1//===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the function verifier interface, that can be used for some
10// basic correctness checking of input to the system.
11//
12// Note that this does not provide full `Java style' security and verifications,
13// instead it just tries to ensure that code is well-formed.
14//
15// * Both of a binary operator's parameters are of the same type
16// * Verify that the indices of mem access instructions match other operands
17// * Verify that arithmetic and other things are only performed on first-class
18// types. Verify that shifts & logicals only happen on integrals f.e.
19// * All of the constants in a switch statement are of the correct type
20// * The code is in valid SSA form
21// * It should be illegal to put a label into any other type (like a structure)
22// or to return one. [except constant arrays!]
23// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24// * PHI nodes must have an entry for each predecessor, with no extras.
25// * PHI nodes must be the first thing in a basic block, all grouped together
26// * All basic blocks should only end with terminator insts, not contain them
27// * The entry node to a function must not have predecessors
28// * All Instructions must be embedded into a basic block
29// * Functions cannot take a void-typed parameter
30// * Verify that a function's argument list agrees with it's declared type.
31// * It is illegal to specify a name for a void value.
32// * It is illegal to have a internal global value with no initializer
33// * It is illegal to have a ret instruction that returns a value that does not
34// agree with the function return value type.
35// * Function call argument types match the function prototype
36// * A landing pad is defined by a landingpad instruction, and can be jumped to
37// only by the unwind edge of an invoke instruction.
38// * A landingpad instruction must be the first non-PHI instruction in the
39// block.
40// * Landingpad instructions must be in a function with a personality function.
41// * Convergence control intrinsics are introduced in ConvergentOperations.rst.
42// The applied restrictions are too numerous to list here.
43// * The convergence entry intrinsic and the loop heart must be the first
44// non-PHI instruction in their respective block. This does not conflict with
45// the landing pads, since these two kinds cannot occur in the same block.
46// * All other things that are tested by asserts spread about the code...
47//
48//===----------------------------------------------------------------------===//
49
50#include "llvm/IR/Verifier.h"
51#include "llvm/ADT/APFloat.h"
52#include "llvm/ADT/APInt.h"
53#include "llvm/ADT/ArrayRef.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/MapVector.h"
56#include "llvm/ADT/PostOrderIterator.h"
57#include "llvm/ADT/STLExtras.h"
58#include "llvm/ADT/SmallPtrSet.h"
59#include "llvm/ADT/SmallSet.h"
60#include "llvm/ADT/SmallVector.h"
61#include "llvm/ADT/StringExtras.h"
62#include "llvm/ADT/StringMap.h"
63#include "llvm/ADT/StringRef.h"
64#include "llvm/ADT/Twine.h"
65#include "llvm/BinaryFormat/Dwarf.h"
66#include "llvm/IR/Argument.h"
67#include "llvm/IR/AttributeMask.h"
68#include "llvm/IR/Attributes.h"
69#include "llvm/IR/BasicBlock.h"
70#include "llvm/IR/CFG.h"
71#include "llvm/IR/CallingConv.h"
72#include "llvm/IR/Comdat.h"
73#include "llvm/IR/Constant.h"
74#include "llvm/IR/ConstantRange.h"
75#include "llvm/IR/Constants.h"
76#include "llvm/IR/ConvergenceVerifier.h"
77#include "llvm/IR/DataLayout.h"
78#include "llvm/IR/DebugInfo.h"
79#include "llvm/IR/DebugInfoMetadata.h"
80#include "llvm/IR/DebugLoc.h"
81#include "llvm/IR/DerivedTypes.h"
82#include "llvm/IR/Dominators.h"
83#include "llvm/IR/EHPersonalities.h"
84#include "llvm/IR/Function.h"
85#include "llvm/IR/GCStrategy.h"
86#include "llvm/IR/GlobalAlias.h"
87#include "llvm/IR/GlobalValue.h"
88#include "llvm/IR/GlobalVariable.h"
89#include "llvm/IR/InlineAsm.h"
90#include "llvm/IR/InstVisitor.h"
91#include "llvm/IR/InstrTypes.h"
92#include "llvm/IR/Instruction.h"
93#include "llvm/IR/Instructions.h"
94#include "llvm/IR/IntrinsicInst.h"
95#include "llvm/IR/Intrinsics.h"
96#include "llvm/IR/IntrinsicsAArch64.h"
97#include "llvm/IR/IntrinsicsAMDGPU.h"
98#include "llvm/IR/IntrinsicsARM.h"
99#include "llvm/IR/IntrinsicsNVPTX.h"
100#include "llvm/IR/IntrinsicsWebAssembly.h"
101#include "llvm/IR/LLVMContext.h"
102#include "llvm/IR/MemoryModelRelaxationAnnotations.h"
103#include "llvm/IR/Metadata.h"
104#include "llvm/IR/Module.h"
105#include "llvm/IR/ModuleSlotTracker.h"
106#include "llvm/IR/PassManager.h"
107#include "llvm/IR/Statepoint.h"
108#include "llvm/IR/Type.h"
109#include "llvm/IR/Use.h"
110#include "llvm/IR/User.h"
111#include "llvm/IR/VFABIDemangler.h"
112#include "llvm/IR/Value.h"
113#include "llvm/InitializePasses.h"
114#include "llvm/Pass.h"
115#include "llvm/Support/AtomicOrdering.h"
116#include "llvm/Support/Casting.h"
117#include "llvm/Support/CommandLine.h"
118#include "llvm/Support/ErrorHandling.h"
119#include "llvm/Support/MathExtras.h"
120#include "llvm/Support/ModRef.h"
121#include "llvm/Support/raw_ostream.h"
122#include <algorithm>
123#include <cassert>
124#include <cstdint>
125#include <memory>
126#include <optional>
127#include <string>
128#include <utility>
129
130using namespace llvm;
131
132static cl::opt<bool> VerifyNoAliasScopeDomination(
133 "verify-noalias-scope-decl-dom", cl::Hidden, cl::init(Val: false),
134 cl::desc("Ensure that llvm.experimental.noalias.scope.decl for identical "
135 "scopes are not dominating"));
136
137namespace llvm {
138
139struct VerifierSupport {
140 raw_ostream *OS;
141 const Module &M;
142 ModuleSlotTracker MST;
143 Triple TT;
144 const DataLayout &DL;
145 LLVMContext &Context;
146
147 /// Track the brokenness of the module while recursively visiting.
148 bool Broken = false;
149 /// Broken debug info can be "recovered" from by stripping the debug info.
150 bool BrokenDebugInfo = false;
151 /// Whether to treat broken debug info as an error.
152 bool TreatBrokenDebugInfoAsError = true;
153
154 explicit VerifierSupport(raw_ostream *OS, const Module &M)
155 : OS(OS), M(M), MST(&M), TT(M.getTargetTriple()), DL(M.getDataLayout()),
156 Context(M.getContext()) {}
157
158private:
159 void Write(const Module *M) {
160 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
161 }
162
163 void Write(const Value *V) {
164 if (V)
165 Write(V: *V);
166 }
167
168 void Write(const Value &V) {
169 if (isa<Instruction>(Val: V)) {
170 V.print(O&: *OS, MST);
171 *OS << '\n';
172 } else {
173 V.printAsOperand(O&: *OS, PrintType: true, MST);
174 *OS << '\n';
175 }
176 }
177
178 void Write(const DbgRecord *DR) {
179 if (DR) {
180 DR->print(O&: *OS, MST, IsForDebug: false);
181 *OS << '\n';
182 }
183 }
184
185 void Write(DbgVariableRecord::LocationType Type) {
186 switch (Type) {
187 case DbgVariableRecord::LocationType::Value:
188 *OS << "value";
189 break;
190 case DbgVariableRecord::LocationType::Declare:
191 *OS << "declare";
192 break;
193 case DbgVariableRecord::LocationType::Assign:
194 *OS << "assign";
195 break;
196 case DbgVariableRecord::LocationType::End:
197 *OS << "end";
198 break;
199 case DbgVariableRecord::LocationType::Any:
200 *OS << "any";
201 break;
202 };
203 }
204
205 void Write(const Metadata *MD) {
206 if (!MD)
207 return;
208 MD->print(OS&: *OS, MST, M: &M);
209 *OS << '\n';
210 }
211
212 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
213 Write(MD.get());
214 }
215
216 void Write(const NamedMDNode *NMD) {
217 if (!NMD)
218 return;
219 NMD->print(ROS&: *OS, MST);
220 *OS << '\n';
221 }
222
223 void Write(Type *T) {
224 if (!T)
225 return;
226 *OS << ' ' << *T;
227 }
228
229 void Write(const Comdat *C) {
230 if (!C)
231 return;
232 *OS << *C;
233 }
234
235 void Write(const APInt *AI) {
236 if (!AI)
237 return;
238 *OS << *AI << '\n';
239 }
240
241 void Write(const unsigned i) { *OS << i << '\n'; }
242
243 // NOLINTNEXTLINE(readability-identifier-naming)
244 void Write(const Attribute *A) {
245 if (!A)
246 return;
247 *OS << A->getAsString() << '\n';
248 }
249
250 // NOLINTNEXTLINE(readability-identifier-naming)
251 void Write(const AttributeSet *AS) {
252 if (!AS)
253 return;
254 *OS << AS->getAsString() << '\n';
255 }
256
257 // NOLINTNEXTLINE(readability-identifier-naming)
258 void Write(const AttributeList *AL) {
259 if (!AL)
260 return;
261 AL->print(O&: *OS);
262 }
263
264 void Write(Printable P) { *OS << P << '\n'; }
265
266 template <typename T> void Write(ArrayRef<T> Vs) {
267 for (const T &V : Vs)
268 Write(V);
269 }
270
271 template <typename T1, typename... Ts>
272 void WriteTs(const T1 &V1, const Ts &... Vs) {
273 Write(V1);
274 WriteTs(Vs...);
275 }
276
277 template <typename... Ts> void WriteTs() {}
278
279public:
280 /// A check failed, so printout out the condition and the message.
281 ///
282 /// This provides a nice place to put a breakpoint if you want to see why
283 /// something is not correct.
284 void CheckFailed(const Twine &Message) {
285 if (OS)
286 *OS << Message << '\n';
287 Broken = true;
288 }
289
290 /// A check failed (with values to print).
291 ///
292 /// This calls the Message-only version so that the above is easier to set a
293 /// breakpoint on.
294 template <typename T1, typename... Ts>
295 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
296 CheckFailed(Message);
297 if (OS)
298 WriteTs(V1, Vs...);
299 }
300
301 /// A debug info check failed.
302 void DebugInfoCheckFailed(const Twine &Message) {
303 if (OS)
304 *OS << Message << '\n';
305 Broken |= TreatBrokenDebugInfoAsError;
306 BrokenDebugInfo = true;
307 }
308
309 /// A debug info check failed (with values to print).
310 template <typename T1, typename... Ts>
311 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
312 const Ts &... Vs) {
313 DebugInfoCheckFailed(Message);
314 if (OS)
315 WriteTs(V1, Vs...);
316 }
317};
318
319} // namespace llvm
320
321namespace {
322
323class Verifier : public InstVisitor<Verifier>, VerifierSupport {
324 friend class InstVisitor<Verifier>;
325
326 // ISD::ArgFlagsTy::MemAlign only have 4 bits for alignment, so
327 // the alignment size should not exceed 2^15. Since encode(Align)
328 // would plus the shift value by 1, the alignment size should
329 // not exceed 2^14, otherwise it can NOT be properly lowered
330 // in backend.
331 static constexpr unsigned ParamMaxAlignment = 1 << 14;
332 DominatorTree DT;
333
334 /// When verifying a basic block, keep track of all of the
335 /// instructions we have seen so far.
336 ///
337 /// This allows us to do efficient dominance checks for the case when an
338 /// instruction has an operand that is an instruction in the same block.
339 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
340
341 /// Keep track of the metadata nodes that have been checked already.
342 SmallPtrSet<const Metadata *, 32> MDNodes;
343
344 /// Keep track which DISubprogram is attached to which function.
345 DenseMap<const DISubprogram *, const Function *> DISubprogramAttachments;
346
347 /// Track all DICompileUnits visited.
348 SmallPtrSet<const Metadata *, 2> CUVisited;
349
350 /// The result type for a landingpad.
351 Type *LandingPadResultTy;
352
353 /// Whether we've seen a call to @llvm.localescape in this function
354 /// already.
355 bool SawFrameEscape;
356
357 /// Whether the current function has a DISubprogram attached to it.
358 bool HasDebugInfo = false;
359
360 /// The current source language.
361 dwarf::SourceLanguage CurrentSourceLang = dwarf::DW_LANG_lo_user;
362
363 /// Stores the count of how many objects were passed to llvm.localescape for a
364 /// given function and the largest index passed to llvm.localrecover.
365 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
366
367 // Maps catchswitches and cleanuppads that unwind to siblings to the
368 // terminators that indicate the unwind, used to detect cycles therein.
369 MapVector<Instruction *, Instruction *> SiblingFuncletInfo;
370
371 /// Cache which blocks are in which funclet, if an EH funclet personality is
372 /// in use. Otherwise empty.
373 DenseMap<BasicBlock *, ColorVector> BlockEHFuncletColors;
374
375 /// Cache of constants visited in search of ConstantExprs.
376 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
377
378 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
379 SmallVector<const Function *, 4> DeoptimizeDeclarations;
380
381 /// Cache of attribute lists verified.
382 SmallPtrSet<const void *, 32> AttributeListsVisited;
383
384 // Verify that this GlobalValue is only used in this module.
385 // This map is used to avoid visiting uses twice. We can arrive at a user
386 // twice, if they have multiple operands. In particular for very large
387 // constant expressions, we can arrive at a particular user many times.
388 SmallPtrSet<const Value *, 32> GlobalValueVisited;
389
390 // Keeps track of duplicate function argument debug info.
391 SmallVector<const DILocalVariable *, 16> DebugFnArgs;
392
393 TBAAVerifier TBAAVerifyHelper;
394 ConvergenceVerifier ConvergenceVerifyHelper;
395
396 SmallVector<IntrinsicInst *, 4> NoAliasScopeDecls;
397
398 void checkAtomicMemAccessSize(Type *Ty, const Instruction *I);
399
400public:
401 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError,
402 const Module &M)
403 : VerifierSupport(OS, M), LandingPadResultTy(nullptr),
404 SawFrameEscape(false), TBAAVerifyHelper(this) {
405 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
406 }
407
408 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
409
410 bool verify(const Function &F) {
411 assert(F.getParent() == &M &&
412 "An instance of this class only works with a specific module!");
413
414 // First ensure the function is well-enough formed to compute dominance
415 // information, and directly compute a dominance tree. We don't rely on the
416 // pass manager to provide this as it isolates us from a potentially
417 // out-of-date dominator tree and makes it significantly more complex to run
418 // this code outside of a pass manager.
419 // FIXME: It's really gross that we have to cast away constness here.
420 if (!F.empty())
421 DT.recalculate(Func&: const_cast<Function &>(F));
422
423 for (const BasicBlock &BB : F) {
424 if (!BB.empty() && BB.back().isTerminator())
425 continue;
426
427 if (OS) {
428 *OS << "Basic Block in function '" << F.getName()
429 << "' does not have terminator!\n";
430 BB.printAsOperand(O&: *OS, PrintType: true, MST);
431 *OS << "\n";
432 }
433 return false;
434 }
435
436 auto FailureCB = [this](const Twine &Message) {
437 this->CheckFailed(Message);
438 };
439 ConvergenceVerifyHelper.initialize(OS, FailureCB, F);
440
441 Broken = false;
442 // FIXME: We strip const here because the inst visitor strips const.
443 visit(F&: const_cast<Function &>(F));
444 verifySiblingFuncletUnwinds();
445
446 if (ConvergenceVerifyHelper.sawTokens())
447 ConvergenceVerifyHelper.verify(DT);
448
449 InstsInThisBlock.clear();
450 DebugFnArgs.clear();
451 LandingPadResultTy = nullptr;
452 SawFrameEscape = false;
453 SiblingFuncletInfo.clear();
454 verifyNoAliasScopeDecl();
455 NoAliasScopeDecls.clear();
456
457 return !Broken;
458 }
459
460 /// Verify the module that this instance of \c Verifier was initialized with.
461 bool verify() {
462 Broken = false;
463
464 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
465 for (const Function &F : M)
466 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
467 DeoptimizeDeclarations.push_back(Elt: &F);
468
469 // Now that we've visited every function, verify that we never asked to
470 // recover a frame index that wasn't escaped.
471 verifyFrameRecoverIndices();
472 for (const GlobalVariable &GV : M.globals())
473 visitGlobalVariable(GV);
474
475 for (const GlobalAlias &GA : M.aliases())
476 visitGlobalAlias(GA);
477
478 for (const GlobalIFunc &GI : M.ifuncs())
479 visitGlobalIFunc(GI);
480
481 for (const NamedMDNode &NMD : M.named_metadata())
482 visitNamedMDNode(NMD);
483
484 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
485 visitComdat(C: SMEC.getValue());
486
487 visitModuleFlags();
488 visitModuleIdents();
489 visitModuleCommandLines();
490
491 verifyCompileUnits();
492
493 verifyDeoptimizeCallingConvs();
494 DISubprogramAttachments.clear();
495 return !Broken;
496 }
497
498private:
499 /// Whether a metadata node is allowed to be, or contain, a DILocation.
500 enum class AreDebugLocsAllowed { No, Yes };
501
502 // Verification methods...
503 void visitGlobalValue(const GlobalValue &GV);
504 void visitGlobalVariable(const GlobalVariable &GV);
505 void visitGlobalAlias(const GlobalAlias &GA);
506 void visitGlobalIFunc(const GlobalIFunc &GI);
507 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
508 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
509 const GlobalAlias &A, const Constant &C);
510 void visitNamedMDNode(const NamedMDNode &NMD);
511 void visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs);
512 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
513 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
514 void visitDIArgList(const DIArgList &AL, Function *F);
515 void visitComdat(const Comdat &C);
516 void visitModuleIdents();
517 void visitModuleCommandLines();
518 void visitModuleFlags();
519 void visitModuleFlag(const MDNode *Op,
520 DenseMap<const MDString *, const MDNode *> &SeenIDs,
521 SmallVectorImpl<const MDNode *> &Requirements);
522 void visitModuleFlagCGProfileEntry(const MDOperand &MDO);
523 void visitFunction(const Function &F);
524 void visitBasicBlock(BasicBlock &BB);
525 void verifyRangeMetadata(const Value &V, const MDNode *Range, Type *Ty,
526 bool IsAbsoluteSymbol);
527 void visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty);
528 void visitDereferenceableMetadata(Instruction &I, MDNode *MD);
529 void visitProfMetadata(Instruction &I, MDNode *MD);
530 void visitCallStackMetadata(MDNode *MD);
531 void visitMemProfMetadata(Instruction &I, MDNode *MD);
532 void visitCallsiteMetadata(Instruction &I, MDNode *MD);
533 void visitDIAssignIDMetadata(Instruction &I, MDNode *MD);
534 void visitMMRAMetadata(Instruction &I, MDNode *MD);
535 void visitAnnotationMetadata(MDNode *Annotation);
536 void visitAliasScopeMetadata(const MDNode *MD);
537 void visitAliasScopeListMetadata(const MDNode *MD);
538 void visitAccessGroupMetadata(const MDNode *MD);
539
540 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
541#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
542#include "llvm/IR/Metadata.def"
543 void visitDIScope(const DIScope &N);
544 void visitDIVariable(const DIVariable &N);
545 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
546 void visitDITemplateParameter(const DITemplateParameter &N);
547
548 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
549
550 void visit(DbgLabelRecord &DLR);
551 void visit(DbgVariableRecord &DVR);
552 // InstVisitor overrides...
553 using InstVisitor<Verifier>::visit;
554 void visitDbgRecords(Instruction &I);
555 void visit(Instruction &I);
556
557 void visitTruncInst(TruncInst &I);
558 void visitZExtInst(ZExtInst &I);
559 void visitSExtInst(SExtInst &I);
560 void visitFPTruncInst(FPTruncInst &I);
561 void visitFPExtInst(FPExtInst &I);
562 void visitFPToUIInst(FPToUIInst &I);
563 void visitFPToSIInst(FPToSIInst &I);
564 void visitUIToFPInst(UIToFPInst &I);
565 void visitSIToFPInst(SIToFPInst &I);
566 void visitIntToPtrInst(IntToPtrInst &I);
567 void visitPtrToIntInst(PtrToIntInst &I);
568 void visitBitCastInst(BitCastInst &I);
569 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
570 void visitPHINode(PHINode &PN);
571 void visitCallBase(CallBase &Call);
572 void visitUnaryOperator(UnaryOperator &U);
573 void visitBinaryOperator(BinaryOperator &B);
574 void visitICmpInst(ICmpInst &IC);
575 void visitFCmpInst(FCmpInst &FC);
576 void visitExtractElementInst(ExtractElementInst &EI);
577 void visitInsertElementInst(InsertElementInst &EI);
578 void visitShuffleVectorInst(ShuffleVectorInst &EI);
579 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(I&: VAA); }
580 void visitCallInst(CallInst &CI);
581 void visitInvokeInst(InvokeInst &II);
582 void visitGetElementPtrInst(GetElementPtrInst &GEP);
583 void visitLoadInst(LoadInst &LI);
584 void visitStoreInst(StoreInst &SI);
585 void verifyDominatesUse(Instruction &I, unsigned i);
586 void visitInstruction(Instruction &I);
587 void visitTerminator(Instruction &I);
588 void visitBranchInst(BranchInst &BI);
589 void visitReturnInst(ReturnInst &RI);
590 void visitSwitchInst(SwitchInst &SI);
591 void visitIndirectBrInst(IndirectBrInst &BI);
592 void visitCallBrInst(CallBrInst &CBI);
593 void visitSelectInst(SelectInst &SI);
594 void visitUserOp1(Instruction &I);
595 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
596 void visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call);
597 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI);
598 void visitVPIntrinsic(VPIntrinsic &VPI);
599 void visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII);
600 void visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI);
601 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
602 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
603 void visitFenceInst(FenceInst &FI);
604 void visitAllocaInst(AllocaInst &AI);
605 void visitExtractValueInst(ExtractValueInst &EVI);
606 void visitInsertValueInst(InsertValueInst &IVI);
607 void visitEHPadPredecessors(Instruction &I);
608 void visitLandingPadInst(LandingPadInst &LPI);
609 void visitResumeInst(ResumeInst &RI);
610 void visitCatchPadInst(CatchPadInst &CPI);
611 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
612 void visitCleanupPadInst(CleanupPadInst &CPI);
613 void visitFuncletPadInst(FuncletPadInst &FPI);
614 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
615 void visitCleanupReturnInst(CleanupReturnInst &CRI);
616
617 void verifySwiftErrorCall(CallBase &Call, const Value *SwiftErrorVal);
618 void verifySwiftErrorValue(const Value *SwiftErrorVal);
619 void verifyTailCCMustTailAttrs(const AttrBuilder &Attrs, StringRef Context);
620 void verifyMustTailCall(CallInst &CI);
621 bool verifyAttributeCount(AttributeList Attrs, unsigned Params);
622 void verifyAttributeTypes(AttributeSet Attrs, const Value *V);
623 void verifyParameterAttrs(AttributeSet Attrs, Type *Ty, const Value *V);
624 void checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
625 const Value *V);
626 void verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
627 const Value *V, bool IsIntrinsic, bool IsInlineAsm);
628 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
629
630 void visitConstantExprsRecursively(const Constant *EntryC);
631 void visitConstantExpr(const ConstantExpr *CE);
632 void verifyInlineAsmCall(const CallBase &Call);
633 void verifyStatepoint(const CallBase &Call);
634 void verifyFrameRecoverIndices();
635 void verifySiblingFuncletUnwinds();
636
637 void verifyFragmentExpression(const DbgVariableIntrinsic &I);
638 void verifyFragmentExpression(const DbgVariableRecord &I);
639 template <typename ValueOrMetadata>
640 void verifyFragmentExpression(const DIVariable &V,
641 DIExpression::FragmentInfo Fragment,
642 ValueOrMetadata *Desc);
643 void verifyFnArgs(const DbgVariableIntrinsic &I);
644 void verifyFnArgs(const DbgVariableRecord &DVR);
645 void verifyNotEntryValue(const DbgVariableIntrinsic &I);
646 void verifyNotEntryValue(const DbgVariableRecord &I);
647
648 /// Module-level debug info verification...
649 void verifyCompileUnits();
650
651 /// Module-level verification that all @llvm.experimental.deoptimize
652 /// declarations share the same calling convention.
653 void verifyDeoptimizeCallingConvs();
654
655 void verifyAttachedCallBundle(const CallBase &Call,
656 const OperandBundleUse &BU);
657
658 /// Verify the llvm.experimental.noalias.scope.decl declarations
659 void verifyNoAliasScopeDecl();
660};
661
662} // end anonymous namespace
663
664/// We know that cond should be true, if not print an error message.
665#define Check(C, ...) \
666 do { \
667 if (!(C)) { \
668 CheckFailed(__VA_ARGS__); \
669 return; \
670 } \
671 } while (false)
672
673/// We know that a debug info condition should be true, if not print
674/// an error message.
675#define CheckDI(C, ...) \
676 do { \
677 if (!(C)) { \
678 DebugInfoCheckFailed(__VA_ARGS__); \
679 return; \
680 } \
681 } while (false)
682
683void Verifier::visitDbgRecords(Instruction &I) {
684 if (!I.DebugMarker)
685 return;
686 CheckDI(I.DebugMarker->MarkedInstr == &I,
687 "Instruction has invalid DebugMarker", &I);
688 CheckDI(!isa<PHINode>(&I) || !I.hasDbgRecords(),
689 "PHI Node must not have any attached DbgRecords", &I);
690 for (DbgRecord &DR : I.getDbgRecordRange()) {
691 CheckDI(DR.getMarker() == I.DebugMarker,
692 "DbgRecord had invalid DebugMarker", &I, &DR);
693 if (auto *Loc =
694 dyn_cast_or_null<DILocation>(Val: DR.getDebugLoc().getAsMDNode()))
695 visitMDNode(MD: *Loc, AllowLocs: AreDebugLocsAllowed::Yes);
696 if (auto *DVR = dyn_cast<DbgVariableRecord>(Val: &DR)) {
697 visit(DVR&: *DVR);
698 // These have to appear after `visit` for consistency with existing
699 // intrinsic behaviour.
700 verifyFragmentExpression(I: *DVR);
701 verifyNotEntryValue(I: *DVR);
702 } else if (auto *DLR = dyn_cast<DbgLabelRecord>(Val: &DR)) {
703 visit(DLR&: *DLR);
704 }
705 }
706}
707
708void Verifier::visit(Instruction &I) {
709 visitDbgRecords(I);
710 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
711 Check(I.getOperand(i) != nullptr, "Operand is null", &I);
712 InstVisitor<Verifier>::visit(I);
713}
714
715// Helper to iterate over indirect users. By returning false, the callback can ask to stop traversing further.
716static void forEachUser(const Value *User,
717 SmallPtrSet<const Value *, 32> &Visited,
718 llvm::function_ref<bool(const Value *)> Callback) {
719 if (!Visited.insert(Ptr: User).second)
720 return;
721
722 SmallVector<const Value *> WorkList;
723 append_range(C&: WorkList, R: User->materialized_users());
724 while (!WorkList.empty()) {
725 const Value *Cur = WorkList.pop_back_val();
726 if (!Visited.insert(Ptr: Cur).second)
727 continue;
728 if (Callback(Cur))
729 append_range(C&: WorkList, R: Cur->materialized_users());
730 }
731}
732
733void Verifier::visitGlobalValue(const GlobalValue &GV) {
734 Check(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
735 "Global is external, but doesn't have external or weak linkage!", &GV);
736
737 if (const GlobalObject *GO = dyn_cast<GlobalObject>(Val: &GV)) {
738
739 if (MaybeAlign A = GO->getAlign()) {
740 Check(A->value() <= Value::MaximumAlignment,
741 "huge alignment values are unsupported", GO);
742 }
743
744 if (const MDNode *Associated =
745 GO->getMetadata(KindID: LLVMContext::MD_associated)) {
746 Check(Associated->getNumOperands() == 1,
747 "associated metadata must have one operand", &GV, Associated);
748 const Metadata *Op = Associated->getOperand(I: 0).get();
749 Check(Op, "associated metadata must have a global value", GO, Associated);
750
751 const auto *VM = dyn_cast_or_null<ValueAsMetadata>(Val: Op);
752 Check(VM, "associated metadata must be ValueAsMetadata", GO, Associated);
753 if (VM) {
754 Check(isa<PointerType>(VM->getValue()->getType()),
755 "associated value must be pointer typed", GV, Associated);
756
757 const Value *Stripped = VM->getValue()->stripPointerCastsAndAliases();
758 Check(isa<GlobalObject>(Stripped) || isa<Constant>(Stripped),
759 "associated metadata must point to a GlobalObject", GO, Stripped);
760 Check(Stripped != GO,
761 "global values should not associate to themselves", GO,
762 Associated);
763 }
764 }
765
766 // FIXME: Why is getMetadata on GlobalValue protected?
767 if (const MDNode *AbsoluteSymbol =
768 GO->getMetadata(KindID: LLVMContext::MD_absolute_symbol)) {
769 verifyRangeMetadata(V: *GO, Range: AbsoluteSymbol, Ty: DL.getIntPtrType(GO->getType()),
770 IsAbsoluteSymbol: true);
771 }
772 }
773
774 Check(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
775 "Only global variables can have appending linkage!", &GV);
776
777 if (GV.hasAppendingLinkage()) {
778 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(Val: &GV);
779 Check(GVar && GVar->getValueType()->isArrayTy(),
780 "Only global arrays can have appending linkage!", GVar);
781 }
782
783 if (GV.isDeclarationForLinker())
784 Check(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
785
786 if (GV.hasDLLExportStorageClass()) {
787 Check(!GV.hasHiddenVisibility(),
788 "dllexport GlobalValue must have default or protected visibility",
789 &GV);
790 }
791 if (GV.hasDLLImportStorageClass()) {
792 Check(GV.hasDefaultVisibility(),
793 "dllimport GlobalValue must have default visibility", &GV);
794 Check(!GV.isDSOLocal(), "GlobalValue with DLLImport Storage is dso_local!",
795 &GV);
796
797 Check((GV.isDeclaration() &&
798 (GV.hasExternalLinkage() || GV.hasExternalWeakLinkage())) ||
799 GV.hasAvailableExternallyLinkage(),
800 "Global is marked as dllimport, but not external", &GV);
801 }
802
803 if (GV.isImplicitDSOLocal())
804 Check(GV.isDSOLocal(),
805 "GlobalValue with local linkage or non-default "
806 "visibility must be dso_local!",
807 &GV);
808
809 forEachUser(User: &GV, Visited&: GlobalValueVisited, Callback: [&](const Value *V) -> bool {
810 if (const Instruction *I = dyn_cast<Instruction>(Val: V)) {
811 if (!I->getParent() || !I->getParent()->getParent())
812 CheckFailed(Message: "Global is referenced by parentless instruction!", V1: &GV, Vs: &M,
813 Vs: I);
814 else if (I->getParent()->getParent()->getParent() != &M)
815 CheckFailed(Message: "Global is referenced in a different module!", V1: &GV, Vs: &M, Vs: I,
816 Vs: I->getParent()->getParent(),
817 Vs: I->getParent()->getParent()->getParent());
818 return false;
819 } else if (const Function *F = dyn_cast<Function>(Val: V)) {
820 if (F->getParent() != &M)
821 CheckFailed(Message: "Global is used by function in a different module", V1: &GV, Vs: &M,
822 Vs: F, Vs: F->getParent());
823 return false;
824 }
825 return true;
826 });
827}
828
829void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
830 if (GV.hasInitializer()) {
831 Check(GV.getInitializer()->getType() == GV.getValueType(),
832 "Global variable initializer type does not match global "
833 "variable type!",
834 &GV);
835 // If the global has common linkage, it must have a zero initializer and
836 // cannot be constant.
837 if (GV.hasCommonLinkage()) {
838 Check(GV.getInitializer()->isNullValue(),
839 "'common' global must have a zero initializer!", &GV);
840 Check(!GV.isConstant(), "'common' global may not be marked constant!",
841 &GV);
842 Check(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
843 }
844 }
845
846 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
847 GV.getName() == "llvm.global_dtors")) {
848 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
849 "invalid linkage for intrinsic global variable", &GV);
850 Check(GV.materialized_use_empty(),
851 "invalid uses of intrinsic global variable", &GV);
852
853 // Don't worry about emitting an error for it not being an array,
854 // visitGlobalValue will complain on appending non-array.
855 if (ArrayType *ATy = dyn_cast<ArrayType>(Val: GV.getValueType())) {
856 StructType *STy = dyn_cast<StructType>(Val: ATy->getElementType());
857 PointerType *FuncPtrTy =
858 PointerType::get(C&: Context, AddressSpace: DL.getProgramAddressSpace());
859 Check(STy && (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
860 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
861 STy->getTypeAtIndex(1) == FuncPtrTy,
862 "wrong type for intrinsic global variable", &GV);
863 Check(STy->getNumElements() == 3,
864 "the third field of the element type is mandatory, "
865 "specify ptr null to migrate from the obsoleted 2-field form");
866 Type *ETy = STy->getTypeAtIndex(N: 2);
867 Check(ETy->isPointerTy(), "wrong type for intrinsic global variable",
868 &GV);
869 }
870 }
871
872 if (GV.hasName() && (GV.getName() == "llvm.used" ||
873 GV.getName() == "llvm.compiler.used")) {
874 Check(!GV.hasInitializer() || GV.hasAppendingLinkage(),
875 "invalid linkage for intrinsic global variable", &GV);
876 Check(GV.materialized_use_empty(),
877 "invalid uses of intrinsic global variable", &GV);
878
879 Type *GVType = GV.getValueType();
880 if (ArrayType *ATy = dyn_cast<ArrayType>(Val: GVType)) {
881 PointerType *PTy = dyn_cast<PointerType>(Val: ATy->getElementType());
882 Check(PTy, "wrong type for intrinsic global variable", &GV);
883 if (GV.hasInitializer()) {
884 const Constant *Init = GV.getInitializer();
885 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Val: Init);
886 Check(InitArray, "wrong initalizer for intrinsic global variable",
887 Init);
888 for (Value *Op : InitArray->operands()) {
889 Value *V = Op->stripPointerCasts();
890 Check(isa<GlobalVariable>(V) || isa<Function>(V) ||
891 isa<GlobalAlias>(V),
892 Twine("invalid ") + GV.getName() + " member", V);
893 Check(V->hasName(),
894 Twine("members of ") + GV.getName() + " must be named", V);
895 }
896 }
897 }
898 }
899
900 // Visit any debug info attachments.
901 SmallVector<MDNode *, 1> MDs;
902 GV.getMetadata(KindID: LLVMContext::MD_dbg, MDs);
903 for (auto *MD : MDs) {
904 if (auto *GVE = dyn_cast<DIGlobalVariableExpression>(Val: MD))
905 visitDIGlobalVariableExpression(N: *GVE);
906 else
907 CheckDI(false, "!dbg attachment of global variable must be a "
908 "DIGlobalVariableExpression");
909 }
910
911 // Scalable vectors cannot be global variables, since we don't know
912 // the runtime size.
913 Check(!GV.getValueType()->isScalableTy(),
914 "Globals cannot contain scalable types", &GV);
915
916 // Check if it's a target extension type that disallows being used as a
917 // global.
918 if (auto *TTy = dyn_cast<TargetExtType>(Val: GV.getValueType()))
919 Check(TTy->hasProperty(TargetExtType::CanBeGlobal),
920 "Global @" + GV.getName() + " has illegal target extension type",
921 TTy);
922
923 if (!GV.hasInitializer()) {
924 visitGlobalValue(GV);
925 return;
926 }
927
928 // Walk any aggregate initializers looking for bitcasts between address spaces
929 visitConstantExprsRecursively(EntryC: GV.getInitializer());
930
931 visitGlobalValue(GV);
932}
933
934void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
935 SmallPtrSet<const GlobalAlias*, 4> Visited;
936 Visited.insert(Ptr: &GA);
937 visitAliaseeSubExpr(Visited, A: GA, C);
938}
939
940void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
941 const GlobalAlias &GA, const Constant &C) {
942 if (GA.hasAvailableExternallyLinkage()) {
943 Check(isa<GlobalValue>(C) &&
944 cast<GlobalValue>(C).hasAvailableExternallyLinkage(),
945 "available_externally alias must point to available_externally "
946 "global value",
947 &GA);
948 }
949 if (const auto *GV = dyn_cast<GlobalValue>(Val: &C)) {
950 if (!GA.hasAvailableExternallyLinkage()) {
951 Check(!GV->isDeclarationForLinker(), "Alias must point to a definition",
952 &GA);
953 }
954
955 if (const auto *GA2 = dyn_cast<GlobalAlias>(Val: GV)) {
956 Check(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
957
958 Check(!GA2->isInterposable(),
959 "Alias cannot point to an interposable alias", &GA);
960 } else {
961 // Only continue verifying subexpressions of GlobalAliases.
962 // Do not recurse into global initializers.
963 return;
964 }
965 }
966
967 if (const auto *CE = dyn_cast<ConstantExpr>(Val: &C))
968 visitConstantExprsRecursively(EntryC: CE);
969
970 for (const Use &U : C.operands()) {
971 Value *V = &*U;
972 if (const auto *GA2 = dyn_cast<GlobalAlias>(Val: V))
973 visitAliaseeSubExpr(Visited, GA, C: *GA2->getAliasee());
974 else if (const auto *C2 = dyn_cast<Constant>(Val: V))
975 visitAliaseeSubExpr(Visited, GA, C: *C2);
976 }
977}
978
979void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
980 Check(GlobalAlias::isValidLinkage(GA.getLinkage()),
981 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
982 "weak_odr, external, or available_externally linkage!",
983 &GA);
984 const Constant *Aliasee = GA.getAliasee();
985 Check(Aliasee, "Aliasee cannot be NULL!", &GA);
986 Check(GA.getType() == Aliasee->getType(),
987 "Alias and aliasee types should match!", &GA);
988
989 Check(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
990 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
991
992 visitAliaseeSubExpr(GA, C: *Aliasee);
993
994 visitGlobalValue(GV: GA);
995}
996
997void Verifier::visitGlobalIFunc(const GlobalIFunc &GI) {
998 Check(GlobalIFunc::isValidLinkage(GI.getLinkage()),
999 "IFunc should have private, internal, linkonce, weak, linkonce_odr, "
1000 "weak_odr, or external linkage!",
1001 &GI);
1002 // Pierce through ConstantExprs and GlobalAliases and check that the resolver
1003 // is a Function definition.
1004 const Function *Resolver = GI.getResolverFunction();
1005 Check(Resolver, "IFunc must have a Function resolver", &GI);
1006 Check(!Resolver->isDeclarationForLinker(),
1007 "IFunc resolver must be a definition", &GI);
1008
1009 // Check that the immediate resolver operand (prior to any bitcasts) has the
1010 // correct type.
1011 const Type *ResolverTy = GI.getResolver()->getType();
1012
1013 Check(isa<PointerType>(Resolver->getFunctionType()->getReturnType()),
1014 "IFunc resolver must return a pointer", &GI);
1015
1016 const Type *ResolverFuncTy =
1017 GlobalIFunc::getResolverFunctionType(IFuncValTy: GI.getValueType());
1018 Check(ResolverTy == ResolverFuncTy->getPointerTo(GI.getAddressSpace()),
1019 "IFunc resolver has incorrect type", &GI);
1020}
1021
1022void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
1023 // There used to be various other llvm.dbg.* nodes, but we don't support
1024 // upgrading them and we want to reserve the namespace for future uses.
1025 if (NMD.getName().starts_with(Prefix: "llvm.dbg."))
1026 CheckDI(NMD.getName() == "llvm.dbg.cu",
1027 "unrecognized named metadata node in the llvm.dbg namespace", &NMD);
1028 for (const MDNode *MD : NMD.operands()) {
1029 if (NMD.getName() == "llvm.dbg.cu")
1030 CheckDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
1031
1032 if (!MD)
1033 continue;
1034
1035 visitMDNode(MD: *MD, AllowLocs: AreDebugLocsAllowed::Yes);
1036 }
1037}
1038
1039void Verifier::visitMDNode(const MDNode &MD, AreDebugLocsAllowed AllowLocs) {
1040 // Only visit each node once. Metadata can be mutually recursive, so this
1041 // avoids infinite recursion here, as well as being an optimization.
1042 if (!MDNodes.insert(Ptr: &MD).second)
1043 return;
1044
1045 Check(&MD.getContext() == &Context,
1046 "MDNode context does not match Module context!", &MD);
1047
1048 switch (MD.getMetadataID()) {
1049 default:
1050 llvm_unreachable("Invalid MDNode subclass");
1051 case Metadata::MDTupleKind:
1052 break;
1053#define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
1054 case Metadata::CLASS##Kind: \
1055 visit##CLASS(cast<CLASS>(MD)); \
1056 break;
1057#include "llvm/IR/Metadata.def"
1058 }
1059
1060 for (const Metadata *Op : MD.operands()) {
1061 if (!Op)
1062 continue;
1063 Check(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
1064 &MD, Op);
1065 CheckDI(!isa<DILocation>(Op) || AllowLocs == AreDebugLocsAllowed::Yes,
1066 "DILocation not allowed within this metadata node", &MD, Op);
1067 if (auto *N = dyn_cast<MDNode>(Val: Op)) {
1068 visitMDNode(MD: *N, AllowLocs);
1069 continue;
1070 }
1071 if (auto *V = dyn_cast<ValueAsMetadata>(Val: Op)) {
1072 visitValueAsMetadata(MD: *V, F: nullptr);
1073 continue;
1074 }
1075 }
1076
1077 // Check these last, so we diagnose problems in operands first.
1078 Check(!MD.isTemporary(), "Expected no forward declarations!", &MD);
1079 Check(MD.isResolved(), "All nodes should be resolved!", &MD);
1080}
1081
1082void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
1083 Check(MD.getValue(), "Expected valid value", &MD);
1084 Check(!MD.getValue()->getType()->isMetadataTy(),
1085 "Unexpected metadata round-trip through values", &MD, MD.getValue());
1086
1087 auto *L = dyn_cast<LocalAsMetadata>(Val: &MD);
1088 if (!L)
1089 return;
1090
1091 Check(F, "function-local metadata used outside a function", L);
1092
1093 // If this was an instruction, bb, or argument, verify that it is in the
1094 // function that we expect.
1095 Function *ActualF = nullptr;
1096 if (Instruction *I = dyn_cast<Instruction>(Val: L->getValue())) {
1097 Check(I->getParent(), "function-local metadata not in basic block", L, I);
1098 ActualF = I->getParent()->getParent();
1099 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(Val: L->getValue()))
1100 ActualF = BB->getParent();
1101 else if (Argument *A = dyn_cast<Argument>(Val: L->getValue()))
1102 ActualF = A->getParent();
1103 assert(ActualF && "Unimplemented function local metadata case!");
1104
1105 Check(ActualF == F, "function-local metadata used in wrong function", L);
1106}
1107
1108void Verifier::visitDIArgList(const DIArgList &AL, Function *F) {
1109 for (const ValueAsMetadata *VAM : AL.getArgs())
1110 visitValueAsMetadata(MD: *VAM, F);
1111}
1112
1113void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
1114 Metadata *MD = MDV.getMetadata();
1115 if (auto *N = dyn_cast<MDNode>(Val: MD)) {
1116 visitMDNode(MD: *N, AllowLocs: AreDebugLocsAllowed::No);
1117 return;
1118 }
1119
1120 // Only visit each node once. Metadata can be mutually recursive, so this
1121 // avoids infinite recursion here, as well as being an optimization.
1122 if (!MDNodes.insert(Ptr: MD).second)
1123 return;
1124
1125 if (auto *V = dyn_cast<ValueAsMetadata>(Val: MD))
1126 visitValueAsMetadata(MD: *V, F);
1127
1128 if (auto *AL = dyn_cast<DIArgList>(Val: MD))
1129 visitDIArgList(AL: *AL, F);
1130}
1131
1132static bool isType(const Metadata *MD) { return !MD || isa<DIType>(Val: MD); }
1133static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(Val: MD); }
1134static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(Val: MD); }
1135
1136void Verifier::visitDILocation(const DILocation &N) {
1137 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1138 "location requires a valid scope", &N, N.getRawScope());
1139 if (auto *IA = N.getRawInlinedAt())
1140 CheckDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
1141 if (auto *SP = dyn_cast<DISubprogram>(Val: N.getRawScope()))
1142 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1143}
1144
1145void Verifier::visitGenericDINode(const GenericDINode &N) {
1146 CheckDI(N.getTag(), "invalid tag", &N);
1147}
1148
1149void Verifier::visitDIScope(const DIScope &N) {
1150 if (auto *F = N.getRawFile())
1151 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1152}
1153
1154void Verifier::visitDISubrange(const DISubrange &N) {
1155 CheckDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
1156 bool HasAssumedSizedArraySupport = dwarf::isFortran(S: CurrentSourceLang);
1157 CheckDI(HasAssumedSizedArraySupport || N.getRawCountNode() ||
1158 N.getRawUpperBound(),
1159 "Subrange must contain count or upperBound", &N);
1160 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1161 "Subrange can have any one of count or upperBound", &N);
1162 auto *CBound = N.getRawCountNode();
1163 CheckDI(!CBound || isa<ConstantAsMetadata>(CBound) ||
1164 isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1165 "Count must be signed constant or DIVariable or DIExpression", &N);
1166 auto Count = N.getCount();
1167 CheckDI(!Count || !isa<ConstantInt *>(Count) ||
1168 cast<ConstantInt *>(Count)->getSExtValue() >= -1,
1169 "invalid subrange count", &N);
1170 auto *LBound = N.getRawLowerBound();
1171 CheckDI(!LBound || isa<ConstantAsMetadata>(LBound) ||
1172 isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1173 "LowerBound must be signed constant or DIVariable or DIExpression",
1174 &N);
1175 auto *UBound = N.getRawUpperBound();
1176 CheckDI(!UBound || isa<ConstantAsMetadata>(UBound) ||
1177 isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1178 "UpperBound must be signed constant or DIVariable or DIExpression",
1179 &N);
1180 auto *Stride = N.getRawStride();
1181 CheckDI(!Stride || isa<ConstantAsMetadata>(Stride) ||
1182 isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1183 "Stride must be signed constant or DIVariable or DIExpression", &N);
1184}
1185
1186void Verifier::visitDIGenericSubrange(const DIGenericSubrange &N) {
1187 CheckDI(N.getTag() == dwarf::DW_TAG_generic_subrange, "invalid tag", &N);
1188 CheckDI(N.getRawCountNode() || N.getRawUpperBound(),
1189 "GenericSubrange must contain count or upperBound", &N);
1190 CheckDI(!N.getRawCountNode() || !N.getRawUpperBound(),
1191 "GenericSubrange can have any one of count or upperBound", &N);
1192 auto *CBound = N.getRawCountNode();
1193 CheckDI(!CBound || isa<DIVariable>(CBound) || isa<DIExpression>(CBound),
1194 "Count must be signed constant or DIVariable or DIExpression", &N);
1195 auto *LBound = N.getRawLowerBound();
1196 CheckDI(LBound, "GenericSubrange must contain lowerBound", &N);
1197 CheckDI(isa<DIVariable>(LBound) || isa<DIExpression>(LBound),
1198 "LowerBound must be signed constant or DIVariable or DIExpression",
1199 &N);
1200 auto *UBound = N.getRawUpperBound();
1201 CheckDI(!UBound || isa<DIVariable>(UBound) || isa<DIExpression>(UBound),
1202 "UpperBound must be signed constant or DIVariable or DIExpression",
1203 &N);
1204 auto *Stride = N.getRawStride();
1205 CheckDI(Stride, "GenericSubrange must contain stride", &N);
1206 CheckDI(isa<DIVariable>(Stride) || isa<DIExpression>(Stride),
1207 "Stride must be signed constant or DIVariable or DIExpression", &N);
1208}
1209
1210void Verifier::visitDIEnumerator(const DIEnumerator &N) {
1211 CheckDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
1212}
1213
1214void Verifier::visitDIBasicType(const DIBasicType &N) {
1215 CheckDI(N.getTag() == dwarf::DW_TAG_base_type ||
1216 N.getTag() == dwarf::DW_TAG_unspecified_type ||
1217 N.getTag() == dwarf::DW_TAG_string_type,
1218 "invalid tag", &N);
1219}
1220
1221void Verifier::visitDIStringType(const DIStringType &N) {
1222 CheckDI(N.getTag() == dwarf::DW_TAG_string_type, "invalid tag", &N);
1223 CheckDI(!(N.isBigEndian() && N.isLittleEndian()), "has conflicting flags",
1224 &N);
1225}
1226
1227void Verifier::visitDIDerivedType(const DIDerivedType &N) {
1228 // Common scope checks.
1229 visitDIScope(N);
1230
1231 CheckDI(N.getTag() == dwarf::DW_TAG_typedef ||
1232 N.getTag() == dwarf::DW_TAG_pointer_type ||
1233 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
1234 N.getTag() == dwarf::DW_TAG_reference_type ||
1235 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
1236 N.getTag() == dwarf::DW_TAG_const_type ||
1237 N.getTag() == dwarf::DW_TAG_immutable_type ||
1238 N.getTag() == dwarf::DW_TAG_volatile_type ||
1239 N.getTag() == dwarf::DW_TAG_restrict_type ||
1240 N.getTag() == dwarf::DW_TAG_atomic_type ||
1241 N.getTag() == dwarf::DW_TAG_LLVM_ptrauth_type ||
1242 N.getTag() == dwarf::DW_TAG_member ||
1243 (N.getTag() == dwarf::DW_TAG_variable && N.isStaticMember()) ||
1244 N.getTag() == dwarf::DW_TAG_inheritance ||
1245 N.getTag() == dwarf::DW_TAG_friend ||
1246 N.getTag() == dwarf::DW_TAG_set_type ||
1247 N.getTag() == dwarf::DW_TAG_template_alias,
1248 "invalid tag", &N);
1249 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
1250 CheckDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
1251 N.getRawExtraData());
1252 }
1253
1254 if (N.getTag() == dwarf::DW_TAG_set_type) {
1255 if (auto *T = N.getRawBaseType()) {
1256 auto *Enum = dyn_cast_or_null<DICompositeType>(Val: T);
1257 auto *Basic = dyn_cast_or_null<DIBasicType>(Val: T);
1258 CheckDI(
1259 (Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type) ||
1260 (Basic && (Basic->getEncoding() == dwarf::DW_ATE_unsigned ||
1261 Basic->getEncoding() == dwarf::DW_ATE_signed ||
1262 Basic->getEncoding() == dwarf::DW_ATE_unsigned_char ||
1263 Basic->getEncoding() == dwarf::DW_ATE_signed_char ||
1264 Basic->getEncoding() == dwarf::DW_ATE_boolean)),
1265 "invalid set base type", &N, T);
1266 }
1267 }
1268
1269 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1270 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1271 N.getRawBaseType());
1272
1273 if (N.getDWARFAddressSpace()) {
1274 CheckDI(N.getTag() == dwarf::DW_TAG_pointer_type ||
1275 N.getTag() == dwarf::DW_TAG_reference_type ||
1276 N.getTag() == dwarf::DW_TAG_rvalue_reference_type,
1277 "DWARF address space only applies to pointer or reference types",
1278 &N);
1279 }
1280}
1281
1282/// Detect mutually exclusive flags.
1283static bool hasConflictingReferenceFlags(unsigned Flags) {
1284 return ((Flags & DINode::FlagLValueReference) &&
1285 (Flags & DINode::FlagRValueReference)) ||
1286 ((Flags & DINode::FlagTypePassByValue) &&
1287 (Flags & DINode::FlagTypePassByReference));
1288}
1289
1290void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
1291 auto *Params = dyn_cast<MDTuple>(Val: &RawParams);
1292 CheckDI(Params, "invalid template params", &N, &RawParams);
1293 for (Metadata *Op : Params->operands()) {
1294 CheckDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
1295 &N, Params, Op);
1296 }
1297}
1298
1299void Verifier::visitDICompositeType(const DICompositeType &N) {
1300 // Common scope checks.
1301 visitDIScope(N);
1302
1303 CheckDI(N.getTag() == dwarf::DW_TAG_array_type ||
1304 N.getTag() == dwarf::DW_TAG_structure_type ||
1305 N.getTag() == dwarf::DW_TAG_union_type ||
1306 N.getTag() == dwarf::DW_TAG_enumeration_type ||
1307 N.getTag() == dwarf::DW_TAG_class_type ||
1308 N.getTag() == dwarf::DW_TAG_variant_part ||
1309 N.getTag() == dwarf::DW_TAG_namelist,
1310 "invalid tag", &N);
1311
1312 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1313 CheckDI(isType(N.getRawBaseType()), "invalid base type", &N,
1314 N.getRawBaseType());
1315
1316 CheckDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
1317 "invalid composite elements", &N, N.getRawElements());
1318 CheckDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
1319 N.getRawVTableHolder());
1320 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1321 "invalid reference flags", &N);
1322 unsigned DIBlockByRefStruct = 1 << 4;
1323 CheckDI((N.getFlags() & DIBlockByRefStruct) == 0,
1324 "DIBlockByRefStruct on DICompositeType is no longer supported", &N);
1325
1326 if (N.isVector()) {
1327 const DINodeArray Elements = N.getElements();
1328 CheckDI(Elements.size() == 1 &&
1329 Elements[0]->getTag() == dwarf::DW_TAG_subrange_type,
1330 "invalid vector, expected one element of type subrange", &N);
1331 }
1332
1333 if (auto *Params = N.getRawTemplateParams())
1334 visitTemplateParams(N, RawParams: *Params);
1335
1336 if (auto *D = N.getRawDiscriminator()) {
1337 CheckDI(isa<DIDerivedType>(D) && N.getTag() == dwarf::DW_TAG_variant_part,
1338 "discriminator can only appear on variant part");
1339 }
1340
1341 if (N.getRawDataLocation()) {
1342 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1343 "dataLocation can only appear in array type");
1344 }
1345
1346 if (N.getRawAssociated()) {
1347 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1348 "associated can only appear in array type");
1349 }
1350
1351 if (N.getRawAllocated()) {
1352 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1353 "allocated can only appear in array type");
1354 }
1355
1356 if (N.getRawRank()) {
1357 CheckDI(N.getTag() == dwarf::DW_TAG_array_type,
1358 "rank can only appear in array type");
1359 }
1360
1361 if (N.getTag() == dwarf::DW_TAG_array_type) {
1362 CheckDI(N.getRawBaseType(), "array types must have a base type", &N);
1363 }
1364}
1365
1366void Verifier::visitDISubroutineType(const DISubroutineType &N) {
1367 CheckDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
1368 if (auto *Types = N.getRawTypeArray()) {
1369 CheckDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
1370 for (Metadata *Ty : N.getTypeArray()->operands()) {
1371 CheckDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
1372 }
1373 }
1374 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1375 "invalid reference flags", &N);
1376}
1377
1378void Verifier::visitDIFile(const DIFile &N) {
1379 CheckDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
1380 std::optional<DIFile::ChecksumInfo<StringRef>> Checksum = N.getChecksum();
1381 if (Checksum) {
1382 CheckDI(Checksum->Kind <= DIFile::ChecksumKind::CSK_Last,
1383 "invalid checksum kind", &N);
1384 size_t Size;
1385 switch (Checksum->Kind) {
1386 case DIFile::CSK_MD5:
1387 Size = 32;
1388 break;
1389 case DIFile::CSK_SHA1:
1390 Size = 40;
1391 break;
1392 case DIFile::CSK_SHA256:
1393 Size = 64;
1394 break;
1395 }
1396 CheckDI(Checksum->Value.size() == Size, "invalid checksum length", &N);
1397 CheckDI(Checksum->Value.find_if_not(llvm::isHexDigit) == StringRef::npos,
1398 "invalid checksum", &N);
1399 }
1400}
1401
1402void Verifier::visitDICompileUnit(const DICompileUnit &N) {
1403 CheckDI(N.isDistinct(), "compile units must be distinct", &N);
1404 CheckDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
1405
1406 // Don't bother verifying the compilation directory or producer string
1407 // as those could be empty.
1408 CheckDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
1409 N.getRawFile());
1410 CheckDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
1411 N.getFile());
1412
1413 CurrentSourceLang = (dwarf::SourceLanguage)N.getSourceLanguage();
1414
1415 CheckDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
1416 "invalid emission kind", &N);
1417
1418 if (auto *Array = N.getRawEnumTypes()) {
1419 CheckDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
1420 for (Metadata *Op : N.getEnumTypes()->operands()) {
1421 auto *Enum = dyn_cast_or_null<DICompositeType>(Val: Op);
1422 CheckDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
1423 "invalid enum type", &N, N.getEnumTypes(), Op);
1424 }
1425 }
1426 if (auto *Array = N.getRawRetainedTypes()) {
1427 CheckDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
1428 for (Metadata *Op : N.getRetainedTypes()->operands()) {
1429 CheckDI(
1430 Op && (isa<DIType>(Op) || (isa<DISubprogram>(Op) &&
1431 !cast<DISubprogram>(Op)->isDefinition())),
1432 "invalid retained type", &N, Op);
1433 }
1434 }
1435 if (auto *Array = N.getRawGlobalVariables()) {
1436 CheckDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
1437 for (Metadata *Op : N.getGlobalVariables()->operands()) {
1438 CheckDI(Op && (isa<DIGlobalVariableExpression>(Op)),
1439 "invalid global variable ref", &N, Op);
1440 }
1441 }
1442 if (auto *Array = N.getRawImportedEntities()) {
1443 CheckDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
1444 for (Metadata *Op : N.getImportedEntities()->operands()) {
1445 CheckDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
1446 &N, Op);
1447 }
1448 }
1449 if (auto *Array = N.getRawMacros()) {
1450 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1451 for (Metadata *Op : N.getMacros()->operands()) {
1452 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1453 }
1454 }
1455 CUVisited.insert(Ptr: &N);
1456}
1457
1458void Verifier::visitDISubprogram(const DISubprogram &N) {
1459 CheckDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
1460 CheckDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
1461 if (auto *F = N.getRawFile())
1462 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1463 else
1464 CheckDI(N.getLine() == 0, "line specified with no file", &N, N.getLine());
1465 if (auto *T = N.getRawType())
1466 CheckDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
1467 CheckDI(isType(N.getRawContainingType()), "invalid containing type", &N,
1468 N.getRawContainingType());
1469 if (auto *Params = N.getRawTemplateParams())
1470 visitTemplateParams(N, RawParams: *Params);
1471 if (auto *S = N.getRawDeclaration())
1472 CheckDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
1473 "invalid subprogram declaration", &N, S);
1474 if (auto *RawNode = N.getRawRetainedNodes()) {
1475 auto *Node = dyn_cast<MDTuple>(Val: RawNode);
1476 CheckDI(Node, "invalid retained nodes list", &N, RawNode);
1477 for (Metadata *Op : Node->operands()) {
1478 CheckDI(Op && (isa<DILocalVariable>(Op) || isa<DILabel>(Op) ||
1479 isa<DIImportedEntity>(Op)),
1480 "invalid retained nodes, expected DILocalVariable, DILabel or "
1481 "DIImportedEntity",
1482 &N, Node, Op);
1483 }
1484 }
1485 CheckDI(!hasConflictingReferenceFlags(N.getFlags()),
1486 "invalid reference flags", &N);
1487
1488 auto *Unit = N.getRawUnit();
1489 if (N.isDefinition()) {
1490 // Subprogram definitions (not part of the type hierarchy).
1491 CheckDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
1492 CheckDI(Unit, "subprogram definitions must have a compile unit", &N);
1493 CheckDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
1494 // There's no good way to cross the CU boundary to insert a nested
1495 // DISubprogram definition in one CU into a type defined in another CU.
1496 auto *CT = dyn_cast_or_null<DICompositeType>(Val: N.getRawScope());
1497 if (CT && CT->getRawIdentifier() &&
1498 M.getContext().isODRUniquingDebugTypes())
1499 CheckDI(N.getDeclaration(),
1500 "definition subprograms cannot be nested within DICompositeType "
1501 "when enabling ODR",
1502 &N);
1503 } else {
1504 // Subprogram declarations (part of the type hierarchy).
1505 CheckDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1506 CheckDI(!N.getRawDeclaration(),
1507 "subprogram declaration must not have a declaration field");
1508 }
1509
1510 if (auto *RawThrownTypes = N.getRawThrownTypes()) {
1511 auto *ThrownTypes = dyn_cast<MDTuple>(Val: RawThrownTypes);
1512 CheckDI(ThrownTypes, "invalid thrown types list", &N, RawThrownTypes);
1513 for (Metadata *Op : ThrownTypes->operands())
1514 CheckDI(Op && isa<DIType>(Op), "invalid thrown type", &N, ThrownTypes,
1515 Op);
1516 }
1517
1518 if (N.areAllCallsDescribed())
1519 CheckDI(N.isDefinition(),
1520 "DIFlagAllCallsDescribed must be attached to a definition");
1521}
1522
1523void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1524 CheckDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1525 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1526 "invalid local scope", &N, N.getRawScope());
1527 if (auto *SP = dyn_cast<DISubprogram>(Val: N.getRawScope()))
1528 CheckDI(SP->isDefinition(), "scope points into the type hierarchy", &N);
1529}
1530
1531void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1532 visitDILexicalBlockBase(N);
1533
1534 CheckDI(N.getLine() || !N.getColumn(),
1535 "cannot have column info without line info", &N);
1536}
1537
1538void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1539 visitDILexicalBlockBase(N);
1540}
1541
1542void Verifier::visitDICommonBlock(const DICommonBlock &N) {
1543 CheckDI(N.getTag() == dwarf::DW_TAG_common_block, "invalid tag", &N);
1544 if (auto *S = N.getRawScope())
1545 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1546 if (auto *S = N.getRawDecl())
1547 CheckDI(isa<DIGlobalVariable>(S), "invalid declaration", &N, S);
1548}
1549
1550void Verifier::visitDINamespace(const DINamespace &N) {
1551 CheckDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1552 if (auto *S = N.getRawScope())
1553 CheckDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1554}
1555
1556void Verifier::visitDIMacro(const DIMacro &N) {
1557 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1558 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1559 "invalid macinfo type", &N);
1560 CheckDI(!N.getName().empty(), "anonymous macro", &N);
1561 if (!N.getValue().empty()) {
1562 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1563 }
1564}
1565
1566void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1567 CheckDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1568 "invalid macinfo type", &N);
1569 if (auto *F = N.getRawFile())
1570 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1571
1572 if (auto *Array = N.getRawElements()) {
1573 CheckDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1574 for (Metadata *Op : N.getElements()->operands()) {
1575 CheckDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1576 }
1577 }
1578}
1579
1580void Verifier::visitDIModule(const DIModule &N) {
1581 CheckDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1582 CheckDI(!N.getName().empty(), "anonymous module", &N);
1583}
1584
1585void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1586 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1587}
1588
1589void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1590 visitDITemplateParameter(N);
1591
1592 CheckDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1593 &N);
1594}
1595
1596void Verifier::visitDITemplateValueParameter(
1597 const DITemplateValueParameter &N) {
1598 visitDITemplateParameter(N);
1599
1600 CheckDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1601 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1602 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1603 "invalid tag", &N);
1604}
1605
1606void Verifier::visitDIVariable(const DIVariable &N) {
1607 if (auto *S = N.getRawScope())
1608 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1609 if (auto *F = N.getRawFile())
1610 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1611}
1612
1613void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1614 // Checks common to all variables.
1615 visitDIVariable(N);
1616
1617 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1618 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1619 // Check only if the global variable is not an extern
1620 if (N.isDefinition())
1621 CheckDI(N.getType(), "missing global variable type", &N);
1622 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1623 CheckDI(isa<DIDerivedType>(Member),
1624 "invalid static data member declaration", &N, Member);
1625 }
1626}
1627
1628void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1629 // Checks common to all variables.
1630 visitDIVariable(N);
1631
1632 CheckDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1633 CheckDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1634 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1635 "local variable requires a valid scope", &N, N.getRawScope());
1636 if (auto Ty = N.getType())
1637 CheckDI(!isa<DISubroutineType>(Ty), "invalid type", &N, N.getType());
1638}
1639
1640void Verifier::visitDIAssignID(const DIAssignID &N) {
1641 CheckDI(!N.getNumOperands(), "DIAssignID has no arguments", &N);
1642 CheckDI(N.isDistinct(), "DIAssignID must be distinct", &N);
1643}
1644
1645void Verifier::visitDILabel(const DILabel &N) {
1646 if (auto *S = N.getRawScope())
1647 CheckDI(isa<DIScope>(S), "invalid scope", &N, S);
1648 if (auto *F = N.getRawFile())
1649 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1650
1651 CheckDI(N.getTag() == dwarf::DW_TAG_label, "invalid tag", &N);
1652 CheckDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1653 "label requires a valid scope", &N, N.getRawScope());
1654}
1655
1656void Verifier::visitDIExpression(const DIExpression &N) {
1657 CheckDI(N.isValid(), "invalid expression", &N);
1658}
1659
1660void Verifier::visitDIGlobalVariableExpression(
1661 const DIGlobalVariableExpression &GVE) {
1662 CheckDI(GVE.getVariable(), "missing variable");
1663 if (auto *Var = GVE.getVariable())
1664 visitDIGlobalVariable(N: *Var);
1665 if (auto *Expr = GVE.getExpression()) {
1666 visitDIExpression(N: *Expr);
1667 if (auto Fragment = Expr->getFragmentInfo())
1668 verifyFragmentExpression(V: *GVE.getVariable(), Fragment: *Fragment, Desc: &GVE);
1669 }
1670}
1671
1672void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1673 CheckDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1674 if (auto *T = N.getRawType())
1675 CheckDI(isType(T), "invalid type ref", &N, T);
1676 if (auto *F = N.getRawFile())
1677 CheckDI(isa<DIFile>(F), "invalid file", &N, F);
1678}
1679
1680void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1681 CheckDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1682 N.getTag() == dwarf::DW_TAG_imported_declaration,
1683 "invalid tag", &N);
1684 if (auto *S = N.getRawScope())
1685 CheckDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1686 CheckDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1687 N.getRawEntity());
1688}
1689
1690void Verifier::visitComdat(const Comdat &C) {
1691 // In COFF the Module is invalid if the GlobalValue has private linkage.
1692 // Entities with private linkage don't have entries in the symbol table.
1693 if (TT.isOSBinFormatCOFF())
1694 if (const GlobalValue *GV = M.getNamedValue(Name: C.getName()))
1695 Check(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1696 GV);
1697}
1698
1699void Verifier::visitModuleIdents() {
1700 const NamedMDNode *Idents = M.getNamedMetadata(Name: "llvm.ident");
1701 if (!Idents)
1702 return;
1703
1704 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1705 // Scan each llvm.ident entry and make sure that this requirement is met.
1706 for (const MDNode *N : Idents->operands()) {
1707 Check(N->getNumOperands() == 1,
1708 "incorrect number of operands in llvm.ident metadata", N);
1709 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1710 ("invalid value for llvm.ident metadata entry operand"
1711 "(the operand should be a string)"),
1712 N->getOperand(0));
1713 }
1714}
1715
1716void Verifier::visitModuleCommandLines() {
1717 const NamedMDNode *CommandLines = M.getNamedMetadata(Name: "llvm.commandline");
1718 if (!CommandLines)
1719 return;
1720
1721 // llvm.commandline takes a list of metadata entry. Each entry has only one
1722 // string. Scan each llvm.commandline entry and make sure that this
1723 // requirement is met.
1724 for (const MDNode *N : CommandLines->operands()) {
1725 Check(N->getNumOperands() == 1,
1726 "incorrect number of operands in llvm.commandline metadata", N);
1727 Check(dyn_cast_or_null<MDString>(N->getOperand(0)),
1728 ("invalid value for llvm.commandline metadata entry operand"
1729 "(the operand should be a string)"),
1730 N->getOperand(0));
1731 }
1732}
1733
1734void Verifier::visitModuleFlags() {
1735 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1736 if (!Flags) return;
1737
1738 // Scan each flag, and track the flags and requirements.
1739 DenseMap<const MDString*, const MDNode*> SeenIDs;
1740 SmallVector<const MDNode*, 16> Requirements;
1741 uint64_t PAuthABIPlatform = -1;
1742 uint64_t PAuthABIVersion = -1;
1743 for (const MDNode *MDN : Flags->operands()) {
1744 visitModuleFlag(Op: MDN, SeenIDs, Requirements);
1745 if (MDN->getNumOperands() != 3)
1746 continue;
1747 if (const auto *FlagName = dyn_cast_or_null<MDString>(Val: MDN->getOperand(I: 1))) {
1748 if (FlagName->getString() == "aarch64-elf-pauthabi-platform") {
1749 if (const auto *PAP =
1750 mdconst::dyn_extract_or_null<ConstantInt>(MD: MDN->getOperand(I: 2)))
1751 PAuthABIPlatform = PAP->getZExtValue();
1752 } else if (FlagName->getString() == "aarch64-elf-pauthabi-version") {
1753 if (const auto *PAV =
1754 mdconst::dyn_extract_or_null<ConstantInt>(MD: MDN->getOperand(I: 2)))
1755 PAuthABIVersion = PAV->getZExtValue();
1756 }
1757 }
1758 }
1759
1760 if ((PAuthABIPlatform == uint64_t(-1)) != (PAuthABIVersion == uint64_t(-1)))
1761 CheckFailed(Message: "either both or no 'aarch64-elf-pauthabi-platform' and "
1762 "'aarch64-elf-pauthabi-version' module flags must be present");
1763
1764 // Validate that the requirements in the module are valid.
1765 for (const MDNode *Requirement : Requirements) {
1766 const MDString *Flag = cast<MDString>(Val: Requirement->getOperand(I: 0));
1767 const Metadata *ReqValue = Requirement->getOperand(I: 1);
1768
1769 const MDNode *Op = SeenIDs.lookup(Val: Flag);
1770 if (!Op) {
1771 CheckFailed(Message: "invalid requirement on flag, flag is not present in module",
1772 V1: Flag);
1773 continue;
1774 }
1775
1776 if (Op->getOperand(I: 2) != ReqValue) {
1777 CheckFailed(Message: ("invalid requirement on flag, "
1778 "flag does not have the required value"),
1779 V1: Flag);
1780 continue;
1781 }
1782 }
1783}
1784
1785void
1786Verifier::visitModuleFlag(const MDNode *Op,
1787 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1788 SmallVectorImpl<const MDNode *> &Requirements) {
1789 // Each module flag should have three arguments, the merge behavior (a
1790 // constant int), the flag ID (an MDString), and the value.
1791 Check(Op->getNumOperands() == 3,
1792 "incorrect number of operands in module flag", Op);
1793 Module::ModFlagBehavior MFB;
1794 if (!Module::isValidModFlagBehavior(MD: Op->getOperand(I: 0), MFB)) {
1795 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1796 "invalid behavior operand in module flag (expected constant integer)",
1797 Op->getOperand(0));
1798 Check(false,
1799 "invalid behavior operand in module flag (unexpected constant)",
1800 Op->getOperand(0));
1801 }
1802 MDString *ID = dyn_cast_or_null<MDString>(Val: Op->getOperand(I: 1));
1803 Check(ID, "invalid ID operand in module flag (expected metadata string)",
1804 Op->getOperand(1));
1805
1806 // Check the values for behaviors with additional requirements.
1807 switch (MFB) {
1808 case Module::Error:
1809 case Module::Warning:
1810 case Module::Override:
1811 // These behavior types accept any value.
1812 break;
1813
1814 case Module::Min: {
1815 auto *V = mdconst::dyn_extract_or_null<ConstantInt>(MD: Op->getOperand(I: 2));
1816 Check(V && V->getValue().isNonNegative(),
1817 "invalid value for 'min' module flag (expected constant non-negative "
1818 "integer)",
1819 Op->getOperand(2));
1820 break;
1821 }
1822
1823 case Module::Max: {
1824 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(2)),
1825 "invalid value for 'max' module flag (expected constant integer)",
1826 Op->getOperand(2));
1827 break;
1828 }
1829
1830 case Module::Require: {
1831 // The value should itself be an MDNode with two operands, a flag ID (an
1832 // MDString), and a value.
1833 MDNode *Value = dyn_cast<MDNode>(Val: Op->getOperand(I: 2));
1834 Check(Value && Value->getNumOperands() == 2,
1835 "invalid value for 'require' module flag (expected metadata pair)",
1836 Op->getOperand(2));
1837 Check(isa<MDString>(Value->getOperand(0)),
1838 ("invalid value for 'require' module flag "
1839 "(first value operand should be a string)"),
1840 Value->getOperand(0));
1841
1842 // Append it to the list of requirements, to check once all module flags are
1843 // scanned.
1844 Requirements.push_back(Elt: Value);
1845 break;
1846 }
1847
1848 case Module::Append:
1849 case Module::AppendUnique: {
1850 // These behavior types require the operand be an MDNode.
1851 Check(isa<MDNode>(Op->getOperand(2)),
1852 "invalid value for 'append'-type module flag "
1853 "(expected a metadata node)",
1854 Op->getOperand(2));
1855 break;
1856 }
1857 }
1858
1859 // Unless this is a "requires" flag, check the ID is unique.
1860 if (MFB != Module::Require) {
1861 bool Inserted = SeenIDs.insert(KV: std::make_pair(x&: ID, y&: Op)).second;
1862 Check(Inserted,
1863 "module flag identifiers must be unique (or of 'require' type)", ID);
1864 }
1865
1866 if (ID->getString() == "wchar_size") {
1867 ConstantInt *Value
1868 = mdconst::dyn_extract_or_null<ConstantInt>(MD: Op->getOperand(I: 2));
1869 Check(Value, "wchar_size metadata requires constant integer argument");
1870 }
1871
1872 if (ID->getString() == "Linker Options") {
1873 // If the llvm.linker.options named metadata exists, we assume that the
1874 // bitcode reader has upgraded the module flag. Otherwise the flag might
1875 // have been created by a client directly.
1876 Check(M.getNamedMetadata("llvm.linker.options"),
1877 "'Linker Options' named metadata no longer supported");
1878 }
1879
1880 if (ID->getString() == "SemanticInterposition") {
1881 ConstantInt *Value =
1882 mdconst::dyn_extract_or_null<ConstantInt>(MD: Op->getOperand(I: 2));
1883 Check(Value,
1884 "SemanticInterposition metadata requires constant integer argument");
1885 }
1886
1887 if (ID->getString() == "CG Profile") {
1888 for (const MDOperand &MDO : cast<MDNode>(Val: Op->getOperand(I: 2))->operands())
1889 visitModuleFlagCGProfileEntry(MDO);
1890 }
1891}
1892
1893void Verifier::visitModuleFlagCGProfileEntry(const MDOperand &MDO) {
1894 auto CheckFunction = [&](const MDOperand &FuncMDO) {
1895 if (!FuncMDO)
1896 return;
1897 auto F = dyn_cast<ValueAsMetadata>(Val: FuncMDO);
1898 Check(F && isa<Function>(F->getValue()->stripPointerCasts()),
1899 "expected a Function or null", FuncMDO);
1900 };
1901 auto Node = dyn_cast_or_null<MDNode>(Val: MDO);
1902 Check(Node && Node->getNumOperands() == 3, "expected a MDNode triple", MDO);
1903 CheckFunction(Node->getOperand(I: 0));
1904 CheckFunction(Node->getOperand(I: 1));
1905 auto Count = dyn_cast_or_null<ConstantAsMetadata>(Val: Node->getOperand(I: 2));
1906 Check(Count && Count->getType()->isIntegerTy(),
1907 "expected an integer constant", Node->getOperand(2));
1908}
1909
1910void Verifier::verifyAttributeTypes(AttributeSet Attrs, const Value *V) {
1911 for (Attribute A : Attrs) {
1912
1913 if (A.isStringAttribute()) {
1914#define GET_ATTR_NAMES
1915#define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME)
1916#define ATTRIBUTE_STRBOOL(ENUM_NAME, DISPLAY_NAME) \
1917 if (A.getKindAsString() == #DISPLAY_NAME) { \
1918 auto V = A.getValueAsString(); \
1919 if (!(V.empty() || V == "true" || V == "false")) \
1920 CheckFailed("invalid value for '" #DISPLAY_NAME "' attribute: " + V + \
1921 ""); \
1922 }
1923
1924#include "llvm/IR/Attributes.inc"
1925 continue;
1926 }
1927
1928 if (A.isIntAttribute() != Attribute::isIntAttrKind(Kind: A.getKindAsEnum())) {
1929 CheckFailed("Attribute '" + A.getAsString() + "' should have an Argument",
1930 V);
1931 return;
1932 }
1933 }
1934}
1935
1936// VerifyParameterAttrs - Check the given attributes for an argument or return
1937// value of the specified type. The value V is printed in error messages.
1938void Verifier::verifyParameterAttrs(AttributeSet Attrs, Type *Ty,
1939 const Value *V) {
1940 if (!Attrs.hasAttributes())
1941 return;
1942
1943 verifyAttributeTypes(Attrs, V);
1944
1945 for (Attribute Attr : Attrs)
1946 Check(Attr.isStringAttribute() ||
1947 Attribute::canUseAsParamAttr(Attr.getKindAsEnum()),
1948 "Attribute '" + Attr.getAsString() + "' does not apply to parameters",
1949 V);
1950
1951 if (Attrs.hasAttribute(Attribute::ImmArg)) {
1952 Check(Attrs.getNumAttributes() == 1,
1953 "Attribute 'immarg' is incompatible with other attributes", V);
1954 }
1955
1956 // Check for mutually incompatible attributes. Only inreg is compatible with
1957 // sret.
1958 unsigned AttrCount = 0;
1959 AttrCount += Attrs.hasAttribute(Attribute::ByVal);
1960 AttrCount += Attrs.hasAttribute(Attribute::InAlloca);
1961 AttrCount += Attrs.hasAttribute(Attribute::Preallocated);
1962 AttrCount += Attrs.hasAttribute(Attribute::StructRet) ||
1963 Attrs.hasAttribute(Attribute::InReg);
1964 AttrCount += Attrs.hasAttribute(Attribute::Nest);
1965 AttrCount += Attrs.hasAttribute(Attribute::ByRef);
1966 Check(AttrCount <= 1,
1967 "Attributes 'byval', 'inalloca', 'preallocated', 'inreg', 'nest', "
1968 "'byref', and 'sret' are incompatible!",
1969 V);
1970
1971 Check(!(Attrs.hasAttribute(Attribute::InAlloca) &&
1972 Attrs.hasAttribute(Attribute::ReadOnly)),
1973 "Attributes "
1974 "'inalloca and readonly' are incompatible!",
1975 V);
1976
1977 Check(!(Attrs.hasAttribute(Attribute::StructRet) &&
1978 Attrs.hasAttribute(Attribute::Returned)),
1979 "Attributes "
1980 "'sret and returned' are incompatible!",
1981 V);
1982
1983 Check(!(Attrs.hasAttribute(Attribute::ZExt) &&
1984 Attrs.hasAttribute(Attribute::SExt)),
1985 "Attributes "
1986 "'zeroext and signext' are incompatible!",
1987 V);
1988
1989 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1990 Attrs.hasAttribute(Attribute::ReadOnly)),
1991 "Attributes "
1992 "'readnone and readonly' are incompatible!",
1993 V);
1994
1995 Check(!(Attrs.hasAttribute(Attribute::ReadNone) &&
1996 Attrs.hasAttribute(Attribute::WriteOnly)),
1997 "Attributes "
1998 "'readnone and writeonly' are incompatible!",
1999 V);
2000
2001 Check(!(Attrs.hasAttribute(Attribute::ReadOnly) &&
2002 Attrs.hasAttribute(Attribute::WriteOnly)),
2003 "Attributes "
2004 "'readonly and writeonly' are incompatible!",
2005 V);
2006
2007 Check(!(Attrs.hasAttribute(Attribute::NoInline) &&
2008 Attrs.hasAttribute(Attribute::AlwaysInline)),
2009 "Attributes "
2010 "'noinline and alwaysinline' are incompatible!",
2011 V);
2012
2013 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2014 Attrs.hasAttribute(Attribute::ReadNone)),
2015 "Attributes writable and readnone are incompatible!", V);
2016
2017 Check(!(Attrs.hasAttribute(Attribute::Writable) &&
2018 Attrs.hasAttribute(Attribute::ReadOnly)),
2019 "Attributes writable and readonly are incompatible!", V);
2020
2021 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(Ty);
2022 for (Attribute Attr : Attrs) {
2023 if (!Attr.isStringAttribute() &&
2024 IncompatibleAttrs.contains(A: Attr.getKindAsEnum())) {
2025 CheckFailed(Message: "Attribute '" + Attr.getAsString() +
2026 "' applied to incompatible type!", V1: V);
2027 return;
2028 }
2029 }
2030
2031 if (isa<PointerType>(Val: Ty)) {
2032 if (Attrs.hasAttribute(Attribute::ByVal)) {
2033 if (Attrs.hasAttribute(Attribute::Alignment)) {
2034 Align AttrAlign = Attrs.getAlignment().valueOrOne();
2035 Align MaxAlign(ParamMaxAlignment);
2036 Check(AttrAlign <= MaxAlign,
2037 "Attribute 'align' exceed the max size 2^14", V);
2038 }
2039 SmallPtrSet<Type *, 4> Visited;
2040 Check(Attrs.getByValType()->isSized(&Visited),
2041 "Attribute 'byval' does not support unsized types!", V);
2042 }
2043 if (Attrs.hasAttribute(Attribute::ByRef)) {
2044 SmallPtrSet<Type *, 4> Visited;
2045 Check(Attrs.getByRefType()->isSized(&Visited),
2046 "Attribute 'byref' does not support unsized types!", V);
2047 }
2048 if (Attrs.hasAttribute(Attribute::InAlloca)) {
2049 SmallPtrSet<Type *, 4> Visited;
2050 Check(Attrs.getInAllocaType()->isSized(&Visited),
2051 "Attribute 'inalloca' does not support unsized types!", V);
2052 }
2053 if (Attrs.hasAttribute(Attribute::Preallocated)) {
2054 SmallPtrSet<Type *, 4> Visited;
2055 Check(Attrs.getPreallocatedType()->isSized(&Visited),
2056 "Attribute 'preallocated' does not support unsized types!", V);
2057 }
2058 }
2059
2060 if (Attrs.hasAttribute(Attribute::NoFPClass)) {
2061 uint64_t Val = Attrs.getAttribute(Attribute::NoFPClass).getValueAsInt();
2062 Check(Val != 0, "Attribute 'nofpclass' must have at least one test bit set",
2063 V);
2064 Check((Val & ~static_cast<unsigned>(fcAllFlags)) == 0,
2065 "Invalid value for 'nofpclass' test mask", V);
2066 }
2067 if (Attrs.hasAttribute(Attribute::Range)) {
2068 auto CR = Attrs.getAttribute(Attribute::Range).getValueAsConstantRange();
2069 Check(Ty->isIntOrIntVectorTy(CR.getBitWidth()),
2070 "Range bit width must match type bit width!", V);
2071 }
2072}
2073
2074void Verifier::checkUnsignedBaseTenFuncAttr(AttributeList Attrs, StringRef Attr,
2075 const Value *V) {
2076 if (Attrs.hasFnAttr(Kind: Attr)) {
2077 StringRef S = Attrs.getFnAttr(Kind: Attr).getValueAsString();
2078 unsigned N;
2079 if (S.getAsInteger(Radix: 10, Result&: N))
2080 CheckFailed(Message: "\"" + Attr + "\" takes an unsigned integer: " + S, V1: V);
2081 }
2082}
2083
2084// Check parameter attributes against a function type.
2085// The value V is printed in error messages.
2086void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeList Attrs,
2087 const Value *V, bool IsIntrinsic,
2088 bool IsInlineAsm) {
2089 if (Attrs.isEmpty())
2090 return;
2091
2092 if (AttributeListsVisited.insert(Ptr: Attrs.getRawPointer()).second) {
2093 Check(Attrs.hasParentContext(Context),
2094 "Attribute list does not match Module context!", &Attrs, V);
2095 for (const auto &AttrSet : Attrs) {
2096 Check(!AttrSet.hasAttributes() || AttrSet.hasParentContext(Context),
2097 "Attribute set does not match Module context!", &AttrSet, V);
2098 for (const auto &A : AttrSet) {
2099 Check(A.hasParentContext(Context),
2100 "Attribute does not match Module context!", &A, V);
2101 }
2102 }
2103 }
2104
2105 bool SawNest = false;
2106 bool SawReturned = false;
2107 bool SawSRet = false;
2108 bool SawSwiftSelf = false;
2109 bool SawSwiftAsync = false;
2110 bool SawSwiftError = false;
2111
2112 // Verify return value attributes.
2113 AttributeSet RetAttrs = Attrs.getRetAttrs();
2114 for (Attribute RetAttr : RetAttrs)
2115 Check(RetAttr.isStringAttribute() ||
2116 Attribute::canUseAsRetAttr(RetAttr.getKindAsEnum()),
2117 "Attribute '" + RetAttr.getAsString() +
2118 "' does not apply to function return values",
2119 V);
2120
2121 unsigned MaxParameterWidth = 0;
2122 auto GetMaxParameterWidth = [&MaxParameterWidth](Type *Ty) {
2123 if (Ty->isVectorTy()) {
2124 if (auto *VT = dyn_cast<FixedVectorType>(Val: Ty)) {
2125 unsigned Size = VT->getPrimitiveSizeInBits().getFixedValue();
2126 if (Size > MaxParameterWidth)
2127 MaxParameterWidth = Size;
2128 }
2129 }
2130 };
2131 GetMaxParameterWidth(FT->getReturnType());
2132 verifyParameterAttrs(Attrs: RetAttrs, Ty: FT->getReturnType(), V);
2133
2134 // Verify parameter attributes.
2135 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2136 Type *Ty = FT->getParamType(i);
2137 AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo: i);
2138
2139 if (!IsIntrinsic) {
2140 Check(!ArgAttrs.hasAttribute(Attribute::ImmArg),
2141 "immarg attribute only applies to intrinsics", V);
2142 if (!IsInlineAsm)
2143 Check(!ArgAttrs.hasAttribute(Attribute::ElementType),
2144 "Attribute 'elementtype' can only be applied to intrinsics"
2145 " and inline asm.",
2146 V);
2147 }
2148
2149 verifyParameterAttrs(Attrs: ArgAttrs, Ty, V);
2150 GetMaxParameterWidth(Ty);
2151
2152 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
2153 Check(!SawNest, "More than one parameter has attribute nest!", V);
2154 SawNest = true;
2155 }
2156
2157 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
2158 Check(!SawReturned, "More than one parameter has attribute returned!", V);
2159 Check(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
2160 "Incompatible argument and return types for 'returned' attribute",
2161 V);
2162 SawReturned = true;
2163 }
2164
2165 if (ArgAttrs.hasAttribute(Attribute::StructRet)) {
2166 Check(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
2167 Check(i == 0 || i == 1,
2168 "Attribute 'sret' is not on first or second parameter!", V);
2169 SawSRet = true;
2170 }
2171
2172 if (ArgAttrs.hasAttribute(Attribute::SwiftSelf)) {
2173 Check(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
2174 SawSwiftSelf = true;
2175 }
2176
2177 if (ArgAttrs.hasAttribute(Attribute::SwiftAsync)) {
2178 Check(!SawSwiftAsync, "Cannot have multiple 'swiftasync' parameters!", V);
2179 SawSwiftAsync = true;
2180 }
2181
2182 if (ArgAttrs.hasAttribute(Attribute::SwiftError)) {
2183 Check(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!", V);
2184 SawSwiftError = true;
2185 }
2186
2187 if (ArgAttrs.hasAttribute(Attribute::InAlloca)) {
2188 Check(i == FT->getNumParams() - 1,
2189 "inalloca isn't on the last parameter!", V);
2190 }
2191 }
2192
2193 if (!Attrs.hasFnAttrs())
2194 return;
2195
2196 verifyAttributeTypes(Attrs: Attrs.getFnAttrs(), V);
2197 for (Attribute FnAttr : Attrs.getFnAttrs())
2198 Check(FnAttr.isStringAttribute() ||
2199 Attribute::canUseAsFnAttr(FnAttr.getKindAsEnum()),
2200 "Attribute '" + FnAttr.getAsString() +
2201 "' does not apply to functions!",
2202 V);
2203
2204 Check(!(Attrs.hasFnAttr(Attribute::NoInline) &&
2205 Attrs.hasFnAttr(Attribute::AlwaysInline)),
2206 "Attributes 'noinline and alwaysinline' are incompatible!", V);
2207
2208 if (Attrs.hasFnAttr(Attribute::OptimizeNone)) {
2209 Check(Attrs.hasFnAttr(Attribute::NoInline),
2210 "Attribute 'optnone' requires 'noinline'!", V);
2211
2212 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2213 "Attributes 'optsize and optnone' are incompatible!", V);
2214
2215 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2216 "Attributes 'minsize and optnone' are incompatible!", V);
2217
2218 Check(!Attrs.hasFnAttr(Attribute::OptimizeForDebugging),
2219 "Attributes 'optdebug and optnone' are incompatible!", V);
2220 }
2221
2222 if (Attrs.hasFnAttr(Attribute::OptimizeForDebugging)) {
2223 Check(!Attrs.hasFnAttr(Attribute::OptimizeForSize),
2224 "Attributes 'optsize and optdebug' are incompatible!", V);
2225
2226 Check(!Attrs.hasFnAttr(Attribute::MinSize),
2227 "Attributes 'minsize and optdebug' are incompatible!", V);
2228 }
2229
2230 Check(!Attrs.hasAttrSomewhere(Attribute::Writable) ||
2231 isModSet(Attrs.getMemoryEffects().getModRef(IRMemLocation::ArgMem)),
2232 "Attribute writable and memory without argmem: write are incompatible!",
2233 V);
2234
2235 if (Attrs.hasFnAttr(Kind: "aarch64_pstate_sm_enabled")) {
2236 Check(!Attrs.hasFnAttr("aarch64_pstate_sm_compatible"),
2237 "Attributes 'aarch64_pstate_sm_enabled and "
2238 "aarch64_pstate_sm_compatible' are incompatible!",
2239 V);
2240 }
2241
2242 Check((Attrs.hasFnAttr("aarch64_new_za") + Attrs.hasFnAttr("aarch64_in_za") +
2243 Attrs.hasFnAttr("aarch64_inout_za") +
2244 Attrs.hasFnAttr("aarch64_out_za") +
2245 Attrs.hasFnAttr("aarch64_preserves_za")) <= 1,
2246 "Attributes 'aarch64_new_za', 'aarch64_in_za', 'aarch64_out_za', "
2247 "'aarch64_inout_za' and 'aarch64_preserves_za' are mutually exclusive",
2248 V);
2249
2250 Check(
2251 (Attrs.hasFnAttr("aarch64_new_zt0") + Attrs.hasFnAttr("aarch64_in_zt0") +
2252 Attrs.hasFnAttr("aarch64_inout_zt0") +
2253 Attrs.hasFnAttr("aarch64_out_zt0") +
2254 Attrs.hasFnAttr("aarch64_preserves_zt0")) <= 1,
2255 "Attributes 'aarch64_new_zt0', 'aarch64_in_zt0', 'aarch64_out_zt0', "
2256 "'aarch64_inout_zt0' and 'aarch64_preserves_zt0' are mutually exclusive",
2257 V);
2258
2259 if (Attrs.hasFnAttr(Attribute::JumpTable)) {
2260 const GlobalValue *GV = cast<GlobalValue>(Val: V);
2261 Check(GV->hasGlobalUnnamedAddr(),
2262 "Attribute 'jumptable' requires 'unnamed_addr'", V);
2263 }
2264
2265 if (auto Args = Attrs.getFnAttrs().getAllocSizeArgs()) {
2266 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
2267 if (ParamNo >= FT->getNumParams()) {
2268 CheckFailed(Message: "'allocsize' " + Name + " argument is out of bounds", V1: V);
2269 return false;
2270 }
2271
2272 if (!FT->getParamType(i: ParamNo)->isIntegerTy()) {
2273 CheckFailed(Message: "'allocsize' " + Name +
2274 " argument must refer to an integer parameter",
2275 V1: V);
2276 return false;
2277 }
2278
2279 return true;
2280 };
2281
2282 if (!CheckParam("element size", Args->first))
2283 return;
2284
2285 if (Args->second && !CheckParam("number of elements", *Args->second))
2286 return;
2287 }
2288
2289 if (Attrs.hasFnAttr(Attribute::AllocKind)) {
2290 AllocFnKind K = Attrs.getAllocKind();
2291 AllocFnKind Type =
2292 K & (AllocFnKind::Alloc | AllocFnKind::Realloc | AllocFnKind::Free);
2293 if (!is_contained(
2294 Set: {AllocFnKind::Alloc, AllocFnKind::Realloc, AllocFnKind::Free},
2295 Element: Type))
2296 CheckFailed(
2297 Message: "'allockind()' requires exactly one of alloc, realloc, and free");
2298 if ((Type == AllocFnKind::Free) &&
2299 ((K & (AllocFnKind::Uninitialized | AllocFnKind::Zeroed |
2300 AllocFnKind::Aligned)) != AllocFnKind::Unknown))
2301 CheckFailed(Message: "'allockind(\"free\")' doesn't allow uninitialized, zeroed, "
2302 "or aligned modifiers.");
2303 AllocFnKind ZeroedUninit = AllocFnKind::Uninitialized | AllocFnKind::Zeroed;
2304 if ((K & ZeroedUninit) == ZeroedUninit)
2305 CheckFailed(Message: "'allockind()' can't be both zeroed and uninitialized");
2306 }
2307
2308 if (Attrs.hasFnAttr(Attribute::VScaleRange)) {
2309 unsigned VScaleMin = Attrs.getFnAttrs().getVScaleRangeMin();
2310 if (VScaleMin == 0)
2311 CheckFailed(Message: "'vscale_range' minimum must be greater than 0", V1: V);
2312 else if (!isPowerOf2_32(Value: VScaleMin))
2313 CheckFailed(Message: "'vscale_range' minimum must be power-of-two value", V1: V);
2314 std::optional<unsigned> VScaleMax = Attrs.getFnAttrs().getVScaleRangeMax();
2315 if (VScaleMax && VScaleMin > VScaleMax)
2316 CheckFailed(Message: "'vscale_range' minimum cannot be greater than maximum", V1: V);
2317 else if (VScaleMax && !isPowerOf2_32(Value: *VScaleMax))
2318 CheckFailed(Message: "'vscale_range' maximum must be power-of-two value", V1: V);
2319 }
2320
2321 if (Attrs.hasFnAttr(Kind: "frame-pointer")) {
2322 StringRef FP = Attrs.getFnAttr(Kind: "frame-pointer").getValueAsString();
2323 if (FP != "all" && FP != "non-leaf" && FP != "none")
2324 CheckFailed(Message: "invalid value for 'frame-pointer' attribute: " + FP, V1: V);
2325 }
2326
2327 // Check EVEX512 feature.
2328 if (MaxParameterWidth >= 512 && Attrs.hasFnAttr(Kind: "target-features") &&
2329 TT.isX86()) {
2330 StringRef TF = Attrs.getFnAttr(Kind: "target-features").getValueAsString();
2331 Check(!TF.contains("+avx512f") || !TF.contains("-evex512"),
2332 "512-bit vector arguments require 'evex512' for AVX512", V);
2333 }
2334
2335 checkUnsignedBaseTenFuncAttr(Attrs, Attr: "patchable-function-prefix", V);
2336 checkUnsignedBaseTenFuncAttr(Attrs, Attr: "patchable-function-entry", V);
2337 checkUnsignedBaseTenFuncAttr(Attrs, Attr: "warn-stack-size", V);
2338
2339 if (auto A = Attrs.getFnAttr(Kind: "sign-return-address"); A.isValid()) {
2340 StringRef S = A.getValueAsString();
2341 if (S != "none" && S != "all" && S != "non-leaf")
2342 CheckFailed(Message: "invalid value for 'sign-return-address' attribute: " + S, V1: V);
2343 }
2344
2345 if (auto A = Attrs.getFnAttr(Kind: "sign-return-address-key"); A.isValid()) {
2346 StringRef S = A.getValueAsString();
2347 if (S != "a_key" && S != "b_key")
2348 CheckFailed(Message: "invalid value for 'sign-return-address-key' attribute: " + S,
2349 V1: V);
2350 }
2351
2352 if (auto A = Attrs.getFnAttr(Kind: "branch-target-enforcement"); A.isValid()) {
2353 StringRef S = A.getValueAsString();
2354 if (S != "true" && S != "false")
2355 CheckFailed(
2356 Message: "invalid value for 'branch-target-enforcement' attribute: " + S, V1: V);
2357 }
2358
2359 if (auto A = Attrs.getFnAttr(Kind: "vector-function-abi-variant"); A.isValid()) {
2360 StringRef S = A.getValueAsString();
2361 const std::optional<VFInfo> Info = VFABI::tryDemangleForVFABI(MangledName: S, FTy: FT);
2362 if (!Info)
2363 CheckFailed(Message: "invalid name for a VFABI variant: " + S, V1: V);
2364 }
2365}
2366
2367void Verifier::verifyFunctionMetadata(
2368 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
2369 for (const auto &Pair : MDs) {
2370 if (Pair.first == LLVMContext::MD_prof) {
2371 MDNode *MD = Pair.second;
2372 Check(MD->getNumOperands() >= 2,
2373 "!prof annotations should have no less than 2 operands", MD);
2374
2375 // Check first operand.
2376 Check(MD->getOperand(0) != nullptr, "first operand should not be null",
2377 MD);
2378 Check(isa<MDString>(MD->getOperand(0)),
2379 "expected string with name of the !prof annotation", MD);
2380 MDString *MDS = cast<MDString>(Val: MD->getOperand(I: 0));
2381 StringRef ProfName = MDS->getString();
2382 Check(ProfName.equals("function_entry_count") ||
2383 ProfName.equals("synthetic_function_entry_count"),
2384 "first operand should be 'function_entry_count'"
2385 " or 'synthetic_function_entry_count'",
2386 MD);
2387
2388 // Check second operand.
2389 Check(MD->getOperand(1) != nullptr, "second operand should not be null",
2390 MD);
2391 Check(isa<ConstantAsMetadata>(MD->getOperand(1)),
2392 "expected integer argument to function_entry_count", MD);
2393 } else if (Pair.first == LLVMContext::MD_kcfi_type) {
2394 MDNode *MD = Pair.second;
2395 Check(MD->getNumOperands() == 1,
2396 "!kcfi_type must have exactly one operand", MD);
2397 Check(MD->getOperand(0) != nullptr, "!kcfi_type operand must not be null",
2398 MD);
2399 Check(isa<ConstantAsMetadata>(MD->getOperand(0)),
2400 "expected a constant operand for !kcfi_type", MD);
2401 Constant *C = cast<ConstantAsMetadata>(Val: MD->getOperand(I: 0))->getValue();
2402 Check(isa<ConstantInt>(C) && isa<IntegerType>(C->getType()),
2403 "expected a constant integer operand for !kcfi_type", MD);
2404 Check(cast<ConstantInt>(C)->getBitWidth() == 32,
2405 "expected a 32-bit integer constant operand for !kcfi_type", MD);
2406 }
2407 }
2408}
2409
2410void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
2411 if (!ConstantExprVisited.insert(Ptr: EntryC).second)
2412 return;
2413
2414 SmallVector<const Constant *, 16> Stack;
2415 Stack.push_back(Elt: EntryC);
2416
2417 while (!Stack.empty()) {
2418 const Constant *C = Stack.pop_back_val();
2419
2420 // Check this constant expression.
2421 if (const auto *CE = dyn_cast<ConstantExpr>(Val: C))
2422 visitConstantExpr(CE);
2423
2424 if (const auto *GV = dyn_cast<GlobalValue>(Val: C)) {
2425 // Global Values get visited separately, but we do need to make sure
2426 // that the global value is in the correct module
2427 Check(GV->getParent() == &M, "Referencing global in another module!",
2428 EntryC, &M, GV, GV->getParent());
2429 continue;
2430 }
2431
2432 // Visit all sub-expressions.
2433 for (const Use &U : C->operands()) {
2434 const auto *OpC = dyn_cast<Constant>(Val: U);
2435 if (!OpC)
2436 continue;
2437 if (!ConstantExprVisited.insert(Ptr: OpC).second)
2438 continue;
2439 Stack.push_back(Elt: OpC);
2440 }
2441 }
2442}
2443
2444void Verifier::visitConstantExpr(const ConstantExpr *CE) {
2445 if (CE->getOpcode() == Instruction::BitCast)
2446 Check(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
2447 CE->getType()),
2448 "Invalid bitcast", CE);
2449}
2450
2451bool Verifier::verifyAttributeCount(AttributeList Attrs, unsigned Params) {
2452 // There shouldn't be more attribute sets than there are parameters plus the
2453 // function and return value.
2454 return Attrs.getNumAttrSets() <= Params + 2;
2455}
2456
2457void Verifier::verifyInlineAsmCall(const CallBase &Call) {
2458 const InlineAsm *IA = cast<InlineAsm>(Val: Call.getCalledOperand());
2459 unsigned ArgNo = 0;
2460 unsigned LabelNo = 0;
2461 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
2462 if (CI.Type == InlineAsm::isLabel) {
2463 ++LabelNo;
2464 continue;
2465 }
2466
2467 // Only deal with constraints that correspond to call arguments.
2468 if (!CI.hasArg())
2469 continue;
2470
2471 if (CI.isIndirect) {
2472 const Value *Arg = Call.getArgOperand(i: ArgNo);
2473 Check(Arg->getType()->isPointerTy(),
2474 "Operand for indirect constraint must have pointer type", &Call);
2475
2476 Check(Call.getParamElementType(ArgNo),
2477 "Operand for indirect constraint must have elementtype attribute",
2478 &Call);
2479 } else {
2480 Check(!Call.paramHasAttr(ArgNo, Attribute::ElementType),
2481 "Elementtype attribute can only be applied for indirect "
2482 "constraints",
2483 &Call);
2484 }
2485
2486 ArgNo++;
2487 }
2488
2489 if (auto *CallBr = dyn_cast<CallBrInst>(Val: &Call)) {
2490 Check(LabelNo == CallBr->getNumIndirectDests(),
2491 "Number of label constraints does not match number of callbr dests",
2492 &Call);
2493 } else {
2494 Check(LabelNo == 0, "Label constraints can only be used with callbr",
2495 &Call);
2496 }
2497}
2498
2499/// Verify that statepoint intrinsic is well formed.
2500void Verifier::verifyStatepoint(const CallBase &Call) {
2501 assert(Call.getCalledFunction() &&
2502 Call.getCalledFunction()->getIntrinsicID() ==
2503 Intrinsic::experimental_gc_statepoint);
2504
2505 Check(!Call.doesNotAccessMemory() && !Call.onlyReadsMemory() &&
2506 !Call.onlyAccessesArgMemory(),
2507 "gc.statepoint must read and write all memory to preserve "
2508 "reordering restrictions required by safepoint semantics",
2509 Call);
2510
2511 const int64_t NumPatchBytes =
2512 cast<ConstantInt>(Val: Call.getArgOperand(i: 1))->getSExtValue();
2513 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
2514 Check(NumPatchBytes >= 0,
2515 "gc.statepoint number of patchable bytes must be "
2516 "positive",
2517 Call);
2518
2519 Type *TargetElemType = Call.getParamElementType(ArgNo: 2);
2520 Check(TargetElemType,
2521 "gc.statepoint callee argument must have elementtype attribute", Call);
2522 FunctionType *TargetFuncType = dyn_cast<FunctionType>(Val: TargetElemType);
2523 Check(TargetFuncType,
2524 "gc.statepoint callee elementtype must be function type", Call);
2525
2526 const int NumCallArgs = cast<ConstantInt>(Val: Call.getArgOperand(i: 3))->getZExtValue();
2527 Check(NumCallArgs >= 0,
2528 "gc.statepoint number of arguments to underlying call "
2529 "must be positive",
2530 Call);
2531 const int NumParams = (int)TargetFuncType->getNumParams();
2532 if (TargetFuncType->isVarArg()) {
2533 Check(NumCallArgs >= NumParams,
2534 "gc.statepoint mismatch in number of vararg call args", Call);
2535
2536 // TODO: Remove this limitation
2537 Check(TargetFuncType->getReturnType()->isVoidTy(),
2538 "gc.statepoint doesn't support wrapping non-void "
2539 "vararg functions yet",
2540 Call);
2541 } else
2542 Check(NumCallArgs == NumParams,
2543 "gc.statepoint mismatch in number of call args", Call);
2544
2545 const uint64_t Flags
2546 = cast<ConstantInt>(Val: Call.getArgOperand(i: 4))->getZExtValue();
2547 Check((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
2548 "unknown flag used in gc.statepoint flags argument", Call);
2549
2550 // Verify that the types of the call parameter arguments match
2551 // the type of the wrapped callee.
2552 AttributeList Attrs = Call.getAttributes();
2553 for (int i = 0; i < NumParams; i++) {
2554 Type *ParamType = TargetFuncType->getParamType(i);
2555 Type *ArgType = Call.getArgOperand(i: 5 + i)->getType();
2556 Check(ArgType == ParamType,
2557 "gc.statepoint call argument does not match wrapped "
2558 "function type",
2559 Call);
2560
2561 if (TargetFuncType->isVarArg()) {
2562 AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo: 5 + i);
2563 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
2564 "Attribute 'sret' cannot be used for vararg call arguments!", Call);
2565 }
2566 }
2567
2568 const int EndCallArgsInx = 4 + NumCallArgs;
2569
2570 const Value *NumTransitionArgsV = Call.getArgOperand(i: EndCallArgsInx + 1);
2571 Check(isa<ConstantInt>(NumTransitionArgsV),
2572 "gc.statepoint number of transition arguments "
2573 "must be constant integer",
2574 Call);
2575 const int NumTransitionArgs =
2576 cast<ConstantInt>(Val: NumTransitionArgsV)->getZExtValue();
2577 Check(NumTransitionArgs == 0,
2578 "gc.statepoint w/inline transition bundle is deprecated", Call);
2579 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
2580
2581 const Value *NumDeoptArgsV = Call.getArgOperand(i: EndTransitionArgsInx + 1);
2582 Check(isa<ConstantInt>(NumDeoptArgsV),
2583 "gc.statepoint number of deoptimization arguments "
2584 "must be constant integer",
2585 Call);
2586 const int NumDeoptArgs = cast<ConstantInt>(Val: NumDeoptArgsV)->getZExtValue();
2587 Check(NumDeoptArgs == 0,
2588 "gc.statepoint w/inline deopt operands is deprecated", Call);
2589
2590 const int ExpectedNumArgs = 7 + NumCallArgs;
2591 Check(ExpectedNumArgs == (int)Call.arg_size(),
2592 "gc.statepoint too many arguments", Call);
2593
2594 // Check that the only uses of this gc.statepoint are gc.result or
2595 // gc.relocate calls which are tied to this statepoint and thus part
2596 // of the same statepoint sequence
2597 for (const User *U : Call.users()) {
2598 const CallInst *UserCall = dyn_cast<const CallInst>(Val: U);
2599 Check(UserCall, "illegal use of statepoint token", Call, U);
2600 if (!UserCall)
2601 continue;
2602 Check(isa<GCRelocateInst>(UserCall) || isa<GCResultInst>(UserCall),
2603 "gc.result or gc.relocate are the only value uses "
2604 "of a gc.statepoint",
2605 Call, U);
2606 if (isa<GCResultInst>(Val: UserCall)) {
2607 Check(UserCall->getArgOperand(0) == &Call,
2608 "gc.result connected to wrong gc.statepoint", Call, UserCall);
2609 } else if (isa<GCRelocateInst>(Val: Call)) {
2610 Check(UserCall->getArgOperand(0) == &Call,
2611 "gc.relocate connected to wrong gc.statepoint", Call, UserCall);
2612 }
2613 }
2614
2615 // Note: It is legal for a single derived pointer to be listed multiple
2616 // times. It's non-optimal, but it is legal. It can also happen after
2617 // insertion if we strip a bitcast away.
2618 // Note: It is really tempting to check that each base is relocated and
2619 // that a derived pointer is never reused as a base pointer. This turns
2620 // out to be problematic since optimizations run after safepoint insertion
2621 // can recognize equality properties that the insertion logic doesn't know
2622 // about. See example statepoint.ll in the verifier subdirectory
2623}
2624
2625void Verifier::verifyFrameRecoverIndices() {
2626 for (auto &Counts : FrameEscapeInfo) {
2627 Function *F = Counts.first;
2628 unsigned EscapedObjectCount = Counts.second.first;
2629 unsigned MaxRecoveredIndex = Counts.second.second;
2630 Check(MaxRecoveredIndex <= EscapedObjectCount,
2631 "all indices passed to llvm.localrecover must be less than the "
2632 "number of arguments passed to llvm.localescape in the parent "
2633 "function",
2634 F);
2635 }
2636}
2637
2638static Instruction *getSuccPad(Instruction *Terminator) {
2639 BasicBlock *UnwindDest;
2640 if (auto *II = dyn_cast<InvokeInst>(Val: Terminator))
2641 UnwindDest = II->getUnwindDest();
2642 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: Terminator))
2643 UnwindDest = CSI->getUnwindDest();
2644 else
2645 UnwindDest = cast<CleanupReturnInst>(Val: Terminator)->getUnwindDest();
2646 return UnwindDest->getFirstNonPHI();
2647}
2648
2649void Verifier::verifySiblingFuncletUnwinds() {
2650 SmallPtrSet<Instruction *, 8> Visited;
2651 SmallPtrSet<Instruction *, 8> Active;
2652 for (const auto &Pair : SiblingFuncletInfo) {
2653 Instruction *PredPad = Pair.first;
2654 if (Visited.count(Ptr: PredPad))
2655 continue;
2656 Active.insert(Ptr: PredPad);
2657 Instruction *Terminator = Pair.second;
2658 do {
2659 Instruction *SuccPad = getSuccPad(Terminator);
2660 if (Active.count(Ptr: SuccPad)) {
2661 // Found a cycle; report error
2662 Instruction *CyclePad = SuccPad;
2663 SmallVector<Instruction *, 8> CycleNodes;
2664 do {
2665 CycleNodes.push_back(Elt: CyclePad);
2666 Instruction *CycleTerminator = SiblingFuncletInfo[CyclePad];
2667 if (CycleTerminator != CyclePad)
2668 CycleNodes.push_back(Elt: CycleTerminator);
2669 CyclePad = getSuccPad(Terminator: CycleTerminator);
2670 } while (CyclePad != SuccPad);
2671 Check(false, "EH pads can't handle each other's exceptions",
2672 ArrayRef<Instruction *>(CycleNodes));
2673 }
2674 // Don't re-walk a node we've already checked
2675 if (!Visited.insert(Ptr: SuccPad).second)
2676 break;
2677 // Walk to this successor if it has a map entry.
2678 PredPad = SuccPad;
2679 auto TermI = SiblingFuncletInfo.find(Key: PredPad);
2680 if (TermI == SiblingFuncletInfo.end())
2681 break;
2682 Terminator = TermI->second;
2683 Active.insert(Ptr: PredPad);
2684 } while (true);
2685 // Each node only has one successor, so we've walked all the active
2686 // nodes' successors.
2687 Active.clear();
2688 }
2689}
2690
2691// visitFunction - Verify that a function is ok.
2692//
2693void Verifier::visitFunction(const Function &F) {
2694 visitGlobalValue(GV: F);
2695
2696 // Check function arguments.
2697 FunctionType *FT = F.getFunctionType();
2698 unsigned NumArgs = F.arg_size();
2699
2700 Check(&Context == &F.getContext(),
2701 "Function context does not match Module context!", &F);
2702
2703 Check(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
2704 Check(FT->getNumParams() == NumArgs,
2705 "# formal arguments must match # of arguments for function type!", &F,
2706 FT);
2707 Check(F.getReturnType()->isFirstClassType() ||
2708 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
2709 "Functions cannot return aggregate values!", &F);
2710
2711 Check(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
2712 "Invalid struct return type!", &F);
2713
2714 AttributeList Attrs = F.getAttributes();
2715
2716 Check(verifyAttributeCount(Attrs, FT->getNumParams()),
2717 "Attribute after last parameter!", &F);
2718
2719 CheckDI(F.IsNewDbgInfoFormat == F.getParent()->IsNewDbgInfoFormat,
2720 "Function debug format should match parent module", &F,
2721 F.IsNewDbgInfoFormat, F.getParent(),
2722 F.getParent()->IsNewDbgInfoFormat);
2723
2724 bool IsIntrinsic = F.isIntrinsic();
2725
2726 // Check function attributes.
2727 verifyFunctionAttrs(FT, Attrs, V: &F, IsIntrinsic, /* IsInlineAsm */ false);
2728
2729 // On function declarations/definitions, we do not support the builtin
2730 // attribute. We do not check this in VerifyFunctionAttrs since that is
2731 // checking for Attributes that can/can not ever be on functions.
2732 Check(!Attrs.hasFnAttr(Attribute::Builtin),
2733 "Attribute 'builtin' can only be applied to a callsite.", &F);
2734
2735 Check(!Attrs.hasAttrSomewhere(Attribute::ElementType),
2736 "Attribute 'elementtype' can only be applied to a callsite.", &F);
2737
2738 // Check that this function meets the restrictions on this calling convention.
2739 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2740 // restrictions can be lifted.
2741 switch (F.getCallingConv()) {
2742 default:
2743 case CallingConv::C:
2744 break;
2745 case CallingConv::X86_INTR: {
2746 Check(F.arg_empty() || Attrs.hasParamAttr(0, Attribute::ByVal),
2747 "Calling convention parameter requires byval", &F);
2748 break;
2749 }
2750 case CallingConv::AMDGPU_KERNEL:
2751 case CallingConv::SPIR_KERNEL:
2752 case CallingConv::AMDGPU_CS_Chain:
2753 case CallingConv::AMDGPU_CS_ChainPreserve:
2754 Check(F.getReturnType()->isVoidTy(),
2755 "Calling convention requires void return type", &F);
2756 [[fallthrough]];
2757 case CallingConv::AMDGPU_VS:
2758 case CallingConv::AMDGPU_HS:
2759 case CallingConv::AMDGPU_GS:
2760 case CallingConv::AMDGPU_PS:
2761 case CallingConv::AMDGPU_CS:
2762 Check(!F.hasStructRetAttr(), "Calling convention does not allow sret", &F);
2763 if (F.getCallingConv() != CallingConv::SPIR_KERNEL) {
2764 const unsigned StackAS = DL.getAllocaAddrSpace();
2765 unsigned i = 0;
2766 for (const Argument &Arg : F.args()) {
2767 Check(!Attrs.hasParamAttr(i, Attribute::ByVal),
2768 "Calling convention disallows byval", &F);
2769 Check(!Attrs.hasParamAttr(i, Attribute::Preallocated),
2770 "Calling convention disallows preallocated", &F);
2771 Check(!Attrs.hasParamAttr(i, Attribute::InAlloca),
2772 "Calling convention disallows inalloca", &F);
2773
2774 if (Attrs.hasParamAttr(i, Attribute::ByRef)) {
2775 // FIXME: Should also disallow LDS and GDS, but we don't have the enum
2776 // value here.
2777 Check(Arg.getType()->getPointerAddressSpace() != StackAS,
2778 "Calling convention disallows stack byref", &F);
2779 }
2780
2781 ++i;
2782 }
2783 }
2784
2785 [[fallthrough]];
2786 case CallingConv::Fast:
2787 case CallingConv::Cold:
2788 case CallingConv::Intel_OCL_BI:
2789 case CallingConv::PTX_Kernel:
2790 case CallingConv::PTX_Device:
2791 Check(!F.isVarArg(),
2792 "Calling convention does not support varargs or "
2793 "perfect forwarding!",
2794 &F);
2795 break;
2796 }
2797
2798 // Check that the argument values match the function type for this function...
2799 unsigned i = 0;
2800 for (const Argument &Arg : F.args()) {
2801 Check(Arg.getType() == FT->getParamType(i),
2802 "Argument value does not match function argument type!", &Arg,
2803 FT->getParamType(i));
2804 Check(Arg.getType()->isFirstClassType(),
2805 "Function arguments must have first-class types!", &Arg);
2806 if (!IsIntrinsic) {
2807 Check(!Arg.getType()->isMetadataTy(),
2808 "Function takes metadata but isn't an intrinsic", &Arg, &F);
2809 Check(!Arg.getType()->isTokenTy(),
2810 "Function takes token but isn't an intrinsic", &Arg, &F);
2811 Check(!Arg.getType()->isX86_AMXTy(),
2812 "Function takes x86_amx but isn't an intrinsic", &Arg, &F);
2813 }
2814
2815 // Check that swifterror argument is only used by loads and stores.
2816 if (Attrs.hasParamAttr(i, Attribute::SwiftError)) {
2817 verifySwiftErrorValue(SwiftErrorVal: &Arg);
2818 }
2819 ++i;
2820 }
2821
2822 if (!IsIntrinsic) {
2823 Check(!F.getReturnType()->isTokenTy(),
2824 "Function returns a token but isn't an intrinsic", &F);
2825 Check(!F.getReturnType()->isX86_AMXTy(),
2826 "Function returns a x86_amx but isn't an intrinsic", &F);
2827 }
2828
2829 // Get the function metadata attachments.
2830 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2831 F.getAllMetadata(MDs);
2832 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
2833 verifyFunctionMetadata(MDs);
2834
2835 // Check validity of the personality function
2836 if (F.hasPersonalityFn()) {
2837 auto *Per = dyn_cast<Function>(Val: F.getPersonalityFn()->stripPointerCasts());
2838 if (Per)
2839 Check(Per->getParent() == F.getParent(),
2840 "Referencing personality function in another module!", &F,
2841 F.getParent(), Per, Per->getParent());
2842 }
2843
2844 // EH funclet coloring can be expensive, recompute on-demand
2845 BlockEHFuncletColors.clear();
2846
2847 if (F.isMaterializable()) {
2848 // Function has a body somewhere we can't see.
2849 Check(MDs.empty(), "unmaterialized function cannot have metadata", &F,
2850 MDs.empty() ? nullptr : MDs.front().second);
2851 } else if (F.isDeclaration()) {
2852 for (const auto &I : MDs) {
2853 // This is used for call site debug information.
2854 CheckDI(I.first != LLVMContext::MD_dbg ||
2855 !cast<DISubprogram>(I.second)->isDistinct(),
2856 "function declaration may only have a unique !dbg attachment",
2857 &F);
2858 Check(I.first != LLVMContext::MD_prof,
2859 "function declaration may not have a !prof attachment", &F);
2860
2861 // Verify the metadata itself.
2862 visitMDNode(MD: *I.second, AllowLocs: AreDebugLocsAllowed::Yes);
2863 }
2864 Check(!F.hasPersonalityFn(),
2865 "Function declaration shouldn't have a personality routine", &F);
2866 } else {
2867 // Verify that this function (which has a body) is not named "llvm.*". It
2868 // is not legal to define intrinsics.
2869 Check(!IsIntrinsic, "llvm intrinsics cannot be defined!", &F);
2870
2871 // Check the entry node
2872 const BasicBlock *Entry = &F.getEntryBlock();
2873 Check(pred_empty(Entry),
2874 "Entry block to function must not have predecessors!", Entry);
2875
2876 // The address of the entry block cannot be taken, unless it is dead.
2877 if (Entry->hasAddressTaken()) {
2878 Check(!BlockAddress::lookup(Entry)->isConstantUsed(),
2879 "blockaddress may not be used with the entry block!", Entry);
2880 }
2881
2882 unsigned NumDebugAttachments = 0, NumProfAttachments = 0,
2883 NumKCFIAttachments = 0;
2884 // Visit metadata attachments.
2885 for (const auto &I : MDs) {
2886 // Verify that the attachment is legal.
2887 auto AllowLocs = AreDebugLocsAllowed::No;
2888 switch (I.first) {
2889 default:
2890 break;
2891 case LLVMContext::MD_dbg: {
2892 ++NumDebugAttachments;
2893 CheckDI(NumDebugAttachments == 1,
2894 "function must have a single !dbg attachment", &F, I.second);
2895 CheckDI(isa<DISubprogram>(I.second),
2896 "function !dbg attachment must be a subprogram", &F, I.second);
2897 CheckDI(cast<DISubprogram>(I.second)->isDistinct(),
2898 "function definition may only have a distinct !dbg attachment",
2899 &F);
2900
2901 auto *SP = cast<DISubprogram>(Val: I.second);
2902 const Function *&AttachedTo = DISubprogramAttachments[SP];
2903 CheckDI(!AttachedTo || AttachedTo == &F,
2904 "DISubprogram attached to more than one function", SP, &F);
2905 AttachedTo = &F;
2906 AllowLocs = AreDebugLocsAllowed::Yes;
2907 break;
2908 }
2909 case LLVMContext::MD_prof:
2910 ++NumProfAttachments;
2911 Check(NumProfAttachments == 1,
2912 "function must have a single !prof attachment", &F, I.second);
2913 break;
2914 case LLVMContext::MD_kcfi_type:
2915 ++NumKCFIAttachments;
2916 Check(NumKCFIAttachments == 1,
2917 "function must have a single !kcfi_type attachment", &F,
2918 I.second);
2919 break;
2920 }
2921
2922 // Verify the metadata itself.
2923 visitMDNode(MD: *I.second, AllowLocs);
2924 }
2925 }
2926
2927 // If this function is actually an intrinsic, verify that it is only used in
2928 // direct call/invokes, never having its "address taken".
2929 // Only do this if the module is materialized, otherwise we don't have all the
2930 // uses.
2931 if (F.isIntrinsic() && F.getParent()->isMaterialized()) {
2932 const User *U;
2933 if (F.hasAddressTaken(&U, IgnoreCallbackUses: false, IgnoreAssumeLikeCalls: true, IngoreLLVMUsed: false,
2934 /*IgnoreARCAttachedCall=*/true))
2935 Check(false, "Invalid user of intrinsic instruction!", U);
2936 }
2937
2938 // Check intrinsics' signatures.
2939 switch (F.getIntrinsicID()) {
2940 case Intrinsic::experimental_gc_get_pointer_base: {
2941 FunctionType *FT = F.getFunctionType();
2942 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2943 Check(isa<PointerType>(F.getReturnType()),
2944 "gc.get.pointer.base must return a pointer", F);
2945 Check(FT->getParamType(0) == F.getReturnType(),
2946 "gc.get.pointer.base operand and result must be of the same type", F);
2947 break;
2948 }
2949 case Intrinsic::experimental_gc_get_pointer_offset: {
2950 FunctionType *FT = F.getFunctionType();
2951 Check(FT->getNumParams() == 1, "wrong number of parameters", F);
2952 Check(isa<PointerType>(FT->getParamType(0)),
2953 "gc.get.pointer.offset operand must be a pointer", F);
2954 Check(F.getReturnType()->isIntegerTy(),
2955 "gc.get.pointer.offset must return integer", F);
2956 break;
2957 }
2958 }
2959
2960 auto *N = F.getSubprogram();
2961 HasDebugInfo = (N != nullptr);
2962 if (!HasDebugInfo)
2963 return;
2964
2965 // Check that all !dbg attachments lead to back to N.
2966 //
2967 // FIXME: Check this incrementally while visiting !dbg attachments.
2968 // FIXME: Only check when N is the canonical subprogram for F.
2969 SmallPtrSet<const MDNode *, 32> Seen;
2970 auto VisitDebugLoc = [&](const Instruction &I, const MDNode *Node) {
2971 // Be careful about using DILocation here since we might be dealing with
2972 // broken code (this is the Verifier after all).
2973 const DILocation *DL = dyn_cast_or_null<DILocation>(Val: Node);
2974 if (!DL)
2975 return;
2976 if (!Seen.insert(Ptr: DL).second)
2977 return;
2978
2979 Metadata *Parent = DL->getRawScope();
2980 CheckDI(Parent && isa<DILocalScope>(Parent),
2981 "DILocation's scope must be a DILocalScope", N, &F, &I, DL, Parent);
2982
2983 DILocalScope *Scope = DL->getInlinedAtScope();
2984 Check(Scope, "Failed to find DILocalScope", DL);
2985
2986 if (!Seen.insert(Ptr: Scope).second)
2987 return;
2988
2989 DISubprogram *SP = Scope->getSubprogram();
2990
2991 // Scope and SP could be the same MDNode and we don't want to skip
2992 // validation in that case
2993 if (SP && ((Scope != SP) && !Seen.insert(Ptr: SP).second))
2994 return;
2995
2996 CheckDI(SP->describes(&F),
2997 "!dbg attachment points at wrong subprogram for function", N, &F,
2998 &I, DL, Scope, SP);
2999 };
3000 for (auto &BB : F)
3001 for (auto &I : BB) {
3002 VisitDebugLoc(I, I.getDebugLoc().getAsMDNode());
3003 // The llvm.loop annotations also contain two DILocations.
3004 if (auto MD = I.getMetadata(KindID: LLVMContext::MD_loop))
3005 for (unsigned i = 1; i < MD->getNumOperands(); ++i)
3006 VisitDebugLoc(I, dyn_cast_or_null<MDNode>(Val: MD->getOperand(I: i)));
3007 if (BrokenDebugInfo)
3008 return;
3009 }
3010}
3011
3012// verifyBasicBlock - Verify that a basic block is well formed...
3013//
3014void Verifier::visitBasicBlock(BasicBlock &BB) {
3015 InstsInThisBlock.clear();
3016 ConvergenceVerifyHelper.visit(BB);
3017
3018 // Ensure that basic blocks have terminators!
3019 Check(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
3020
3021 // Check constraints that this basic block imposes on all of the PHI nodes in
3022 // it.
3023 if (isa<PHINode>(Val: BB.front())) {
3024 SmallVector<BasicBlock *, 8> Preds(predecessors(BB: &BB));
3025 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
3026 llvm::sort(C&: Preds);
3027 for (const PHINode &PN : BB.phis()) {
3028 Check(PN.getNumIncomingValues() == Preds.size(),
3029 "PHINode should have one entry for each predecessor of its "
3030 "parent basic block!",
3031 &PN);
3032
3033 // Get and sort all incoming values in the PHI node...
3034 Values.clear();
3035 Values.reserve(N: PN.getNumIncomingValues());
3036 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
3037 Values.push_back(
3038 Elt: std::make_pair(x: PN.getIncomingBlock(i), y: PN.getIncomingValue(i)));
3039 llvm::sort(C&: Values);
3040
3041 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
3042 // Check to make sure that if there is more than one entry for a
3043 // particular basic block in this PHI node, that the incoming values are
3044 // all identical.
3045 //
3046 Check(i == 0 || Values[i].first != Values[i - 1].first ||
3047 Values[i].second == Values[i - 1].second,
3048 "PHI node has multiple entries for the same basic block with "
3049 "different incoming values!",
3050 &PN, Values[i].first, Values[i].second, Values[i - 1].second);
3051
3052 // Check to make sure that the predecessors and PHI node entries are
3053 // matched up.
3054 Check(Values[i].first == Preds[i],
3055 "PHI node entries do not match predecessors!", &PN,
3056 Values[i].first, Preds[i]);
3057 }
3058 }
3059 }
3060
3061 // Check that all instructions have their parent pointers set up correctly.
3062 for (auto &I : BB)
3063 {
3064 Check(I.getParent() == &BB, "Instruction has bogus parent pointer!");
3065 }
3066
3067 CheckDI(BB.IsNewDbgInfoFormat == BB.getParent()->IsNewDbgInfoFormat,
3068 "BB debug format should match parent function", &BB,
3069 BB.IsNewDbgInfoFormat, BB.getParent(),
3070 BB.getParent()->IsNewDbgInfoFormat);
3071
3072 // Confirm that no issues arise from the debug program.
3073 if (BB.IsNewDbgInfoFormat)
3074 CheckDI(!BB.getTrailingDbgRecords(), "Basic Block has trailing DbgRecords!",
3075 &BB);
3076}
3077
3078void Verifier::visitTerminator(Instruction &I) {
3079 // Ensure that terminators only exist at the end of the basic block.
3080 Check(&I == I.getParent()->getTerminator(),
3081 "Terminator found in the middle of a basic block!", I.getParent());
3082 visitInstruction(I);
3083}
3084
3085void Verifier::visitBranchInst(BranchInst &BI) {
3086 if (BI.isConditional()) {
3087 Check(BI.getCondition()->getType()->isIntegerTy(1),
3088 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
3089 }
3090 visitTerminator(I&: BI);
3091}
3092
3093void Verifier::visitReturnInst(ReturnInst &RI) {
3094 Function *F = RI.getParent()->getParent();
3095 unsigned N = RI.getNumOperands();
3096 if (F->getReturnType()->isVoidTy())
3097 Check(N == 0,
3098 "Found return instr that returns non-void in Function of void "
3099 "return type!",
3100 &RI, F->getReturnType());
3101 else
3102 Check(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
3103 "Function return type does not match operand "
3104 "type of return inst!",
3105 &RI, F->getReturnType());
3106
3107 // Check to make sure that the return value has necessary properties for
3108 // terminators...
3109 visitTerminator(I&: RI);
3110}
3111
3112void Verifier::visitSwitchInst(SwitchInst &SI) {
3113 Check(SI.getType()->isVoidTy(), "Switch must have void result type!", &SI);
3114 // Check to make sure that all of the constants in the switch instruction
3115 // have the same type as the switched-on value.
3116 Type *SwitchTy = SI.getCondition()->getType();
3117 SmallPtrSet<ConstantInt*, 32> Constants;
3118 for (auto &Case : SI.cases()) {
3119 Check(isa<ConstantInt>(SI.getOperand(Case.getCaseIndex() * 2 + 2)),
3120 "Case value is not a constant integer.", &SI);
3121 Check(Case.getCaseValue()->getType() == SwitchTy,
3122 "Switch constants must all be same type as switch value!", &SI);
3123 Check(Constants.insert(Case.getCaseValue()).second,
3124 "Duplicate integer as switch case", &SI, Case.getCaseValue());
3125 }
3126
3127 visitTerminator(I&: SI);
3128}
3129
3130void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
3131 Check(BI.getAddress()->getType()->isPointerTy(),
3132 "Indirectbr operand must have pointer type!", &BI);
3133 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
3134 Check(BI.getDestination(i)->getType()->isLabelTy(),
3135 "Indirectbr destinations must all have pointer type!", &BI);
3136
3137 visitTerminator(I&: BI);
3138}
3139
3140void Verifier::visitCallBrInst(CallBrInst &CBI) {
3141 Check(CBI.isInlineAsm(), "Callbr is currently only used for asm-goto!", &CBI);
3142 const InlineAsm *IA = cast<InlineAsm>(Val: CBI.getCalledOperand());
3143 Check(!IA->canThrow(), "Unwinding from Callbr is not allowed");
3144
3145 verifyInlineAsmCall(Call: CBI);
3146 visitTerminator(I&: CBI);
3147}
3148
3149void Verifier::visitSelectInst(SelectInst &SI) {
3150 Check(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
3151 SI.getOperand(2)),
3152 "Invalid operands for select instruction!", &SI);
3153
3154 Check(SI.getTrueValue()->getType() == SI.getType(),
3155 "Select values must have same type as select instruction!", &SI);
3156 visitInstruction(I&: SI);
3157}
3158
3159/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
3160/// a pass, if any exist, it's an error.
3161///
3162void Verifier::visitUserOp1(Instruction &I) {
3163 Check(false, "User-defined operators should not live outside of a pass!", &I);
3164}
3165
3166void Verifier::visitTruncInst(TruncInst &I) {
3167 // Get the source and destination types
3168 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3169 Type *DestTy = I.getType();
3170
3171 // Get the size of the types in bits, we'll need this later
3172 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3173 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3174
3175 Check(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
3176 Check(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
3177 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3178 "trunc source and destination must both be a vector or neither", &I);
3179 Check(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
3180
3181 visitInstruction(I);
3182}
3183
3184void Verifier::visitZExtInst(ZExtInst &I) {
3185 // Get the source and destination types
3186 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3187 Type *DestTy = I.getType();
3188
3189 // Get the size of the types in bits, we'll need this later
3190 Check(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
3191 Check(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
3192 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3193 "zext source and destination must both be a vector or neither", &I);
3194 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3195 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3196
3197 Check(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
3198
3199 visitInstruction(I);
3200}
3201
3202void Verifier::visitSExtInst(SExtInst &I) {
3203 // Get the source and destination types
3204 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3205 Type *DestTy = I.getType();
3206
3207 // Get the size of the types in bits, we'll need this later
3208 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3209 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3210
3211 Check(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
3212 Check(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
3213 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3214 "sext source and destination must both be a vector or neither", &I);
3215 Check(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
3216
3217 visitInstruction(I);
3218}
3219
3220void Verifier::visitFPTruncInst(FPTruncInst &I) {
3221 // Get the source and destination types
3222 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3223 Type *DestTy = I.getType();
3224 // Get the size of the types in bits, we'll need this later
3225 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3226 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3227
3228 Check(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
3229 Check(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
3230 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3231 "fptrunc source and destination must both be a vector or neither", &I);
3232 Check(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
3233
3234 visitInstruction(I);
3235}
3236
3237void Verifier::visitFPExtInst(FPExtInst &I) {
3238 // Get the source and destination types
3239 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3240 Type *DestTy = I.getType();
3241
3242 // Get the size of the types in bits, we'll need this later
3243 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3244 unsigned DestBitSize = DestTy->getScalarSizeInBits();
3245
3246 Check(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
3247 Check(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
3248 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(),
3249 "fpext source and destination must both be a vector or neither", &I);
3250 Check(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
3251
3252 visitInstruction(I);
3253}
3254
3255void Verifier::visitUIToFPInst(UIToFPInst &I) {
3256 // Get the source and destination types
3257 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3258 Type *DestTy = I.getType();
3259
3260 bool SrcVec = SrcTy->isVectorTy();
3261 bool DstVec = DestTy->isVectorTy();
3262
3263 Check(SrcVec == DstVec,
3264 "UIToFP source and dest must both be vector or scalar", &I);
3265 Check(SrcTy->isIntOrIntVectorTy(),
3266 "UIToFP source must be integer or integer vector", &I);
3267 Check(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
3268 &I);
3269
3270 if (SrcVec && DstVec)
3271 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3272 cast<VectorType>(DestTy)->getElementCount(),
3273 "UIToFP source and dest vector length mismatch", &I);
3274
3275 visitInstruction(I);
3276}
3277
3278void Verifier::visitSIToFPInst(SIToFPInst &I) {
3279 // Get the source and destination types
3280 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3281 Type *DestTy = I.getType();
3282
3283 bool SrcVec = SrcTy->isVectorTy();
3284 bool DstVec = DestTy->isVectorTy();
3285
3286 Check(SrcVec == DstVec,
3287 "SIToFP source and dest must both be vector or scalar", &I);
3288 Check(SrcTy->isIntOrIntVectorTy(),
3289 "SIToFP source must be integer or integer vector", &I);
3290 Check(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
3291 &I);
3292
3293 if (SrcVec && DstVec)
3294 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3295 cast<VectorType>(DestTy)->getElementCount(),
3296 "SIToFP source and dest vector length mismatch", &I);
3297
3298 visitInstruction(I);
3299}
3300
3301void Verifier::visitFPToUIInst(FPToUIInst &I) {
3302 // Get the source and destination types
3303 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3304 Type *DestTy = I.getType();
3305
3306 bool SrcVec = SrcTy->isVectorTy();
3307 bool DstVec = DestTy->isVectorTy();
3308
3309 Check(SrcVec == DstVec,
3310 "FPToUI source and dest must both be vector or scalar", &I);
3311 Check(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector", &I);
3312 Check(DestTy->isIntOrIntVectorTy(),
3313 "FPToUI result must be integer or integer vector", &I);
3314
3315 if (SrcVec && DstVec)
3316 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3317 cast<VectorType>(DestTy)->getElementCount(),
3318 "FPToUI source and dest vector length mismatch", &I);
3319
3320 visitInstruction(I);
3321}
3322
3323void Verifier::visitFPToSIInst(FPToSIInst &I) {
3324 // Get the source and destination types
3325 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3326 Type *DestTy = I.getType();
3327
3328 bool SrcVec = SrcTy->isVectorTy();
3329 bool DstVec = DestTy->isVectorTy();
3330
3331 Check(SrcVec == DstVec,
3332 "FPToSI source and dest must both be vector or scalar", &I);
3333 Check(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector", &I);
3334 Check(DestTy->isIntOrIntVectorTy(),
3335 "FPToSI result must be integer or integer vector", &I);
3336
3337 if (SrcVec && DstVec)
3338 Check(cast<VectorType>(SrcTy)->getElementCount() ==
3339 cast<VectorType>(DestTy)->getElementCount(),
3340 "FPToSI source and dest vector length mismatch", &I);
3341
3342 visitInstruction(I);
3343}
3344
3345void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
3346 // Get the source and destination types
3347 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3348 Type *DestTy = I.getType();
3349
3350 Check(SrcTy->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I);
3351
3352 Check(DestTy->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I);
3353 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
3354 &I);
3355
3356 if (SrcTy->isVectorTy()) {
3357 auto *VSrc = cast<VectorType>(Val: SrcTy);
3358 auto *VDest = cast<VectorType>(Val: DestTy);
3359 Check(VSrc->getElementCount() == VDest->getElementCount(),
3360 "PtrToInt Vector width mismatch", &I);
3361 }
3362
3363 visitInstruction(I);
3364}
3365
3366void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
3367 // Get the source and destination types
3368 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3369 Type *DestTy = I.getType();
3370
3371 Check(SrcTy->isIntOrIntVectorTy(), "IntToPtr source must be an integral", &I);
3372 Check(DestTy->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I);
3373
3374 Check(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
3375 &I);
3376 if (SrcTy->isVectorTy()) {
3377 auto *VSrc = cast<VectorType>(Val: SrcTy);
3378 auto *VDest = cast<VectorType>(Val: DestTy);
3379 Check(VSrc->getElementCount() == VDest->getElementCount(),
3380 "IntToPtr Vector width mismatch", &I);
3381 }
3382 visitInstruction(I);
3383}
3384
3385void Verifier::visitBitCastInst(BitCastInst &I) {
3386 Check(
3387 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
3388 "Invalid bitcast", &I);
3389 visitInstruction(I);
3390}
3391
3392void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
3393 Type *SrcTy = I.getOperand(i_nocapture: 0)->getType();
3394 Type *DestTy = I.getType();
3395
3396 Check(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
3397 &I);
3398 Check(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
3399 &I);
3400 Check(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
3401 "AddrSpaceCast must be between different address spaces", &I);
3402 if (auto *SrcVTy = dyn_cast<VectorType>(Val: SrcTy))
3403 Check(SrcVTy->getElementCount() ==
3404 cast<VectorType>(DestTy)->getElementCount(),
3405 "AddrSpaceCast vector pointer number of elements mismatch", &I);
3406 visitInstruction(I);
3407}
3408
3409/// visitPHINode - Ensure that a PHI node is well formed.
3410///
3411void Verifier::visitPHINode(PHINode &PN) {
3412 // Ensure that the PHI nodes are all grouped together at the top of the block.
3413 // This can be tested by checking whether the instruction before this is
3414 // either nonexistent (because this is begin()) or is a PHI node. If not,
3415 // then there is some other instruction before a PHI.
3416 Check(&PN == &PN.getParent()->front() ||
3417 isa<PHINode>(--BasicBlock::iterator(&PN)),
3418 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
3419
3420 // Check that a PHI doesn't yield a Token.
3421 Check(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
3422
3423 // Check that all of the values of the PHI node have the same type as the
3424 // result.
3425 for (Value *IncValue : PN.incoming_values()) {
3426 Check(PN.getType() == IncValue->getType(),
3427 "PHI node operands are not the same type as the result!", &PN);
3428 }
3429
3430 // All other PHI node constraints are checked in the visitBasicBlock method.
3431
3432 visitInstruction(I&: PN);
3433}
3434
3435void Verifier::visitCallBase(CallBase &Call) {
3436 Check(Call.getCalledOperand()->getType()->isPointerTy(),
3437 "Called function must be a pointer!", Call);
3438 FunctionType *FTy = Call.getFunctionType();
3439
3440 // Verify that the correct number of arguments are being passed
3441 if (FTy->isVarArg())
3442 Check(Call.arg_size() >= FTy->getNumParams(),
3443 "Called function requires more parameters than were provided!", Call);
3444 else
3445 Check(Call.arg_size() == FTy->getNumParams(),
3446 "Incorrect number of arguments passed to called function!", Call);
3447
3448 // Verify that all arguments to the call match the function type.
3449 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
3450 Check(Call.getArgOperand(i)->getType() == FTy->getParamType(i),
3451 "Call parameter type does not match function signature!",
3452 Call.getArgOperand(i), FTy->getParamType(i), Call);
3453
3454 AttributeList Attrs = Call.getAttributes();
3455
3456 Check(verifyAttributeCount(Attrs, Call.arg_size()),
3457 "Attribute after last parameter!", Call);
3458
3459 Function *Callee =
3460 dyn_cast<Function>(Val: Call.getCalledOperand()->stripPointerCasts());
3461 bool IsIntrinsic = Callee && Callee->isIntrinsic();
3462 if (IsIntrinsic)
3463 Check(Callee->getValueType() == FTy,
3464 "Intrinsic called with incompatible signature", Call);
3465
3466 // Disallow calls to functions with the amdgpu_cs_chain[_preserve] calling
3467 // convention.
3468 auto CC = Call.getCallingConv();
3469 Check(CC != CallingConv::AMDGPU_CS_Chain &&
3470 CC != CallingConv::AMDGPU_CS_ChainPreserve,
3471 "Direct calls to amdgpu_cs_chain/amdgpu_cs_chain_preserve functions "
3472 "not allowed. Please use the @llvm.amdgpu.cs.chain intrinsic instead.",
3473 Call);
3474
3475 auto VerifyTypeAlign = [&](Type *Ty, const Twine &Message) {
3476 if (!Ty->isSized())
3477 return;
3478 Align ABIAlign = DL.getABITypeAlign(Ty);
3479 Align MaxAlign(ParamMaxAlignment);
3480 Check(ABIAlign <= MaxAlign,
3481 "Incorrect alignment of " + Message + " to called function!", Call);
3482 };
3483
3484 if (!IsIntrinsic) {
3485 VerifyTypeAlign(FTy->getReturnType(), "return type");
3486 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3487 Type *Ty = FTy->getParamType(i);
3488 VerifyTypeAlign(Ty, "argument passed");
3489 }
3490 }
3491
3492 if (Attrs.hasFnAttr(Attribute::Speculatable)) {
3493 // Don't allow speculatable on call sites, unless the underlying function
3494 // declaration is also speculatable.
3495 Check(Callee && Callee->isSpeculatable(),
3496 "speculatable attribute may not apply to call sites", Call);
3497 }
3498
3499 if (Attrs.hasFnAttr(Attribute::Preallocated)) {
3500 Check(Call.getCalledFunction()->getIntrinsicID() ==
3501 Intrinsic::call_preallocated_arg,
3502 "preallocated as a call site attribute can only be on "
3503 "llvm.call.preallocated.arg");
3504 }
3505
3506 // Verify call attributes.
3507 verifyFunctionAttrs(FT: FTy, Attrs, V: &Call, IsIntrinsic, IsInlineAsm: Call.isInlineAsm());
3508
3509 // Conservatively check the inalloca argument.
3510 // We have a bug if we can find that there is an underlying alloca without
3511 // inalloca.
3512 if (Call.hasInAllocaArgument()) {
3513 Value *InAllocaArg = Call.getArgOperand(i: FTy->getNumParams() - 1);
3514 if (auto AI = dyn_cast<AllocaInst>(Val: InAllocaArg->stripInBoundsOffsets()))
3515 Check(AI->isUsedWithInAlloca(),
3516 "inalloca argument for call has mismatched alloca", AI, Call);
3517 }
3518
3519 // For each argument of the callsite, if it has the swifterror argument,
3520 // make sure the underlying alloca/parameter it comes from has a swifterror as
3521 // well.
3522 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
3523 if (Call.paramHasAttr(i, Attribute::SwiftError)) {
3524 Value *SwiftErrorArg = Call.getArgOperand(i);
3525 if (auto AI = dyn_cast<AllocaInst>(Val: SwiftErrorArg->stripInBoundsOffsets())) {
3526 Check(AI->isSwiftError(),
3527 "swifterror argument for call has mismatched alloca", AI, Call);
3528 continue;
3529 }
3530 auto ArgI = dyn_cast<Argument>(Val: SwiftErrorArg);
3531 Check(ArgI, "swifterror argument should come from an alloca or parameter",
3532 SwiftErrorArg, Call);
3533 Check(ArgI->hasSwiftErrorAttr(),
3534 "swifterror argument for call has mismatched parameter", ArgI,
3535 Call);
3536 }
3537
3538 if (Attrs.hasParamAttr(i, Attribute::ImmArg)) {
3539 // Don't allow immarg on call sites, unless the underlying declaration
3540 // also has the matching immarg.
3541 Check(Callee && Callee->hasParamAttribute(i, Attribute::ImmArg),
3542 "immarg may not apply only to call sites", Call.getArgOperand(i),
3543 Call);
3544 }
3545
3546 if (Call.paramHasAttr(i, Attribute::ImmArg)) {
3547 Value *ArgVal = Call.getArgOperand(i);
3548 Check(isa<ConstantInt>(ArgVal) || isa<ConstantFP>(ArgVal),
3549 "immarg operand has non-immediate parameter", ArgVal, Call);
3550 }
3551
3552 if (Call.paramHasAttr(i, Attribute::Preallocated)) {
3553 Value *ArgVal = Call.getArgOperand(i);
3554 bool hasOB =
3555 Call.countOperandBundlesOfType(ID: LLVMContext::OB_preallocated) != 0;
3556 bool isMustTail = Call.isMustTailCall();
3557 Check(hasOB != isMustTail,
3558 "preallocated operand either requires a preallocated bundle or "
3559 "the call to be musttail (but not both)",
3560 ArgVal, Call);
3561 }
3562 }
3563
3564 if (FTy->isVarArg()) {
3565 // FIXME? is 'nest' even legal here?
3566 bool SawNest = false;
3567 bool SawReturned = false;
3568
3569 for (unsigned Idx = 0; Idx < FTy->getNumParams(); ++Idx) {
3570 if (Attrs.hasParamAttr(Idx, Attribute::Nest))
3571 SawNest = true;
3572 if (Attrs.hasParamAttr(Idx, Attribute::Returned))
3573 SawReturned = true;
3574 }
3575
3576 // Check attributes on the varargs part.
3577 for (unsigned Idx = FTy->getNumParams(); Idx < Call.arg_size(); ++Idx) {
3578 Type *Ty = Call.getArgOperand(i: Idx)->getType();
3579 AttributeSet ArgAttrs = Attrs.getParamAttrs(ArgNo: Idx);
3580 verifyParameterAttrs(Attrs: ArgAttrs, Ty, V: &Call);
3581
3582 if (ArgAttrs.hasAttribute(Attribute::Nest)) {
3583 Check(!SawNest, "More than one parameter has attribute nest!", Call);
3584 SawNest = true;
3585 }
3586
3587 if (ArgAttrs.hasAttribute(Attribute::Returned)) {
3588 Check(!SawReturned, "More than one parameter has attribute returned!",
3589 Call);
3590 Check(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
3591 "Incompatible argument and return types for 'returned' "
3592 "attribute",
3593 Call);
3594 SawReturned = true;
3595 }
3596
3597 // Statepoint intrinsic is vararg but the wrapped function may be not.
3598 // Allow sret here and check the wrapped function in verifyStatepoint.
3599 if (!Call.getCalledFunction() ||
3600 Call.getCalledFunction()->getIntrinsicID() !=
3601 Intrinsic::experimental_gc_statepoint)
3602 Check(!ArgAttrs.hasAttribute(Attribute::StructRet),
3603 "Attribute 'sret' cannot be used for vararg call arguments!",
3604 Call);
3605
3606 if (ArgAttrs.hasAttribute(Attribute::InAlloca))
3607 Check(Idx == Call.arg_size() - 1,
3608 "inalloca isn't on the last argument!", Call);
3609 }
3610 }
3611
3612 // Verify that there's no metadata unless it's a direct call to an intrinsic.
3613 if (!IsIntrinsic) {
3614 for (Type *ParamTy : FTy->params()) {
3615 Check(!ParamTy->isMetadataTy(),
3616 "Function has metadata parameter but isn't an intrinsic", Call);
3617 Check(!ParamTy->isTokenTy(),
3618 "Function has token parameter but isn't an intrinsic", Call);
3619 }
3620 }
3621
3622 // Verify that indirect calls don't return tokens.
3623 if (!Call.getCalledFunction()) {
3624 Check(!FTy->getReturnType()->isTokenTy(),
3625 "Return type cannot be token for indirect call!");
3626 Check(!FTy->getReturnType()->isX86_AMXTy(),
3627 "Return type cannot be x86_amx for indirect call!");
3628 }
3629
3630 if (Function *F = Call.getCalledFunction())
3631 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
3632 visitIntrinsicCall(ID, Call);
3633
3634 // Verify that a callsite has at most one "deopt", at most one "funclet", at
3635 // most one "gc-transition", at most one "cfguardtarget", at most one
3636 // "preallocated" operand bundle, and at most one "ptrauth" operand bundle.
3637 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
3638 FoundGCTransitionBundle = false, FoundCFGuardTargetBundle = false,
3639 FoundPreallocatedBundle = false, FoundGCLiveBundle = false,
3640 FoundPtrauthBundle = false, FoundKCFIBundle = false,
3641 FoundAttachedCallBundle = false;
3642 for (unsigned i = 0, e = Call.getNumOperandBundles(); i < e; ++i) {
3643 OperandBundleUse BU = Call.getOperandBundleAt(Index: i);
3644 uint32_t Tag = BU.getTagID();
3645 if (Tag == LLVMContext::OB_deopt) {
3646 Check(!FoundDeoptBundle, "Multiple deopt operand bundles", Call);
3647 FoundDeoptBundle = true;
3648 } else if (Tag == LLVMContext::OB_gc_transition) {
3649 Check(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
3650 Call);
3651 FoundGCTransitionBundle = true;
3652 } else if (Tag == LLVMContext::OB_funclet) {
3653 Check(!FoundFuncletBundle, "Multiple funclet operand bundles", Call);
3654 FoundFuncletBundle = true;
3655 Check(BU.Inputs.size() == 1,
3656 "Expected exactly one funclet bundle operand", Call);
3657 Check(isa<FuncletPadInst>(BU.Inputs.front()),
3658 "Funclet bundle operands should correspond to a FuncletPadInst",
3659 Call);
3660 } else if (Tag == LLVMContext::OB_cfguardtarget) {
3661 Check(!FoundCFGuardTargetBundle, "Multiple CFGuardTarget operand bundles",
3662 Call);
3663 FoundCFGuardTargetBundle = true;
3664 Check(BU.Inputs.size() == 1,
3665 "Expected exactly one cfguardtarget bundle operand", Call);
3666 } else if (Tag == LLVMContext::OB_ptrauth) {
3667 Check(!FoundPtrauthBundle, "Multiple ptrauth operand bundles", Call);
3668 FoundPtrauthBundle = true;
3669 Check(BU.Inputs.size() == 2,
3670 "Expected exactly two ptrauth bundle operands", Call);
3671 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3672 BU.Inputs[0]->getType()->isIntegerTy(32),
3673 "Ptrauth bundle key operand must be an i32 constant", Call);
3674 Check(BU.Inputs[1]->getType()->isIntegerTy(64),
3675 "Ptrauth bundle discriminator operand must be an i64", Call);
3676 } else if (Tag == LLVMContext::OB_kcfi) {
3677 Check(!FoundKCFIBundle, "Multiple kcfi operand bundles", Call);
3678 FoundKCFIBundle = true;
3679 Check(BU.Inputs.size() == 1, "Expected exactly one kcfi bundle operand",
3680 Call);
3681 Check(isa<ConstantInt>(BU.Inputs[0]) &&
3682 BU.Inputs[0]->getType()->isIntegerTy(32),
3683 "Kcfi bundle operand must be an i32 constant", Call);
3684 } else if (Tag == LLVMContext::OB_preallocated) {
3685 Check(!FoundPreallocatedBundle, "Multiple preallocated operand bundles",
3686 Call);
3687 FoundPreallocatedBundle = true;
3688 Check(BU.Inputs.size() == 1,
3689 "Expected exactly one preallocated bundle operand", Call);
3690 auto Input = dyn_cast<IntrinsicInst>(Val: BU.Inputs.front());
3691 Check(Input &&
3692 Input->getIntrinsicID() == Intrinsic::call_preallocated_setup,
3693 "\"preallocated\" argument must be a token from "
3694 "llvm.call.preallocated.setup",
3695 Call);
3696 } else if (Tag == LLVMContext::OB_gc_live) {
3697 Check(!FoundGCLiveBundle, "Multiple gc-live operand bundles", Call);
3698 FoundGCLiveBundle = true;
3699 } else if (Tag == LLVMContext::OB_clang_arc_attachedcall) {
3700 Check(!FoundAttachedCallBundle,
3701 "Multiple \"clang.arc.attachedcall\" operand bundles", Call);
3702 FoundAttachedCallBundle = true;
3703 verifyAttachedCallBundle(Call, BU);
3704 }
3705 }
3706
3707 // Verify that callee and callsite agree on whether to use pointer auth.
3708 Check(!(Call.getCalledFunction() && FoundPtrauthBundle),
3709 "Direct call cannot have a ptrauth bundle", Call);
3710
3711 // Verify that each inlinable callsite of a debug-info-bearing function in a
3712 // debug-info-bearing function has a debug location attached to it. Failure to
3713 // do so causes assertion failures when the inliner sets up inline scope info
3714 // (Interposable functions are not inlinable, neither are functions without
3715 // definitions.)
3716 if (Call.getFunction()->getSubprogram() && Call.getCalledFunction() &&
3717 !Call.getCalledFunction()->isInterposable() &&
3718 !Call.getCalledFunction()->isDeclaration() &&
3719 Call.getCalledFunction()->getSubprogram())
3720 CheckDI(Call.getDebugLoc(),
3721 "inlinable function call in a function with "
3722 "debug info must have a !dbg location",
3723 Call);
3724
3725 if (Call.isInlineAsm())
3726 verifyInlineAsmCall(Call);
3727
3728 ConvergenceVerifyHelper.visit(I: Call);
3729
3730 visitInstruction(I&: Call);
3731}
3732
3733void Verifier::verifyTailCCMustTailAttrs(const AttrBuilder &Attrs,
3734 StringRef Context) {
3735 Check(!Attrs.contains(Attribute::InAlloca),
3736 Twine("inalloca attribute not allowed in ") + Context);
3737 Check(!Attrs.contains(Attribute::InReg),
3738 Twine("inreg attribute not allowed in ") + Context);
3739 Check(!Attrs.contains(Attribute::SwiftError),
3740 Twine("swifterror attribute not allowed in ") + Context);
3741 Check(!Attrs.contains(Attribute::Preallocated),
3742 Twine("preallocated attribute not allowed in ") + Context);
3743 Check(!Attrs.contains(Attribute::ByRef),
3744 Twine("byref attribute not allowed in ") + Context);
3745}
3746
3747/// Two types are "congruent" if they are identical, or if they are both pointer
3748/// types with different pointee types and the same address space.
3749static bool isTypeCongruent(Type *L, Type *R) {
3750 if (L == R)
3751 return true;
3752 PointerType *PL = dyn_cast<PointerType>(Val: L);
3753 PointerType *PR = dyn_cast<PointerType>(Val: R);
3754 if (!PL || !PR)
3755 return false;
3756 return PL->getAddressSpace() == PR->getAddressSpace();
3757}
3758
3759static AttrBuilder getParameterABIAttributes(LLVMContext& C, unsigned I, AttributeList Attrs) {
3760 static const Attribute::AttrKind ABIAttrs[] = {
3761 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
3762 Attribute::InReg, Attribute::StackAlignment, Attribute::SwiftSelf,
3763 Attribute::SwiftAsync, Attribute::SwiftError, Attribute::Preallocated,
3764 Attribute::ByRef};
3765 AttrBuilder Copy(C);
3766 for (auto AK : ABIAttrs) {
3767 Attribute Attr = Attrs.getParamAttrs(I).getAttribute(AK);
3768 if (Attr.isValid())
3769 Copy.addAttribute(Attr);
3770 }
3771
3772 // `align` is ABI-affecting only in combination with `byval` or `byref`.
3773 if (Attrs.hasParamAttr(I, Attribute::Alignment) &&
3774 (Attrs.hasParamAttr(I, Attribute::ByVal) ||
3775 Attrs.hasParamAttr(I, Attribute::ByRef)))
3776 Copy.addAlignmentAttr(Align: Attrs.getParamAlignment(ArgNo: I));
3777 return Copy;
3778}
3779
3780void Verifier::verifyMustTailCall(CallInst &CI) {
3781 Check(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
3782
3783 Function *F = CI.getParent()->getParent();
3784 FunctionType *CallerTy = F->getFunctionType();
3785 FunctionType *CalleeTy = CI.getFunctionType();
3786 Check(CallerTy->isVarArg() == CalleeTy->isVarArg(),
3787 "cannot guarantee tail call due to mismatched varargs", &CI);
3788 Check(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
3789 "cannot guarantee tail call due to mismatched return types", &CI);
3790
3791 // - The calling conventions of the caller and callee must match.
3792 Check(F->getCallingConv() == CI.getCallingConv(),
3793 "cannot guarantee tail call due to mismatched calling conv", &CI);
3794
3795 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3796 // or a pointer bitcast followed by a ret instruction.
3797 // - The ret instruction must return the (possibly bitcasted) value
3798 // produced by the call or void.
3799 Value *RetVal = &CI;
3800 Instruction *Next = CI.getNextNode();
3801
3802 // Handle the optional bitcast.
3803 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Val: Next)) {
3804 Check(BI->getOperand(0) == RetVal,
3805 "bitcast following musttail call must use the call", BI);
3806 RetVal = BI;
3807 Next = BI->getNextNode();
3808 }
3809
3810 // Check the return.
3811 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Val: Next);
3812 Check(Ret, "musttail call must precede a ret with an optional bitcast", &CI);
3813 Check(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal ||
3814 isa<UndefValue>(Ret->getReturnValue()),
3815 "musttail call result must be returned", Ret);
3816
3817 AttributeList CallerAttrs = F->getAttributes();
3818 AttributeList CalleeAttrs = CI.getAttributes();
3819 if (CI.getCallingConv() == CallingConv::SwiftTail ||
3820 CI.getCallingConv() == CallingConv::Tail) {
3821 StringRef CCName =
3822 CI.getCallingConv() == CallingConv::Tail ? "tailcc" : "swifttailcc";
3823
3824 // - Only sret, byval, swiftself, and swiftasync ABI-impacting attributes
3825 // are allowed in swifttailcc call
3826 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3827 AttrBuilder ABIAttrs = getParameterABIAttributes(C&: F->getContext(), I, Attrs: CallerAttrs);
3828 SmallString<32> Context{CCName, StringRef(" musttail caller")};
3829 verifyTailCCMustTailAttrs(Attrs: ABIAttrs, Context);
3830 }
3831 for (unsigned I = 0, E = CalleeTy->getNumParams(); I != E; ++I) {
3832 AttrBuilder ABIAttrs = getParameterABIAttributes(C&: F->getContext(), I, Attrs: CalleeAttrs);
3833 SmallString<32> Context{CCName, StringRef(" musttail callee")};
3834 verifyTailCCMustTailAttrs(Attrs: ABIAttrs, Context);
3835 }
3836 // - Varargs functions are not allowed
3837 Check(!CallerTy->isVarArg(), Twine("cannot guarantee ") + CCName +
3838 " tail call for varargs function");
3839 return;
3840 }
3841
3842 // - The caller and callee prototypes must match. Pointer types of
3843 // parameters or return types may differ in pointee type, but not
3844 // address space.
3845 if (!CI.getCalledFunction() || !CI.getCalledFunction()->isIntrinsic()) {
3846 Check(CallerTy->getNumParams() == CalleeTy->getNumParams(),
3847 "cannot guarantee tail call due to mismatched parameter counts", &CI);
3848 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3849 Check(
3850 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
3851 "cannot guarantee tail call due to mismatched parameter types", &CI);
3852 }
3853 }
3854
3855 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3856 // returned, preallocated, and inalloca, must match.
3857 for (unsigned I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
3858 AttrBuilder CallerABIAttrs = getParameterABIAttributes(C&: F->getContext(), I, Attrs: CallerAttrs);
3859 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(C&: F->getContext(), I, Attrs: CalleeAttrs);
3860 Check(CallerABIAttrs == CalleeABIAttrs,
3861 "cannot guarantee tail call due to mismatched ABI impacting "
3862 "function attributes",
3863 &CI, CI.getOperand(I));
3864 }
3865}
3866
3867void Verifier::visitCallInst(CallInst &CI) {
3868 visitCallBase(Call&: CI);
3869
3870 if (CI.isMustTailCall())
3871 verifyMustTailCall(CI);
3872}
3873
3874void Verifier::visitInvokeInst(InvokeInst &II) {
3875 visitCallBase(Call&: II);
3876
3877 // Verify that the first non-PHI instruction of the unwind destination is an
3878 // exception handling instruction.
3879 Check(
3880 II.getUnwindDest()->isEHPad(),
3881 "The unwind destination does not have an exception handling instruction!",
3882 &II);
3883
3884 visitTerminator(I&: II);
3885}
3886
3887/// visitUnaryOperator - Check the argument to the unary operator.
3888///
3889void Verifier::visitUnaryOperator(UnaryOperator &U) {
3890 Check(U.getType() == U.getOperand(0)->getType(),
3891 "Unary operators must have same type for"
3892 "operands and result!",
3893 &U);
3894
3895 switch (U.getOpcode()) {
3896 // Check that floating-point arithmetic operators are only used with
3897 // floating-point operands.
3898 case Instruction::FNeg:
3899 Check(U.getType()->isFPOrFPVectorTy(),
3900 "FNeg operator only works with float types!", &U);
3901 break;
3902 default:
3903 llvm_unreachable("Unknown UnaryOperator opcode!");
3904 }
3905
3906 visitInstruction(I&: U);
3907}
3908
3909/// visitBinaryOperator - Check that both arguments to the binary operator are
3910/// of the same type!
3911///
3912void Verifier::visitBinaryOperator(BinaryOperator &B) {
3913 Check(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
3914 "Both operands to a binary operator are not of the same type!", &B);
3915
3916 switch (B.getOpcode()) {
3917 // Check that integer arithmetic operators are only used with
3918 // integral operands.
3919 case Instruction::Add:
3920 case Instruction::Sub:
3921 case Instruction::Mul:
3922 case Instruction::SDiv:
3923 case Instruction::UDiv:
3924 case Instruction::SRem:
3925 case Instruction::URem:
3926 Check(B.getType()->isIntOrIntVectorTy(),
3927 "Integer arithmetic operators only work with integral types!", &B);
3928 Check(B.getType() == B.getOperand(0)->getType(),
3929 "Integer arithmetic operators must have same type "
3930 "for operands and result!",
3931 &B);
3932 break;
3933 // Check that floating-point arithmetic operators are only used with
3934 // floating-point operands.
3935 case Instruction::FAdd:
3936 case Instruction::FSub:
3937 case Instruction::FMul:
3938 case Instruction::FDiv:
3939 case Instruction::FRem:
3940 Check(B.getType()->isFPOrFPVectorTy(),
3941 "Floating-point arithmetic operators only work with "
3942 "floating-point types!",
3943 &B);
3944 Check(B.getType() == B.getOperand(0)->getType(),
3945 "Floating-point arithmetic operators must have same type "
3946 "for operands and result!",
3947 &B);
3948 break;
3949 // Check that logical operators are only used with integral operands.
3950 case Instruction::And:
3951 case Instruction::Or:
3952 case Instruction::Xor:
3953 Check(B.getType()->isIntOrIntVectorTy(),
3954 "Logical operators only work with integral types!", &B);
3955 Check(B.getType() == B.getOperand(0)->getType(),
3956 "Logical operators must have same type for operands and result!", &B);
3957 break;
3958 case Instruction::Shl:
3959 case Instruction::LShr:
3960 case Instruction::AShr:
3961 Check(B.getType()->isIntOrIntVectorTy(),
3962 "Shifts only work with integral types!", &B);
3963 Check(B.getType() == B.getOperand(0)->getType(),
3964 "Shift return type must be same as operands!", &B);
3965 break;
3966 default:
3967 llvm_unreachable("Unknown BinaryOperator opcode!");
3968 }
3969
3970 visitInstruction(I&: B);
3971}
3972
3973void Verifier::visitICmpInst(ICmpInst &IC) {
3974 // Check that the operands are the same type
3975 Type *Op0Ty = IC.getOperand(i_nocapture: 0)->getType();
3976 Type *Op1Ty = IC.getOperand(i_nocapture: 1)->getType();
3977 Check(Op0Ty == Op1Ty,
3978 "Both operands to ICmp instruction are not of the same type!", &IC);
3979 // Check that the operands are the right type
3980 Check(Op0Ty->isIntOrIntVectorTy() || Op0Ty->isPtrOrPtrVectorTy(),
3981 "Invalid operand types for ICmp instruction", &IC);
3982 // Check that the predicate is valid.
3983 Check(IC.isIntPredicate(), "Invalid predicate in ICmp instruction!", &IC);
3984
3985 visitInstruction(I&: IC);
3986}
3987
3988void Verifier::visitFCmpInst(FCmpInst &FC) {
3989 // Check that the operands are the same type
3990 Type *Op0Ty = FC.getOperand(i_nocapture: 0)->getType();
3991 Type *Op1Ty = FC.getOperand(i_nocapture: 1)->getType();
3992 Check(Op0Ty == Op1Ty,
3993 "Both operands to FCmp instruction are not of the same type!", &FC);
3994 // Check that the operands are the right type
3995 Check(Op0Ty->isFPOrFPVectorTy(), "Invalid operand types for FCmp instruction",
3996 &FC);
3997 // Check that the predicate is valid.
3998 Check(FC.isFPPredicate(), "Invalid predicate in FCmp instruction!", &FC);
3999
4000 visitInstruction(I&: FC);
4001}
4002
4003void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
4004 Check(ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
4005 "Invalid extractelement operands!", &EI);
4006 visitInstruction(I&: EI);
4007}
4008
4009void Verifier::visitInsertElementInst(InsertElementInst &IE) {
4010 Check(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
4011 IE.getOperand(2)),
4012 "Invalid insertelement operands!", &IE);
4013 visitInstruction(I&: IE);
4014}
4015
4016void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
4017 Check(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
4018 SV.getShuffleMask()),
4019 "Invalid shufflevector operands!", &SV);
4020 visitInstruction(I&: SV);
4021}
4022
4023void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
4024 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
4025
4026 Check(isa<PointerType>(TargetTy),
4027 "GEP base pointer is not a vector or a vector of pointers", &GEP);
4028 Check(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
4029
4030 if (auto *STy = dyn_cast<StructType>(Val: GEP.getSourceElementType())) {
4031 SmallPtrSet<Type *, 4> Visited;
4032 Check(!STy->containsScalableVectorType(&Visited),
4033 "getelementptr cannot target structure that contains scalable vector"
4034 "type",
4035 &GEP);
4036 }
4037
4038 SmallVector<Value *, 16> Idxs(GEP.indices());
4039 Check(
4040 all_of(Idxs, [](Value *V) { return V->getType()->isIntOrIntVectorTy(); }),
4041 "GEP indexes must be integers", &GEP);
4042 Type *ElTy =
4043 GetElementPtrInst::getIndexedType(Ty: GEP.getSourceElementType(), IdxList: Idxs);
4044 Check(ElTy, "Invalid indices for GEP pointer type!", &GEP);
4045
4046 Check(GEP.getType()->isPtrOrPtrVectorTy() &&
4047 GEP.getResultElementType() == ElTy,
4048 "GEP is not of right type for indices!", &GEP, ElTy);
4049
4050 if (auto *GEPVTy = dyn_cast<VectorType>(Val: GEP.getType())) {
4051 // Additional checks for vector GEPs.
4052 ElementCount GEPWidth = GEPVTy->getElementCount();
4053 if (GEP.getPointerOperandType()->isVectorTy())
4054 Check(
4055 GEPWidth ==
4056 cast<VectorType>(GEP.getPointerOperandType())->getElementCount(),
4057 "Vector GEP result width doesn't match operand's", &GEP);
4058 for (Value *Idx : Idxs) {
4059 Type *IndexTy = Idx->getType();
4060 if (auto *IndexVTy = dyn_cast<VectorType>(Val: IndexTy)) {
4061 ElementCount IndexWidth = IndexVTy->getElementCount();
4062 Check(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
4063 }
4064 Check(IndexTy->isIntOrIntVectorTy(),
4065 "All GEP indices should be of integer type");
4066 }
4067 }
4068
4069 if (auto *PTy = dyn_cast<PointerType>(Val: GEP.getType())) {
4070 Check(GEP.getAddressSpace() == PTy->getAddressSpace(),
4071 "GEP address space doesn't match type", &GEP);
4072 }
4073
4074 visitInstruction(I&: GEP);
4075}
4076
4077static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
4078 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
4079}
4080
4081/// Verify !range and !absolute_symbol metadata. These have the same
4082/// restrictions, except !absolute_symbol allows the full set.
4083void Verifier::verifyRangeMetadata(const Value &I, const MDNode *Range,
4084 Type *Ty, bool IsAbsoluteSymbol) {
4085 unsigned NumOperands = Range->getNumOperands();
4086 Check(NumOperands % 2 == 0, "Unfinished range!", Range);
4087 unsigned NumRanges = NumOperands / 2;
4088 Check(NumRanges >= 1, "It should have at least one range!", Range);
4089
4090 ConstantRange LastRange(1, true); // Dummy initial value
4091 for (unsigned i = 0; i < NumRanges; ++i) {
4092 ConstantInt *Low =
4093 mdconst::dyn_extract<ConstantInt>(MD: Range->getOperand(I: 2 * i));
4094 Check(Low, "The lower limit must be an integer!", Low);
4095 ConstantInt *High =
4096 mdconst::dyn_extract<ConstantInt>(MD: Range->getOperand(I: 2 * i + 1));
4097 Check(High, "The upper limit must be an integer!", High);
4098 Check(High->getType() == Low->getType() &&
4099 High->getType() == Ty->getScalarType(),
4100 "Range types must match instruction type!", &I);
4101
4102 APInt HighV = High->getValue();
4103 APInt LowV = Low->getValue();
4104
4105 // ConstantRange asserts if the ranges are the same except for the min/max
4106 // value. Leave the cases it tolerates for the empty range error below.
4107 Check(LowV != HighV || LowV.isMaxValue() || LowV.isMinValue(),
4108 "The upper and lower limits cannot be the same value", &I);
4109
4110 ConstantRange CurRange(LowV, HighV);
4111 Check(!CurRange.isEmptySet() && (IsAbsoluteSymbol || !CurRange.isFullSet()),
4112 "Range must not be empty!", Range);
4113 if (i != 0) {
4114 Check(CurRange.intersectWith(LastRange).isEmptySet(),
4115 "Intervals are overlapping", Range);
4116 Check(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
4117 Range);
4118 Check(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
4119 Range);
4120 }
4121 LastRange = ConstantRange(LowV, HighV);
4122 }
4123 if (NumRanges > 2) {
4124 APInt FirstLow =
4125 mdconst::dyn_extract<ConstantInt>(MD: Range->getOperand(I: 0))->getValue();
4126 APInt FirstHigh =
4127 mdconst::dyn_extract<ConstantInt>(MD: Range->getOperand(I: 1))->getValue();
4128 ConstantRange FirstRange(FirstLow, FirstHigh);
4129 Check(FirstRange.intersectWith(LastRange).isEmptySet(),
4130 "Intervals are overlapping", Range);
4131 Check(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
4132 Range);
4133 }
4134}
4135
4136void Verifier::visitRangeMetadata(Instruction &I, MDNode *Range, Type *Ty) {
4137 assert(Range && Range == I.getMetadata(LLVMContext::MD_range) &&
4138 "precondition violation");
4139 verifyRangeMetadata(I, Range, Ty, IsAbsoluteSymbol: false);
4140}
4141
4142void Verifier::checkAtomicMemAccessSize(Type *Ty, const Instruction *I) {
4143 unsigned Size = DL.getTypeSizeInBits(Ty);
4144 Check(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
4145 Check(!(Size & (Size - 1)),
4146 "atomic memory access' operand must have a power-of-two size", Ty, I);
4147}
4148
4149void Verifier::visitLoadInst(LoadInst &LI) {
4150 PointerType *PTy = dyn_cast<PointerType>(Val: LI.getOperand(i_nocapture: 0)->getType());
4151 Check(PTy, "Load operand must be a pointer.", &LI);
4152 Type *ElTy = LI.getType();
4153 if (MaybeAlign A = LI.getAlign()) {
4154 Check(A->value() <= Value::MaximumAlignment,
4155 "huge alignment values are unsupported", &LI);
4156 }
4157 Check(ElTy->isSized(), "loading unsized types is not allowed", &LI);
4158 if (LI.isAtomic()) {
4159 Check(LI.getOrdering() != AtomicOrdering::Release &&
4160 LI.getOrdering() != AtomicOrdering::AcquireRelease,
4161 "Load cannot have Release ordering", &LI);
4162 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4163 "atomic load operand must have integer, pointer, or floating point "
4164 "type!",
4165 ElTy, &LI);
4166 checkAtomicMemAccessSize(Ty: ElTy, I: &LI);
4167 } else {
4168 Check(LI.getSyncScopeID() == SyncScope::System,
4169 "Non-atomic load cannot have SynchronizationScope specified", &LI);
4170 }
4171
4172 visitInstruction(I&: LI);
4173}
4174
4175void Verifier::visitStoreInst(StoreInst &SI) {
4176 PointerType *PTy = dyn_cast<PointerType>(Val: SI.getOperand(i_nocapture: 1)->getType());
4177 Check(PTy, "Store operand must be a pointer.", &SI);
4178 Type *ElTy = SI.getOperand(i_nocapture: 0)->getType();
4179 if (MaybeAlign A = SI.getAlign()) {
4180 Check(A->value() <= Value::MaximumAlignment,
4181 "huge alignment values are unsupported", &SI);
4182 }
4183 Check(ElTy->isSized(), "storing unsized types is not allowed", &SI);
4184 if (SI.isAtomic()) {
4185 Check(SI.getOrdering() != AtomicOrdering::Acquire &&
4186 SI.getOrdering() != AtomicOrdering::AcquireRelease,
4187 "Store cannot have Acquire ordering", &SI);
4188 Check(ElTy->isIntOrPtrTy() || ElTy->isFloatingPointTy(),
4189 "atomic store operand must have integer, pointer, or floating point "
4190 "type!",
4191 ElTy, &SI);
4192 checkAtomicMemAccessSize(Ty: ElTy, I: &SI);
4193 } else {
4194 Check(SI.getSyncScopeID() == SyncScope::System,
4195 "Non-atomic store cannot have SynchronizationScope specified", &SI);
4196 }
4197 visitInstruction(I&: SI);
4198}
4199
4200/// Check that SwiftErrorVal is used as a swifterror argument in CS.
4201void Verifier::verifySwiftErrorCall(CallBase &Call,
4202 const Value *SwiftErrorVal) {
4203 for (const auto &I : llvm::enumerate(First: Call.args())) {
4204 if (I.value() == SwiftErrorVal) {
4205 Check(Call.paramHasAttr(I.index(), Attribute::SwiftError),
4206 "swifterror value when used in a callsite should be marked "
4207 "with swifterror attribute",
4208 SwiftErrorVal, Call);
4209 }
4210 }
4211}
4212
4213void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
4214 // Check that swifterror value is only used by loads, stores, or as
4215 // a swifterror argument.
4216 for (const User *U : SwiftErrorVal->users()) {
4217 Check(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
4218 isa<InvokeInst>(U),
4219 "swifterror value can only be loaded and stored from, or "
4220 "as a swifterror argument!",
4221 SwiftErrorVal, U);
4222 // If it is used by a store, check it is the second operand.
4223 if (auto StoreI = dyn_cast<StoreInst>(Val: U))
4224 Check(StoreI->getOperand(1) == SwiftErrorVal,
4225 "swifterror value should be the second operand when used "
4226 "by stores",
4227 SwiftErrorVal, U);
4228 if (auto *Call = dyn_cast<CallBase>(Val: U))
4229 verifySwiftErrorCall(Call&: *const_cast<CallBase *>(Call), SwiftErrorVal);
4230 }
4231}
4232
4233void Verifier::visitAllocaInst(AllocaInst &AI) {
4234 SmallPtrSet<Type*, 4> Visited;
4235 Check(AI.getAllocatedType()->isSized(&Visited),
4236 "Cannot allocate unsized type", &AI);
4237 Check(AI.getArraySize()->getType()->isIntegerTy(),
4238 "Alloca array size must have integer type", &AI);
4239 if (MaybeAlign A = AI.getAlign()) {
4240 Check(A->value() <= Value::MaximumAlignment,
4241 "huge alignment values are unsupported", &AI);
4242 }
4243
4244 if (AI.isSwiftError()) {
4245 Check(AI.getAllocatedType()->isPointerTy(),
4246 "swifterror alloca must have pointer type", &AI);
4247 Check(!AI.isArrayAllocation(),
4248 "swifterror alloca must not be array allocation", &AI);
4249 verifySwiftErrorValue(SwiftErrorVal: &AI);
4250 }
4251
4252 visitInstruction(I&: AI);
4253}
4254
4255void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
4256 Type *ElTy = CXI.getOperand(i_nocapture: 1)->getType();
4257 Check(ElTy->isIntOrPtrTy(),
4258 "cmpxchg operand must have integer or pointer type", ElTy, &CXI);
4259 checkAtomicMemAccessSize(Ty: ElTy, I: &CXI);
4260 visitInstruction(I&: CXI);
4261}
4262
4263void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
4264 Check(RMWI.getOrdering() != AtomicOrdering::Unordered,
4265 "atomicrmw instructions cannot be unordered.", &RMWI);
4266 auto Op = RMWI.getOperation();
4267 Type *ElTy = RMWI.getOperand(i_nocapture: 1)->getType();
4268 if (Op == AtomicRMWInst::Xchg) {
4269 Check(ElTy->isIntegerTy() || ElTy->isFloatingPointTy() ||
4270 ElTy->isPointerTy(),
4271 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4272 " operand must have integer or floating point type!",
4273 &RMWI, ElTy);
4274 } else if (AtomicRMWInst::isFPOperation(Op)) {
4275 Check(ElTy->isFPOrFPVectorTy() && !isa<ScalableVectorType>(ElTy),
4276 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4277 " operand must have floating-point or fixed vector of floating-point "
4278 "type!",
4279 &RMWI, ElTy);
4280 } else {
4281 Check(ElTy->isIntegerTy(),
4282 "atomicrmw " + AtomicRMWInst::getOperationName(Op) +
4283 " operand must have integer type!",
4284 &RMWI, ElTy);
4285 }
4286 checkAtomicMemAccessSize(Ty: ElTy, I: &RMWI);
4287 Check(AtomicRMWInst::FIRST_BINOP <= Op && Op <= AtomicRMWInst::LAST_BINOP,
4288 "Invalid binary operation!", &RMWI);
4289 visitInstruction(I&: RMWI);
4290}
4291
4292void Verifier::visitFenceInst(FenceInst &FI) {
4293 const AtomicOrdering Ordering = FI.getOrdering();
4294 Check(Ordering == AtomicOrdering::Acquire ||
4295 Ordering == AtomicOrdering::Release ||
4296 Ordering == AtomicOrdering::AcquireRelease ||
4297 Ordering == AtomicOrdering::SequentiallyConsistent,
4298 "fence instructions may only have acquire, release, acq_rel, or "
4299 "seq_cst ordering.",
4300 &FI);
4301 visitInstruction(I&: FI);
4302}
4303
4304void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
4305 Check(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
4306 EVI.getIndices()) == EVI.getType(),
4307 "Invalid ExtractValueInst operands!", &EVI);
4308
4309 visitInstruction(I&: EVI);
4310}
4311
4312void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
4313 Check(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
4314 IVI.getIndices()) ==
4315 IVI.getOperand(1)->getType(),
4316 "Invalid InsertValueInst operands!", &IVI);
4317
4318 visitInstruction(I&: IVI);
4319}
4320
4321static Value *getParentPad(Value *EHPad) {
4322 if (auto *FPI = dyn_cast<FuncletPadInst>(Val: EHPad))
4323 return FPI->getParentPad();
4324
4325 return cast<CatchSwitchInst>(Val: EHPad)->getParentPad();
4326}
4327
4328void Verifier::visitEHPadPredecessors(Instruction &I) {
4329 assert(I.isEHPad());
4330
4331 BasicBlock *BB = I.getParent();
4332 Function *F = BB->getParent();
4333
4334 Check(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
4335
4336 if (auto *LPI = dyn_cast<LandingPadInst>(Val: &I)) {
4337 // The landingpad instruction defines its parent as a landing pad block. The
4338 // landing pad block may be branched to only by the unwind edge of an
4339 // invoke.
4340 for (BasicBlock *PredBB : predecessors(BB)) {
4341 const auto *II = dyn_cast<InvokeInst>(Val: PredBB->getTerminator());
4342 Check(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
4343 "Block containing LandingPadInst must be jumped to "
4344 "only by the unwind edge of an invoke.",
4345 LPI);
4346 }
4347 return;
4348 }
4349 if (auto *CPI = dyn_cast<CatchPadInst>(Val: &I)) {
4350 if (!pred_empty(BB))
4351 Check(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
4352 "Block containg CatchPadInst must be jumped to "
4353 "only by its catchswitch.",
4354 CPI);
4355 Check(BB != CPI->getCatchSwitch()->getUnwindDest(),
4356 "Catchswitch cannot unwind to one of its catchpads",
4357 CPI->getCatchSwitch(), CPI);
4358 return;
4359 }
4360
4361 // Verify that each pred has a legal terminator with a legal to/from EH
4362 // pad relationship.
4363 Instruction *ToPad = &I;
4364 Value *ToPadParent = getParentPad(EHPad: ToPad);
4365 for (BasicBlock *PredBB : predecessors(BB)) {
4366 Instruction *TI = PredBB->getTerminator();
4367 Value *FromPad;
4368 if (auto *II = dyn_cast<InvokeInst>(Val: TI)) {
4369 Check(II->getUnwindDest() == BB && II->getNormalDest() != BB,
4370 "EH pad must be jumped to via an unwind edge", ToPad, II);
4371 auto *CalledFn =
4372 dyn_cast<Function>(Val: II->getCalledOperand()->stripPointerCasts());
4373 if (CalledFn && CalledFn->isIntrinsic() && II->doesNotThrow() &&
4374 !IntrinsicInst::mayLowerToFunctionCall(IID: CalledFn->getIntrinsicID()))
4375 continue;
4376 if (auto Bundle = II->getOperandBundle(ID: LLVMContext::OB_funclet))
4377 FromPad = Bundle->Inputs[0];
4378 else
4379 FromPad = ConstantTokenNone::get(Context&: II->getContext());
4380 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: TI)) {
4381 FromPad = CRI->getOperand(i_nocapture: 0);
4382 Check(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
4383 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: TI)) {
4384 FromPad = CSI;
4385 } else {
4386 Check(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
4387 }
4388
4389 // The edge may exit from zero or more nested pads.
4390 SmallSet<Value *, 8> Seen;
4391 for (;; FromPad = getParentPad(EHPad: FromPad)) {
4392 Check(FromPad != ToPad,
4393 "EH pad cannot handle exceptions raised within it", FromPad, TI);
4394 if (FromPad == ToPadParent) {
4395 // This is a legal unwind edge.
4396 break;
4397 }
4398 Check(!isa<ConstantTokenNone>(FromPad),
4399 "A single unwind edge may only enter one EH pad", TI);
4400 Check(Seen.insert(FromPad).second, "EH pad jumps through a cycle of pads",
4401 FromPad);
4402
4403 // This will be diagnosed on the corresponding instruction already. We
4404 // need the extra check here to make sure getParentPad() works.
4405 Check(isa<FuncletPadInst>(FromPad) || isa<CatchSwitchInst>(FromPad),
4406 "Parent pad must be catchpad/cleanuppad/catchswitch", TI);
4407 }
4408 }
4409}
4410
4411void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
4412 // The landingpad instruction is ill-formed if it doesn't have any clauses and
4413 // isn't a cleanup.
4414 Check(LPI.getNumClauses() > 0 || LPI.isCleanup(),
4415 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
4416
4417 visitEHPadPredecessors(I&: LPI);
4418
4419 if (!LandingPadResultTy)
4420 LandingPadResultTy = LPI.getType();
4421 else
4422 Check(LandingPadResultTy == LPI.getType(),
4423 "The landingpad instruction should have a consistent result type "
4424 "inside a function.",
4425 &LPI);
4426
4427 Function *F = LPI.getParent()->getParent();
4428 Check(F->hasPersonalityFn(),
4429 "LandingPadInst needs to be in a function with a personality.", &LPI);
4430
4431 // The landingpad instruction must be the first non-PHI instruction in the
4432 // block.
4433 Check(LPI.getParent()->getLandingPadInst() == &LPI,
4434 "LandingPadInst not the first non-PHI instruction in the block.", &LPI);
4435
4436 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
4437 Constant *Clause = LPI.getClause(Idx: i);
4438 if (LPI.isCatch(Idx: i)) {
4439 Check(isa<PointerType>(Clause->getType()),
4440 "Catch operand does not have pointer type!", &LPI);
4441 } else {
4442 Check(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
4443 Check(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
4444 "Filter operand is not an array of constants!", &LPI);
4445 }
4446 }
4447
4448 visitInstruction(I&: LPI);
4449}
4450
4451void Verifier::visitResumeInst(ResumeInst &RI) {
4452 Check(RI.getFunction()->hasPersonalityFn(),
4453 "ResumeInst needs to be in a function with a personality.", &RI);
4454
4455 if (!LandingPadResultTy)
4456 LandingPadResultTy = RI.getValue()->getType();
4457 else
4458 Check(LandingPadResultTy == RI.getValue()->getType(),
4459 "The resume instruction should have a consistent result type "
4460 "inside a function.",
4461 &RI);
4462
4463 visitTerminator(I&: RI);
4464}
4465
4466void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
4467 BasicBlock *BB = CPI.getParent();
4468
4469 Function *F = BB->getParent();
4470 Check(F->hasPersonalityFn(),
4471 "CatchPadInst needs to be in a function with a personality.", &CPI);
4472
4473 Check(isa<CatchSwitchInst>(CPI.getParentPad()),
4474 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
4475 CPI.getParentPad());
4476
4477 // The catchpad instruction must be the first non-PHI instruction in the
4478 // block.
4479 Check(BB->getFirstNonPHI() == &CPI,
4480 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
4481
4482 visitEHPadPredecessors(I&: CPI);
4483 visitFuncletPadInst(FPI&: CPI);
4484}
4485
4486void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
4487 Check(isa<CatchPadInst>(CatchReturn.getOperand(0)),
4488 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
4489 CatchReturn.getOperand(0));
4490
4491 visitTerminator(I&: CatchReturn);
4492}
4493
4494void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
4495 BasicBlock *BB = CPI.getParent();
4496
4497 Function *F = BB->getParent();
4498 Check(F->hasPersonalityFn(),
4499 "CleanupPadInst needs to be in a function with a personality.", &CPI);
4500
4501 // The cleanuppad instruction must be the first non-PHI instruction in the
4502 // block.
4503 Check(BB->getFirstNonPHI() == &CPI,
4504 "CleanupPadInst not the first non-PHI instruction in the block.", &CPI);
4505
4506 auto *ParentPad = CPI.getParentPad();
4507 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4508 "CleanupPadInst has an invalid parent.", &CPI);
4509
4510 visitEHPadPredecessors(I&: CPI);
4511 visitFuncletPadInst(FPI&: CPI);
4512}
4513
4514void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
4515 User *FirstUser = nullptr;
4516 Value *FirstUnwindPad = nullptr;
4517 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
4518 SmallSet<FuncletPadInst *, 8> Seen;
4519
4520 while (!Worklist.empty()) {
4521 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
4522 Check(Seen.insert(CurrentPad).second,
4523 "FuncletPadInst must not be nested within itself", CurrentPad);
4524 Value *UnresolvedAncestorPad = nullptr;
4525 for (User *U : CurrentPad->users()) {
4526 BasicBlock *UnwindDest;
4527 if (auto *CRI = dyn_cast<CleanupReturnInst>(Val: U)) {
4528 UnwindDest = CRI->getUnwindDest();
4529 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(Val: U)) {
4530 // We allow catchswitch unwind to caller to nest
4531 // within an outer pad that unwinds somewhere else,
4532 // because catchswitch doesn't have a nounwind variant.
4533 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
4534 if (CSI->unwindsToCaller())
4535 continue;
4536 UnwindDest = CSI->getUnwindDest();
4537 } else if (auto *II = dyn_cast<InvokeInst>(Val: U)) {
4538 UnwindDest = II->getUnwindDest();
4539 } else if (isa<CallInst>(Val: U)) {
4540 // Calls which don't unwind may be found inside funclet
4541 // pads that unwind somewhere else. We don't *require*
4542 // such calls to be annotated nounwind.
4543 continue;
4544 } else if (auto *CPI = dyn_cast<CleanupPadInst>(Val: U)) {
4545 // The unwind dest for a cleanup can only be found by
4546 // recursive search. Add it to the worklist, and we'll
4547 // search for its first use that determines where it unwinds.
4548 Worklist.push_back(Elt: CPI);
4549 continue;
4550 } else {
4551 Check(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
4552 continue;
4553 }
4554
4555 Value *UnwindPad;
4556 bool ExitsFPI;
4557 if (UnwindDest) {
4558 UnwindPad = UnwindDest->getFirstNonPHI();
4559 if (!cast<Instruction>(Val: UnwindPad)->isEHPad())
4560 continue;
4561 Value *UnwindParent = getParentPad(EHPad: UnwindPad);
4562 // Ignore unwind edges that don't exit CurrentPad.
4563 if (UnwindParent == CurrentPad)
4564 continue;
4565 // Determine whether the original funclet pad is exited,
4566 // and if we are scanning nested pads determine how many
4567 // of them are exited so we can stop searching their
4568 // children.
4569 Value *ExitedPad = CurrentPad;
4570 ExitsFPI = false;
4571 do {
4572 if (ExitedPad == &FPI) {
4573 ExitsFPI = true;
4574 // Now we can resolve any ancestors of CurrentPad up to
4575 // FPI, but not including FPI since we need to make sure
4576 // to check all direct users of FPI for consistency.
4577 UnresolvedAncestorPad = &FPI;
4578 break;
4579 }
4580 Value *ExitedParent = getParentPad(EHPad: ExitedPad);
4581 if (ExitedParent == UnwindParent) {
4582 // ExitedPad is the ancestor-most pad which this unwind
4583 // edge exits, so we can resolve up to it, meaning that
4584 // ExitedParent is the first ancestor still unresolved.
4585 UnresolvedAncestorPad = ExitedParent;
4586 break;
4587 }
4588 ExitedPad = ExitedParent;
4589 } while (!isa<ConstantTokenNone>(Val: ExitedPad));
4590 } else {
4591 // Unwinding to caller exits all pads.
4592 UnwindPad = ConstantTokenNone::get(Context&: FPI.getContext());
4593 ExitsFPI = true;
4594 UnresolvedAncestorPad = &FPI;
4595 }
4596
4597 if (ExitsFPI) {
4598 // This unwind edge exits FPI. Make sure it agrees with other
4599 // such edges.
4600 if (FirstUser) {
4601 Check(UnwindPad == FirstUnwindPad,
4602 "Unwind edges out of a funclet "
4603 "pad must have the same unwind "
4604 "dest",
4605 &FPI, U, FirstUser);
4606 } else {
4607 FirstUser = U;
4608 FirstUnwindPad = UnwindPad;
4609 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
4610 if (isa<CleanupPadInst>(Val: &FPI) && !isa<ConstantTokenNone>(Val: UnwindPad) &&
4611 getParentPad(EHPad: UnwindPad) == getParentPad(EHPad: &FPI))
4612 SiblingFuncletInfo[&FPI] = cast<Instruction>(Val: U);
4613 }
4614 }
4615 // Make sure we visit all uses of FPI, but for nested pads stop as
4616 // soon as we know where they unwind to.
4617 if (CurrentPad != &FPI)
4618 break;
4619 }
4620 if (UnresolvedAncestorPad) {
4621 if (CurrentPad == UnresolvedAncestorPad) {
4622 // When CurrentPad is FPI itself, we don't mark it as resolved even if
4623 // we've found an unwind edge that exits it, because we need to verify
4624 // all direct uses of FPI.
4625 assert(CurrentPad == &FPI);
4626 continue;
4627 }
4628 // Pop off the worklist any nested pads that we've found an unwind
4629 // destination for. The pads on the worklist are the uncles,
4630 // great-uncles, etc. of CurrentPad. We've found an unwind destination
4631 // for all ancestors of CurrentPad up to but not including
4632 // UnresolvedAncestorPad.
4633 Value *ResolvedPad = CurrentPad;
4634 while (!Worklist.empty()) {
4635 Value *UnclePad = Worklist.back();
4636 Value *AncestorPad = getParentPad(EHPad: UnclePad);
4637 // Walk ResolvedPad up the ancestor list until we either find the
4638 // uncle's parent or the last resolved ancestor.
4639 while (ResolvedPad != AncestorPad) {
4640 Value *ResolvedParent = getParentPad(EHPad: ResolvedPad);
4641 if (ResolvedParent == UnresolvedAncestorPad) {
4642 break;
4643 }
4644 ResolvedPad = ResolvedParent;
4645 }
4646 // If the resolved ancestor search didn't find the uncle's parent,
4647 // then the uncle is not yet resolved.
4648 if (ResolvedPad != AncestorPad)
4649 break;
4650 // This uncle is resolved, so pop it from the worklist.
4651 Worklist.pop_back();
4652 }
4653 }
4654 }
4655
4656 if (FirstUnwindPad) {
4657 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Val: FPI.getParentPad())) {
4658 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
4659 Value *SwitchUnwindPad;
4660 if (SwitchUnwindDest)
4661 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
4662 else
4663 SwitchUnwindPad = ConstantTokenNone::get(Context&: FPI.getContext());
4664 Check(SwitchUnwindPad == FirstUnwindPad,
4665 "Unwind edges out of a catch must have the same unwind dest as "
4666 "the parent catchswitch",
4667 &FPI, FirstUser, CatchSwitch);
4668 }
4669 }
4670
4671 visitInstruction(I&: FPI);
4672}
4673
4674void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
4675 BasicBlock *BB = CatchSwitch.getParent();
4676
4677 Function *F = BB->getParent();
4678 Check(F->hasPersonalityFn(),
4679 "CatchSwitchInst needs to be in a function with a personality.",
4680 &CatchSwitch);
4681
4682 // The catchswitch instruction must be the first non-PHI instruction in the
4683 // block.
4684 Check(BB->getFirstNonPHI() == &CatchSwitch,
4685 "CatchSwitchInst not the first non-PHI instruction in the block.",
4686 &CatchSwitch);
4687
4688 auto *ParentPad = CatchSwitch.getParentPad();
4689 Check(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
4690 "CatchSwitchInst has an invalid parent.", ParentPad);
4691
4692 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
4693 Instruction *I = UnwindDest->getFirstNonPHI();
4694 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4695 "CatchSwitchInst must unwind to an EH block which is not a "
4696 "landingpad.",
4697 &CatchSwitch);
4698
4699 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
4700 if (getParentPad(EHPad: I) == ParentPad)
4701 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
4702 }
4703
4704 Check(CatchSwitch.getNumHandlers() != 0,
4705 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
4706
4707 for (BasicBlock *Handler : CatchSwitch.handlers()) {
4708 Check(isa<CatchPadInst>(Handler->getFirstNonPHI()),
4709 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
4710 }
4711
4712 visitEHPadPredecessors(I&: CatchSwitch);
4713 visitTerminator(I&: CatchSwitch);
4714}
4715
4716void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
4717 Check(isa<CleanupPadInst>(CRI.getOperand(0)),
4718 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
4719 CRI.getOperand(0));
4720
4721 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
4722 Instruction *I = UnwindDest->getFirstNonPHI();
4723 Check(I->isEHPad() && !isa<LandingPadInst>(I),
4724 "CleanupReturnInst must unwind to an EH block which is not a "
4725 "landingpad.",
4726 &CRI);
4727 }
4728
4729 visitTerminator(I&: CRI);
4730}
4731
4732void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
4733 Instruction *Op = cast<Instruction>(Val: I.getOperand(i));
4734 // If the we have an invalid invoke, don't try to compute the dominance.
4735 // We already reject it in the invoke specific checks and the dominance
4736 // computation doesn't handle multiple edges.
4737 if (InvokeInst *II = dyn_cast<InvokeInst>(Val: Op)) {
4738 if (II->getNormalDest() == II->getUnwindDest())
4739 return;
4740 }
4741
4742 // Quick check whether the def has already been encountered in the same block.
4743 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
4744 // uses are defined to happen on the incoming edge, not at the instruction.
4745 //
4746 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
4747 // wrapping an SSA value, assert that we've already encountered it. See
4748 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
4749 if (!isa<PHINode>(Val: I) && InstsInThisBlock.count(Ptr: Op))
4750 return;
4751
4752 const Use &U = I.getOperandUse(i);
4753 Check(DT.dominates(Op, U), "Instruction does not dominate all uses!", Op, &I);
4754}
4755
4756void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
4757 Check(I.getType()->isPointerTy(),
4758 "dereferenceable, dereferenceable_or_null "
4759 "apply only to pointer types",
4760 &I);
4761 Check((isa<LoadInst>(I) || isa<IntToPtrInst>(I)),
4762 "dereferenceable, dereferenceable_or_null apply only to load"
4763 " and inttoptr instructions, use attributes for calls or invokes",
4764 &I);
4765 Check(MD->getNumOperands() == 1,
4766 "dereferenceable, dereferenceable_or_null "
4767 "take one operand!",
4768 &I);
4769 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 0));
4770 Check(CI && CI->getType()->isIntegerTy(64),
4771 "dereferenceable, "
4772 "dereferenceable_or_null metadata value must be an i64!",
4773 &I);
4774}
4775
4776void Verifier::visitProfMetadata(Instruction &I, MDNode *MD) {
4777 Check(MD->getNumOperands() >= 2,
4778 "!prof annotations should have no less than 2 operands", MD);
4779
4780 // Check first operand.
4781 Check(MD->getOperand(0) != nullptr, "first operand should not be null", MD);
4782 Check(isa<MDString>(MD->getOperand(0)),
4783 "expected string with name of the !prof annotation", MD);
4784 MDString *MDS = cast<MDString>(Val: MD->getOperand(I: 0));
4785 StringRef ProfName = MDS->getString();
4786
4787 // Check consistency of !prof branch_weights metadata.
4788 if (ProfName.equals(RHS: "branch_weights")) {
4789 if (isa<InvokeInst>(Val: &I)) {
4790 Check(MD->getNumOperands() == 2 || MD->getNumOperands() == 3,
4791 "Wrong number of InvokeInst branch_weights operands", MD);
4792 } else {
4793 unsigned ExpectedNumOperands = 0;
4794 if (BranchInst *BI = dyn_cast<BranchInst>(Val: &I))
4795 ExpectedNumOperands = BI->getNumSuccessors();
4796 else if (SwitchInst *SI = dyn_cast<SwitchInst>(Val: &I))
4797 ExpectedNumOperands = SI->getNumSuccessors();
4798 else if (isa<CallInst>(Val: &I))
4799 ExpectedNumOperands = 1;
4800 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(Val: &I))
4801 ExpectedNumOperands = IBI->getNumDestinations();
4802 else if (isa<SelectInst>(Val: &I))
4803 ExpectedNumOperands = 2;
4804 else if (CallBrInst *CI = dyn_cast<CallBrInst>(Val: &I))
4805 ExpectedNumOperands = CI->getNumSuccessors();
4806 else
4807 CheckFailed(Message: "!prof branch_weights are not allowed for this instruction",
4808 V1: MD);
4809
4810 Check(MD->getNumOperands() == 1 + ExpectedNumOperands,
4811 "Wrong number of operands", MD);
4812 }
4813 for (unsigned i = 1; i < MD->getNumOperands(); ++i) {
4814 auto &MDO = MD->getOperand(I: i);
4815 Check(MDO, "second operand should not be null", MD);
4816 Check(mdconst::dyn_extract<ConstantInt>(MDO),
4817 "!prof brunch_weights operand is not a const int");
4818 }
4819 }
4820}
4821
4822void Verifier::visitDIAssignIDMetadata(Instruction &I, MDNode *MD) {
4823 assert(I.hasMetadata(LLVMContext::MD_DIAssignID));
4824 bool ExpectedInstTy =
4825 isa<AllocaInst>(Val: I) || isa<StoreInst>(Val: I) || isa<MemIntrinsic>(Val: I);
4826 CheckDI(ExpectedInstTy, "!DIAssignID attached to unexpected instruction kind",
4827 I, MD);
4828 // Iterate over the MetadataAsValue uses of the DIAssignID - these should
4829 // only be found as DbgAssignIntrinsic operands.
4830 if (auto *AsValue = MetadataAsValue::getIfExists(Context, MD)) {
4831 for (auto *User : AsValue->users()) {
4832 CheckDI(isa<DbgAssignIntrinsic>(User),
4833 "!DIAssignID should only be used by llvm.dbg.assign intrinsics",
4834 MD, User);
4835 // All of the dbg.assign intrinsics should be in the same function as I.
4836 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: User))
4837 CheckDI(DAI->getFunction() == I.getFunction(),
4838 "dbg.assign not in same function as inst", DAI, &I);
4839 }
4840 }
4841 for (DbgVariableRecord *DVR :
4842 cast<DIAssignID>(Val: MD)->getAllDbgVariableRecordUsers()) {
4843 CheckDI(DVR->isDbgAssign(),
4844 "!DIAssignID should only be used by Assign DVRs.", MD, DVR);
4845 CheckDI(DVR->getFunction() == I.getFunction(),
4846 "DVRAssign not in same function as inst", DVR, &I);
4847 }
4848}
4849
4850void Verifier::visitMMRAMetadata(Instruction &I, MDNode *MD) {
4851 Check(canInstructionHaveMMRAs(I),
4852 "!mmra metadata attached to unexpected instruction kind", I, MD);
4853
4854 // MMRA Metadata should either be a tag, e.g. !{!"foo", !"bar"}, or a
4855 // list of tags such as !2 in the following example:
4856 // !0 = !{!"a", !"b"}
4857 // !1 = !{!"c", !"d"}
4858 // !2 = !{!0, !1}
4859 if (MMRAMetadata::isTagMD(MD))
4860 return;
4861
4862 Check(isa<MDTuple>(MD), "!mmra expected to be a metadata tuple", I, MD);
4863 for (const MDOperand &MDOp : MD->operands())
4864 Check(MMRAMetadata::isTagMD(MDOp.get()),
4865 "!mmra metadata tuple operand is not an MMRA tag", I, MDOp.get());
4866}
4867
4868void Verifier::visitCallStackMetadata(MDNode *MD) {
4869 // Call stack metadata should consist of a list of at least 1 constant int
4870 // (representing a hash of the location).
4871 Check(MD->getNumOperands() >= 1,
4872 "call stack metadata should have at least 1 operand", MD);
4873
4874 for (const auto &Op : MD->operands())
4875 Check(mdconst::dyn_extract_or_null<ConstantInt>(Op),
4876 "call stack metadata operand should be constant integer", Op);
4877}
4878
4879void Verifier::visitMemProfMetadata(Instruction &I, MDNode *MD) {
4880 Check(isa<CallBase>(I), "!memprof metadata should only exist on calls", &I);
4881 Check(MD->getNumOperands() >= 1,
4882 "!memprof annotations should have at least 1 metadata operand "
4883 "(MemInfoBlock)",
4884 MD);
4885
4886 // Check each MIB
4887 for (auto &MIBOp : MD->operands()) {
4888 MDNode *MIB = dyn_cast<MDNode>(Val: MIBOp);
4889 // The first operand of an MIB should be the call stack metadata.
4890 // There rest of the operands should be MDString tags, and there should be
4891 // at least one.
4892 Check(MIB->getNumOperands() >= 2,
4893 "Each !memprof MemInfoBlock should have at least 2 operands", MIB);
4894
4895 // Check call stack metadata (first operand).
4896 Check(MIB->getOperand(0) != nullptr,
4897 "!memprof MemInfoBlock first operand should not be null", MIB);
4898 Check(isa<MDNode>(MIB->getOperand(0)),
4899 "!memprof MemInfoBlock first operand should be an MDNode", MIB);
4900 MDNode *StackMD = dyn_cast<MDNode>(Val: MIB->getOperand(I: 0));
4901 visitCallStackMetadata(MD: StackMD);
4902
4903 // Check that remaining operands are MDString.
4904 Check(llvm::all_of(llvm::drop_begin(MIB->operands()),
4905 [](const MDOperand &Op) { return isa<MDString>(Op); }),
4906 "Not all !memprof MemInfoBlock operands 1 to N are MDString", MIB);
4907 }
4908}
4909
4910void Verifier::visitCallsiteMetadata(Instruction &I, MDNode *MD) {
4911 Check(isa<CallBase>(I), "!callsite metadata should only exist on calls", &I);
4912 // Verify the partial callstack annotated from memprof profiles. This callsite
4913 // is a part of a profiled allocation callstack.
4914 visitCallStackMetadata(MD);
4915}
4916
4917void Verifier::visitAnnotationMetadata(MDNode *Annotation) {
4918 Check(isa<MDTuple>(Annotation), "annotation must be a tuple");
4919 Check(Annotation->getNumOperands() >= 1,
4920 "annotation must have at least one operand");
4921 for (const MDOperand &Op : Annotation->operands()) {
4922 bool TupleOfStrings =
4923 isa<MDTuple>(Val: Op.get()) &&
4924 all_of(Range: cast<MDTuple>(Val: Op)->operands(), P: [](auto &Annotation) {
4925 return isa<MDString>(Annotation.get());
4926 });
4927 Check(isa<MDString>(Op.get()) || TupleOfStrings,
4928 "operands must be a string or a tuple of strings");
4929 }
4930}
4931
4932void Verifier::visitAliasScopeMetadata(const MDNode *MD) {
4933 unsigned NumOps = MD->getNumOperands();
4934 Check(NumOps >= 2 && NumOps <= 3, "scope must have two or three operands",
4935 MD);
4936 Check(MD->getOperand(0).get() == MD || isa<MDString>(MD->getOperand(0)),
4937 "first scope operand must be self-referential or string", MD);
4938 if (NumOps == 3)
4939 Check(isa<MDString>(MD->getOperand(2)),
4940 "third scope operand must be string (if used)", MD);
4941
4942 MDNode *Domain = dyn_cast<MDNode>(Val: MD->getOperand(I: 1));
4943 Check(Domain != nullptr, "second scope operand must be MDNode", MD);
4944
4945 unsigned NumDomainOps = Domain->getNumOperands();
4946 Check(NumDomainOps >= 1 && NumDomainOps <= 2,
4947 "domain must have one or two operands", Domain);
4948 Check(Domain->getOperand(0).get() == Domain ||
4949 isa<MDString>(Domain->getOperand(0)),
4950 "first domain operand must be self-referential or string", Domain);
4951 if (NumDomainOps == 2)
4952 Check(isa<MDString>(Domain->getOperand(1)),
4953 "second domain operand must be string (if used)", Domain);
4954}
4955
4956void Verifier::visitAliasScopeListMetadata(const MDNode *MD) {
4957 for (const MDOperand &Op : MD->operands()) {
4958 const MDNode *OpMD = dyn_cast<MDNode>(Val: Op);
4959 Check(OpMD != nullptr, "scope list must consist of MDNodes", MD);
4960 visitAliasScopeMetadata(MD: OpMD);
4961 }
4962}
4963
4964void Verifier::visitAccessGroupMetadata(const MDNode *MD) {
4965 auto IsValidAccessScope = [](const MDNode *MD) {
4966 return MD->getNumOperands() == 0 && MD->isDistinct();
4967 };
4968
4969 // It must be either an access scope itself...
4970 if (IsValidAccessScope(MD))
4971 return;
4972
4973 // ...or a list of access scopes.
4974 for (const MDOperand &Op : MD->operands()) {
4975 const MDNode *OpMD = dyn_cast<MDNode>(Val: Op);
4976 Check(OpMD != nullptr, "Access scope list must consist of MDNodes", MD);
4977 Check(IsValidAccessScope(OpMD),
4978 "Access scope list contains invalid access scope", MD);
4979 }
4980}
4981
4982/// verifyInstruction - Verify that an instruction is well formed.
4983///
4984void Verifier::visitInstruction(Instruction &I) {
4985 BasicBlock *BB = I.getParent();
4986 Check(BB, "Instruction not embedded in basic block!", &I);
4987
4988 if (!isa<PHINode>(Val: I)) { // Check that non-phi nodes are not self referential
4989 for (User *U : I.users()) {
4990 Check(U != (User *)&I || !DT.isReachableFromEntry(BB),
4991 "Only PHI nodes may reference their own value!", &I);
4992 }
4993 }
4994
4995 // Check that void typed values don't have names
4996 Check(!I.getType()->isVoidTy() || !I.hasName(),
4997 "Instruction has a name, but provides a void value!", &I);
4998
4999 // Check that the return value of the instruction is either void or a legal
5000 // value type.
5001 Check(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
5002 "Instruction returns a non-scalar type!", &I);
5003
5004 // Check that the instruction doesn't produce metadata. Calls are already
5005 // checked against the callee type.
5006 Check(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
5007 "Invalid use of metadata!", &I);
5008
5009 // Check that all uses of the instruction, if they are instructions
5010 // themselves, actually have parent basic blocks. If the use is not an
5011 // instruction, it is an error!
5012 for (Use &U : I.uses()) {
5013 if (Instruction *Used = dyn_cast<Instruction>(Val: U.getUser()))
5014 Check(Used->getParent() != nullptr,
5015 "Instruction referencing"
5016 " instruction not embedded in a basic block!",
5017 &I, Used);
5018 else {
5019 CheckFailed(Message: "Use of instruction is not an instruction!", V1: U);
5020 return;
5021 }
5022 }
5023
5024 // Get a pointer to the call base of the instruction if it is some form of
5025 // call.
5026 const CallBase *CBI = dyn_cast<CallBase>(Val: &I);
5027
5028 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
5029 Check(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
5030
5031 // Check to make sure that only first-class-values are operands to
5032 // instructions.
5033 if (!I.getOperand(i)->getType()->isFirstClassType()) {
5034 Check(false, "Instruction operands must be first-class values!", &I);
5035 }
5036
5037 if (Function *F = dyn_cast<Function>(Val: I.getOperand(i))) {
5038 // This code checks whether the function is used as the operand of a
5039 // clang_arc_attachedcall operand bundle.
5040 auto IsAttachedCallOperand = [](Function *F, const CallBase *CBI,
5041 int Idx) {
5042 return CBI && CBI->isOperandBundleOfType(
5043 ID: LLVMContext::OB_clang_arc_attachedcall, Idx);
5044 };
5045
5046 // Check to make sure that the "address of" an intrinsic function is never
5047 // taken. Ignore cases where the address of the intrinsic function is used
5048 // as the argument of operand bundle "clang.arc.attachedcall" as those
5049 // cases are handled in verifyAttachedCallBundle.
5050 Check((!F->isIntrinsic() ||
5051 (CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i)) ||
5052 IsAttachedCallOperand(F, CBI, i)),
5053 "Cannot take the address of an intrinsic!", &I);
5054 Check(!F->isIntrinsic() || isa<CallInst>(I) ||
5055 F->getIntrinsicID() == Intrinsic::donothing ||
5056 F->getIntrinsicID() == Intrinsic::seh_try_begin ||
5057 F->getIntrinsicID() == Intrinsic::seh_try_end ||
5058 F->getIntrinsicID() == Intrinsic::seh_scope_begin ||
5059 F->getIntrinsicID() == Intrinsic::seh_scope_end ||
5060 F->getIntrinsicID() == Intrinsic::coro_resume ||
5061 F->getIntrinsicID() == Intrinsic::coro_destroy ||
5062 F->getIntrinsicID() == Intrinsic::coro_await_suspend_void ||
5063 F->getIntrinsicID() == Intrinsic::coro_await_suspend_bool ||
5064 F->getIntrinsicID() == Intrinsic::coro_await_suspend_handle ||
5065 F->getIntrinsicID() ==
5066 Intrinsic::experimental_patchpoint_void ||
5067 F->getIntrinsicID() == Intrinsic::experimental_patchpoint ||
5068 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint ||
5069 F->getIntrinsicID() == Intrinsic::wasm_rethrow ||
5070 IsAttachedCallOperand(F, CBI, i),
5071 "Cannot invoke an intrinsic other than donothing, patchpoint, "
5072 "statepoint, coro_resume, coro_destroy or clang.arc.attachedcall",
5073 &I);
5074 Check(F->getParent() == &M, "Referencing function in another module!", &I,
5075 &M, F, F->getParent());
5076 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(Val: I.getOperand(i))) {
5077 Check(OpBB->getParent() == BB->getParent(),
5078 "Referring to a basic block in another function!", &I);
5079 } else if (Argument *OpArg = dyn_cast<Argument>(Val: I.getOperand(i))) {
5080 Check(OpArg->getParent() == BB->getParent(),
5081 "Referring to an argument in another function!", &I);
5082 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Val: I.getOperand(i))) {
5083 Check(GV->getParent() == &M, "Referencing global in another module!", &I,
5084 &M, GV, GV->getParent());
5085 } else if (Instruction *OpInst = dyn_cast<Instruction>(Val: I.getOperand(i))) {
5086 Check(OpInst->getFunction() == BB->getParent(),
5087 "Referring to an instruction in another function!", &I);
5088 verifyDominatesUse(I, i);
5089 } else if (isa<InlineAsm>(Val: I.getOperand(i))) {
5090 Check(CBI && &CBI->getCalledOperandUse() == &I.getOperandUse(i),
5091 "Cannot take the address of an inline asm!", &I);
5092 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Val: I.getOperand(i))) {
5093 if (CE->getType()->isPtrOrPtrVectorTy()) {
5094 // If we have a ConstantExpr pointer, we need to see if it came from an
5095 // illegal bitcast.
5096 visitConstantExprsRecursively(EntryC: CE);
5097 }
5098 }
5099 }
5100
5101 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_fpmath)) {
5102 Check(I.getType()->isFPOrFPVectorTy(),
5103 "fpmath requires a floating point result!", &I);
5104 Check(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
5105 if (ConstantFP *CFP0 =
5106 mdconst::dyn_extract_or_null<ConstantFP>(MD: MD->getOperand(I: 0))) {
5107 const APFloat &Accuracy = CFP0->getValueAPF();
5108 Check(&Accuracy.getSemantics() == &APFloat::IEEEsingle(),
5109 "fpmath accuracy must have float type", &I);
5110 Check(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
5111 "fpmath accuracy not a positive number!", &I);
5112 } else {
5113 Check(false, "invalid fpmath accuracy!", &I);
5114 }
5115 }
5116
5117 if (MDNode *Range = I.getMetadata(KindID: LLVMContext::MD_range)) {
5118 Check(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
5119 "Ranges are only for loads, calls and invokes!", &I);
5120 visitRangeMetadata(I, Range, Ty: I.getType());
5121 }
5122
5123 if (I.hasMetadata(KindID: LLVMContext::MD_invariant_group)) {
5124 Check(isa<LoadInst>(I) || isa<StoreInst>(I),
5125 "invariant.group metadata is only for loads and stores", &I);
5126 }
5127
5128 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_nonnull)) {
5129 Check(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
5130 &I);
5131 Check(isa<LoadInst>(I),
5132 "nonnull applies only to load instructions, use attributes"
5133 " for calls or invokes",
5134 &I);
5135 Check(MD->getNumOperands() == 0, "nonnull metadata must be empty", &I);
5136 }
5137
5138 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_dereferenceable))
5139 visitDereferenceableMetadata(I, MD);
5140
5141 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_dereferenceable_or_null))
5142 visitDereferenceableMetadata(I, MD);
5143
5144 if (MDNode *TBAA = I.getMetadata(KindID: LLVMContext::MD_tbaa))
5145 TBAAVerifyHelper.visitTBAAMetadata(I, MD: TBAA);
5146
5147 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_noalias))
5148 visitAliasScopeListMetadata(MD);
5149 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_alias_scope))
5150 visitAliasScopeListMetadata(MD);
5151
5152 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_access_group))
5153 visitAccessGroupMetadata(MD);
5154
5155 if (MDNode *AlignMD = I.getMetadata(KindID: LLVMContext::MD_align)) {
5156 Check(I.getType()->isPointerTy(), "align applies only to pointer types",
5157 &I);
5158 Check(isa<LoadInst>(I),
5159 "align applies only to load instructions, "
5160 "use attributes for calls or invokes",
5161 &I);
5162 Check(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
5163 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD: AlignMD->getOperand(I: 0));
5164 Check(CI && CI->getType()->isIntegerTy(64),
5165 "align metadata value must be an i64!", &I);
5166 uint64_t Align = CI->getZExtValue();
5167 Check(isPowerOf2_64(Align), "align metadata value must be a power of 2!",
5168 &I);
5169 Check(Align <= Value::MaximumAlignment,
5170 "alignment is larger that implementation defined limit", &I);
5171 }
5172
5173 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_prof))
5174 visitProfMetadata(I, MD);
5175
5176 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_memprof))
5177 visitMemProfMetadata(I, MD);
5178
5179 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_callsite))
5180 visitCallsiteMetadata(I, MD);
5181
5182 if (MDNode *MD = I.getMetadata(KindID: LLVMContext::MD_DIAssignID))
5183 visitDIAssignIDMetadata(I, MD);
5184
5185 if (MDNode *MMRA = I.getMetadata(KindID: LLVMContext::MD_mmra))
5186 visitMMRAMetadata(I, MD: MMRA);
5187
5188 if (MDNode *Annotation = I.getMetadata(KindID: LLVMContext::MD_annotation))
5189 visitAnnotationMetadata(Annotation);
5190
5191 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
5192 CheckDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
5193 visitMDNode(MD: *N, AllowLocs: AreDebugLocsAllowed::Yes);
5194 }
5195
5196 if (auto *DII = dyn_cast<DbgVariableIntrinsic>(Val: &I)) {
5197 verifyFragmentExpression(I: *DII);
5198 verifyNotEntryValue(I: *DII);
5199 }
5200
5201 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
5202 I.getAllMetadata(MDs);
5203 for (auto Attachment : MDs) {
5204 unsigned Kind = Attachment.first;
5205 auto AllowLocs =
5206 (Kind == LLVMContext::MD_dbg || Kind == LLVMContext::MD_loop)
5207 ? AreDebugLocsAllowed::Yes
5208 : AreDebugLocsAllowed::No;
5209 visitMDNode(MD: *Attachment.second, AllowLocs);
5210 }
5211
5212 InstsInThisBlock.insert(Ptr: &I);
5213}
5214
5215/// Allow intrinsics to be verified in different ways.
5216void Verifier::visitIntrinsicCall(Intrinsic::ID ID, CallBase &Call) {
5217 Function *IF = Call.getCalledFunction();
5218 Check(IF->isDeclaration(), "Intrinsic functions should never be defined!",
5219 IF);
5220
5221 // Verify that the intrinsic prototype lines up with what the .td files
5222 // describe.
5223 FunctionType *IFTy = IF->getFunctionType();
5224 bool IsVarArg = IFTy->isVarArg();
5225
5226 SmallVector<Intrinsic::IITDescriptor, 8> Table;
5227 getIntrinsicInfoTableEntries(id: ID, T&: Table);
5228 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
5229
5230 // Walk the descriptors to extract overloaded types.
5231 SmallVector<Type *, 4> ArgTys;
5232 Intrinsic::MatchIntrinsicTypesResult Res =
5233 Intrinsic::matchIntrinsicSignature(FTy: IFTy, Infos&: TableRef, ArgTys);
5234 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchRet,
5235 "Intrinsic has incorrect return type!", IF);
5236 Check(Res != Intrinsic::MatchIntrinsicTypes_NoMatchArg,
5237 "Intrinsic has incorrect argument type!", IF);
5238
5239 // Verify if the intrinsic call matches the vararg property.
5240 if (IsVarArg)
5241 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5242 "Intrinsic was not defined with variable arguments!", IF);
5243 else
5244 Check(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
5245 "Callsite was not defined with variable arguments!", IF);
5246
5247 // All descriptors should be absorbed by now.
5248 Check(TableRef.empty(), "Intrinsic has too few arguments!", IF);
5249
5250 // Now that we have the intrinsic ID and the actual argument types (and we
5251 // know they are legal for the intrinsic!) get the intrinsic name through the
5252 // usual means. This allows us to verify the mangling of argument types into
5253 // the name.
5254 const std::string ExpectedName =
5255 Intrinsic::getName(Id: ID, Tys: ArgTys, M: IF->getParent(), FT: IFTy);
5256 Check(ExpectedName == IF->getName(),
5257 "Intrinsic name not mangled correctly for type arguments! "
5258 "Should be: " +
5259 ExpectedName,
5260 IF);
5261
5262 // If the intrinsic takes MDNode arguments, verify that they are either global
5263 // or are local to *this* function.
5264 for (Value *V : Call.args()) {
5265 if (auto *MD = dyn_cast<MetadataAsValue>(Val: V))
5266 visitMetadataAsValue(MDV: *MD, F: Call.getCaller());
5267 if (auto *Const = dyn_cast<Constant>(Val: V))
5268 Check(!Const->getType()->isX86_AMXTy(),
5269 "const x86_amx is not allowed in argument!");
5270 }
5271
5272 switch (ID) {
5273 default:
5274 break;
5275 case Intrinsic::assume: {
5276 for (auto &Elem : Call.bundle_op_infos()) {
5277 unsigned ArgCount = Elem.End - Elem.Begin;
5278 // Separate storage assumptions are special insofar as they're the only
5279 // operand bundles allowed on assumes that aren't parameter attributes.
5280 if (Elem.Tag->getKey() == "separate_storage") {
5281 Check(ArgCount == 2,
5282 "separate_storage assumptions should have 2 arguments", Call);
5283 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy() &&
5284 Call.getOperand(Elem.Begin + 1)->getType()->isPointerTy(),
5285 "arguments to separate_storage assumptions should be pointers",
5286 Call);
5287 return;
5288 }
5289 Check(Elem.Tag->getKey() == "ignore" ||
5290 Attribute::isExistingAttribute(Elem.Tag->getKey()),
5291 "tags must be valid attribute names", Call);
5292 Attribute::AttrKind Kind =
5293 Attribute::getAttrKindFromName(AttrName: Elem.Tag->getKey());
5294 if (Kind == Attribute::Alignment) {
5295 Check(ArgCount <= 3 && ArgCount >= 2,
5296 "alignment assumptions should have 2 or 3 arguments", Call);
5297 Check(Call.getOperand(Elem.Begin)->getType()->isPointerTy(),
5298 "first argument should be a pointer", Call);
5299 Check(Call.getOperand(Elem.Begin + 1)->getType()->isIntegerTy(),
5300 "second argument should be an integer", Call);
5301 if (ArgCount == 3)
5302 Check(Call.getOperand(Elem.Begin + 2)->getType()->isIntegerTy(),
5303 "third argument should be an integer if present", Call);
5304 return;
5305 }
5306 Check(ArgCount <= 2, "too many arguments", Call);
5307 if (Kind == Attribute::None)
5308 break;
5309 if (Attribute::isIntAttrKind(Kind)) {
5310 Check(ArgCount == 2, "this attribute should have 2 arguments", Call);
5311 Check(isa<ConstantInt>(Call.getOperand(Elem.Begin + 1)),
5312 "the second argument should be a constant integral value", Call);
5313 } else if (Attribute::canUseAsParamAttr(Kind)) {
5314 Check((ArgCount) == 1, "this attribute should have one argument", Call);
5315 } else if (Attribute::canUseAsFnAttr(Kind)) {
5316 Check((ArgCount) == 0, "this attribute has no argument", Call);
5317 }
5318 }
5319 break;
5320 }
5321 case Intrinsic::ucmp:
5322 case Intrinsic::scmp: {
5323 Type *SrcTy = Call.getOperand(i_nocapture: 0)->getType();
5324 Type *DestTy = Call.getType();
5325
5326 Check(DestTy->getScalarSizeInBits() >= 2,
5327 "result type must be at least 2 bits wide", Call);
5328
5329 bool IsDestTypeVector = DestTy->isVectorTy();
5330 Check(SrcTy->isVectorTy() == IsDestTypeVector,
5331 "ucmp/scmp argument and result types must both be either vector or "
5332 "scalar types",
5333 Call);
5334 if (IsDestTypeVector) {
5335 auto SrcVecLen = cast<VectorType>(Val: SrcTy)->getElementCount();
5336 auto DestVecLen = cast<VectorType>(Val: DestTy)->getElementCount();
5337 Check(SrcVecLen == DestVecLen,
5338 "return type and arguments must have the same number of "
5339 "elements",
5340 Call);
5341 }
5342 break;
5343 }
5344 case Intrinsic::coro_id: {
5345 auto *InfoArg = Call.getArgOperand(i: 3)->stripPointerCasts();
5346 if (isa<ConstantPointerNull>(Val: InfoArg))
5347 break;
5348 auto *GV = dyn_cast<GlobalVariable>(Val: InfoArg);
5349 Check(GV && GV->isConstant() && GV->hasDefinitiveInitializer(),
5350 "info argument of llvm.coro.id must refer to an initialized "
5351 "constant");
5352 Constant *Init = GV->getInitializer();
5353 Check(isa<ConstantStruct>(Init) || isa<ConstantArray>(Init),
5354 "info argument of llvm.coro.id must refer to either a struct or "
5355 "an array");
5356 break;
5357 }
5358 case Intrinsic::is_fpclass: {
5359 const ConstantInt *TestMask = cast<ConstantInt>(Val: Call.getOperand(i_nocapture: 1));
5360 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
5361 "unsupported bits for llvm.is.fpclass test mask");
5362 break;
5363 }
5364 case Intrinsic::fptrunc_round: {
5365 // Check the rounding mode
5366 Metadata *MD = nullptr;
5367 auto *MAV = dyn_cast<MetadataAsValue>(Val: Call.getOperand(i_nocapture: 1));
5368 if (MAV)
5369 MD = MAV->getMetadata();
5370
5371 Check(MD != nullptr, "missing rounding mode argument", Call);
5372
5373 Check(isa<MDString>(MD),
5374 ("invalid value for llvm.fptrunc.round metadata operand"
5375 " (the operand should be a string)"),
5376 MD);
5377
5378 std::optional<RoundingMode> RoundMode =
5379 convertStrToRoundingMode(cast<MDString>(Val: MD)->getString());
5380 Check(RoundMode && *RoundMode != RoundingMode::Dynamic,
5381 "unsupported rounding mode argument", Call);
5382 break;
5383 }
5384#define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
5385#include "llvm/IR/VPIntrinsics.def"
5386 visitVPIntrinsic(VPI&: cast<VPIntrinsic>(Val&: Call));
5387 break;
5388#define INSTRUCTION(NAME, NARGS, ROUND_MODE, INTRINSIC) \
5389 case Intrinsic::INTRINSIC:
5390#include "llvm/IR/ConstrainedOps.def"
5391 visitConstrainedFPIntrinsic(FPI&: cast<ConstrainedFPIntrinsic>(Val&: Call));
5392 break;
5393 case Intrinsic::dbg_declare: // llvm.dbg.declare
5394 Check(isa<MetadataAsValue>(Call.getArgOperand(0)),
5395 "invalid llvm.dbg.declare intrinsic call 1", Call);
5396 visitDbgIntrinsic(Kind: "declare", DII&: cast<DbgVariableIntrinsic>(Val&: Call));
5397 break;
5398 case Intrinsic::dbg_value: // llvm.dbg.value
5399 visitDbgIntrinsic(Kind: "value", DII&: cast<DbgVariableIntrinsic>(Val&: Call));
5400 break;
5401 case Intrinsic::dbg_assign: // llvm.dbg.assign
5402 visitDbgIntrinsic(Kind: "assign", DII&: cast<DbgVariableIntrinsic>(Val&: Call));
5403 break;
5404 case Intrinsic::dbg_label: // llvm.dbg.label
5405 visitDbgLabelIntrinsic(Kind: "label", DLI&: cast<DbgLabelInst>(Val&: Call));
5406 break;
5407 case Intrinsic::memcpy:
5408 case Intrinsic::memcpy_inline:
5409 case Intrinsic::memmove:
5410 case Intrinsic::memset:
5411 case Intrinsic::memset_inline: {
5412 break;
5413 }
5414 case Intrinsic::memcpy_element_unordered_atomic:
5415 case Intrinsic::memmove_element_unordered_atomic:
5416 case Intrinsic::memset_element_unordered_atomic: {
5417 const auto *AMI = cast<AtomicMemIntrinsic>(Val: &Call);
5418
5419 ConstantInt *ElementSizeCI =
5420 cast<ConstantInt>(Val: AMI->getRawElementSizeInBytes());
5421 const APInt &ElementSizeVal = ElementSizeCI->getValue();
5422 Check(ElementSizeVal.isPowerOf2(),
5423 "element size of the element-wise atomic memory intrinsic "
5424 "must be a power of 2",
5425 Call);
5426
5427 auto IsValidAlignment = [&](MaybeAlign Alignment) {
5428 return Alignment && ElementSizeVal.ule(RHS: Alignment->value());
5429 };
5430 Check(IsValidAlignment(AMI->getDestAlign()),
5431 "incorrect alignment of the destination argument", Call);
5432 if (const auto *AMT = dyn_cast<AtomicMemTransferInst>(Val: AMI)) {
5433 Check(IsValidAlignment(AMT->getSourceAlign()),
5434 "incorrect alignment of the source argument", Call);
5435 }
5436 break;
5437 }
5438 case Intrinsic::call_preallocated_setup: {
5439 auto *NumArgs = dyn_cast<ConstantInt>(Val: Call.getArgOperand(i: 0));
5440 Check(NumArgs != nullptr,
5441 "llvm.call.preallocated.setup argument must be a constant");
5442 bool FoundCall = false;
5443 for (User *U : Call.users()) {
5444 auto *UseCall = dyn_cast<CallBase>(Val: U);
5445 Check(UseCall != nullptr,
5446 "Uses of llvm.call.preallocated.setup must be calls");
5447 const Function *Fn = UseCall->getCalledFunction();
5448 if (Fn && Fn->getIntrinsicID() == Intrinsic::call_preallocated_arg) {
5449 auto *AllocArgIndex = dyn_cast<ConstantInt>(Val: UseCall->getArgOperand(i: 1));
5450 Check(AllocArgIndex != nullptr,
5451 "llvm.call.preallocated.alloc arg index must be a constant");
5452 auto AllocArgIndexInt = AllocArgIndex->getValue();
5453 Check(AllocArgIndexInt.sge(0) &&
5454 AllocArgIndexInt.slt(NumArgs->getValue()),
5455 "llvm.call.preallocated.alloc arg index must be between 0 and "
5456 "corresponding "
5457 "llvm.call.preallocated.setup's argument count");
5458 } else if (Fn && Fn->getIntrinsicID() ==
5459 Intrinsic::call_preallocated_teardown) {
5460 // nothing to do
5461 } else {
5462 Check(!FoundCall, "Can have at most one call corresponding to a "
5463 "llvm.call.preallocated.setup");
5464 FoundCall = true;
5465 size_t NumPreallocatedArgs = 0;
5466 for (unsigned i = 0; i < UseCall->arg_size(); i++) {
5467 if (UseCall->paramHasAttr(i, Attribute::Preallocated)) {
5468 ++NumPreallocatedArgs;
5469 }
5470 }
5471 Check(NumPreallocatedArgs != 0,
5472 "cannot use preallocated intrinsics on a call without "
5473 "preallocated arguments");
5474 Check(NumArgs->equalsInt(NumPreallocatedArgs),
5475 "llvm.call.preallocated.setup arg size must be equal to number "
5476 "of preallocated arguments "
5477 "at call site",
5478 Call, *UseCall);
5479 // getOperandBundle() cannot be called if more than one of the operand
5480 // bundle exists. There is already a check elsewhere for this, so skip
5481 // here if we see more than one.
5482 if (UseCall->countOperandBundlesOfType(ID: LLVMContext::OB_preallocated) >
5483 1) {
5484 return;
5485 }
5486 auto PreallocatedBundle =
5487 UseCall->getOperandBundle(ID: LLVMContext::OB_preallocated);
5488 Check(PreallocatedBundle,
5489 "Use of llvm.call.preallocated.setup outside intrinsics "
5490 "must be in \"preallocated\" operand bundle");
5491 Check(PreallocatedBundle->Inputs.front().get() == &Call,
5492 "preallocated bundle must have token from corresponding "
5493 "llvm.call.preallocated.setup");
5494 }
5495 }
5496 break;
5497 }
5498 case Intrinsic::call_preallocated_arg: {
5499 auto *Token = dyn_cast<CallBase>(Val: Call.getArgOperand(i: 0));
5500 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5501 Intrinsic::call_preallocated_setup,
5502 "llvm.call.preallocated.arg token argument must be a "
5503 "llvm.call.preallocated.setup");
5504 Check(Call.hasFnAttr(Attribute::Preallocated),
5505 "llvm.call.preallocated.arg must be called with a \"preallocated\" "
5506 "call site attribute");
5507 break;
5508 }
5509 case Intrinsic::call_preallocated_teardown: {
5510 auto *Token = dyn_cast<CallBase>(Val: Call.getArgOperand(i: 0));
5511 Check(Token && Token->getCalledFunction()->getIntrinsicID() ==
5512 Intrinsic::call_preallocated_setup,
5513 "llvm.call.preallocated.teardown token argument must be a "
5514 "llvm.call.preallocated.setup");
5515 break;
5516 }
5517 case Intrinsic::gcroot:
5518 case Intrinsic::gcwrite:
5519 case Intrinsic::gcread:
5520 if (ID == Intrinsic::gcroot) {
5521 AllocaInst *AI =
5522 dyn_cast<AllocaInst>(Val: Call.getArgOperand(i: 0)->stripPointerCasts());
5523 Check(AI, "llvm.gcroot parameter #1 must be an alloca.", Call);
5524 Check(isa<Constant>(Call.getArgOperand(1)),
5525 "llvm.gcroot parameter #2 must be a constant.", Call);
5526 if (!AI->getAllocatedType()->isPointerTy()) {
5527 Check(!isa<ConstantPointerNull>(Call.getArgOperand(1)),
5528 "llvm.gcroot parameter #1 must either be a pointer alloca, "
5529 "or argument #2 must be a non-null constant.",
5530 Call);
5531 }
5532 }
5533
5534 Check(Call.getParent()->getParent()->hasGC(),
5535 "Enclosing function does not use GC.", Call);
5536 break;
5537 case Intrinsic::init_trampoline:
5538 Check(isa<Function>(Call.getArgOperand(1)->stripPointerCasts()),
5539 "llvm.init_trampoline parameter #2 must resolve to a function.",
5540 Call);
5541 break;
5542 case Intrinsic::prefetch:
5543 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
5544 "rw argument to llvm.prefetch must be 0-1", Call);
5545 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
5546 "locality argument to llvm.prefetch must be 0-3", Call);
5547 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
5548 "cache type argument to llvm.prefetch must be 0-1", Call);
5549 break;
5550 case Intrinsic::stackprotector:
5551 Check(isa<AllocaInst>(Call.getArgOperand(1)->stripPointerCasts()),
5552 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call);
5553 break;
5554 case Intrinsic::localescape: {
5555 BasicBlock *BB = Call.getParent();
5556 Check(BB->isEntryBlock(), "llvm.localescape used outside of entry block",
5557 Call);
5558 Check(!SawFrameEscape, "multiple calls to llvm.localescape in one function",
5559 Call);
5560 for (Value *Arg : Call.args()) {
5561 if (isa<ConstantPointerNull>(Val: Arg))
5562 continue; // Null values are allowed as placeholders.
5563 auto *AI = dyn_cast<AllocaInst>(Val: Arg->stripPointerCasts());
5564 Check(AI && AI->isStaticAlloca(),
5565 "llvm.localescape only accepts static allocas", Call);
5566 }
5567 FrameEscapeInfo[BB->getParent()].first = Call.arg_size();
5568 SawFrameEscape = true;
5569 break;
5570 }
5571 case Intrinsic::localrecover: {
5572 Value *FnArg = Call.getArgOperand(i: 0)->stripPointerCasts();
5573 Function *Fn = dyn_cast<Function>(Val: FnArg);
5574 Check(Fn && !Fn->isDeclaration(),
5575 "llvm.localrecover first "
5576 "argument must be function defined in this module",
5577 Call);
5578 auto *IdxArg = cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5579 auto &Entry = FrameEscapeInfo[Fn];
5580 Entry.second = unsigned(
5581 std::max(a: uint64_t(Entry.second), b: IdxArg->getLimitedValue(Limit: ~0U) + 1));
5582 break;
5583 }
5584
5585 case Intrinsic::experimental_gc_statepoint:
5586 if (auto *CI = dyn_cast<CallInst>(Val: &Call))
5587 Check(!CI->isInlineAsm(),
5588 "gc.statepoint support for inline assembly unimplemented", CI);
5589 Check(Call.getParent()->getParent()->hasGC(),
5590 "Enclosing function does not use GC.", Call);
5591
5592 verifyStatepoint(Call);
5593 break;
5594 case Intrinsic::experimental_gc_result: {
5595 Check(Call.getParent()->getParent()->hasGC(),
5596 "Enclosing function does not use GC.", Call);
5597
5598 auto *Statepoint = Call.getArgOperand(i: 0);
5599 if (isa<UndefValue>(Val: Statepoint))
5600 break;
5601
5602 // Are we tied to a statepoint properly?
5603 const auto *StatepointCall = dyn_cast<CallBase>(Val: Statepoint);
5604 const Function *StatepointFn =
5605 StatepointCall ? StatepointCall->getCalledFunction() : nullptr;
5606 Check(StatepointFn && StatepointFn->isDeclaration() &&
5607 StatepointFn->getIntrinsicID() ==
5608 Intrinsic::experimental_gc_statepoint,
5609 "gc.result operand #1 must be from a statepoint", Call,
5610 Call.getArgOperand(0));
5611
5612 // Check that result type matches wrapped callee.
5613 auto *TargetFuncType =
5614 cast<FunctionType>(Val: StatepointCall->getParamElementType(ArgNo: 2));
5615 Check(Call.getType() == TargetFuncType->getReturnType(),
5616 "gc.result result type does not match wrapped callee", Call);
5617 break;
5618 }
5619 case Intrinsic::experimental_gc_relocate: {
5620 Check(Call.arg_size() == 3, "wrong number of arguments", Call);
5621
5622 Check(isa<PointerType>(Call.getType()->getScalarType()),
5623 "gc.relocate must return a pointer or a vector of pointers", Call);
5624
5625 // Check that this relocate is correctly tied to the statepoint
5626
5627 // This is case for relocate on the unwinding path of an invoke statepoint
5628 if (LandingPadInst *LandingPad =
5629 dyn_cast<LandingPadInst>(Val: Call.getArgOperand(i: 0))) {
5630
5631 const BasicBlock *InvokeBB =
5632 LandingPad->getParent()->getUniquePredecessor();
5633
5634 // Landingpad relocates should have only one predecessor with invoke
5635 // statepoint terminator
5636 Check(InvokeBB, "safepoints should have unique landingpads",
5637 LandingPad->getParent());
5638 Check(InvokeBB->getTerminator(), "safepoint block should be well formed",
5639 InvokeBB);
5640 Check(isa<GCStatepointInst>(InvokeBB->getTerminator()),
5641 "gc relocate should be linked to a statepoint", InvokeBB);
5642 } else {
5643 // In all other cases relocate should be tied to the statepoint directly.
5644 // This covers relocates on a normal return path of invoke statepoint and
5645 // relocates of a call statepoint.
5646 auto *Token = Call.getArgOperand(i: 0);
5647 Check(isa<GCStatepointInst>(Token) || isa<UndefValue>(Token),
5648 "gc relocate is incorrectly tied to the statepoint", Call, Token);
5649 }
5650
5651 // Verify rest of the relocate arguments.
5652 const Value &StatepointCall = *cast<GCRelocateInst>(Val&: Call).getStatepoint();
5653
5654 // Both the base and derived must be piped through the safepoint.
5655 Value *Base = Call.getArgOperand(i: 1);
5656 Check(isa<ConstantInt>(Base),
5657 "gc.relocate operand #2 must be integer offset", Call);
5658
5659 Value *Derived = Call.getArgOperand(i: 2);
5660 Check(isa<ConstantInt>(Derived),
5661 "gc.relocate operand #3 must be integer offset", Call);
5662
5663 const uint64_t BaseIndex = cast<ConstantInt>(Val: Base)->getZExtValue();
5664 const uint64_t DerivedIndex = cast<ConstantInt>(Val: Derived)->getZExtValue();
5665
5666 // Check the bounds
5667 if (isa<UndefValue>(Val: StatepointCall))
5668 break;
5669 if (auto Opt = cast<GCStatepointInst>(Val: StatepointCall)
5670 .getOperandBundle(ID: LLVMContext::OB_gc_live)) {
5671 Check(BaseIndex < Opt->Inputs.size(),
5672 "gc.relocate: statepoint base index out of bounds", Call);
5673 Check(DerivedIndex < Opt->Inputs.size(),
5674 "gc.relocate: statepoint derived index out of bounds", Call);
5675 }
5676
5677 // Relocated value must be either a pointer type or vector-of-pointer type,
5678 // but gc_relocate does not need to return the same pointer type as the
5679 // relocated pointer. It can be casted to the correct type later if it's
5680 // desired. However, they must have the same address space and 'vectorness'
5681 GCRelocateInst &Relocate = cast<GCRelocateInst>(Val&: Call);
5682 auto *ResultType = Call.getType();
5683 auto *DerivedType = Relocate.getDerivedPtr()->getType();
5684 auto *BaseType = Relocate.getBasePtr()->getType();
5685
5686 Check(BaseType->isPtrOrPtrVectorTy(),
5687 "gc.relocate: relocated value must be a pointer", Call);
5688 Check(DerivedType->isPtrOrPtrVectorTy(),
5689 "gc.relocate: relocated value must be a pointer", Call);
5690
5691 Check(ResultType->isVectorTy() == DerivedType->isVectorTy(),
5692 "gc.relocate: vector relocates to vector and pointer to pointer",
5693 Call);
5694 Check(
5695 ResultType->getPointerAddressSpace() ==
5696 DerivedType->getPointerAddressSpace(),
5697 "gc.relocate: relocating a pointer shouldn't change its address space",
5698 Call);
5699
5700 auto GC = llvm::getGCStrategy(Name: Relocate.getFunction()->getGC());
5701 Check(GC, "gc.relocate: calling function must have GCStrategy",
5702 Call.getFunction());
5703 if (GC) {
5704 auto isGCPtr = [&GC](Type *PTy) {
5705 return GC->isGCManagedPointer(Ty: PTy->getScalarType()).value_or(u: true);
5706 };
5707 Check(isGCPtr(ResultType), "gc.relocate: must return gc pointer", Call);
5708 Check(isGCPtr(BaseType),
5709 "gc.relocate: relocated value must be a gc pointer", Call);
5710 Check(isGCPtr(DerivedType),
5711 "gc.relocate: relocated value must be a gc pointer", Call);
5712 }
5713 break;
5714 }
5715 case Intrinsic::experimental_patchpoint: {
5716 if (Call.getCallingConv() == CallingConv::AnyReg) {
5717 Check(Call.getType()->isSingleValueType(),
5718 "patchpoint: invalid return type used with anyregcc", Call);
5719 }
5720 break;
5721 }
5722 case Intrinsic::eh_exceptioncode:
5723 case Intrinsic::eh_exceptionpointer: {
5724 Check(isa<CatchPadInst>(Call.getArgOperand(0)),
5725 "eh.exceptionpointer argument must be a catchpad", Call);
5726 break;
5727 }
5728 case Intrinsic::get_active_lane_mask: {
5729 Check(Call.getType()->isVectorTy(),
5730 "get_active_lane_mask: must return a "
5731 "vector",
5732 Call);
5733 auto *ElemTy = Call.getType()->getScalarType();
5734 Check(ElemTy->isIntegerTy(1),
5735 "get_active_lane_mask: element type is not "
5736 "i1",
5737 Call);
5738 break;
5739 }
5740 case Intrinsic::experimental_get_vector_length: {
5741 ConstantInt *VF = cast<ConstantInt>(Val: Call.getArgOperand(i: 1));
5742 Check(!VF->isNegative() && !VF->isZero(),
5743 "get_vector_length: VF must be positive", Call);
5744 break;
5745 }
5746 case Intrinsic::masked_load: {
5747 Check(Call.getType()->isVectorTy(), "masked_load: must return a vector",
5748 Call);
5749
5750 ConstantInt *Alignment = cast<ConstantInt>(Val: Call.getArgOperand(i: 1));
5751 Value *Mask = Call.getArgOperand(i: 2);
5752 Value *PassThru = Call.getArgOperand(i: 3);
5753 Check(Mask->getType()->isVectorTy(), "masked_load: mask must be vector",
5754 Call);
5755 Check(Alignment->getValue().isPowerOf2(),
5756 "masked_load: alignment must be a power of 2", Call);
5757 Check(PassThru->getType() == Call.getType(),
5758 "masked_load: pass through and return type must match", Call);
5759 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5760 cast<VectorType>(Call.getType())->getElementCount(),
5761 "masked_load: vector mask must be same length as return", Call);
5762 break;
5763 }
5764 case Intrinsic::masked_store: {
5765 Value *Val = Call.getArgOperand(i: 0);
5766 ConstantInt *Alignment = cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5767 Value *Mask = Call.getArgOperand(i: 3);
5768 Check(Mask->getType()->isVectorTy(), "masked_store: mask must be vector",
5769 Call);
5770 Check(Alignment->getValue().isPowerOf2(),
5771 "masked_store: alignment must be a power of 2", Call);
5772 Check(cast<VectorType>(Mask->getType())->getElementCount() ==
5773 cast<VectorType>(Val->getType())->getElementCount(),
5774 "masked_store: vector mask must be same length as value", Call);
5775 break;
5776 }
5777
5778 case Intrinsic::masked_gather: {
5779 const APInt &Alignment =
5780 cast<ConstantInt>(Val: Call.getArgOperand(i: 1))->getValue();
5781 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5782 "masked_gather: alignment must be 0 or a power of 2", Call);
5783 break;
5784 }
5785 case Intrinsic::masked_scatter: {
5786 const APInt &Alignment =
5787 cast<ConstantInt>(Val: Call.getArgOperand(i: 2))->getValue();
5788 Check(Alignment.isZero() || Alignment.isPowerOf2(),
5789 "masked_scatter: alignment must be 0 or a power of 2", Call);
5790 break;
5791 }
5792
5793 case Intrinsic::experimental_guard: {
5794 Check(isa<CallInst>(Call), "experimental_guard cannot be invoked", Call);
5795 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5796 "experimental_guard must have exactly one "
5797 "\"deopt\" operand bundle");
5798 break;
5799 }
5800
5801 case Intrinsic::experimental_deoptimize: {
5802 Check(isa<CallInst>(Call), "experimental_deoptimize cannot be invoked",
5803 Call);
5804 Check(Call.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
5805 "experimental_deoptimize must have exactly one "
5806 "\"deopt\" operand bundle");
5807 Check(Call.getType() == Call.getFunction()->getReturnType(),
5808 "experimental_deoptimize return type must match caller return type");
5809
5810 if (isa<CallInst>(Val: Call)) {
5811 auto *RI = dyn_cast<ReturnInst>(Val: Call.getNextNode());
5812 Check(RI,
5813 "calls to experimental_deoptimize must be followed by a return");
5814
5815 if (!Call.getType()->isVoidTy() && RI)
5816 Check(RI->getReturnValue() == &Call,
5817 "calls to experimental_deoptimize must be followed by a return "
5818 "of the value computed by experimental_deoptimize");
5819 }
5820
5821 break;
5822 }
5823 case Intrinsic::vastart: {
5824 Check(Call.getFunction()->isVarArg(),
5825 "va_start called in a non-varargs function");
5826 break;
5827 }
5828 case Intrinsic::vector_reduce_and:
5829 case Intrinsic::vector_reduce_or:
5830 case Intrinsic::vector_reduce_xor:
5831 case Intrinsic::vector_reduce_add:
5832 case Intrinsic::vector_reduce_mul:
5833 case Intrinsic::vector_reduce_smax:
5834 case Intrinsic::vector_reduce_smin:
5835 case Intrinsic::vector_reduce_umax:
5836 case Intrinsic::vector_reduce_umin: {
5837 Type *ArgTy = Call.getArgOperand(i: 0)->getType();
5838 Check(ArgTy->isIntOrIntVectorTy() && ArgTy->isVectorTy(),
5839 "Intrinsic has incorrect argument type!");
5840 break;
5841 }
5842 case Intrinsic::vector_reduce_fmax:
5843 case Intrinsic::vector_reduce_fmin: {
5844 Type *ArgTy = Call.getArgOperand(i: 0)->getType();
5845 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5846 "Intrinsic has incorrect argument type!");
5847 break;
5848 }
5849 case Intrinsic::vector_reduce_fadd:
5850 case Intrinsic::vector_reduce_fmul: {
5851 // Unlike the other reductions, the first argument is a start value. The
5852 // second argument is the vector to be reduced.
5853 Type *ArgTy = Call.getArgOperand(i: 1)->getType();
5854 Check(ArgTy->isFPOrFPVectorTy() && ArgTy->isVectorTy(),
5855 "Intrinsic has incorrect argument type!");
5856 break;
5857 }
5858 case Intrinsic::smul_fix:
5859 case Intrinsic::smul_fix_sat:
5860 case Intrinsic::umul_fix:
5861 case Intrinsic::umul_fix_sat:
5862 case Intrinsic::sdiv_fix:
5863 case Intrinsic::sdiv_fix_sat:
5864 case Intrinsic::udiv_fix:
5865 case Intrinsic::udiv_fix_sat: {
5866 Value *Op1 = Call.getArgOperand(i: 0);
5867 Value *Op2 = Call.getArgOperand(i: 1);
5868 Check(Op1->getType()->isIntOrIntVectorTy(),
5869 "first operand of [us][mul|div]_fix[_sat] must be an int type or "
5870 "vector of ints");
5871 Check(Op2->getType()->isIntOrIntVectorTy(),
5872 "second operand of [us][mul|div]_fix[_sat] must be an int type or "
5873 "vector of ints");
5874
5875 auto *Op3 = cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5876 Check(Op3->getType()->isIntegerTy(),
5877 "third operand of [us][mul|div]_fix[_sat] must be an int type");
5878 Check(Op3->getBitWidth() <= 32,
5879 "third operand of [us][mul|div]_fix[_sat] must fit within 32 bits");
5880
5881 if (ID == Intrinsic::smul_fix || ID == Intrinsic::smul_fix_sat ||
5882 ID == Intrinsic::sdiv_fix || ID == Intrinsic::sdiv_fix_sat) {
5883 Check(Op3->getZExtValue() < Op1->getType()->getScalarSizeInBits(),
5884 "the scale of s[mul|div]_fix[_sat] must be less than the width of "
5885 "the operands");
5886 } else {
5887 Check(Op3->getZExtValue() <= Op1->getType()->getScalarSizeInBits(),
5888 "the scale of u[mul|div]_fix[_sat] must be less than or equal "
5889 "to the width of the operands");
5890 }
5891 break;
5892 }
5893 case Intrinsic::lrint:
5894 case Intrinsic::llrint: {
5895 Type *ValTy = Call.getArgOperand(i: 0)->getType();
5896 Type *ResultTy = Call.getType();
5897 Check(
5898 ValTy->isFPOrFPVectorTy() && ResultTy->isIntOrIntVectorTy(),
5899 "llvm.lrint, llvm.llrint: argument must be floating-point or vector "
5900 "of floating-points, and result must be integer or vector of integers",
5901 &Call);
5902 Check(ValTy->isVectorTy() == ResultTy->isVectorTy(),
5903 "llvm.lrint, llvm.llrint: argument and result disagree on vector use",
5904 &Call);
5905 if (ValTy->isVectorTy()) {
5906 Check(cast<VectorType>(ValTy)->getElementCount() ==
5907 cast<VectorType>(ResultTy)->getElementCount(),
5908 "llvm.lrint, llvm.llrint: argument must be same length as result",
5909 &Call);
5910 }
5911 break;
5912 }
5913 case Intrinsic::lround:
5914 case Intrinsic::llround: {
5915 Type *ValTy = Call.getArgOperand(i: 0)->getType();
5916 Type *ResultTy = Call.getType();
5917 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
5918 "Intrinsic does not support vectors", &Call);
5919 break;
5920 }
5921 case Intrinsic::bswap: {
5922 Type *Ty = Call.getType();
5923 unsigned Size = Ty->getScalarSizeInBits();
5924 Check(Size % 16 == 0, "bswap must be an even number of bytes", &Call);
5925 break;
5926 }
5927 case Intrinsic::invariant_start: {
5928 ConstantInt *InvariantSize = dyn_cast<ConstantInt>(Val: Call.getArgOperand(i: 0));
5929 Check(InvariantSize &&
5930 (!InvariantSize->isNegative() || InvariantSize->isMinusOne()),
5931 "invariant_start parameter must be -1, 0 or a positive number",
5932 &Call);
5933 break;
5934 }
5935 case Intrinsic::matrix_multiply:
5936 case Intrinsic::matrix_transpose:
5937 case Intrinsic::matrix_column_major_load:
5938 case Intrinsic::matrix_column_major_store: {
5939 Function *IF = Call.getCalledFunction();
5940 ConstantInt *Stride = nullptr;
5941 ConstantInt *NumRows;
5942 ConstantInt *NumColumns;
5943 VectorType *ResultTy;
5944 Type *Op0ElemTy = nullptr;
5945 Type *Op1ElemTy = nullptr;
5946 switch (ID) {
5947 case Intrinsic::matrix_multiply: {
5948 NumRows = cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5949 ConstantInt *N = cast<ConstantInt>(Val: Call.getArgOperand(i: 3));
5950 NumColumns = cast<ConstantInt>(Val: Call.getArgOperand(i: 4));
5951 Check(cast<FixedVectorType>(Call.getArgOperand(0)->getType())
5952 ->getNumElements() ==
5953 NumRows->getZExtValue() * N->getZExtValue(),
5954 "First argument of a matrix operation does not match specified "
5955 "shape!");
5956 Check(cast<FixedVectorType>(Call.getArgOperand(1)->getType())
5957 ->getNumElements() ==
5958 N->getZExtValue() * NumColumns->getZExtValue(),
5959 "Second argument of a matrix operation does not match specified "
5960 "shape!");
5961
5962 ResultTy = cast<VectorType>(Val: Call.getType());
5963 Op0ElemTy =
5964 cast<VectorType>(Val: Call.getArgOperand(i: 0)->getType())->getElementType();
5965 Op1ElemTy =
5966 cast<VectorType>(Val: Call.getArgOperand(i: 1)->getType())->getElementType();
5967 break;
5968 }
5969 case Intrinsic::matrix_transpose:
5970 NumRows = cast<ConstantInt>(Val: Call.getArgOperand(i: 1));
5971 NumColumns = cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5972 ResultTy = cast<VectorType>(Val: Call.getType());
5973 Op0ElemTy =
5974 cast<VectorType>(Val: Call.getArgOperand(i: 0)->getType())->getElementType();
5975 break;
5976 case Intrinsic::matrix_column_major_load: {
5977 Stride = dyn_cast<ConstantInt>(Val: Call.getArgOperand(i: 1));
5978 NumRows = cast<ConstantInt>(Val: Call.getArgOperand(i: 3));
5979 NumColumns = cast<ConstantInt>(Val: Call.getArgOperand(i: 4));
5980 ResultTy = cast<VectorType>(Val: Call.getType());
5981 break;
5982 }
5983 case Intrinsic::matrix_column_major_store: {
5984 Stride = dyn_cast<ConstantInt>(Val: Call.getArgOperand(i: 2));
5985 NumRows = cast<ConstantInt>(Val: Call.getArgOperand(i: 4));
5986 NumColumns = cast<ConstantInt>(Val: Call.getArgOperand(i: 5));
5987 ResultTy = cast<VectorType>(Val: Call.getArgOperand(i: 0)->getType());
5988 Op0ElemTy =
5989 cast<VectorType>(Val: Call.getArgOperand(i: 0)->getType())->getElementType();
5990 break;
5991 }
5992 default:
5993 llvm_unreachable("unexpected intrinsic");
5994 }
5995
5996 Check(ResultTy->getElementType()->isIntegerTy() ||
5997 ResultTy->getElementType()->isFloatingPointTy(),
5998 "Result type must be an integer or floating-point type!", IF);
5999
6000 if (Op0ElemTy)
6001 Check(ResultTy->getElementType() == Op0ElemTy,
6002 "Vector element type mismatch of the result and first operand "
6003 "vector!",
6004 IF);
6005
6006 if (Op1ElemTy)
6007 Check(ResultTy->getElementType() == Op1ElemTy,
6008 "Vector element type mismatch of the result and second operand "
6009 "vector!",
6010 IF);
6011
6012 Check(cast<FixedVectorType>(ResultTy)->getNumElements() ==
6013 NumRows->getZExtValue() * NumColumns->getZExtValue(),
6014 "Result of a matrix operation does not fit in the returned vector!");
6015
6016 if (Stride)
6017 Check(Stride->getZExtValue() >= NumRows->getZExtValue(),
6018 "Stride must be greater or equal than the number of rows!", IF);
6019
6020 break;
6021 }
6022 case Intrinsic::experimental_vector_splice: {
6023 VectorType *VecTy = cast<VectorType>(Val: Call.getType());
6024 int64_t Idx = cast<ConstantInt>(Val: Call.getArgOperand(i: 2))->getSExtValue();
6025 int64_t KnownMinNumElements = VecTy->getElementCount().getKnownMinValue();
6026 if (Call.getParent() && Call.getParent()->getParent()) {
6027 AttributeList Attrs = Call.getParent()->getParent()->getAttributes();
6028 if (Attrs.hasFnAttr(Attribute::VScaleRange))
6029 KnownMinNumElements *= Attrs.getFnAttrs().getVScaleRangeMin();
6030 }
6031 Check((Idx < 0 && std::abs(Idx) <= KnownMinNumElements) ||
6032 (Idx >= 0 && Idx < KnownMinNumElements),
6033 "The splice index exceeds the range [-VL, VL-1] where VL is the "
6034 "known minimum number of elements in the vector. For scalable "
6035 "vectors the minimum number of elements is determined from "
6036 "vscale_range.",
6037 &Call);
6038 break;
6039 }
6040 case Intrinsic::experimental_stepvector: {
6041 VectorType *VecTy = dyn_cast<VectorType>(Val: Call.getType());
6042 Check(VecTy && VecTy->getScalarType()->isIntegerTy() &&
6043 VecTy->getScalarSizeInBits() >= 8,
6044 "experimental_stepvector only supported for vectors of integers "
6045 "with a bitwidth of at least 8.",
6046 &Call);
6047 break;
6048 }
6049 case Intrinsic::vector_insert: {
6050 Value *Vec = Call.getArgOperand(i: 0);
6051 Value *SubVec = Call.getArgOperand(i: 1);
6052 Value *Idx = Call.getArgOperand(i: 2);
6053 unsigned IdxN = cast<ConstantInt>(Val: Idx)->getZExtValue();
6054
6055 VectorType *VecTy = cast<VectorType>(Val: Vec->getType());
6056 VectorType *SubVecTy = cast<VectorType>(Val: SubVec->getType());
6057
6058 ElementCount VecEC = VecTy->getElementCount();
6059 ElementCount SubVecEC = SubVecTy->getElementCount();
6060 Check(VecTy->getElementType() == SubVecTy->getElementType(),
6061 "vector_insert parameters must have the same element "
6062 "type.",
6063 &Call);
6064 Check(IdxN % SubVecEC.getKnownMinValue() == 0,
6065 "vector_insert index must be a constant multiple of "
6066 "the subvector's known minimum vector length.");
6067
6068 // If this insertion is not the 'mixed' case where a fixed vector is
6069 // inserted into a scalable vector, ensure that the insertion of the
6070 // subvector does not overrun the parent vector.
6071 if (VecEC.isScalable() == SubVecEC.isScalable()) {
6072 Check(IdxN < VecEC.getKnownMinValue() &&
6073 IdxN + SubVecEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6074 "subvector operand of vector_insert would overrun the "
6075 "vector being inserted into.");
6076 }
6077 break;
6078 }
6079 case Intrinsic::vector_extract: {
6080 Value *Vec = Call.getArgOperand(i: 0);
6081 Value *Idx = Call.getArgOperand(i: 1);
6082 unsigned IdxN = cast<ConstantInt>(Val: Idx)->getZExtValue();
6083
6084 VectorType *ResultTy = cast<VectorType>(Val: Call.getType());
6085 VectorType *VecTy = cast<VectorType>(Val: Vec->getType());
6086
6087 ElementCount VecEC = VecTy->getElementCount();
6088 ElementCount ResultEC = ResultTy->getElementCount();
6089
6090 Check(ResultTy->getElementType() == VecTy->getElementType(),
6091 "vector_extract result must have the same element "
6092 "type as the input vector.",
6093 &Call);
6094 Check(IdxN % ResultEC.getKnownMinValue() == 0,
6095 "vector_extract index must be a constant multiple of "
6096 "the result type's known minimum vector length.");
6097
6098 // If this extraction is not the 'mixed' case where a fixed vector is
6099 // extracted from a scalable vector, ensure that the extraction does not
6100 // overrun the parent vector.
6101 if (VecEC.isScalable() == ResultEC.isScalable()) {
6102 Check(IdxN < VecEC.getKnownMinValue() &&
6103 IdxN + ResultEC.getKnownMinValue() <= VecEC.getKnownMinValue(),
6104 "vector_extract would overrun.");
6105 }
6106 break;
6107 }
6108 case Intrinsic::experimental_noalias_scope_decl: {
6109 NoAliasScopeDecls.push_back(Elt: cast<IntrinsicInst>(Val: &Call));
6110 break;
6111 }
6112 case Intrinsic::preserve_array_access_index:
6113 case Intrinsic::preserve_struct_access_index:
6114 case Intrinsic::aarch64_ldaxr:
6115 case Intrinsic::aarch64_ldxr:
6116 case Intrinsic::arm_ldaex:
6117 case Intrinsic::arm_ldrex: {
6118 Type *ElemTy = Call.getParamElementType(ArgNo: 0);
6119 Check(ElemTy, "Intrinsic requires elementtype attribute on first argument.",
6120 &Call);
6121 break;
6122 }
6123 case Intrinsic::aarch64_stlxr:
6124 case Intrinsic::aarch64_stxr:
6125 case Intrinsic::arm_stlex:
6126 case Intrinsic::arm_strex: {
6127 Type *ElemTy = Call.getAttributes().getParamElementType(ArgNo: 1);
6128 Check(ElemTy,
6129 "Intrinsic requires elementtype attribute on second argument.",
6130 &Call);
6131 break;
6132 }
6133 case Intrinsic::aarch64_prefetch: {
6134 Check(cast<ConstantInt>(Call.getArgOperand(1))->getZExtValue() < 2,
6135 "write argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6136 Check(cast<ConstantInt>(Call.getArgOperand(2))->getZExtValue() < 4,
6137 "target argument to llvm.aarch64.prefetch must be 0-3", Call);
6138 Check(cast<ConstantInt>(Call.getArgOperand(3))->getZExtValue() < 2,
6139 "stream argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6140 Check(cast<ConstantInt>(Call.getArgOperand(4))->getZExtValue() < 2,
6141 "isdata argument to llvm.aarch64.prefetch must be 0 or 1", Call);
6142 break;
6143 }
6144 case Intrinsic::callbr_landingpad: {
6145 const auto *CBR = dyn_cast<CallBrInst>(Val: Call.getOperand(i_nocapture: 0));
6146 Check(CBR, "intrinstic requires callbr operand", &Call);
6147 if (!CBR)
6148 break;
6149
6150 const BasicBlock *LandingPadBB = Call.getParent();
6151 const BasicBlock *PredBB = LandingPadBB->getUniquePredecessor();
6152 if (!PredBB) {
6153 CheckFailed(Message: "Intrinsic in block must have 1 unique predecessor", V1: &Call);
6154 break;
6155 }
6156 if (!isa<CallBrInst>(Val: PredBB->getTerminator())) {
6157 CheckFailed(Message: "Intrinsic must have corresponding callbr in predecessor",
6158 V1: &Call);
6159 break;
6160 }
6161 Check(llvm::any_of(CBR->getIndirectDests(),
6162 [LandingPadBB](const BasicBlock *IndDest) {
6163 return IndDest == LandingPadBB;
6164 }),
6165 "Intrinsic's corresponding callbr must have intrinsic's parent basic "
6166 "block in indirect destination list",
6167 &Call);
6168 const Instruction &First = *LandingPadBB->begin();
6169 Check(&First == &Call, "No other instructions may proceed intrinsic",
6170 &Call);
6171 break;
6172 }
6173 case Intrinsic::amdgcn_cs_chain: {
6174 auto CallerCC = Call.getCaller()->getCallingConv();
6175 switch (CallerCC) {
6176 case CallingConv::AMDGPU_CS:
6177 case CallingConv::AMDGPU_CS_Chain:
6178 case CallingConv::AMDGPU_CS_ChainPreserve:
6179 break;
6180 default:
6181 CheckFailed(Message: "Intrinsic can only be used from functions with the "
6182 "amdgpu_cs, amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6183 "calling conventions",
6184 V1: &Call);
6185 break;
6186 }
6187
6188 Check(Call.paramHasAttr(2, Attribute::InReg),
6189 "SGPR arguments must have the `inreg` attribute", &Call);
6190 Check(!Call.paramHasAttr(3, Attribute::InReg),
6191 "VGPR arguments must not have the `inreg` attribute", &Call);
6192 break;
6193 }
6194 case Intrinsic::amdgcn_set_inactive_chain_arg: {
6195 auto CallerCC = Call.getCaller()->getCallingConv();
6196 switch (CallerCC) {
6197 case CallingConv::AMDGPU_CS_Chain:
6198 case CallingConv::AMDGPU_CS_ChainPreserve:
6199 break;
6200 default:
6201 CheckFailed(Message: "Intrinsic can only be used from functions with the "
6202 "amdgpu_cs_chain or amdgpu_cs_chain_preserve "
6203 "calling conventions",
6204 V1: &Call);
6205 break;
6206 }
6207
6208 unsigned InactiveIdx = 1;
6209 Check(!Call.paramHasAttr(InactiveIdx, Attribute::InReg),
6210 "Value for inactive lanes must not have the `inreg` attribute",
6211 &Call);
6212 Check(isa<Argument>(Call.getArgOperand(InactiveIdx)),
6213 "Value for inactive lanes must be a function argument", &Call);
6214 Check(!cast<Argument>(Call.getArgOperand(InactiveIdx))->hasInRegAttr(),
6215 "Value for inactive lanes must be a VGPR function argument", &Call);
6216 break;
6217 }
6218 case Intrinsic::nvvm_setmaxnreg_inc_sync_aligned_u32:
6219 case Intrinsic::nvvm_setmaxnreg_dec_sync_aligned_u32: {
6220 Value *V = Call.getArgOperand(i: 0);
6221 unsigned RegCount = cast<ConstantInt>(Val: V)->getZExtValue();
6222 Check(RegCount % 8 == 0,
6223 "reg_count argument to nvvm.setmaxnreg must be in multiples of 8");
6224 Check((RegCount >= 24 && RegCount <= 256),
6225 "reg_count argument to nvvm.setmaxnreg must be within [24, 256]");
6226 break;
6227 }
6228 case Intrinsic::experimental_convergence_entry:
6229 LLVM_FALLTHROUGH;
6230 case Intrinsic::experimental_convergence_anchor:
6231 break;
6232 case Intrinsic::experimental_convergence_loop:
6233 break;
6234 case Intrinsic::ptrmask: {
6235 Type *Ty0 = Call.getArgOperand(i: 0)->getType();
6236 Type *Ty1 = Call.getArgOperand(i: 1)->getType();
6237 Check(Ty0->isPtrOrPtrVectorTy(),
6238 "llvm.ptrmask intrinsic first argument must be pointer or vector "
6239 "of pointers",
6240 &Call);
6241 Check(
6242 Ty0->isVectorTy() == Ty1->isVectorTy(),
6243 "llvm.ptrmask intrinsic arguments must be both scalars or both vectors",
6244 &Call);
6245 if (Ty0->isVectorTy())
6246 Check(cast<VectorType>(Ty0)->getElementCount() ==
6247 cast<VectorType>(Ty1)->getElementCount(),
6248 "llvm.ptrmask intrinsic arguments must have the same number of "
6249 "elements",
6250 &Call);
6251 Check(DL.getIndexTypeSizeInBits(Ty0) == Ty1->getScalarSizeInBits(),
6252 "llvm.ptrmask intrinsic second argument bitwidth must match "
6253 "pointer index type size of first argument",
6254 &Call);
6255 break;
6256 }
6257 case Intrinsic::threadlocal_address: {
6258 const Value &Arg0 = *Call.getArgOperand(i: 0);
6259 Check(isa<GlobalValue>(Arg0),
6260 "llvm.threadlocal.address first argument must be a GlobalValue");
6261 Check(cast<GlobalValue>(Arg0).isThreadLocal(),
6262 "llvm.threadlocal.address operand isThreadLocal() must be true");
6263 break;
6264 }
6265 };
6266
6267 // Verify that there aren't any unmediated control transfers between funclets.
6268 if (IntrinsicInst::mayLowerToFunctionCall(IID: ID)) {
6269 Function *F = Call.getParent()->getParent();
6270 if (F->hasPersonalityFn() &&
6271 isScopedEHPersonality(Pers: classifyEHPersonality(Pers: F->getPersonalityFn()))) {
6272 // Run EH funclet coloring on-demand and cache results for other intrinsic
6273 // calls in this function
6274 if (BlockEHFuncletColors.empty())
6275 BlockEHFuncletColors = colorEHFunclets(F&: *F);
6276
6277 // Check for catch-/cleanup-pad in first funclet block
6278 bool InEHFunclet = false;
6279 BasicBlock *CallBB = Call.getParent();
6280 const ColorVector &CV = BlockEHFuncletColors.find(Val: CallBB)->second;
6281 assert(CV.size() > 0 && "Uncolored block");
6282 for (BasicBlock *ColorFirstBB : CV)
6283 if (dyn_cast_or_null<FuncletPadInst>(Val: ColorFirstBB->getFirstNonPHI()))
6284 InEHFunclet = true;
6285
6286 // Check for funclet operand bundle
6287 bool HasToken = false;
6288 for (unsigned I = 0, E = Call.getNumOperandBundles(); I != E; ++I)
6289 if (Call.getOperandBundleAt(Index: I).getTagID() == LLVMContext::OB_funclet)
6290 HasToken = true;
6291
6292 // This would cause silent code truncation in WinEHPrepare
6293 if (InEHFunclet)
6294 Check(HasToken, "Missing funclet token on intrinsic call", &Call);
6295 }
6296 }
6297}
6298
6299/// Carefully grab the subprogram from a local scope.
6300///
6301/// This carefully grabs the subprogram from a local scope, avoiding the
6302/// built-in assertions that would typically fire.
6303static DISubprogram *getSubprogram(Metadata *LocalScope) {
6304 if (!LocalScope)
6305 return nullptr;
6306
6307 if (auto *SP = dyn_cast<DISubprogram>(Val: LocalScope))
6308 return SP;
6309
6310 if (auto *LB = dyn_cast<DILexicalBlockBase>(Val: LocalScope))
6311 return getSubprogram(LocalScope: LB->getRawScope());
6312
6313 // Just return null; broken scope chains are checked elsewhere.
6314 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
6315 return nullptr;
6316}
6317
6318void Verifier::visit(DbgLabelRecord &DLR) {
6319 CheckDI(isa<DILabel>(DLR.getRawLabel()),
6320 "invalid #dbg_label intrinsic variable", &DLR, DLR.getRawLabel());
6321
6322 // Ignore broken !dbg attachments; they're checked elsewhere.
6323 if (MDNode *N = DLR.getDebugLoc().getAsMDNode())
6324 if (!isa<DILocation>(Val: N))
6325 return;
6326
6327 BasicBlock *BB = DLR.getParent();
6328 Function *F = BB ? BB->getParent() : nullptr;
6329
6330 // The scopes for variables and !dbg attachments must agree.
6331 DILabel *Label = DLR.getLabel();
6332 DILocation *Loc = DLR.getDebugLoc();
6333 CheckDI(Loc, "#dbg_label record requires a !dbg attachment", &DLR, BB, F);
6334
6335 DISubprogram *LabelSP = getSubprogram(LocalScope: Label->getRawScope());
6336 DISubprogram *LocSP = getSubprogram(LocalScope: Loc->getRawScope());
6337 if (!LabelSP || !LocSP)
6338 return;
6339
6340 CheckDI(LabelSP == LocSP,
6341 "mismatched subprogram between #dbg_label label and !dbg attachment",
6342 &DLR, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6343 Loc->getScope()->getSubprogram());
6344}
6345
6346void Verifier::visit(DbgVariableRecord &DVR) {
6347 BasicBlock *BB = DVR.getParent();
6348 Function *F = BB->getParent();
6349
6350 CheckDI(DVR.getType() == DbgVariableRecord::LocationType::Value ||
6351 DVR.getType() == DbgVariableRecord::LocationType::Declare ||
6352 DVR.getType() == DbgVariableRecord::LocationType::Assign,
6353 "invalid #dbg record type", &DVR, DVR.getType());
6354
6355 // The location for a DbgVariableRecord must be either a ValueAsMetadata,
6356 // DIArgList, or an empty MDNode (which is a legacy representation for an
6357 // "undef" location).
6358 auto *MD = DVR.getRawLocation();
6359 CheckDI(MD && (isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6360 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands())),
6361 "invalid #dbg record address/value", &DVR, MD);
6362 if (auto *VAM = dyn_cast<ValueAsMetadata>(Val: MD))
6363 visitValueAsMetadata(MD: *VAM, F);
6364 else if (auto *AL = dyn_cast<DIArgList>(Val: MD))
6365 visitDIArgList(AL: *AL, F);
6366
6367 CheckDI(isa_and_nonnull<DILocalVariable>(DVR.getRawVariable()),
6368 "invalid #dbg record variable", &DVR, DVR.getRawVariable());
6369 visitMDNode(MD: *DVR.getRawVariable(), AllowLocs: AreDebugLocsAllowed::No);
6370
6371 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawExpression()),
6372 "invalid #dbg record expression", &DVR, DVR.getRawExpression());
6373 visitMDNode(MD: *DVR.getExpression(), AllowLocs: AreDebugLocsAllowed::No);
6374
6375 if (DVR.isDbgAssign()) {
6376 CheckDI(isa_and_nonnull<DIAssignID>(DVR.getRawAssignID()),
6377 "invalid #dbg_assign DIAssignID", &DVR, DVR.getRawAssignID());
6378 visitMDNode(MD: *cast<DIAssignID>(Val: DVR.getRawAssignID()),
6379 AllowLocs: AreDebugLocsAllowed::No);
6380
6381 const auto *RawAddr = DVR.getRawAddress();
6382 // Similarly to the location above, the address for an assign
6383 // DbgVariableRecord must be a ValueAsMetadata or an empty MDNode, which
6384 // represents an undef address.
6385 CheckDI(
6386 isa<ValueAsMetadata>(RawAddr) ||
6387 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6388 "invalid #dbg_assign address", &DVR, DVR.getRawAddress());
6389 if (auto *VAM = dyn_cast<ValueAsMetadata>(Val: RawAddr))
6390 visitValueAsMetadata(MD: *VAM, F);
6391
6392 CheckDI(isa_and_nonnull<DIExpression>(DVR.getRawAddressExpression()),
6393 "invalid #dbg_assign address expression", &DVR,
6394 DVR.getRawAddressExpression());
6395 visitMDNode(MD: *DVR.getAddressExpression(), AllowLocs: AreDebugLocsAllowed::No);
6396
6397 // All of the linked instructions should be in the same function as DVR.
6398 for (Instruction *I : at::getAssignmentInsts(DVR: &DVR))
6399 CheckDI(DVR.getFunction() == I->getFunction(),
6400 "inst not in same function as #dbg_assign", I, &DVR);
6401 }
6402
6403 // This check is redundant with one in visitLocalVariable().
6404 DILocalVariable *Var = DVR.getVariable();
6405 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6406 Var->getRawType());
6407
6408 auto *DLNode = DVR.getDebugLoc().getAsMDNode();
6409 CheckDI(isa_and_nonnull<DILocation>(DLNode), "invalid #dbg record DILocation",
6410 &DVR, DLNode);
6411 DILocation *Loc = DVR.getDebugLoc();
6412
6413 // The scopes for variables and !dbg attachments must agree.
6414 DISubprogram *VarSP = getSubprogram(LocalScope: Var->getRawScope());
6415 DISubprogram *LocSP = getSubprogram(LocalScope: Loc->getRawScope());
6416 if (!VarSP || !LocSP)
6417 return; // Broken scope chains are checked elsewhere.
6418
6419 CheckDI(VarSP == LocSP,
6420 "mismatched subprogram between #dbg record variable and DILocation",
6421 &DVR, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6422 Loc->getScope()->getSubprogram());
6423
6424 verifyFnArgs(DVR);
6425}
6426
6427void Verifier::visitVPIntrinsic(VPIntrinsic &VPI) {
6428 if (auto *VPCast = dyn_cast<VPCastIntrinsic>(Val: &VPI)) {
6429 auto *RetTy = cast<VectorType>(Val: VPCast->getType());
6430 auto *ValTy = cast<VectorType>(Val: VPCast->getOperand(i_nocapture: 0)->getType());
6431 Check(RetTy->getElementCount() == ValTy->getElementCount(),
6432 "VP cast intrinsic first argument and result vector lengths must be "
6433 "equal",
6434 *VPCast);
6435
6436 switch (VPCast->getIntrinsicID()) {
6437 default:
6438 llvm_unreachable("Unknown VP cast intrinsic");
6439 case Intrinsic::vp_trunc:
6440 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6441 "llvm.vp.trunc intrinsic first argument and result element type "
6442 "must be integer",
6443 *VPCast);
6444 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6445 "llvm.vp.trunc intrinsic the bit size of first argument must be "
6446 "larger than the bit size of the return type",
6447 *VPCast);
6448 break;
6449 case Intrinsic::vp_zext:
6450 case Intrinsic::vp_sext:
6451 Check(RetTy->isIntOrIntVectorTy() && ValTy->isIntOrIntVectorTy(),
6452 "llvm.vp.zext or llvm.vp.sext intrinsic first argument and result "
6453 "element type must be integer",
6454 *VPCast);
6455 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6456 "llvm.vp.zext or llvm.vp.sext intrinsic the bit size of first "
6457 "argument must be smaller than the bit size of the return type",
6458 *VPCast);
6459 break;
6460 case Intrinsic::vp_fptoui:
6461 case Intrinsic::vp_fptosi:
6462 case Intrinsic::vp_lrint:
6463 case Intrinsic::vp_llrint:
6464 Check(
6465 RetTy->isIntOrIntVectorTy() && ValTy->isFPOrFPVectorTy(),
6466 "llvm.vp.fptoui, llvm.vp.fptosi, llvm.vp.lrint or llvm.vp.llrint" "intrinsic first argument element "
6467 "type must be floating-point and result element type must be integer",
6468 *VPCast);
6469 break;
6470 case Intrinsic::vp_uitofp:
6471 case Intrinsic::vp_sitofp:
6472 Check(
6473 RetTy->isFPOrFPVectorTy() && ValTy->isIntOrIntVectorTy(),
6474 "llvm.vp.uitofp or llvm.vp.sitofp intrinsic first argument element "
6475 "type must be integer and result element type must be floating-point",
6476 *VPCast);
6477 break;
6478 case Intrinsic::vp_fptrunc:
6479 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6480 "llvm.vp.fptrunc intrinsic first argument and result element type "
6481 "must be floating-point",
6482 *VPCast);
6483 Check(RetTy->getScalarSizeInBits() < ValTy->getScalarSizeInBits(),
6484 "llvm.vp.fptrunc intrinsic the bit size of first argument must be "
6485 "larger than the bit size of the return type",
6486 *VPCast);
6487 break;
6488 case Intrinsic::vp_fpext:
6489 Check(RetTy->isFPOrFPVectorTy() && ValTy->isFPOrFPVectorTy(),
6490 "llvm.vp.fpext intrinsic first argument and result element type "
6491 "must be floating-point",
6492 *VPCast);
6493 Check(RetTy->getScalarSizeInBits() > ValTy->getScalarSizeInBits(),
6494 "llvm.vp.fpext intrinsic the bit size of first argument must be "
6495 "smaller than the bit size of the return type",
6496 *VPCast);
6497 break;
6498 case Intrinsic::vp_ptrtoint:
6499 Check(RetTy->isIntOrIntVectorTy() && ValTy->isPtrOrPtrVectorTy(),
6500 "llvm.vp.ptrtoint intrinsic first argument element type must be "
6501 "pointer and result element type must be integer",
6502 *VPCast);
6503 break;
6504 case Intrinsic::vp_inttoptr:
6505 Check(RetTy->isPtrOrPtrVectorTy() && ValTy->isIntOrIntVectorTy(),
6506 "llvm.vp.inttoptr intrinsic first argument element type must be "
6507 "integer and result element type must be pointer",
6508 *VPCast);
6509 break;
6510 }
6511 }
6512 if (VPI.getIntrinsicID() == Intrinsic::vp_fcmp) {
6513 auto Pred = cast<VPCmpIntrinsic>(Val: &VPI)->getPredicate();
6514 Check(CmpInst::isFPPredicate(Pred),
6515 "invalid predicate for VP FP comparison intrinsic", &VPI);
6516 }
6517 if (VPI.getIntrinsicID() == Intrinsic::vp_icmp) {
6518 auto Pred = cast<VPCmpIntrinsic>(Val: &VPI)->getPredicate();
6519 Check(CmpInst::isIntPredicate(Pred),
6520 "invalid predicate for VP integer comparison intrinsic", &VPI);
6521 }
6522 if (VPI.getIntrinsicID() == Intrinsic::vp_is_fpclass) {
6523 auto TestMask = cast<ConstantInt>(Val: VPI.getOperand(i_nocapture: 1));
6524 Check((TestMask->getZExtValue() & ~static_cast<unsigned>(fcAllFlags)) == 0,
6525 "unsupported bits for llvm.vp.is.fpclass test mask");
6526 }
6527}
6528
6529void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic &FPI) {
6530 unsigned NumOperands;
6531 bool HasRoundingMD;
6532 switch (FPI.getIntrinsicID()) {
6533#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6534 case Intrinsic::INTRINSIC: \
6535 NumOperands = NARG; \
6536 HasRoundingMD = ROUND_MODE; \
6537 break;
6538#include "llvm/IR/ConstrainedOps.def"
6539 default:
6540 llvm_unreachable("Invalid constrained FP intrinsic!");
6541 }
6542 NumOperands += (1 + HasRoundingMD);
6543 // Compare intrinsics carry an extra predicate metadata operand.
6544 if (isa<ConstrainedFPCmpIntrinsic>(Val: FPI))
6545 NumOperands += 1;
6546 Check((FPI.arg_size() == NumOperands),
6547 "invalid arguments for constrained FP intrinsic", &FPI);
6548
6549 switch (FPI.getIntrinsicID()) {
6550 case Intrinsic::experimental_constrained_lrint:
6551 case Intrinsic::experimental_constrained_llrint: {
6552 Type *ValTy = FPI.getArgOperand(i: 0)->getType();
6553 Type *ResultTy = FPI.getType();
6554 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6555 "Intrinsic does not support vectors", &FPI);
6556 }
6557 break;
6558
6559 case Intrinsic::experimental_constrained_lround:
6560 case Intrinsic::experimental_constrained_llround: {
6561 Type *ValTy = FPI.getArgOperand(i: 0)->getType();
6562 Type *ResultTy = FPI.getType();
6563 Check(!ValTy->isVectorTy() && !ResultTy->isVectorTy(),
6564 "Intrinsic does not support vectors", &FPI);
6565 break;
6566 }
6567
6568 case Intrinsic::experimental_constrained_fcmp:
6569 case Intrinsic::experimental_constrained_fcmps: {
6570 auto Pred = cast<ConstrainedFPCmpIntrinsic>(Val: &FPI)->getPredicate();
6571 Check(CmpInst::isFPPredicate(Pred),
6572 "invalid predicate for constrained FP comparison intrinsic", &FPI);
6573 break;
6574 }
6575
6576 case Intrinsic::experimental_constrained_fptosi:
6577 case Intrinsic::experimental_constrained_fptoui: {
6578 Value *Operand = FPI.getArgOperand(i: 0);
6579 ElementCount SrcEC;
6580 Check(Operand->getType()->isFPOrFPVectorTy(),
6581 "Intrinsic first argument must be floating point", &FPI);
6582 if (auto *OperandT = dyn_cast<VectorType>(Val: Operand->getType())) {
6583 SrcEC = cast<VectorType>(Val: OperandT)->getElementCount();
6584 }
6585
6586 Operand = &FPI;
6587 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6588 "Intrinsic first argument and result disagree on vector use", &FPI);
6589 Check(Operand->getType()->isIntOrIntVectorTy(),
6590 "Intrinsic result must be an integer", &FPI);
6591 if (auto *OperandT = dyn_cast<VectorType>(Val: Operand->getType())) {
6592 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6593 "Intrinsic first argument and result vector lengths must be equal",
6594 &FPI);
6595 }
6596 }
6597 break;
6598
6599 case Intrinsic::experimental_constrained_sitofp:
6600 case Intrinsic::experimental_constrained_uitofp: {
6601 Value *Operand = FPI.getArgOperand(i: 0);
6602 ElementCount SrcEC;
6603 Check(Operand->getType()->isIntOrIntVectorTy(),
6604 "Intrinsic first argument must be integer", &FPI);
6605 if (auto *OperandT = dyn_cast<VectorType>(Val: Operand->getType())) {
6606 SrcEC = cast<VectorType>(Val: OperandT)->getElementCount();
6607 }
6608
6609 Operand = &FPI;
6610 Check(SrcEC.isNonZero() == Operand->getType()->isVectorTy(),
6611 "Intrinsic first argument and result disagree on vector use", &FPI);
6612 Check(Operand->getType()->isFPOrFPVectorTy(),
6613 "Intrinsic result must be a floating point", &FPI);
6614 if (auto *OperandT = dyn_cast<VectorType>(Val: Operand->getType())) {
6615 Check(SrcEC == cast<VectorType>(OperandT)->getElementCount(),
6616 "Intrinsic first argument and result vector lengths must be equal",
6617 &FPI);
6618 }
6619 } break;
6620
6621 case Intrinsic::experimental_constrained_fptrunc:
6622 case Intrinsic::experimental_constrained_fpext: {
6623 Value *Operand = FPI.getArgOperand(i: 0);
6624 Type *OperandTy = Operand->getType();
6625 Value *Result = &FPI;
6626 Type *ResultTy = Result->getType();
6627 Check(OperandTy->isFPOrFPVectorTy(),
6628 "Intrinsic first argument must be FP or FP vector", &FPI);
6629 Check(ResultTy->isFPOrFPVectorTy(),
6630 "Intrinsic result must be FP or FP vector", &FPI);
6631 Check(OperandTy->isVectorTy() == ResultTy->isVectorTy(),
6632 "Intrinsic first argument and result disagree on vector use", &FPI);
6633 if (OperandTy->isVectorTy()) {
6634 Check(cast<VectorType>(OperandTy)->getElementCount() ==
6635 cast<VectorType>(ResultTy)->getElementCount(),
6636 "Intrinsic first argument and result vector lengths must be equal",
6637 &FPI);
6638 }
6639 if (FPI.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc) {
6640 Check(OperandTy->getScalarSizeInBits() > ResultTy->getScalarSizeInBits(),
6641 "Intrinsic first argument's type must be larger than result type",
6642 &FPI);
6643 } else {
6644 Check(OperandTy->getScalarSizeInBits() < ResultTy->getScalarSizeInBits(),
6645 "Intrinsic first argument's type must be smaller than result type",
6646 &FPI);
6647 }
6648 }
6649 break;
6650
6651 default:
6652 break;
6653 }
6654
6655 // If a non-metadata argument is passed in a metadata slot then the
6656 // error will be caught earlier when the incorrect argument doesn't
6657 // match the specification in the intrinsic call table. Thus, no
6658 // argument type check is needed here.
6659
6660 Check(FPI.getExceptionBehavior().has_value(),
6661 "invalid exception behavior argument", &FPI);
6662 if (HasRoundingMD) {
6663 Check(FPI.getRoundingMode().has_value(), "invalid rounding mode argument",
6664 &FPI);
6665 }
6666}
6667
6668void Verifier::visitDbgIntrinsic(StringRef Kind, DbgVariableIntrinsic &DII) {
6669 auto *MD = DII.getRawLocation();
6670 CheckDI(isa<ValueAsMetadata>(MD) || isa<DIArgList>(MD) ||
6671 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
6672 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
6673 CheckDI(isa<DILocalVariable>(DII.getRawVariable()),
6674 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
6675 DII.getRawVariable());
6676 CheckDI(isa<DIExpression>(DII.getRawExpression()),
6677 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
6678 DII.getRawExpression());
6679
6680 if (auto *DAI = dyn_cast<DbgAssignIntrinsic>(Val: &DII)) {
6681 CheckDI(isa<DIAssignID>(DAI->getRawAssignID()),
6682 "invalid llvm.dbg.assign intrinsic DIAssignID", &DII,
6683 DAI->getRawAssignID());
6684 const auto *RawAddr = DAI->getRawAddress();
6685 CheckDI(
6686 isa<ValueAsMetadata>(RawAddr) ||
6687 (isa<MDNode>(RawAddr) && !cast<MDNode>(RawAddr)->getNumOperands()),
6688 "invalid llvm.dbg.assign intrinsic address", &DII,
6689 DAI->getRawAddress());
6690 CheckDI(isa<DIExpression>(DAI->getRawAddressExpression()),
6691 "invalid llvm.dbg.assign intrinsic address expression", &DII,
6692 DAI->getRawAddressExpression());
6693 // All of the linked instructions should be in the same function as DII.
6694 for (Instruction *I : at::getAssignmentInsts(DAI))
6695 CheckDI(DAI->getFunction() == I->getFunction(),
6696 "inst not in same function as dbg.assign", I, DAI);
6697 }
6698
6699 // Ignore broken !dbg attachments; they're checked elsewhere.
6700 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
6701 if (!isa<DILocation>(Val: N))
6702 return;
6703
6704 BasicBlock *BB = DII.getParent();
6705 Function *F = BB ? BB->getParent() : nullptr;
6706
6707 // The scopes for variables and !dbg attachments must agree.
6708 DILocalVariable *Var = DII.getVariable();
6709 DILocation *Loc = DII.getDebugLoc();
6710 CheckDI(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
6711 &DII, BB, F);
6712
6713 DISubprogram *VarSP = getSubprogram(LocalScope: Var->getRawScope());
6714 DISubprogram *LocSP = getSubprogram(LocalScope: Loc->getRawScope());
6715 if (!VarSP || !LocSP)
6716 return; // Broken scope chains are checked elsewhere.
6717
6718 CheckDI(VarSP == LocSP,
6719 "mismatched subprogram between llvm.dbg." + Kind +
6720 " variable and !dbg attachment",
6721 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
6722 Loc->getScope()->getSubprogram());
6723
6724 // This check is redundant with one in visitLocalVariable().
6725 CheckDI(isType(Var->getRawType()), "invalid type ref", Var,
6726 Var->getRawType());
6727 verifyFnArgs(I: DII);
6728}
6729
6730void Verifier::visitDbgLabelIntrinsic(StringRef Kind, DbgLabelInst &DLI) {
6731 CheckDI(isa<DILabel>(DLI.getRawLabel()),
6732 "invalid llvm.dbg." + Kind + " intrinsic variable", &DLI,
6733 DLI.getRawLabel());
6734
6735 // Ignore broken !dbg attachments; they're checked elsewhere.
6736 if (MDNode *N = DLI.getDebugLoc().getAsMDNode())
6737 if (!isa<DILocation>(Val: N))
6738 return;
6739
6740 BasicBlock *BB = DLI.getParent();
6741 Function *F = BB ? BB->getParent() : nullptr;
6742
6743 // The scopes for variables and !dbg attachments must agree.
6744 DILabel *Label = DLI.getLabel();
6745 DILocation *Loc = DLI.getDebugLoc();
6746 Check(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment", &DLI,
6747 BB, F);
6748
6749 DISubprogram *LabelSP = getSubprogram(LocalScope: Label->getRawScope());
6750 DISubprogram *LocSP = getSubprogram(LocalScope: Loc->getRawScope());
6751 if (!LabelSP || !LocSP)
6752 return;
6753
6754 CheckDI(LabelSP == LocSP,
6755 "mismatched subprogram between llvm.dbg." + Kind +
6756 " label and !dbg attachment",
6757 &DLI, BB, F, Label, Label->getScope()->getSubprogram(), Loc,
6758 Loc->getScope()->getSubprogram());
6759}
6760
6761void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic &I) {
6762 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(Val: I.getRawVariable());
6763 DIExpression *E = dyn_cast_or_null<DIExpression>(Val: I.getRawExpression());
6764
6765 // We don't know whether this intrinsic verified correctly.
6766 if (!V || !E || !E->isValid())
6767 return;
6768
6769 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6770 auto Fragment = E->getFragmentInfo();
6771 if (!Fragment)
6772 return;
6773
6774 // The frontend helps out GDB by emitting the members of local anonymous
6775 // unions as artificial local variables with shared storage. When SROA splits
6776 // the storage for artificial local variables that are smaller than the entire
6777 // union, the overhang piece will be outside of the allotted space for the
6778 // variable and this check fails.
6779 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6780 if (V->isArtificial())
6781 return;
6782
6783 verifyFragmentExpression(V: *V, Fragment: *Fragment, Desc: &I);
6784}
6785void Verifier::verifyFragmentExpression(const DbgVariableRecord &DVR) {
6786 DILocalVariable *V = dyn_cast_or_null<DILocalVariable>(Val: DVR.getRawVariable());
6787 DIExpression *E = dyn_cast_or_null<DIExpression>(Val: DVR.getRawExpression());
6788
6789 // We don't know whether this intrinsic verified correctly.
6790 if (!V || !E || !E->isValid())
6791 return;
6792
6793 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
6794 auto Fragment = E->getFragmentInfo();
6795 if (!Fragment)
6796 return;
6797
6798 // The frontend helps out GDB by emitting the members of local anonymous
6799 // unions as artificial local variables with shared storage. When SROA splits
6800 // the storage for artificial local variables that are smaller than the entire
6801 // union, the overhang piece will be outside of the allotted space for the
6802 // variable and this check fails.
6803 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
6804 if (V->isArtificial())
6805 return;
6806
6807 verifyFragmentExpression(V: *V, Fragment: *Fragment, Desc: &DVR);
6808}
6809
6810template <typename ValueOrMetadata>
6811void Verifier::verifyFragmentExpression(const DIVariable &V,
6812 DIExpression::FragmentInfo Fragment,
6813 ValueOrMetadata *Desc) {
6814 // If there's no size, the type is broken, but that should be checked
6815 // elsewhere.
6816 auto VarSize = V.getSizeInBits();
6817 if (!VarSize)
6818 return;
6819
6820 unsigned FragSize = Fragment.SizeInBits;
6821 unsigned FragOffset = Fragment.OffsetInBits;
6822 CheckDI(FragSize + FragOffset <= *VarSize,
6823 "fragment is larger than or outside of variable", Desc, &V);
6824 CheckDI(FragSize != *VarSize, "fragment covers entire variable", Desc, &V);
6825}
6826
6827void Verifier::verifyFnArgs(const DbgVariableIntrinsic &I) {
6828 // This function does not take the scope of noninlined function arguments into
6829 // account. Don't run it if current function is nodebug, because it may
6830 // contain inlined debug intrinsics.
6831 if (!HasDebugInfo)
6832 return;
6833
6834 // For performance reasons only check non-inlined ones.
6835 if (I.getDebugLoc()->getInlinedAt())
6836 return;
6837
6838 DILocalVariable *Var = I.getVariable();
6839 CheckDI(Var, "dbg intrinsic without variable");
6840
6841 unsigned ArgNo = Var->getArg();
6842 if (!ArgNo)
6843 return;
6844
6845 // Verify there are no duplicate function argument debug info entries.
6846 // These will cause hard-to-debug assertions in the DWARF backend.
6847 if (DebugFnArgs.size() < ArgNo)
6848 DebugFnArgs.resize(N: ArgNo, NV: nullptr);
6849
6850 auto *Prev = DebugFnArgs[ArgNo - 1];
6851 DebugFnArgs[ArgNo - 1] = Var;
6852 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &I,
6853 Prev, Var);
6854}
6855void Verifier::verifyFnArgs(const DbgVariableRecord &DVR) {
6856 // This function does not take the scope of noninlined function arguments into
6857 // account. Don't run it if current function is nodebug, because it may
6858 // contain inlined debug intrinsics.
6859 if (!HasDebugInfo)
6860 return;
6861
6862 // For performance reasons only check non-inlined ones.
6863 if (DVR.getDebugLoc()->getInlinedAt())
6864 return;
6865
6866 DILocalVariable *Var = DVR.getVariable();
6867 CheckDI(Var, "#dbg record without variable");
6868
6869 unsigned ArgNo = Var->getArg();
6870 if (!ArgNo)
6871 return;
6872
6873 // Verify there are no duplicate function argument debug info entries.
6874 // These will cause hard-to-debug assertions in the DWARF backend.
6875 if (DebugFnArgs.size() < ArgNo)
6876 DebugFnArgs.resize(N: ArgNo, NV: nullptr);
6877
6878 auto *Prev = DebugFnArgs[ArgNo - 1];
6879 DebugFnArgs[ArgNo - 1] = Var;
6880 CheckDI(!Prev || (Prev == Var), "conflicting debug info for argument", &DVR,
6881 Prev, Var);
6882}
6883
6884void Verifier::verifyNotEntryValue(const DbgVariableIntrinsic &I) {
6885 DIExpression *E = dyn_cast_or_null<DIExpression>(Val: I.getRawExpression());
6886
6887 // We don't know whether this intrinsic verified correctly.
6888 if (!E || !E->isValid())
6889 return;
6890
6891 if (isa<ValueAsMetadata>(Val: I.getRawLocation())) {
6892 Value *VarValue = I.getVariableLocationOp(OpIdx: 0);
6893 if (isa<UndefValue>(Val: VarValue) || isa<PoisonValue>(Val: VarValue))
6894 return;
6895 // We allow EntryValues for swift async arguments, as they have an
6896 // ABI-guarantee to be turned into a specific register.
6897 if (auto *ArgLoc = dyn_cast_or_null<Argument>(Val: VarValue);
6898 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6899 return;
6900 }
6901
6902 CheckDI(!E->isEntryValue(),
6903 "Entry values are only allowed in MIR unless they target a "
6904 "swiftasync Argument",
6905 &I);
6906}
6907void Verifier::verifyNotEntryValue(const DbgVariableRecord &DVR) {
6908 DIExpression *E = dyn_cast_or_null<DIExpression>(Val: DVR.getRawExpression());
6909
6910 // We don't know whether this intrinsic verified correctly.
6911 if (!E || !E->isValid())
6912 return;
6913
6914 if (isa<ValueAsMetadata>(Val: DVR.getRawLocation())) {
6915 Value *VarValue = DVR.getVariableLocationOp(OpIdx: 0);
6916 if (isa<UndefValue>(Val: VarValue) || isa<PoisonValue>(Val: VarValue))
6917 return;
6918 // We allow EntryValues for swift async arguments, as they have an
6919 // ABI-guarantee to be turned into a specific register.
6920 if (auto *ArgLoc = dyn_cast_or_null<Argument>(Val: VarValue);
6921 ArgLoc && ArgLoc->hasAttribute(Attribute::SwiftAsync))
6922 return;
6923 }
6924
6925 CheckDI(!E->isEntryValue(),
6926 "Entry values are only allowed in MIR unless they target a "
6927 "swiftasync Argument",
6928 &DVR);
6929}
6930
6931void Verifier::verifyCompileUnits() {
6932 // When more than one Module is imported into the same context, such as during
6933 // an LTO build before linking the modules, ODR type uniquing may cause types
6934 // to point to a different CU. This check does not make sense in this case.
6935 if (M.getContext().isODRUniquingDebugTypes())
6936 return;
6937 auto *CUs = M.getNamedMetadata(Name: "llvm.dbg.cu");
6938 SmallPtrSet<const Metadata *, 2> Listed;
6939 if (CUs)
6940 Listed.insert(I: CUs->op_begin(), E: CUs->op_end());
6941 for (const auto *CU : CUVisited)
6942 CheckDI(Listed.count(CU), "DICompileUnit not listed in llvm.dbg.cu", CU);
6943 CUVisited.clear();
6944}
6945
6946void Verifier::verifyDeoptimizeCallingConvs() {
6947 if (DeoptimizeDeclarations.empty())
6948 return;
6949
6950 const Function *First = DeoptimizeDeclarations[0];
6951 for (const auto *F : ArrayRef(DeoptimizeDeclarations).slice(N: 1)) {
6952 Check(First->getCallingConv() == F->getCallingConv(),
6953 "All llvm.experimental.deoptimize declarations must have the same "
6954 "calling convention",
6955 First, F);
6956 }
6957}
6958
6959void Verifier::verifyAttachedCallBundle(const CallBase &Call,
6960 const OperandBundleUse &BU) {
6961 FunctionType *FTy = Call.getFunctionType();
6962
6963 Check((FTy->getReturnType()->isPointerTy() ||
6964 (Call.doesNotReturn() && FTy->getReturnType()->isVoidTy())),
6965 "a call with operand bundle \"clang.arc.attachedcall\" must call a "
6966 "function returning a pointer or a non-returning function that has a "
6967 "void return type",
6968 Call);
6969
6970 Check(BU.Inputs.size() == 1 && isa<Function>(BU.Inputs.front()),
6971 "operand bundle \"clang.arc.attachedcall\" requires one function as "
6972 "an argument",
6973 Call);
6974
6975 auto *Fn = cast<Function>(Val: BU.Inputs.front());
6976 Intrinsic::ID IID = Fn->getIntrinsicID();
6977
6978 if (IID) {
6979 Check((IID == Intrinsic::objc_retainAutoreleasedReturnValue ||
6980 IID == Intrinsic::objc_unsafeClaimAutoreleasedReturnValue),
6981 "invalid function argument", Call);
6982 } else {
6983 StringRef FnName = Fn->getName();
6984 Check((FnName == "objc_retainAutoreleasedReturnValue" ||
6985 FnName == "objc_unsafeClaimAutoreleasedReturnValue"),
6986 "invalid function argument", Call);
6987 }
6988}
6989
6990void Verifier::verifyNoAliasScopeDecl() {
6991 if (NoAliasScopeDecls.empty())
6992 return;
6993
6994 // only a single scope must be declared at a time.
6995 for (auto *II : NoAliasScopeDecls) {
6996 assert(II->getIntrinsicID() == Intrinsic::experimental_noalias_scope_decl &&
6997 "Not a llvm.experimental.noalias.scope.decl ?");
6998 const auto *ScopeListMV = dyn_cast<MetadataAsValue>(
6999 Val: II->getOperand(i_nocapture: Intrinsic::NoAliasScopeDeclScopeArg));
7000 Check(ScopeListMV != nullptr,
7001 "llvm.experimental.noalias.scope.decl must have a MetadataAsValue "
7002 "argument",
7003 II);
7004
7005 const auto *ScopeListMD = dyn_cast<MDNode>(Val: ScopeListMV->getMetadata());
7006 Check(ScopeListMD != nullptr, "!id.scope.list must point to an MDNode", II);
7007 Check(ScopeListMD->getNumOperands() == 1,
7008 "!id.scope.list must point to a list with a single scope", II);
7009 visitAliasScopeListMetadata(MD: ScopeListMD);
7010 }
7011
7012 // Only check the domination rule when requested. Once all passes have been
7013 // adapted this option can go away.
7014 if (!VerifyNoAliasScopeDomination)
7015 return;
7016
7017 // Now sort the intrinsics based on the scope MDNode so that declarations of
7018 // the same scopes are next to each other.
7019 auto GetScope = [](IntrinsicInst *II) {
7020 const auto *ScopeListMV = cast<MetadataAsValue>(
7021 Val: II->getOperand(i_nocapture: Intrinsic::NoAliasScopeDeclScopeArg));
7022 return &cast<MDNode>(Val: ScopeListMV->getMetadata())->getOperand(I: 0);
7023 };
7024
7025 // We are sorting on MDNode pointers here. For valid input IR this is ok.
7026 // TODO: Sort on Metadata ID to avoid non-deterministic error messages.
7027 auto Compare = [GetScope](IntrinsicInst *Lhs, IntrinsicInst *Rhs) {
7028 return GetScope(Lhs) < GetScope(Rhs);
7029 };
7030
7031 llvm::sort(C&: NoAliasScopeDecls, Comp: Compare);
7032
7033 // Go over the intrinsics and check that for the same scope, they are not
7034 // dominating each other.
7035 auto ItCurrent = NoAliasScopeDecls.begin();
7036 while (ItCurrent != NoAliasScopeDecls.end()) {
7037 auto CurScope = GetScope(*ItCurrent);
7038 auto ItNext = ItCurrent;
7039 do {
7040 ++ItNext;
7041 } while (ItNext != NoAliasScopeDecls.end() &&
7042 GetScope(*ItNext) == CurScope);
7043
7044 // [ItCurrent, ItNext) represents the declarations for the same scope.
7045 // Ensure they are not dominating each other.. but only if it is not too
7046 // expensive.
7047 if (ItNext - ItCurrent < 32)
7048 for (auto *I : llvm::make_range(x: ItCurrent, y: ItNext))
7049 for (auto *J : llvm::make_range(x: ItCurrent, y: ItNext))
7050 if (I != J)
7051 Check(!DT.dominates(I, J),
7052 "llvm.experimental.noalias.scope.decl dominates another one "
7053 "with the same scope",
7054 I);
7055 ItCurrent = ItNext;
7056 }
7057}
7058
7059//===----------------------------------------------------------------------===//
7060// Implement the public interfaces to this file...
7061//===----------------------------------------------------------------------===//
7062
7063bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
7064 Function &F = const_cast<Function &>(f);
7065
7066 // Don't use a raw_null_ostream. Printing IR is expensive.
7067 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f.getParent());
7068
7069 // Note that this function's return value is inverted from what you would
7070 // expect of a function called "verify".
7071 return !V.verify(F);
7072}
7073
7074bool llvm::verifyModule(const Module &M, raw_ostream *OS,
7075 bool *BrokenDebugInfo) {
7076 // Don't use a raw_null_ostream. Printing IR is expensive.
7077 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo, M);
7078
7079 bool Broken = false;
7080 for (const Function &F : M)
7081 Broken |= !V.verify(F);
7082
7083 Broken |= !V.verify();
7084 if (BrokenDebugInfo)
7085 *BrokenDebugInfo = V.hasBrokenDebugInfo();
7086 // Note that this function's return value is inverted from what you would
7087 // expect of a function called "verify".
7088 return Broken;
7089}
7090
7091namespace {
7092
7093struct VerifierLegacyPass : public FunctionPass {
7094 static char ID;
7095
7096 std::unique_ptr<Verifier> V;
7097 bool FatalErrors = true;
7098
7099 VerifierLegacyPass() : FunctionPass(ID) {
7100 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7101 }
7102 explicit VerifierLegacyPass(bool FatalErrors)
7103 : FunctionPass(ID),
7104 FatalErrors(FatalErrors) {
7105 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
7106 }
7107
7108 bool doInitialization(Module &M) override {
7109 V = std::make_unique<Verifier>(
7110 args: &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/args: false, args&: M);
7111 return false;
7112 }
7113
7114 bool runOnFunction(Function &F) override {
7115 if (!V->verify(F) && FatalErrors) {
7116 errs() << "in function " << F.getName() << '\n';
7117 report_fatal_error(reason: "Broken function found, compilation aborted!");
7118 }
7119 return false;
7120 }
7121
7122 bool doFinalization(Module &M) override {
7123 bool HasErrors = false;
7124 for (Function &F : M)
7125 if (F.isDeclaration())
7126 HasErrors |= !V->verify(F);
7127
7128 HasErrors |= !V->verify();
7129 if (FatalErrors && (HasErrors || V->hasBrokenDebugInfo()))
7130 report_fatal_error(reason: "Broken module found, compilation aborted!");
7131 return false;
7132 }
7133
7134 void getAnalysisUsage(AnalysisUsage &AU) const override {
7135 AU.setPreservesAll();
7136 }
7137};
7138
7139} // end anonymous namespace
7140
7141/// Helper to issue failure from the TBAA verification
7142template <typename... Tys> void TBAAVerifier::CheckFailed(Tys &&... Args) {
7143 if (Diagnostic)
7144 return Diagnostic->CheckFailed(Args...);
7145}
7146
7147#define CheckTBAA(C, ...) \
7148 do { \
7149 if (!(C)) { \
7150 CheckFailed(__VA_ARGS__); \
7151 return false; \
7152 } \
7153 } while (false)
7154
7155/// Verify that \p BaseNode can be used as the "base type" in the struct-path
7156/// TBAA scheme. This means \p BaseNode is either a scalar node, or a
7157/// struct-type node describing an aggregate data structure (like a struct).
7158TBAAVerifier::TBAABaseNodeSummary
7159TBAAVerifier::verifyTBAABaseNode(Instruction &I, const MDNode *BaseNode,
7160 bool IsNewFormat) {
7161 if (BaseNode->getNumOperands() < 2) {
7162 CheckFailed(Args: "Base nodes must have at least two operands", Args: &I, Args&: BaseNode);
7163 return {true, ~0u};
7164 }
7165
7166 auto Itr = TBAABaseNodes.find(Val: BaseNode);
7167 if (Itr != TBAABaseNodes.end())
7168 return Itr->second;
7169
7170 auto Result = verifyTBAABaseNodeImpl(I, BaseNode, IsNewFormat);
7171 auto InsertResult = TBAABaseNodes.insert(KV: {BaseNode, Result});
7172 (void)InsertResult;
7173 assert(InsertResult.second && "We just checked!");
7174 return Result;
7175}
7176
7177TBAAVerifier::TBAABaseNodeSummary
7178TBAAVerifier::verifyTBAABaseNodeImpl(Instruction &I, const MDNode *BaseNode,
7179 bool IsNewFormat) {
7180 const TBAAVerifier::TBAABaseNodeSummary InvalidNode = {true, ~0u};
7181
7182 if (BaseNode->getNumOperands() == 2) {
7183 // Scalar nodes can only be accessed at offset 0.
7184 return isValidScalarTBAANode(MD: BaseNode)
7185 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
7186 : InvalidNode;
7187 }
7188
7189 if (IsNewFormat) {
7190 if (BaseNode->getNumOperands() % 3 != 0) {
7191 CheckFailed(Args: "Access tag nodes must have the number of operands that is a "
7192 "multiple of 3!", Args&: BaseNode);
7193 return InvalidNode;
7194 }
7195 } else {
7196 if (BaseNode->getNumOperands() % 2 != 1) {
7197 CheckFailed(Args: "Struct tag nodes must have an odd number of operands!",
7198 Args&: BaseNode);
7199 return InvalidNode;
7200 }
7201 }
7202
7203 // Check the type size field.
7204 if (IsNewFormat) {
7205 auto *TypeSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7206 MD: BaseNode->getOperand(I: 1));
7207 if (!TypeSizeNode) {
7208 CheckFailed(Args: "Type size nodes must be constants!", Args: &I, Args&: BaseNode);
7209 return InvalidNode;
7210 }
7211 }
7212
7213 // Check the type name field. In the new format it can be anything.
7214 if (!IsNewFormat && !isa<MDString>(Val: BaseNode->getOperand(I: 0))) {
7215 CheckFailed(Args: "Struct tag nodes have a string as their first operand",
7216 Args&: BaseNode);
7217 return InvalidNode;
7218 }
7219
7220 bool Failed = false;
7221
7222 std::optional<APInt> PrevOffset;
7223 unsigned BitWidth = ~0u;
7224
7225 // We've already checked that BaseNode is not a degenerate root node with one
7226 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
7227 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7228 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7229 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7230 Idx += NumOpsPerField) {
7231 const MDOperand &FieldTy = BaseNode->getOperand(I: Idx);
7232 const MDOperand &FieldOffset = BaseNode->getOperand(I: Idx + 1);
7233 if (!isa<MDNode>(Val: FieldTy)) {
7234 CheckFailed(Args: "Incorrect field entry in struct type node!", Args: &I, Args&: BaseNode);
7235 Failed = true;
7236 continue;
7237 }
7238
7239 auto *OffsetEntryCI =
7240 mdconst::dyn_extract_or_null<ConstantInt>(MD: FieldOffset);
7241 if (!OffsetEntryCI) {
7242 CheckFailed(Args: "Offset entries must be constants!", Args: &I, Args&: BaseNode);
7243 Failed = true;
7244 continue;
7245 }
7246
7247 if (BitWidth == ~0u)
7248 BitWidth = OffsetEntryCI->getBitWidth();
7249
7250 if (OffsetEntryCI->getBitWidth() != BitWidth) {
7251 CheckFailed(
7252 Args: "Bitwidth between the offsets and struct type entries must match", Args: &I,
7253 Args&: BaseNode);
7254 Failed = true;
7255 continue;
7256 }
7257
7258 // NB! As far as I can tell, we generate a non-strictly increasing offset
7259 // sequence only from structs that have zero size bit fields. When
7260 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
7261 // pick the field lexically the latest in struct type metadata node. This
7262 // mirrors the actual behavior of the alias analysis implementation.
7263 bool IsAscending =
7264 !PrevOffset || PrevOffset->ule(RHS: OffsetEntryCI->getValue());
7265
7266 if (!IsAscending) {
7267 CheckFailed(Args: "Offsets must be increasing!", Args: &I, Args&: BaseNode);
7268 Failed = true;
7269 }
7270
7271 PrevOffset = OffsetEntryCI->getValue();
7272
7273 if (IsNewFormat) {
7274 auto *MemberSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7275 MD: BaseNode->getOperand(I: Idx + 2));
7276 if (!MemberSizeNode) {
7277 CheckFailed(Args: "Member size entries must be constants!", Args: &I, Args&: BaseNode);
7278 Failed = true;
7279 continue;
7280 }
7281 }
7282 }
7283
7284 return Failed ? InvalidNode
7285 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth);
7286}
7287
7288static bool IsRootTBAANode(const MDNode *MD) {
7289 return MD->getNumOperands() < 2;
7290}
7291
7292static bool IsScalarTBAANodeImpl(const MDNode *MD,
7293 SmallPtrSetImpl<const MDNode *> &Visited) {
7294 if (MD->getNumOperands() != 2 && MD->getNumOperands() != 3)
7295 return false;
7296
7297 if (!isa<MDString>(Val: MD->getOperand(I: 0)))
7298 return false;
7299
7300 if (MD->getNumOperands() == 3) {
7301 auto *Offset = mdconst::dyn_extract<ConstantInt>(MD: MD->getOperand(I: 2));
7302 if (!(Offset && Offset->isZero() && isa<MDString>(Val: MD->getOperand(I: 0))))
7303 return false;
7304 }
7305
7306 auto *Parent = dyn_cast_or_null<MDNode>(Val: MD->getOperand(I: 1));
7307 return Parent && Visited.insert(Ptr: Parent).second &&
7308 (IsRootTBAANode(MD: Parent) || IsScalarTBAANodeImpl(MD: Parent, Visited));
7309}
7310
7311bool TBAAVerifier::isValidScalarTBAANode(const MDNode *MD) {
7312 auto ResultIt = TBAAScalarNodes.find(Val: MD);
7313 if (ResultIt != TBAAScalarNodes.end())
7314 return ResultIt->second;
7315
7316 SmallPtrSet<const MDNode *, 4> Visited;
7317 bool Result = IsScalarTBAANodeImpl(MD, Visited);
7318 auto InsertResult = TBAAScalarNodes.insert(KV: {MD, Result});
7319 (void)InsertResult;
7320 assert(InsertResult.second && "Just checked!");
7321
7322 return Result;
7323}
7324
7325/// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
7326/// Offset in place to be the offset within the field node returned.
7327///
7328/// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
7329MDNode *TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction &I,
7330 const MDNode *BaseNode,
7331 APInt &Offset,
7332 bool IsNewFormat) {
7333 assert(BaseNode->getNumOperands() >= 2 && "Invalid base node!");
7334
7335 // Scalar nodes have only one possible "field" -- their parent in the access
7336 // hierarchy. Offset must be zero at this point, but our caller is supposed
7337 // to check that.
7338 if (BaseNode->getNumOperands() == 2)
7339 return cast<MDNode>(Val: BaseNode->getOperand(I: 1));
7340
7341 unsigned FirstFieldOpNo = IsNewFormat ? 3 : 1;
7342 unsigned NumOpsPerField = IsNewFormat ? 3 : 2;
7343 for (unsigned Idx = FirstFieldOpNo; Idx < BaseNode->getNumOperands();
7344 Idx += NumOpsPerField) {
7345 auto *OffsetEntryCI =
7346 mdconst::extract<ConstantInt>(MD: BaseNode->getOperand(I: Idx + 1));
7347 if (OffsetEntryCI->getValue().ugt(RHS: Offset)) {
7348 if (Idx == FirstFieldOpNo) {
7349 CheckFailed(Args: "Could not find TBAA parent in struct type node", Args: &I,
7350 Args&: BaseNode, Args: &Offset);
7351 return nullptr;
7352 }
7353
7354 unsigned PrevIdx = Idx - NumOpsPerField;
7355 auto *PrevOffsetEntryCI =
7356 mdconst::extract<ConstantInt>(MD: BaseNode->getOperand(I: PrevIdx + 1));
7357 Offset -= PrevOffsetEntryCI->getValue();
7358 return cast<MDNode>(Val: BaseNode->getOperand(I: PrevIdx));
7359 }
7360 }
7361
7362 unsigned LastIdx = BaseNode->getNumOperands() - NumOpsPerField;
7363 auto *LastOffsetEntryCI = mdconst::extract<ConstantInt>(
7364 MD: BaseNode->getOperand(I: LastIdx + 1));
7365 Offset -= LastOffsetEntryCI->getValue();
7366 return cast<MDNode>(Val: BaseNode->getOperand(I: LastIdx));
7367}
7368
7369static bool isNewFormatTBAATypeNode(llvm::MDNode *Type) {
7370 if (!Type || Type->getNumOperands() < 3)
7371 return false;
7372
7373 // In the new format type nodes shall have a reference to the parent type as
7374 // its first operand.
7375 return isa_and_nonnull<MDNode>(Val: Type->getOperand(I: 0));
7376}
7377
7378bool TBAAVerifier::visitTBAAMetadata(Instruction &I, const MDNode *MD) {
7379 CheckTBAA(MD->getNumOperands() > 0, "TBAA metadata cannot have 0 operands",
7380 &I, MD);
7381
7382 CheckTBAA(isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
7383 isa<VAArgInst>(I) || isa<AtomicRMWInst>(I) ||
7384 isa<AtomicCmpXchgInst>(I),
7385 "This instruction shall not have a TBAA access tag!", &I);
7386
7387 bool IsStructPathTBAA =
7388 isa<MDNode>(Val: MD->getOperand(I: 0)) && MD->getNumOperands() >= 3;
7389
7390 CheckTBAA(IsStructPathTBAA,
7391 "Old-style TBAA is no longer allowed, use struct-path TBAA instead",
7392 &I);
7393
7394 MDNode *BaseNode = dyn_cast_or_null<MDNode>(Val: MD->getOperand(I: 0));
7395 MDNode *AccessType = dyn_cast_or_null<MDNode>(Val: MD->getOperand(I: 1));
7396
7397 bool IsNewFormat = isNewFormatTBAATypeNode(Type: AccessType);
7398
7399 if (IsNewFormat) {
7400 CheckTBAA(MD->getNumOperands() == 4 || MD->getNumOperands() == 5,
7401 "Access tag metadata must have either 4 or 5 operands", &I, MD);
7402 } else {
7403 CheckTBAA(MD->getNumOperands() < 5,
7404 "Struct tag metadata must have either 3 or 4 operands", &I, MD);
7405 }
7406
7407 // Check the access size field.
7408 if (IsNewFormat) {
7409 auto *AccessSizeNode = mdconst::dyn_extract_or_null<ConstantInt>(
7410 MD: MD->getOperand(I: 3));
7411 CheckTBAA(AccessSizeNode, "Access size field must be a constant", &I, MD);
7412 }
7413
7414 // Check the immutability flag.
7415 unsigned ImmutabilityFlagOpNo = IsNewFormat ? 4 : 3;
7416 if (MD->getNumOperands() == ImmutabilityFlagOpNo + 1) {
7417 auto *IsImmutableCI = mdconst::dyn_extract_or_null<ConstantInt>(
7418 MD: MD->getOperand(I: ImmutabilityFlagOpNo));
7419 CheckTBAA(IsImmutableCI,
7420 "Immutability tag on struct tag metadata must be a constant", &I,
7421 MD);
7422 CheckTBAA(
7423 IsImmutableCI->isZero() || IsImmutableCI->isOne(),
7424 "Immutability part of the struct tag metadata must be either 0 or 1",
7425 &I, MD);
7426 }
7427
7428 CheckTBAA(BaseNode && AccessType,
7429 "Malformed struct tag metadata: base and access-type "
7430 "should be non-null and point to Metadata nodes",
7431 &I, MD, BaseNode, AccessType);
7432
7433 if (!IsNewFormat) {
7434 CheckTBAA(isValidScalarTBAANode(AccessType),
7435 "Access type node must be a valid scalar type", &I, MD,
7436 AccessType);
7437 }
7438
7439 auto *OffsetCI = mdconst::dyn_extract_or_null<ConstantInt>(MD: MD->getOperand(I: 2));
7440 CheckTBAA(OffsetCI, "Offset must be constant integer", &I, MD);
7441
7442 APInt Offset = OffsetCI->getValue();
7443 bool SeenAccessTypeInPath = false;
7444
7445 SmallPtrSet<MDNode *, 4> StructPath;
7446
7447 for (/* empty */; BaseNode && !IsRootTBAANode(MD: BaseNode);
7448 BaseNode = getFieldNodeFromTBAABaseNode(I, BaseNode, Offset,
7449 IsNewFormat)) {
7450 if (!StructPath.insert(Ptr: BaseNode).second) {
7451 CheckFailed(Args: "Cycle detected in struct path", Args: &I, Args&: MD);
7452 return false;
7453 }
7454
7455 bool Invalid;
7456 unsigned BaseNodeBitWidth;
7457 std::tie(args&: Invalid, args&: BaseNodeBitWidth) = verifyTBAABaseNode(I, BaseNode,
7458 IsNewFormat);
7459
7460 // If the base node is invalid in itself, then we've already printed all the
7461 // errors we wanted to print.
7462 if (Invalid)
7463 return false;
7464
7465 SeenAccessTypeInPath |= BaseNode == AccessType;
7466
7467 if (isValidScalarTBAANode(MD: BaseNode) || BaseNode == AccessType)
7468 CheckTBAA(Offset == 0, "Offset not zero at the point of scalar access",
7469 &I, MD, &Offset);
7470
7471 CheckTBAA(BaseNodeBitWidth == Offset.getBitWidth() ||
7472 (BaseNodeBitWidth == 0 && Offset == 0) ||
7473 (IsNewFormat && BaseNodeBitWidth == ~0u),
7474 "Access bit-width not the same as description bit-width", &I, MD,
7475 BaseNodeBitWidth, Offset.getBitWidth());
7476
7477 if (IsNewFormat && SeenAccessTypeInPath)
7478 break;
7479 }
7480
7481 CheckTBAA(SeenAccessTypeInPath, "Did not see access type in access path!", &I,
7482 MD);
7483 return true;
7484}
7485
7486char VerifierLegacyPass::ID = 0;
7487INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
7488
7489FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
7490 return new VerifierLegacyPass(FatalErrors);
7491}
7492
7493AnalysisKey VerifierAnalysis::Key;
7494VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
7495 ModuleAnalysisManager &) {
7496 Result Res;
7497 Res.IRBroken = llvm::verifyModule(M, OS: &dbgs(), BrokenDebugInfo: &Res.DebugInfoBroken);
7498 return Res;
7499}
7500
7501VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
7502 FunctionAnalysisManager &) {
7503 return { .IRBroken: llvm::verifyFunction(f: F, OS: &dbgs()), .DebugInfoBroken: false };
7504}
7505
7506PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
7507 auto Res = AM.getResult<VerifierAnalysis>(IR&: M);
7508 if (FatalErrors && (Res.IRBroken || Res.DebugInfoBroken))
7509 report_fatal_error(reason: "Broken module found, compilation aborted!");
7510
7511 return PreservedAnalyses::all();
7512}
7513
7514PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
7515 auto res = AM.getResult<VerifierAnalysis>(IR&: F);
7516 if (res.IRBroken && FatalErrors)
7517 report_fatal_error(reason: "Broken function found, compilation aborted!");
7518
7519 return PreservedAnalyses::all();
7520}
7521

source code of llvm/lib/IR/Verifier.cpp