1262 mergeInValue(IV&: TrackedMultipleRetVals[std::make_pair(x&: F, y&: i)], V: F,
1263 MergeWithV: getStructValueState(V: ResultOp, i));
1264 }
1265}
1266
1267void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1268 SmallVector<bool, 16> SuccFeasible;
1269 getFeasibleSuccessors(TI, Succs&: SuccFeasible);
1270
1271 BasicBlock *BB = TI.getParent();
1272
1273 // Mark all feasible successors executable.
1274 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1275 if (SuccFeasible[i])
1276 markEdgeExecutable(Source: BB, Dest: TI.getSuccessor(Idx: i));
1277}
1278
1279void SCCPInstVisitor::visitCastInst(CastInst &I) {
1280 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1281 // discover a concrete value later.
1282 if (ValueState[&I].isOverdefined())
1283 return;
1284
1285 ValueLatticeElement OpSt = getValueState(V: I.getOperand(i_nocapture: 0));
1286 if (OpSt.isUnknownOrUndef())
1287 return;
1288
1289 if (Constant *OpC = getConstant(LV: OpSt, Ty: I.getOperand(i_nocapture: 0)->getType())) {
1290 // Fold the constant as we build.
1291 if (Constant *C =
1292 ConstantFoldCastOperand(Opcode: I.getOpcode(), C: OpC, DestTy: I.getType(), DL))
1293 return (void)markConstant(V: &I, C);
1294 }
1295
1296 if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
1297 auto &LV = getValueState(V: &I);
1298 ConstantRange OpRange = getConstantRange(LV: OpSt, Ty: I.getSrcTy());
1299
1300 Type *DestTy = I.getDestTy();
1301 // Vectors where all elements have the same known constant range are treated
1302 // as a single constant range in the lattice. When bitcasting such vectors,
1303 // there is a mis-match between the width of the lattice value (single
1304 // constant range) and the original operands (vector). Go to overdefined in
1305 // that case.
1306 if (I.getOpcode() == Instruction::BitCast &&
1307 I.getOperand(i_nocapture: 0)->getType()->isVectorTy() &&
1308 OpRange.getBitWidth() < DL.getTypeSizeInBits(Ty: DestTy))
1309 return (void)markOverdefined(V: &I);
1310
1311 ConstantRange Res =
1312 OpRange.castOp(CastOp: I.getOpcode(), BitWidth: DL.getTypeSizeInBits(Ty: DestTy));
1313 mergeInValue(IV&: LV, V: &I, MergeWithV: ValueLatticeElement::getRange(CR: Res));
1314 } else
1315 markOverdefined(V: &I);
1316}
1317
1318void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1319 const WithOverflowInst *WO,
1320 unsigned Idx) {
1321 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1322 ValueLatticeElement L = getValueState(V: LHS);
1323 ValueLatticeElement R = getValueState(V: RHS);
1324 addAdditionalUser(V: LHS, U: &EVI);
1325 addAdditionalUser(V: RHS, U: &EVI);
1326 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1327 return; // Wait to resolve.
1328
1329 Type *Ty = LHS->getType();
1330 ConstantRange LR = getConstantRange(LV: L, Ty);
1331 ConstantRange RR = getConstantRange(LV: R, Ty);
1332 if (Idx == 0) {
1333 ConstantRange Res = LR.binaryOp(BinOp: WO->getBinaryOp(), Other: RR);
1334 mergeInValue(V: &EVI, MergeWithV: ValueLatticeElement::getRange(CR: Res));
1335 } else {
1336 assert(Idx == 1 && "Index can only be 0 or 1");
1337 ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1338 BinOp: WO->getBinaryOp(), Other: RR, NoWrapKind: WO->getNoWrapKind());
1339 if (NWRegion.contains(CR: LR))
1340 return (void)markConstant(V: &EVI, C: ConstantInt::getFalse(Ty: EVI.getType()));
1341 markOverdefined(V: &EVI);
1342 }
1343}
1344
1345void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1346 // If this returns a struct, mark all elements over defined, we don't track
1347 // structs in structs.
1348 if (EVI.getType()->isStructTy())
1349 return (void)markOverdefined(V: &EVI);
1350
1351 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1352 // discover a concrete value later.
1353 if (ValueState[&EVI].isOverdefined())
1354 return (void)markOverdefined(V: &EVI);
1355
1356 // If this is extracting from more than one level of struct, we don't know.
1357 if (EVI.getNumIndices() != 1)
1358 return (void)markOverdefined(V: &EVI);
1359
1360 Value *AggVal = EVI.getAggregateOperand();
1361 if (AggVal->getType()->isStructTy()) {
1362 unsigned i = *EVI.idx_begin();
1363 if (auto *WO = dyn_cast<WithOverflowInst>(Val: AggVal))
1364 return handleExtractOfWithOverflow(EVI, WO, Idx: i);
1365 ValueLatticeElement EltVal = getStructValueState(V: AggVal, i);
1366 mergeInValue(IV&: getValueState(V: &EVI), V: &EVI, MergeWithV: EltVal);
1367 } else {
1368 // Otherwise, must be extracting from an array.
1369 return (void)markOverdefined(V: &EVI);
1370 }
1371}
1372
1373void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1374 auto *STy = dyn_cast<StructType>(Val: IVI.getType());
1375 if (!STy)
1376 return (void)markOverdefined(V: &IVI);
1377
1378 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1379 // discover a concrete value later.
1380 if (SCCPSolver::isOverdefined(LV: ValueState[&IVI]))
1381 return (void)markOverdefined(V: &IVI);
1382
1383 // If this has more than one index, we can't handle it, drive all results to
1384 // undef.
1385 if (IVI.getNumIndices() != 1)
1386 return (void)markOverdefined(V: &IVI);
1387
1388 Value *Aggr = IVI.getAggregateOperand();
1389 unsigned Idx = *IVI.idx_begin();
1390
1391 // Compute the result based on what we're inserting.
1392 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1393 // This passes through all values that aren't the inserted element.
1394 if (i != Idx) {
1395 ValueLatticeElement EltVal = getStructValueState(V: Aggr, i);
1396 mergeInValue(IV&: getStructValueState(V: &IVI, i), V: &IVI, MergeWithV: EltVal);
1397 continue;
1398 }
1399
1400 Value *Val = IVI.getInsertedValueOperand();
1401 if (Val->getType()->isStructTy())
1402 // We don't track structs in structs.
1403 markOverdefined(IV&: getStructValueState(V: &IVI, i), V: &IVI);
1404 else {
1405 ValueLatticeElement InVal = getValueState(V: Val);
1406 mergeInValue(IV&: getStructValueState(V: &IVI, i), V: &IVI, MergeWithV: InVal);
1407 }
1408 }
1409}
1410
1411void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1412 // If this select returns a struct, just mark the result overdefined.
1413 // TODO: We could do a lot better than this if code actually uses this.
1414 if (I.getType()->isStructTy())
1415 return (void)markOverdefined(V: &I);
1416
1417 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1418 // discover a concrete value later.
1419 if (ValueState[&I].isOverdefined())
1420 return (void)markOverdefined(V: &I);
1421
1422 ValueLatticeElement CondValue = getValueState(V: I.getCondition());
1423 if (CondValue.isUnknownOrUndef())
1424 return;
1425
1426 if (ConstantInt *CondCB =
1427 getConstantInt(IV: CondValue, Ty: I.getCondition()->getType())) {
1428 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1429 mergeInValue(V: &I, MergeWithV: getValueState(V: OpVal));
1430 return;
1431 }
1432
1433 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1434 // See if we can produce something better than overdefined based on the T/F
1435 // value.
1436 ValueLatticeElement TVal = getValueState(V: I.getTrueValue());
1437 ValueLatticeElement FVal = getValueState(V: I.getFalseValue());
1438
1439 bool Changed = ValueState[&I].mergeIn(RHS: TVal);
1440 Changed |= ValueState[&I].mergeIn(RHS: FVal);
1441 if (Changed)
1442 pushToWorkListMsg(IV&: ValueState[&I], V: &I);
1443}
1444
1445// Handle Unary Operators.
1446void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1447 ValueLatticeElement V0State = getValueState(V: I.getOperand(i: 0));
1448
1449 ValueLatticeElement &IV = ValueState[&I];
1450 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1451 // discover a concrete value later.
1452 if (SCCPSolver::isOverdefined(LV: IV))
1453 return (void)markOverdefined(V: &I);
1454
1455 // If something is unknown/undef, wait for it to resolve.
1456 if (V0State.isUnknownOrUndef())
1457 return;
1458
1459 if (SCCPSolver::isConstant(LV: V0State))
1460 if (Constant *C = ConstantFoldUnaryOpOperand(
1461 Opcode: I.getOpcode(), Op: getConstant(LV: V0State, Ty: I.getType()), DL))
1462 return (void)markConstant(IV, V: &I, C);
1463
1464 markOverdefined(V: &I);
1465}
1466
1467void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1468 // If this freeze returns a struct, just mark the result overdefined.
1469 // TODO: We could do a lot better than this.
1470 if (I.getType()->isStructTy())
1471 return (void)markOverdefined(V: &I);
1472
1473 ValueLatticeElement V0State = getValueState(V: I.getOperand(i_nocapture: 0));
1474 ValueLatticeElement &IV = ValueState[&I];
1475 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1476 // discover a concrete value later.
1477 if (SCCPSolver::isOverdefined(LV: IV))
1478 return (void)markOverdefined(V: &I);
1479
1480 // If something is unknown/undef, wait for it to resolve.
1481 if (V0State.isUnknownOrUndef())
1482 return;
1483
1484 if (SCCPSolver::isConstant(LV: V0State) &&
1485 isGuaranteedNotToBeUndefOrPoison(V: getConstant(LV: V0State, Ty: I.getType())))
1486 return (void)markConstant(IV, V: &I, C: getConstant(LV: V0State, Ty: I.getType()));
1487
1488 markOverdefined(V: &I);
1489}
1490
1491// Handle Binary Operators.
1492void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1493 ValueLatticeElement V1State = getValueState(V: I.getOperand(i: 0));
1494 ValueLatticeElement V2State = getValueState(V: I.getOperand(i: 1));
1495
1496 ValueLatticeElement &IV = ValueState[&I];
1497 if (IV.isOverdefined())
1498 return;
1499
1500 // If something is undef, wait for it to resolve.
1501 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1502 return;
1503
1504 if (V1State.isOverdefined() && V2State.isOverdefined())
1505 return (void)markOverdefined(V: &I);
1506
1507 // If either of the operands is a constant, try to fold it to a constant.
1508 // TODO: Use information from notconstant better.
1509 if ((V1State.isConstant() || V2State.isConstant())) {
1510 Value *V1 = SCCPSolver::isConstant(LV: V1State)
1511 ? getConstant(LV: V1State, Ty: I.getOperand(i: 0)->getType())
1512 : I.getOperand(i: 0);
1513 Value *V2 = SCCPSolver::isConstant(LV: V2State)
1514 ? getConstant(LV: V2State, Ty: I.getOperand(i: 1)->getType())
1515 : I.getOperand(i: 1);
1516 Value *R = simplifyBinOp(Opcode: I.getOpcode(), LHS: V1, RHS: V2, Q: SimplifyQuery(DL));
1517 auto *C = dyn_cast_or_null<Constant>(Val: R);
1518 if (C) {
1519 // Conservatively assume that the result may be based on operands that may
1520 // be undef. Note that we use mergeInValue to combine the constant with
1521 // the existing lattice value for I, as different constants might be found
1522 // after one of the operands go to overdefined, e.g. due to one operand
1523 // being a special floating value.
1524 ValueLatticeElement NewV;
1525 NewV.markConstant(V: C, /*MayIncludeUndef=*/true);
1526 return (void)mergeInValue(V: &I, MergeWithV: NewV);
1527 }
1528 }
1529
1530 // Only use ranges for binary operators on integers.
1531 if (!I.getType()->isIntegerTy())
1532 return markOverdefined(V: &I);
1533
1534 // Try to simplify to a constant range.
1535 ConstantRange A = getConstantRange(LV: V1State, Ty: I.getType());
1536 ConstantRange B = getConstantRange(LV: V2State, Ty: I.getType());
1537
1538 auto *BO = cast<BinaryOperator>(Val: &I);
1539 ConstantRange R = ConstantRange::getEmpty(BitWidth: I.getType()->getScalarSizeInBits());
1540 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Val: BO))
1541 R = A.overflowingBinaryOp(BinOp: BO->getOpcode(), Other: B, NoWrapKind: OBO->getNoWrapKind());
1542 else
1543 R = A.binaryOp(BinOp: BO->getOpcode(), Other: B);
1544 mergeInValue(V: &I, MergeWithV: ValueLatticeElement::getRange(CR: R));
1545
1546 // TODO: Currently we do not exploit special values that produce something
1547 // better than overdefined with an overdefined operand for vector or floating
1548 // point types, like and <4 x i32> overdefined, zeroinitializer.
1549}
1550
1551// Handle ICmpInst instruction.
1552void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1553 // Do not cache this lookup, getValueState calls later in the function might
1554 // invalidate the reference.
1555 if (SCCPSolver::isOverdefined(LV: ValueState[&I]))
1556 return (void)markOverdefined(V: &I);
1557
1558 Value *Op1 = I.getOperand(i_nocapture: 0);
1559 Value *Op2 = I.getOperand(i_nocapture: 1);
1560
1561 // For parameters, use ParamState which includes constant range info if
1562 // available.
1563 auto V1State = getValueState(V: Op1);
1564 auto V2State = getValueState(V: Op2);
1565
1566 Constant *C = V1State.getCompare(Pred: I.getPredicate(), Ty: I.getType(), Other: V2State, DL);
1567 if (C) {
1568 ValueLatticeElement CV;
1569 CV.markConstant(V: C);
1570 mergeInValue(V: &I, MergeWithV: CV);
1571 return;
1572 }
1573
1574 // If operands are still unknown, wait for it to resolve.
1575 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1576 !SCCPSolver::isConstant(LV: ValueState[&I]))
1577 return;
1578
1579 markOverdefined(V: &I);
1580}
1581
1582// Handle getelementptr instructions. If all operands are constants then we
1583// can turn this into a getelementptr ConstantExpr.
1584void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1585 if (SCCPSolver::isOverdefined(LV: ValueState[&I]))
1586 return (void)markOverdefined(V: &I);
1587
1588 SmallVector<Constant *, 8> Operands;
1589 Operands.reserve(N: I.getNumOperands());
1590
1591 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1592 ValueLatticeElement State = getValueState(V: I.getOperand(i_nocapture: i));
1593 if (State.isUnknownOrUndef())
1594 return; // Operands are not resolved yet.
1595
1596 if (SCCPSolver::isOverdefined(LV: State))
1597 return (void)markOverdefined(V: &I);
1598
1599 if (Constant *C = getConstant(LV: State, Ty: I.getOperand(i_nocapture: i)->getType())) {
1600 Operands.push_back(Elt: C);
1601 continue;
1602 }
1603
1604 return (void)markOverdefined(V: &I);
1605 }
1606
1607 if (Constant *C = ConstantFoldInstOperands(I: &I, Ops: Operands, DL))
1608 markConstant(V: &I, C);
1609}
1610
1611void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1612 // If this store is of a struct, ignore it.
1613 if (SI.getOperand(i_nocapture: 0)->getType()->isStructTy())
1614 return;
1615
1616 if (TrackedGlobals.empty() || !isa<GlobalVariable>(Val: SI.getOperand(i_nocapture: 1)))
1617 return;
1618
1619 GlobalVariable *GV = cast<GlobalVariable>(Val: SI.getOperand(i_nocapture: 1));
1620 auto I = TrackedGlobals.find(Val: GV);
1621 if (I == TrackedGlobals.end())
1622 return;
1623
1624 // Get the value we are storing into the global, then merge it.
1625 mergeInValue(IV&: I->second, V: GV, MergeWithV: getValueState(V: SI.getOperand(i_nocapture: 0)),
1626 Opts: ValueLatticeElement::MergeOptions().setCheckWiden(false));
1627 if (I->second.isOverdefined())
1628 TrackedGlobals.erase(I); // No need to keep tracking this!
1629}
1630
1631static ValueLatticeElement getValueFromMetadata(const Instruction *I) {
1632 if (I->getType()->isIntegerTy()) {
1633 if (MDNode *Ranges = I->getMetadata(KindID: LLVMContext::MD_range))
1634 return ValueLatticeElement::getRange(
1635 CR: getConstantRangeFromMetadata(RangeMD: *Ranges));
1636
1637 if (const auto *CB = dyn_cast<CallBase>(Val: I))
1638 if (std::optional<ConstantRange> Range = CB->getRange())
1639 return ValueLatticeElement::getRange(CR: *Range);
1640 }
1641 if (I->hasMetadata(KindID: LLVMContext::MD_nonnull))
1642 return ValueLatticeElement::getNot(
1643 C: ConstantPointerNull::get(T: cast<PointerType>(Val: I->getType())));
1644 return ValueLatticeElement::getOverdefined();
1645}
1646
1647// Handle load instructions. If the operand is a constant pointer to a constant
1648// global, we can replace the load with the loaded constant value!
1649void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1650 // If this load is of a struct or the load is volatile, just mark the result
1651 // as overdefined.
1652 if (I.getType()->isStructTy() || I.isVolatile())
1653 return (void)markOverdefined(V: &I);
1654
1655 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1656 // discover a concrete value later.
1657 if (ValueState[&I].isOverdefined())
1658 return (void)markOverdefined(V: &I);
1659
1660 ValueLatticeElement PtrVal = getValueState(V: I.getOperand(i_nocapture: 0));
1661 if (PtrVal.isUnknownOrUndef())
1662 return; // The pointer is not resolved yet!
1663
1664 ValueLatticeElement &IV = ValueState[&I];
1665
1666 if (SCCPSolver::isConstant(LV: PtrVal)) {
1667 Constant *Ptr = getConstant(LV: PtrVal, Ty: I.getOperand(i_nocapture: 0)->getType());
1668
1669 // load null is undefined.
1670 if (isa<ConstantPointerNull>(Val: Ptr)) {
1671 if (NullPointerIsDefined(F: I.getFunction(), AS: I.getPointerAddressSpace()))
1672 return (void)markOverdefined(IV, V: &I);
1673 else
1674 return;
1675 }
1676
1677 // Transform load (constant global) into the value loaded.
1678 if (auto *GV = dyn_cast<GlobalVariable>(Val: Ptr)) {
1679 if (!TrackedGlobals.empty()) {
1680 // If we are tracking this global, merge in the known value for it.
1681 auto It = TrackedGlobals.find(Val: GV);
1682 if (It != TrackedGlobals.end()) {
1683 mergeInValue(IV, V: &I, MergeWithV: It->second, Opts: getMaxWidenStepsOpts());
1684 return;
1685 }
1686 }
1687 }
1688
1689 // Transform load from a constant into a constant if possible.
1690 if (Constant *C = ConstantFoldLoadFromConstPtr(C: Ptr, Ty: I.getType(), DL))
1691 return (void)markConstant(IV, V: &I, C);
1692 }
1693
1694 // Fall back to metadata.
1695 mergeInValue(V: &I, MergeWithV: getValueFromMetadata(I: &I));
1696}
1697
1698void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1699 handleCallResult(CB);
1700 handleCallArguments(CB);
1701}
1702
1703void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1704 Function *F = CB.getCalledFunction();
1705
1706 // Void return and not tracking callee, just bail.
1707 if (CB.getType()->isVoidTy())
1708 return;
1709
1710 // Always mark struct return as overdefined.
1711 if (CB.getType()->isStructTy())
1712 return (void)markOverdefined(V: &CB);
1713
1714 // Otherwise, if we have a single return value case, and if the function is
1715 // a declaration, maybe we can constant fold it.
1716 if (F && F->isDeclaration() && canConstantFoldCallTo(Call: &CB, F)) {
1717 SmallVector<Constant *, 8> Operands;
1718 for (const Use &A : CB.args()) {
1719 if (A.get()->getType()->isStructTy())
1720 return markOverdefined(V: &CB); // Can't handle struct args.
1721 if (A.get()->getType()->isMetadataTy())
1722 continue; // Carried in CB, not allowed in Operands.
1723 ValueLatticeElement State = getValueState(V: A);
1724
1725 if (State.isUnknownOrUndef())
1726 return; // Operands are not resolved yet.
1727 if (SCCPSolver::isOverdefined(LV: State))
1728 return (void)markOverdefined(V: &CB);
1729 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1730 Operands.push_back(Elt: getConstant(LV: State, Ty: A->getType()));
1731 }
1732
1733 if (SCCPSolver::isOverdefined(LV: getValueState(V: &CB)))
1734 return (void)markOverdefined(V: &CB);
1735
1736 // If we can constant fold this, mark the result of the call as a
1737 // constant.
1738 if (Constant *C = ConstantFoldCall(Call: &CB, F, Operands, TLI: &GetTLI(*F)))
1739 return (void)markConstant(V: &CB, C);
1740 }
1741
1742 // Fall back to metadata.
1743 mergeInValue(V: &CB, MergeWithV: getValueFromMetadata(I: &CB));
1744}
1745
1746void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1747 Function *F = CB.getCalledFunction();
1748 // If this is a local function that doesn't have its address taken, mark its
1749 // entry block executable and merge in the actual arguments to the call into
1750 // the formal arguments of the function.
1751 if (TrackingIncomingArguments.count(Ptr: F)) {
1752 markBlockExecutable(BB: &F->front());
1753
1754 // Propagate information from this call site into the callee.
1755 auto CAI = CB.arg_begin();
1756 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1757 ++AI, ++CAI) {
1758 // If this argument is byval, and if the function is not readonly, there
1759 // will be an implicit copy formed of the input aggregate.
1760 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1761 markOverdefined(V: &*AI);
1762 continue;
1763 }
1764
1765 if (auto *STy = dyn_cast<StructType>(Val: AI->getType())) {
1766 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1767 ValueLatticeElement CallArg = getStructValueState(V: *CAI, i);
1768 mergeInValue(IV&: getStructValueState(V: &*AI, i), V: &*AI, MergeWithV: CallArg,
1769 Opts: getMaxWidenStepsOpts());
1770 }
1771 } else
1772 mergeInValue(V: &*AI, MergeWithV: getValueState(V: *CAI), Opts: getMaxWidenStepsOpts());
1773 }
1774 }
1775}
1776
1777void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1778 Function *F = CB.getCalledFunction();
1779
1780 if (auto *II = dyn_cast<IntrinsicInst>(Val: &CB)) {
1781 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1782 if (ValueState[&CB].isOverdefined())
1783 return;
1784
1785 Value *CopyOf = CB.getOperand(i_nocapture: 0);
1786 ValueLatticeElement CopyOfVal = getValueState(V: CopyOf);
1787 const auto *PI = getPredicateInfoFor(I: &CB);
1788 assert(PI && "Missing predicate info for ssa.copy");
1789
1790 const std::optional<PredicateConstraint> &Constraint =
1791 PI->getConstraint();
1792 if (!Constraint) {
1793 mergeInValue(IV&: ValueState[&CB], V: &CB, MergeWithV: CopyOfVal);
1794 return;
1795 }
1796
1797 CmpInst::Predicate Pred = Constraint->Predicate;
1798 Value *OtherOp = Constraint->OtherOp;
1799
1800 // Wait until OtherOp is resolved.
1801 if (getValueState(V: OtherOp).isUnknown()) {
1802 addAdditionalUser(V: OtherOp, U: &CB);
1803 return;
1804 }
1805
1806 ValueLatticeElement CondVal = getValueState(V: OtherOp);
1807 ValueLatticeElement &IV = ValueState[&CB];
1808 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1809 auto ImposedCR =
1810 ConstantRange::getFull(BitWidth: DL.getTypeSizeInBits(Ty: CopyOf->getType()));
1811
1812 // Get the range imposed by the condition.
1813 if (CondVal.isConstantRange())
1814 ImposedCR = ConstantRange::makeAllowedICmpRegion(
1815 Pred, Other: CondVal.getConstantRange());
1816
1817 // Combine range info for the original value with the new range from the
1818 // condition.
1819 auto CopyOfCR = getConstantRange(LV: CopyOfVal, Ty: CopyOf->getType());
1820 auto NewCR = ImposedCR.intersectWith(CR: CopyOfCR);
1821 // If the existing information is != x, do not use the information from
1822 // a chained predicate, as the != x information is more likely to be
1823 // helpful in practice.
1824 if (!CopyOfCR.contains(CR: NewCR) && CopyOfCR.getSingleMissingElement())
1825 NewCR = CopyOfCR;
1826
1827 // The new range is based on a branch condition. That guarantees that
1828 // neither of the compare operands can be undef in the branch targets,
1829 // unless we have conditions that are always true/false (e.g. icmp ule
1830 // i32, %a, i32_max). For the latter overdefined/empty range will be
1831 // inferred, but the branch will get folded accordingly anyways.
1832 addAdditionalUser(V: OtherOp, U: &CB);
1833 mergeInValue(
1834 IV, V: &CB,
1835 MergeWithV: ValueLatticeElement::getRange(CR: NewCR, /*MayIncludeUndef*/ false));
1836 return;
1837 } else if (Pred == CmpInst::ICMP_EQ &&
1838 (CondVal.isConstant() || CondVal.isNotConstant())) {
1839 // For non-integer values or integer constant expressions, only
1840 // propagate equal constants or not-constants.
1841 addAdditionalUser(V: OtherOp, U: &CB);
1842 mergeInValue(IV, V: &CB, MergeWithV: CondVal);
1843 return;
1844 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1845 // Propagate inequalities.
1846 addAdditionalUser(V: OtherOp, U: &CB);
1847 mergeInValue(IV, V: &CB,
1848 MergeWithV: ValueLatticeElement::getNot(C: CondVal.getConstant()));
1849 return;
1850 }
1851
1852 return (void)mergeInValue(IV, V: &CB, MergeWithV: CopyOfVal);
1853 }
1854
1855 if (ConstantRange::isIntrinsicSupported(IntrinsicID: II->getIntrinsicID())) {
1856 // Compute result range for intrinsics supported by ConstantRange.
1857 // Do this even if we don't know a range for all operands, as we may
1858 // still know something about the result range, e.g. of abs(x).
1859 SmallVector<ConstantRange, 2> OpRanges;
1860 for (Value *Op : II->args()) {
1861 const ValueLatticeElement &State = getValueState(V: Op);
1862 if (State.isUnknownOrUndef())
1863 return;
1864 OpRanges.push_back(Elt: getConstantRange(LV: State, Ty: Op->getType()));
1865 }
1866
1867 ConstantRange Result =
1868 ConstantRange::intrinsic(IntrinsicID: II->getIntrinsicID(), Ops: OpRanges);
1869 return (void)mergeInValue(V: II, MergeWithV: ValueLatticeElement::getRange(CR: Result));
1870 }
1871 }
1872
1873 // The common case is that we aren't tracking the callee, either because we
1874 // are not doing interprocedural analysis or the callee is indirect, or is
1875 // external. Handle these cases first.
1876 if (!F || F->isDeclaration())
1877 return handleCallOverdefined(CB);
1878
1879 // If this is a single/zero retval case, see if we're tracking the function.
1880 if (auto *STy = dyn_cast<StructType>(Val: F->getReturnType())) {
1881 if (!MRVFunctionsTracked.count(Ptr: F))
1882 return handleCallOverdefined(CB); // Not tracking this callee.
1883
1884 // If we are tracking this callee, propagate the result of the function
1885 // into this call site.
1886 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1887 mergeInValue(IV&: getStructValueState(V: &CB, i), V: &CB,
1888 MergeWithV: TrackedMultipleRetVals[std::make_pair(x&: F, y&: i)],
1889 Opts: getMaxWidenStepsOpts());
1890 } else {
1891 auto TFRVI = TrackedRetVals.find(Key: F);
1892 if (TFRVI == TrackedRetVals.end())
1893 return handleCallOverdefined(CB); // Not tracking this callee.
1894
1895 // If so, propagate the return value of the callee into this call result.
1896 mergeInValue(V: &CB, MergeWithV: TFRVI->second, Opts: getMaxWidenStepsOpts());
1897 }
1898}
1899
1900void SCCPInstVisitor::solve() {
1901 // Process the work lists until they are empty!
1902 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1903 !OverdefinedInstWorkList.empty()) {
1904 // Process the overdefined instruction's work list first, which drives other
1905 // things to overdefined more quickly.
1906 while (!OverdefinedInstWorkList.empty()) {
1907 Value *I = OverdefinedInstWorkList.pop_back_val();
1908 Invalidated.erase(V: I);
1909
1910 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1911
1912 // "I" got into the work list because it either made the transition from
1913 // bottom to constant, or to overdefined.
1914 //
1915 // Anything on this worklist that is overdefined need not be visited
1916 // since all of its users will have already been marked as overdefined
1917 // Update all of the users of this instruction's value.
1918 //
1919 markUsersAsChanged(I);
1920 }
1921
1922 // Process the instruction work list.
1923 while (!InstWorkList.empty()) {
1924 Value *I = InstWorkList.pop_back_val();
1925 Invalidated.erase(V: I);
1926
1927 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1928
1929 // "I" got into the work list because it made the transition from undef to
1930 // constant.
1931 //
1932 // Anything on this worklist that is overdefined need not be visited
1933 // since all of its users will have already been marked as overdefined.
1934 // Update all of the users of this instruction's value.
1935 //
1936 if (I->getType()->isStructTy() || !getValueState(V: I).isOverdefined())
1937 markUsersAsChanged(I);
1938 }
1939
1940 // Process the basic block work list.
1941 while (!BBWorkList.empty()) {
1942 BasicBlock *BB = BBWorkList.pop_back_val();
1943
1944 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1945
1946 // Notify all instructions in this basic block that they are newly
1947 // executable.
1948 visit(BB);
1949 }
1950 }
1951}
1952
1953bool SCCPInstVisitor::resolvedUndef(Instruction &I) {
1954 // Look for instructions which produce undef values.
1955 if (I.getType()->isVoidTy())
1956 return false;
1957
1958 if (auto *STy = dyn_cast<StructType>(Val: I.getType())) {
1959 // Only a few things that can be structs matter for undef.
1960
1961 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1962 if (auto *CB = dyn_cast<CallBase>(Val: &I))
1963 if (Function *F = CB->getCalledFunction())
1964 if (MRVFunctionsTracked.count(Ptr: F))
1965 return false;
1966
1967 // extractvalue and insertvalue don't need to be marked; they are
1968 // tracked as precisely as their operands.
1969 if (isa<ExtractValueInst>(Val: I) || isa<InsertValueInst>(Val: I))
1970 return false;
1971 // Send the results of everything else to overdefined. We could be
1972 // more precise than this but it isn't worth bothering.
1973 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1974 ValueLatticeElement &LV = getStructValueState(V: &I, i);
1975 if (LV.isUnknown()) {
1976 markOverdefined(IV&: LV, V: &I);
1977 return true;
1978 }
1979 }
1980 return false;
1981 }
1982
1983 ValueLatticeElement &LV = getValueState(V: &I);
1984 if (!LV.isUnknown())
1985 return false;
1986
1987 // There are two reasons a call can have an undef result
1988 // 1. It could be tracked.
1989 // 2. It could be constant-foldable.
1990 // Because of the way we solve return values, tracked calls must
1991 // never be marked overdefined in resolvedUndefsIn.
1992 if (auto *CB = dyn_cast<CallBase>(Val: &I))
1993 if (Function *F = CB->getCalledFunction())
1994 if (TrackedRetVals.count(Key: F))
1995 return false;
1996
1997 if (isa<LoadInst>(Val: I)) {
1998 // A load here means one of two things: a load of undef from a global,
1999 // a load from an unknown pointer. Either way, having it return undef
2000 // is okay.
2001 return false;
2002 }
2003
2004 markOverdefined(V: &I);
2005 return true;
2006}
2007
2008/// While solving the dataflow for a function, we don't compute a result for
2009/// operations with an undef operand, to allow undef to be lowered to a
2010/// constant later. For example, constant folding of "zext i8 undef to i16"
2011/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
2012/// zext result would become "i16 1" and would result into an overdefined
2013/// lattice value once merged with the previous result. Not computing the
2014/// result of the zext (treating undef the same as unknown) allows us to handle
2015/// a later undef->constant lowering more optimally.
2016///
2017/// However, if the operand remains undef when the solver returns, we do need
2018/// to assign some result to the instruction (otherwise we would treat it as
2019/// unreachable). For simplicity, we mark any instructions that are still
2020/// unknown as overdefined.
2021bool SCCPInstVisitor::resolvedUndefsIn(Function &F) {
2022 bool MadeChange = false;
2023 for (BasicBlock &BB : F) {
2024 if (!BBExecutable.count(Ptr: &BB))
2025 continue;
2026
2027 for (Instruction &I : BB)
2028 MadeChange |= resolvedUndef(I);
2029 }
2030
2031 LLVM_DEBUG(if (MadeChange) dbgs()
2032 << "\nResolved undefs in " << F.getName() << '\n');
2033
2034 return MadeChange;
2035}
2036
2037//===----------------------------------------------------------------------===//
2038//
2039// SCCPSolver implementations
2040//
2041SCCPSolver::SCCPSolver(
2042 const DataLayout &DL,
2043 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
2044 LLVMContext &Ctx)
2045 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
2046
2047SCCPSolver::~SCCPSolver() = default;
2048
2049void SCCPSolver::addPredicateInfo(Function &F, DominatorTree &DT,
2050 AssumptionCache &AC) {
2051 Visitor->addPredicateInfo(F, DT, AC);
2052}
2053
2054bool SCCPSolver::markBlockExecutable(BasicBlock *BB) {
2055 return Visitor->markBlockExecutable(BB);
2056}
2057
2058const PredicateBase *SCCPSolver::getPredicateInfoFor(Instruction *I) {
2059 return Visitor->getPredicateInfoFor(I);
2060}
2061
2062void SCCPSolver::trackValueOfGlobalVariable(GlobalVariable *GV) {
2063 Visitor->trackValueOfGlobalVariable(GV);
2064}
2065
2066void SCCPSolver::addTrackedFunction(Function *F) {
2067 Visitor->addTrackedFunction(F);
2068}
2069
2070void SCCPSolver::addToMustPreserveReturnsInFunctions(Function *F) {
2071 Visitor->addToMustPreserveReturnsInFunctions(F);
2072}
2073
2074bool SCCPSolver::mustPreserveReturn(Function *F) {
2075 return Visitor->mustPreserveReturn(F);
2076}
2077
2078void SCCPSolver::addArgumentTrackedFunction(Function *F) {
2079 Visitor->addArgumentTrackedFunction(F);
2080}
2081
2082bool SCCPSolver::isArgumentTrackedFunction(Function *F) {
2083 return Visitor->isArgumentTrackedFunction(F);
2084}
2085
2086void SCCPSolver::solve() { Visitor->solve(); }
2087
2088bool SCCPSolver::resolvedUndefsIn(Function &F) {
2089 return Visitor->resolvedUndefsIn(F);
2090}
2091
2092void SCCPSolver::solveWhileResolvedUndefsIn(Module &M) {
2093 Visitor->solveWhileResolvedUndefsIn(M);
2094}
2095
2096void
2097SCCPSolver::solveWhileResolvedUndefsIn(SmallVectorImpl<Function *> &WorkList) {
2098 Visitor->solveWhileResolvedUndefsIn(WorkList);
2099}
2100
2101void SCCPSolver::solveWhileResolvedUndefs() {
2102 Visitor->solveWhileResolvedUndefs();
2103}
2104
2105bool SCCPSolver::isBlockExecutable(BasicBlock *BB) const {
2106 return Visitor->isBlockExecutable(BB);
2107}
2108
2109bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) const {
2110 return Visitor->isEdgeFeasible(From, To);
2111}
2112
2113std::vector<ValueLatticeElement>
2114SCCPSolver::getStructLatticeValueFor(Value *V) const {
2115 return Visitor->getStructLatticeValueFor(V);
2116}
2117
2118void SCCPSolver::removeLatticeValueFor(Value *V) {
2119 return Visitor->removeLatticeValueFor(V);
2120}
2121
2122void SCCPSolver::resetLatticeValueFor(CallBase *Call) {
2123 Visitor->resetLatticeValueFor(Call);
2124}
2125
2126const ValueLatticeElement &SCCPSolver::getLatticeValueFor(Value *V) const {
2127 return Visitor->getLatticeValueFor(V);
2128}
2129
2130const MapVector<Function *, ValueLatticeElement> &
2131SCCPSolver::getTrackedRetVals() {
2132 return Visitor->getTrackedRetVals();
2133}
2134
2135const DenseMap<GlobalVariable *, ValueLatticeElement> &
2136SCCPSolver::getTrackedGlobals() {
2137 return Visitor->getTrackedGlobals();
2138}
2139
2140const SmallPtrSet<Function *, 16> SCCPSolver::getMRVFunctionsTracked() {
2141 return Visitor->getMRVFunctionsTracked();
2142}
2143
2144void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2145
2146void SCCPSolver::trackValueOfArgument(Argument *V) {
2147 Visitor->trackValueOfArgument(A: V);
2148}
2149
2150bool SCCPSolver::isStructLatticeConstant(Function *F, StructType *STy) {
2151 return Visitor->isStructLatticeConstant(F, STy);
2152}
2153
2154Constant *SCCPSolver::getConstant(const ValueLatticeElement &LV,
2155 Type *Ty) const {
2156 return Visitor->getConstant(LV, Ty);
2157}
2158
2159Constant *SCCPSolver::getConstantOrNull(Value *V) const {
2160 return Visitor->getConstantOrNull(V);
2161}
2162
2163SmallPtrSetImpl<Function *> &SCCPSolver::getArgumentTrackedFunctions() {
2164 return Visitor->getArgumentTrackedFunctions();
2165}
2166
2167void SCCPSolver::setLatticeValueForSpecializationArguments(Function *F,
2168 const SmallVectorImpl<ArgInfo> &Args) {
2169 Visitor->setLatticeValueForSpecializationArguments(F, Args);
2170}
2171
2172void SCCPSolver::markFunctionUnreachable(Function *F) {
2173 Visitor->markFunctionUnreachable(F);
2174}
2175
2176void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2177
2178void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
2179

source code of llvm/lib/Transforms/Utils/SCCPSolver.cpp