1//===- LoopVectorizationLegality.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides loop vectorization legality analysis. Original code
10// resided in LoopVectorize.cpp for a long time.
11//
12// At this point, it is implemented as a utility class, not as an analysis
13// pass. It should be easy to create an analysis pass around it if there
14// is a need (but D45420 needs to happen first).
15//
16
17#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18#include "llvm/Analysis/Loads.h"
19#include "llvm/Analysis/LoopInfo.h"
20#include "llvm/Analysis/OptimizationRemarkEmitter.h"
21#include "llvm/Analysis/TargetLibraryInfo.h"
22#include "llvm/Analysis/TargetTransformInfo.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/Analysis/VectorUtils.h"
25#include "llvm/IR/IntrinsicInst.h"
26#include "llvm/IR/PatternMatch.h"
27#include "llvm/Transforms/Utils/SizeOpts.h"
28#include "llvm/Transforms/Vectorize/LoopVectorize.h"
29
30using namespace llvm;
31using namespace PatternMatch;
32
33#define LV_NAME "loop-vectorize"
34#define DEBUG_TYPE LV_NAME
35
36static cl::opt<bool>
37 EnableIfConversion("enable-if-conversion", cl::init(Val: true), cl::Hidden,
38 cl::desc("Enable if-conversion during vectorization."));
39
40static cl::opt<bool>
41AllowStridedPointerIVs("lv-strided-pointer-ivs", cl::init(Val: false), cl::Hidden,
42 cl::desc("Enable recognition of non-constant strided "
43 "pointer induction variables."));
44
45namespace llvm {
46cl::opt<bool>
47 HintsAllowReordering("hints-allow-reordering", cl::init(Val: true), cl::Hidden,
48 cl::desc("Allow enabling loop hints to reorder "
49 "FP operations during vectorization."));
50}
51
52// TODO: Move size-based thresholds out of legality checking, make cost based
53// decisions instead of hard thresholds.
54static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
55 "vectorize-scev-check-threshold", cl::init(Val: 16), cl::Hidden,
56 cl::desc("The maximum number of SCEV checks allowed."));
57
58static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
59 "pragma-vectorize-scev-check-threshold", cl::init(Val: 128), cl::Hidden,
60 cl::desc("The maximum number of SCEV checks allowed with a "
61 "vectorize(enable) pragma"));
62
63static cl::opt<LoopVectorizeHints::ScalableForceKind>
64 ForceScalableVectorization(
65 "scalable-vectorization", cl::init(Val: LoopVectorizeHints::SK_Unspecified),
66 cl::Hidden,
67 cl::desc("Control whether the compiler can use scalable vectors to "
68 "vectorize a loop"),
69 cl::values(
70 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
71 "Scalable vectorization is disabled."),
72 clEnumValN(
73 LoopVectorizeHints::SK_PreferScalable, "preferred",
74 "Scalable vectorization is available and favored when the "
75 "cost is inconclusive."),
76 clEnumValN(
77 LoopVectorizeHints::SK_PreferScalable, "on",
78 "Scalable vectorization is available and favored when the "
79 "cost is inconclusive.")));
80
81/// Maximum vectorization interleave count.
82static const unsigned MaxInterleaveFactor = 16;
83
84namespace llvm {
85
86bool LoopVectorizeHints::Hint::validate(unsigned Val) {
87 switch (Kind) {
88 case HK_WIDTH:
89 return isPowerOf2_32(Value: Val) && Val <= VectorizerParams::MaxVectorWidth;
90 case HK_INTERLEAVE:
91 return isPowerOf2_32(Value: Val) && Val <= MaxInterleaveFactor;
92 case HK_FORCE:
93 return (Val <= 1);
94 case HK_ISVECTORIZED:
95 case HK_PREDICATE:
96 case HK_SCALABLE:
97 return (Val == 0 || Val == 1);
98 }
99 return false;
100}
101
102LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
103 bool InterleaveOnlyWhenForced,
104 OptimizationRemarkEmitter &ORE,
105 const TargetTransformInfo *TTI)
106 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
107 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
108 Force("vectorize.enable", FK_Undefined, HK_FORCE),
109 IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
110 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
111 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
112 TheLoop(L), ORE(ORE) {
113 // Populate values with existing loop metadata.
114 getHintsFromMetadata();
115
116 // force-vector-interleave overrides DisableInterleaving.
117 if (VectorizerParams::isInterleaveForced())
118 Interleave.Value = VectorizerParams::VectorizationInterleave;
119
120 // If the metadata doesn't explicitly specify whether to enable scalable
121 // vectorization, then decide based on the following criteria (increasing
122 // level of priority):
123 // - Target default
124 // - Metadata width
125 // - Force option (always overrides)
126 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
127 if (TTI)
128 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
129 : SK_FixedWidthOnly;
130
131 if (Width.Value)
132 // If the width is set, but the metadata says nothing about the scalable
133 // property, then assume it concerns only a fixed-width UserVF.
134 // If width is not set, the flag takes precedence.
135 Scalable.Value = SK_FixedWidthOnly;
136 }
137
138 // If the flag is set to force any use of scalable vectors, override the loop
139 // hints.
140 if (ForceScalableVectorization.getValue() !=
141 LoopVectorizeHints::SK_Unspecified)
142 Scalable.Value = ForceScalableVectorization.getValue();
143
144 // Scalable vectorization is disabled if no preference is specified.
145 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
146 Scalable.Value = SK_FixedWidthOnly;
147
148 if (IsVectorized.Value != 1)
149 // If the vectorization width and interleaving count are both 1 then
150 // consider the loop to have been already vectorized because there's
151 // nothing more that we can do.
152 IsVectorized.Value =
153 getWidth() == ElementCount::getFixed(MinVal: 1) && getInterleave() == 1;
154 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
155 << "LV: Interleaving disabled by the pass manager\n");
156}
157
158void LoopVectorizeHints::setAlreadyVectorized() {
159 LLVMContext &Context = TheLoop->getHeader()->getContext();
160
161 MDNode *IsVectorizedMD = MDNode::get(
162 Context,
163 MDs: {MDString::get(Context, Str: "llvm.loop.isvectorized"),
164 ConstantAsMetadata::get(C: ConstantInt::get(Context, V: APInt(32, 1)))});
165 MDNode *LoopID = TheLoop->getLoopID();
166 MDNode *NewLoopID =
167 makePostTransformationMetadata(Context, OrigLoopID: LoopID,
168 RemovePrefixes: {Twine(Prefix(), "vectorize.").str(),
169 Twine(Prefix(), "interleave.").str()},
170 AddAttrs: {IsVectorizedMD});
171 TheLoop->setLoopID(NewLoopID);
172
173 // Update internal cache.
174 IsVectorized.Value = 1;
175}
176
177bool LoopVectorizeHints::allowVectorization(
178 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
179 if (getForce() == LoopVectorizeHints::FK_Disabled) {
180 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
181 emitRemarkWithHints();
182 return false;
183 }
184
185 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
186 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
187 emitRemarkWithHints();
188 return false;
189 }
190
191 if (getIsVectorized() == 1) {
192 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
193 // FIXME: Add interleave.disable metadata. This will allow
194 // vectorize.disable to be used without disabling the pass and errors
195 // to differentiate between disabled vectorization and a width of 1.
196 ORE.emit(RemarkBuilder: [&]() {
197 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
198 "AllDisabled", L->getStartLoc(),
199 L->getHeader())
200 << "loop not vectorized: vectorization and interleaving are "
201 "explicitly disabled, or the loop has already been "
202 "vectorized";
203 });
204 return false;
205 }
206
207 return true;
208}
209
210void LoopVectorizeHints::emitRemarkWithHints() const {
211 using namespace ore;
212
213 ORE.emit(RemarkBuilder: [&]() {
214 if (Force.Value == LoopVectorizeHints::FK_Disabled)
215 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
216 TheLoop->getStartLoc(),
217 TheLoop->getHeader())
218 << "loop not vectorized: vectorization is explicitly disabled";
219 else {
220 OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
221 TheLoop->getStartLoc(), TheLoop->getHeader());
222 R << "loop not vectorized";
223 if (Force.Value == LoopVectorizeHints::FK_Enabled) {
224 R << " (Force=" << NV("Force", true);
225 if (Width.Value != 0)
226 R << ", Vector Width=" << NV("VectorWidth", getWidth());
227 if (getInterleave() != 0)
228 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
229 R << ")";
230 }
231 return R;
232 }
233 });
234}
235
236const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
237 if (getWidth() == ElementCount::getFixed(MinVal: 1))
238 return LV_NAME;
239 if (getForce() == LoopVectorizeHints::FK_Disabled)
240 return LV_NAME;
241 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
242 return LV_NAME;
243 return OptimizationRemarkAnalysis::AlwaysPrint;
244}
245
246bool LoopVectorizeHints::allowReordering() const {
247 // Allow the vectorizer to change the order of operations if enabling
248 // loop hints are provided
249 ElementCount EC = getWidth();
250 return HintsAllowReordering &&
251 (getForce() == LoopVectorizeHints::FK_Enabled ||
252 EC.getKnownMinValue() > 1);
253}
254
255void LoopVectorizeHints::getHintsFromMetadata() {
256 MDNode *LoopID = TheLoop->getLoopID();
257 if (!LoopID)
258 return;
259
260 // First operand should refer to the loop id itself.
261 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
262 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
263
264 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
265 const MDString *S = nullptr;
266 SmallVector<Metadata *, 4> Args;
267
268 // The expected hint is either a MDString or a MDNode with the first
269 // operand a MDString.
270 if (const MDNode *MD = dyn_cast<MDNode>(Val: LoopID->getOperand(I: i))) {
271 if (!MD || MD->getNumOperands() == 0)
272 continue;
273 S = dyn_cast<MDString>(Val: MD->getOperand(I: 0));
274 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
275 Args.push_back(Elt: MD->getOperand(I: i));
276 } else {
277 S = dyn_cast<MDString>(Val: LoopID->getOperand(I: i));
278 assert(Args.size() == 0 && "too many arguments for MDString");
279 }
280
281 if (!S)
282 continue;
283
284 // Check if the hint starts with the loop metadata prefix.
285 StringRef Name = S->getString();
286 if (Args.size() == 1)
287 setHint(Name, Arg: Args[0]);
288 }
289}
290
291void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
292 if (!Name.starts_with(Prefix: Prefix()))
293 return;
294 Name = Name.substr(Start: Prefix().size(), N: StringRef::npos);
295
296 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(MD&: Arg);
297 if (!C)
298 return;
299 unsigned Val = C->getZExtValue();
300
301 Hint *Hints[] = {&Width, &Interleave, &Force,
302 &IsVectorized, &Predicate, &Scalable};
303 for (auto *H : Hints) {
304 if (Name == H->Name) {
305 if (H->validate(Val))
306 H->Value = Val;
307 else
308 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
309 break;
310 }
311 }
312}
313
314// Return true if the inner loop \p Lp is uniform with regard to the outer loop
315// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
316// executing the inner loop will execute the same iterations). This check is
317// very constrained for now but it will be relaxed in the future. \p Lp is
318// considered uniform if it meets all the following conditions:
319// 1) it has a canonical IV (starting from 0 and with stride 1),
320// 2) its latch terminator is a conditional branch and,
321// 3) its latch condition is a compare instruction whose operands are the
322// canonical IV and an OuterLp invariant.
323// This check doesn't take into account the uniformity of other conditions not
324// related to the loop latch because they don't affect the loop uniformity.
325//
326// NOTE: We decided to keep all these checks and its associated documentation
327// together so that we can easily have a picture of the current supported loop
328// nests. However, some of the current checks don't depend on \p OuterLp and
329// would be redundantly executed for each \p Lp if we invoked this function for
330// different candidate outer loops. This is not the case for now because we
331// don't currently have the infrastructure to evaluate multiple candidate outer
332// loops and \p OuterLp will be a fixed parameter while we only support explicit
333// outer loop vectorization. It's also very likely that these checks go away
334// before introducing the aforementioned infrastructure. However, if this is not
335// the case, we should move the \p OuterLp independent checks to a separate
336// function that is only executed once for each \p Lp.
337static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
338 assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
339
340 // If Lp is the outer loop, it's uniform by definition.
341 if (Lp == OuterLp)
342 return true;
343 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
344
345 // 1.
346 PHINode *IV = Lp->getCanonicalInductionVariable();
347 if (!IV) {
348 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
349 return false;
350 }
351
352 // 2.
353 BasicBlock *Latch = Lp->getLoopLatch();
354 auto *LatchBr = dyn_cast<BranchInst>(Val: Latch->getTerminator());
355 if (!LatchBr || LatchBr->isUnconditional()) {
356 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
357 return false;
358 }
359
360 // 3.
361 auto *LatchCmp = dyn_cast<CmpInst>(Val: LatchBr->getCondition());
362 if (!LatchCmp) {
363 LLVM_DEBUG(
364 dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
365 return false;
366 }
367
368 Value *CondOp0 = LatchCmp->getOperand(i_nocapture: 0);
369 Value *CondOp1 = LatchCmp->getOperand(i_nocapture: 1);
370 Value *IVUpdate = IV->getIncomingValueForBlock(BB: Latch);
371 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(V: CondOp1)) &&
372 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(V: CondOp0))) {
373 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
374 return false;
375 }
376
377 return true;
378}
379
380// Return true if \p Lp and all its nested loops are uniform with regard to \p
381// OuterLp.
382static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
383 if (!isUniformLoop(Lp, OuterLp))
384 return false;
385
386 // Check if nested loops are uniform.
387 for (Loop *SubLp : *Lp)
388 if (!isUniformLoopNest(Lp: SubLp, OuterLp))
389 return false;
390
391 return true;
392}
393
394static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
395 if (Ty->isPointerTy())
396 return DL.getIntPtrType(Ty);
397
398 // It is possible that char's or short's overflow when we ask for the loop's
399 // trip count, work around this by changing the type size.
400 if (Ty->getScalarSizeInBits() < 32)
401 return Type::getInt32Ty(C&: Ty->getContext());
402
403 return Ty;
404}
405
406static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
407 Ty0 = convertPointerToIntegerType(DL, Ty: Ty0);
408 Ty1 = convertPointerToIntegerType(DL, Ty: Ty1);
409 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
410 return Ty0;
411 return Ty1;
412}
413
414/// Check that the instruction has outside loop users and is not an
415/// identified reduction variable.
416static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
417 SmallPtrSetImpl<Value *> &AllowedExit) {
418 // Reductions, Inductions and non-header phis are allowed to have exit users. All
419 // other instructions must not have external users.
420 if (!AllowedExit.count(Ptr: Inst))
421 // Check that all of the users of the loop are inside the BB.
422 for (User *U : Inst->users()) {
423 Instruction *UI = cast<Instruction>(Val: U);
424 // This user may be a reduction exit value.
425 if (!TheLoop->contains(Inst: UI)) {
426 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
427 return true;
428 }
429 }
430 return false;
431}
432
433/// Returns true if A and B have same pointer operands or same SCEVs addresses
434static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
435 StoreInst *B) {
436 // Compare store
437 if (A == B)
438 return true;
439
440 // Otherwise Compare pointers
441 Value *APtr = A->getPointerOperand();
442 Value *BPtr = B->getPointerOperand();
443 if (APtr == BPtr)
444 return true;
445
446 // Otherwise compare address SCEVs
447 if (SE->getSCEV(V: APtr) == SE->getSCEV(V: BPtr))
448 return true;
449
450 return false;
451}
452
453int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
454 Value *Ptr) const {
455 // FIXME: Currently, the set of symbolic strides is sometimes queried before
456 // it's collected. This happens from canVectorizeWithIfConvert, when the
457 // pointer is checked to reference consecutive elements suitable for a
458 // masked access.
459 const auto &Strides =
460 LAI ? LAI->getSymbolicStrides() : DenseMap<Value *, const SCEV *>();
461
462 Function *F = TheLoop->getHeader()->getParent();
463 bool OptForSize = F->hasOptSize() ||
464 llvm::shouldOptimizeForSize(BB: TheLoop->getHeader(), PSI, BFI,
465 QueryType: PGSOQueryType::IRPass);
466 bool CanAddPredicate = !OptForSize;
467 int Stride = getPtrStride(PSE, AccessTy, Ptr, Lp: TheLoop, StridesMap: Strides,
468 Assume: CanAddPredicate, ShouldCheckWrap: false).value_or(u: 0);
469 if (Stride == 1 || Stride == -1)
470 return Stride;
471 return 0;
472}
473
474bool LoopVectorizationLegality::isInvariant(Value *V) const {
475 return LAI->isInvariant(V);
476}
477
478namespace {
479/// A rewriter to build the SCEVs for each of the VF lanes in the expected
480/// vectorized loop, which can then be compared to detect their uniformity. This
481/// is done by replacing the AddRec SCEVs of the original scalar loop (TheLoop)
482/// with new AddRecs where the step is multiplied by StepMultiplier and Offset *
483/// Step is added. Also checks if all sub-expressions are analyzable w.r.t.
484/// uniformity.
485class SCEVAddRecForUniformityRewriter
486 : public SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter> {
487 /// Multiplier to be applied to the step of AddRecs in TheLoop.
488 unsigned StepMultiplier;
489
490 /// Offset to be added to the AddRecs in TheLoop.
491 unsigned Offset;
492
493 /// Loop for which to rewrite AddRecsFor.
494 Loop *TheLoop;
495
496 /// Is any sub-expressions not analyzable w.r.t. uniformity?
497 bool CannotAnalyze = false;
498
499 bool canAnalyze() const { return !CannotAnalyze; }
500
501public:
502 SCEVAddRecForUniformityRewriter(ScalarEvolution &SE, unsigned StepMultiplier,
503 unsigned Offset, Loop *TheLoop)
504 : SCEVRewriteVisitor(SE), StepMultiplier(StepMultiplier), Offset(Offset),
505 TheLoop(TheLoop) {}
506
507 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
508 assert(Expr->getLoop() == TheLoop &&
509 "addrec outside of TheLoop must be invariant and should have been "
510 "handled earlier");
511 // Build a new AddRec by multiplying the step by StepMultiplier and
512 // incrementing the start by Offset * step.
513 Type *Ty = Expr->getType();
514 auto *Step = Expr->getStepRecurrence(SE);
515 if (!SE.isLoopInvariant(S: Step, L: TheLoop)) {
516 CannotAnalyze = true;
517 return Expr;
518 }
519 auto *NewStep = SE.getMulExpr(LHS: Step, RHS: SE.getConstant(Ty, V: StepMultiplier));
520 auto *ScaledOffset = SE.getMulExpr(LHS: Step, RHS: SE.getConstant(Ty, V: Offset));
521 auto *NewStart = SE.getAddExpr(LHS: Expr->getStart(), RHS: ScaledOffset);
522 return SE.getAddRecExpr(Start: NewStart, Step: NewStep, L: TheLoop, Flags: SCEV::FlagAnyWrap);
523 }
524
525 const SCEV *visit(const SCEV *S) {
526 if (CannotAnalyze || SE.isLoopInvariant(S, L: TheLoop))
527 return S;
528 return SCEVRewriteVisitor<SCEVAddRecForUniformityRewriter>::visit(S);
529 }
530
531 const SCEV *visitUnknown(const SCEVUnknown *S) {
532 if (SE.isLoopInvariant(S, L: TheLoop))
533 return S;
534 // The value could vary across iterations.
535 CannotAnalyze = true;
536 return S;
537 }
538
539 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *S) {
540 // Could not analyze the expression.
541 CannotAnalyze = true;
542 return S;
543 }
544
545 static const SCEV *rewrite(const SCEV *S, ScalarEvolution &SE,
546 unsigned StepMultiplier, unsigned Offset,
547 Loop *TheLoop) {
548 /// Bail out if the expression does not contain an UDiv expression.
549 /// Uniform values which are not loop invariant require operations to strip
550 /// out the lowest bits. For now just look for UDivs and use it to avoid
551 /// re-writing UDIV-free expressions for other lanes to limit compile time.
552 if (!SCEVExprContains(Root: S,
553 Pred: [](const SCEV *S) { return isa<SCEVUDivExpr>(Val: S); }))
554 return SE.getCouldNotCompute();
555
556 SCEVAddRecForUniformityRewriter Rewriter(SE, StepMultiplier, Offset,
557 TheLoop);
558 const SCEV *Result = Rewriter.visit(S);
559
560 if (Rewriter.canAnalyze())
561 return Result;
562 return SE.getCouldNotCompute();
563 }
564};
565
566} // namespace
567
568bool LoopVectorizationLegality::isUniform(Value *V, ElementCount VF) const {
569 if (isInvariant(V))
570 return true;
571 if (VF.isScalable())
572 return false;
573 if (VF.isScalar())
574 return true;
575
576 // Since we rely on SCEV for uniformity, if the type is not SCEVable, it is
577 // never considered uniform.
578 auto *SE = PSE.getSE();
579 if (!SE->isSCEVable(Ty: V->getType()))
580 return false;
581 const SCEV *S = SE->getSCEV(V);
582
583 // Rewrite AddRecs in TheLoop to step by VF and check if the expression for
584 // lane 0 matches the expressions for all other lanes.
585 unsigned FixedVF = VF.getKnownMinValue();
586 const SCEV *FirstLaneExpr =
587 SCEVAddRecForUniformityRewriter::rewrite(S, SE&: *SE, StepMultiplier: FixedVF, Offset: 0, TheLoop);
588 if (isa<SCEVCouldNotCompute>(Val: FirstLaneExpr))
589 return false;
590
591 // Make sure the expressions for lanes FixedVF-1..1 match the expression for
592 // lane 0. We check lanes in reverse order for compile-time, as frequently
593 // checking the last lane is sufficient to rule out uniformity.
594 return all_of(Range: reverse(C: seq<unsigned>(Begin: 1, End: FixedVF)), P: [&](unsigned I) {
595 const SCEV *IthLaneExpr =
596 SCEVAddRecForUniformityRewriter::rewrite(S, SE&: *SE, StepMultiplier: FixedVF, Offset: I, TheLoop);
597 return FirstLaneExpr == IthLaneExpr;
598 });
599}
600
601bool LoopVectorizationLegality::isUniformMemOp(Instruction &I,
602 ElementCount VF) const {
603 Value *Ptr = getLoadStorePointerOperand(V: &I);
604 if (!Ptr)
605 return false;
606 // Note: There's nothing inherent which prevents predicated loads and
607 // stores from being uniform. The current lowering simply doesn't handle
608 // it; in particular, the cost model distinguishes scatter/gather from
609 // scalar w/predication, and we currently rely on the scalar path.
610 return isUniform(V: Ptr, VF) && !blockNeedsPredication(BB: I.getParent());
611}
612
613bool LoopVectorizationLegality::canVectorizeOuterLoop() {
614 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
615 // Store the result and return it at the end instead of exiting early, in case
616 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
617 bool Result = true;
618 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
619
620 for (BasicBlock *BB : TheLoop->blocks()) {
621 // Check whether the BB terminator is a BranchInst. Any other terminator is
622 // not supported yet.
623 auto *Br = dyn_cast<BranchInst>(Val: BB->getTerminator());
624 if (!Br) {
625 reportVectorizationFailure(DebugMsg: "Unsupported basic block terminator",
626 OREMsg: "loop control flow is not understood by vectorizer",
627 ORETag: "CFGNotUnderstood", ORE, TheLoop);
628 if (DoExtraAnalysis)
629 Result = false;
630 else
631 return false;
632 }
633
634 // Check whether the BranchInst is a supported one. Only unconditional
635 // branches, conditional branches with an outer loop invariant condition or
636 // backedges are supported.
637 // FIXME: We skip these checks when VPlan predication is enabled as we
638 // want to allow divergent branches. This whole check will be removed
639 // once VPlan predication is on by default.
640 if (Br && Br->isConditional() &&
641 !TheLoop->isLoopInvariant(V: Br->getCondition()) &&
642 !LI->isLoopHeader(BB: Br->getSuccessor(i: 0)) &&
643 !LI->isLoopHeader(BB: Br->getSuccessor(i: 1))) {
644 reportVectorizationFailure(DebugMsg: "Unsupported conditional branch",
645 OREMsg: "loop control flow is not understood by vectorizer",
646 ORETag: "CFGNotUnderstood", ORE, TheLoop);
647 if (DoExtraAnalysis)
648 Result = false;
649 else
650 return false;
651 }
652 }
653
654 // Check whether inner loops are uniform. At this point, we only support
655 // simple outer loops scenarios with uniform nested loops.
656 if (!isUniformLoopNest(Lp: TheLoop /*loop nest*/,
657 OuterLp: TheLoop /*context outer loop*/)) {
658 reportVectorizationFailure(DebugMsg: "Outer loop contains divergent loops",
659 OREMsg: "loop control flow is not understood by vectorizer",
660 ORETag: "CFGNotUnderstood", ORE, TheLoop);
661 if (DoExtraAnalysis)
662 Result = false;
663 else
664 return false;
665 }
666
667 // Check whether we are able to set up outer loop induction.
668 if (!setupOuterLoopInductions()) {
669 reportVectorizationFailure(DebugMsg: "Unsupported outer loop Phi(s)",
670 OREMsg: "Unsupported outer loop Phi(s)",
671 ORETag: "UnsupportedPhi", ORE, TheLoop);
672 if (DoExtraAnalysis)
673 Result = false;
674 else
675 return false;
676 }
677
678 return Result;
679}
680
681void LoopVectorizationLegality::addInductionPhi(
682 PHINode *Phi, const InductionDescriptor &ID,
683 SmallPtrSetImpl<Value *> &AllowedExit) {
684 Inductions[Phi] = ID;
685
686 // In case this induction also comes with casts that we know we can ignore
687 // in the vectorized loop body, record them here. All casts could be recorded
688 // here for ignoring, but suffices to record only the first (as it is the
689 // only one that may bw used outside the cast sequence).
690 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
691 if (!Casts.empty())
692 InductionCastsToIgnore.insert(Ptr: *Casts.begin());
693
694 Type *PhiTy = Phi->getType();
695 const DataLayout &DL = Phi->getModule()->getDataLayout();
696
697 // Get the widest type.
698 if (!PhiTy->isFloatingPointTy()) {
699 if (!WidestIndTy)
700 WidestIndTy = convertPointerToIntegerType(DL, Ty: PhiTy);
701 else
702 WidestIndTy = getWiderType(DL, Ty0: PhiTy, Ty1: WidestIndTy);
703 }
704
705 // Int inductions are special because we only allow one IV.
706 if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
707 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
708 isa<Constant>(Val: ID.getStartValue()) &&
709 cast<Constant>(Val: ID.getStartValue())->isNullValue()) {
710
711 // Use the phi node with the widest type as induction. Use the last
712 // one if there are multiple (no good reason for doing this other
713 // than it is expedient). We've checked that it begins at zero and
714 // steps by one, so this is a canonical induction variable.
715 if (!PrimaryInduction || PhiTy == WidestIndTy)
716 PrimaryInduction = Phi;
717 }
718
719 // Both the PHI node itself, and the "post-increment" value feeding
720 // back into the PHI node may have external users.
721 // We can allow those uses, except if the SCEVs we have for them rely
722 // on predicates that only hold within the loop, since allowing the exit
723 // currently means re-using this SCEV outside the loop (see PR33706 for more
724 // details).
725 if (PSE.getPredicate().isAlwaysTrue()) {
726 AllowedExit.insert(Ptr: Phi);
727 AllowedExit.insert(Ptr: Phi->getIncomingValueForBlock(BB: TheLoop->getLoopLatch()));
728 }
729
730 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
731}
732
733bool LoopVectorizationLegality::setupOuterLoopInductions() {
734 BasicBlock *Header = TheLoop->getHeader();
735
736 // Returns true if a given Phi is a supported induction.
737 auto isSupportedPhi = [&](PHINode &Phi) -> bool {
738 InductionDescriptor ID;
739 if (InductionDescriptor::isInductionPHI(Phi: &Phi, L: TheLoop, PSE, D&: ID) &&
740 ID.getKind() == InductionDescriptor::IK_IntInduction) {
741 addInductionPhi(Phi: &Phi, ID, AllowedExit);
742 return true;
743 } else {
744 // Bail out for any Phi in the outer loop header that is not a supported
745 // induction.
746 LLVM_DEBUG(
747 dbgs()
748 << "LV: Found unsupported PHI for outer loop vectorization.\n");
749 return false;
750 }
751 };
752
753 if (llvm::all_of(Range: Header->phis(), P: isSupportedPhi))
754 return true;
755 else
756 return false;
757}
758
759/// Checks if a function is scalarizable according to the TLI, in
760/// the sense that it should be vectorized and then expanded in
761/// multiple scalar calls. This is represented in the
762/// TLI via mappings that do not specify a vector name, as in the
763/// following example:
764///
765/// const VecDesc VecIntrinsics[] = {
766/// {"llvm.phx.abs.i32", "", 4}
767/// };
768static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
769 const StringRef ScalarName = CI.getCalledFunction()->getName();
770 bool Scalarize = TLI.isFunctionVectorizable(F: ScalarName);
771 // Check that all known VFs are not associated to a vector
772 // function, i.e. the vector name is emty.
773 if (Scalarize) {
774 ElementCount WidestFixedVF, WidestScalableVF;
775 TLI.getWidestVF(ScalarF: ScalarName, FixedVF&: WidestFixedVF, ScalableVF&: WidestScalableVF);
776 for (ElementCount VF = ElementCount::getFixed(MinVal: 2);
777 ElementCount::isKnownLE(LHS: VF, RHS: WidestFixedVF); VF *= 2)
778 Scalarize &= !TLI.isFunctionVectorizable(F: ScalarName, VF);
779 for (ElementCount VF = ElementCount::getScalable(MinVal: 1);
780 ElementCount::isKnownLE(LHS: VF, RHS: WidestScalableVF); VF *= 2)
781 Scalarize &= !TLI.isFunctionVectorizable(F: ScalarName, VF);
782 assert((WidestScalableVF.isZero() || !Scalarize) &&
783 "Caller may decide to scalarize a variant using a scalable VF");
784 }
785 return Scalarize;
786}
787
788bool LoopVectorizationLegality::canVectorizeInstrs() {
789 BasicBlock *Header = TheLoop->getHeader();
790
791 // For each block in the loop.
792 for (BasicBlock *BB : TheLoop->blocks()) {
793 // Scan the instructions in the block and look for hazards.
794 for (Instruction &I : *BB) {
795 if (auto *Phi = dyn_cast<PHINode>(Val: &I)) {
796 Type *PhiTy = Phi->getType();
797 // Check that this PHI type is allowed.
798 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
799 !PhiTy->isPointerTy()) {
800 reportVectorizationFailure(DebugMsg: "Found a non-int non-pointer PHI",
801 OREMsg: "loop control flow is not understood by vectorizer",
802 ORETag: "CFGNotUnderstood", ORE, TheLoop);
803 return false;
804 }
805
806 // If this PHINode is not in the header block, then we know that we
807 // can convert it to select during if-conversion. No need to check if
808 // the PHIs in this block are induction or reduction variables.
809 if (BB != Header) {
810 // Non-header phi nodes that have outside uses can be vectorized. Add
811 // them to the list of allowed exits.
812 // Unsafe cyclic dependencies with header phis are identified during
813 // legalization for reduction, induction and fixed order
814 // recurrences.
815 AllowedExit.insert(Ptr: &I);
816 continue;
817 }
818
819 // We only allow if-converted PHIs with exactly two incoming values.
820 if (Phi->getNumIncomingValues() != 2) {
821 reportVectorizationFailure(DebugMsg: "Found an invalid PHI",
822 OREMsg: "loop control flow is not understood by vectorizer",
823 ORETag: "CFGNotUnderstood", ORE, TheLoop, I: Phi);
824 return false;
825 }
826
827 RecurrenceDescriptor RedDes;
828 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
829 DT, SE: PSE.getSE())) {
830 Requirements->addExactFPMathInst(I: RedDes.getExactFPMathInst());
831 AllowedExit.insert(Ptr: RedDes.getLoopExitInstr());
832 Reductions[Phi] = RedDes;
833 continue;
834 }
835
836 // We prevent matching non-constant strided pointer IVS to preserve
837 // historical vectorizer behavior after a generalization of the
838 // IVDescriptor code. The intent is to remove this check, but we
839 // have to fix issues around code quality for such loops first.
840 auto isDisallowedStridedPointerInduction =
841 [](const InductionDescriptor &ID) {
842 if (AllowStridedPointerIVs)
843 return false;
844 return ID.getKind() == InductionDescriptor::IK_PtrInduction &&
845 ID.getConstIntStepValue() == nullptr;
846 };
847
848 // TODO: Instead of recording the AllowedExit, it would be good to
849 // record the complementary set: NotAllowedExit. These include (but may
850 // not be limited to):
851 // 1. Reduction phis as they represent the one-before-last value, which
852 // is not available when vectorized
853 // 2. Induction phis and increment when SCEV predicates cannot be used
854 // outside the loop - see addInductionPhi
855 // 3. Non-Phis with outside uses when SCEV predicates cannot be used
856 // outside the loop - see call to hasOutsideLoopUser in the non-phi
857 // handling below
858 // 4. FixedOrderRecurrence phis that can possibly be handled by
859 // extraction.
860 // By recording these, we can then reason about ways to vectorize each
861 // of these NotAllowedExit.
862 InductionDescriptor ID;
863 if (InductionDescriptor::isInductionPHI(Phi, L: TheLoop, PSE, D&: ID) &&
864 !isDisallowedStridedPointerInduction(ID)) {
865 addInductionPhi(Phi, ID, AllowedExit);
866 Requirements->addExactFPMathInst(I: ID.getExactFPMathInst());
867 continue;
868 }
869
870 if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, DT)) {
871 AllowedExit.insert(Ptr: Phi);
872 FixedOrderRecurrences.insert(Ptr: Phi);
873 continue;
874 }
875
876 // As a last resort, coerce the PHI to a AddRec expression
877 // and re-try classifying it a an induction PHI.
878 if (InductionDescriptor::isInductionPHI(Phi, L: TheLoop, PSE, D&: ID, Assume: true) &&
879 !isDisallowedStridedPointerInduction(ID)) {
880 addInductionPhi(Phi, ID, AllowedExit);
881 continue;
882 }
883
884 reportVectorizationFailure(DebugMsg: "Found an unidentified PHI",
885 OREMsg: "value that could not be identified as "
886 "reduction is used outside the loop",
887 ORETag: "NonReductionValueUsedOutsideLoop", ORE, TheLoop, I: Phi);
888 return false;
889 } // end of PHI handling
890
891 // We handle calls that:
892 // * Are debug info intrinsics.
893 // * Have a mapping to an IR intrinsic.
894 // * Have a vector version available.
895 auto *CI = dyn_cast<CallInst>(Val: &I);
896
897 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
898 !isa<DbgInfoIntrinsic>(Val: CI) &&
899 !(CI->getCalledFunction() && TLI &&
900 (!VFDatabase::getMappings(CI: *CI).empty() ||
901 isTLIScalarize(TLI: *TLI, CI: *CI)))) {
902 // If the call is a recognized math libary call, it is likely that
903 // we can vectorize it given loosened floating-point constraints.
904 LibFunc Func;
905 bool IsMathLibCall =
906 TLI && CI->getCalledFunction() &&
907 CI->getType()->isFloatingPointTy() &&
908 TLI->getLibFunc(funcName: CI->getCalledFunction()->getName(), F&: Func) &&
909 TLI->hasOptimizedCodeGen(F: Func);
910
911 if (IsMathLibCall) {
912 // TODO: Ideally, we should not use clang-specific language here,
913 // but it's hard to provide meaningful yet generic advice.
914 // Also, should this be guarded by allowExtraAnalysis() and/or be part
915 // of the returned info from isFunctionVectorizable()?
916 reportVectorizationFailure(
917 DebugMsg: "Found a non-intrinsic callsite",
918 OREMsg: "library call cannot be vectorized. "
919 "Try compiling with -fno-math-errno, -ffast-math, "
920 "or similar flags",
921 ORETag: "CantVectorizeLibcall", ORE, TheLoop, I: CI);
922 } else {
923 reportVectorizationFailure(DebugMsg: "Found a non-intrinsic callsite",
924 OREMsg: "call instruction cannot be vectorized",
925 ORETag: "CantVectorizeLibcall", ORE, TheLoop, I: CI);
926 }
927 return false;
928 }
929
930 // Some intrinsics have scalar arguments and should be same in order for
931 // them to be vectorized (i.e. loop invariant).
932 if (CI) {
933 auto *SE = PSE.getSE();
934 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
935 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
936 if (isVectorIntrinsicWithScalarOpAtArg(ID: IntrinID, ScalarOpdIdx: i)) {
937 if (!SE->isLoopInvariant(S: PSE.getSCEV(V: CI->getOperand(i_nocapture: i)), L: TheLoop)) {
938 reportVectorizationFailure(DebugMsg: "Found unvectorizable intrinsic",
939 OREMsg: "intrinsic instruction cannot be vectorized",
940 ORETag: "CantVectorizeIntrinsic", ORE, TheLoop, I: CI);
941 return false;
942 }
943 }
944 }
945
946 // If we found a vectorized variant of a function, note that so LV can
947 // make better decisions about maximum VF.
948 if (CI && !VFDatabase::getMappings(CI: *CI).empty())
949 VecCallVariantsFound = true;
950
951 // Check that the instruction return type is vectorizable.
952 // Also, we can't vectorize extractelement instructions.
953 if ((!VectorType::isValidElementType(ElemTy: I.getType()) &&
954 !I.getType()->isVoidTy()) ||
955 isa<ExtractElementInst>(Val: I)) {
956 reportVectorizationFailure(DebugMsg: "Found unvectorizable type",
957 OREMsg: "instruction return type cannot be vectorized",
958 ORETag: "CantVectorizeInstructionReturnType", ORE, TheLoop, I: &I);
959 return false;
960 }
961
962 // Check that the stored type is vectorizable.
963 if (auto *ST = dyn_cast<StoreInst>(Val: &I)) {
964 Type *T = ST->getValueOperand()->getType();
965 if (!VectorType::isValidElementType(ElemTy: T)) {
966 reportVectorizationFailure(DebugMsg: "Store instruction cannot be vectorized",
967 OREMsg: "store instruction cannot be vectorized",
968 ORETag: "CantVectorizeStore", ORE, TheLoop, I: ST);
969 return false;
970 }
971
972 // For nontemporal stores, check that a nontemporal vector version is
973 // supported on the target.
974 if (ST->getMetadata(KindID: LLVMContext::MD_nontemporal)) {
975 // Arbitrarily try a vector of 2 elements.
976 auto *VecTy = FixedVectorType::get(ElementType: T, /*NumElts=*/2);
977 assert(VecTy && "did not find vectorized version of stored type");
978 if (!TTI->isLegalNTStore(DataType: VecTy, Alignment: ST->getAlign())) {
979 reportVectorizationFailure(
980 DebugMsg: "nontemporal store instruction cannot be vectorized",
981 OREMsg: "nontemporal store instruction cannot be vectorized",
982 ORETag: "CantVectorizeNontemporalStore", ORE, TheLoop, I: ST);
983 return false;
984 }
985 }
986
987 } else if (auto *LD = dyn_cast<LoadInst>(Val: &I)) {
988 if (LD->getMetadata(KindID: LLVMContext::MD_nontemporal)) {
989 // For nontemporal loads, check that a nontemporal vector version is
990 // supported on the target (arbitrarily try a vector of 2 elements).
991 auto *VecTy = FixedVectorType::get(ElementType: I.getType(), /*NumElts=*/2);
992 assert(VecTy && "did not find vectorized version of load type");
993 if (!TTI->isLegalNTLoad(DataType: VecTy, Alignment: LD->getAlign())) {
994 reportVectorizationFailure(
995 DebugMsg: "nontemporal load instruction cannot be vectorized",
996 OREMsg: "nontemporal load instruction cannot be vectorized",
997 ORETag: "CantVectorizeNontemporalLoad", ORE, TheLoop, I: LD);
998 return false;
999 }
1000 }
1001
1002 // FP instructions can allow unsafe algebra, thus vectorizable by
1003 // non-IEEE-754 compliant SIMD units.
1004 // This applies to floating-point math operations and calls, not memory
1005 // operations, shuffles, or casts, as they don't change precision or
1006 // semantics.
1007 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
1008 !I.isFast()) {
1009 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
1010 Hints->setPotentiallyUnsafe();
1011 }
1012
1013 // Reduction instructions are allowed to have exit users.
1014 // All other instructions must not have external users.
1015 if (hasOutsideLoopUser(TheLoop, Inst: &I, AllowedExit)) {
1016 // We can safely vectorize loops where instructions within the loop are
1017 // used outside the loop only if the SCEV predicates within the loop is
1018 // same as outside the loop. Allowing the exit means reusing the SCEV
1019 // outside the loop.
1020 if (PSE.getPredicate().isAlwaysTrue()) {
1021 AllowedExit.insert(Ptr: &I);
1022 continue;
1023 }
1024 reportVectorizationFailure(DebugMsg: "Value cannot be used outside the loop",
1025 OREMsg: "value cannot be used outside the loop",
1026 ORETag: "ValueUsedOutsideLoop", ORE, TheLoop, I: &I);
1027 return false;
1028 }
1029 } // next instr.
1030 }
1031
1032 if (!PrimaryInduction) {
1033 if (Inductions.empty()) {
1034 reportVectorizationFailure(DebugMsg: "Did not find one integer induction var",
1035 OREMsg: "loop induction variable could not be identified",
1036 ORETag: "NoInductionVariable", ORE, TheLoop);
1037 return false;
1038 } else if (!WidestIndTy) {
1039 reportVectorizationFailure(DebugMsg: "Did not find one integer induction var",
1040 OREMsg: "integer loop induction variable could not be identified",
1041 ORETag: "NoIntegerInductionVariable", ORE, TheLoop);
1042 return false;
1043 } else {
1044 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
1045 }
1046 }
1047
1048 // Now we know the widest induction type, check if our found induction
1049 // is the same size. If it's not, unset it here and InnerLoopVectorizer
1050 // will create another.
1051 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
1052 PrimaryInduction = nullptr;
1053
1054 return true;
1055}
1056
1057bool LoopVectorizationLegality::canVectorizeMemory() {
1058 LAI = &LAIs.getInfo(L&: *TheLoop);
1059 const OptimizationRemarkAnalysis *LAR = LAI->getReport();
1060 if (LAR) {
1061 ORE->emit(RemarkBuilder: [&]() {
1062 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
1063 "loop not vectorized: ", *LAR);
1064 });
1065 }
1066
1067 if (!LAI->canVectorizeMemory())
1068 return false;
1069
1070 // We can vectorize stores to invariant address when final reduction value is
1071 // guaranteed to be stored at the end of the loop. Also, if decision to
1072 // vectorize loop is made, runtime checks are added so as to make sure that
1073 // invariant address won't alias with any other objects.
1074 if (!LAI->getStoresToInvariantAddresses().empty()) {
1075 // For each invariant address, check if last stored value is unconditional
1076 // and the address is not calculated inside the loop.
1077 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1078 if (!isInvariantStoreOfReduction(SI))
1079 continue;
1080
1081 if (blockNeedsPredication(BB: SI->getParent())) {
1082 reportVectorizationFailure(
1083 DebugMsg: "We don't allow storing to uniform addresses",
1084 OREMsg: "write of conditional recurring variant value to a loop "
1085 "invariant address could not be vectorized",
1086 ORETag: "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1087 return false;
1088 }
1089
1090 // Invariant address should be defined outside of loop. LICM pass usually
1091 // makes sure it happens, but in rare cases it does not, we do not want
1092 // to overcomplicate vectorization to support this case.
1093 if (Instruction *Ptr = dyn_cast<Instruction>(Val: SI->getPointerOperand())) {
1094 if (TheLoop->contains(Inst: Ptr)) {
1095 reportVectorizationFailure(
1096 DebugMsg: "Invariant address is calculated inside the loop",
1097 OREMsg: "write to a loop invariant address could not "
1098 "be vectorized",
1099 ORETag: "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1100 return false;
1101 }
1102 }
1103 }
1104
1105 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
1106 // For each invariant address, check its last stored value is the result
1107 // of one of our reductions.
1108 //
1109 // We do not check if dependence with loads exists because they are
1110 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
1111 // behaviour changes we have to modify this code.
1112 ScalarEvolution *SE = PSE.getSE();
1113 SmallVector<StoreInst *, 4> UnhandledStores;
1114 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
1115 if (isInvariantStoreOfReduction(SI)) {
1116 // Earlier stores to this address are effectively deadcode.
1117 // With opaque pointers it is possible for one pointer to be used with
1118 // different sizes of stored values:
1119 // store i32 0, ptr %x
1120 // store i8 0, ptr %x
1121 // The latest store doesn't complitely overwrite the first one in the
1122 // example. That is why we have to make sure that types of stored
1123 // values are same.
1124 // TODO: Check that bitwidth of unhandled store is smaller then the
1125 // one that overwrites it and add a test.
1126 erase_if(C&: UnhandledStores, P: [SE, SI](StoreInst *I) {
1127 return storeToSameAddress(SE, A: SI, B: I) &&
1128 I->getValueOperand()->getType() ==
1129 SI->getValueOperand()->getType();
1130 });
1131 continue;
1132 }
1133 UnhandledStores.push_back(Elt: SI);
1134 }
1135
1136 bool IsOK = UnhandledStores.empty();
1137 // TODO: we should also validate against InvariantMemSets.
1138 if (!IsOK) {
1139 reportVectorizationFailure(
1140 DebugMsg: "We don't allow storing to uniform addresses",
1141 OREMsg: "write to a loop invariant address could not "
1142 "be vectorized",
1143 ORETag: "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
1144 return false;
1145 }
1146 }
1147 }
1148
1149 PSE.addPredicate(Pred: LAI->getPSE().getPredicate());
1150 return true;
1151}
1152
1153bool LoopVectorizationLegality::canVectorizeFPMath(
1154 bool EnableStrictReductions) {
1155
1156 // First check if there is any ExactFP math or if we allow reassociations
1157 if (!Requirements->getExactFPInst() || Hints->allowReordering())
1158 return true;
1159
1160 // If the above is false, we have ExactFPMath & do not allow reordering.
1161 // If the EnableStrictReductions flag is set, first check if we have any
1162 // Exact FP induction vars, which we cannot vectorize.
1163 if (!EnableStrictReductions ||
1164 any_of(Range: getInductionVars(), P: [&](auto &Induction) -> bool {
1165 InductionDescriptor IndDesc = Induction.second;
1166 return IndDesc.getExactFPMathInst();
1167 }))
1168 return false;
1169
1170 // We can now only vectorize if all reductions with Exact FP math also
1171 // have the isOrdered flag set, which indicates that we can move the
1172 // reduction operations in-loop.
1173 return (all_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool {
1174 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1175 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1176 }));
1177}
1178
1179bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1180 return any_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool {
1181 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1182 return RdxDesc.IntermediateStore == SI;
1183 });
1184}
1185
1186bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1187 return any_of(Range: getReductionVars(), P: [&](auto &Reduction) -> bool {
1188 const RecurrenceDescriptor &RdxDesc = Reduction.second;
1189 if (!RdxDesc.IntermediateStore)
1190 return false;
1191
1192 ScalarEvolution *SE = PSE.getSE();
1193 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1194 return V == InvariantAddress ||
1195 SE->getSCEV(V) == SE->getSCEV(V: InvariantAddress);
1196 });
1197}
1198
1199bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1200 Value *In0 = const_cast<Value *>(V);
1201 PHINode *PN = dyn_cast_or_null<PHINode>(Val: In0);
1202 if (!PN)
1203 return false;
1204
1205 return Inductions.count(Key: PN);
1206}
1207
1208const InductionDescriptor *
1209LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1210 if (!isInductionPhi(V: Phi))
1211 return nullptr;
1212 auto &ID = getInductionVars().find(Key: Phi)->second;
1213 if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1214 ID.getKind() == InductionDescriptor::IK_FpInduction)
1215 return &ID;
1216 return nullptr;
1217}
1218
1219const InductionDescriptor *
1220LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1221 if (!isInductionPhi(V: Phi))
1222 return nullptr;
1223 auto &ID = getInductionVars().find(Key: Phi)->second;
1224 if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1225 return &ID;
1226 return nullptr;
1227}
1228
1229bool LoopVectorizationLegality::isCastedInductionVariable(
1230 const Value *V) const {
1231 auto *Inst = dyn_cast<Instruction>(Val: V);
1232 return (Inst && InductionCastsToIgnore.count(Ptr: Inst));
1233}
1234
1235bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1236 return isInductionPhi(V) || isCastedInductionVariable(V);
1237}
1238
1239bool LoopVectorizationLegality::isFixedOrderRecurrence(
1240 const PHINode *Phi) const {
1241 return FixedOrderRecurrences.count(Ptr: Phi);
1242}
1243
1244bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1245 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1246}
1247
1248bool LoopVectorizationLegality::blockCanBePredicated(
1249 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1250 SmallPtrSetImpl<const Instruction *> &MaskedOp) const {
1251 for (Instruction &I : *BB) {
1252 // We can predicate blocks with calls to assume, as long as we drop them in
1253 // case we flatten the CFG via predication.
1254 if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1255 MaskedOp.insert(Ptr: &I);
1256 continue;
1257 }
1258
1259 // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1260 // TODO: there might be cases that it should block the vectorization. Let's
1261 // ignore those for now.
1262 if (isa<NoAliasScopeDeclInst>(Val: &I))
1263 continue;
1264
1265 // We can allow masked calls if there's at least one vector variant, even
1266 // if we end up scalarizing due to the cost model calculations.
1267 // TODO: Allow other calls if they have appropriate attributes... readonly
1268 // and argmemonly?
1269 if (CallInst *CI = dyn_cast<CallInst>(Val: &I))
1270 if (VFDatabase::hasMaskedVariant(CI: *CI)) {
1271 MaskedOp.insert(Ptr: CI);
1272 continue;
1273 }
1274
1275 // Loads are handled via masking (or speculated if safe to do so.)
1276 if (auto *LI = dyn_cast<LoadInst>(Val: &I)) {
1277 if (!SafePtrs.count(Ptr: LI->getPointerOperand()))
1278 MaskedOp.insert(Ptr: LI);
1279 continue;
1280 }
1281
1282 // Predicated store requires some form of masking:
1283 // 1) masked store HW instruction,
1284 // 2) emulation via load-blend-store (only if safe and legal to do so,
1285 // be aware on the race conditions), or
1286 // 3) element-by-element predicate check and scalar store.
1287 if (auto *SI = dyn_cast<StoreInst>(Val: &I)) {
1288 MaskedOp.insert(Ptr: SI);
1289 continue;
1290 }
1291
1292 if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
1293 return false;
1294 }
1295
1296 return true;
1297}
1298
1299bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1300 if (!EnableIfConversion) {
1301 reportVectorizationFailure(DebugMsg: "If-conversion is disabled",
1302 OREMsg: "if-conversion is disabled",
1303 ORETag: "IfConversionDisabled",
1304 ORE, TheLoop);
1305 return false;
1306 }
1307
1308 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1309
1310 // A list of pointers which are known to be dereferenceable within scope of
1311 // the loop body for each iteration of the loop which executes. That is,
1312 // the memory pointed to can be dereferenced (with the access size implied by
1313 // the value's type) unconditionally within the loop header without
1314 // introducing a new fault.
1315 SmallPtrSet<Value *, 8> SafePointers;
1316
1317 // Collect safe addresses.
1318 for (BasicBlock *BB : TheLoop->blocks()) {
1319 if (!blockNeedsPredication(BB)) {
1320 for (Instruction &I : *BB)
1321 if (auto *Ptr = getLoadStorePointerOperand(V: &I))
1322 SafePointers.insert(Ptr);
1323 continue;
1324 }
1325
1326 // For a block which requires predication, a address may be safe to access
1327 // in the loop w/o predication if we can prove dereferenceability facts
1328 // sufficient to ensure it'll never fault within the loop. For the moment,
1329 // we restrict this to loads; stores are more complicated due to
1330 // concurrency restrictions.
1331 ScalarEvolution &SE = *PSE.getSE();
1332 for (Instruction &I : *BB) {
1333 LoadInst *LI = dyn_cast<LoadInst>(Val: &I);
1334 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(LI: *LI) &&
1335 isDereferenceableAndAlignedInLoop(LI, L: TheLoop, SE, DT&: *DT, AC))
1336 SafePointers.insert(Ptr: LI->getPointerOperand());
1337 }
1338 }
1339
1340 // Collect the blocks that need predication.
1341 for (BasicBlock *BB : TheLoop->blocks()) {
1342 // We don't support switch statements inside loops.
1343 if (!isa<BranchInst>(Val: BB->getTerminator())) {
1344 reportVectorizationFailure(DebugMsg: "Loop contains a switch statement",
1345 OREMsg: "loop contains a switch statement",
1346 ORETag: "LoopContainsSwitch", ORE, TheLoop,
1347 I: BB->getTerminator());
1348 return false;
1349 }
1350
1351 // We must be able to predicate all blocks that need to be predicated.
1352 if (blockNeedsPredication(BB) &&
1353 !blockCanBePredicated(BB, SafePtrs&: SafePointers, MaskedOp)) {
1354 reportVectorizationFailure(
1355 DebugMsg: "Control flow cannot be substituted for a select",
1356 OREMsg: "control flow cannot be substituted for a select", ORETag: "NoCFGForSelect",
1357 ORE, TheLoop, I: BB->getTerminator());
1358 return false;
1359 }
1360 }
1361
1362 // We can if-convert this loop.
1363 return true;
1364}
1365
1366// Helper function to canVectorizeLoopNestCFG.
1367bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1368 bool UseVPlanNativePath) {
1369 assert((UseVPlanNativePath || Lp->isInnermost()) &&
1370 "VPlan-native path is not enabled.");
1371
1372 // TODO: ORE should be improved to show more accurate information when an
1373 // outer loop can't be vectorized because a nested loop is not understood or
1374 // legal. Something like: "outer_loop_location: loop not vectorized:
1375 // (inner_loop_location) loop control flow is not understood by vectorizer".
1376
1377 // Store the result and return it at the end instead of exiting early, in case
1378 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1379 bool Result = true;
1380 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1381
1382 // We must have a loop in canonical form. Loops with indirectbr in them cannot
1383 // be canonicalized.
1384 if (!Lp->getLoopPreheader()) {
1385 reportVectorizationFailure(DebugMsg: "Loop doesn't have a legal pre-header",
1386 OREMsg: "loop control flow is not understood by vectorizer",
1387 ORETag: "CFGNotUnderstood", ORE, TheLoop);
1388 if (DoExtraAnalysis)
1389 Result = false;
1390 else
1391 return false;
1392 }
1393
1394 // We must have a single backedge.
1395 if (Lp->getNumBackEdges() != 1) {
1396 reportVectorizationFailure(DebugMsg: "The loop must have a single backedge",
1397 OREMsg: "loop control flow is not understood by vectorizer",
1398 ORETag: "CFGNotUnderstood", ORE, TheLoop);
1399 if (DoExtraAnalysis)
1400 Result = false;
1401 else
1402 return false;
1403 }
1404
1405 return Result;
1406}
1407
1408bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1409 Loop *Lp, bool UseVPlanNativePath) {
1410 // Store the result and return it at the end instead of exiting early, in case
1411 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1412 bool Result = true;
1413 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1414 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1415 if (DoExtraAnalysis)
1416 Result = false;
1417 else
1418 return false;
1419 }
1420
1421 // Recursively check whether the loop control flow of nested loops is
1422 // understood.
1423 for (Loop *SubLp : *Lp)
1424 if (!canVectorizeLoopNestCFG(Lp: SubLp, UseVPlanNativePath)) {
1425 if (DoExtraAnalysis)
1426 Result = false;
1427 else
1428 return false;
1429 }
1430
1431 return Result;
1432}
1433
1434bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1435 // Store the result and return it at the end instead of exiting early, in case
1436 // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1437 bool Result = true;
1438
1439 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1440 // Check whether the loop-related control flow in the loop nest is expected by
1441 // vectorizer.
1442 if (!canVectorizeLoopNestCFG(Lp: TheLoop, UseVPlanNativePath)) {
1443 if (DoExtraAnalysis)
1444 Result = false;
1445 else
1446 return false;
1447 }
1448
1449 // We need to have a loop header.
1450 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1451 << '\n');
1452
1453 // Specific checks for outer loops. We skip the remaining legal checks at this
1454 // point because they don't support outer loops.
1455 if (!TheLoop->isInnermost()) {
1456 assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1457
1458 if (!canVectorizeOuterLoop()) {
1459 reportVectorizationFailure(DebugMsg: "Unsupported outer loop",
1460 OREMsg: "unsupported outer loop",
1461 ORETag: "UnsupportedOuterLoop",
1462 ORE, TheLoop);
1463 // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1464 // outer loops.
1465 return false;
1466 }
1467
1468 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1469 return Result;
1470 }
1471
1472 assert(TheLoop->isInnermost() && "Inner loop expected.");
1473 // Check if we can if-convert non-single-bb loops.
1474 unsigned NumBlocks = TheLoop->getNumBlocks();
1475 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1476 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1477 if (DoExtraAnalysis)
1478 Result = false;
1479 else
1480 return false;
1481 }
1482
1483 // Check if we can vectorize the instructions and CFG in this loop.
1484 if (!canVectorizeInstrs()) {
1485 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1486 if (DoExtraAnalysis)
1487 Result = false;
1488 else
1489 return false;
1490 }
1491
1492 // Go over each instruction and look at memory deps.
1493 if (!canVectorizeMemory()) {
1494 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1495 if (DoExtraAnalysis)
1496 Result = false;
1497 else
1498 return false;
1499 }
1500
1501 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1502 << (LAI->getRuntimePointerChecking()->Need
1503 ? " (with a runtime bound check)"
1504 : "")
1505 << "!\n");
1506
1507 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1508 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1509 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1510
1511 if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1512 reportVectorizationFailure(DebugMsg: "Too many SCEV checks needed",
1513 OREMsg: "Too many SCEV assumptions need to be made and checked at runtime",
1514 ORETag: "TooManySCEVRunTimeChecks", ORE, TheLoop);
1515 if (DoExtraAnalysis)
1516 Result = false;
1517 else
1518 return false;
1519 }
1520
1521 // Okay! We've done all the tests. If any have failed, return false. Otherwise
1522 // we can vectorize, and at this point we don't have any other mem analysis
1523 // which may limit our maximum vectorization factor, so just return true with
1524 // no restrictions.
1525 return Result;
1526}
1527
1528bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1529
1530 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1531
1532 SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1533
1534 for (const auto &Reduction : getReductionVars())
1535 ReductionLiveOuts.insert(Ptr: Reduction.second.getLoopExitInstr());
1536
1537 // TODO: handle non-reduction outside users when tail is folded by masking.
1538 for (auto *AE : AllowedExit) {
1539 // Check that all users of allowed exit values are inside the loop or
1540 // are the live-out of a reduction.
1541 if (ReductionLiveOuts.count(Ptr: AE))
1542 continue;
1543 for (User *U : AE->users()) {
1544 Instruction *UI = cast<Instruction>(Val: U);
1545 if (TheLoop->contains(Inst: UI))
1546 continue;
1547 LLVM_DEBUG(
1548 dbgs()
1549 << "LV: Cannot fold tail by masking, loop has an outside user for "
1550 << *UI << "\n");
1551 return false;
1552 }
1553 }
1554
1555 for (const auto &Entry : getInductionVars()) {
1556 PHINode *OrigPhi = Entry.first;
1557 for (User *U : OrigPhi->users()) {
1558 auto *UI = cast<Instruction>(Val: U);
1559 if (!TheLoop->contains(Inst: UI)) {
1560 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop IV has an "
1561 "outside user for "
1562 << *UI << "\n");
1563 return false;
1564 }
1565 }
1566 }
1567
1568 // The list of pointers that we can safely read and write to remains empty.
1569 SmallPtrSet<Value *, 8> SafePointers;
1570
1571 // Collect masked ops in temporary set first to avoid partially populating
1572 // MaskedOp if a block cannot be predicated.
1573 SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1574
1575 // Check and mark all blocks for predication, including those that ordinarily
1576 // do not need predication such as the header block.
1577 for (BasicBlock *BB : TheLoop->blocks()) {
1578 if (!blockCanBePredicated(BB, SafePtrs&: SafePointers, MaskedOp&: TmpMaskedOp)) {
1579 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1580 return false;
1581 }
1582 }
1583
1584 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1585
1586 MaskedOp.insert(I: TmpMaskedOp.begin(), E: TmpMaskedOp.end());
1587 return true;
1588}
1589
1590} // namespace llvm
1591

source code of llvm/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp