1/*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26#include "dm_services.h"
27
28#include "resource.h"
29#include "include/irq_service_interface.h"
30#include "link_encoder.h"
31#include "stream_encoder.h"
32#include "opp.h"
33#include "timing_generator.h"
34#include "transform.h"
35#include "dccg.h"
36#include "dchubbub.h"
37#include "dpp.h"
38#include "core_types.h"
39#include "set_mode_types.h"
40#include "virtual/virtual_stream_encoder.h"
41#include "dpcd_defs.h"
42#include "link_enc_cfg.h"
43#include "link.h"
44#include "clk_mgr.h"
45#include "virtual/virtual_link_hwss.h"
46#include "link/hwss/link_hwss_dio.h"
47#include "link/hwss/link_hwss_dpia.h"
48#include "link/hwss/link_hwss_hpo_dp.h"
49#include "link/hwss/link_hwss_dio_fixed_vs_pe_retimer.h"
50#include "link/hwss/link_hwss_hpo_fixed_vs_pe_retimer_dp.h"
51
52#if defined(CONFIG_DRM_AMD_DC_SI)
53#include "dce60/dce60_resource.h"
54#endif
55#include "dce80/dce80_resource.h"
56#include "dce100/dce100_resource.h"
57#include "dce110/dce110_resource.h"
58#include "dce112/dce112_resource.h"
59#include "dce120/dce120_resource.h"
60#include "dcn10/dcn10_resource.h"
61#include "dcn20/dcn20_resource.h"
62#include "dcn21/dcn21_resource.h"
63#include "dcn201/dcn201_resource.h"
64#include "dcn30/dcn30_resource.h"
65#include "dcn301/dcn301_resource.h"
66#include "dcn302/dcn302_resource.h"
67#include "dcn303/dcn303_resource.h"
68#include "dcn31/dcn31_resource.h"
69#include "dcn314/dcn314_resource.h"
70#include "dcn315/dcn315_resource.h"
71#include "dcn316/dcn316_resource.h"
72#include "../dcn32/dcn32_resource.h"
73#include "../dcn321/dcn321_resource.h"
74#include "dcn35/dcn35_resource.h"
75
76#define VISUAL_CONFIRM_BASE_DEFAULT 3
77#define VISUAL_CONFIRM_BASE_MIN 1
78#define VISUAL_CONFIRM_BASE_MAX 10
79/* we choose 240 because it is a common denominator of common v addressable
80 * such as 2160, 1440, 1200, 960. So we take 1/240 portion of v addressable as
81 * the visual confirm dpp offset height. So visual confirm height can stay
82 * relatively the same independent from timing used.
83 */
84#define VISUAL_CONFIRM_DPP_OFFSET_DENO 240
85
86#define DC_LOGGER \
87 dc->ctx->logger
88#define DC_LOGGER_INIT(logger)
89
90#include "dml2/dml2_wrapper.h"
91
92#define UNABLE_TO_SPLIT -1
93
94enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
95{
96 enum dce_version dc_version = DCE_VERSION_UNKNOWN;
97
98 switch (asic_id.chip_family) {
99
100#if defined(CONFIG_DRM_AMD_DC_SI)
101 case FAMILY_SI:
102 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
103 ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
104 ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
105 dc_version = DCE_VERSION_6_0;
106 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
107 dc_version = DCE_VERSION_6_4;
108 else
109 dc_version = DCE_VERSION_6_1;
110 break;
111#endif
112 case FAMILY_CI:
113 dc_version = DCE_VERSION_8_0;
114 break;
115 case FAMILY_KV:
116 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
117 ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
118 ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
119 dc_version = DCE_VERSION_8_3;
120 else
121 dc_version = DCE_VERSION_8_1;
122 break;
123 case FAMILY_CZ:
124 dc_version = DCE_VERSION_11_0;
125 break;
126
127 case FAMILY_VI:
128 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
129 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
130 dc_version = DCE_VERSION_10_0;
131 break;
132 }
133 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
134 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
135 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
136 dc_version = DCE_VERSION_11_2;
137 }
138 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
139 dc_version = DCE_VERSION_11_22;
140 break;
141 case FAMILY_AI:
142 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
143 dc_version = DCE_VERSION_12_1;
144 else
145 dc_version = DCE_VERSION_12_0;
146 break;
147 case FAMILY_RV:
148 dc_version = DCN_VERSION_1_0;
149 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
150 dc_version = DCN_VERSION_1_01;
151 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
152 dc_version = DCN_VERSION_2_1;
153 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
154 dc_version = DCN_VERSION_2_1;
155 break;
156
157 case FAMILY_NV:
158 dc_version = DCN_VERSION_2_0;
159 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
160 dc_version = DCN_VERSION_2_01;
161 break;
162 }
163 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
164 dc_version = DCN_VERSION_3_0;
165 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
166 dc_version = DCN_VERSION_3_02;
167 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
168 dc_version = DCN_VERSION_3_03;
169 break;
170
171 case FAMILY_VGH:
172 dc_version = DCN_VERSION_3_01;
173 break;
174
175 case FAMILY_YELLOW_CARP:
176 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
177 dc_version = DCN_VERSION_3_1;
178 break;
179 case AMDGPU_FAMILY_GC_10_3_6:
180 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
181 dc_version = DCN_VERSION_3_15;
182 break;
183 case AMDGPU_FAMILY_GC_10_3_7:
184 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
185 dc_version = DCN_VERSION_3_16;
186 break;
187 case AMDGPU_FAMILY_GC_11_0_0:
188 dc_version = DCN_VERSION_3_2;
189 if (ASICREV_IS_GC_11_0_2(asic_id.hw_internal_rev))
190 dc_version = DCN_VERSION_3_21;
191 break;
192 case AMDGPU_FAMILY_GC_11_0_1:
193 dc_version = DCN_VERSION_3_14;
194 break;
195 case AMDGPU_FAMILY_GC_11_5_0:
196 dc_version = DCN_VERSION_3_5;
197 break;
198 default:
199 dc_version = DCE_VERSION_UNKNOWN;
200 break;
201 }
202 return dc_version;
203}
204
205struct resource_pool *dc_create_resource_pool(struct dc *dc,
206 const struct dc_init_data *init_data,
207 enum dce_version dc_version)
208{
209 struct resource_pool *res_pool = NULL;
210
211 switch (dc_version) {
212#if defined(CONFIG_DRM_AMD_DC_SI)
213 case DCE_VERSION_6_0:
214 res_pool = dce60_create_resource_pool(
215 num_virtual_links: init_data->num_virtual_links, dc);
216 break;
217 case DCE_VERSION_6_1:
218 res_pool = dce61_create_resource_pool(
219 num_virtual_links: init_data->num_virtual_links, dc);
220 break;
221 case DCE_VERSION_6_4:
222 res_pool = dce64_create_resource_pool(
223 num_virtual_links: init_data->num_virtual_links, dc);
224 break;
225#endif
226 case DCE_VERSION_8_0:
227 res_pool = dce80_create_resource_pool(
228 num_virtual_links: init_data->num_virtual_links, dc);
229 break;
230 case DCE_VERSION_8_1:
231 res_pool = dce81_create_resource_pool(
232 num_virtual_links: init_data->num_virtual_links, dc);
233 break;
234 case DCE_VERSION_8_3:
235 res_pool = dce83_create_resource_pool(
236 num_virtual_links: init_data->num_virtual_links, dc);
237 break;
238 case DCE_VERSION_10_0:
239 res_pool = dce100_create_resource_pool(
240 num_virtual_links: init_data->num_virtual_links, dc);
241 break;
242 case DCE_VERSION_11_0:
243 res_pool = dce110_create_resource_pool(
244 num_virtual_links: init_data->num_virtual_links, dc,
245 asic_id: init_data->asic_id);
246 break;
247 case DCE_VERSION_11_2:
248 case DCE_VERSION_11_22:
249 res_pool = dce112_create_resource_pool(
250 num_virtual_links: init_data->num_virtual_links, dc);
251 break;
252 case DCE_VERSION_12_0:
253 case DCE_VERSION_12_1:
254 res_pool = dce120_create_resource_pool(
255 num_virtual_links: init_data->num_virtual_links, dc);
256 break;
257
258#if defined(CONFIG_DRM_AMD_DC_FP)
259 case DCN_VERSION_1_0:
260 case DCN_VERSION_1_01:
261 res_pool = dcn10_create_resource_pool(init_data, dc);
262 break;
263 case DCN_VERSION_2_0:
264 res_pool = dcn20_create_resource_pool(init_data, dc);
265 break;
266 case DCN_VERSION_2_1:
267 res_pool = dcn21_create_resource_pool(init_data, dc);
268 break;
269 case DCN_VERSION_2_01:
270 res_pool = dcn201_create_resource_pool(init_data, dc);
271 break;
272 case DCN_VERSION_3_0:
273 res_pool = dcn30_create_resource_pool(init_data, dc);
274 break;
275 case DCN_VERSION_3_01:
276 res_pool = dcn301_create_resource_pool(init_data, dc);
277 break;
278 case DCN_VERSION_3_02:
279 res_pool = dcn302_create_resource_pool(init_data, dc);
280 break;
281 case DCN_VERSION_3_03:
282 res_pool = dcn303_create_resource_pool(init_data, dc);
283 break;
284 case DCN_VERSION_3_1:
285 res_pool = dcn31_create_resource_pool(init_data, dc);
286 break;
287 case DCN_VERSION_3_14:
288 res_pool = dcn314_create_resource_pool(init_data, dc);
289 break;
290 case DCN_VERSION_3_15:
291 res_pool = dcn315_create_resource_pool(init_data, dc);
292 break;
293 case DCN_VERSION_3_16:
294 res_pool = dcn316_create_resource_pool(init_data, dc);
295 break;
296 case DCN_VERSION_3_2:
297 res_pool = dcn32_create_resource_pool(init_data, dc);
298 break;
299 case DCN_VERSION_3_21:
300 res_pool = dcn321_create_resource_pool(init_data, dc);
301 break;
302 case DCN_VERSION_3_5:
303 res_pool = dcn35_create_resource_pool(init_data, dc);
304 break;
305#endif /* CONFIG_DRM_AMD_DC_FP */
306 default:
307 break;
308 }
309
310 if (res_pool != NULL) {
311 if (dc->ctx->dc_bios->fw_info_valid) {
312 res_pool->ref_clocks.xtalin_clock_inKhz =
313 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
314 /* initialize with firmware data first, no all
315 * ASIC have DCCG SW component. FPGA or
316 * simulation need initialization of
317 * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
318 * with xtalin_clock_inKhz
319 */
320 res_pool->ref_clocks.dccg_ref_clock_inKhz =
321 res_pool->ref_clocks.xtalin_clock_inKhz;
322 res_pool->ref_clocks.dchub_ref_clock_inKhz =
323 res_pool->ref_clocks.xtalin_clock_inKhz;
324 if (dc->debug.using_dml2)
325 if (res_pool->hubbub && res_pool->hubbub->funcs->get_dchub_ref_freq)
326 res_pool->hubbub->funcs->get_dchub_ref_freq(res_pool->hubbub,
327 res_pool->ref_clocks.dccg_ref_clock_inKhz,
328 &res_pool->ref_clocks.dchub_ref_clock_inKhz);
329 } else
330 ASSERT_CRITICAL(false);
331 }
332
333 return res_pool;
334}
335
336void dc_destroy_resource_pool(struct dc *dc)
337{
338 if (dc) {
339 if (dc->res_pool)
340 dc->res_pool->funcs->destroy(&dc->res_pool);
341
342 kfree(objp: dc->hwseq);
343 }
344}
345
346static void update_num_audio(
347 const struct resource_straps *straps,
348 unsigned int *num_audio,
349 struct audio_support *aud_support)
350{
351 aud_support->dp_audio = true;
352 aud_support->hdmi_audio_native = false;
353 aud_support->hdmi_audio_on_dongle = false;
354
355 if (straps->hdmi_disable == 0) {
356 if (straps->dc_pinstraps_audio & 0x2) {
357 aud_support->hdmi_audio_on_dongle = true;
358 aud_support->hdmi_audio_native = true;
359 }
360 }
361
362 switch (straps->audio_stream_number) {
363 case 0: /* multi streams supported */
364 break;
365 case 1: /* multi streams not supported */
366 *num_audio = 1;
367 break;
368 default:
369 DC_ERR("DC: unexpected audio fuse!\n");
370 }
371}
372
373bool resource_construct(
374 unsigned int num_virtual_links,
375 struct dc *dc,
376 struct resource_pool *pool,
377 const struct resource_create_funcs *create_funcs)
378{
379 struct dc_context *ctx = dc->ctx;
380 const struct resource_caps *caps = pool->res_cap;
381 int i;
382 unsigned int num_audio = caps->num_audio;
383 struct resource_straps straps = {0};
384
385 if (create_funcs->read_dce_straps)
386 create_funcs->read_dce_straps(dc->ctx, &straps);
387
388 pool->audio_count = 0;
389 if (create_funcs->create_audio) {
390 /* find the total number of streams available via the
391 * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
392 * registers (one for each pin) starting from pin 1
393 * up to the max number of audio pins.
394 * We stop on the first pin where
395 * PORT_CONNECTIVITY == 1 (as instructed by HW team).
396 */
397 update_num_audio(straps: &straps, num_audio: &num_audio, aud_support: &pool->audio_support);
398 for (i = 0; i < caps->num_audio; i++) {
399 struct audio *aud = create_funcs->create_audio(ctx, i);
400
401 if (aud == NULL) {
402 DC_ERR("DC: failed to create audio!\n");
403 return false;
404 }
405 if (!aud->funcs->endpoint_valid(aud)) {
406 aud->funcs->destroy(&aud);
407 break;
408 }
409 pool->audios[i] = aud;
410 pool->audio_count++;
411 }
412 }
413
414 pool->stream_enc_count = 0;
415 if (create_funcs->create_stream_encoder) {
416 for (i = 0; i < caps->num_stream_encoder; i++) {
417 pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
418 if (pool->stream_enc[i] == NULL)
419 DC_ERR("DC: failed to create stream_encoder!\n");
420 pool->stream_enc_count++;
421 }
422 }
423
424 pool->hpo_dp_stream_enc_count = 0;
425 if (create_funcs->create_hpo_dp_stream_encoder) {
426 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
427 pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
428 if (pool->hpo_dp_stream_enc[i] == NULL)
429 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
430 pool->hpo_dp_stream_enc_count++;
431
432 }
433 }
434
435 pool->hpo_dp_link_enc_count = 0;
436 if (create_funcs->create_hpo_dp_link_encoder) {
437 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
438 pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
439 if (pool->hpo_dp_link_enc[i] == NULL)
440 DC_ERR("DC: failed to create HPO DP link encoder!\n");
441 pool->hpo_dp_link_enc_count++;
442 }
443 }
444
445 for (i = 0; i < caps->num_mpc_3dlut; i++) {
446 pool->mpc_lut[i] = dc_create_3dlut_func();
447 if (pool->mpc_lut[i] == NULL)
448 DC_ERR("DC: failed to create MPC 3dlut!\n");
449 pool->mpc_shaper[i] = dc_create_transfer_func();
450 if (pool->mpc_shaper[i] == NULL)
451 DC_ERR("DC: failed to create MPC shaper!\n");
452 }
453
454 dc->caps.dynamic_audio = false;
455 if (pool->audio_count < pool->stream_enc_count) {
456 dc->caps.dynamic_audio = true;
457 }
458 for (i = 0; i < num_virtual_links; i++) {
459 pool->stream_enc[pool->stream_enc_count] =
460 virtual_stream_encoder_create(
461 ctx, bp: ctx->dc_bios);
462 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
463 DC_ERR("DC: failed to create stream_encoder!\n");
464 return false;
465 }
466 pool->stream_enc_count++;
467 }
468
469 dc->hwseq = create_funcs->create_hwseq(ctx);
470
471 return true;
472}
473static int find_matching_clock_source(
474 const struct resource_pool *pool,
475 struct clock_source *clock_source)
476{
477
478 int i;
479
480 for (i = 0; i < pool->clk_src_count; i++) {
481 if (pool->clock_sources[i] == clock_source)
482 return i;
483 }
484 return -1;
485}
486
487void resource_unreference_clock_source(
488 struct resource_context *res_ctx,
489 const struct resource_pool *pool,
490 struct clock_source *clock_source)
491{
492 int i = find_matching_clock_source(pool, clock_source);
493
494 if (i > -1)
495 res_ctx->clock_source_ref_count[i]--;
496
497 if (pool->dp_clock_source == clock_source)
498 res_ctx->dp_clock_source_ref_count--;
499}
500
501void resource_reference_clock_source(
502 struct resource_context *res_ctx,
503 const struct resource_pool *pool,
504 struct clock_source *clock_source)
505{
506 int i = find_matching_clock_source(pool, clock_source);
507
508 if (i > -1)
509 res_ctx->clock_source_ref_count[i]++;
510
511 if (pool->dp_clock_source == clock_source)
512 res_ctx->dp_clock_source_ref_count++;
513}
514
515int resource_get_clock_source_reference(
516 struct resource_context *res_ctx,
517 const struct resource_pool *pool,
518 struct clock_source *clock_source)
519{
520 int i = find_matching_clock_source(pool, clock_source);
521
522 if (i > -1)
523 return res_ctx->clock_source_ref_count[i];
524
525 if (pool->dp_clock_source == clock_source)
526 return res_ctx->dp_clock_source_ref_count;
527
528 return -1;
529}
530
531bool resource_are_vblanks_synchronizable(
532 struct dc_stream_state *stream1,
533 struct dc_stream_state *stream2)
534{
535 uint32_t base60_refresh_rates[] = {10, 20, 5};
536 uint8_t i;
537 uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
538 uint64_t frame_time_diff;
539
540 if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
541 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
542 dc_is_dp_signal(signal: stream1->signal) &&
543 dc_is_dp_signal(signal: stream2->signal) &&
544 false == stream1->has_non_synchronizable_pclk &&
545 false == stream2->has_non_synchronizable_pclk &&
546 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
547 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
548 /* disable refresh rates higher than 60Hz for now */
549 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
550 stream1->timing.v_total > 60)
551 return false;
552 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
553 stream2->timing.v_total > 60)
554 return false;
555 frame_time_diff = (uint64_t)10000 *
556 stream1->timing.h_total *
557 stream1->timing.v_total *
558 stream2->timing.pix_clk_100hz;
559 frame_time_diff = div_u64(dividend: frame_time_diff, divisor: stream1->timing.pix_clk_100hz);
560 frame_time_diff = div_u64(dividend: frame_time_diff, divisor: stream2->timing.h_total);
561 frame_time_diff = div_u64(dividend: frame_time_diff, divisor: stream2->timing.v_total);
562 for (i = 0; i < rr_count; i++) {
563 int64_t diff = (int64_t)div_u64(dividend: frame_time_diff * base60_refresh_rates[i], divisor: 10) - 10000;
564
565 if (diff < 0)
566 diff = -diff;
567 if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
568 return true;
569 }
570 }
571 return false;
572}
573
574bool resource_are_streams_timing_synchronizable(
575 struct dc_stream_state *stream1,
576 struct dc_stream_state *stream2)
577{
578 if (stream1->timing.h_total != stream2->timing.h_total)
579 return false;
580
581 if (stream1->timing.v_total != stream2->timing.v_total)
582 return false;
583
584 if (stream1->timing.h_addressable
585 != stream2->timing.h_addressable)
586 return false;
587
588 if (stream1->timing.v_addressable
589 != stream2->timing.v_addressable)
590 return false;
591
592 if (stream1->timing.v_front_porch
593 != stream2->timing.v_front_porch)
594 return false;
595
596 if (stream1->timing.pix_clk_100hz
597 != stream2->timing.pix_clk_100hz)
598 return false;
599
600 if (stream1->clamping.c_depth != stream2->clamping.c_depth)
601 return false;
602
603 if (stream1->phy_pix_clk != stream2->phy_pix_clk
604 && (!dc_is_dp_signal(signal: stream1->signal)
605 || !dc_is_dp_signal(signal: stream2->signal)))
606 return false;
607
608 if (stream1->view_format != stream2->view_format)
609 return false;
610
611 if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
612 return false;
613
614 return true;
615}
616static bool is_dp_and_hdmi_sharable(
617 struct dc_stream_state *stream1,
618 struct dc_stream_state *stream2)
619{
620 if (stream1->ctx->dc->caps.disable_dp_clk_share)
621 return false;
622
623 if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
624 stream2->clamping.c_depth != COLOR_DEPTH_888)
625 return false;
626
627 return true;
628
629}
630
631static bool is_sharable_clk_src(
632 const struct pipe_ctx *pipe_with_clk_src,
633 const struct pipe_ctx *pipe)
634{
635 if (pipe_with_clk_src->clock_source == NULL)
636 return false;
637
638 if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
639 return false;
640
641 if (dc_is_dp_signal(signal: pipe_with_clk_src->stream->signal) ||
642 (dc_is_dp_signal(signal: pipe->stream->signal) &&
643 !is_dp_and_hdmi_sharable(stream1: pipe_with_clk_src->stream,
644 stream2: pipe->stream)))
645 return false;
646
647 if (dc_is_hdmi_signal(signal: pipe_with_clk_src->stream->signal)
648 && dc_is_dual_link_signal(signal: pipe->stream->signal))
649 return false;
650
651 if (dc_is_hdmi_signal(signal: pipe->stream->signal)
652 && dc_is_dual_link_signal(signal: pipe_with_clk_src->stream->signal))
653 return false;
654
655 if (!resource_are_streams_timing_synchronizable(
656 stream1: pipe_with_clk_src->stream, stream2: pipe->stream))
657 return false;
658
659 return true;
660}
661
662struct clock_source *resource_find_used_clk_src_for_sharing(
663 struct resource_context *res_ctx,
664 struct pipe_ctx *pipe_ctx)
665{
666 int i;
667
668 for (i = 0; i < MAX_PIPES; i++) {
669 if (is_sharable_clk_src(pipe_with_clk_src: &res_ctx->pipe_ctx[i], pipe: pipe_ctx))
670 return res_ctx->pipe_ctx[i].clock_source;
671 }
672
673 return NULL;
674}
675
676static enum pixel_format convert_pixel_format_to_dalsurface(
677 enum surface_pixel_format surface_pixel_format)
678{
679 enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
680
681 switch (surface_pixel_format) {
682 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
683 dal_pixel_format = PIXEL_FORMAT_INDEX8;
684 break;
685 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
686 dal_pixel_format = PIXEL_FORMAT_RGB565;
687 break;
688 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
689 dal_pixel_format = PIXEL_FORMAT_RGB565;
690 break;
691 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
692 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
693 break;
694 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
695 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
696 break;
697 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
698 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
699 break;
700 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
701 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
702 break;
703 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
704 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
705 break;
706 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
707 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
708 dal_pixel_format = PIXEL_FORMAT_FP16;
709 break;
710 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
711 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
712 dal_pixel_format = PIXEL_FORMAT_420BPP8;
713 break;
714 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
715 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
716 dal_pixel_format = PIXEL_FORMAT_420BPP10;
717 break;
718 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
719 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
720 default:
721 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
722 break;
723 }
724 return dal_pixel_format;
725}
726
727static inline void get_vp_scan_direction(
728 enum dc_rotation_angle rotation,
729 bool horizontal_mirror,
730 bool *orthogonal_rotation,
731 bool *flip_vert_scan_dir,
732 bool *flip_horz_scan_dir)
733{
734 *orthogonal_rotation = false;
735 *flip_vert_scan_dir = false;
736 *flip_horz_scan_dir = false;
737 if (rotation == ROTATION_ANGLE_180) {
738 *flip_vert_scan_dir = true;
739 *flip_horz_scan_dir = true;
740 } else if (rotation == ROTATION_ANGLE_90) {
741 *orthogonal_rotation = true;
742 *flip_horz_scan_dir = true;
743 } else if (rotation == ROTATION_ANGLE_270) {
744 *orthogonal_rotation = true;
745 *flip_vert_scan_dir = true;
746 }
747
748 if (horizontal_mirror)
749 *flip_horz_scan_dir = !*flip_horz_scan_dir;
750}
751
752/*
753 * This is a preliminary vp size calculation to allow us to check taps support.
754 * The result is completely overridden afterwards.
755 */
756static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
757{
758 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
759
760 data->viewport.width = dc_fixpt_ceil(arg: dc_fixpt_mul_int(arg1: data->ratios.horz, arg2: data->recout.width));
761 data->viewport.height = dc_fixpt_ceil(arg: dc_fixpt_mul_int(arg1: data->ratios.vert, arg2: data->recout.height));
762 data->viewport_c.width = dc_fixpt_ceil(arg: dc_fixpt_mul_int(arg1: data->ratios.horz_c, arg2: data->recout.width));
763 data->viewport_c.height = dc_fixpt_ceil(arg: dc_fixpt_mul_int(arg1: data->ratios.vert_c, arg2: data->recout.height));
764 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
765 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
766 swap(data->viewport.width, data->viewport.height);
767 swap(data->viewport_c.width, data->viewport_c.height);
768 }
769}
770
771static struct rect intersect_rec(const struct rect *r0, const struct rect *r1)
772{
773 struct rect rec;
774 int r0_x_end = r0->x + r0->width;
775 int r1_x_end = r1->x + r1->width;
776 int r0_y_end = r0->y + r0->height;
777 int r1_y_end = r1->y + r1->height;
778
779 rec.x = r0->x > r1->x ? r0->x : r1->x;
780 rec.width = r0_x_end > r1_x_end ? r1_x_end - rec.x : r0_x_end - rec.x;
781 rec.y = r0->y > r1->y ? r0->y : r1->y;
782 rec.height = r0_y_end > r1_y_end ? r1_y_end - rec.y : r0_y_end - rec.y;
783
784 /* in case that there is no intersection */
785 if (rec.width < 0 || rec.height < 0)
786 memset(&rec, 0, sizeof(rec));
787
788 return rec;
789}
790
791static struct rect shift_rec(const struct rect *rec_in, int x, int y)
792{
793 struct rect rec_out = *rec_in;
794
795 rec_out.x += x;
796 rec_out.y += y;
797
798 return rec_out;
799}
800
801static struct rect calculate_odm_slice_in_timing_active(struct pipe_ctx *pipe_ctx)
802{
803 const struct dc_stream_state *stream = pipe_ctx->stream;
804 int odm_slice_count = resource_get_odm_slice_count(otg_master: pipe_ctx);
805 int odm_slice_idx = resource_get_odm_slice_index(opp_head: pipe_ctx);
806 bool is_last_odm_slice = (odm_slice_idx + 1) == odm_slice_count;
807 int h_active = stream->timing.h_addressable +
808 stream->timing.h_border_left +
809 stream->timing.h_border_right;
810 int odm_slice_width = h_active / odm_slice_count;
811 struct rect odm_rec;
812
813 odm_rec.x = odm_slice_width * odm_slice_idx;
814 odm_rec.width = is_last_odm_slice ?
815 /* last slice width is the reminder of h_active */
816 h_active - odm_slice_width * (odm_slice_count - 1) :
817 /* odm slice width is the floor of h_active / count */
818 odm_slice_width;
819 odm_rec.y = 0;
820 odm_rec.height = stream->timing.v_addressable +
821 stream->timing.v_border_bottom +
822 stream->timing.v_border_top;
823
824 return odm_rec;
825}
826
827static struct rect calculate_plane_rec_in_timing_active(
828 struct pipe_ctx *pipe_ctx,
829 const struct rect *rec_in)
830{
831 /*
832 * The following diagram shows an example where we map a 1920x1200
833 * desktop to a 2560x1440 timing with a plane rect in the middle
834 * of the screen. To map a plane rect from Stream Source to Timing
835 * Active space, we first multiply stream scaling ratios (i.e 2304/1920
836 * horizontal and 1440/1200 vertical) to the plane's x and y, then
837 * we add stream destination offsets (i.e 128 horizontal, 0 vertical).
838 * This will give us a plane rect's position in Timing Active. However
839 * we have to remove the fractional. The rule is that we find left/right
840 * and top/bottom positions and round the value to the adjacent integer.
841 *
842 * Stream Source Space
843 * ------------
844 * __________________________________________________
845 * |Stream Source (1920 x 1200) ^ |
846 * | y |
847 * | <------- w --------|> |
848 * | __________________V |
849 * |<-- x -->|Plane//////////////| ^ |
850 * | |(pre scale)////////| | |
851 * | |///////////////////| | |
852 * | |///////////////////| h |
853 * | |///////////////////| | |
854 * | |///////////////////| | |
855 * | |///////////////////| V |
856 * | |
857 * | |
858 * |__________________________________________________|
859 *
860 *
861 * Timing Active Space
862 * ---------------------------------
863 *
864 * Timing Active (2560 x 1440)
865 * __________________________________________________
866 * |*****| Stteam Destination (2304 x 1440) |*****|
867 * |*****| |*****|
868 * |<128>| |*****|
869 * |*****| __________________ |*****|
870 * |*****| |Plane/////////////| |*****|
871 * |*****| |(post scale)//////| |*****|
872 * |*****| |//////////////////| |*****|
873 * |*****| |//////////////////| |*****|
874 * |*****| |//////////////////| |*****|
875 * |*****| |//////////////////| |*****|
876 * |*****| |*****|
877 * |*****| |*****|
878 * |*****| |*****|
879 * |*****|______________________________________|*****|
880 *
881 * So the resulting formulas are shown below:
882 *
883 * recout_x = 128 + round(plane_x * 2304 / 1920)
884 * recout_w = 128 + round((plane_x + plane_w) * 2304 / 1920) - recout_x
885 * recout_y = 0 + round(plane_y * 1440 / 1280)
886 * recout_h = 0 + round((plane_y + plane_h) * 1440 / 1200) - recout_y
887 *
888 * NOTE: fixed point division is not error free. To reduce errors
889 * introduced by fixed point division, we divide only after
890 * multiplication is complete.
891 */
892 const struct dc_stream_state *stream = pipe_ctx->stream;
893 struct rect rec_out = {0};
894 struct fixed31_32 temp;
895
896 temp = dc_fixpt_from_fraction(numerator: rec_in->x * stream->dst.width,
897 denominator: stream->src.width);
898 rec_out.x = stream->dst.x + dc_fixpt_round(arg: temp);
899
900 temp = dc_fixpt_from_fraction(
901 numerator: (rec_in->x + rec_in->width) * stream->dst.width,
902 denominator: stream->src.width);
903 rec_out.width = stream->dst.x + dc_fixpt_round(arg: temp) - rec_out.x;
904
905 temp = dc_fixpt_from_fraction(numerator: rec_in->y * stream->dst.height,
906 denominator: stream->src.height);
907 rec_out.y = stream->dst.y + dc_fixpt_round(arg: temp);
908
909 temp = dc_fixpt_from_fraction(
910 numerator: (rec_in->y + rec_in->height) * stream->dst.height,
911 denominator: stream->src.height);
912 rec_out.height = stream->dst.y + dc_fixpt_round(arg: temp) - rec_out.y;
913
914 return rec_out;
915}
916
917static struct rect calculate_mpc_slice_in_timing_active(
918 struct pipe_ctx *pipe_ctx,
919 struct rect *plane_clip_rec)
920{
921 const struct dc_stream_state *stream = pipe_ctx->stream;
922 int mpc_slice_count = resource_get_mpc_slice_count(opp_head: pipe_ctx);
923 int mpc_slice_idx = resource_get_mpc_slice_index(dpp_pipe: pipe_ctx);
924 int epimo = mpc_slice_count - plane_clip_rec->width % mpc_slice_count - 1;
925 struct rect mpc_rec;
926
927 mpc_rec.width = plane_clip_rec->width / mpc_slice_count;
928 mpc_rec.x = plane_clip_rec->x + mpc_rec.width * mpc_slice_idx;
929 mpc_rec.height = plane_clip_rec->height;
930 mpc_rec.y = plane_clip_rec->y;
931 ASSERT(mpc_slice_count == 1 ||
932 stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE ||
933 mpc_rec.width % 2 == 0);
934
935 /* extra pixels in the division remainder need to go to pipes after
936 * the extra pixel index minus one(epimo) defined here as:
937 */
938 if (mpc_slice_idx > epimo) {
939 mpc_rec.x += mpc_slice_idx - epimo - 1;
940 mpc_rec.width += 1;
941 }
942
943 if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
944 ASSERT(mpc_rec.height % 2 == 0);
945 mpc_rec.height /= 2;
946 }
947 return mpc_rec;
948}
949
950static void adjust_recout_for_visual_confirm(struct rect *recout,
951 struct pipe_ctx *pipe_ctx)
952{
953 struct dc *dc = pipe_ctx->stream->ctx->dc;
954 int dpp_offset, base_offset;
955
956 if (dc->debug.visual_confirm == VISUAL_CONFIRM_DISABLE || !pipe_ctx->plane_res.dpp)
957 return;
958
959 dpp_offset = pipe_ctx->stream->timing.v_addressable / VISUAL_CONFIRM_DPP_OFFSET_DENO;
960 dpp_offset *= pipe_ctx->plane_res.dpp->inst;
961
962 if ((dc->debug.visual_confirm_rect_height >= VISUAL_CONFIRM_BASE_MIN) &&
963 dc->debug.visual_confirm_rect_height <= VISUAL_CONFIRM_BASE_MAX)
964 base_offset = dc->debug.visual_confirm_rect_height;
965 else
966 base_offset = VISUAL_CONFIRM_BASE_DEFAULT;
967
968 recout->height -= base_offset;
969 recout->height -= dpp_offset;
970}
971
972/*
973 * The function maps a plane clip from Stream Source Space to ODM Slice Space
974 * and calculates the rec of the overlapping area of MPC slice of the plane
975 * clip, ODM slice associated with the pipe context and stream destination rec.
976 */
977static void calculate_recout(struct pipe_ctx *pipe_ctx)
978{
979 /*
980 * A plane clip represents the desired plane size and position in Stream
981 * Source Space. Stream Source is the destination where all planes are
982 * blended (i.e. positioned, scaled and overlaid). It is a canvas where
983 * all planes associated with the current stream are drawn together.
984 * After Stream Source is completed, we will further scale and
985 * reposition the entire canvas of the stream source to Stream
986 * Destination in Timing Active Space. This could be due to display
987 * overscan adjustment where we will need to rescale and reposition all
988 * the planes so they can fit into a TV with overscan or downscale
989 * upscale features such as GPU scaling or VSR.
990 *
991 * This two step blending is a virtual procedure in software. In
992 * hardware there is no such thing as Stream Source. all planes are
993 * blended once in Timing Active Space. Software virtualizes a Stream
994 * Source space to decouple the math complicity so scaling param
995 * calculation focuses on one step at a time.
996 *
997 * In the following two diagrams, user applied 10% overscan adjustment
998 * so the Stream Source needs to be scaled down a little before mapping
999 * to Timing Active Space. As a result the Plane Clip is also scaled
1000 * down by the same ratio, Plane Clip position (i.e. x and y) with
1001 * respect to Stream Source is also scaled down. To map it in Timing
1002 * Active Space additional x and y offsets from Stream Destination are
1003 * added to Plane Clip as well.
1004 *
1005 * Stream Source Space
1006 * ------------
1007 * __________________________________________________
1008 * |Stream Source (3840 x 2160) ^ |
1009 * | y |
1010 * | | |
1011 * | __________________V |
1012 * |<-- x -->|Plane Clip/////////| |
1013 * | |(pre scale)////////| |
1014 * | |///////////////////| |
1015 * | |///////////////////| |
1016 * | |///////////////////| |
1017 * | |///////////////////| |
1018 * | |///////////////////| |
1019 * | |
1020 * | |
1021 * |__________________________________________________|
1022 *
1023 *
1024 * Timing Active Space (3840 x 2160)
1025 * ---------------------------------
1026 *
1027 * Timing Active
1028 * __________________________________________________
1029 * | y_____________________________________________ |
1030 * |x |Stream Destination (3456 x 1944) | |
1031 * | | | |
1032 * | | __________________ | |
1033 * | | |Plane Clip////////| | |
1034 * | | |(post scale)//////| | |
1035 * | | |//////////////////| | |
1036 * | | |//////////////////| | |
1037 * | | |//////////////////| | |
1038 * | | |//////////////////| | |
1039 * | | | |
1040 * | | | |
1041 * | |____________________________________________| |
1042 * |__________________________________________________|
1043 *
1044 *
1045 * In Timing Active Space a plane clip could be further sliced into
1046 * pieces called MPC slices. Each Pipe Context is responsible for
1047 * processing only one MPC slice so the plane processing workload can be
1048 * distributed to multiple DPP Pipes. MPC slices could be blended
1049 * together to a single ODM slice. Each ODM slice is responsible for
1050 * processing a portion of Timing Active divided horizontally so the
1051 * output pixel processing workload can be distributed to multiple OPP
1052 * pipes. All ODM slices are mapped together in ODM block so all MPC
1053 * slices belong to different ODM slices could be pieced together to
1054 * form a single image in Timing Active. MPC slices must belong to
1055 * single ODM slice. If an MPC slice goes across ODM slice boundary, it
1056 * needs to be divided into two MPC slices one for each ODM slice.
1057 *
1058 * In the following diagram the output pixel processing workload is
1059 * divided horizontally into two ODM slices one for each OPP blend tree.
1060 * OPP0 blend tree is responsible for processing left half of Timing
1061 * Active, while OPP2 blend tree is responsible for processing right
1062 * half.
1063 *
1064 * The plane has two MPC slices. However since the right MPC slice goes
1065 * across ODM boundary, two DPP pipes are needed one for each OPP blend
1066 * tree. (i.e. DPP1 for OPP0 blend tree and DPP2 for OPP2 blend tree).
1067 *
1068 * Assuming that we have a Pipe Context associated with OPP0 and DPP1
1069 * working on processing the plane in the diagram. We want to know the
1070 * width and height of the shaded rectangle and its relative position
1071 * with respect to the ODM slice0. This is called the recout of the pipe
1072 * context.
1073 *
1074 * Planes can be at arbitrary size and position and there could be an
1075 * arbitrary number of MPC and ODM slices. The algorithm needs to take
1076 * all scenarios into account.
1077 *
1078 * Timing Active Space (3840 x 2160)
1079 * ---------------------------------
1080 *
1081 * Timing Active
1082 * __________________________________________________
1083 * |OPP0(ODM slice0)^ |OPP2(ODM slice1) |
1084 * | y | |
1085 * | | <- w -> |
1086 * | _____V________|____ |
1087 * | |DPP0 ^ |DPP1 |DPP2| |
1088 * |<------ x |-----|->|/////| | |
1089 * | | | |/////| | |
1090 * | | h |/////| | |
1091 * | | | |/////| | |
1092 * | |_____V__|/////|____| |
1093 * | | |
1094 * | | |
1095 * | | |
1096 * |_________________________|________________________|
1097 *
1098 *
1099 */
1100 struct rect plane_clip;
1101 struct rect mpc_slice_of_plane_clip;
1102 struct rect odm_slice;
1103 struct rect overlapping_area;
1104
1105 plane_clip = calculate_plane_rec_in_timing_active(pipe_ctx,
1106 rec_in: &pipe_ctx->plane_state->clip_rect);
1107 /* guard plane clip from drawing beyond stream dst here */
1108 plane_clip = intersect_rec(r0: &plane_clip,
1109 r1: &pipe_ctx->stream->dst);
1110 mpc_slice_of_plane_clip = calculate_mpc_slice_in_timing_active(
1111 pipe_ctx, plane_clip_rec: &plane_clip);
1112 odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1113 overlapping_area = intersect_rec(r0: &mpc_slice_of_plane_clip, r1: &odm_slice);
1114 if (overlapping_area.height > 0 &&
1115 overlapping_area.width > 0) {
1116 /* shift the overlapping area so it is with respect to current
1117 * ODM slice's position
1118 */
1119 pipe_ctx->plane_res.scl_data.recout = shift_rec(
1120 rec_in: &overlapping_area,
1121 x: -odm_slice.x, y: -odm_slice.y);
1122 adjust_recout_for_visual_confirm(
1123 recout: &pipe_ctx->plane_res.scl_data.recout,
1124 pipe_ctx);
1125 } else {
1126 /* if there is no overlap, zero recout */
1127 memset(&pipe_ctx->plane_res.scl_data.recout, 0,
1128 sizeof(struct rect));
1129 }
1130
1131}
1132
1133static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
1134{
1135 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1136 const struct dc_stream_state *stream = pipe_ctx->stream;
1137 struct rect surf_src = plane_state->src_rect;
1138 const int in_w = stream->src.width;
1139 const int in_h = stream->src.height;
1140 const int out_w = stream->dst.width;
1141 const int out_h = stream->dst.height;
1142
1143 /*Swap surf_src height and width since scaling ratios are in recout rotation*/
1144 if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
1145 pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
1146 swap(surf_src.height, surf_src.width);
1147
1148 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
1149 numerator: surf_src.width,
1150 denominator: plane_state->dst_rect.width);
1151 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
1152 numerator: surf_src.height,
1153 denominator: plane_state->dst_rect.height);
1154
1155 if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1156 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
1157 else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1158 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
1159
1160 pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
1161 dividend: pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, divisor: out_h);
1162 pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
1163 dividend: pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, divisor: out_w);
1164
1165 pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
1166 pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
1167
1168 if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
1169 || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
1170 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
1171 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
1172 }
1173 pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
1174 arg: pipe_ctx->plane_res.scl_data.ratios.horz, frac_bits: 19);
1175 pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
1176 arg: pipe_ctx->plane_res.scl_data.ratios.vert, frac_bits: 19);
1177 pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
1178 arg: pipe_ctx->plane_res.scl_data.ratios.horz_c, frac_bits: 19);
1179 pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
1180 arg: pipe_ctx->plane_res.scl_data.ratios.vert_c, frac_bits: 19);
1181}
1182
1183
1184/*
1185 * We completely calculate vp offset, size and inits here based entirely on scaling
1186 * ratios and recout for pixel perfect pipe combine.
1187 */
1188static void calculate_init_and_vp(
1189 bool flip_scan_dir,
1190 int recout_offset_within_recout_full,
1191 int recout_size,
1192 int src_size,
1193 int taps,
1194 struct fixed31_32 ratio,
1195 struct fixed31_32 *init,
1196 int *vp_offset,
1197 int *vp_size)
1198{
1199 struct fixed31_32 temp;
1200 int int_part;
1201
1202 /*
1203 * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
1204 * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
1205 * All following calculations are based on this logic.
1206 *
1207 * Init calculated according to formula:
1208 * init = (scaling_ratio + number_of_taps + 1) / 2
1209 * init_bot = init + scaling_ratio
1210 * to get pixel perfect combine add the fraction from calculating vp offset
1211 */
1212 temp = dc_fixpt_mul_int(arg1: ratio, arg2: recout_offset_within_recout_full);
1213 *vp_offset = dc_fixpt_floor(arg: temp);
1214 temp.value &= 0xffffffff;
1215 *init = dc_fixpt_truncate(arg: dc_fixpt_add(arg1: dc_fixpt_div_int(
1216 arg1: dc_fixpt_add_int(arg1: ratio, arg2: taps + 1), arg2: 2), arg2: temp), frac_bits: 19);
1217 /*
1218 * If viewport has non 0 offset and there are more taps than covered by init then
1219 * we should decrease the offset and increase init so we are never sampling
1220 * outside of viewport.
1221 */
1222 int_part = dc_fixpt_floor(arg: *init);
1223 if (int_part < taps) {
1224 int_part = taps - int_part;
1225 if (int_part > *vp_offset)
1226 int_part = *vp_offset;
1227 *vp_offset -= int_part;
1228 *init = dc_fixpt_add_int(arg1: *init, arg2: int_part);
1229 }
1230 /*
1231 * If taps are sampling outside of viewport at end of recout and there are more pixels
1232 * available in the surface we should increase the viewport size, regardless set vp to
1233 * only what is used.
1234 */
1235 temp = dc_fixpt_add(arg1: *init, arg2: dc_fixpt_mul_int(arg1: ratio, arg2: recout_size - 1));
1236 *vp_size = dc_fixpt_floor(arg: temp);
1237 if (*vp_size + *vp_offset > src_size)
1238 *vp_size = src_size - *vp_offset;
1239
1240 /* We did all the math assuming we are scanning same direction as display does,
1241 * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
1242 * is flipped we simply need to calculate offset from the other side of plane.
1243 * Note that outside of viewport all scaling hardware works in recout space.
1244 */
1245 if (flip_scan_dir)
1246 *vp_offset = src_size - *vp_offset - *vp_size;
1247}
1248
1249static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
1250{
1251 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1252 struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1253 struct rect src = plane_state->src_rect;
1254 struct rect recout_dst_in_active_timing;
1255 struct rect recout_clip_in_active_timing;
1256 struct rect recout_clip_in_recout_dst;
1257 struct rect overlap_in_active_timing;
1258 struct rect odm_slice = calculate_odm_slice_in_timing_active(pipe_ctx);
1259 int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1260 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1261 bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1262
1263 recout_clip_in_active_timing = shift_rec(
1264 rec_in: &data->recout, x: odm_slice.x, y: odm_slice.y);
1265 recout_dst_in_active_timing = calculate_plane_rec_in_timing_active(
1266 pipe_ctx, rec_in: &plane_state->dst_rect);
1267 overlap_in_active_timing = intersect_rec(r0: &recout_clip_in_active_timing,
1268 r1: &recout_dst_in_active_timing);
1269 if (overlap_in_active_timing.width > 0 &&
1270 overlap_in_active_timing.height > 0)
1271 recout_clip_in_recout_dst = shift_rec(rec_in: &overlap_in_active_timing,
1272 x: -recout_dst_in_active_timing.x,
1273 y: -recout_dst_in_active_timing.y);
1274 else
1275 memset(&recout_clip_in_recout_dst, 0, sizeof(struct rect));
1276
1277 /*
1278 * Work in recout rotation since that requires less transformations
1279 */
1280 get_vp_scan_direction(
1281 rotation: plane_state->rotation,
1282 horizontal_mirror: plane_state->horizontal_mirror,
1283 orthogonal_rotation: &orthogonal_rotation,
1284 flip_vert_scan_dir: &flip_vert_scan_dir,
1285 flip_horz_scan_dir: &flip_horz_scan_dir);
1286
1287 if (orthogonal_rotation) {
1288 swap(src.width, src.height);
1289 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1290 }
1291
1292 calculate_init_and_vp(
1293 flip_scan_dir: flip_horz_scan_dir,
1294 recout_offset_within_recout_full: recout_clip_in_recout_dst.x,
1295 recout_size: data->recout.width,
1296 src_size: src.width,
1297 taps: data->taps.h_taps,
1298 ratio: data->ratios.horz,
1299 init: &data->inits.h,
1300 vp_offset: &data->viewport.x,
1301 vp_size: &data->viewport.width);
1302 calculate_init_and_vp(
1303 flip_scan_dir: flip_horz_scan_dir,
1304 recout_offset_within_recout_full: recout_clip_in_recout_dst.x,
1305 recout_size: data->recout.width,
1306 src_size: src.width / vpc_div,
1307 taps: data->taps.h_taps_c,
1308 ratio: data->ratios.horz_c,
1309 init: &data->inits.h_c,
1310 vp_offset: &data->viewport_c.x,
1311 vp_size: &data->viewport_c.width);
1312 calculate_init_and_vp(
1313 flip_scan_dir: flip_vert_scan_dir,
1314 recout_offset_within_recout_full: recout_clip_in_recout_dst.y,
1315 recout_size: data->recout.height,
1316 src_size: src.height,
1317 taps: data->taps.v_taps,
1318 ratio: data->ratios.vert,
1319 init: &data->inits.v,
1320 vp_offset: &data->viewport.y,
1321 vp_size: &data->viewport.height);
1322 calculate_init_and_vp(
1323 flip_scan_dir: flip_vert_scan_dir,
1324 recout_offset_within_recout_full: recout_clip_in_recout_dst.y,
1325 recout_size: data->recout.height,
1326 src_size: src.height / vpc_div,
1327 taps: data->taps.v_taps_c,
1328 ratio: data->ratios.vert_c,
1329 init: &data->inits.v_c,
1330 vp_offset: &data->viewport_c.y,
1331 vp_size: &data->viewport_c.height);
1332 if (orthogonal_rotation) {
1333 swap(data->viewport.x, data->viewport.y);
1334 swap(data->viewport.width, data->viewport.height);
1335 swap(data->viewport_c.x, data->viewport_c.y);
1336 swap(data->viewport_c.width, data->viewport_c.height);
1337 }
1338 data->viewport.x += src.x;
1339 data->viewport.y += src.y;
1340 ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1341 data->viewport_c.x += src.x / vpc_div;
1342 data->viewport_c.y += src.y / vpc_div;
1343}
1344
1345static bool is_subvp_high_refresh_candidate(struct dc_stream_state *stream)
1346{
1347 uint32_t refresh_rate;
1348 struct dc *dc = stream->ctx->dc;
1349
1350 refresh_rate = (stream->timing.pix_clk_100hz * (uint64_t)100 +
1351 stream->timing.v_total * stream->timing.h_total - (uint64_t)1);
1352 refresh_rate = div_u64(dividend: refresh_rate, divisor: stream->timing.v_total);
1353 refresh_rate = div_u64(dividend: refresh_rate, divisor: stream->timing.h_total);
1354
1355 /* If there's any stream that fits the SubVP high refresh criteria,
1356 * we must return true. This is because cursor updates are asynchronous
1357 * with full updates, so we could transition into a SubVP config and
1358 * remain in HW cursor mode if there's no cursor update which will
1359 * then cause corruption.
1360 */
1361 if ((refresh_rate >= 120 && refresh_rate <= 175 &&
1362 stream->timing.v_addressable >= 1080 &&
1363 stream->timing.v_addressable <= 2160) &&
1364 (dc->current_state->stream_count > 1 ||
1365 (dc->current_state->stream_count == 1 && !stream->allow_freesync)))
1366 return true;
1367
1368 return false;
1369}
1370
1371static enum controller_dp_test_pattern convert_dp_to_controller_test_pattern(
1372 enum dp_test_pattern test_pattern)
1373{
1374 enum controller_dp_test_pattern controller_test_pattern;
1375
1376 switch (test_pattern) {
1377 case DP_TEST_PATTERN_COLOR_SQUARES:
1378 controller_test_pattern =
1379 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES;
1380 break;
1381 case DP_TEST_PATTERN_COLOR_SQUARES_CEA:
1382 controller_test_pattern =
1383 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA;
1384 break;
1385 case DP_TEST_PATTERN_VERTICAL_BARS:
1386 controller_test_pattern =
1387 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS;
1388 break;
1389 case DP_TEST_PATTERN_HORIZONTAL_BARS:
1390 controller_test_pattern =
1391 CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS;
1392 break;
1393 case DP_TEST_PATTERN_COLOR_RAMP:
1394 controller_test_pattern =
1395 CONTROLLER_DP_TEST_PATTERN_COLORRAMP;
1396 break;
1397 default:
1398 controller_test_pattern =
1399 CONTROLLER_DP_TEST_PATTERN_VIDEOMODE;
1400 break;
1401 }
1402
1403 return controller_test_pattern;
1404}
1405
1406static enum controller_dp_color_space convert_dp_to_controller_color_space(
1407 enum dp_test_pattern_color_space color_space)
1408{
1409 enum controller_dp_color_space controller_color_space;
1410
1411 switch (color_space) {
1412 case DP_TEST_PATTERN_COLOR_SPACE_RGB:
1413 controller_color_space = CONTROLLER_DP_COLOR_SPACE_RGB;
1414 break;
1415 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR601:
1416 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR601;
1417 break;
1418 case DP_TEST_PATTERN_COLOR_SPACE_YCBCR709:
1419 controller_color_space = CONTROLLER_DP_COLOR_SPACE_YCBCR709;
1420 break;
1421 case DP_TEST_PATTERN_COLOR_SPACE_UNDEFINED:
1422 default:
1423 controller_color_space = CONTROLLER_DP_COLOR_SPACE_UDEFINED;
1424 break;
1425 }
1426
1427 return controller_color_space;
1428}
1429
1430void resource_build_test_pattern_params(struct resource_context *res_ctx,
1431 struct pipe_ctx *otg_master)
1432{
1433 int odm_slice_width, last_odm_slice_width, offset = 0;
1434 struct pipe_ctx *opp_heads[MAX_PIPES];
1435 struct test_pattern_params *params;
1436 int odm_cnt = 1;
1437 enum controller_dp_test_pattern controller_test_pattern;
1438 enum controller_dp_color_space controller_color_space;
1439 enum dc_color_depth color_depth = otg_master->stream->timing.display_color_depth;
1440 int h_active = otg_master->stream->timing.h_addressable +
1441 otg_master->stream->timing.h_border_left +
1442 otg_master->stream->timing.h_border_right;
1443 int v_active = otg_master->stream->timing.v_addressable +
1444 otg_master->stream->timing.v_border_bottom +
1445 otg_master->stream->timing.v_border_top;
1446 int i;
1447
1448 controller_test_pattern = convert_dp_to_controller_test_pattern(
1449 test_pattern: otg_master->stream->test_pattern.type);
1450 controller_color_space = convert_dp_to_controller_color_space(
1451 color_space: otg_master->stream->test_pattern.color_space);
1452
1453 odm_cnt = resource_get_opp_heads_for_otg_master(otg_master, res_ctx, opp_heads);
1454
1455 odm_slice_width = h_active / odm_cnt;
1456 last_odm_slice_width = h_active - odm_slice_width * (odm_cnt - 1);
1457
1458 for (i = 0; i < odm_cnt; i++) {
1459 params = &opp_heads[i]->stream_res.test_pattern_params;
1460 params->test_pattern = controller_test_pattern;
1461 params->color_space = controller_color_space;
1462 params->color_depth = color_depth;
1463 params->height = v_active;
1464 params->offset = offset;
1465
1466 if (i < odm_cnt - 1)
1467 params->width = odm_slice_width;
1468 else
1469 params->width = last_odm_slice_width;
1470
1471 offset += odm_slice_width;
1472 }
1473}
1474
1475bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1476{
1477 const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1478 struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1479 const struct rect odm_slice_rec = calculate_odm_slice_in_timing_active(pipe_ctx);
1480 bool res = false;
1481 DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1482
1483 /* Invalid input */
1484 if (!plane_state->dst_rect.width ||
1485 !plane_state->dst_rect.height ||
1486 !plane_state->src_rect.width ||
1487 !plane_state->src_rect.height) {
1488 ASSERT(0);
1489 return false;
1490 }
1491
1492 pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1493 surface_pixel_format: pipe_ctx->plane_state->format);
1494
1495 /* Timing borders are part of vactive that we are also supposed to skip in addition
1496 * to any stream dst offset. Since dm logic assumes dst is in addressable
1497 * space we need to add the left and top borders to dst offsets temporarily.
1498 * TODO: fix in DM, stream dst is supposed to be in vactive
1499 */
1500 pipe_ctx->stream->dst.x += timing->h_border_left;
1501 pipe_ctx->stream->dst.y += timing->v_border_top;
1502
1503 /* Calculate H and V active size */
1504 pipe_ctx->plane_res.scl_data.h_active = odm_slice_rec.width;
1505 pipe_ctx->plane_res.scl_data.v_active = odm_slice_rec.height;
1506
1507 /* depends on h_active */
1508 calculate_recout(pipe_ctx);
1509 /* depends on pixel format */
1510 calculate_scaling_ratios(pipe_ctx);
1511 /* depends on scaling ratios and recout, does not calculate offset yet */
1512 calculate_viewport_size(pipe_ctx);
1513
1514 /*
1515 * LB calculations depend on vp size, h/v_active and scaling ratios
1516 * Setting line buffer pixel depth to 24bpp yields banding
1517 * on certain displays, such as the Sharp 4k. 36bpp is needed
1518 * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1519 * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1520 * precision on DCN display engines, but apparently not for DCE, as
1521 * far as testing on DCE-11.2 and DCE-8 showed. Various DCE parts have
1522 * problems: Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1523 * neither do DCE-8 at 4k resolution, or DCE-11.2 (broken identify pixel
1524 * passthrough). Therefore only use 36 bpp on DCN where it is actually needed.
1525 */
1526 if (plane_state->ctx->dce_version > DCE_VERSION_MAX)
1527 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1528 else
1529 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1530
1531 pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1532
1533 if (pipe_ctx->plane_res.xfm != NULL)
1534 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1535 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1536
1537 if (pipe_ctx->plane_res.dpp != NULL)
1538 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1539 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1540
1541
1542 if (!res) {
1543 /* Try 24 bpp linebuffer */
1544 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1545
1546 if (pipe_ctx->plane_res.xfm != NULL)
1547 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1548 pipe_ctx->plane_res.xfm,
1549 &pipe_ctx->plane_res.scl_data,
1550 &plane_state->scaling_quality);
1551
1552 if (pipe_ctx->plane_res.dpp != NULL)
1553 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1554 pipe_ctx->plane_res.dpp,
1555 &pipe_ctx->plane_res.scl_data,
1556 &plane_state->scaling_quality);
1557 }
1558
1559 /*
1560 * Depends on recout, scaling ratios, h_active and taps
1561 * May need to re-check lb size after this in some obscure scenario
1562 */
1563 if (res)
1564 calculate_inits_and_viewports(pipe_ctx);
1565
1566 /*
1567 * Handle side by side and top bottom 3d recout offsets after vp calculation
1568 * since 3d is special and needs to calculate vp as if there is no recout offset
1569 * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1570 */
1571 if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1572 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1573 (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1574 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1575 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1576 pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1577 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1578 pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1579 }
1580
1581 /* Clamp minimum viewport size */
1582 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1583 pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1584 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1585 pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1586
1587
1588 DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d Recout: height:%d width:%d x:%d y:%d HACTIVE:%d VACTIVE:%d\n"
1589 "src_rect: height:%d width:%d x:%d y:%d dst_rect: height:%d width:%d x:%d y:%d clip_rect: height:%d width:%d x:%d y:%d\n",
1590 __func__,
1591 pipe_ctx->pipe_idx,
1592 pipe_ctx->plane_res.scl_data.viewport.height,
1593 pipe_ctx->plane_res.scl_data.viewport.width,
1594 pipe_ctx->plane_res.scl_data.viewport.x,
1595 pipe_ctx->plane_res.scl_data.viewport.y,
1596 pipe_ctx->plane_res.scl_data.recout.height,
1597 pipe_ctx->plane_res.scl_data.recout.width,
1598 pipe_ctx->plane_res.scl_data.recout.x,
1599 pipe_ctx->plane_res.scl_data.recout.y,
1600 pipe_ctx->plane_res.scl_data.h_active,
1601 pipe_ctx->plane_res.scl_data.v_active,
1602 plane_state->src_rect.height,
1603 plane_state->src_rect.width,
1604 plane_state->src_rect.x,
1605 plane_state->src_rect.y,
1606 plane_state->dst_rect.height,
1607 plane_state->dst_rect.width,
1608 plane_state->dst_rect.x,
1609 plane_state->dst_rect.y,
1610 plane_state->clip_rect.height,
1611 plane_state->clip_rect.width,
1612 plane_state->clip_rect.x,
1613 plane_state->clip_rect.y);
1614
1615 pipe_ctx->stream->dst.x -= timing->h_border_left;
1616 pipe_ctx->stream->dst.y -= timing->v_border_top;
1617
1618 return res;
1619}
1620
1621
1622enum dc_status resource_build_scaling_params_for_context(
1623 const struct dc *dc,
1624 struct dc_state *context)
1625{
1626 int i;
1627
1628 for (i = 0; i < MAX_PIPES; i++) {
1629 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1630 context->res_ctx.pipe_ctx[i].stream != NULL)
1631 if (!resource_build_scaling_params(pipe_ctx: &context->res_ctx.pipe_ctx[i]))
1632 return DC_FAIL_SCALING;
1633 }
1634
1635 return DC_OK;
1636}
1637
1638struct pipe_ctx *resource_find_free_secondary_pipe_legacy(
1639 struct resource_context *res_ctx,
1640 const struct resource_pool *pool,
1641 const struct pipe_ctx *primary_pipe)
1642{
1643 int i;
1644 struct pipe_ctx *secondary_pipe = NULL;
1645
1646 /*
1647 * We add a preferred pipe mapping to avoid the chance that
1648 * MPCCs already in use will need to be reassigned to other trees.
1649 * For example, if we went with the strict, assign backwards logic:
1650 *
1651 * (State 1)
1652 * Display A on, no surface, top pipe = 0
1653 * Display B on, no surface, top pipe = 1
1654 *
1655 * (State 2)
1656 * Display A on, no surface, top pipe = 0
1657 * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1658 *
1659 * (State 3)
1660 * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1661 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1662 *
1663 * The state 2->3 transition requires remapping MPCC 5 from display B
1664 * to display A.
1665 *
1666 * However, with the preferred pipe logic, state 2 would look like:
1667 *
1668 * (State 2)
1669 * Display A on, no surface, top pipe = 0
1670 * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1671 *
1672 * This would then cause 2->3 to not require remapping any MPCCs.
1673 */
1674 if (primary_pipe) {
1675 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1676 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1677 secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1678 secondary_pipe->pipe_idx = preferred_pipe_idx;
1679 }
1680 }
1681
1682 /*
1683 * search backwards for the second pipe to keep pipe
1684 * assignment more consistent
1685 */
1686 if (!secondary_pipe)
1687 for (i = pool->pipe_count - 1; i >= 0; i--) {
1688 if (res_ctx->pipe_ctx[i].stream == NULL) {
1689 secondary_pipe = &res_ctx->pipe_ctx[i];
1690 secondary_pipe->pipe_idx = i;
1691 break;
1692 }
1693 }
1694
1695 return secondary_pipe;
1696}
1697
1698int resource_find_free_pipe_used_as_sec_opp_head_by_cur_otg_master(
1699 const struct resource_context *cur_res_ctx,
1700 struct resource_context *new_res_ctx,
1701 const struct pipe_ctx *cur_otg_master)
1702{
1703 const struct pipe_ctx *cur_sec_opp_head = cur_otg_master->next_odm_pipe;
1704 struct pipe_ctx *new_pipe;
1705 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1706
1707 while (cur_sec_opp_head) {
1708 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_opp_head->pipe_idx];
1709 if (resource_is_pipe_type(pipe_ctx: new_pipe, type: FREE_PIPE)) {
1710 free_pipe_idx = cur_sec_opp_head->pipe_idx;
1711 break;
1712 }
1713 cur_sec_opp_head = cur_sec_opp_head->next_odm_pipe;
1714 }
1715
1716 return free_pipe_idx;
1717}
1718
1719int resource_find_free_pipe_used_in_cur_mpc_blending_tree(
1720 const struct resource_context *cur_res_ctx,
1721 struct resource_context *new_res_ctx,
1722 const struct pipe_ctx *cur_opp_head)
1723{
1724 const struct pipe_ctx *cur_sec_dpp = cur_opp_head->bottom_pipe;
1725 struct pipe_ctx *new_pipe;
1726 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1727
1728 while (cur_sec_dpp) {
1729 /* find a free pipe used in current opp blend tree,
1730 * this is to avoid MPO pipe switching to different opp blending
1731 * tree
1732 */
1733 new_pipe = &new_res_ctx->pipe_ctx[cur_sec_dpp->pipe_idx];
1734 if (resource_is_pipe_type(pipe_ctx: new_pipe, type: FREE_PIPE)) {
1735 free_pipe_idx = cur_sec_dpp->pipe_idx;
1736 break;
1737 }
1738 cur_sec_dpp = cur_sec_dpp->bottom_pipe;
1739 }
1740
1741 return free_pipe_idx;
1742}
1743
1744int recource_find_free_pipe_not_used_in_cur_res_ctx(
1745 const struct resource_context *cur_res_ctx,
1746 struct resource_context *new_res_ctx,
1747 const struct resource_pool *pool)
1748{
1749 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1750 const struct pipe_ctx *new_pipe, *cur_pipe;
1751 int i;
1752
1753 for (i = 0; i < pool->pipe_count; i++) {
1754 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1755 new_pipe = &new_res_ctx->pipe_ctx[i];
1756
1757 if (resource_is_pipe_type(pipe_ctx: cur_pipe, type: FREE_PIPE) &&
1758 resource_is_pipe_type(pipe_ctx: new_pipe, type: FREE_PIPE)) {
1759 free_pipe_idx = i;
1760 break;
1761 }
1762 }
1763
1764 return free_pipe_idx;
1765}
1766
1767int resource_find_free_pipe_used_as_cur_sec_dpp_in_mpcc_combine(
1768 const struct resource_context *cur_res_ctx,
1769 struct resource_context *new_res_ctx,
1770 const struct resource_pool *pool)
1771{
1772 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1773 const struct pipe_ctx *new_pipe, *cur_pipe;
1774 int i;
1775
1776 for (i = 0; i < pool->pipe_count; i++) {
1777 cur_pipe = &cur_res_ctx->pipe_ctx[i];
1778 new_pipe = &new_res_ctx->pipe_ctx[i];
1779
1780 if (resource_is_pipe_type(pipe_ctx: cur_pipe, type: DPP_PIPE) &&
1781 !resource_is_pipe_type(pipe_ctx: cur_pipe, type: OPP_HEAD) &&
1782 resource_get_mpc_slice_index(dpp_pipe: cur_pipe) > 0 &&
1783 resource_is_pipe_type(pipe_ctx: new_pipe, type: FREE_PIPE)) {
1784 free_pipe_idx = i;
1785 break;
1786 }
1787 }
1788
1789 return free_pipe_idx;
1790}
1791
1792int resource_find_any_free_pipe(struct resource_context *new_res_ctx,
1793 const struct resource_pool *pool)
1794{
1795 int free_pipe_idx = FREE_PIPE_INDEX_NOT_FOUND;
1796 const struct pipe_ctx *new_pipe;
1797 int i;
1798
1799 for (i = 0; i < pool->pipe_count; i++) {
1800 new_pipe = &new_res_ctx->pipe_ctx[i];
1801
1802 if (resource_is_pipe_type(pipe_ctx: new_pipe, type: FREE_PIPE)) {
1803 free_pipe_idx = i;
1804 break;
1805 }
1806 }
1807
1808 return free_pipe_idx;
1809}
1810
1811bool resource_is_pipe_type(const struct pipe_ctx *pipe_ctx, enum pipe_type type)
1812{
1813#ifdef DBG
1814 if (pipe_ctx->stream == NULL) {
1815 /* a free pipe with dangling states */
1816 ASSERT(!pipe_ctx->plane_state);
1817 ASSERT(!pipe_ctx->prev_odm_pipe);
1818 ASSERT(!pipe_ctx->next_odm_pipe);
1819 ASSERT(!pipe_ctx->top_pipe);
1820 ASSERT(!pipe_ctx->bottom_pipe);
1821 } else if (pipe_ctx->top_pipe) {
1822 /* a secondary DPP pipe must be signed to a plane */
1823 ASSERT(pipe_ctx->plane_state)
1824 }
1825 /* Add more checks here to prevent corrupted pipe ctx. It is very hard
1826 * to debug this issue afterwards because we can't pinpoint the code
1827 * location causing inconsistent pipe context states.
1828 */
1829#endif
1830 switch (type) {
1831 case OTG_MASTER:
1832 return !pipe_ctx->prev_odm_pipe &&
1833 !pipe_ctx->top_pipe &&
1834 pipe_ctx->stream;
1835 case OPP_HEAD:
1836 return !pipe_ctx->top_pipe && pipe_ctx->stream;
1837 case DPP_PIPE:
1838 return pipe_ctx->plane_state && pipe_ctx->stream;
1839 case FREE_PIPE:
1840 return !pipe_ctx->plane_state && !pipe_ctx->stream;
1841 default:
1842 return false;
1843 }
1844}
1845
1846struct pipe_ctx *resource_get_otg_master_for_stream(
1847 struct resource_context *res_ctx,
1848 const struct dc_stream_state *stream)
1849{
1850 int i;
1851
1852 for (i = 0; i < MAX_PIPES; i++) {
1853 if (res_ctx->pipe_ctx[i].stream == stream &&
1854 resource_is_pipe_type(pipe_ctx: &res_ctx->pipe_ctx[i], type: OTG_MASTER))
1855 return &res_ctx->pipe_ctx[i];
1856 }
1857 return NULL;
1858}
1859
1860int resource_get_opp_heads_for_otg_master(const struct pipe_ctx *otg_master,
1861 struct resource_context *res_ctx,
1862 struct pipe_ctx *opp_heads[MAX_PIPES])
1863{
1864 struct pipe_ctx *opp_head = &res_ctx->pipe_ctx[otg_master->pipe_idx];
1865 int i = 0;
1866
1867 if (!resource_is_pipe_type(pipe_ctx: otg_master, type: OTG_MASTER)) {
1868 ASSERT(0);
1869 return 0;
1870 }
1871 while (opp_head) {
1872 ASSERT(i < MAX_PIPES);
1873 opp_heads[i++] = opp_head;
1874 opp_head = opp_head->next_odm_pipe;
1875 }
1876 return i;
1877}
1878
1879int resource_get_dpp_pipes_for_opp_head(const struct pipe_ctx *opp_head,
1880 struct resource_context *res_ctx,
1881 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1882{
1883 struct pipe_ctx *pipe = &res_ctx->pipe_ctx[opp_head->pipe_idx];
1884 int i = 0;
1885
1886 if (!resource_is_pipe_type(pipe_ctx: opp_head, type: OPP_HEAD)) {
1887 ASSERT(0);
1888 return 0;
1889 }
1890 while (pipe && resource_is_pipe_type(pipe_ctx: pipe, type: DPP_PIPE)) {
1891 ASSERT(i < MAX_PIPES);
1892 dpp_pipes[i++] = pipe;
1893 pipe = pipe->bottom_pipe;
1894 }
1895 return i;
1896}
1897
1898int resource_get_dpp_pipes_for_plane(const struct dc_plane_state *plane,
1899 struct resource_context *res_ctx,
1900 struct pipe_ctx *dpp_pipes[MAX_PIPES])
1901{
1902 int i = 0, j;
1903 struct pipe_ctx *pipe;
1904
1905 for (j = 0; j < MAX_PIPES; j++) {
1906 pipe = &res_ctx->pipe_ctx[j];
1907 if (pipe->plane_state == plane && pipe->prev_odm_pipe == NULL) {
1908 if (resource_is_pipe_type(pipe_ctx: pipe, type: OPP_HEAD) ||
1909 pipe->top_pipe->plane_state != plane)
1910 break;
1911 }
1912 }
1913
1914 if (j < MAX_PIPES) {
1915 if (pipe->next_odm_pipe)
1916 while (pipe) {
1917 dpp_pipes[i++] = pipe;
1918 pipe = pipe->next_odm_pipe;
1919 }
1920 else
1921 while (pipe && pipe->plane_state == plane) {
1922 dpp_pipes[i++] = pipe;
1923 pipe = pipe->bottom_pipe;
1924 }
1925 }
1926 return i;
1927}
1928
1929struct pipe_ctx *resource_get_otg_master(const struct pipe_ctx *pipe_ctx)
1930{
1931 struct pipe_ctx *otg_master = resource_get_opp_head(pipe_ctx);
1932
1933 while (otg_master->prev_odm_pipe)
1934 otg_master = otg_master->prev_odm_pipe;
1935 return otg_master;
1936}
1937
1938struct pipe_ctx *resource_get_opp_head(const struct pipe_ctx *pipe_ctx)
1939{
1940 struct pipe_ctx *opp_head = (struct pipe_ctx *) pipe_ctx;
1941
1942 ASSERT(!resource_is_pipe_type(opp_head, FREE_PIPE));
1943 while (opp_head->top_pipe)
1944 opp_head = opp_head->top_pipe;
1945 return opp_head;
1946}
1947
1948struct pipe_ctx *resource_get_primary_dpp_pipe(const struct pipe_ctx *dpp_pipe)
1949{
1950 struct pipe_ctx *pri_dpp_pipe = (struct pipe_ctx *) dpp_pipe;
1951
1952 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
1953 while (pri_dpp_pipe->prev_odm_pipe)
1954 pri_dpp_pipe = pri_dpp_pipe->prev_odm_pipe;
1955 while (pri_dpp_pipe->top_pipe &&
1956 pri_dpp_pipe->top_pipe->plane_state == pri_dpp_pipe->plane_state)
1957 pri_dpp_pipe = pri_dpp_pipe->top_pipe;
1958 return pri_dpp_pipe;
1959}
1960
1961
1962int resource_get_mpc_slice_index(const struct pipe_ctx *pipe_ctx)
1963{
1964 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
1965 int index = 0;
1966
1967 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
1968 index++;
1969 split_pipe = split_pipe->top_pipe;
1970 }
1971
1972 return index;
1973}
1974
1975int resource_get_mpc_slice_count(const struct pipe_ctx *pipe)
1976{
1977 int mpc_split_count = 1;
1978 const struct pipe_ctx *other_pipe = pipe->bottom_pipe;
1979
1980 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
1981 mpc_split_count++;
1982 other_pipe = other_pipe->bottom_pipe;
1983 }
1984 other_pipe = pipe->top_pipe;
1985 while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
1986 mpc_split_count++;
1987 other_pipe = other_pipe->top_pipe;
1988 }
1989
1990 return mpc_split_count;
1991}
1992
1993int resource_get_odm_slice_count(const struct pipe_ctx *pipe)
1994{
1995 int odm_split_count = 1;
1996
1997 pipe = resource_get_otg_master(pipe_ctx: pipe);
1998
1999 while (pipe->next_odm_pipe) {
2000 odm_split_count++;
2001 pipe = pipe->next_odm_pipe;
2002 }
2003 return odm_split_count;
2004}
2005
2006int resource_get_odm_slice_index(const struct pipe_ctx *pipe_ctx)
2007{
2008 int index = 0;
2009
2010 pipe_ctx = resource_get_opp_head(pipe_ctx);
2011 if (!pipe_ctx)
2012 return 0;
2013
2014 while (pipe_ctx->prev_odm_pipe) {
2015 index++;
2016 pipe_ctx = pipe_ctx->prev_odm_pipe;
2017 }
2018
2019 return index;
2020}
2021
2022bool resource_is_pipe_topology_changed(const struct dc_state *state_a,
2023 const struct dc_state *state_b)
2024{
2025 int i;
2026 const struct pipe_ctx *pipe_a, *pipe_b;
2027
2028 if (state_a->stream_count != state_b->stream_count)
2029 return true;
2030
2031 for (i = 0; i < MAX_PIPES; i++) {
2032 pipe_a = &state_a->res_ctx.pipe_ctx[i];
2033 pipe_b = &state_b->res_ctx.pipe_ctx[i];
2034
2035 if (pipe_a->stream && !pipe_b->stream)
2036 return true;
2037 else if (!pipe_a->stream && pipe_b->stream)
2038 return true;
2039
2040 if (pipe_a->plane_state && !pipe_b->plane_state)
2041 return true;
2042 else if (!pipe_a->plane_state && pipe_b->plane_state)
2043 return true;
2044
2045 if (pipe_a->bottom_pipe && pipe_b->bottom_pipe) {
2046 if (pipe_a->bottom_pipe->pipe_idx != pipe_b->bottom_pipe->pipe_idx)
2047 return true;
2048 if ((pipe_a->bottom_pipe->plane_state == pipe_a->plane_state) &&
2049 (pipe_b->bottom_pipe->plane_state != pipe_b->plane_state))
2050 return true;
2051 else if ((pipe_a->bottom_pipe->plane_state != pipe_a->plane_state) &&
2052 (pipe_b->bottom_pipe->plane_state == pipe_b->plane_state))
2053 return true;
2054 } else if (pipe_a->bottom_pipe || pipe_b->bottom_pipe) {
2055 return true;
2056 }
2057
2058 if (pipe_a->next_odm_pipe && pipe_b->next_odm_pipe) {
2059 if (pipe_a->next_odm_pipe->pipe_idx != pipe_b->next_odm_pipe->pipe_idx)
2060 return true;
2061 } else if (pipe_a->next_odm_pipe || pipe_b->next_odm_pipe) {
2062 return true;
2063 }
2064 }
2065 return false;
2066}
2067
2068bool resource_is_odm_topology_changed(const struct pipe_ctx *otg_master_a,
2069 const struct pipe_ctx *otg_master_b)
2070{
2071 const struct pipe_ctx *opp_head_a = otg_master_a;
2072 const struct pipe_ctx *opp_head_b = otg_master_b;
2073
2074 if (!resource_is_pipe_type(pipe_ctx: otg_master_a, type: OTG_MASTER) ||
2075 !resource_is_pipe_type(pipe_ctx: otg_master_b, type: OTG_MASTER))
2076 return true;
2077
2078 while (opp_head_a && opp_head_b) {
2079 if (opp_head_a->stream_res.opp != opp_head_b->stream_res.opp)
2080 return true;
2081 if ((opp_head_a->next_odm_pipe && !opp_head_b->next_odm_pipe) ||
2082 (!opp_head_a->next_odm_pipe && opp_head_b->next_odm_pipe))
2083 return true;
2084 opp_head_a = opp_head_a->next_odm_pipe;
2085 opp_head_b = opp_head_b->next_odm_pipe;
2086 }
2087
2088 return false;
2089}
2090
2091/*
2092 * Sample log:
2093 * pipe topology update
2094 * ________________________
2095 * | plane0 slice0 stream0|
2096 * |DPP0----OPP0----OTG0----| <--- case 0 (OTG master pipe with plane)
2097 * | plane1 | | |
2098 * |DPP1----| | | <--- case 5 (DPP pipe not in last slice)
2099 * | plane0 slice1 | |
2100 * |DPP2----OPP2----| | <--- case 2 (OPP head pipe with plane)
2101 * | plane1 | |
2102 * |DPP3----| | <--- case 4 (DPP pipe in last slice)
2103 * | slice0 stream1|
2104 * |DPG4----OPP4----OTG4----| <--- case 1 (OTG master pipe without plane)
2105 * | slice1 | |
2106 * |DPG5----OPP5----| | <--- case 3 (OPP head pipe without plane)
2107 * |________________________|
2108 */
2109
2110static void resource_log_pipe(struct dc *dc, struct pipe_ctx *pipe,
2111 int stream_idx, int slice_idx, int plane_idx, int slice_count,
2112 bool is_primary)
2113{
2114 DC_LOGGER_INIT(dc->ctx->logger);
2115
2116 if (slice_idx == 0 && plane_idx == 0 && is_primary) {
2117 /* case 0 (OTG master pipe with plane) */
2118 DC_LOG_DC(" | plane%d slice%d stream%d|",
2119 plane_idx, slice_idx, stream_idx);
2120 DC_LOG_DC(" |DPP%d----OPP%d----OTG%d----|",
2121 pipe->plane_res.dpp->inst,
2122 pipe->stream_res.opp->inst,
2123 pipe->stream_res.tg->inst);
2124 } else if (slice_idx == 0 && plane_idx == -1) {
2125 /* case 1 (OTG master pipe without plane) */
2126 DC_LOG_DC(" | slice%d stream%d|",
2127 slice_idx, stream_idx);
2128 DC_LOG_DC(" |DPG%d----OPP%d----OTG%d----|",
2129 pipe->stream_res.opp->inst,
2130 pipe->stream_res.opp->inst,
2131 pipe->stream_res.tg->inst);
2132 } else if (slice_idx != 0 && plane_idx == 0 && is_primary) {
2133 /* case 2 (OPP head pipe with plane) */
2134 DC_LOG_DC(" | plane%d slice%d | |",
2135 plane_idx, slice_idx);
2136 DC_LOG_DC(" |DPP%d----OPP%d----| |",
2137 pipe->plane_res.dpp->inst,
2138 pipe->stream_res.opp->inst);
2139 } else if (slice_idx != 0 && plane_idx == -1) {
2140 /* case 3 (OPP head pipe without plane) */
2141 DC_LOG_DC(" | slice%d | |", slice_idx);
2142 DC_LOG_DC(" |DPG%d----OPP%d----| |",
2143 pipe->plane_res.dpp->inst,
2144 pipe->stream_res.opp->inst);
2145 } else if (slice_idx == slice_count - 1) {
2146 /* case 4 (DPP pipe in last slice) */
2147 DC_LOG_DC(" | plane%d | |", plane_idx);
2148 DC_LOG_DC(" |DPP%d----| |",
2149 pipe->plane_res.dpp->inst);
2150 } else {
2151 /* case 5 (DPP pipe not in last slice) */
2152 DC_LOG_DC(" | plane%d | | |", plane_idx);
2153 DC_LOG_DC(" |DPP%d----| | |",
2154 pipe->plane_res.dpp->inst);
2155 }
2156}
2157
2158void resource_log_pipe_topology_update(struct dc *dc, struct dc_state *state)
2159{
2160 struct pipe_ctx *otg_master;
2161 struct pipe_ctx *opp_heads[MAX_PIPES];
2162 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2163
2164 int stream_idx, slice_idx, dpp_idx, plane_idx, slice_count, dpp_count;
2165 bool is_primary;
2166 DC_LOGGER_INIT(dc->ctx->logger);
2167
2168 DC_LOG_DC(" pipe topology update");
2169 DC_LOG_DC(" ________________________");
2170 for (stream_idx = 0; stream_idx < state->stream_count; stream_idx++) {
2171 otg_master = resource_get_otg_master_for_stream(
2172 res_ctx: &state->res_ctx, stream: state->streams[stream_idx]);
2173 slice_count = resource_get_opp_heads_for_otg_master(otg_master,
2174 res_ctx: &state->res_ctx, opp_heads);
2175 for (slice_idx = 0; slice_idx < slice_count; slice_idx++) {
2176 plane_idx = -1;
2177 if (opp_heads[slice_idx]->plane_state) {
2178 dpp_count = resource_get_dpp_pipes_for_opp_head(
2179 opp_head: opp_heads[slice_idx],
2180 res_ctx: &state->res_ctx,
2181 dpp_pipes);
2182 for (dpp_idx = 0; dpp_idx < dpp_count; dpp_idx++) {
2183 is_primary = !dpp_pipes[dpp_idx]->top_pipe ||
2184 dpp_pipes[dpp_idx]->top_pipe->plane_state != dpp_pipes[dpp_idx]->plane_state;
2185 if (is_primary)
2186 plane_idx++;
2187 resource_log_pipe(dc, pipe: dpp_pipes[dpp_idx],
2188 stream_idx, slice_idx,
2189 plane_idx, slice_count,
2190 is_primary);
2191 }
2192 } else {
2193 resource_log_pipe(dc, pipe: opp_heads[slice_idx],
2194 stream_idx, slice_idx, plane_idx,
2195 slice_count, is_primary: true);
2196 }
2197
2198 }
2199 }
2200 DC_LOG_DC(" |________________________|\n");
2201}
2202
2203static struct pipe_ctx *get_tail_pipe(
2204 struct pipe_ctx *head_pipe)
2205{
2206 struct pipe_ctx *tail_pipe = head_pipe->bottom_pipe;
2207
2208 while (tail_pipe) {
2209 head_pipe = tail_pipe;
2210 tail_pipe = tail_pipe->bottom_pipe;
2211 }
2212
2213 return head_pipe;
2214}
2215
2216static struct pipe_ctx *get_last_opp_head(
2217 struct pipe_ctx *opp_head)
2218{
2219 ASSERT(resource_is_pipe_type(opp_head, OPP_HEAD));
2220 while (opp_head->next_odm_pipe)
2221 opp_head = opp_head->next_odm_pipe;
2222 return opp_head;
2223}
2224
2225static struct pipe_ctx *get_last_dpp_pipe_in_mpcc_combine(
2226 struct pipe_ctx *dpp_pipe)
2227{
2228 ASSERT(resource_is_pipe_type(dpp_pipe, DPP_PIPE));
2229 while (dpp_pipe->bottom_pipe &&
2230 dpp_pipe->plane_state == dpp_pipe->bottom_pipe->plane_state)
2231 dpp_pipe = dpp_pipe->bottom_pipe;
2232 return dpp_pipe;
2233}
2234
2235static bool update_pipe_params_after_odm_slice_count_change(
2236 const struct dc_stream_state *stream,
2237 struct dc_state *context,
2238 const struct resource_pool *pool)
2239{
2240 int i;
2241 struct pipe_ctx *pipe;
2242 bool result = true;
2243
2244 for (i = 0; i < pool->pipe_count && result; i++) {
2245 pipe = &context->res_ctx.pipe_ctx[i];
2246 if (pipe->stream == stream && pipe->plane_state)
2247 result = resource_build_scaling_params(pipe_ctx: pipe);
2248 }
2249 return result;
2250}
2251
2252static bool update_pipe_params_after_mpc_slice_count_change(
2253 const struct dc_plane_state *plane,
2254 struct dc_state *context,
2255 const struct resource_pool *pool)
2256{
2257 int i;
2258 struct pipe_ctx *pipe;
2259 bool result = true;
2260
2261 for (i = 0; i < pool->pipe_count && result; i++) {
2262 pipe = &context->res_ctx.pipe_ctx[i];
2263 if (pipe->plane_state == plane)
2264 result = resource_build_scaling_params(pipe_ctx: pipe);
2265 }
2266 return result;
2267}
2268
2269static int acquire_first_split_pipe(
2270 struct resource_context *res_ctx,
2271 const struct resource_pool *pool,
2272 struct dc_stream_state *stream)
2273{
2274 int i;
2275
2276 for (i = 0; i < pool->pipe_count; i++) {
2277 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
2278
2279 if (split_pipe->top_pipe &&
2280 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
2281 split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
2282 if (split_pipe->bottom_pipe)
2283 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
2284
2285 if (split_pipe->top_pipe->plane_state)
2286 resource_build_scaling_params(pipe_ctx: split_pipe->top_pipe);
2287
2288 memset(split_pipe, 0, sizeof(*split_pipe));
2289 split_pipe->stream_res.tg = pool->timing_generators[i];
2290 split_pipe->plane_res.hubp = pool->hubps[i];
2291 split_pipe->plane_res.ipp = pool->ipps[i];
2292 split_pipe->plane_res.dpp = pool->dpps[i];
2293 split_pipe->stream_res.opp = pool->opps[i];
2294 split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
2295 split_pipe->pipe_idx = i;
2296
2297 split_pipe->stream = stream;
2298 return i;
2299 }
2300 }
2301 return FREE_PIPE_INDEX_NOT_FOUND;
2302}
2303
2304static void update_stream_engine_usage(
2305 struct resource_context *res_ctx,
2306 const struct resource_pool *pool,
2307 struct stream_encoder *stream_enc,
2308 bool acquired)
2309{
2310 int i;
2311
2312 for (i = 0; i < pool->stream_enc_count; i++) {
2313 if (pool->stream_enc[i] == stream_enc)
2314 res_ctx->is_stream_enc_acquired[i] = acquired;
2315 }
2316}
2317
2318static void update_hpo_dp_stream_engine_usage(
2319 struct resource_context *res_ctx,
2320 const struct resource_pool *pool,
2321 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
2322 bool acquired)
2323{
2324 int i;
2325
2326 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
2327 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
2328 res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
2329 }
2330}
2331
2332static inline int find_acquired_hpo_dp_link_enc_for_link(
2333 const struct resource_context *res_ctx,
2334 const struct dc_link *link)
2335{
2336 int i;
2337
2338 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
2339 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
2340 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
2341 return i;
2342
2343 return -1;
2344}
2345
2346static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
2347 const struct resource_pool *pool)
2348{
2349 int i;
2350
2351 for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
2352 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
2353 break;
2354
2355 return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
2356 i < pool->hpo_dp_link_enc_count) ? i : -1;
2357}
2358
2359static inline void acquire_hpo_dp_link_enc(
2360 struct resource_context *res_ctx,
2361 unsigned int link_index,
2362 int enc_index)
2363{
2364 res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
2365 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
2366}
2367
2368static inline void retain_hpo_dp_link_enc(
2369 struct resource_context *res_ctx,
2370 int enc_index)
2371{
2372 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
2373}
2374
2375static inline void release_hpo_dp_link_enc(
2376 struct resource_context *res_ctx,
2377 int enc_index)
2378{
2379 ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
2380 res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
2381}
2382
2383static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
2384 const struct resource_pool *pool,
2385 struct pipe_ctx *pipe_ctx,
2386 struct dc_stream_state *stream)
2387{
2388 int enc_index;
2389
2390 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link: stream->link);
2391
2392 if (enc_index >= 0) {
2393 retain_hpo_dp_link_enc(res_ctx, enc_index);
2394 } else {
2395 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
2396 if (enc_index >= 0)
2397 acquire_hpo_dp_link_enc(res_ctx, link_index: stream->link->link_index, enc_index);
2398 }
2399
2400 if (enc_index >= 0)
2401 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
2402
2403 return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
2404}
2405
2406static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
2407 struct pipe_ctx *pipe_ctx,
2408 struct dc_stream_state *stream)
2409{
2410 int enc_index;
2411
2412 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link: stream->link);
2413
2414 if (enc_index >= 0) {
2415 release_hpo_dp_link_enc(res_ctx, enc_index);
2416 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
2417 }
2418}
2419
2420enum dc_status resource_add_otg_master_for_stream_output(struct dc_state *new_ctx,
2421 const struct resource_pool *pool,
2422 struct dc_stream_state *stream)
2423{
2424 struct dc *dc = stream->ctx->dc;
2425
2426 return dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
2427}
2428
2429void resource_remove_otg_master_for_stream_output(struct dc_state *context,
2430 const struct resource_pool *pool,
2431 struct dc_stream_state *stream)
2432{
2433 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2434 res_ctx: &context->res_ctx, stream);
2435
2436 ASSERT(resource_get_odm_slice_count(otg_master) == 1);
2437 ASSERT(otg_master->plane_state == NULL);
2438 ASSERT(otg_master->stream_res.stream_enc);
2439 update_stream_engine_usage(
2440 res_ctx: &context->res_ctx,
2441 pool,
2442 stream_enc: otg_master->stream_res.stream_enc,
2443 acquired: false);
2444
2445 if (stream->ctx->dc->link_srv->dp_is_128b_132b_signal(otg_master)) {
2446 update_hpo_dp_stream_engine_usage(
2447 res_ctx: &context->res_ctx, pool,
2448 hpo_dp_stream_enc: otg_master->stream_res.hpo_dp_stream_enc,
2449 acquired: false);
2450 remove_hpo_dp_link_enc_from_ctx(
2451 res_ctx: &context->res_ctx, pipe_ctx: otg_master, stream);
2452 }
2453 if (otg_master->stream_res.audio)
2454 update_audio_usage(
2455 res_ctx: &context->res_ctx,
2456 pool,
2457 audio: otg_master->stream_res.audio,
2458 acquired: false);
2459
2460 resource_unreference_clock_source(res_ctx: &context->res_ctx,
2461 pool,
2462 clock_source: otg_master->clock_source);
2463
2464 if (pool->funcs->remove_stream_from_ctx)
2465 pool->funcs->remove_stream_from_ctx(
2466 stream->ctx->dc, context, stream);
2467 memset(otg_master, 0, sizeof(*otg_master));
2468}
2469
2470/* For each OPP head of an OTG master, add top plane at plane index 0.
2471 *
2472 * In the following example, the stream has 2 ODM slices without a top plane.
2473 * By adding a plane 0 to OPP heads, we are configuring our hardware to render
2474 * plane 0 by using each OPP head's DPP.
2475 *
2476 * Inter-pipe Relation (Before Adding Plane)
2477 * __________________________________________________
2478 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2479 * | | | slice 0 | |
2480 * | 0 | |blank ----ODM----------- |
2481 * | | | slice 1 | | |
2482 * | 1 | |blank ---- | |
2483 * |________|_______________|___________|_____________|
2484 *
2485 * Inter-pipe Relation (After Adding Plane)
2486 * __________________________________________________
2487 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2488 * | | plane 0 | slice 0 | |
2489 * | 0 | -------------------------ODM----------- |
2490 * | | plane 0 | slice 1 | | |
2491 * | 1 | ------------------------- | |
2492 * |________|_______________|___________|_____________|
2493 */
2494static bool add_plane_to_opp_head_pipes(struct pipe_ctx *otg_master_pipe,
2495 struct dc_plane_state *plane_state,
2496 struct dc_state *context)
2497{
2498 struct pipe_ctx *opp_head_pipe = otg_master_pipe;
2499
2500 while (opp_head_pipe) {
2501 if (opp_head_pipe->plane_state) {
2502 ASSERT(0);
2503 return false;
2504 }
2505 opp_head_pipe->plane_state = plane_state;
2506 opp_head_pipe = opp_head_pipe->next_odm_pipe;
2507 }
2508
2509 return true;
2510}
2511
2512/* For each OPP head of an OTG master, acquire a secondary DPP pipe and add
2513 * the plane. So the plane is added to all ODM slices associated with the OTG
2514 * master pipe in the bottom layer.
2515 *
2516 * In the following example, the stream has 2 ODM slices and a top plane 0.
2517 * By acquiring secondary DPP pipes and adding a plane 1, we are configuring our
2518 * hardware to render the plane 1 by acquiring a new pipe for each ODM slice and
2519 * render plane 1 using new pipes' DPP in the Z axis below plane 0.
2520 *
2521 * Inter-pipe Relation (Before Adding Plane)
2522 * __________________________________________________
2523 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2524 * | | plane 0 | slice 0 | |
2525 * | 0 | -------------------------ODM----------- |
2526 * | | plane 0 | slice 1 | | |
2527 * | 1 | ------------------------- | |
2528 * |________|_______________|___________|_____________|
2529 *
2530 * Inter-pipe Relation (After Acquiring and Adding Plane)
2531 * __________________________________________________
2532 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2533 * | | plane 0 | slice 0 | |
2534 * | 0 | -------------MPC---------ODM----------- |
2535 * | | plane 1 | | | | |
2536 * | 2 | ------------- | | | |
2537 * | | plane 0 | slice 1 | | |
2538 * | 1 | -------------MPC--------- | |
2539 * | | plane 1 | | | |
2540 * | 3 | ------------- | | |
2541 * |________|_______________|___________|_____________|
2542 */
2543static bool acquire_secondary_dpp_pipes_and_add_plane(
2544 struct pipe_ctx *otg_master_pipe,
2545 struct dc_plane_state *plane_state,
2546 struct dc_state *new_ctx,
2547 struct dc_state *cur_ctx,
2548 struct resource_pool *pool)
2549{
2550 struct pipe_ctx *opp_head_pipe, *sec_pipe, *tail_pipe;
2551
2552 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2553 ASSERT(0);
2554 return false;
2555 }
2556
2557 opp_head_pipe = otg_master_pipe;
2558 while (opp_head_pipe) {
2559 sec_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2560 cur_ctx,
2561 new_ctx,
2562 pool,
2563 opp_head_pipe);
2564 if (!sec_pipe) {
2565 /* try tearing down MPCC combine */
2566 int pipe_idx = acquire_first_split_pipe(
2567 res_ctx: &new_ctx->res_ctx, pool,
2568 stream: otg_master_pipe->stream);
2569
2570 if (pipe_idx >= 0)
2571 sec_pipe = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
2572 }
2573
2574 if (!sec_pipe)
2575 return false;
2576
2577 sec_pipe->plane_state = plane_state;
2578
2579 /* establish pipe relationship */
2580 tail_pipe = get_tail_pipe(head_pipe: opp_head_pipe);
2581 tail_pipe->bottom_pipe = sec_pipe;
2582 sec_pipe->top_pipe = tail_pipe;
2583 sec_pipe->bottom_pipe = NULL;
2584 if (tail_pipe->prev_odm_pipe) {
2585 ASSERT(tail_pipe->prev_odm_pipe->bottom_pipe);
2586 sec_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
2587 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = sec_pipe;
2588 } else {
2589 sec_pipe->prev_odm_pipe = NULL;
2590 }
2591
2592 opp_head_pipe = opp_head_pipe->next_odm_pipe;
2593 }
2594 return true;
2595}
2596
2597bool resource_append_dpp_pipes_for_plane_composition(
2598 struct dc_state *new_ctx,
2599 struct dc_state *cur_ctx,
2600 struct resource_pool *pool,
2601 struct pipe_ctx *otg_master_pipe,
2602 struct dc_plane_state *plane_state)
2603{
2604 if (otg_master_pipe->plane_state == NULL)
2605 return add_plane_to_opp_head_pipes(otg_master_pipe,
2606 plane_state, context: new_ctx);
2607 else
2608 return acquire_secondary_dpp_pipes_and_add_plane(
2609 otg_master_pipe, plane_state, new_ctx,
2610 cur_ctx, pool);
2611}
2612
2613void resource_remove_dpp_pipes_for_plane_composition(
2614 struct dc_state *context,
2615 const struct resource_pool *pool,
2616 const struct dc_plane_state *plane_state)
2617{
2618 int i;
2619 for (i = pool->pipe_count - 1; i >= 0; i--) {
2620 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2621
2622 if (pipe_ctx->plane_state == plane_state) {
2623 if (pipe_ctx->top_pipe)
2624 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
2625
2626 /* Second condition is to avoid setting NULL to top pipe
2627 * of tail pipe making it look like head pipe in subsequent
2628 * deletes
2629 */
2630 if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
2631 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
2632
2633 /*
2634 * For head pipe detach surfaces from pipe for tail
2635 * pipe just zero it out
2636 */
2637 if (!pipe_ctx->top_pipe)
2638 pipe_ctx->plane_state = NULL;
2639 else
2640 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
2641 }
2642 }
2643}
2644
2645/*
2646 * Increase ODM slice count by 1 by acquiring pipes and adding a new ODM slice
2647 * at the last index.
2648 * return - true if a new ODM slice is added and required pipes are acquired.
2649 * false if new_ctx is no longer a valid state after new ODM slice is added.
2650 *
2651 * This is achieved by duplicating MPC blending tree from previous ODM slice.
2652 * In the following example, we have a single MPC tree and 1 ODM slice 0. We
2653 * want to add a new odm slice by duplicating the MPC blending tree and add
2654 * ODM slice 1.
2655 *
2656 * Inter-pipe Relation (Before Acquiring and Adding ODM Slice)
2657 * __________________________________________________
2658 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2659 * | | plane 0 | slice 0 | |
2660 * | 0 | -------------MPC---------ODM----------- |
2661 * | | plane 1 | | | |
2662 * | 1 | ------------- | | |
2663 * |________|_______________|___________|_____________|
2664 *
2665 * Inter-pipe Relation (After Acquiring and Adding ODM Slice)
2666 * __________________________________________________
2667 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2668 * | | plane 0 | slice 0 | |
2669 * | 0 | -------------MPC---------ODM----------- |
2670 * | | plane 1 | | | | |
2671 * | 1 | ------------- | | | |
2672 * | | plane 0 | slice 1 | | |
2673 * | 2 | -------------MPC--------- | |
2674 * | | plane 1 | | | |
2675 * | 3 | ------------- | | |
2676 * |________|_______________|___________|_____________|
2677 */
2678static bool acquire_pipes_and_add_odm_slice(
2679 struct pipe_ctx *otg_master_pipe,
2680 struct dc_state *new_ctx,
2681 const struct dc_state *cur_ctx,
2682 const struct resource_pool *pool)
2683{
2684 struct pipe_ctx *last_opp_head = get_last_opp_head(opp_head: otg_master_pipe);
2685 struct pipe_ctx *new_opp_head;
2686 struct pipe_ctx *last_top_dpp_pipe, *last_bottom_dpp_pipe,
2687 *new_top_dpp_pipe, *new_bottom_dpp_pipe;
2688
2689 if (!pool->funcs->acquire_free_pipe_as_secondary_opp_head) {
2690 ASSERT(0);
2691 return false;
2692 }
2693 new_opp_head = pool->funcs->acquire_free_pipe_as_secondary_opp_head(
2694 cur_ctx, new_ctx, pool,
2695 otg_master_pipe);
2696 if (!new_opp_head)
2697 return false;
2698
2699 last_opp_head->next_odm_pipe = new_opp_head;
2700 new_opp_head->prev_odm_pipe = last_opp_head;
2701 new_opp_head->next_odm_pipe = NULL;
2702 new_opp_head->plane_state = last_opp_head->plane_state;
2703 last_top_dpp_pipe = last_opp_head;
2704 new_top_dpp_pipe = new_opp_head;
2705
2706 while (last_top_dpp_pipe->bottom_pipe) {
2707 last_bottom_dpp_pipe = last_top_dpp_pipe->bottom_pipe;
2708 new_bottom_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2709 cur_ctx, new_ctx, pool,
2710 new_opp_head);
2711 if (!new_bottom_dpp_pipe)
2712 return false;
2713
2714 new_bottom_dpp_pipe->plane_state = last_bottom_dpp_pipe->plane_state;
2715 new_top_dpp_pipe->bottom_pipe = new_bottom_dpp_pipe;
2716 new_bottom_dpp_pipe->top_pipe = new_top_dpp_pipe;
2717 last_bottom_dpp_pipe->next_odm_pipe = new_bottom_dpp_pipe;
2718 new_bottom_dpp_pipe->prev_odm_pipe = last_bottom_dpp_pipe;
2719 new_bottom_dpp_pipe->next_odm_pipe = NULL;
2720 last_top_dpp_pipe = last_bottom_dpp_pipe;
2721 }
2722
2723 return true;
2724}
2725
2726/*
2727 * Decrease ODM slice count by 1 by releasing pipes and removing the ODM slice
2728 * at the last index.
2729 * return - true if the last ODM slice is removed and related pipes are
2730 * released. false if there is no removable ODM slice.
2731 *
2732 * In the following example, we have 2 MPC trees and ODM slice 0 and slice 1.
2733 * We want to remove the last ODM i.e slice 1. We are releasing secondary DPP
2734 * pipe 3 and OPP head pipe 2.
2735 *
2736 * Inter-pipe Relation (Before Releasing and Removing ODM Slice)
2737 * __________________________________________________
2738 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2739 * | | plane 0 | slice 0 | |
2740 * | 0 | -------------MPC---------ODM----------- |
2741 * | | plane 1 | | | | |
2742 * | 1 | ------------- | | | |
2743 * | | plane 0 | slice 1 | | |
2744 * | 2 | -------------MPC--------- | |
2745 * | | plane 1 | | | |
2746 * | 3 | ------------- | | |
2747 * |________|_______________|___________|_____________|
2748 *
2749 * Inter-pipe Relation (After Releasing and Removing ODM Slice)
2750 * __________________________________________________
2751 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2752 * | | plane 0 | slice 0 | |
2753 * | 0 | -------------MPC---------ODM----------- |
2754 * | | plane 1 | | | |
2755 * | 1 | ------------- | | |
2756 * |________|_______________|___________|_____________|
2757 */
2758static bool release_pipes_and_remove_odm_slice(
2759 struct pipe_ctx *otg_master_pipe,
2760 struct dc_state *context,
2761 const struct resource_pool *pool)
2762{
2763 struct pipe_ctx *last_opp_head = get_last_opp_head(opp_head: otg_master_pipe);
2764 struct pipe_ctx *tail_pipe = get_tail_pipe(head_pipe: last_opp_head);
2765
2766 if (!pool->funcs->release_pipe) {
2767 ASSERT(0);
2768 return false;
2769 }
2770
2771 if (resource_is_pipe_type(pipe_ctx: last_opp_head, type: OTG_MASTER))
2772 return false;
2773
2774 while (tail_pipe->top_pipe) {
2775 tail_pipe->prev_odm_pipe->next_odm_pipe = NULL;
2776 tail_pipe = tail_pipe->top_pipe;
2777 pool->funcs->release_pipe(context, tail_pipe->bottom_pipe, pool);
2778 tail_pipe->bottom_pipe = NULL;
2779 }
2780 last_opp_head->prev_odm_pipe->next_odm_pipe = NULL;
2781 pool->funcs->release_pipe(context, last_opp_head, pool);
2782
2783 return true;
2784}
2785
2786/*
2787 * Increase MPC slice count by 1 by acquiring a new DPP pipe and add it as the
2788 * last MPC slice of the plane associated with dpp_pipe.
2789 *
2790 * return - true if a new MPC slice is added and required pipes are acquired.
2791 * false if new_ctx is no longer a valid state after new MPC slice is added.
2792 *
2793 * In the following example, we add a new MPC slice for plane 0 into the
2794 * new_ctx. To do so we pass pipe 0 as dpp_pipe. The function acquires a new DPP
2795 * pipe 2 for plane 0 as the bottom most pipe for plane 0.
2796 *
2797 * Inter-pipe Relation (Before Acquiring and Adding MPC Slice)
2798 * __________________________________________________
2799 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2800 * | | plane 0 | | |
2801 * | 0 | -------------MPC----------------------- |
2802 * | | plane 1 | | | |
2803 * | 1 | ------------- | | |
2804 * |________|_______________|___________|_____________|
2805 *
2806 * Inter-pipe Relation (After Acquiring and Adding MPC Slice)
2807 * __________________________________________________
2808 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2809 * | | plane 0 | | |
2810 * | 0 | -------------MPC----------------------- |
2811 * | | plane 0 | | | |
2812 * | 2 | ------------- | | |
2813 * | | plane 1 | | | |
2814 * | 1 | ------------- | | |
2815 * |________|_______________|___________|_____________|
2816 */
2817static bool acquire_dpp_pipe_and_add_mpc_slice(
2818 struct pipe_ctx *dpp_pipe,
2819 struct dc_state *new_ctx,
2820 const struct dc_state *cur_ctx,
2821 const struct resource_pool *pool)
2822{
2823 struct pipe_ctx *last_dpp_pipe =
2824 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2825 struct pipe_ctx *opp_head = resource_get_opp_head(pipe_ctx: dpp_pipe);
2826 struct pipe_ctx *new_dpp_pipe;
2827
2828 if (!pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe) {
2829 ASSERT(0);
2830 return false;
2831 }
2832 new_dpp_pipe = pool->funcs->acquire_free_pipe_as_secondary_dpp_pipe(
2833 cur_ctx, new_ctx, pool, opp_head);
2834 if (!new_dpp_pipe || resource_get_odm_slice_count(pipe: dpp_pipe) > 1)
2835 return false;
2836
2837 new_dpp_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2838 if (new_dpp_pipe->bottom_pipe)
2839 new_dpp_pipe->bottom_pipe->top_pipe = new_dpp_pipe;
2840 new_dpp_pipe->top_pipe = last_dpp_pipe;
2841 last_dpp_pipe->bottom_pipe = new_dpp_pipe;
2842 new_dpp_pipe->plane_state = last_dpp_pipe->plane_state;
2843
2844 return true;
2845}
2846
2847/*
2848 * Reduce MPC slice count by 1 by releasing the bottom DPP pipe in MPCC combine
2849 * with dpp_pipe and removing last MPC slice of the plane associated with
2850 * dpp_pipe.
2851 *
2852 * return - true if the last MPC slice of the plane associated with dpp_pipe is
2853 * removed and last DPP pipe in MPCC combine with dpp_pipe is released.
2854 * false if there is no removable MPC slice.
2855 *
2856 * In the following example, we remove an MPC slice for plane 0 from the
2857 * context. To do so we pass pipe 0 as dpp_pipe. The function releases pipe 1 as
2858 * it is the last pipe for plane 0.
2859 *
2860 * Inter-pipe Relation (Before Releasing and Removing MPC Slice)
2861 * __________________________________________________
2862 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2863 * | | plane 0 | | |
2864 * | 0 | -------------MPC----------------------- |
2865 * | | plane 0 | | | |
2866 * | 1 | ------------- | | |
2867 * | | plane 1 | | | |
2868 * | 2 | ------------- | | |
2869 * |________|_______________|___________|_____________|
2870 *
2871 * Inter-pipe Relation (After Releasing and Removing MPC Slice)
2872 * __________________________________________________
2873 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
2874 * | | plane 0 | | |
2875 * | 0 | -------------MPC----------------------- |
2876 * | | plane 1 | | | |
2877 * | 2 | ------------- | | |
2878 * |________|_______________|___________|_____________|
2879 */
2880static bool release_dpp_pipe_and_remove_mpc_slice(
2881 struct pipe_ctx *dpp_pipe,
2882 struct dc_state *context,
2883 const struct resource_pool *pool)
2884{
2885 struct pipe_ctx *last_dpp_pipe =
2886 get_last_dpp_pipe_in_mpcc_combine(dpp_pipe);
2887
2888 if (!pool->funcs->release_pipe) {
2889 ASSERT(0);
2890 return false;
2891 }
2892
2893 if (resource_is_pipe_type(pipe_ctx: last_dpp_pipe, type: OPP_HEAD) ||
2894 resource_get_odm_slice_count(pipe: dpp_pipe) > 1)
2895 return false;
2896
2897 last_dpp_pipe->top_pipe->bottom_pipe = last_dpp_pipe->bottom_pipe;
2898 if (last_dpp_pipe->bottom_pipe)
2899 last_dpp_pipe->bottom_pipe->top_pipe = last_dpp_pipe->top_pipe;
2900 pool->funcs->release_pipe(context, last_dpp_pipe, pool);
2901
2902 return true;
2903}
2904
2905bool resource_update_pipes_for_stream_with_slice_count(
2906 struct dc_state *new_ctx,
2907 const struct dc_state *cur_ctx,
2908 const struct resource_pool *pool,
2909 const struct dc_stream_state *stream,
2910 int new_slice_count)
2911{
2912 int i;
2913 struct pipe_ctx *otg_master = resource_get_otg_master_for_stream(
2914 res_ctx: &new_ctx->res_ctx, stream);
2915 int cur_slice_count = resource_get_odm_slice_count(pipe: otg_master);
2916 bool result = true;
2917
2918 if (new_slice_count == cur_slice_count)
2919 return result;
2920
2921 if (new_slice_count > cur_slice_count)
2922 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
2923 result = acquire_pipes_and_add_odm_slice(
2924 otg_master_pipe: otg_master, new_ctx, cur_ctx, pool);
2925 else
2926 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
2927 result = release_pipes_and_remove_odm_slice(
2928 otg_master_pipe: otg_master, context: new_ctx, pool);
2929 if (result)
2930 result = update_pipe_params_after_odm_slice_count_change(
2931 stream: otg_master->stream, context: new_ctx, pool);
2932 return result;
2933}
2934
2935bool resource_update_pipes_for_plane_with_slice_count(
2936 struct dc_state *new_ctx,
2937 const struct dc_state *cur_ctx,
2938 const struct resource_pool *pool,
2939 const struct dc_plane_state *plane,
2940 int new_slice_count)
2941{
2942 int i;
2943 int dpp_pipe_count;
2944 int cur_slice_count;
2945 struct pipe_ctx *dpp_pipes[MAX_PIPES];
2946 bool result = true;
2947
2948 dpp_pipe_count = resource_get_dpp_pipes_for_plane(plane,
2949 res_ctx: &new_ctx->res_ctx, dpp_pipes);
2950 ASSERT(dpp_pipe_count > 0);
2951 cur_slice_count = resource_get_mpc_slice_count(pipe: dpp_pipes[0]);
2952
2953 if (new_slice_count == cur_slice_count)
2954 return result;
2955
2956 if (new_slice_count > cur_slice_count)
2957 for (i = 0; i < new_slice_count - cur_slice_count && result; i++)
2958 result = acquire_dpp_pipe_and_add_mpc_slice(
2959 dpp_pipe: dpp_pipes[0], new_ctx, cur_ctx, pool);
2960 else
2961 for (i = 0; i < cur_slice_count - new_slice_count && result; i++)
2962 result = release_dpp_pipe_and_remove_mpc_slice(
2963 dpp_pipe: dpp_pipes[0], context: new_ctx, pool);
2964 if (result)
2965 result = update_pipe_params_after_mpc_slice_count_change(
2966 plane: dpp_pipes[0]->plane_state, context: new_ctx, pool);
2967 return result;
2968}
2969
2970bool dc_add_plane_to_context(
2971 const struct dc *dc,
2972 struct dc_stream_state *stream,
2973 struct dc_plane_state *plane_state,
2974 struct dc_state *context)
2975{
2976 struct resource_pool *pool = dc->res_pool;
2977 struct pipe_ctx *otg_master_pipe;
2978 struct dc_stream_status *stream_status = NULL;
2979 bool added = false;
2980
2981 stream_status = dc_stream_get_status_from_state(state: context, stream);
2982 if (stream_status == NULL) {
2983 dm_error("Existing stream not found; failed to attach surface!\n");
2984 goto out;
2985 } else if (stream_status->plane_count == MAX_SURFACE_NUM) {
2986 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
2987 plane_state, MAX_SURFACE_NUM);
2988 goto out;
2989 }
2990
2991 otg_master_pipe = resource_get_otg_master_for_stream(
2992 res_ctx: &context->res_ctx, stream);
2993 added = resource_append_dpp_pipes_for_plane_composition(new_ctx: context,
2994 cur_ctx: dc->current_state, pool, otg_master_pipe, plane_state);
2995
2996 if (added) {
2997 stream_status->plane_states[stream_status->plane_count] =
2998 plane_state;
2999 stream_status->plane_count++;
3000 dc_plane_state_retain(plane_state);
3001 }
3002
3003out:
3004 return added;
3005}
3006
3007bool dc_remove_plane_from_context(
3008 const struct dc *dc,
3009 struct dc_stream_state *stream,
3010 struct dc_plane_state *plane_state,
3011 struct dc_state *context)
3012{
3013 int i;
3014 struct dc_stream_status *stream_status = NULL;
3015 struct resource_pool *pool = dc->res_pool;
3016
3017 if (!plane_state)
3018 return true;
3019
3020 for (i = 0; i < context->stream_count; i++)
3021 if (context->streams[i] == stream) {
3022 stream_status = &context->stream_status[i];
3023 break;
3024 }
3025
3026 if (stream_status == NULL) {
3027 dm_error("Existing stream not found; failed to remove plane.\n");
3028 return false;
3029 }
3030
3031 resource_remove_dpp_pipes_for_plane_composition(
3032 context, pool, plane_state);
3033
3034 for (i = 0; i < stream_status->plane_count; i++) {
3035 if (stream_status->plane_states[i] == plane_state) {
3036 dc_plane_state_release(plane_state: stream_status->plane_states[i]);
3037 break;
3038 }
3039 }
3040
3041 if (i == stream_status->plane_count) {
3042 dm_error("Existing plane_state not found; failed to detach it!\n");
3043 return false;
3044 }
3045
3046 stream_status->plane_count--;
3047
3048 /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
3049 for (; i < stream_status->plane_count; i++)
3050 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
3051
3052 stream_status->plane_states[stream_status->plane_count] = NULL;
3053
3054 if (stream_status->plane_count == 0 && dc->config.enable_windowed_mpo_odm)
3055 /* ODM combine could prevent us from supporting more planes
3056 * we will reset ODM slice count back to 1 when all planes have
3057 * been removed to maximize the amount of planes supported when
3058 * new planes are added.
3059 */
3060 resource_update_pipes_for_stream_with_slice_count(
3061 new_ctx: context, cur_ctx: dc->current_state, pool: dc->res_pool, stream, new_slice_count: 1);
3062
3063 return true;
3064}
3065
3066/**
3067 * dc_rem_all_planes_for_stream - Remove planes attached to the target stream.
3068 *
3069 * @dc: Current dc state.
3070 * @stream: Target stream, which we want to remove the attached plans.
3071 * @context: New context.
3072 *
3073 * Return:
3074 * Return true if DC was able to remove all planes from the target
3075 * stream, otherwise, return false.
3076 */
3077bool dc_rem_all_planes_for_stream(
3078 const struct dc *dc,
3079 struct dc_stream_state *stream,
3080 struct dc_state *context)
3081{
3082 int i, old_plane_count;
3083 struct dc_stream_status *stream_status = NULL;
3084 struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
3085
3086 for (i = 0; i < context->stream_count; i++)
3087 if (context->streams[i] == stream) {
3088 stream_status = &context->stream_status[i];
3089 break;
3090 }
3091
3092 if (stream_status == NULL) {
3093 dm_error("Existing stream %p not found!\n", stream);
3094 return false;
3095 }
3096
3097 old_plane_count = stream_status->plane_count;
3098
3099 for (i = 0; i < old_plane_count; i++)
3100 del_planes[i] = stream_status->plane_states[i];
3101
3102 for (i = 0; i < old_plane_count; i++)
3103 if (!dc_remove_plane_from_context(dc, stream, plane_state: del_planes[i], context))
3104 return false;
3105
3106 return true;
3107}
3108
3109static bool add_all_planes_for_stream(
3110 const struct dc *dc,
3111 struct dc_stream_state *stream,
3112 const struct dc_validation_set set[],
3113 int set_count,
3114 struct dc_state *context)
3115{
3116 int i, j;
3117
3118 for (i = 0; i < set_count; i++)
3119 if (set[i].stream == stream)
3120 break;
3121
3122 if (i == set_count) {
3123 dm_error("Stream %p not found in set!\n", stream);
3124 return false;
3125 }
3126
3127 for (j = 0; j < set[i].plane_count; j++)
3128 if (!dc_add_plane_to_context(dc, stream, plane_state: set[i].plane_states[j], context))
3129 return false;
3130
3131 return true;
3132}
3133
3134bool dc_add_all_planes_for_stream(
3135 const struct dc *dc,
3136 struct dc_stream_state *stream,
3137 struct dc_plane_state * const *plane_states,
3138 int plane_count,
3139 struct dc_state *context)
3140{
3141 struct dc_validation_set set;
3142 int i;
3143
3144 set.stream = stream;
3145 set.plane_count = plane_count;
3146
3147 for (i = 0; i < plane_count; i++)
3148 set.plane_states[i] = plane_states[i];
3149
3150 return add_all_planes_for_stream(dc, stream, set: &set, set_count: 1, context);
3151}
3152
3153bool dc_is_timing_changed(struct dc_stream_state *cur_stream,
3154 struct dc_stream_state *new_stream)
3155{
3156 if (cur_stream == NULL)
3157 return true;
3158
3159 /* If output color space is changed, need to reprogram info frames */
3160 if (cur_stream->output_color_space != new_stream->output_color_space)
3161 return true;
3162
3163 return memcmp(
3164 p: &cur_stream->timing,
3165 q: &new_stream->timing,
3166 size: sizeof(struct dc_crtc_timing)) != 0;
3167}
3168
3169static bool are_stream_backends_same(
3170 struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
3171{
3172 if (stream_a == stream_b)
3173 return true;
3174
3175 if (stream_a == NULL || stream_b == NULL)
3176 return false;
3177
3178 if (dc_is_timing_changed(cur_stream: stream_a, new_stream: stream_b))
3179 return false;
3180
3181 if (stream_a->signal != stream_b->signal)
3182 return false;
3183
3184 if (stream_a->dpms_off != stream_b->dpms_off)
3185 return false;
3186
3187 return true;
3188}
3189
3190/*
3191 * dc_is_stream_unchanged() - Compare two stream states for equivalence.
3192 *
3193 * Checks if there a difference between the two states
3194 * that would require a mode change.
3195 *
3196 * Does not compare cursor position or attributes.
3197 */
3198bool dc_is_stream_unchanged(
3199 struct dc_stream_state *old_stream, struct dc_stream_state *stream)
3200{
3201
3202 if (!are_stream_backends_same(stream_a: old_stream, stream_b: stream))
3203 return false;
3204
3205 if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
3206 return false;
3207
3208 /*compare audio info*/
3209 if (memcmp(p: &old_stream->audio_info, q: &stream->audio_info, size: sizeof(stream->audio_info)) != 0)
3210 return false;
3211
3212 return true;
3213}
3214
3215/*
3216 * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
3217 */
3218bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
3219 struct dc_stream_state *stream)
3220{
3221 if (old_stream == stream)
3222 return true;
3223
3224 if (old_stream == NULL || stream == NULL)
3225 return false;
3226
3227 if (memcmp(p: &old_stream->src,
3228 q: &stream->src,
3229 size: sizeof(struct rect)) != 0)
3230 return false;
3231
3232 if (memcmp(p: &old_stream->dst,
3233 q: &stream->dst,
3234 size: sizeof(struct rect)) != 0)
3235 return false;
3236
3237 return true;
3238}
3239
3240/* TODO: release audio object */
3241void update_audio_usage(
3242 struct resource_context *res_ctx,
3243 const struct resource_pool *pool,
3244 struct audio *audio,
3245 bool acquired)
3246{
3247 int i;
3248 for (i = 0; i < pool->audio_count; i++) {
3249 if (pool->audios[i] == audio)
3250 res_ctx->is_audio_acquired[i] = acquired;
3251 }
3252}
3253
3254static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
3255 struct resource_context *res_ctx,
3256 const struct resource_pool *pool,
3257 struct dc_stream_state *stream)
3258{
3259 int i;
3260
3261 for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
3262 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
3263 pool->hpo_dp_stream_enc[i]) {
3264
3265 return pool->hpo_dp_stream_enc[i];
3266 }
3267 }
3268
3269 return NULL;
3270}
3271
3272static struct audio *find_first_free_audio(
3273 struct resource_context *res_ctx,
3274 const struct resource_pool *pool,
3275 enum engine_id id,
3276 enum dce_version dc_version)
3277{
3278 int i, available_audio_count;
3279
3280 available_audio_count = pool->audio_count;
3281
3282 for (i = 0; i < available_audio_count; i++) {
3283 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
3284 /*we have enough audio endpoint, find the matching inst*/
3285 if (id != i)
3286 continue;
3287 return pool->audios[i];
3288 }
3289 }
3290
3291 /* use engine id to find free audio */
3292 if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
3293 return pool->audios[id];
3294 }
3295 /*not found the matching one, first come first serve*/
3296 for (i = 0; i < available_audio_count; i++) {
3297 if (res_ctx->is_audio_acquired[i] == false) {
3298 return pool->audios[i];
3299 }
3300 }
3301 return NULL;
3302}
3303
3304/*
3305 * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
3306 */
3307enum dc_status dc_add_stream_to_ctx(
3308 struct dc *dc,
3309 struct dc_state *new_ctx,
3310 struct dc_stream_state *stream)
3311{
3312 enum dc_status res;
3313 DC_LOGGER_INIT(dc->ctx->logger);
3314
3315 if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
3316 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
3317 return DC_ERROR_UNEXPECTED;
3318 }
3319
3320 new_ctx->streams[new_ctx->stream_count] = stream;
3321 dc_stream_retain(dc_stream: stream);
3322 new_ctx->stream_count++;
3323
3324 res = resource_add_otg_master_for_stream_output(
3325 new_ctx, pool: dc->res_pool, stream);
3326 if (res != DC_OK)
3327 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
3328
3329 return res;
3330}
3331
3332/*
3333 * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
3334 */
3335enum dc_status dc_remove_stream_from_ctx(
3336 struct dc *dc,
3337 struct dc_state *new_ctx,
3338 struct dc_stream_state *stream)
3339{
3340 int i;
3341 struct dc_context *dc_ctx = dc->ctx;
3342 struct pipe_ctx *del_pipe = resource_get_otg_master_for_stream(
3343 res_ctx: &new_ctx->res_ctx, stream);
3344
3345 if (!del_pipe) {
3346 DC_ERROR("Pipe not found for stream %p !\n", stream);
3347 return DC_ERROR_UNEXPECTED;
3348 }
3349
3350 resource_update_pipes_for_stream_with_slice_count(new_ctx,
3351 cur_ctx: dc->current_state, pool: dc->res_pool, stream, new_slice_count: 1);
3352 resource_remove_otg_master_for_stream_output(
3353 context: new_ctx, pool: dc->res_pool, stream);
3354
3355 for (i = 0; i < new_ctx->stream_count; i++)
3356 if (new_ctx->streams[i] == stream)
3357 break;
3358
3359 if (new_ctx->streams[i] != stream) {
3360 DC_ERROR("Context doesn't have stream %p !\n", stream);
3361 return DC_ERROR_UNEXPECTED;
3362 }
3363
3364 dc_stream_release(dc_stream: new_ctx->streams[i]);
3365 new_ctx->stream_count--;
3366
3367 /* Trim back arrays */
3368 for (; i < new_ctx->stream_count; i++) {
3369 new_ctx->streams[i] = new_ctx->streams[i + 1];
3370 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
3371 }
3372
3373 new_ctx->streams[new_ctx->stream_count] = NULL;
3374 memset(
3375 &new_ctx->stream_status[new_ctx->stream_count],
3376 0,
3377 sizeof(new_ctx->stream_status[0]));
3378
3379 return DC_OK;
3380}
3381
3382static struct dc_stream_state *find_pll_sharable_stream(
3383 struct dc_stream_state *stream_needs_pll,
3384 struct dc_state *context)
3385{
3386 int i;
3387
3388 for (i = 0; i < context->stream_count; i++) {
3389 struct dc_stream_state *stream_has_pll = context->streams[i];
3390
3391 /* We are looking for non dp, non virtual stream */
3392 if (resource_are_streams_timing_synchronizable(
3393 stream1: stream_needs_pll, stream2: stream_has_pll)
3394 && !dc_is_dp_signal(signal: stream_has_pll->signal)
3395 && stream_has_pll->link->connector_signal
3396 != SIGNAL_TYPE_VIRTUAL)
3397 return stream_has_pll;
3398
3399 }
3400
3401 return NULL;
3402}
3403
3404static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
3405{
3406 uint32_t pix_clk = timing->pix_clk_100hz;
3407 uint32_t normalized_pix_clk = pix_clk;
3408
3409 if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
3410 pix_clk /= 2;
3411 if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
3412 switch (timing->display_color_depth) {
3413 case COLOR_DEPTH_666:
3414 case COLOR_DEPTH_888:
3415 normalized_pix_clk = pix_clk;
3416 break;
3417 case COLOR_DEPTH_101010:
3418 normalized_pix_clk = (pix_clk * 30) / 24;
3419 break;
3420 case COLOR_DEPTH_121212:
3421 normalized_pix_clk = (pix_clk * 36) / 24;
3422 break;
3423 case COLOR_DEPTH_161616:
3424 normalized_pix_clk = (pix_clk * 48) / 24;
3425 break;
3426 default:
3427 ASSERT(0);
3428 break;
3429 }
3430 }
3431 return normalized_pix_clk;
3432}
3433
3434static void calculate_phy_pix_clks(struct dc_stream_state *stream)
3435{
3436 /* update actual pixel clock on all streams */
3437 if (dc_is_hdmi_signal(signal: stream->signal))
3438 stream->phy_pix_clk = get_norm_pix_clk(
3439 timing: &stream->timing) / 10;
3440 else
3441 stream->phy_pix_clk =
3442 stream->timing.pix_clk_100hz / 10;
3443
3444 if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
3445 stream->phy_pix_clk *= 2;
3446}
3447
3448static int acquire_resource_from_hw_enabled_state(
3449 struct resource_context *res_ctx,
3450 const struct resource_pool *pool,
3451 struct dc_stream_state *stream)
3452{
3453 struct dc_link *link = stream->link;
3454 unsigned int i, inst, tg_inst = 0;
3455 uint32_t numPipes = 1;
3456 uint32_t id_src[4] = {0};
3457
3458 /* Check for enabled DIG to identify enabled display */
3459 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
3460 return -1;
3461
3462 inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
3463
3464 if (inst == ENGINE_ID_UNKNOWN)
3465 return -1;
3466
3467 for (i = 0; i < pool->stream_enc_count; i++) {
3468 if (pool->stream_enc[i]->id == inst) {
3469 tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
3470 pool->stream_enc[i]);
3471 break;
3472 }
3473 }
3474
3475 // tg_inst not found
3476 if (i == pool->stream_enc_count)
3477 return -1;
3478
3479 if (tg_inst >= pool->timing_generator_count)
3480 return -1;
3481
3482 if (!res_ctx->pipe_ctx[tg_inst].stream) {
3483 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
3484
3485 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3486 id_src[0] = tg_inst;
3487
3488 if (pipe_ctx->stream_res.tg->funcs->get_optc_source)
3489 pipe_ctx->stream_res.tg->funcs->get_optc_source(pipe_ctx->stream_res.tg,
3490 &numPipes, &id_src[0], &id_src[1]);
3491
3492 if (id_src[0] == 0xf && id_src[1] == 0xf) {
3493 id_src[0] = tg_inst;
3494 numPipes = 1;
3495 }
3496
3497 for (i = 0; i < numPipes; i++) {
3498 //Check if src id invalid
3499 if (id_src[i] == 0xf)
3500 return -1;
3501
3502 pipe_ctx = &res_ctx->pipe_ctx[id_src[i]];
3503
3504 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3505 pipe_ctx->plane_res.mi = pool->mis[id_src[i]];
3506 pipe_ctx->plane_res.hubp = pool->hubps[id_src[i]];
3507 pipe_ctx->plane_res.ipp = pool->ipps[id_src[i]];
3508 pipe_ctx->plane_res.xfm = pool->transforms[id_src[i]];
3509 pipe_ctx->plane_res.dpp = pool->dpps[id_src[i]];
3510 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3511
3512 if (pool->dpps[id_src[i]]) {
3513 pipe_ctx->plane_res.mpcc_inst = pool->dpps[id_src[i]]->inst;
3514
3515 if (pool->mpc->funcs->read_mpcc_state) {
3516 struct mpcc_state s = {0};
3517
3518 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
3519
3520 if (s.dpp_id < MAX_MPCC)
3521 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id =
3522 s.dpp_id;
3523
3524 if (s.bot_mpcc_id < MAX_MPCC)
3525 pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
3526 &pool->mpc->mpcc_array[s.bot_mpcc_id];
3527
3528 if (s.opp_id < MAX_OPP)
3529 pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
3530 }
3531 }
3532 pipe_ctx->pipe_idx = id_src[i];
3533
3534 if (id_src[i] >= pool->timing_generator_count) {
3535 id_src[i] = pool->timing_generator_count - 1;
3536
3537 pipe_ctx->stream_res.tg = pool->timing_generators[id_src[i]];
3538 pipe_ctx->stream_res.opp = pool->opps[id_src[i]];
3539 }
3540
3541 pipe_ctx->stream = stream;
3542 }
3543
3544 if (numPipes == 2) {
3545 stream->apply_boot_odm_mode = dm_odm_combine_policy_2to1;
3546 res_ctx->pipe_ctx[id_src[0]].next_odm_pipe = &res_ctx->pipe_ctx[id_src[1]];
3547 res_ctx->pipe_ctx[id_src[0]].prev_odm_pipe = NULL;
3548 res_ctx->pipe_ctx[id_src[1]].next_odm_pipe = NULL;
3549 res_ctx->pipe_ctx[id_src[1]].prev_odm_pipe = &res_ctx->pipe_ctx[id_src[0]];
3550 } else
3551 stream->apply_boot_odm_mode = dm_odm_combine_mode_disabled;
3552
3553 return id_src[0];
3554 }
3555
3556 return -1;
3557}
3558
3559static void mark_seamless_boot_stream(
3560 const struct dc *dc,
3561 struct dc_stream_state *stream)
3562{
3563 struct dc_bios *dcb = dc->ctx->dc_bios;
3564
3565 if (dc->config.allow_seamless_boot_optimization &&
3566 !dcb->funcs->is_accelerated_mode(dcb)) {
3567 if (dc_validate_boot_timing(dc, sink: stream->sink, crtc_timing: &stream->timing))
3568 stream->apply_seamless_boot_optimization = true;
3569 }
3570}
3571
3572/*
3573 * Acquire a pipe as OTG master and assign to the stream in new dc context.
3574 * return - true if OTG master pipe is acquired and new dc context is updated.
3575 * false if it fails to acquire an OTG master pipe for this stream.
3576 *
3577 * In the example below, we acquired pipe 0 as OTG master pipe for the stream.
3578 * After the function its Inter-pipe Relation is represented by the diagram
3579 * below.
3580 *
3581 * Inter-pipe Relation
3582 * __________________________________________________
3583 * |PIPE IDX| DPP PIPES | OPP HEADS | OTG MASTER |
3584 * | | | | |
3585 * | 0 | |blank ------------------ |
3586 * |________|_______________|___________|_____________|
3587 */
3588static bool acquire_otg_master_pipe_for_stream(
3589 struct dc_state *new_ctx,
3590 const struct resource_pool *pool,
3591 struct dc_stream_state *stream)
3592{
3593 /* TODO: Move this function to DCN specific resource file and acquire
3594 * DSC resource here. The reason is that the function should have the
3595 * same level of responsibility as when we acquire secondary OPP head.
3596 * We acquire DSC when we acquire secondary OPP head, so we should
3597 * acquire DSC when we acquire OTG master.
3598 */
3599 int pipe_idx;
3600 struct pipe_ctx *pipe_ctx = NULL;
3601
3602 pipe_idx = resource_find_any_free_pipe(new_res_ctx: &new_ctx->res_ctx, pool);
3603 if (pipe_idx != FREE_PIPE_INDEX_NOT_FOUND) {
3604 pipe_ctx = &new_ctx->res_ctx.pipe_ctx[pipe_idx];
3605 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
3606 pipe_ctx->pipe_idx = pipe_idx;
3607 pipe_ctx->stream_res.tg = pool->timing_generators[pipe_idx];
3608 pipe_ctx->plane_res.mi = pool->mis[pipe_idx];
3609 pipe_ctx->plane_res.hubp = pool->hubps[pipe_idx];
3610 pipe_ctx->plane_res.ipp = pool->ipps[pipe_idx];
3611 pipe_ctx->plane_res.xfm = pool->transforms[pipe_idx];
3612 pipe_ctx->plane_res.dpp = pool->dpps[pipe_idx];
3613 pipe_ctx->stream_res.opp = pool->opps[pipe_idx];
3614 if (pool->dpps[pipe_idx])
3615 pipe_ctx->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
3616
3617 if (pipe_idx >= pool->timing_generator_count) {
3618 int tg_inst = pool->timing_generator_count - 1;
3619
3620 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
3621 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
3622 }
3623
3624 pipe_ctx->stream = stream;
3625 } else {
3626 pipe_idx = acquire_first_split_pipe(res_ctx: &new_ctx->res_ctx, pool, stream);
3627 }
3628
3629 return pipe_idx != FREE_PIPE_INDEX_NOT_FOUND;
3630}
3631
3632enum dc_status resource_map_pool_resources(
3633 const struct dc *dc,
3634 struct dc_state *context,
3635 struct dc_stream_state *stream)
3636{
3637 const struct resource_pool *pool = dc->res_pool;
3638 int i;
3639 struct dc_context *dc_ctx = dc->ctx;
3640 struct pipe_ctx *pipe_ctx = NULL;
3641 int pipe_idx = -1;
3642 bool acquired = false;
3643
3644 calculate_phy_pix_clks(stream);
3645
3646 mark_seamless_boot_stream(dc, stream);
3647
3648 if (stream->apply_seamless_boot_optimization) {
3649 pipe_idx = acquire_resource_from_hw_enabled_state(
3650 res_ctx: &context->res_ctx,
3651 pool,
3652 stream);
3653 if (pipe_idx < 0)
3654 /* hw resource was assigned to other stream */
3655 stream->apply_seamless_boot_optimization = false;
3656 else
3657 acquired = true;
3658 }
3659
3660 if (!acquired)
3661 /* acquire new resources */
3662 acquired = acquire_otg_master_pipe_for_stream(
3663 new_ctx: context, pool, stream);
3664
3665 pipe_ctx = resource_get_otg_master_for_stream(res_ctx: &context->res_ctx, stream);
3666
3667 if (!pipe_ctx || pipe_ctx->stream_res.tg == NULL)
3668 return DC_NO_CONTROLLER_RESOURCE;
3669
3670 pipe_ctx->stream_res.stream_enc =
3671 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
3672 &context->res_ctx, pool, stream);
3673
3674 if (!pipe_ctx->stream_res.stream_enc)
3675 return DC_NO_STREAM_ENC_RESOURCE;
3676
3677 update_stream_engine_usage(
3678 res_ctx: &context->res_ctx, pool,
3679 stream_enc: pipe_ctx->stream_res.stream_enc,
3680 acquired: true);
3681
3682 /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
3683 * and link settings
3684 */
3685 if (dc_is_dp_signal(signal: stream->signal)) {
3686 if (!dc->link_srv->dp_decide_link_settings(stream, &pipe_ctx->link_config.dp_link_settings))
3687 return DC_FAIL_DP_LINK_BANDWIDTH;
3688 if (dc->link_srv->dp_get_encoding_format(
3689 &pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
3690 pipe_ctx->stream_res.hpo_dp_stream_enc =
3691 find_first_free_match_hpo_dp_stream_enc_for_link(
3692 res_ctx: &context->res_ctx, pool, stream);
3693
3694 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
3695 return DC_NO_STREAM_ENC_RESOURCE;
3696
3697 update_hpo_dp_stream_engine_usage(
3698 res_ctx: &context->res_ctx, pool,
3699 hpo_dp_stream_enc: pipe_ctx->stream_res.hpo_dp_stream_enc,
3700 acquired: true);
3701 if (!add_hpo_dp_link_enc_to_ctx(res_ctx: &context->res_ctx, pool, pipe_ctx, stream))
3702 return DC_NO_LINK_ENC_RESOURCE;
3703 }
3704 }
3705
3706 /* TODO: Add check if ASIC support and EDID audio */
3707 if (!stream->converter_disable_audio &&
3708 dc_is_audio_capable_signal(signal: pipe_ctx->stream->signal) &&
3709 stream->audio_info.mode_count && stream->audio_info.flags.all) {
3710 pipe_ctx->stream_res.audio = find_first_free_audio(
3711 res_ctx: &context->res_ctx, pool, id: pipe_ctx->stream_res.stream_enc->id, dc_version: dc_ctx->dce_version);
3712
3713 /*
3714 * Audio assigned in order first come first get.
3715 * There are asics which has number of audio
3716 * resources less then number of pipes
3717 */
3718 if (pipe_ctx->stream_res.audio)
3719 update_audio_usage(res_ctx: &context->res_ctx, pool,
3720 audio: pipe_ctx->stream_res.audio, acquired: true);
3721 }
3722
3723 /* Add ABM to the resource if on EDP */
3724 if (pipe_ctx->stream && dc_is_embedded_signal(signal: pipe_ctx->stream->signal)) {
3725 if (pool->abm)
3726 pipe_ctx->stream_res.abm = pool->abm;
3727 else
3728 pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
3729 }
3730
3731 for (i = 0; i < context->stream_count; i++)
3732 if (context->streams[i] == stream) {
3733 context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
3734 context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
3735 context->stream_status[i].audio_inst =
3736 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
3737
3738 return DC_OK;
3739 }
3740
3741 DC_ERROR("Stream %p not found in new ctx!\n", stream);
3742 return DC_ERROR_UNEXPECTED;
3743}
3744
3745/**
3746 * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
3747 *
3748 * @dc: copy out of dc->current_state
3749 * @dst_ctx: copy into this
3750 *
3751 * This function makes a shallow copy of the current DC state and increments
3752 * refcounts on existing streams and planes.
3753 */
3754void dc_resource_state_copy_construct_current(
3755 const struct dc *dc,
3756 struct dc_state *dst_ctx)
3757{
3758 dc_resource_state_copy_construct(src_ctx: dc->current_state, dst_ctx);
3759}
3760
3761
3762void dc_resource_state_construct(
3763 const struct dc *dc,
3764 struct dc_state *dst_ctx)
3765{
3766 dst_ctx->clk_mgr = dc->clk_mgr;
3767
3768 /* Initialise DIG link encoder resource tracking variables. */
3769 link_enc_cfg_init(dc, state: dst_ctx);
3770}
3771
3772
3773bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
3774{
3775 if (dc->res_pool == NULL)
3776 return false;
3777
3778 return dc->res_pool->res_cap->num_dsc > 0;
3779}
3780
3781static bool planes_changed_for_existing_stream(struct dc_state *context,
3782 struct dc_stream_state *stream,
3783 const struct dc_validation_set set[],
3784 int set_count)
3785{
3786 int i, j;
3787 struct dc_stream_status *stream_status = NULL;
3788
3789 for (i = 0; i < context->stream_count; i++) {
3790 if (context->streams[i] == stream) {
3791 stream_status = &context->stream_status[i];
3792 break;
3793 }
3794 }
3795
3796 if (!stream_status)
3797 ASSERT(0);
3798
3799 for (i = 0; i < set_count; i++)
3800 if (set[i].stream == stream)
3801 break;
3802
3803 if (i == set_count)
3804 ASSERT(0);
3805
3806 if (set[i].plane_count != stream_status->plane_count)
3807 return true;
3808
3809 for (j = 0; j < set[i].plane_count; j++)
3810 if (set[i].plane_states[j] != stream_status->plane_states[j])
3811 return true;
3812
3813 return false;
3814}
3815
3816/**
3817 * dc_validate_with_context - Validate and update the potential new stream in the context object
3818 *
3819 * @dc: Used to get the current state status
3820 * @set: An array of dc_validation_set with all the current streams reference
3821 * @set_count: Total of streams
3822 * @context: New context
3823 * @fast_validate: Enable or disable fast validation
3824 *
3825 * This function updates the potential new stream in the context object. It
3826 * creates multiple lists for the add, remove, and unchanged streams. In
3827 * particular, if the unchanged streams have a plane that changed, it is
3828 * necessary to remove all planes from the unchanged streams. In summary, this
3829 * function is responsible for validating the new context.
3830 *
3831 * Return:
3832 * In case of success, return DC_OK (1), otherwise, return a DC error.
3833 */
3834enum dc_status dc_validate_with_context(struct dc *dc,
3835 const struct dc_validation_set set[],
3836 int set_count,
3837 struct dc_state *context,
3838 bool fast_validate)
3839{
3840 struct dc_stream_state *unchanged_streams[MAX_PIPES] = { 0 };
3841 struct dc_stream_state *del_streams[MAX_PIPES] = { 0 };
3842 struct dc_stream_state *add_streams[MAX_PIPES] = { 0 };
3843 int old_stream_count = context->stream_count;
3844 enum dc_status res = DC_ERROR_UNEXPECTED;
3845 int unchanged_streams_count = 0;
3846 int del_streams_count = 0;
3847 int add_streams_count = 0;
3848 bool found = false;
3849 int i, j, k;
3850
3851 DC_LOGGER_INIT(dc->ctx->logger);
3852
3853 /* First build a list of streams to be remove from current context */
3854 for (i = 0; i < old_stream_count; i++) {
3855 struct dc_stream_state *stream = context->streams[i];
3856
3857 for (j = 0; j < set_count; j++) {
3858 if (stream == set[j].stream) {
3859 found = true;
3860 break;
3861 }
3862 }
3863
3864 if (!found)
3865 del_streams[del_streams_count++] = stream;
3866
3867 found = false;
3868 }
3869
3870 /* Second, build a list of new streams */
3871 for (i = 0; i < set_count; i++) {
3872 struct dc_stream_state *stream = set[i].stream;
3873
3874 for (j = 0; j < old_stream_count; j++) {
3875 if (stream == context->streams[j]) {
3876 found = true;
3877 break;
3878 }
3879 }
3880
3881 if (!found)
3882 add_streams[add_streams_count++] = stream;
3883
3884 found = false;
3885 }
3886
3887 /* Build a list of unchanged streams which is necessary for handling
3888 * planes change such as added, removed, and updated.
3889 */
3890 for (i = 0; i < set_count; i++) {
3891 /* Check if stream is part of the delete list */
3892 for (j = 0; j < del_streams_count; j++) {
3893 if (set[i].stream == del_streams[j]) {
3894 found = true;
3895 break;
3896 }
3897 }
3898
3899 if (!found) {
3900 /* Check if stream is part of the add list */
3901 for (j = 0; j < add_streams_count; j++) {
3902 if (set[i].stream == add_streams[j]) {
3903 found = true;
3904 break;
3905 }
3906 }
3907 }
3908
3909 if (!found)
3910 unchanged_streams[unchanged_streams_count++] = set[i].stream;
3911
3912 found = false;
3913 }
3914
3915 /* Remove all planes for unchanged streams if planes changed */
3916 for (i = 0; i < unchanged_streams_count; i++) {
3917 if (planes_changed_for_existing_stream(context,
3918 stream: unchanged_streams[i],
3919 set,
3920 set_count)) {
3921 if (!dc_rem_all_planes_for_stream(dc,
3922 stream: unchanged_streams[i],
3923 context)) {
3924 res = DC_FAIL_DETACH_SURFACES;
3925 goto fail;
3926 }
3927 }
3928 }
3929
3930 /* Remove all planes for removed streams and then remove the streams */
3931 for (i = 0; i < del_streams_count; i++) {
3932 /* Need to cpy the dwb data from the old stream in order to efc to work */
3933 if (del_streams[i]->num_wb_info > 0) {
3934 for (j = 0; j < add_streams_count; j++) {
3935 if (del_streams[i]->sink == add_streams[j]->sink) {
3936 add_streams[j]->num_wb_info = del_streams[i]->num_wb_info;
3937 for (k = 0; k < del_streams[i]->num_wb_info; k++)
3938 add_streams[j]->writeback_info[k] = del_streams[i]->writeback_info[k];
3939 }
3940 }
3941 }
3942
3943 if (!dc_rem_all_planes_for_stream(dc, stream: del_streams[i], context)) {
3944 res = DC_FAIL_DETACH_SURFACES;
3945 goto fail;
3946 }
3947
3948 res = dc_remove_stream_from_ctx(dc, new_ctx: context, stream: del_streams[i]);
3949 if (res != DC_OK)
3950 goto fail;
3951 }
3952
3953 /* Swap seamless boot stream to pipe 0 (if needed) to ensure pipe_ctx
3954 * matches. This may change in the future if seamless_boot_stream can be
3955 * multiple.
3956 */
3957 for (i = 0; i < add_streams_count; i++) {
3958 mark_seamless_boot_stream(dc, stream: add_streams[i]);
3959 if (add_streams[i]->apply_seamless_boot_optimization && i != 0) {
3960 struct dc_stream_state *temp = add_streams[0];
3961
3962 add_streams[0] = add_streams[i];
3963 add_streams[i] = temp;
3964 break;
3965 }
3966 }
3967
3968 /* Add new streams and then add all planes for the new stream */
3969 for (i = 0; i < add_streams_count; i++) {
3970 calculate_phy_pix_clks(stream: add_streams[i]);
3971 res = dc_add_stream_to_ctx(dc, new_ctx: context, stream: add_streams[i]);
3972 if (res != DC_OK)
3973 goto fail;
3974
3975 if (!add_all_planes_for_stream(dc, stream: add_streams[i], set, set_count, context)) {
3976 res = DC_FAIL_ATTACH_SURFACES;
3977 goto fail;
3978 }
3979 }
3980
3981 /* Add all planes for unchanged streams if planes changed */
3982 for (i = 0; i < unchanged_streams_count; i++) {
3983 if (planes_changed_for_existing_stream(context,
3984 stream: unchanged_streams[i],
3985 set,
3986 set_count)) {
3987 if (!add_all_planes_for_stream(dc, stream: unchanged_streams[i], set, set_count, context)) {
3988 res = DC_FAIL_ATTACH_SURFACES;
3989 goto fail;
3990 }
3991 }
3992 }
3993
3994 res = dc_validate_global_state(dc, new_ctx: context, fast_validate);
3995
3996fail:
3997 if (res != DC_OK)
3998 DC_LOG_WARNING("%s:resource validation failed, dc_status:%d\n",
3999 __func__,
4000 res);
4001
4002 return res;
4003}
4004
4005/**
4006 * dc_validate_global_state() - Determine if hardware can support a given state
4007 *
4008 * @dc: dc struct for this driver
4009 * @new_ctx: state to be validated
4010 * @fast_validate: set to true if only yes/no to support matters
4011 *
4012 * Checks hardware resource availability and bandwidth requirement.
4013 *
4014 * Return:
4015 * DC_OK if the result can be programmed. Otherwise, an error code.
4016 */
4017enum dc_status dc_validate_global_state(
4018 struct dc *dc,
4019 struct dc_state *new_ctx,
4020 bool fast_validate)
4021{
4022 enum dc_status result = DC_ERROR_UNEXPECTED;
4023 int i, j;
4024
4025 if (!new_ctx)
4026 return DC_ERROR_UNEXPECTED;
4027
4028 if (dc->res_pool->funcs->validate_global) {
4029 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
4030 if (result != DC_OK)
4031 return result;
4032 }
4033
4034 for (i = 0; i < new_ctx->stream_count; i++) {
4035 struct dc_stream_state *stream = new_ctx->streams[i];
4036
4037 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4038 struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
4039
4040 if (pipe_ctx->stream != stream)
4041 continue;
4042
4043 if (dc->res_pool->funcs->patch_unknown_plane_state &&
4044 pipe_ctx->plane_state &&
4045 pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
4046 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
4047 if (result != DC_OK)
4048 return result;
4049 }
4050
4051 /* Switch to dp clock source only if there is
4052 * no non dp stream that shares the same timing
4053 * with the dp stream.
4054 */
4055 if (dc_is_dp_signal(signal: pipe_ctx->stream->signal) &&
4056 !find_pll_sharable_stream(stream_needs_pll: stream, context: new_ctx)) {
4057
4058 resource_unreference_clock_source(
4059 res_ctx: &new_ctx->res_ctx,
4060 pool: dc->res_pool,
4061 clock_source: pipe_ctx->clock_source);
4062
4063 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
4064 resource_reference_clock_source(
4065 res_ctx: &new_ctx->res_ctx,
4066 pool: dc->res_pool,
4067 clock_source: pipe_ctx->clock_source);
4068 }
4069 }
4070 }
4071
4072 result = resource_build_scaling_params_for_context(dc, context: new_ctx);
4073
4074 if (result == DC_OK)
4075 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
4076 result = DC_FAIL_BANDWIDTH_VALIDATE;
4077
4078 /*
4079 * Only update link encoder to stream assignment after bandwidth validation passed.
4080 * TODO: Split out assignment and validation.
4081 */
4082 if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
4083 dc->res_pool->funcs->link_encs_assign(
4084 dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
4085
4086 return result;
4087}
4088
4089static void patch_gamut_packet_checksum(
4090 struct dc_info_packet *gamut_packet)
4091{
4092 /* For gamut we recalc checksum */
4093 if (gamut_packet->valid) {
4094 uint8_t chk_sum = 0;
4095 uint8_t *ptr;
4096 uint8_t i;
4097
4098 /*start of the Gamut data. */
4099 ptr = &gamut_packet->sb[3];
4100
4101 for (i = 0; i <= gamut_packet->sb[1]; i++)
4102 chk_sum += ptr[i];
4103
4104 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
4105 }
4106}
4107
4108static void set_avi_info_frame(
4109 struct dc_info_packet *info_packet,
4110 struct pipe_ctx *pipe_ctx)
4111{
4112 struct dc_stream_state *stream = pipe_ctx->stream;
4113 enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
4114 uint32_t pixel_encoding = 0;
4115 enum scanning_type scan_type = SCANNING_TYPE_NODATA;
4116 enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
4117 uint8_t *check_sum = NULL;
4118 uint8_t byte_index = 0;
4119 union hdmi_info_packet hdmi_info;
4120 unsigned int vic = pipe_ctx->stream->timing.vic;
4121 unsigned int rid = pipe_ctx->stream->timing.rid;
4122 unsigned int fr_ind = pipe_ctx->stream->timing.fr_index;
4123 enum dc_timing_3d_format format;
4124
4125 memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
4126
4127 color_space = pipe_ctx->stream->output_color_space;
4128 if (color_space == COLOR_SPACE_UNKNOWN)
4129 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
4130 COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
4131
4132 /* Initialize header */
4133 hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
4134 /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
4135 * not be used in HDMI 2.0 (Section 10.1) */
4136 hdmi_info.bits.header.version = 2;
4137 hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
4138
4139 /*
4140 * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
4141 * according to HDMI 2.0 spec (Section 10.1)
4142 */
4143
4144 switch (stream->timing.pixel_encoding) {
4145 case PIXEL_ENCODING_YCBCR422:
4146 pixel_encoding = 1;
4147 break;
4148
4149 case PIXEL_ENCODING_YCBCR444:
4150 pixel_encoding = 2;
4151 break;
4152 case PIXEL_ENCODING_YCBCR420:
4153 pixel_encoding = 3;
4154 break;
4155
4156 case PIXEL_ENCODING_RGB:
4157 default:
4158 pixel_encoding = 0;
4159 }
4160
4161 /* Y0_Y1_Y2 : The pixel encoding */
4162 /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
4163 hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
4164
4165 /* A0 = 1 Active Format Information valid */
4166 hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
4167
4168 /* B0, B1 = 3; Bar info data is valid */
4169 hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
4170
4171 hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
4172
4173 /* S0, S1 : Underscan / Overscan */
4174 /* TODO: un-hardcode scan type */
4175 scan_type = SCANNING_TYPE_UNDERSCAN;
4176 hdmi_info.bits.S0_S1 = scan_type;
4177
4178 /* C0, C1 : Colorimetry */
4179 switch (color_space) {
4180 case COLOR_SPACE_YCBCR709:
4181 case COLOR_SPACE_YCBCR709_LIMITED:
4182 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4183 break;
4184 case COLOR_SPACE_YCBCR601:
4185 case COLOR_SPACE_YCBCR601_LIMITED:
4186 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
4187 break;
4188 case COLOR_SPACE_2020_RGB_FULLRANGE:
4189 case COLOR_SPACE_2020_RGB_LIMITEDRANGE:
4190 case COLOR_SPACE_2020_YCBCR:
4191 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
4192 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4193 break;
4194 case COLOR_SPACE_ADOBERGB:
4195 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
4196 hdmi_info.bits.C0_C1 = COLORIMETRY_EXTENDED;
4197 break;
4198 case COLOR_SPACE_SRGB:
4199 default:
4200 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
4201 break;
4202 }
4203
4204 if (pixel_encoding && color_space == COLOR_SPACE_2020_YCBCR &&
4205 stream->out_transfer_func->tf == TRANSFER_FUNCTION_GAMMA22) {
4206 hdmi_info.bits.EC0_EC2 = 0;
4207 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
4208 }
4209
4210 /* TODO: un-hardcode aspect ratio */
4211 aspect = stream->timing.aspect_ratio;
4212
4213 switch (aspect) {
4214 case ASPECT_RATIO_4_3:
4215 case ASPECT_RATIO_16_9:
4216 hdmi_info.bits.M0_M1 = aspect;
4217 break;
4218
4219 case ASPECT_RATIO_NO_DATA:
4220 case ASPECT_RATIO_64_27:
4221 case ASPECT_RATIO_256_135:
4222 default:
4223 hdmi_info.bits.M0_M1 = 0;
4224 }
4225
4226 /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
4227 hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
4228
4229 switch (stream->content_type) {
4230 case DISPLAY_CONTENT_TYPE_NO_DATA:
4231 hdmi_info.bits.CN0_CN1 = 0;
4232 hdmi_info.bits.ITC = 1;
4233 break;
4234 case DISPLAY_CONTENT_TYPE_GRAPHICS:
4235 hdmi_info.bits.CN0_CN1 = 0;
4236 hdmi_info.bits.ITC = 1;
4237 break;
4238 case DISPLAY_CONTENT_TYPE_PHOTO:
4239 hdmi_info.bits.CN0_CN1 = 1;
4240 hdmi_info.bits.ITC = 1;
4241 break;
4242 case DISPLAY_CONTENT_TYPE_CINEMA:
4243 hdmi_info.bits.CN0_CN1 = 2;
4244 hdmi_info.bits.ITC = 1;
4245 break;
4246 case DISPLAY_CONTENT_TYPE_GAME:
4247 hdmi_info.bits.CN0_CN1 = 3;
4248 hdmi_info.bits.ITC = 1;
4249 break;
4250 }
4251
4252 if (stream->qs_bit == 1) {
4253 if (color_space == COLOR_SPACE_SRGB ||
4254 color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
4255 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_FULL_RANGE;
4256 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
4257 color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
4258 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_LIMITED_RANGE;
4259 else
4260 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4261 } else
4262 hdmi_info.bits.Q0_Q1 = RGB_QUANTIZATION_DEFAULT_RANGE;
4263
4264 /* TODO : We should handle YCC quantization */
4265 /* but we do not have matrix calculation */
4266 hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
4267
4268 ///VIC
4269 if (pipe_ctx->stream->timing.hdmi_vic != 0)
4270 vic = 0;
4271 format = stream->timing.timing_3d_format;
4272 /*todo, add 3DStereo support*/
4273 if (format != TIMING_3D_FORMAT_NONE) {
4274 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
4275 switch (pipe_ctx->stream->timing.hdmi_vic) {
4276 case 1:
4277 vic = 95;
4278 break;
4279 case 2:
4280 vic = 94;
4281 break;
4282 case 3:
4283 vic = 93;
4284 break;
4285 case 4:
4286 vic = 98;
4287 break;
4288 default:
4289 break;
4290 }
4291 }
4292 /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
4293 hdmi_info.bits.VIC0_VIC7 = vic;
4294 if (vic >= 128)
4295 hdmi_info.bits.header.version = 3;
4296 /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
4297 * the Source shall use 20 AVI InfoFrame Version 4
4298 */
4299 if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
4300 hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
4301 hdmi_info.bits.header.version = 4;
4302 hdmi_info.bits.header.length = 14;
4303 }
4304
4305 if (rid != 0 && fr_ind != 0) {
4306 hdmi_info.bits.header.version = 5;
4307 hdmi_info.bits.header.length = 15;
4308
4309 hdmi_info.bits.FR0_FR3 = fr_ind & 0xF;
4310 hdmi_info.bits.FR4 = (fr_ind >> 4) & 0x1;
4311 hdmi_info.bits.RID0_RID5 = rid;
4312 }
4313
4314 /* pixel repetition
4315 * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
4316 * repetition start from 1 */
4317 hdmi_info.bits.PR0_PR3 = 0;
4318
4319 /* Bar Info
4320 * barTop: Line Number of End of Top Bar.
4321 * barBottom: Line Number of Start of Bottom Bar.
4322 * barLeft: Pixel Number of End of Left Bar.
4323 * barRight: Pixel Number of Start of Right Bar. */
4324 hdmi_info.bits.bar_top = stream->timing.v_border_top;
4325 hdmi_info.bits.bar_bottom = (stream->timing.v_total
4326 - stream->timing.v_border_bottom + 1);
4327 hdmi_info.bits.bar_left = stream->timing.h_border_left;
4328 hdmi_info.bits.bar_right = (stream->timing.h_total
4329 - stream->timing.h_border_right + 1);
4330
4331 /* Additional Colorimetry Extension
4332 * Used in conduction with C0-C1 and EC0-EC2
4333 * 0 = DCI-P3 RGB (D65)
4334 * 1 = DCI-P3 RGB (theater)
4335 */
4336 hdmi_info.bits.ACE0_ACE3 = 0;
4337
4338 /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
4339 check_sum = &hdmi_info.packet_raw_data.sb[0];
4340
4341 *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
4342
4343 for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
4344 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
4345
4346 /* one byte complement */
4347 *check_sum = (uint8_t) (0x100 - *check_sum);
4348
4349 /* Store in hw_path_mode */
4350 info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
4351 info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
4352 info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
4353
4354 for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
4355 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
4356
4357 info_packet->valid = true;
4358}
4359
4360static void set_vendor_info_packet(
4361 struct dc_info_packet *info_packet,
4362 struct dc_stream_state *stream)
4363{
4364 /* SPD info packet for FreeSync */
4365
4366 /* Check if Freesync is supported. Return if false. If true,
4367 * set the corresponding bit in the info packet
4368 */
4369 if (!stream->vsp_infopacket.valid)
4370 return;
4371
4372 *info_packet = stream->vsp_infopacket;
4373}
4374
4375static void set_spd_info_packet(
4376 struct dc_info_packet *info_packet,
4377 struct dc_stream_state *stream)
4378{
4379 /* SPD info packet for FreeSync */
4380
4381 /* Check if Freesync is supported. Return if false. If true,
4382 * set the corresponding bit in the info packet
4383 */
4384 if (!stream->vrr_infopacket.valid)
4385 return;
4386
4387 *info_packet = stream->vrr_infopacket;
4388}
4389
4390static void set_hdr_static_info_packet(
4391 struct dc_info_packet *info_packet,
4392 struct dc_stream_state *stream)
4393{
4394 /* HDR Static Metadata info packet for HDR10 */
4395
4396 if (!stream->hdr_static_metadata.valid ||
4397 stream->use_dynamic_meta)
4398 return;
4399
4400 *info_packet = stream->hdr_static_metadata;
4401}
4402
4403static void set_vsc_info_packet(
4404 struct dc_info_packet *info_packet,
4405 struct dc_stream_state *stream)
4406{
4407 if (!stream->vsc_infopacket.valid)
4408 return;
4409
4410 *info_packet = stream->vsc_infopacket;
4411}
4412static void set_hfvs_info_packet(
4413 struct dc_info_packet *info_packet,
4414 struct dc_stream_state *stream)
4415{
4416 if (!stream->hfvsif_infopacket.valid)
4417 return;
4418
4419 *info_packet = stream->hfvsif_infopacket;
4420}
4421
4422static void adaptive_sync_override_dp_info_packets_sdp_line_num(
4423 const struct dc_crtc_timing *timing,
4424 struct enc_sdp_line_num *sdp_line_num,
4425 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4426{
4427 uint32_t asic_blank_start = 0;
4428 uint32_t asic_blank_end = 0;
4429 uint32_t v_update = 0;
4430
4431 const struct dc_crtc_timing *tg = timing;
4432
4433 /* blank_start = frame end - front porch */
4434 asic_blank_start = tg->v_total - tg->v_front_porch;
4435
4436 /* blank_end = blank_start - active */
4437 asic_blank_end = (asic_blank_start - tg->v_border_bottom -
4438 tg->v_addressable - tg->v_border_top);
4439
4440 if (pipe_dlg_param->vstartup_start > asic_blank_end) {
4441 v_update = (tg->v_total - (pipe_dlg_param->vstartup_start - asic_blank_end));
4442 sdp_line_num->adaptive_sync_line_num_valid = true;
4443 sdp_line_num->adaptive_sync_line_num = (tg->v_total - v_update - 1);
4444 } else {
4445 sdp_line_num->adaptive_sync_line_num_valid = false;
4446 sdp_line_num->adaptive_sync_line_num = 0;
4447 }
4448}
4449
4450static void set_adaptive_sync_info_packet(
4451 struct dc_info_packet *info_packet,
4452 const struct dc_stream_state *stream,
4453 struct encoder_info_frame *info_frame,
4454 struct _vcs_dpi_display_pipe_dest_params_st *pipe_dlg_param)
4455{
4456 if (!stream->adaptive_sync_infopacket.valid)
4457 return;
4458
4459 adaptive_sync_override_dp_info_packets_sdp_line_num(
4460 timing: &stream->timing,
4461 sdp_line_num: &info_frame->sdp_line_num,
4462 pipe_dlg_param);
4463
4464 *info_packet = stream->adaptive_sync_infopacket;
4465}
4466
4467static void set_vtem_info_packet(
4468 struct dc_info_packet *info_packet,
4469 struct dc_stream_state *stream)
4470{
4471 if (!stream->vtem_infopacket.valid)
4472 return;
4473
4474 *info_packet = stream->vtem_infopacket;
4475}
4476
4477void dc_resource_state_destruct(struct dc_state *context)
4478{
4479 int i, j;
4480
4481 for (i = 0; i < context->stream_count; i++) {
4482 for (j = 0; j < context->stream_status[i].plane_count; j++)
4483 dc_plane_state_release(
4484 plane_state: context->stream_status[i].plane_states[j]);
4485
4486 context->stream_status[i].plane_count = 0;
4487 dc_stream_release(dc_stream: context->streams[i]);
4488 context->streams[i] = NULL;
4489 }
4490 context->stream_count = 0;
4491 context->stream_mask = 0;
4492 memset(&context->res_ctx, 0, sizeof(context->res_ctx));
4493 memset(&context->pp_display_cfg, 0, sizeof(context->pp_display_cfg));
4494 memset(&context->dcn_bw_vars, 0, sizeof(context->dcn_bw_vars));
4495 context->clk_mgr = NULL;
4496 memset(&context->bw_ctx.bw, 0, sizeof(context->bw_ctx.bw));
4497 memset(context->block_sequence, 0, sizeof(context->block_sequence));
4498 context->block_sequence_steps = 0;
4499 memset(context->dc_dmub_cmd, 0, sizeof(context->dc_dmub_cmd));
4500 context->dmub_cmd_count = 0;
4501 memset(&context->perf_params, 0, sizeof(context->perf_params));
4502 memset(&context->scratch, 0, sizeof(context->scratch));
4503}
4504
4505void dc_resource_state_copy_construct(
4506 const struct dc_state *src_ctx,
4507 struct dc_state *dst_ctx)
4508{
4509 int i, j;
4510 struct kref refcount = dst_ctx->refcount;
4511#ifdef CONFIG_DRM_AMD_DC_FP
4512 struct dml2_context *dml2 = NULL;
4513
4514 // Need to preserve allocated dml2 context
4515 if (src_ctx->clk_mgr->ctx->dc->debug.using_dml2)
4516 dml2 = dst_ctx->bw_ctx.dml2;
4517#endif
4518
4519 *dst_ctx = *src_ctx;
4520
4521#ifdef CONFIG_DRM_AMD_DC_FP
4522 // Preserve allocated dml2 context
4523 if (src_ctx->clk_mgr->ctx->dc->debug.using_dml2)
4524 dst_ctx->bw_ctx.dml2 = dml2;
4525#endif
4526
4527 for (i = 0; i < MAX_PIPES; i++) {
4528 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
4529
4530 if (cur_pipe->top_pipe)
4531 cur_pipe->top_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
4532
4533 if (cur_pipe->bottom_pipe)
4534 cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
4535
4536 if (cur_pipe->next_odm_pipe)
4537 cur_pipe->next_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
4538
4539 if (cur_pipe->prev_odm_pipe)
4540 cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
4541 }
4542
4543 for (i = 0; i < dst_ctx->stream_count; i++) {
4544 dc_stream_retain(dc_stream: dst_ctx->streams[i]);
4545 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
4546 dc_plane_state_retain(
4547 plane_state: dst_ctx->stream_status[i].plane_states[j]);
4548 }
4549
4550 /* context refcount should not be overridden */
4551 dst_ctx->refcount = refcount;
4552
4553}
4554
4555struct clock_source *dc_resource_find_first_free_pll(
4556 struct resource_context *res_ctx,
4557 const struct resource_pool *pool)
4558{
4559 int i;
4560
4561 for (i = 0; i < pool->clk_src_count; ++i) {
4562 if (res_ctx->clock_source_ref_count[i] == 0)
4563 return pool->clock_sources[i];
4564 }
4565
4566 return NULL;
4567}
4568
4569void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
4570{
4571 enum signal_type signal = SIGNAL_TYPE_NONE;
4572 struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
4573
4574 /* default all packets to invalid */
4575 info->avi.valid = false;
4576 info->gamut.valid = false;
4577 info->vendor.valid = false;
4578 info->spd.valid = false;
4579 info->hdrsmd.valid = false;
4580 info->vsc.valid = false;
4581 info->hfvsif.valid = false;
4582 info->vtem.valid = false;
4583 info->adaptive_sync.valid = false;
4584 signal = pipe_ctx->stream->signal;
4585
4586 /* HDMi and DP have different info packets*/
4587 if (dc_is_hdmi_signal(signal)) {
4588 set_avi_info_frame(info_packet: &info->avi, pipe_ctx);
4589
4590 set_vendor_info_packet(info_packet: &info->vendor, stream: pipe_ctx->stream);
4591 set_hfvs_info_packet(info_packet: &info->hfvsif, stream: pipe_ctx->stream);
4592 set_vtem_info_packet(info_packet: &info->vtem, stream: pipe_ctx->stream);
4593
4594 set_spd_info_packet(info_packet: &info->spd, stream: pipe_ctx->stream);
4595
4596 set_hdr_static_info_packet(info_packet: &info->hdrsmd, stream: pipe_ctx->stream);
4597
4598 } else if (dc_is_dp_signal(signal)) {
4599 set_vsc_info_packet(info_packet: &info->vsc, stream: pipe_ctx->stream);
4600
4601 set_spd_info_packet(info_packet: &info->spd, stream: pipe_ctx->stream);
4602
4603 set_hdr_static_info_packet(info_packet: &info->hdrsmd, stream: pipe_ctx->stream);
4604 set_adaptive_sync_info_packet(info_packet: &info->adaptive_sync,
4605 stream: pipe_ctx->stream,
4606 info_frame: info,
4607 pipe_dlg_param: &pipe_ctx->pipe_dlg_param);
4608 }
4609
4610 patch_gamut_packet_checksum(gamut_packet: &info->gamut);
4611}
4612
4613enum dc_status resource_map_clock_resources(
4614 const struct dc *dc,
4615 struct dc_state *context,
4616 struct dc_stream_state *stream)
4617{
4618 /* acquire new resources */
4619 const struct resource_pool *pool = dc->res_pool;
4620 struct pipe_ctx *pipe_ctx = resource_get_otg_master_for_stream(
4621 res_ctx: &context->res_ctx, stream);
4622
4623 if (!pipe_ctx)
4624 return DC_ERROR_UNEXPECTED;
4625
4626 if (dc_is_dp_signal(signal: pipe_ctx->stream->signal)
4627 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
4628 pipe_ctx->clock_source = pool->dp_clock_source;
4629 else {
4630 pipe_ctx->clock_source = NULL;
4631
4632 if (!dc->config.disable_disp_pll_sharing)
4633 pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
4634 res_ctx: &context->res_ctx,
4635 pipe_ctx);
4636
4637 if (pipe_ctx->clock_source == NULL)
4638 pipe_ctx->clock_source =
4639 dc_resource_find_first_free_pll(
4640 res_ctx: &context->res_ctx,
4641 pool);
4642 }
4643
4644 if (pipe_ctx->clock_source == NULL)
4645 return DC_NO_CLOCK_SOURCE_RESOURCE;
4646
4647 resource_reference_clock_source(
4648 res_ctx: &context->res_ctx, pool,
4649 clock_source: pipe_ctx->clock_source);
4650
4651 return DC_OK;
4652}
4653
4654/*
4655 * Note: We need to disable output if clock sources change,
4656 * since bios does optimization and doesn't apply if changing
4657 * PHY when not already disabled.
4658 */
4659bool pipe_need_reprogram(
4660 struct pipe_ctx *pipe_ctx_old,
4661 struct pipe_ctx *pipe_ctx)
4662{
4663 if (!pipe_ctx_old->stream)
4664 return false;
4665
4666 if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
4667 return true;
4668
4669 if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
4670 return true;
4671
4672 if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
4673 return true;
4674
4675 if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
4676 && pipe_ctx_old->stream != pipe_ctx->stream)
4677 return true;
4678
4679 if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
4680 return true;
4681
4682 if (dc_is_timing_changed(cur_stream: pipe_ctx_old->stream, new_stream: pipe_ctx->stream))
4683 return true;
4684
4685 if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
4686 return true;
4687
4688 if (false == pipe_ctx_old->stream->link->link_state_valid &&
4689 false == pipe_ctx_old->stream->dpms_off)
4690 return true;
4691
4692 if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
4693 return true;
4694
4695 if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
4696 return true;
4697 if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
4698 return true;
4699
4700 /* DIG link encoder resource assignment for stream changed. */
4701 if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
4702 bool need_reprogram = false;
4703 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
4704 struct link_encoder *link_enc_prev =
4705 link_enc_cfg_get_link_enc_used_by_stream_current(dc, stream: pipe_ctx_old->stream);
4706
4707 if (link_enc_prev != pipe_ctx->stream->link_enc)
4708 need_reprogram = true;
4709
4710 return need_reprogram;
4711 }
4712
4713 return false;
4714}
4715
4716void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
4717 struct bit_depth_reduction_params *fmt_bit_depth)
4718{
4719 enum dc_dither_option option = stream->dither_option;
4720 enum dc_pixel_encoding pixel_encoding =
4721 stream->timing.pixel_encoding;
4722
4723 memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
4724
4725 if (option == DITHER_OPTION_DEFAULT) {
4726 switch (stream->timing.display_color_depth) {
4727 case COLOR_DEPTH_666:
4728 option = DITHER_OPTION_SPATIAL6;
4729 break;
4730 case COLOR_DEPTH_888:
4731 option = DITHER_OPTION_SPATIAL8;
4732 break;
4733 case COLOR_DEPTH_101010:
4734 option = DITHER_OPTION_SPATIAL10;
4735 break;
4736 default:
4737 option = DITHER_OPTION_DISABLE;
4738 }
4739 }
4740
4741 if (option == DITHER_OPTION_DISABLE)
4742 return;
4743
4744 if (option == DITHER_OPTION_TRUN6) {
4745 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4746 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
4747 } else if (option == DITHER_OPTION_TRUN8 ||
4748 option == DITHER_OPTION_TRUN8_SPATIAL6 ||
4749 option == DITHER_OPTION_TRUN8_FM6) {
4750 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4751 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
4752 } else if (option == DITHER_OPTION_TRUN10 ||
4753 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4754 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4755 option == DITHER_OPTION_TRUN10_FM8 ||
4756 option == DITHER_OPTION_TRUN10_FM6 ||
4757 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4758 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4759 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4760 }
4761
4762 /* special case - Formatter can only reduce by 4 bits at most.
4763 * When reducing from 12 to 6 bits,
4764 * HW recommends we use trunc with round mode
4765 * (if we did nothing, trunc to 10 bits would be used)
4766 * note that any 12->10 bit reduction is ignored prior to DCE8,
4767 * as the input was 10 bits.
4768 */
4769 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4770 option == DITHER_OPTION_SPATIAL6 ||
4771 option == DITHER_OPTION_FM6) {
4772 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
4773 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
4774 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
4775 }
4776
4777 /* spatial dither
4778 * note that spatial modes 1-3 are never used
4779 */
4780 if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
4781 option == DITHER_OPTION_SPATIAL6 ||
4782 option == DITHER_OPTION_TRUN10_SPATIAL6 ||
4783 option == DITHER_OPTION_TRUN8_SPATIAL6) {
4784 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4785 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
4786 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4787 fmt_bit_depth->flags.RGB_RANDOM =
4788 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4789 } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM ||
4790 option == DITHER_OPTION_SPATIAL8 ||
4791 option == DITHER_OPTION_SPATIAL8_FM6 ||
4792 option == DITHER_OPTION_TRUN10_SPATIAL8 ||
4793 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4794 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4795 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
4796 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4797 fmt_bit_depth->flags.RGB_RANDOM =
4798 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4799 } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
4800 option == DITHER_OPTION_SPATIAL10 ||
4801 option == DITHER_OPTION_SPATIAL10_FM8 ||
4802 option == DITHER_OPTION_SPATIAL10_FM6) {
4803 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
4804 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
4805 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
4806 fmt_bit_depth->flags.RGB_RANDOM =
4807 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
4808 }
4809
4810 if (option == DITHER_OPTION_SPATIAL6 ||
4811 option == DITHER_OPTION_SPATIAL8 ||
4812 option == DITHER_OPTION_SPATIAL10) {
4813 fmt_bit_depth->flags.FRAME_RANDOM = 0;
4814 } else {
4815 fmt_bit_depth->flags.FRAME_RANDOM = 1;
4816 }
4817
4818 //////////////////////
4819 //// temporal dither
4820 //////////////////////
4821 if (option == DITHER_OPTION_FM6 ||
4822 option == DITHER_OPTION_SPATIAL8_FM6 ||
4823 option == DITHER_OPTION_SPATIAL10_FM6 ||
4824 option == DITHER_OPTION_TRUN10_FM6 ||
4825 option == DITHER_OPTION_TRUN8_FM6 ||
4826 option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
4827 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4828 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
4829 } else if (option == DITHER_OPTION_FM8 ||
4830 option == DITHER_OPTION_SPATIAL10_FM8 ||
4831 option == DITHER_OPTION_TRUN10_FM8) {
4832 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4833 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
4834 } else if (option == DITHER_OPTION_FM10) {
4835 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
4836 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
4837 }
4838
4839 fmt_bit_depth->pixel_encoding = pixel_encoding;
4840}
4841
4842enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
4843{
4844 struct dc_link *link = stream->link;
4845 struct timing_generator *tg = dc->res_pool->timing_generators[0];
4846 enum dc_status res = DC_OK;
4847
4848 calculate_phy_pix_clks(stream);
4849
4850 if (!tg->funcs->validate_timing(tg, &stream->timing))
4851 res = DC_FAIL_CONTROLLER_VALIDATE;
4852
4853 if (res == DC_OK) {
4854 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
4855 !link->link_enc->funcs->validate_output_with_stream(
4856 link->link_enc, stream))
4857 res = DC_FAIL_ENC_VALIDATE;
4858 }
4859
4860 /* TODO: validate audio ASIC caps, encoder */
4861
4862 if (res == DC_OK)
4863 res = dc->link_srv->validate_mode_timing(stream,
4864 link,
4865 &stream->timing);
4866
4867 return res;
4868}
4869
4870enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
4871{
4872 enum dc_status res = DC_OK;
4873
4874 /* check if surface has invalid dimensions */
4875 if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
4876 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
4877 return DC_FAIL_SURFACE_VALIDATE;
4878
4879 /* TODO For now validates pixel format only */
4880 if (dc->res_pool->funcs->validate_plane)
4881 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
4882
4883 return res;
4884}
4885
4886unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
4887{
4888 switch (format) {
4889 case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
4890 return 8;
4891 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
4892 case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
4893 return 12;
4894 case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
4895 case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
4896 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
4897 case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
4898 return 16;
4899 case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
4900 case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
4901 case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
4902 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
4903 case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
4904 case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
4905 case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
4906 return 32;
4907 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
4908 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
4909 case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
4910 case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
4911 return 64;
4912 default:
4913 ASSERT_CRITICAL(false);
4914 return -1;
4915 }
4916}
4917static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
4918{
4919 if (modes) {
4920 if (modes->sample_rates.rate.RATE_192)
4921 return 192000;
4922 if (modes->sample_rates.rate.RATE_176_4)
4923 return 176400;
4924 if (modes->sample_rates.rate.RATE_96)
4925 return 96000;
4926 if (modes->sample_rates.rate.RATE_88_2)
4927 return 88200;
4928 if (modes->sample_rates.rate.RATE_48)
4929 return 48000;
4930 if (modes->sample_rates.rate.RATE_44_1)
4931 return 44100;
4932 if (modes->sample_rates.rate.RATE_32)
4933 return 32000;
4934 }
4935 /*original logic when no audio info*/
4936 return 441000;
4937}
4938
4939void get_audio_check(struct audio_info *aud_modes,
4940 struct audio_check *audio_chk)
4941{
4942 unsigned int i;
4943 unsigned int max_sample_rate = 0;
4944
4945 if (aud_modes) {
4946 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
4947
4948 audio_chk->max_audiosample_rate = 0;
4949 for (i = 0; i < aud_modes->mode_count; i++) {
4950 max_sample_rate = get_max_audio_sample_rate(modes: &aud_modes->modes[i]);
4951 if (audio_chk->max_audiosample_rate < max_sample_rate)
4952 audio_chk->max_audiosample_rate = max_sample_rate;
4953 /*dts takes the same as type 2: AP = 0.25*/
4954 }
4955 /*check which one take more bandwidth*/
4956 if (audio_chk->max_audiosample_rate > 192000)
4957 audio_chk->audio_packet_type = 0x9;/*AP =1*/
4958 audio_chk->acat = 0;/*not support*/
4959 }
4960}
4961
4962static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
4963 const struct resource_context *res_ctx,
4964 const struct resource_pool *const pool,
4965 const struct dc_link *link)
4966{
4967 struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
4968 int enc_index;
4969
4970 enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
4971
4972 if (enc_index < 0)
4973 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
4974
4975 if (enc_index >= 0)
4976 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
4977
4978 return hpo_dp_link_enc;
4979}
4980
4981bool get_temp_dp_link_res(struct dc_link *link,
4982 struct link_resource *link_res,
4983 struct dc_link_settings *link_settings)
4984{
4985 const struct dc *dc = link->dc;
4986 const struct resource_context *res_ctx = &dc->current_state->res_ctx;
4987
4988 memset(link_res, 0, sizeof(*link_res));
4989
4990 if (dc->link_srv->dp_get_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
4991 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
4992 pool: dc->res_pool, link);
4993 if (!link_res->hpo_dp_link_enc)
4994 return false;
4995 }
4996 return true;
4997}
4998
4999void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
5000 struct dc_state *context)
5001{
5002 int i, j;
5003 struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
5004
5005 /* If pipe backend is reset, need to reset pipe syncd status */
5006 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5007 pipe_ctx_old = &dc->current_state->res_ctx.pipe_ctx[i];
5008 pipe_ctx = &context->res_ctx.pipe_ctx[i];
5009
5010 if (!resource_is_pipe_type(pipe_ctx: pipe_ctx_old, type: OTG_MASTER))
5011 continue;
5012
5013 if (!pipe_ctx->stream ||
5014 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
5015
5016 /* Reset all the syncd pipes from the disabled pipe */
5017 for (j = 0; j < dc->res_pool->pipe_count; j++) {
5018 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
5019 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
5020 !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
5021 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
5022 }
5023 }
5024 }
5025}
5026
5027void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
5028 struct dc_state *context,
5029 uint8_t disabled_master_pipe_idx)
5030{
5031 int i;
5032 struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
5033
5034 pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
5035 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
5036 !IS_PIPE_SYNCD_VALID(pipe_ctx))
5037 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
5038
5039 /* for the pipe disabled, check if any slave pipe exists and assert */
5040 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5041 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
5042
5043 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
5044 IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx)) {
5045 struct pipe_ctx *first_pipe = pipe_ctx_check;
5046
5047 while (first_pipe->prev_odm_pipe)
5048 first_pipe = first_pipe->prev_odm_pipe;
5049 /* When ODM combine is enabled, this case is expected. If the disabled pipe
5050 * is part of the ODM tree, then we should not print an error.
5051 * */
5052 if (first_pipe->pipe_idx == disabled_master_pipe_idx)
5053 continue;
5054
5055 DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
5056 i, disabled_master_pipe_idx);
5057 }
5058 }
5059}
5060
5061void reset_sync_context_for_pipe(const struct dc *dc,
5062 struct dc_state *context,
5063 uint8_t pipe_idx)
5064{
5065 int i;
5066 struct pipe_ctx *pipe_ctx_reset;
5067
5068 /* reset the otg sync context for the pipe and its slave pipes if any */
5069 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5070 pipe_ctx_reset = &context->res_ctx.pipe_ctx[i];
5071
5072 if (((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_reset) == pipe_idx) &&
5073 IS_PIPE_SYNCD_VALID(pipe_ctx_reset)) || (i == pipe_idx))
5074 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_reset, i);
5075 }
5076}
5077
5078uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
5079{
5080 /* TODO - get transmitter to phy idx mapping from DMUB */
5081 uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
5082
5083 if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
5084 dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
5085 switch (transmitter) {
5086 case TRANSMITTER_UNIPHY_A:
5087 phy_idx = 0;
5088 break;
5089 case TRANSMITTER_UNIPHY_B:
5090 phy_idx = 1;
5091 break;
5092 case TRANSMITTER_UNIPHY_C:
5093 phy_idx = 5;
5094 break;
5095 case TRANSMITTER_UNIPHY_D:
5096 phy_idx = 6;
5097 break;
5098 case TRANSMITTER_UNIPHY_E:
5099 phy_idx = 4;
5100 break;
5101 default:
5102 phy_idx = 0;
5103 break;
5104 }
5105 }
5106
5107 return phy_idx;
5108}
5109
5110const struct link_hwss *get_link_hwss(const struct dc_link *link,
5111 const struct link_resource *link_res)
5112{
5113 /* Link_hwss is only accessible by getter function instead of accessing
5114 * by pointers in dc with the intent to protect against breaking polymorphism.
5115 */
5116 if (can_use_hpo_dp_link_hwss(link, link_res))
5117 /* TODO: some assumes that if decided link settings is 128b/132b
5118 * channel coding format hpo_dp_link_enc should be used.
5119 * Others believe that if hpo_dp_link_enc is available in link
5120 * resource then hpo_dp_link_enc must be used. This bound between
5121 * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
5122 * with a premise that both hpo_dp_link_enc pointer and decided link
5123 * settings are determined based on single policy function like
5124 * "decide_link_settings" from upper layer. This "convention"
5125 * cannot be maintained and enforced at current level.
5126 * Therefore a refactor is due so we can enforce a strong bound
5127 * between those two parameters at this level.
5128 *
5129 * To put it simple, we want to make enforcement at low level so that
5130 * we will not return link hwss if caller plans to do 8b/10b
5131 * with an hpo encoder. Or we can return a very dummy one that doesn't
5132 * do work for all functions
5133 */
5134 return (requires_fixed_vs_pe_retimer_hpo_link_hwss(link) ?
5135 get_hpo_fixed_vs_pe_retimer_dp_link_hwss() : get_hpo_dp_link_hwss());
5136 else if (can_use_dpia_link_hwss(link, link_res))
5137 return get_dpia_link_hwss();
5138 else if (can_use_dio_link_hwss(link, link_res))
5139 return (requires_fixed_vs_pe_retimer_dio_link_hwss(link)) ?
5140 get_dio_fixed_vs_pe_retimer_link_hwss() : get_dio_link_hwss();
5141 else
5142 return get_virtual_link_hwss();
5143}
5144
5145bool is_h_timing_divisible_by_2(struct dc_stream_state *stream)
5146{
5147 bool divisible = false;
5148 uint16_t h_blank_start = 0;
5149 uint16_t h_blank_end = 0;
5150
5151 if (stream) {
5152 h_blank_start = stream->timing.h_total - stream->timing.h_front_porch;
5153 h_blank_end = h_blank_start - stream->timing.h_addressable;
5154
5155 /* HTOTAL, Hblank start/end, and Hsync start/end all must be
5156 * divisible by 2 in order for the horizontal timing params
5157 * to be considered divisible by 2. Hsync start is always 0.
5158 */
5159 divisible = (stream->timing.h_total % 2 == 0) &&
5160 (h_blank_start % 2 == 0) &&
5161 (h_blank_end % 2 == 0) &&
5162 (stream->timing.h_sync_width % 2 == 0);
5163 }
5164 return divisible;
5165}
5166
5167/* This interface is deprecated for new DCNs. It is replaced by the following
5168 * new interfaces. These two interfaces encapsulate pipe selection priority
5169 * with DCN specific minimum hardware transition optimization algorithm. With
5170 * the new interfaces caller no longer needs to know the implementation detail
5171 * of a pipe topology.
5172 *
5173 * resource_update_pipes_with_odm_slice_count
5174 * resource_update_pipes_with_mpc_slice_count
5175 *
5176 */
5177bool dc_resource_acquire_secondary_pipe_for_mpc_odm_legacy(
5178 const struct dc *dc,
5179 struct dc_state *state,
5180 struct pipe_ctx *pri_pipe,
5181 struct pipe_ctx *sec_pipe,
5182 bool odm)
5183{
5184 int pipe_idx = sec_pipe->pipe_idx;
5185 struct pipe_ctx *sec_top, *sec_bottom, *sec_next, *sec_prev;
5186 const struct resource_pool *pool = dc->res_pool;
5187
5188 sec_top = sec_pipe->top_pipe;
5189 sec_bottom = sec_pipe->bottom_pipe;
5190 sec_next = sec_pipe->next_odm_pipe;
5191 sec_prev = sec_pipe->prev_odm_pipe;
5192
5193 *sec_pipe = *pri_pipe;
5194
5195 sec_pipe->top_pipe = sec_top;
5196 sec_pipe->bottom_pipe = sec_bottom;
5197 sec_pipe->next_odm_pipe = sec_next;
5198 sec_pipe->prev_odm_pipe = sec_prev;
5199
5200 sec_pipe->pipe_idx = pipe_idx;
5201 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
5202 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
5203 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
5204 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
5205 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
5206 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
5207 sec_pipe->stream_res.dsc = NULL;
5208 if (odm) {
5209 if (!sec_pipe->top_pipe)
5210 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
5211 else
5212 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
5213 if (sec_pipe->stream->timing.flags.DSC == 1) {
5214#if defined(CONFIG_DRM_AMD_DC_FP)
5215 dcn20_acquire_dsc(dc, res_ctx: &state->res_ctx, dsc: &sec_pipe->stream_res.dsc, pipe_idx);
5216#endif
5217 ASSERT(sec_pipe->stream_res.dsc);
5218 if (sec_pipe->stream_res.dsc == NULL)
5219 return false;
5220 }
5221#if defined(CONFIG_DRM_AMD_DC_FP)
5222 dcn20_build_mapped_resource(dc, context: state, stream: sec_pipe->stream);
5223#endif
5224 }
5225
5226 return true;
5227}
5228
5229enum dc_status update_dp_encoder_resources_for_test_harness(const struct dc *dc,
5230 struct dc_state *context,
5231 struct pipe_ctx *pipe_ctx)
5232{
5233 if (dc->link_srv->dp_get_encoding_format(&pipe_ctx->link_config.dp_link_settings) == DP_128b_132b_ENCODING) {
5234 if (pipe_ctx->stream_res.hpo_dp_stream_enc == NULL) {
5235 pipe_ctx->stream_res.hpo_dp_stream_enc =
5236 find_first_free_match_hpo_dp_stream_enc_for_link(
5237 res_ctx: &context->res_ctx, pool: dc->res_pool, stream: pipe_ctx->stream);
5238
5239 if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
5240 return DC_NO_STREAM_ENC_RESOURCE;
5241
5242 update_hpo_dp_stream_engine_usage(
5243 res_ctx: &context->res_ctx, pool: dc->res_pool,
5244 hpo_dp_stream_enc: pipe_ctx->stream_res.hpo_dp_stream_enc,
5245 acquired: true);
5246 }
5247
5248 if (pipe_ctx->link_res.hpo_dp_link_enc == NULL) {
5249 if (!add_hpo_dp_link_enc_to_ctx(res_ctx: &context->res_ctx, pool: dc->res_pool, pipe_ctx, stream: pipe_ctx->stream))
5250 return DC_NO_LINK_ENC_RESOURCE;
5251 }
5252 } else {
5253 if (pipe_ctx->stream_res.hpo_dp_stream_enc) {
5254 update_hpo_dp_stream_engine_usage(
5255 res_ctx: &context->res_ctx, pool: dc->res_pool,
5256 hpo_dp_stream_enc: pipe_ctx->stream_res.hpo_dp_stream_enc,
5257 acquired: false);
5258 pipe_ctx->stream_res.hpo_dp_stream_enc = NULL;
5259 }
5260 if (pipe_ctx->link_res.hpo_dp_link_enc)
5261 remove_hpo_dp_link_enc_from_ctx(res_ctx: &context->res_ctx, pipe_ctx, stream: pipe_ctx->stream);
5262 }
5263
5264 return DC_OK;
5265}
5266
5267bool check_subvp_sw_cursor_fallback_req(const struct dc *dc, struct dc_stream_state *stream)
5268{
5269 if (!dc->debug.disable_subvp_high_refresh && is_subvp_high_refresh_candidate(stream))
5270 return true;
5271 if (dc->current_state->stream_count == 1 && stream->timing.v_addressable >= 2880 &&
5272 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5273 return true;
5274 else if (dc->current_state->stream_count > 1 && stream->timing.v_addressable >= 2160 &&
5275 ((stream->timing.pix_clk_100hz * 100) / stream->timing.v_total / stream->timing.h_total) < 120)
5276 return true;
5277
5278 return false;
5279}
5280

source code of linux/drivers/gpu/drm/amd/display/dc/core/dc_resource.c