1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2020-2021 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/types.h>
25#include <linux/sched/task.h>
26#include <linux/dynamic_debug.h>
27#include <drm/ttm/ttm_tt.h>
28#include <drm/drm_exec.h>
29
30#include "amdgpu_sync.h"
31#include "amdgpu_object.h"
32#include "amdgpu_vm.h"
33#include "amdgpu_hmm.h"
34#include "amdgpu.h"
35#include "amdgpu_xgmi.h"
36#include "kfd_priv.h"
37#include "kfd_svm.h"
38#include "kfd_migrate.h"
39#include "kfd_smi_events.h"
40
41#ifdef dev_fmt
42#undef dev_fmt
43#endif
44#define dev_fmt(fmt) "kfd_svm: %s: " fmt, __func__
45
46#define AMDGPU_SVM_RANGE_RESTORE_DELAY_MS 1
47
48/* Long enough to ensure no retry fault comes after svm range is restored and
49 * page table is updated.
50 */
51#define AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING (2UL * NSEC_PER_MSEC)
52#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG)
53#define dynamic_svm_range_dump(svms) \
54 _dynamic_func_call_no_desc("svm_range_dump", svm_range_debug_dump, svms)
55#else
56#define dynamic_svm_range_dump(svms) \
57 do { if (0) svm_range_debug_dump(svms); } while (0)
58#endif
59
60/* Giant svm range split into smaller ranges based on this, it is decided using
61 * minimum of all dGPU/APU 1/32 VRAM size, between 2MB to 1GB and alignment to
62 * power of 2MB.
63 */
64static uint64_t max_svm_range_pages;
65
66struct criu_svm_metadata {
67 struct list_head list;
68 struct kfd_criu_svm_range_priv_data data;
69};
70
71static void svm_range_evict_svm_bo_worker(struct work_struct *work);
72static bool
73svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
74 const struct mmu_notifier_range *range,
75 unsigned long cur_seq);
76static int
77svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
78 uint64_t *bo_s, uint64_t *bo_l);
79static const struct mmu_interval_notifier_ops svm_range_mn_ops = {
80 .invalidate = svm_range_cpu_invalidate_pagetables,
81};
82
83/**
84 * svm_range_unlink - unlink svm_range from lists and interval tree
85 * @prange: svm range structure to be removed
86 *
87 * Remove the svm_range from the svms and svm_bo lists and the svms
88 * interval tree.
89 *
90 * Context: The caller must hold svms->lock
91 */
92static void svm_range_unlink(struct svm_range *prange)
93{
94 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
95 prange, prange->start, prange->last);
96
97 if (prange->svm_bo) {
98 spin_lock(lock: &prange->svm_bo->list_lock);
99 list_del(entry: &prange->svm_bo_list);
100 spin_unlock(lock: &prange->svm_bo->list_lock);
101 }
102
103 list_del(entry: &prange->list);
104 if (prange->it_node.start != 0 && prange->it_node.last != 0)
105 interval_tree_remove(node: &prange->it_node, root: &prange->svms->objects);
106}
107
108static void
109svm_range_add_notifier_locked(struct mm_struct *mm, struct svm_range *prange)
110{
111 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
112 prange, prange->start, prange->last);
113
114 mmu_interval_notifier_insert_locked(interval_sub: &prange->notifier, mm,
115 start: prange->start << PAGE_SHIFT,
116 length: prange->npages << PAGE_SHIFT,
117 ops: &svm_range_mn_ops);
118}
119
120/**
121 * svm_range_add_to_svms - add svm range to svms
122 * @prange: svm range structure to be added
123 *
124 * Add the svm range to svms interval tree and link list
125 *
126 * Context: The caller must hold svms->lock
127 */
128static void svm_range_add_to_svms(struct svm_range *prange)
129{
130 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms,
131 prange, prange->start, prange->last);
132
133 list_move_tail(list: &prange->list, head: &prange->svms->list);
134 prange->it_node.start = prange->start;
135 prange->it_node.last = prange->last;
136 interval_tree_insert(node: &prange->it_node, root: &prange->svms->objects);
137}
138
139static void svm_range_remove_notifier(struct svm_range *prange)
140{
141 pr_debug("remove notifier svms 0x%p prange 0x%p [0x%lx 0x%lx]\n",
142 prange->svms, prange,
143 prange->notifier.interval_tree.start >> PAGE_SHIFT,
144 prange->notifier.interval_tree.last >> PAGE_SHIFT);
145
146 if (prange->notifier.interval_tree.start != 0 &&
147 prange->notifier.interval_tree.last != 0)
148 mmu_interval_notifier_remove(interval_sub: &prange->notifier);
149}
150
151static bool
152svm_is_valid_dma_mapping_addr(struct device *dev, dma_addr_t dma_addr)
153{
154 return dma_addr && !dma_mapping_error(dev, dma_addr) &&
155 !(dma_addr & SVM_RANGE_VRAM_DOMAIN);
156}
157
158static int
159svm_range_dma_map_dev(struct amdgpu_device *adev, struct svm_range *prange,
160 unsigned long offset, unsigned long npages,
161 unsigned long *hmm_pfns, uint32_t gpuidx)
162{
163 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
164 dma_addr_t *addr = prange->dma_addr[gpuidx];
165 struct device *dev = adev->dev;
166 struct page *page;
167 int i, r;
168
169 if (!addr) {
170 addr = kvcalloc(n: prange->npages, size: sizeof(*addr), GFP_KERNEL);
171 if (!addr)
172 return -ENOMEM;
173 prange->dma_addr[gpuidx] = addr;
174 }
175
176 addr += offset;
177 for (i = 0; i < npages; i++) {
178 if (svm_is_valid_dma_mapping_addr(dev, dma_addr: addr[i]))
179 dma_unmap_page(dev, addr[i], PAGE_SIZE, dir);
180
181 page = hmm_pfn_to_page(hmm_pfn: hmm_pfns[i]);
182 if (is_zone_device_page(page)) {
183 struct amdgpu_device *bo_adev = prange->svm_bo->node->adev;
184
185 addr[i] = (hmm_pfns[i] << PAGE_SHIFT) +
186 bo_adev->vm_manager.vram_base_offset -
187 bo_adev->kfd.pgmap.range.start;
188 addr[i] |= SVM_RANGE_VRAM_DOMAIN;
189 pr_debug_ratelimited("vram address: 0x%llx\n", addr[i]);
190 continue;
191 }
192 addr[i] = dma_map_page(dev, page, 0, PAGE_SIZE, dir);
193 r = dma_mapping_error(dev, dma_addr: addr[i]);
194 if (r) {
195 dev_err(dev, "failed %d dma_map_page\n", r);
196 return r;
197 }
198 pr_debug_ratelimited("dma mapping 0x%llx for page addr 0x%lx\n",
199 addr[i] >> PAGE_SHIFT, page_to_pfn(page));
200 }
201
202 return 0;
203}
204
205static int
206svm_range_dma_map(struct svm_range *prange, unsigned long *bitmap,
207 unsigned long offset, unsigned long npages,
208 unsigned long *hmm_pfns)
209{
210 struct kfd_process *p;
211 uint32_t gpuidx;
212 int r;
213
214 p = container_of(prange->svms, struct kfd_process, svms);
215
216 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
217 struct kfd_process_device *pdd;
218
219 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
220 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
221 if (!pdd) {
222 pr_debug("failed to find device idx %d\n", gpuidx);
223 return -EINVAL;
224 }
225
226 r = svm_range_dma_map_dev(adev: pdd->dev->adev, prange, offset, npages,
227 hmm_pfns, gpuidx);
228 if (r)
229 break;
230 }
231
232 return r;
233}
234
235void svm_range_dma_unmap_dev(struct device *dev, dma_addr_t *dma_addr,
236 unsigned long offset, unsigned long npages)
237{
238 enum dma_data_direction dir = DMA_BIDIRECTIONAL;
239 int i;
240
241 if (!dma_addr)
242 return;
243
244 for (i = offset; i < offset + npages; i++) {
245 if (!svm_is_valid_dma_mapping_addr(dev, dma_addr: dma_addr[i]))
246 continue;
247 pr_debug_ratelimited("unmap 0x%llx\n", dma_addr[i] >> PAGE_SHIFT);
248 dma_unmap_page(dev, dma_addr[i], PAGE_SIZE, dir);
249 dma_addr[i] = 0;
250 }
251}
252
253void svm_range_dma_unmap(struct svm_range *prange)
254{
255 struct kfd_process_device *pdd;
256 dma_addr_t *dma_addr;
257 struct device *dev;
258 struct kfd_process *p;
259 uint32_t gpuidx;
260
261 p = container_of(prange->svms, struct kfd_process, svms);
262
263 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
264 dma_addr = prange->dma_addr[gpuidx];
265 if (!dma_addr)
266 continue;
267
268 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
269 if (!pdd) {
270 pr_debug("failed to find device idx %d\n", gpuidx);
271 continue;
272 }
273 dev = &pdd->dev->adev->pdev->dev;
274
275 svm_range_dma_unmap_dev(dev, dma_addr, offset: 0, npages: prange->npages);
276 }
277}
278
279static void svm_range_free(struct svm_range *prange, bool do_unmap)
280{
281 uint64_t size = (prange->last - prange->start + 1) << PAGE_SHIFT;
282 struct kfd_process *p = container_of(prange->svms, struct kfd_process, svms);
283 uint32_t gpuidx;
284
285 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx]\n", prange->svms, prange,
286 prange->start, prange->last);
287
288 svm_range_vram_node_free(prange);
289 if (do_unmap)
290 svm_range_dma_unmap(prange);
291
292 if (do_unmap && !p->xnack_enabled) {
293 pr_debug("unreserve prange 0x%p size: 0x%llx\n", prange, size);
294 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
295 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
296 }
297
298 /* free dma_addr array for each gpu */
299 for (gpuidx = 0; gpuidx < MAX_GPU_INSTANCE; gpuidx++) {
300 if (prange->dma_addr[gpuidx]) {
301 kvfree(addr: prange->dma_addr[gpuidx]);
302 prange->dma_addr[gpuidx] = NULL;
303 }
304 }
305
306 mutex_destroy(lock: &prange->lock);
307 mutex_destroy(lock: &prange->migrate_mutex);
308 kfree(objp: prange);
309}
310
311static void
312svm_range_set_default_attributes(int32_t *location, int32_t *prefetch_loc,
313 uint8_t *granularity, uint32_t *flags)
314{
315 *location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
316 *prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
317 *granularity = 9;
318 *flags =
319 KFD_IOCTL_SVM_FLAG_HOST_ACCESS | KFD_IOCTL_SVM_FLAG_COHERENT;
320}
321
322static struct
323svm_range *svm_range_new(struct svm_range_list *svms, uint64_t start,
324 uint64_t last, bool update_mem_usage)
325{
326 uint64_t size = last - start + 1;
327 struct svm_range *prange;
328 struct kfd_process *p;
329
330 prange = kzalloc(size: sizeof(*prange), GFP_KERNEL);
331 if (!prange)
332 return NULL;
333
334 p = container_of(svms, struct kfd_process, svms);
335 if (!p->xnack_enabled && update_mem_usage &&
336 amdgpu_amdkfd_reserve_mem_limit(NULL, size: size << PAGE_SHIFT,
337 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0)) {
338 pr_info("SVM mapping failed, exceeds resident system memory limit\n");
339 kfree(objp: prange);
340 return NULL;
341 }
342 prange->npages = size;
343 prange->svms = svms;
344 prange->start = start;
345 prange->last = last;
346 INIT_LIST_HEAD(list: &prange->list);
347 INIT_LIST_HEAD(list: &prange->update_list);
348 INIT_LIST_HEAD(list: &prange->svm_bo_list);
349 INIT_LIST_HEAD(list: &prange->deferred_list);
350 INIT_LIST_HEAD(list: &prange->child_list);
351 atomic_set(v: &prange->invalid, i: 0);
352 prange->validate_timestamp = 0;
353 prange->vram_pages = 0;
354 mutex_init(&prange->migrate_mutex);
355 mutex_init(&prange->lock);
356
357 if (p->xnack_enabled)
358 bitmap_copy(dst: prange->bitmap_access, src: svms->bitmap_supported,
359 MAX_GPU_INSTANCE);
360
361 svm_range_set_default_attributes(location: &prange->preferred_loc,
362 prefetch_loc: &prange->prefetch_loc,
363 granularity: &prange->granularity, flags: &prange->flags);
364
365 pr_debug("svms 0x%p [0x%llx 0x%llx]\n", svms, start, last);
366
367 return prange;
368}
369
370static bool svm_bo_ref_unless_zero(struct svm_range_bo *svm_bo)
371{
372 if (!svm_bo || !kref_get_unless_zero(kref: &svm_bo->kref))
373 return false;
374
375 return true;
376}
377
378static void svm_range_bo_release(struct kref *kref)
379{
380 struct svm_range_bo *svm_bo;
381
382 svm_bo = container_of(kref, struct svm_range_bo, kref);
383 pr_debug("svm_bo 0x%p\n", svm_bo);
384
385 spin_lock(lock: &svm_bo->list_lock);
386 while (!list_empty(head: &svm_bo->range_list)) {
387 struct svm_range *prange =
388 list_first_entry(&svm_bo->range_list,
389 struct svm_range, svm_bo_list);
390 /* list_del_init tells a concurrent svm_range_vram_node_new when
391 * it's safe to reuse the svm_bo pointer and svm_bo_list head.
392 */
393 list_del_init(entry: &prange->svm_bo_list);
394 spin_unlock(lock: &svm_bo->list_lock);
395
396 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
397 prange->start, prange->last);
398 mutex_lock(&prange->lock);
399 prange->svm_bo = NULL;
400 /* prange should not hold vram page now */
401 WARN_ONCE(prange->actual_loc, "prange should not hold vram page");
402 mutex_unlock(lock: &prange->lock);
403
404 spin_lock(lock: &svm_bo->list_lock);
405 }
406 spin_unlock(lock: &svm_bo->list_lock);
407 if (!dma_fence_is_signaled(fence: &svm_bo->eviction_fence->base))
408 /* We're not in the eviction worker. Signal the fence. */
409 dma_fence_signal(fence: &svm_bo->eviction_fence->base);
410 dma_fence_put(fence: &svm_bo->eviction_fence->base);
411 amdgpu_bo_unref(bo: &svm_bo->bo);
412 kfree(objp: svm_bo);
413}
414
415static void svm_range_bo_wq_release(struct work_struct *work)
416{
417 struct svm_range_bo *svm_bo;
418
419 svm_bo = container_of(work, struct svm_range_bo, release_work);
420 svm_range_bo_release(kref: &svm_bo->kref);
421}
422
423static void svm_range_bo_release_async(struct kref *kref)
424{
425 struct svm_range_bo *svm_bo;
426
427 svm_bo = container_of(kref, struct svm_range_bo, kref);
428 pr_debug("svm_bo 0x%p\n", svm_bo);
429 INIT_WORK(&svm_bo->release_work, svm_range_bo_wq_release);
430 schedule_work(work: &svm_bo->release_work);
431}
432
433void svm_range_bo_unref_async(struct svm_range_bo *svm_bo)
434{
435 kref_put(kref: &svm_bo->kref, release: svm_range_bo_release_async);
436}
437
438static void svm_range_bo_unref(struct svm_range_bo *svm_bo)
439{
440 if (svm_bo)
441 kref_put(kref: &svm_bo->kref, release: svm_range_bo_release);
442}
443
444static bool
445svm_range_validate_svm_bo(struct kfd_node *node, struct svm_range *prange)
446{
447 mutex_lock(&prange->lock);
448 if (!prange->svm_bo) {
449 mutex_unlock(lock: &prange->lock);
450 return false;
451 }
452 if (prange->ttm_res) {
453 /* We still have a reference, all is well */
454 mutex_unlock(lock: &prange->lock);
455 return true;
456 }
457 if (svm_bo_ref_unless_zero(svm_bo: prange->svm_bo)) {
458 /*
459 * Migrate from GPU to GPU, remove range from source svm_bo->node
460 * range list, and return false to allocate svm_bo from destination
461 * node.
462 */
463 if (prange->svm_bo->node != node) {
464 mutex_unlock(lock: &prange->lock);
465
466 spin_lock(lock: &prange->svm_bo->list_lock);
467 list_del_init(entry: &prange->svm_bo_list);
468 spin_unlock(lock: &prange->svm_bo->list_lock);
469
470 svm_range_bo_unref(svm_bo: prange->svm_bo);
471 return false;
472 }
473 if (READ_ONCE(prange->svm_bo->evicting)) {
474 struct dma_fence *f;
475 struct svm_range_bo *svm_bo;
476 /* The BO is getting evicted,
477 * we need to get a new one
478 */
479 mutex_unlock(lock: &prange->lock);
480 svm_bo = prange->svm_bo;
481 f = dma_fence_get(fence: &svm_bo->eviction_fence->base);
482 svm_range_bo_unref(svm_bo: prange->svm_bo);
483 /* wait for the fence to avoid long spin-loop
484 * at list_empty_careful
485 */
486 dma_fence_wait(fence: f, intr: false);
487 dma_fence_put(fence: f);
488 } else {
489 /* The BO was still around and we got
490 * a new reference to it
491 */
492 mutex_unlock(lock: &prange->lock);
493 pr_debug("reuse old bo svms 0x%p [0x%lx 0x%lx]\n",
494 prange->svms, prange->start, prange->last);
495
496 prange->ttm_res = prange->svm_bo->bo->tbo.resource;
497 return true;
498 }
499
500 } else {
501 mutex_unlock(lock: &prange->lock);
502 }
503
504 /* We need a new svm_bo. Spin-loop to wait for concurrent
505 * svm_range_bo_release to finish removing this range from
506 * its range list and set prange->svm_bo to null. After this,
507 * it is safe to reuse the svm_bo pointer and svm_bo_list head.
508 */
509 while (!list_empty_careful(head: &prange->svm_bo_list) || prange->svm_bo)
510 cond_resched();
511
512 return false;
513}
514
515static struct svm_range_bo *svm_range_bo_new(void)
516{
517 struct svm_range_bo *svm_bo;
518
519 svm_bo = kzalloc(size: sizeof(*svm_bo), GFP_KERNEL);
520 if (!svm_bo)
521 return NULL;
522
523 kref_init(kref: &svm_bo->kref);
524 INIT_LIST_HEAD(list: &svm_bo->range_list);
525 spin_lock_init(&svm_bo->list_lock);
526
527 return svm_bo;
528}
529
530int
531svm_range_vram_node_new(struct kfd_node *node, struct svm_range *prange,
532 bool clear)
533{
534 struct amdgpu_bo_param bp;
535 struct svm_range_bo *svm_bo;
536 struct amdgpu_bo_user *ubo;
537 struct amdgpu_bo *bo;
538 struct kfd_process *p;
539 struct mm_struct *mm;
540 int r;
541
542 p = container_of(prange->svms, struct kfd_process, svms);
543 pr_debug("pasid: %x svms 0x%p [0x%lx 0x%lx]\n", p->pasid, prange->svms,
544 prange->start, prange->last);
545
546 if (svm_range_validate_svm_bo(node, prange))
547 return 0;
548
549 svm_bo = svm_range_bo_new();
550 if (!svm_bo) {
551 pr_debug("failed to alloc svm bo\n");
552 return -ENOMEM;
553 }
554 mm = get_task_mm(task: p->lead_thread);
555 if (!mm) {
556 pr_debug("failed to get mm\n");
557 kfree(objp: svm_bo);
558 return -ESRCH;
559 }
560 svm_bo->node = node;
561 svm_bo->eviction_fence =
562 amdgpu_amdkfd_fence_create(context: dma_fence_context_alloc(num: 1),
563 mm,
564 svm_bo);
565 mmput(mm);
566 INIT_WORK(&svm_bo->eviction_work, svm_range_evict_svm_bo_worker);
567 svm_bo->evicting = 0;
568 memset(&bp, 0, sizeof(bp));
569 bp.size = prange->npages * PAGE_SIZE;
570 bp.byte_align = PAGE_SIZE;
571 bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
572 bp.flags = AMDGPU_GEM_CREATE_NO_CPU_ACCESS;
573 bp.flags |= clear ? AMDGPU_GEM_CREATE_VRAM_CLEARED : 0;
574 bp.flags |= AMDGPU_GEM_CREATE_DISCARDABLE;
575 bp.type = ttm_bo_type_device;
576 bp.resv = NULL;
577 if (node->xcp)
578 bp.xcp_id_plus1 = node->xcp->id + 1;
579
580 r = amdgpu_bo_create_user(adev: node->adev, bp: &bp, ubo_ptr: &ubo);
581 if (r) {
582 pr_debug("failed %d to create bo\n", r);
583 goto create_bo_failed;
584 }
585 bo = &ubo->bo;
586
587 pr_debug("alloc bo at offset 0x%lx size 0x%lx on partition %d\n",
588 bo->tbo.resource->start << PAGE_SHIFT, bp.size,
589 bp.xcp_id_plus1 - 1);
590
591 r = amdgpu_bo_reserve(bo, no_intr: true);
592 if (r) {
593 pr_debug("failed %d to reserve bo\n", r);
594 goto reserve_bo_failed;
595 }
596
597 if (clear) {
598 r = amdgpu_bo_sync_wait(bo, AMDGPU_FENCE_OWNER_KFD, intr: false);
599 if (r) {
600 pr_debug("failed %d to sync bo\n", r);
601 amdgpu_bo_unreserve(bo);
602 goto reserve_bo_failed;
603 }
604 }
605
606 r = dma_resv_reserve_fences(obj: bo->tbo.base.resv, num_fences: 1);
607 if (r) {
608 pr_debug("failed %d to reserve bo\n", r);
609 amdgpu_bo_unreserve(bo);
610 goto reserve_bo_failed;
611 }
612 amdgpu_bo_fence(bo, fence: &svm_bo->eviction_fence->base, shared: true);
613
614 amdgpu_bo_unreserve(bo);
615
616 svm_bo->bo = bo;
617 prange->svm_bo = svm_bo;
618 prange->ttm_res = bo->tbo.resource;
619 prange->offset = 0;
620
621 spin_lock(lock: &svm_bo->list_lock);
622 list_add(new: &prange->svm_bo_list, head: &svm_bo->range_list);
623 spin_unlock(lock: &svm_bo->list_lock);
624
625 return 0;
626
627reserve_bo_failed:
628 amdgpu_bo_unref(bo: &bo);
629create_bo_failed:
630 dma_fence_put(fence: &svm_bo->eviction_fence->base);
631 kfree(objp: svm_bo);
632 prange->ttm_res = NULL;
633
634 return r;
635}
636
637void svm_range_vram_node_free(struct svm_range *prange)
638{
639 /* serialize prange->svm_bo unref */
640 mutex_lock(&prange->lock);
641 /* prange->svm_bo has not been unref */
642 if (prange->ttm_res) {
643 prange->ttm_res = NULL;
644 mutex_unlock(lock: &prange->lock);
645 svm_range_bo_unref(svm_bo: prange->svm_bo);
646 } else
647 mutex_unlock(lock: &prange->lock);
648}
649
650struct kfd_node *
651svm_range_get_node_by_id(struct svm_range *prange, uint32_t gpu_id)
652{
653 struct kfd_process *p;
654 struct kfd_process_device *pdd;
655
656 p = container_of(prange->svms, struct kfd_process, svms);
657 pdd = kfd_process_device_data_by_id(process: p, gpu_id);
658 if (!pdd) {
659 pr_debug("failed to get kfd process device by id 0x%x\n", gpu_id);
660 return NULL;
661 }
662
663 return pdd->dev;
664}
665
666struct kfd_process_device *
667svm_range_get_pdd_by_node(struct svm_range *prange, struct kfd_node *node)
668{
669 struct kfd_process *p;
670
671 p = container_of(prange->svms, struct kfd_process, svms);
672
673 return kfd_get_process_device_data(dev: node, p);
674}
675
676static int svm_range_bo_validate(void *param, struct amdgpu_bo *bo)
677{
678 struct ttm_operation_ctx ctx = { false, false };
679
680 amdgpu_bo_placement_from_domain(abo: bo, AMDGPU_GEM_DOMAIN_VRAM);
681
682 return ttm_bo_validate(bo: &bo->tbo, placement: &bo->placement, ctx: &ctx);
683}
684
685static int
686svm_range_check_attr(struct kfd_process *p,
687 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
688{
689 uint32_t i;
690
691 for (i = 0; i < nattr; i++) {
692 uint32_t val = attrs[i].value;
693 int gpuidx = MAX_GPU_INSTANCE;
694
695 switch (attrs[i].type) {
696 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
697 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM &&
698 val != KFD_IOCTL_SVM_LOCATION_UNDEFINED)
699 gpuidx = kfd_process_gpuidx_from_gpuid(p, gpu_id: val);
700 break;
701 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
702 if (val != KFD_IOCTL_SVM_LOCATION_SYSMEM)
703 gpuidx = kfd_process_gpuidx_from_gpuid(p, gpu_id: val);
704 break;
705 case KFD_IOCTL_SVM_ATTR_ACCESS:
706 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
707 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
708 gpuidx = kfd_process_gpuidx_from_gpuid(p, gpu_id: val);
709 break;
710 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
711 break;
712 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
713 break;
714 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
715 break;
716 default:
717 pr_debug("unknown attr type 0x%x\n", attrs[i].type);
718 return -EINVAL;
719 }
720
721 if (gpuidx < 0) {
722 pr_debug("no GPU 0x%x found\n", val);
723 return -EINVAL;
724 } else if (gpuidx < MAX_GPU_INSTANCE &&
725 !test_bit(gpuidx, p->svms.bitmap_supported)) {
726 pr_debug("GPU 0x%x not supported\n", val);
727 return -EINVAL;
728 }
729 }
730
731 return 0;
732}
733
734static void
735svm_range_apply_attrs(struct kfd_process *p, struct svm_range *prange,
736 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
737 bool *update_mapping)
738{
739 uint32_t i;
740 int gpuidx;
741
742 for (i = 0; i < nattr; i++) {
743 switch (attrs[i].type) {
744 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
745 prange->preferred_loc = attrs[i].value;
746 break;
747 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
748 prange->prefetch_loc = attrs[i].value;
749 break;
750 case KFD_IOCTL_SVM_ATTR_ACCESS:
751 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
752 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
753 if (!p->xnack_enabled)
754 *update_mapping = true;
755
756 gpuidx = kfd_process_gpuidx_from_gpuid(p,
757 gpu_id: attrs[i].value);
758 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
759 bitmap_clear(map: prange->bitmap_access, start: gpuidx, nbits: 1);
760 bitmap_clear(map: prange->bitmap_aip, start: gpuidx, nbits: 1);
761 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
762 bitmap_set(map: prange->bitmap_access, start: gpuidx, nbits: 1);
763 bitmap_clear(map: prange->bitmap_aip, start: gpuidx, nbits: 1);
764 } else {
765 bitmap_clear(map: prange->bitmap_access, start: gpuidx, nbits: 1);
766 bitmap_set(map: prange->bitmap_aip, start: gpuidx, nbits: 1);
767 }
768 break;
769 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
770 *update_mapping = true;
771 prange->flags |= attrs[i].value;
772 break;
773 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
774 *update_mapping = true;
775 prange->flags &= ~attrs[i].value;
776 break;
777 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
778 prange->granularity = min_t(uint32_t, attrs[i].value, 0x3F);
779 break;
780 default:
781 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
782 }
783 }
784}
785
786static bool
787svm_range_is_same_attrs(struct kfd_process *p, struct svm_range *prange,
788 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs)
789{
790 uint32_t i;
791 int gpuidx;
792
793 for (i = 0; i < nattr; i++) {
794 switch (attrs[i].type) {
795 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
796 if (prange->preferred_loc != attrs[i].value)
797 return false;
798 break;
799 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
800 /* Prefetch should always trigger a migration even
801 * if the value of the attribute didn't change.
802 */
803 return false;
804 case KFD_IOCTL_SVM_ATTR_ACCESS:
805 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
806 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
807 gpuidx = kfd_process_gpuidx_from_gpuid(p,
808 gpu_id: attrs[i].value);
809 if (attrs[i].type == KFD_IOCTL_SVM_ATTR_NO_ACCESS) {
810 if (test_bit(gpuidx, prange->bitmap_access) ||
811 test_bit(gpuidx, prange->bitmap_aip))
812 return false;
813 } else if (attrs[i].type == KFD_IOCTL_SVM_ATTR_ACCESS) {
814 if (!test_bit(gpuidx, prange->bitmap_access))
815 return false;
816 } else {
817 if (!test_bit(gpuidx, prange->bitmap_aip))
818 return false;
819 }
820 break;
821 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
822 if ((prange->flags & attrs[i].value) != attrs[i].value)
823 return false;
824 break;
825 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
826 if ((prange->flags & attrs[i].value) != 0)
827 return false;
828 break;
829 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
830 if (prange->granularity != attrs[i].value)
831 return false;
832 break;
833 default:
834 WARN_ONCE(1, "svm_range_check_attrs wasn't called?");
835 }
836 }
837
838 return true;
839}
840
841/**
842 * svm_range_debug_dump - print all range information from svms
843 * @svms: svm range list header
844 *
845 * debug output svm range start, end, prefetch location from svms
846 * interval tree and link list
847 *
848 * Context: The caller must hold svms->lock
849 */
850static void svm_range_debug_dump(struct svm_range_list *svms)
851{
852 struct interval_tree_node *node;
853 struct svm_range *prange;
854
855 pr_debug("dump svms 0x%p list\n", svms);
856 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
857
858 list_for_each_entry(prange, &svms->list, list) {
859 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
860 prange, prange->start, prange->npages,
861 prange->start + prange->npages - 1,
862 prange->actual_loc);
863 }
864
865 pr_debug("dump svms 0x%p interval tree\n", svms);
866 pr_debug("range\tstart\tpage\tend\t\tlocation\n");
867 node = interval_tree_iter_first(root: &svms->objects, start: 0, last: ~0ULL);
868 while (node) {
869 prange = container_of(node, struct svm_range, it_node);
870 pr_debug("0x%p 0x%lx\t0x%llx\t0x%llx\t0x%x\n",
871 prange, prange->start, prange->npages,
872 prange->start + prange->npages - 1,
873 prange->actual_loc);
874 node = interval_tree_iter_next(node, start: 0, last: ~0ULL);
875 }
876}
877
878static void *
879svm_range_copy_array(void *psrc, size_t size, uint64_t num_elements,
880 uint64_t offset, uint64_t *vram_pages)
881{
882 unsigned char *src = (unsigned char *)psrc + offset;
883 unsigned char *dst;
884 uint64_t i;
885
886 dst = kvmalloc_array(n: num_elements, size, GFP_KERNEL);
887 if (!dst)
888 return NULL;
889
890 if (!vram_pages) {
891 memcpy(dst, src, num_elements * size);
892 return (void *)dst;
893 }
894
895 *vram_pages = 0;
896 for (i = 0; i < num_elements; i++) {
897 dma_addr_t *temp;
898 temp = (dma_addr_t *)dst + i;
899 *temp = *((dma_addr_t *)src + i);
900 if (*temp&SVM_RANGE_VRAM_DOMAIN)
901 (*vram_pages)++;
902 }
903
904 return (void *)dst;
905}
906
907static int
908svm_range_copy_dma_addrs(struct svm_range *dst, struct svm_range *src)
909{
910 int i;
911
912 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
913 if (!src->dma_addr[i])
914 continue;
915 dst->dma_addr[i] = svm_range_copy_array(psrc: src->dma_addr[i],
916 size: sizeof(*src->dma_addr[i]), num_elements: src->npages, offset: 0, NULL);
917 if (!dst->dma_addr[i])
918 return -ENOMEM;
919 }
920
921 return 0;
922}
923
924static int
925svm_range_split_array(void *ppnew, void *ppold, size_t size,
926 uint64_t old_start, uint64_t old_n,
927 uint64_t new_start, uint64_t new_n, uint64_t *new_vram_pages)
928{
929 unsigned char *new, *old, *pold;
930 uint64_t d;
931
932 if (!ppold)
933 return 0;
934 pold = *(unsigned char **)ppold;
935 if (!pold)
936 return 0;
937
938 d = (new_start - old_start) * size;
939 /* get dma addr array for new range and calculte its vram page number */
940 new = svm_range_copy_array(psrc: pold, size, num_elements: new_n, offset: d, vram_pages: new_vram_pages);
941 if (!new)
942 return -ENOMEM;
943 d = (new_start == old_start) ? new_n * size : 0;
944 old = svm_range_copy_array(psrc: pold, size, num_elements: old_n, offset: d, NULL);
945 if (!old) {
946 kvfree(addr: new);
947 return -ENOMEM;
948 }
949 kvfree(addr: pold);
950 *(void **)ppold = old;
951 *(void **)ppnew = new;
952
953 return 0;
954}
955
956static int
957svm_range_split_pages(struct svm_range *new, struct svm_range *old,
958 uint64_t start, uint64_t last)
959{
960 uint64_t npages = last - start + 1;
961 int i, r;
962
963 for (i = 0; i < MAX_GPU_INSTANCE; i++) {
964 r = svm_range_split_array(ppnew: &new->dma_addr[i], ppold: &old->dma_addr[i],
965 size: sizeof(*old->dma_addr[i]), old_start: old->start,
966 old_n: npages, new_start: new->start, new_n: new->npages,
967 new_vram_pages: old->actual_loc ? &new->vram_pages : NULL);
968 if (r)
969 return r;
970 }
971 if (old->actual_loc)
972 old->vram_pages -= new->vram_pages;
973
974 return 0;
975}
976
977static int
978svm_range_split_nodes(struct svm_range *new, struct svm_range *old,
979 uint64_t start, uint64_t last)
980{
981 uint64_t npages = last - start + 1;
982
983 pr_debug("svms 0x%p new prange 0x%p start 0x%lx [0x%llx 0x%llx]\n",
984 new->svms, new, new->start, start, last);
985
986 if (new->start == old->start) {
987 new->offset = old->offset;
988 old->offset += new->npages;
989 } else {
990 new->offset = old->offset + npages;
991 }
992
993 new->svm_bo = svm_range_bo_ref(svm_bo: old->svm_bo);
994 new->ttm_res = old->ttm_res;
995
996 spin_lock(lock: &new->svm_bo->list_lock);
997 list_add(new: &new->svm_bo_list, head: &new->svm_bo->range_list);
998 spin_unlock(lock: &new->svm_bo->list_lock);
999
1000 return 0;
1001}
1002
1003/**
1004 * svm_range_split_adjust - split range and adjust
1005 *
1006 * @new: new range
1007 * @old: the old range
1008 * @start: the old range adjust to start address in pages
1009 * @last: the old range adjust to last address in pages
1010 *
1011 * Copy system memory dma_addr or vram ttm_res in old range to new
1012 * range from new_start up to size new->npages, the remaining old range is from
1013 * start to last
1014 *
1015 * Return:
1016 * 0 - OK, -ENOMEM - out of memory
1017 */
1018static int
1019svm_range_split_adjust(struct svm_range *new, struct svm_range *old,
1020 uint64_t start, uint64_t last)
1021{
1022 int r;
1023
1024 pr_debug("svms 0x%p new 0x%lx old [0x%lx 0x%lx] => [0x%llx 0x%llx]\n",
1025 new->svms, new->start, old->start, old->last, start, last);
1026
1027 if (new->start < old->start ||
1028 new->last > old->last) {
1029 WARN_ONCE(1, "invalid new range start or last\n");
1030 return -EINVAL;
1031 }
1032
1033 r = svm_range_split_pages(new, old, start, last);
1034 if (r)
1035 return r;
1036
1037 if (old->actual_loc && old->ttm_res) {
1038 r = svm_range_split_nodes(new, old, start, last);
1039 if (r)
1040 return r;
1041 }
1042
1043 old->npages = last - start + 1;
1044 old->start = start;
1045 old->last = last;
1046 new->flags = old->flags;
1047 new->preferred_loc = old->preferred_loc;
1048 new->prefetch_loc = old->prefetch_loc;
1049 new->actual_loc = old->actual_loc;
1050 new->granularity = old->granularity;
1051 new->mapped_to_gpu = old->mapped_to_gpu;
1052 bitmap_copy(dst: new->bitmap_access, src: old->bitmap_access, MAX_GPU_INSTANCE);
1053 bitmap_copy(dst: new->bitmap_aip, src: old->bitmap_aip, MAX_GPU_INSTANCE);
1054
1055 return 0;
1056}
1057
1058/**
1059 * svm_range_split - split a range in 2 ranges
1060 *
1061 * @prange: the svm range to split
1062 * @start: the remaining range start address in pages
1063 * @last: the remaining range last address in pages
1064 * @new: the result new range generated
1065 *
1066 * Two cases only:
1067 * case 1: if start == prange->start
1068 * prange ==> prange[start, last]
1069 * new range [last + 1, prange->last]
1070 *
1071 * case 2: if last == prange->last
1072 * prange ==> prange[start, last]
1073 * new range [prange->start, start - 1]
1074 *
1075 * Return:
1076 * 0 - OK, -ENOMEM - out of memory, -EINVAL - invalid start, last
1077 */
1078static int
1079svm_range_split(struct svm_range *prange, uint64_t start, uint64_t last,
1080 struct svm_range **new)
1081{
1082 uint64_t old_start = prange->start;
1083 uint64_t old_last = prange->last;
1084 struct svm_range_list *svms;
1085 int r = 0;
1086
1087 pr_debug("svms 0x%p [0x%llx 0x%llx] to [0x%llx 0x%llx]\n", prange->svms,
1088 old_start, old_last, start, last);
1089
1090 if (old_start != start && old_last != last)
1091 return -EINVAL;
1092 if (start < old_start || last > old_last)
1093 return -EINVAL;
1094
1095 svms = prange->svms;
1096 if (old_start == start)
1097 *new = svm_range_new(svms, start: last + 1, last: old_last, update_mem_usage: false);
1098 else
1099 *new = svm_range_new(svms, start: old_start, last: start - 1, update_mem_usage: false);
1100 if (!*new)
1101 return -ENOMEM;
1102
1103 r = svm_range_split_adjust(new: *new, old: prange, start, last);
1104 if (r) {
1105 pr_debug("failed %d split [0x%llx 0x%llx] to [0x%llx 0x%llx]\n",
1106 r, old_start, old_last, start, last);
1107 svm_range_free(prange: *new, do_unmap: false);
1108 *new = NULL;
1109 }
1110
1111 return r;
1112}
1113
1114static int
1115svm_range_split_tail(struct svm_range *prange, uint64_t new_last,
1116 struct list_head *insert_list, struct list_head *remap_list)
1117{
1118 struct svm_range *tail = NULL;
1119 int r = svm_range_split(prange, start: prange->start, last: new_last, new: &tail);
1120
1121 if (!r) {
1122 list_add(new: &tail->list, head: insert_list);
1123 if (!IS_ALIGNED(new_last + 1, 1UL << prange->granularity))
1124 list_add(new: &tail->update_list, head: remap_list);
1125 }
1126 return r;
1127}
1128
1129static int
1130svm_range_split_head(struct svm_range *prange, uint64_t new_start,
1131 struct list_head *insert_list, struct list_head *remap_list)
1132{
1133 struct svm_range *head = NULL;
1134 int r = svm_range_split(prange, start: new_start, last: prange->last, new: &head);
1135
1136 if (!r) {
1137 list_add(new: &head->list, head: insert_list);
1138 if (!IS_ALIGNED(new_start, 1UL << prange->granularity))
1139 list_add(new: &head->update_list, head: remap_list);
1140 }
1141 return r;
1142}
1143
1144static void
1145svm_range_add_child(struct svm_range *prange, struct mm_struct *mm,
1146 struct svm_range *pchild, enum svm_work_list_ops op)
1147{
1148 pr_debug("add child 0x%p [0x%lx 0x%lx] to prange 0x%p child list %d\n",
1149 pchild, pchild->start, pchild->last, prange, op);
1150
1151 pchild->work_item.mm = mm;
1152 pchild->work_item.op = op;
1153 list_add_tail(new: &pchild->child_list, head: &prange->child_list);
1154}
1155
1156static bool
1157svm_nodes_in_same_hive(struct kfd_node *node_a, struct kfd_node *node_b)
1158{
1159 return (node_a->adev == node_b->adev ||
1160 amdgpu_xgmi_same_hive(adev: node_a->adev, bo_adev: node_b->adev));
1161}
1162
1163static uint64_t
1164svm_range_get_pte_flags(struct kfd_node *node,
1165 struct svm_range *prange, int domain)
1166{
1167 struct kfd_node *bo_node;
1168 uint32_t flags = prange->flags;
1169 uint32_t mapping_flags = 0;
1170 uint64_t pte_flags;
1171 bool snoop = (domain != SVM_RANGE_VRAM_DOMAIN);
1172 bool coherent = flags & (KFD_IOCTL_SVM_FLAG_COHERENT | KFD_IOCTL_SVM_FLAG_EXT_COHERENT);
1173 bool ext_coherent = flags & KFD_IOCTL_SVM_FLAG_EXT_COHERENT;
1174 bool uncached = false; /*flags & KFD_IOCTL_SVM_FLAG_UNCACHED;*/
1175 unsigned int mtype_local;
1176
1177 if (domain == SVM_RANGE_VRAM_DOMAIN)
1178 bo_node = prange->svm_bo->node;
1179
1180 switch (amdgpu_ip_version(adev: node->adev, ip: GC_HWIP, inst: 0)) {
1181 case IP_VERSION(9, 4, 1):
1182 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1183 if (bo_node == node) {
1184 mapping_flags |= coherent ?
1185 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1186 } else {
1187 mapping_flags |= coherent ?
1188 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1189 if (svm_nodes_in_same_hive(node_a: node, node_b: bo_node))
1190 snoop = true;
1191 }
1192 } else {
1193 mapping_flags |= coherent ?
1194 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1195 }
1196 break;
1197 case IP_VERSION(9, 4, 2):
1198 if (domain == SVM_RANGE_VRAM_DOMAIN) {
1199 if (bo_node == node) {
1200 mapping_flags |= coherent ?
1201 AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1202 if (node->adev->gmc.xgmi.connected_to_cpu)
1203 snoop = true;
1204 } else {
1205 mapping_flags |= coherent ?
1206 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1207 if (svm_nodes_in_same_hive(node_a: node, node_b: bo_node))
1208 snoop = true;
1209 }
1210 } else {
1211 mapping_flags |= coherent ?
1212 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1213 }
1214 break;
1215 case IP_VERSION(9, 4, 3):
1216 if (ext_coherent)
1217 mtype_local = node->adev->rev_id ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_UC;
1218 else
1219 mtype_local = amdgpu_mtype_local == 1 ? AMDGPU_VM_MTYPE_NC :
1220 amdgpu_mtype_local == 2 ? AMDGPU_VM_MTYPE_CC : AMDGPU_VM_MTYPE_RW;
1221 snoop = true;
1222 if (uncached) {
1223 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1224 } else if (domain == SVM_RANGE_VRAM_DOMAIN) {
1225 /* local HBM region close to partition */
1226 if (bo_node->adev == node->adev &&
1227 (!bo_node->xcp || !node->xcp || bo_node->xcp->mem_id == node->xcp->mem_id))
1228 mapping_flags |= mtype_local;
1229 /* local HBM region far from partition or remote XGMI GPU
1230 * with regular system scope coherence
1231 */
1232 else if (svm_nodes_in_same_hive(node_a: bo_node, node_b: node) && !ext_coherent)
1233 mapping_flags |= AMDGPU_VM_MTYPE_NC;
1234 /* PCIe P2P or extended system scope coherence */
1235 else
1236 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1237 /* system memory accessed by the APU */
1238 } else if (node->adev->flags & AMD_IS_APU) {
1239 /* On NUMA systems, locality is determined per-page
1240 * in amdgpu_gmc_override_vm_pte_flags
1241 */
1242 if (num_possible_nodes() <= 1)
1243 mapping_flags |= mtype_local;
1244 else
1245 mapping_flags |= ext_coherent ? AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1246 /* system memory accessed by the dGPU */
1247 } else {
1248 mapping_flags |= AMDGPU_VM_MTYPE_UC;
1249 }
1250 break;
1251 default:
1252 mapping_flags |= coherent ?
1253 AMDGPU_VM_MTYPE_UC : AMDGPU_VM_MTYPE_NC;
1254 }
1255
1256 mapping_flags |= AMDGPU_VM_PAGE_READABLE | AMDGPU_VM_PAGE_WRITEABLE;
1257
1258 if (flags & KFD_IOCTL_SVM_FLAG_GPU_RO)
1259 mapping_flags &= ~AMDGPU_VM_PAGE_WRITEABLE;
1260 if (flags & KFD_IOCTL_SVM_FLAG_GPU_EXEC)
1261 mapping_flags |= AMDGPU_VM_PAGE_EXECUTABLE;
1262
1263 pte_flags = AMDGPU_PTE_VALID;
1264 pte_flags |= (domain == SVM_RANGE_VRAM_DOMAIN) ? 0 : AMDGPU_PTE_SYSTEM;
1265 pte_flags |= snoop ? AMDGPU_PTE_SNOOPED : 0;
1266
1267 pte_flags |= amdgpu_gem_va_map_flags(adev: node->adev, flags: mapping_flags);
1268 return pte_flags;
1269}
1270
1271static int
1272svm_range_unmap_from_gpu(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1273 uint64_t start, uint64_t last,
1274 struct dma_fence **fence)
1275{
1276 uint64_t init_pte_value = 0;
1277
1278 pr_debug("[0x%llx 0x%llx]\n", start, last);
1279
1280 return amdgpu_vm_update_range(adev, vm, immediate: false, unlocked: true, flush_tlb: true, allow_override: false, NULL, start,
1281 last, flags: init_pte_value, offset: 0, vram_base: 0, NULL, NULL,
1282 fence);
1283}
1284
1285static int
1286svm_range_unmap_from_gpus(struct svm_range *prange, unsigned long start,
1287 unsigned long last, uint32_t trigger)
1288{
1289 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1290 struct kfd_process_device *pdd;
1291 struct dma_fence *fence = NULL;
1292 struct kfd_process *p;
1293 uint32_t gpuidx;
1294 int r = 0;
1295
1296 if (!prange->mapped_to_gpu) {
1297 pr_debug("prange 0x%p [0x%lx 0x%lx] not mapped to GPU\n",
1298 prange, prange->start, prange->last);
1299 return 0;
1300 }
1301
1302 if (prange->start == start && prange->last == last) {
1303 pr_debug("unmap svms 0x%p prange 0x%p\n", prange->svms, prange);
1304 prange->mapped_to_gpu = false;
1305 }
1306
1307 bitmap_or(dst: bitmap, src1: prange->bitmap_access, src2: prange->bitmap_aip,
1308 MAX_GPU_INSTANCE);
1309 p = container_of(prange->svms, struct kfd_process, svms);
1310
1311 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1312 pr_debug("unmap from gpu idx 0x%x\n", gpuidx);
1313 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1314 if (!pdd) {
1315 pr_debug("failed to find device idx %d\n", gpuidx);
1316 return -EINVAL;
1317 }
1318
1319 kfd_smi_event_unmap_from_gpu(node: pdd->dev, pid: p->lead_thread->pid,
1320 address: start, last, trigger);
1321
1322 r = svm_range_unmap_from_gpu(adev: pdd->dev->adev,
1323 drm_priv_to_vm(pdd->drm_priv),
1324 start, last, fence: &fence);
1325 if (r)
1326 break;
1327
1328 if (fence) {
1329 r = dma_fence_wait(fence, intr: false);
1330 dma_fence_put(fence);
1331 fence = NULL;
1332 if (r)
1333 break;
1334 }
1335 kfd_flush_tlb(pdd, type: TLB_FLUSH_HEAVYWEIGHT);
1336 }
1337
1338 return r;
1339}
1340
1341static int
1342svm_range_map_to_gpu(struct kfd_process_device *pdd, struct svm_range *prange,
1343 unsigned long offset, unsigned long npages, bool readonly,
1344 dma_addr_t *dma_addr, struct amdgpu_device *bo_adev,
1345 struct dma_fence **fence, bool flush_tlb)
1346{
1347 struct amdgpu_device *adev = pdd->dev->adev;
1348 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1349 uint64_t pte_flags;
1350 unsigned long last_start;
1351 int last_domain;
1352 int r = 0;
1353 int64_t i, j;
1354
1355 last_start = prange->start + offset;
1356
1357 pr_debug("svms 0x%p [0x%lx 0x%lx] readonly %d\n", prange->svms,
1358 last_start, last_start + npages - 1, readonly);
1359
1360 for (i = offset; i < offset + npages; i++) {
1361 last_domain = dma_addr[i] & SVM_RANGE_VRAM_DOMAIN;
1362 dma_addr[i] &= ~SVM_RANGE_VRAM_DOMAIN;
1363
1364 /* Collect all pages in the same address range and memory domain
1365 * that can be mapped with a single call to update mapping.
1366 */
1367 if (i < offset + npages - 1 &&
1368 last_domain == (dma_addr[i + 1] & SVM_RANGE_VRAM_DOMAIN))
1369 continue;
1370
1371 pr_debug("Mapping range [0x%lx 0x%llx] on domain: %s\n",
1372 last_start, prange->start + i, last_domain ? "GPU" : "CPU");
1373
1374 pte_flags = svm_range_get_pte_flags(node: pdd->dev, prange, domain: last_domain);
1375 if (readonly)
1376 pte_flags &= ~AMDGPU_PTE_WRITEABLE;
1377
1378 pr_debug("svms 0x%p map [0x%lx 0x%llx] vram %d PTE 0x%llx\n",
1379 prange->svms, last_start, prange->start + i,
1380 (last_domain == SVM_RANGE_VRAM_DOMAIN) ? 1 : 0,
1381 pte_flags);
1382
1383 /* For dGPU mode, we use same vm_manager to allocate VRAM for
1384 * different memory partition based on fpfn/lpfn, we should use
1385 * same vm_manager.vram_base_offset regardless memory partition.
1386 */
1387 r = amdgpu_vm_update_range(adev, vm, immediate: false, unlocked: false, flush_tlb, allow_override: true,
1388 NULL, start: last_start, last: prange->start + i,
1389 flags: pte_flags,
1390 offset: (last_start - prange->start) << PAGE_SHIFT,
1391 vram_base: bo_adev ? bo_adev->vm_manager.vram_base_offset : 0,
1392 NULL, pages_addr: dma_addr, fence: &vm->last_update);
1393
1394 for (j = last_start - prange->start; j <= i; j++)
1395 dma_addr[j] |= last_domain;
1396
1397 if (r) {
1398 pr_debug("failed %d to map to gpu 0x%lx\n", r, prange->start);
1399 goto out;
1400 }
1401 last_start = prange->start + i + 1;
1402 }
1403
1404 r = amdgpu_vm_update_pdes(adev, vm, immediate: false);
1405 if (r) {
1406 pr_debug("failed %d to update directories 0x%lx\n", r,
1407 prange->start);
1408 goto out;
1409 }
1410
1411 if (fence)
1412 *fence = dma_fence_get(fence: vm->last_update);
1413
1414out:
1415 return r;
1416}
1417
1418static int
1419svm_range_map_to_gpus(struct svm_range *prange, unsigned long offset,
1420 unsigned long npages, bool readonly,
1421 unsigned long *bitmap, bool wait, bool flush_tlb)
1422{
1423 struct kfd_process_device *pdd;
1424 struct amdgpu_device *bo_adev = NULL;
1425 struct kfd_process *p;
1426 struct dma_fence *fence = NULL;
1427 uint32_t gpuidx;
1428 int r = 0;
1429
1430 if (prange->svm_bo && prange->ttm_res)
1431 bo_adev = prange->svm_bo->node->adev;
1432
1433 p = container_of(prange->svms, struct kfd_process, svms);
1434 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
1435 pr_debug("mapping to gpu idx 0x%x\n", gpuidx);
1436 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1437 if (!pdd) {
1438 pr_debug("failed to find device idx %d\n", gpuidx);
1439 return -EINVAL;
1440 }
1441
1442 pdd = kfd_bind_process_to_device(dev: pdd->dev, p);
1443 if (IS_ERR(ptr: pdd))
1444 return -EINVAL;
1445
1446 if (bo_adev && pdd->dev->adev != bo_adev &&
1447 !amdgpu_xgmi_same_hive(adev: pdd->dev->adev, bo_adev)) {
1448 pr_debug("cannot map to device idx %d\n", gpuidx);
1449 continue;
1450 }
1451
1452 r = svm_range_map_to_gpu(pdd, prange, offset, npages, readonly,
1453 dma_addr: prange->dma_addr[gpuidx],
1454 bo_adev, fence: wait ? &fence : NULL,
1455 flush_tlb);
1456 if (r)
1457 break;
1458
1459 if (fence) {
1460 r = dma_fence_wait(fence, intr: false);
1461 dma_fence_put(fence);
1462 fence = NULL;
1463 if (r) {
1464 pr_debug("failed %d to dma fence wait\n", r);
1465 break;
1466 }
1467 }
1468
1469 kfd_flush_tlb(pdd, type: TLB_FLUSH_LEGACY);
1470 }
1471
1472 return r;
1473}
1474
1475struct svm_validate_context {
1476 struct kfd_process *process;
1477 struct svm_range *prange;
1478 bool intr;
1479 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
1480 struct drm_exec exec;
1481};
1482
1483static int svm_range_reserve_bos(struct svm_validate_context *ctx, bool intr)
1484{
1485 struct kfd_process_device *pdd;
1486 struct amdgpu_vm *vm;
1487 uint32_t gpuidx;
1488 int r;
1489
1490 drm_exec_init(exec: &ctx->exec, flags: intr ? DRM_EXEC_INTERRUPTIBLE_WAIT: 0, nr: 0);
1491 drm_exec_until_all_locked(&ctx->exec) {
1492 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1493 pdd = kfd_process_device_from_gpuidx(p: ctx->process, gpuidx);
1494 if (!pdd) {
1495 pr_debug("failed to find device idx %d\n", gpuidx);
1496 r = -EINVAL;
1497 goto unreserve_out;
1498 }
1499 vm = drm_priv_to_vm(pdd->drm_priv);
1500
1501 r = amdgpu_vm_lock_pd(vm, exec: &ctx->exec, num_fences: 2);
1502 drm_exec_retry_on_contention(&ctx->exec);
1503 if (unlikely(r)) {
1504 pr_debug("failed %d to reserve bo\n", r);
1505 goto unreserve_out;
1506 }
1507 }
1508 }
1509
1510 for_each_set_bit(gpuidx, ctx->bitmap, MAX_GPU_INSTANCE) {
1511 pdd = kfd_process_device_from_gpuidx(p: ctx->process, gpuidx);
1512 if (!pdd) {
1513 pr_debug("failed to find device idx %d\n", gpuidx);
1514 r = -EINVAL;
1515 goto unreserve_out;
1516 }
1517
1518 r = amdgpu_vm_validate(adev: pdd->dev->adev,
1519 drm_priv_to_vm(pdd->drm_priv), NULL,
1520 callback: svm_range_bo_validate, NULL);
1521 if (r) {
1522 pr_debug("failed %d validate pt bos\n", r);
1523 goto unreserve_out;
1524 }
1525 }
1526
1527 return 0;
1528
1529unreserve_out:
1530 drm_exec_fini(exec: &ctx->exec);
1531 return r;
1532}
1533
1534static void svm_range_unreserve_bos(struct svm_validate_context *ctx)
1535{
1536 drm_exec_fini(exec: &ctx->exec);
1537}
1538
1539static void *kfd_svm_page_owner(struct kfd_process *p, int32_t gpuidx)
1540{
1541 struct kfd_process_device *pdd;
1542
1543 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
1544 if (!pdd)
1545 return NULL;
1546
1547 return SVM_ADEV_PGMAP_OWNER(pdd->dev->adev);
1548}
1549
1550/*
1551 * Validation+GPU mapping with concurrent invalidation (MMU notifiers)
1552 *
1553 * To prevent concurrent destruction or change of range attributes, the
1554 * svm_read_lock must be held. The caller must not hold the svm_write_lock
1555 * because that would block concurrent evictions and lead to deadlocks. To
1556 * serialize concurrent migrations or validations of the same range, the
1557 * prange->migrate_mutex must be held.
1558 *
1559 * For VRAM ranges, the SVM BO must be allocated and valid (protected by its
1560 * eviction fence.
1561 *
1562 * The following sequence ensures race-free validation and GPU mapping:
1563 *
1564 * 1. Reserve page table (and SVM BO if range is in VRAM)
1565 * 2. hmm_range_fault to get page addresses (if system memory)
1566 * 3. DMA-map pages (if system memory)
1567 * 4-a. Take notifier lock
1568 * 4-b. Check that pages still valid (mmu_interval_read_retry)
1569 * 4-c. Check that the range was not split or otherwise invalidated
1570 * 4-d. Update GPU page table
1571 * 4.e. Release notifier lock
1572 * 5. Release page table (and SVM BO) reservation
1573 */
1574static int svm_range_validate_and_map(struct mm_struct *mm,
1575 unsigned long map_start, unsigned long map_last,
1576 struct svm_range *prange, int32_t gpuidx,
1577 bool intr, bool wait, bool flush_tlb)
1578{
1579 struct svm_validate_context *ctx;
1580 unsigned long start, end, addr;
1581 struct kfd_process *p;
1582 void *owner;
1583 int32_t idx;
1584 int r = 0;
1585
1586 ctx = kzalloc(size: sizeof(struct svm_validate_context), GFP_KERNEL);
1587 if (!ctx)
1588 return -ENOMEM;
1589 ctx->process = container_of(prange->svms, struct kfd_process, svms);
1590 ctx->prange = prange;
1591 ctx->intr = intr;
1592
1593 if (gpuidx < MAX_GPU_INSTANCE) {
1594 bitmap_zero(dst: ctx->bitmap, MAX_GPU_INSTANCE);
1595 bitmap_set(map: ctx->bitmap, start: gpuidx, nbits: 1);
1596 } else if (ctx->process->xnack_enabled) {
1597 bitmap_copy(dst: ctx->bitmap, src: prange->bitmap_aip, MAX_GPU_INSTANCE);
1598
1599 /* If prefetch range to GPU, or GPU retry fault migrate range to
1600 * GPU, which has ACCESS attribute to the range, create mapping
1601 * on that GPU.
1602 */
1603 if (prange->actual_loc) {
1604 gpuidx = kfd_process_gpuidx_from_gpuid(p: ctx->process,
1605 gpu_id: prange->actual_loc);
1606 if (gpuidx < 0) {
1607 WARN_ONCE(1, "failed get device by id 0x%x\n",
1608 prange->actual_loc);
1609 r = -EINVAL;
1610 goto free_ctx;
1611 }
1612 if (test_bit(gpuidx, prange->bitmap_access))
1613 bitmap_set(map: ctx->bitmap, start: gpuidx, nbits: 1);
1614 }
1615
1616 /*
1617 * If prange is already mapped or with always mapped flag,
1618 * update mapping on GPUs with ACCESS attribute
1619 */
1620 if (bitmap_empty(src: ctx->bitmap, MAX_GPU_INSTANCE)) {
1621 if (prange->mapped_to_gpu ||
1622 prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)
1623 bitmap_copy(dst: ctx->bitmap, src: prange->bitmap_access, MAX_GPU_INSTANCE);
1624 }
1625 } else {
1626 bitmap_or(dst: ctx->bitmap, src1: prange->bitmap_access,
1627 src2: prange->bitmap_aip, MAX_GPU_INSTANCE);
1628 }
1629
1630 if (bitmap_empty(src: ctx->bitmap, MAX_GPU_INSTANCE)) {
1631 r = 0;
1632 goto free_ctx;
1633 }
1634
1635 if (prange->actual_loc && !prange->ttm_res) {
1636 /* This should never happen. actual_loc gets set by
1637 * svm_migrate_ram_to_vram after allocating a BO.
1638 */
1639 WARN_ONCE(1, "VRAM BO missing during validation\n");
1640 r = -EINVAL;
1641 goto free_ctx;
1642 }
1643
1644 r = svm_range_reserve_bos(ctx, intr);
1645 if (r)
1646 goto free_ctx;
1647
1648 p = container_of(prange->svms, struct kfd_process, svms);
1649 owner = kfd_svm_page_owner(p, gpuidx: find_first_bit(addr: ctx->bitmap,
1650 MAX_GPU_INSTANCE));
1651 for_each_set_bit(idx, ctx->bitmap, MAX_GPU_INSTANCE) {
1652 if (kfd_svm_page_owner(p, gpuidx: idx) != owner) {
1653 owner = NULL;
1654 break;
1655 }
1656 }
1657
1658 start = map_start << PAGE_SHIFT;
1659 end = (map_last + 1) << PAGE_SHIFT;
1660 for (addr = start; !r && addr < end; ) {
1661 struct hmm_range *hmm_range;
1662 unsigned long map_start_vma;
1663 unsigned long map_last_vma;
1664 struct vm_area_struct *vma;
1665 unsigned long next = 0;
1666 unsigned long offset;
1667 unsigned long npages;
1668 bool readonly;
1669
1670 vma = vma_lookup(mm, addr);
1671 if (vma) {
1672 readonly = !(vma->vm_flags & VM_WRITE);
1673
1674 next = min(vma->vm_end, end);
1675 npages = (next - addr) >> PAGE_SHIFT;
1676 WRITE_ONCE(p->svms.faulting_task, current);
1677 r = amdgpu_hmm_range_get_pages(notifier: &prange->notifier, start: addr, npages,
1678 readonly, owner, NULL,
1679 phmm_range: &hmm_range);
1680 WRITE_ONCE(p->svms.faulting_task, NULL);
1681 if (r) {
1682 pr_debug("failed %d to get svm range pages\n", r);
1683 if (r == -EBUSY)
1684 r = -EAGAIN;
1685 }
1686 } else {
1687 r = -EFAULT;
1688 }
1689
1690 if (!r) {
1691 offset = (addr >> PAGE_SHIFT) - prange->start;
1692 r = svm_range_dma_map(prange, bitmap: ctx->bitmap, offset, npages,
1693 hmm_pfns: hmm_range->hmm_pfns);
1694 if (r)
1695 pr_debug("failed %d to dma map range\n", r);
1696 }
1697
1698 svm_range_lock(prange);
1699 if (!r && amdgpu_hmm_range_get_pages_done(hmm_range)) {
1700 pr_debug("hmm update the range, need validate again\n");
1701 r = -EAGAIN;
1702 }
1703
1704 if (!r && !list_empty(head: &prange->child_list)) {
1705 pr_debug("range split by unmap in parallel, validate again\n");
1706 r = -EAGAIN;
1707 }
1708
1709 if (!r) {
1710 map_start_vma = max(map_start, prange->start + offset);
1711 map_last_vma = min(map_last, prange->start + offset + npages - 1);
1712 if (map_start_vma <= map_last_vma) {
1713 offset = map_start_vma - prange->start;
1714 npages = map_last_vma - map_start_vma + 1;
1715 r = svm_range_map_to_gpus(prange, offset, npages, readonly,
1716 bitmap: ctx->bitmap, wait, flush_tlb);
1717 }
1718 }
1719
1720 if (!r && next == end)
1721 prange->mapped_to_gpu = true;
1722
1723 svm_range_unlock(prange);
1724
1725 addr = next;
1726 }
1727
1728 svm_range_unreserve_bos(ctx);
1729 if (!r)
1730 prange->validate_timestamp = ktime_get_boottime();
1731
1732free_ctx:
1733 kfree(objp: ctx);
1734
1735 return r;
1736}
1737
1738/**
1739 * svm_range_list_lock_and_flush_work - flush pending deferred work
1740 *
1741 * @svms: the svm range list
1742 * @mm: the mm structure
1743 *
1744 * Context: Returns with mmap write lock held, pending deferred work flushed
1745 *
1746 */
1747void
1748svm_range_list_lock_and_flush_work(struct svm_range_list *svms,
1749 struct mm_struct *mm)
1750{
1751retry_flush_work:
1752 flush_work(work: &svms->deferred_list_work);
1753 mmap_write_lock(mm);
1754
1755 if (list_empty(head: &svms->deferred_range_list))
1756 return;
1757 mmap_write_unlock(mm);
1758 pr_debug("retry flush\n");
1759 goto retry_flush_work;
1760}
1761
1762static void svm_range_restore_work(struct work_struct *work)
1763{
1764 struct delayed_work *dwork = to_delayed_work(work);
1765 struct amdkfd_process_info *process_info;
1766 struct svm_range_list *svms;
1767 struct svm_range *prange;
1768 struct kfd_process *p;
1769 struct mm_struct *mm;
1770 int evicted_ranges;
1771 int invalid;
1772 int r;
1773
1774 svms = container_of(dwork, struct svm_range_list, restore_work);
1775 evicted_ranges = atomic_read(v: &svms->evicted_ranges);
1776 if (!evicted_ranges)
1777 return;
1778
1779 pr_debug("restore svm ranges\n");
1780
1781 p = container_of(svms, struct kfd_process, svms);
1782 process_info = p->kgd_process_info;
1783
1784 /* Keep mm reference when svm_range_validate_and_map ranges */
1785 mm = get_task_mm(task: p->lead_thread);
1786 if (!mm) {
1787 pr_debug("svms 0x%p process mm gone\n", svms);
1788 return;
1789 }
1790
1791 mutex_lock(&process_info->lock);
1792 svm_range_list_lock_and_flush_work(svms, mm);
1793 mutex_lock(&svms->lock);
1794
1795 evicted_ranges = atomic_read(v: &svms->evicted_ranges);
1796
1797 list_for_each_entry(prange, &svms->list, list) {
1798 invalid = atomic_read(v: &prange->invalid);
1799 if (!invalid)
1800 continue;
1801
1802 pr_debug("restoring svms 0x%p prange 0x%p [0x%lx %lx] inv %d\n",
1803 prange->svms, prange, prange->start, prange->last,
1804 invalid);
1805
1806 /*
1807 * If range is migrating, wait for migration is done.
1808 */
1809 mutex_lock(&prange->migrate_mutex);
1810
1811 r = svm_range_validate_and_map(mm, map_start: prange->start, map_last: prange->last, prange,
1812 MAX_GPU_INSTANCE, intr: false, wait: true, flush_tlb: false);
1813 if (r)
1814 pr_debug("failed %d to map 0x%lx to gpus\n", r,
1815 prange->start);
1816
1817 mutex_unlock(lock: &prange->migrate_mutex);
1818 if (r)
1819 goto out_reschedule;
1820
1821 if (atomic_cmpxchg(v: &prange->invalid, old: invalid, new: 0) != invalid)
1822 goto out_reschedule;
1823 }
1824
1825 if (atomic_cmpxchg(v: &svms->evicted_ranges, old: evicted_ranges, new: 0) !=
1826 evicted_ranges)
1827 goto out_reschedule;
1828
1829 evicted_ranges = 0;
1830
1831 r = kgd2kfd_resume_mm(mm);
1832 if (r) {
1833 /* No recovery from this failure. Probably the CP is
1834 * hanging. No point trying again.
1835 */
1836 pr_debug("failed %d to resume KFD\n", r);
1837 }
1838
1839 pr_debug("restore svm ranges successfully\n");
1840
1841out_reschedule:
1842 mutex_unlock(lock: &svms->lock);
1843 mmap_write_unlock(mm);
1844 mutex_unlock(lock: &process_info->lock);
1845
1846 /* If validation failed, reschedule another attempt */
1847 if (evicted_ranges) {
1848 pr_debug("reschedule to restore svm range\n");
1849 queue_delayed_work(wq: system_freezable_wq, dwork: &svms->restore_work,
1850 delay: msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1851
1852 kfd_smi_event_queue_restore_rescheduled(mm);
1853 }
1854 mmput(mm);
1855}
1856
1857/**
1858 * svm_range_evict - evict svm range
1859 * @prange: svm range structure
1860 * @mm: current process mm_struct
1861 * @start: starting process queue number
1862 * @last: last process queue number
1863 * @event: mmu notifier event when range is evicted or migrated
1864 *
1865 * Stop all queues of the process to ensure GPU doesn't access the memory, then
1866 * return to let CPU evict the buffer and proceed CPU pagetable update.
1867 *
1868 * Don't need use lock to sync cpu pagetable invalidation with GPU execution.
1869 * If invalidation happens while restore work is running, restore work will
1870 * restart to ensure to get the latest CPU pages mapping to GPU, then start
1871 * the queues.
1872 */
1873static int
1874svm_range_evict(struct svm_range *prange, struct mm_struct *mm,
1875 unsigned long start, unsigned long last,
1876 enum mmu_notifier_event event)
1877{
1878 struct svm_range_list *svms = prange->svms;
1879 struct svm_range *pchild;
1880 struct kfd_process *p;
1881 int r = 0;
1882
1883 p = container_of(svms, struct kfd_process, svms);
1884
1885 pr_debug("invalidate svms 0x%p prange [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
1886 svms, prange->start, prange->last, start, last);
1887
1888 if (!p->xnack_enabled ||
1889 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) {
1890 int evicted_ranges;
1891 bool mapped = prange->mapped_to_gpu;
1892
1893 list_for_each_entry(pchild, &prange->child_list, child_list) {
1894 if (!pchild->mapped_to_gpu)
1895 continue;
1896 mapped = true;
1897 mutex_lock_nested(lock: &pchild->lock, subclass: 1);
1898 if (pchild->start <= last && pchild->last >= start) {
1899 pr_debug("increment pchild invalid [0x%lx 0x%lx]\n",
1900 pchild->start, pchild->last);
1901 atomic_inc(v: &pchild->invalid);
1902 }
1903 mutex_unlock(lock: &pchild->lock);
1904 }
1905
1906 if (!mapped)
1907 return r;
1908
1909 if (prange->start <= last && prange->last >= start)
1910 atomic_inc(v: &prange->invalid);
1911
1912 evicted_ranges = atomic_inc_return(v: &svms->evicted_ranges);
1913 if (evicted_ranges != 1)
1914 return r;
1915
1916 pr_debug("evicting svms 0x%p range [0x%lx 0x%lx]\n",
1917 prange->svms, prange->start, prange->last);
1918
1919 /* First eviction, stop the queues */
1920 r = kgd2kfd_quiesce_mm(mm, trigger: KFD_QUEUE_EVICTION_TRIGGER_SVM);
1921 if (r)
1922 pr_debug("failed to quiesce KFD\n");
1923
1924 pr_debug("schedule to restore svm %p ranges\n", svms);
1925 queue_delayed_work(wq: system_freezable_wq, dwork: &svms->restore_work,
1926 delay: msecs_to_jiffies(AMDGPU_SVM_RANGE_RESTORE_DELAY_MS));
1927 } else {
1928 unsigned long s, l;
1929 uint32_t trigger;
1930
1931 if (event == MMU_NOTIFY_MIGRATE)
1932 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY_MIGRATE;
1933 else
1934 trigger = KFD_SVM_UNMAP_TRIGGER_MMU_NOTIFY;
1935
1936 pr_debug("invalidate unmap svms 0x%p [0x%lx 0x%lx] from GPUs\n",
1937 prange->svms, start, last);
1938 list_for_each_entry(pchild, &prange->child_list, child_list) {
1939 mutex_lock_nested(lock: &pchild->lock, subclass: 1);
1940 s = max(start, pchild->start);
1941 l = min(last, pchild->last);
1942 if (l >= s)
1943 svm_range_unmap_from_gpus(prange: pchild, start: s, last: l, trigger);
1944 mutex_unlock(lock: &pchild->lock);
1945 }
1946 s = max(start, prange->start);
1947 l = min(last, prange->last);
1948 if (l >= s)
1949 svm_range_unmap_from_gpus(prange, start: s, last: l, trigger);
1950 }
1951
1952 return r;
1953}
1954
1955static struct svm_range *svm_range_clone(struct svm_range *old)
1956{
1957 struct svm_range *new;
1958
1959 new = svm_range_new(svms: old->svms, start: old->start, last: old->last, update_mem_usage: false);
1960 if (!new)
1961 return NULL;
1962 if (svm_range_copy_dma_addrs(dst: new, src: old)) {
1963 svm_range_free(prange: new, do_unmap: false);
1964 return NULL;
1965 }
1966 if (old->svm_bo) {
1967 new->ttm_res = old->ttm_res;
1968 new->offset = old->offset;
1969 new->svm_bo = svm_range_bo_ref(svm_bo: old->svm_bo);
1970 spin_lock(lock: &new->svm_bo->list_lock);
1971 list_add(new: &new->svm_bo_list, head: &new->svm_bo->range_list);
1972 spin_unlock(lock: &new->svm_bo->list_lock);
1973 }
1974 new->flags = old->flags;
1975 new->preferred_loc = old->preferred_loc;
1976 new->prefetch_loc = old->prefetch_loc;
1977 new->actual_loc = old->actual_loc;
1978 new->granularity = old->granularity;
1979 new->mapped_to_gpu = old->mapped_to_gpu;
1980 new->vram_pages = old->vram_pages;
1981 bitmap_copy(dst: new->bitmap_access, src: old->bitmap_access, MAX_GPU_INSTANCE);
1982 bitmap_copy(dst: new->bitmap_aip, src: old->bitmap_aip, MAX_GPU_INSTANCE);
1983
1984 return new;
1985}
1986
1987void svm_range_set_max_pages(struct amdgpu_device *adev)
1988{
1989 uint64_t max_pages;
1990 uint64_t pages, _pages;
1991 uint64_t min_pages = 0;
1992 int i, id;
1993
1994 for (i = 0; i < adev->kfd.dev->num_nodes; i++) {
1995 if (adev->kfd.dev->nodes[i]->xcp)
1996 id = adev->kfd.dev->nodes[i]->xcp->id;
1997 else
1998 id = -1;
1999 pages = KFD_XCP_MEMORY_SIZE(adev, id) >> 17;
2000 pages = clamp(pages, 1ULL << 9, 1ULL << 18);
2001 pages = rounddown_pow_of_two(pages);
2002 min_pages = min_not_zero(min_pages, pages);
2003 }
2004
2005 do {
2006 max_pages = READ_ONCE(max_svm_range_pages);
2007 _pages = min_not_zero(max_pages, min_pages);
2008 } while (cmpxchg(&max_svm_range_pages, max_pages, _pages) != max_pages);
2009}
2010
2011static int
2012svm_range_split_new(struct svm_range_list *svms, uint64_t start, uint64_t last,
2013 uint64_t max_pages, struct list_head *insert_list,
2014 struct list_head *update_list)
2015{
2016 struct svm_range *prange;
2017 uint64_t l;
2018
2019 pr_debug("max_svm_range_pages 0x%llx adding [0x%llx 0x%llx]\n",
2020 max_pages, start, last);
2021
2022 while (last >= start) {
2023 l = min(last, ALIGN_DOWN(start + max_pages, max_pages) - 1);
2024
2025 prange = svm_range_new(svms, start, last: l, update_mem_usage: true);
2026 if (!prange)
2027 return -ENOMEM;
2028 list_add(new: &prange->list, head: insert_list);
2029 list_add(new: &prange->update_list, head: update_list);
2030
2031 start = l + 1;
2032 }
2033 return 0;
2034}
2035
2036/**
2037 * svm_range_add - add svm range and handle overlap
2038 * @p: the range add to this process svms
2039 * @start: page size aligned
2040 * @size: page size aligned
2041 * @nattr: number of attributes
2042 * @attrs: array of attributes
2043 * @update_list: output, the ranges need validate and update GPU mapping
2044 * @insert_list: output, the ranges need insert to svms
2045 * @remove_list: output, the ranges are replaced and need remove from svms
2046 * @remap_list: output, remap unaligned svm ranges
2047 *
2048 * Check if the virtual address range has overlap with any existing ranges,
2049 * split partly overlapping ranges and add new ranges in the gaps. All changes
2050 * should be applied to the range_list and interval tree transactionally. If
2051 * any range split or allocation fails, the entire update fails. Therefore any
2052 * existing overlapping svm_ranges are cloned and the original svm_ranges left
2053 * unchanged.
2054 *
2055 * If the transaction succeeds, the caller can update and insert clones and
2056 * new ranges, then free the originals.
2057 *
2058 * Otherwise the caller can free the clones and new ranges, while the old
2059 * svm_ranges remain unchanged.
2060 *
2061 * Context: Process context, caller must hold svms->lock
2062 *
2063 * Return:
2064 * 0 - OK, otherwise error code
2065 */
2066static int
2067svm_range_add(struct kfd_process *p, uint64_t start, uint64_t size,
2068 uint32_t nattr, struct kfd_ioctl_svm_attribute *attrs,
2069 struct list_head *update_list, struct list_head *insert_list,
2070 struct list_head *remove_list, struct list_head *remap_list)
2071{
2072 unsigned long last = start + size - 1UL;
2073 struct svm_range_list *svms = &p->svms;
2074 struct interval_tree_node *node;
2075 struct svm_range *prange;
2076 struct svm_range *tmp;
2077 struct list_head new_list;
2078 int r = 0;
2079
2080 pr_debug("svms 0x%p [0x%llx 0x%lx]\n", &p->svms, start, last);
2081
2082 INIT_LIST_HEAD(list: update_list);
2083 INIT_LIST_HEAD(list: insert_list);
2084 INIT_LIST_HEAD(list: remove_list);
2085 INIT_LIST_HEAD(list: &new_list);
2086 INIT_LIST_HEAD(list: remap_list);
2087
2088 node = interval_tree_iter_first(root: &svms->objects, start, last);
2089 while (node) {
2090 struct interval_tree_node *next;
2091 unsigned long next_start;
2092
2093 pr_debug("found overlap node [0x%lx 0x%lx]\n", node->start,
2094 node->last);
2095
2096 prange = container_of(node, struct svm_range, it_node);
2097 next = interval_tree_iter_next(node, start, last);
2098 next_start = min(node->last, last) + 1;
2099
2100 if (svm_range_is_same_attrs(p, prange, nattr, attrs) &&
2101 prange->mapped_to_gpu) {
2102 /* nothing to do */
2103 } else if (node->start < start || node->last > last) {
2104 /* node intersects the update range and its attributes
2105 * will change. Clone and split it, apply updates only
2106 * to the overlapping part
2107 */
2108 struct svm_range *old = prange;
2109
2110 prange = svm_range_clone(old);
2111 if (!prange) {
2112 r = -ENOMEM;
2113 goto out;
2114 }
2115
2116 list_add(new: &old->update_list, head: remove_list);
2117 list_add(new: &prange->list, head: insert_list);
2118 list_add(new: &prange->update_list, head: update_list);
2119
2120 if (node->start < start) {
2121 pr_debug("change old range start\n");
2122 r = svm_range_split_head(prange, new_start: start,
2123 insert_list, remap_list);
2124 if (r)
2125 goto out;
2126 }
2127 if (node->last > last) {
2128 pr_debug("change old range last\n");
2129 r = svm_range_split_tail(prange, new_last: last,
2130 insert_list, remap_list);
2131 if (r)
2132 goto out;
2133 }
2134 } else {
2135 /* The node is contained within start..last,
2136 * just update it
2137 */
2138 list_add(new: &prange->update_list, head: update_list);
2139 }
2140
2141 /* insert a new node if needed */
2142 if (node->start > start) {
2143 r = svm_range_split_new(svms, start, last: node->start - 1,
2144 READ_ONCE(max_svm_range_pages),
2145 insert_list: &new_list, update_list);
2146 if (r)
2147 goto out;
2148 }
2149
2150 node = next;
2151 start = next_start;
2152 }
2153
2154 /* add a final range at the end if needed */
2155 if (start <= last)
2156 r = svm_range_split_new(svms, start, last,
2157 READ_ONCE(max_svm_range_pages),
2158 insert_list: &new_list, update_list);
2159
2160out:
2161 if (r) {
2162 list_for_each_entry_safe(prange, tmp, insert_list, list)
2163 svm_range_free(prange, do_unmap: false);
2164 list_for_each_entry_safe(prange, tmp, &new_list, list)
2165 svm_range_free(prange, do_unmap: true);
2166 } else {
2167 list_splice(list: &new_list, head: insert_list);
2168 }
2169
2170 return r;
2171}
2172
2173static void
2174svm_range_update_notifier_and_interval_tree(struct mm_struct *mm,
2175 struct svm_range *prange)
2176{
2177 unsigned long start;
2178 unsigned long last;
2179
2180 start = prange->notifier.interval_tree.start >> PAGE_SHIFT;
2181 last = prange->notifier.interval_tree.last >> PAGE_SHIFT;
2182
2183 if (prange->start == start && prange->last == last)
2184 return;
2185
2186 pr_debug("up notifier 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n",
2187 prange->svms, prange, start, last, prange->start,
2188 prange->last);
2189
2190 if (start != 0 && last != 0) {
2191 interval_tree_remove(node: &prange->it_node, root: &prange->svms->objects);
2192 svm_range_remove_notifier(prange);
2193 }
2194 prange->it_node.start = prange->start;
2195 prange->it_node.last = prange->last;
2196
2197 interval_tree_insert(node: &prange->it_node, root: &prange->svms->objects);
2198 svm_range_add_notifier_locked(mm, prange);
2199}
2200
2201static void
2202svm_range_handle_list_op(struct svm_range_list *svms, struct svm_range *prange,
2203 struct mm_struct *mm)
2204{
2205 switch (prange->work_item.op) {
2206 case SVM_OP_NULL:
2207 pr_debug("NULL OP 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2208 svms, prange, prange->start, prange->last);
2209 break;
2210 case SVM_OP_UNMAP_RANGE:
2211 pr_debug("remove 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2212 svms, prange, prange->start, prange->last);
2213 svm_range_unlink(prange);
2214 svm_range_remove_notifier(prange);
2215 svm_range_free(prange, do_unmap: true);
2216 break;
2217 case SVM_OP_UPDATE_RANGE_NOTIFIER:
2218 pr_debug("update notifier 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2219 svms, prange, prange->start, prange->last);
2220 svm_range_update_notifier_and_interval_tree(mm, prange);
2221 break;
2222 case SVM_OP_UPDATE_RANGE_NOTIFIER_AND_MAP:
2223 pr_debug("update and map 0x%p prange 0x%p [0x%lx 0x%lx]\n",
2224 svms, prange, prange->start, prange->last);
2225 svm_range_update_notifier_and_interval_tree(mm, prange);
2226 /* TODO: implement deferred validation and mapping */
2227 break;
2228 case SVM_OP_ADD_RANGE:
2229 pr_debug("add 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms, prange,
2230 prange->start, prange->last);
2231 svm_range_add_to_svms(prange);
2232 svm_range_add_notifier_locked(mm, prange);
2233 break;
2234 case SVM_OP_ADD_RANGE_AND_MAP:
2235 pr_debug("add and map 0x%p prange 0x%p [0x%lx 0x%lx]\n", svms,
2236 prange, prange->start, prange->last);
2237 svm_range_add_to_svms(prange);
2238 svm_range_add_notifier_locked(mm, prange);
2239 /* TODO: implement deferred validation and mapping */
2240 break;
2241 default:
2242 WARN_ONCE(1, "Unknown prange 0x%p work op %d\n", prange,
2243 prange->work_item.op);
2244 }
2245}
2246
2247static void svm_range_drain_retry_fault(struct svm_range_list *svms)
2248{
2249 struct kfd_process_device *pdd;
2250 struct kfd_process *p;
2251 int drain;
2252 uint32_t i;
2253
2254 p = container_of(svms, struct kfd_process, svms);
2255
2256restart:
2257 drain = atomic_read(v: &svms->drain_pagefaults);
2258 if (!drain)
2259 return;
2260
2261 for_each_set_bit(i, svms->bitmap_supported, p->n_pdds) {
2262 pdd = p->pdds[i];
2263 if (!pdd)
2264 continue;
2265
2266 pr_debug("drain retry fault gpu %d svms %p\n", i, svms);
2267
2268 amdgpu_ih_wait_on_checkpoint_process_ts(adev: pdd->dev->adev,
2269 ih: pdd->dev->adev->irq.retry_cam_enabled ?
2270 &pdd->dev->adev->irq.ih :
2271 &pdd->dev->adev->irq.ih1);
2272
2273 if (pdd->dev->adev->irq.retry_cam_enabled)
2274 amdgpu_ih_wait_on_checkpoint_process_ts(adev: pdd->dev->adev,
2275 ih: &pdd->dev->adev->irq.ih_soft);
2276
2277
2278 pr_debug("drain retry fault gpu %d svms 0x%p done\n", i, svms);
2279 }
2280 if (atomic_cmpxchg(v: &svms->drain_pagefaults, old: drain, new: 0) != drain)
2281 goto restart;
2282}
2283
2284static void svm_range_deferred_list_work(struct work_struct *work)
2285{
2286 struct svm_range_list *svms;
2287 struct svm_range *prange;
2288 struct mm_struct *mm;
2289
2290 svms = container_of(work, struct svm_range_list, deferred_list_work);
2291 pr_debug("enter svms 0x%p\n", svms);
2292
2293 spin_lock(lock: &svms->deferred_list_lock);
2294 while (!list_empty(head: &svms->deferred_range_list)) {
2295 prange = list_first_entry(&svms->deferred_range_list,
2296 struct svm_range, deferred_list);
2297 spin_unlock(lock: &svms->deferred_list_lock);
2298
2299 pr_debug("prange 0x%p [0x%lx 0x%lx] op %d\n", prange,
2300 prange->start, prange->last, prange->work_item.op);
2301
2302 mm = prange->work_item.mm;
2303retry:
2304 mmap_write_lock(mm);
2305
2306 /* Checking for the need to drain retry faults must be inside
2307 * mmap write lock to serialize with munmap notifiers.
2308 */
2309 if (unlikely(atomic_read(&svms->drain_pagefaults))) {
2310 mmap_write_unlock(mm);
2311 svm_range_drain_retry_fault(svms);
2312 goto retry;
2313 }
2314
2315 /* Remove from deferred_list must be inside mmap write lock, for
2316 * two race cases:
2317 * 1. unmap_from_cpu may change work_item.op and add the range
2318 * to deferred_list again, cause use after free bug.
2319 * 2. svm_range_list_lock_and_flush_work may hold mmap write
2320 * lock and continue because deferred_list is empty, but
2321 * deferred_list work is actually waiting for mmap lock.
2322 */
2323 spin_lock(lock: &svms->deferred_list_lock);
2324 list_del_init(entry: &prange->deferred_list);
2325 spin_unlock(lock: &svms->deferred_list_lock);
2326
2327 mutex_lock(&svms->lock);
2328 mutex_lock(&prange->migrate_mutex);
2329 while (!list_empty(head: &prange->child_list)) {
2330 struct svm_range *pchild;
2331
2332 pchild = list_first_entry(&prange->child_list,
2333 struct svm_range, child_list);
2334 pr_debug("child prange 0x%p op %d\n", pchild,
2335 pchild->work_item.op);
2336 list_del_init(entry: &pchild->child_list);
2337 svm_range_handle_list_op(svms, prange: pchild, mm);
2338 }
2339 mutex_unlock(lock: &prange->migrate_mutex);
2340
2341 svm_range_handle_list_op(svms, prange, mm);
2342 mutex_unlock(lock: &svms->lock);
2343 mmap_write_unlock(mm);
2344
2345 /* Pairs with mmget in svm_range_add_list_work. If dropping the
2346 * last mm refcount, schedule release work to avoid circular locking
2347 */
2348 mmput_async(mm);
2349
2350 spin_lock(lock: &svms->deferred_list_lock);
2351 }
2352 spin_unlock(lock: &svms->deferred_list_lock);
2353 pr_debug("exit svms 0x%p\n", svms);
2354}
2355
2356void
2357svm_range_add_list_work(struct svm_range_list *svms, struct svm_range *prange,
2358 struct mm_struct *mm, enum svm_work_list_ops op)
2359{
2360 spin_lock(lock: &svms->deferred_list_lock);
2361 /* if prange is on the deferred list */
2362 if (!list_empty(head: &prange->deferred_list)) {
2363 pr_debug("update exist prange 0x%p work op %d\n", prange, op);
2364 WARN_ONCE(prange->work_item.mm != mm, "unmatch mm\n");
2365 if (op != SVM_OP_NULL &&
2366 prange->work_item.op != SVM_OP_UNMAP_RANGE)
2367 prange->work_item.op = op;
2368 } else {
2369 prange->work_item.op = op;
2370
2371 /* Pairs with mmput in deferred_list_work */
2372 mmget(mm);
2373 prange->work_item.mm = mm;
2374 list_add_tail(new: &prange->deferred_list,
2375 head: &prange->svms->deferred_range_list);
2376 pr_debug("add prange 0x%p [0x%lx 0x%lx] to work list op %d\n",
2377 prange, prange->start, prange->last, op);
2378 }
2379 spin_unlock(lock: &svms->deferred_list_lock);
2380}
2381
2382void schedule_deferred_list_work(struct svm_range_list *svms)
2383{
2384 spin_lock(lock: &svms->deferred_list_lock);
2385 if (!list_empty(head: &svms->deferred_range_list))
2386 schedule_work(work: &svms->deferred_list_work);
2387 spin_unlock(lock: &svms->deferred_list_lock);
2388}
2389
2390static void
2391svm_range_unmap_split(struct mm_struct *mm, struct svm_range *parent,
2392 struct svm_range *prange, unsigned long start,
2393 unsigned long last)
2394{
2395 struct svm_range *head;
2396 struct svm_range *tail;
2397
2398 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2399 pr_debug("prange 0x%p [0x%lx 0x%lx] is already freed\n", prange,
2400 prange->start, prange->last);
2401 return;
2402 }
2403 if (start > prange->last || last < prange->start)
2404 return;
2405
2406 head = tail = prange;
2407 if (start > prange->start)
2408 svm_range_split(prange, start: prange->start, last: start - 1, new: &tail);
2409 if (last < tail->last)
2410 svm_range_split(prange: tail, start: last + 1, last: tail->last, new: &head);
2411
2412 if (head != prange && tail != prange) {
2413 svm_range_add_child(prange: parent, mm, pchild: head, op: SVM_OP_UNMAP_RANGE);
2414 svm_range_add_child(prange: parent, mm, pchild: tail, op: SVM_OP_ADD_RANGE);
2415 } else if (tail != prange) {
2416 svm_range_add_child(prange: parent, mm, pchild: tail, op: SVM_OP_UNMAP_RANGE);
2417 } else if (head != prange) {
2418 svm_range_add_child(prange: parent, mm, pchild: head, op: SVM_OP_UNMAP_RANGE);
2419 } else if (parent != prange) {
2420 prange->work_item.op = SVM_OP_UNMAP_RANGE;
2421 }
2422}
2423
2424static void
2425svm_range_unmap_from_cpu(struct mm_struct *mm, struct svm_range *prange,
2426 unsigned long start, unsigned long last)
2427{
2428 uint32_t trigger = KFD_SVM_UNMAP_TRIGGER_UNMAP_FROM_CPU;
2429 struct svm_range_list *svms;
2430 struct svm_range *pchild;
2431 struct kfd_process *p;
2432 unsigned long s, l;
2433 bool unmap_parent;
2434
2435 p = kfd_lookup_process_by_mm(mm);
2436 if (!p)
2437 return;
2438 svms = &p->svms;
2439
2440 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] [0x%lx 0x%lx]\n", svms,
2441 prange, prange->start, prange->last, start, last);
2442
2443 /* Make sure pending page faults are drained in the deferred worker
2444 * before the range is freed to avoid straggler interrupts on
2445 * unmapped memory causing "phantom faults".
2446 */
2447 atomic_inc(v: &svms->drain_pagefaults);
2448
2449 unmap_parent = start <= prange->start && last >= prange->last;
2450
2451 list_for_each_entry(pchild, &prange->child_list, child_list) {
2452 mutex_lock_nested(lock: &pchild->lock, subclass: 1);
2453 s = max(start, pchild->start);
2454 l = min(last, pchild->last);
2455 if (l >= s)
2456 svm_range_unmap_from_gpus(prange: pchild, start: s, last: l, trigger);
2457 svm_range_unmap_split(mm, parent: prange, prange: pchild, start, last);
2458 mutex_unlock(lock: &pchild->lock);
2459 }
2460 s = max(start, prange->start);
2461 l = min(last, prange->last);
2462 if (l >= s)
2463 svm_range_unmap_from_gpus(prange, start: s, last: l, trigger);
2464 svm_range_unmap_split(mm, parent: prange, prange, start, last);
2465
2466 if (unmap_parent)
2467 svm_range_add_list_work(svms, prange, mm, op: SVM_OP_UNMAP_RANGE);
2468 else
2469 svm_range_add_list_work(svms, prange, mm,
2470 op: SVM_OP_UPDATE_RANGE_NOTIFIER);
2471 schedule_deferred_list_work(svms);
2472
2473 kfd_unref_process(p);
2474}
2475
2476/**
2477 * svm_range_cpu_invalidate_pagetables - interval notifier callback
2478 * @mni: mmu_interval_notifier struct
2479 * @range: mmu_notifier_range struct
2480 * @cur_seq: value to pass to mmu_interval_set_seq()
2481 *
2482 * If event is MMU_NOTIFY_UNMAP, this is from CPU unmap range, otherwise, it
2483 * is from migration, or CPU page invalidation callback.
2484 *
2485 * For unmap event, unmap range from GPUs, remove prange from svms in a delayed
2486 * work thread, and split prange if only part of prange is unmapped.
2487 *
2488 * For invalidation event, if GPU retry fault is not enabled, evict the queues,
2489 * then schedule svm_range_restore_work to update GPU mapping and resume queues.
2490 * If GPU retry fault is enabled, unmap the svm range from GPU, retry fault will
2491 * update GPU mapping to recover.
2492 *
2493 * Context: mmap lock, notifier_invalidate_start lock are held
2494 * for invalidate event, prange lock is held if this is from migration
2495 */
2496static bool
2497svm_range_cpu_invalidate_pagetables(struct mmu_interval_notifier *mni,
2498 const struct mmu_notifier_range *range,
2499 unsigned long cur_seq)
2500{
2501 struct svm_range *prange;
2502 unsigned long start;
2503 unsigned long last;
2504
2505 if (range->event == MMU_NOTIFY_RELEASE)
2506 return true;
2507 if (!mmget_not_zero(mm: mni->mm))
2508 return true;
2509
2510 start = mni->interval_tree.start;
2511 last = mni->interval_tree.last;
2512 start = max(start, range->start) >> PAGE_SHIFT;
2513 last = min(last, range->end - 1) >> PAGE_SHIFT;
2514 pr_debug("[0x%lx 0x%lx] range[0x%lx 0x%lx] notifier[0x%lx 0x%lx] %d\n",
2515 start, last, range->start >> PAGE_SHIFT,
2516 (range->end - 1) >> PAGE_SHIFT,
2517 mni->interval_tree.start >> PAGE_SHIFT,
2518 mni->interval_tree.last >> PAGE_SHIFT, range->event);
2519
2520 prange = container_of(mni, struct svm_range, notifier);
2521
2522 svm_range_lock(prange);
2523 mmu_interval_set_seq(interval_sub: mni, cur_seq);
2524
2525 switch (range->event) {
2526 case MMU_NOTIFY_UNMAP:
2527 svm_range_unmap_from_cpu(mm: mni->mm, prange, start, last);
2528 break;
2529 default:
2530 svm_range_evict(prange, mm: mni->mm, start, last, event: range->event);
2531 break;
2532 }
2533
2534 svm_range_unlock(prange);
2535 mmput(mni->mm);
2536
2537 return true;
2538}
2539
2540/**
2541 * svm_range_from_addr - find svm range from fault address
2542 * @svms: svm range list header
2543 * @addr: address to search range interval tree, in pages
2544 * @parent: parent range if range is on child list
2545 *
2546 * Context: The caller must hold svms->lock
2547 *
2548 * Return: the svm_range found or NULL
2549 */
2550struct svm_range *
2551svm_range_from_addr(struct svm_range_list *svms, unsigned long addr,
2552 struct svm_range **parent)
2553{
2554 struct interval_tree_node *node;
2555 struct svm_range *prange;
2556 struct svm_range *pchild;
2557
2558 node = interval_tree_iter_first(root: &svms->objects, start: addr, last: addr);
2559 if (!node)
2560 return NULL;
2561
2562 prange = container_of(node, struct svm_range, it_node);
2563 pr_debug("address 0x%lx prange [0x%lx 0x%lx] node [0x%lx 0x%lx]\n",
2564 addr, prange->start, prange->last, node->start, node->last);
2565
2566 if (addr >= prange->start && addr <= prange->last) {
2567 if (parent)
2568 *parent = prange;
2569 return prange;
2570 }
2571 list_for_each_entry(pchild, &prange->child_list, child_list)
2572 if (addr >= pchild->start && addr <= pchild->last) {
2573 pr_debug("found address 0x%lx pchild [0x%lx 0x%lx]\n",
2574 addr, pchild->start, pchild->last);
2575 if (parent)
2576 *parent = prange;
2577 return pchild;
2578 }
2579
2580 return NULL;
2581}
2582
2583/* svm_range_best_restore_location - decide the best fault restore location
2584 * @prange: svm range structure
2585 * @adev: the GPU on which vm fault happened
2586 *
2587 * This is only called when xnack is on, to decide the best location to restore
2588 * the range mapping after GPU vm fault. Caller uses the best location to do
2589 * migration if actual loc is not best location, then update GPU page table
2590 * mapping to the best location.
2591 *
2592 * If the preferred loc is accessible by faulting GPU, use preferred loc.
2593 * If vm fault gpu idx is on range ACCESSIBLE bitmap, best_loc is vm fault gpu
2594 * If vm fault gpu idx is on range ACCESSIBLE_IN_PLACE bitmap, then
2595 * if range actual loc is cpu, best_loc is cpu
2596 * if vm fault gpu is on xgmi same hive of range actual loc gpu, best_loc is
2597 * range actual loc.
2598 * Otherwise, GPU no access, best_loc is -1.
2599 *
2600 * Return:
2601 * -1 means vm fault GPU no access
2602 * 0 for CPU or GPU id
2603 */
2604static int32_t
2605svm_range_best_restore_location(struct svm_range *prange,
2606 struct kfd_node *node,
2607 int32_t *gpuidx)
2608{
2609 struct kfd_node *bo_node, *preferred_node;
2610 struct kfd_process *p;
2611 uint32_t gpuid;
2612 int r;
2613
2614 p = container_of(prange->svms, struct kfd_process, svms);
2615
2616 r = kfd_process_gpuid_from_node(p, node, gpuid: &gpuid, gpuidx);
2617 if (r < 0) {
2618 pr_debug("failed to get gpuid from kgd\n");
2619 return -1;
2620 }
2621
2622 if (node->adev->gmc.is_app_apu)
2623 return 0;
2624
2625 if (prange->preferred_loc == gpuid ||
2626 prange->preferred_loc == KFD_IOCTL_SVM_LOCATION_SYSMEM) {
2627 return prange->preferred_loc;
2628 } else if (prange->preferred_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
2629 preferred_node = svm_range_get_node_by_id(prange, gpu_id: prange->preferred_loc);
2630 if (preferred_node && svm_nodes_in_same_hive(node_a: node, node_b: preferred_node))
2631 return prange->preferred_loc;
2632 /* fall through */
2633 }
2634
2635 if (test_bit(*gpuidx, prange->bitmap_access))
2636 return gpuid;
2637
2638 if (test_bit(*gpuidx, prange->bitmap_aip)) {
2639 if (!prange->actual_loc)
2640 return 0;
2641
2642 bo_node = svm_range_get_node_by_id(prange, gpu_id: prange->actual_loc);
2643 if (bo_node && svm_nodes_in_same_hive(node_a: node, node_b: bo_node))
2644 return prange->actual_loc;
2645 else
2646 return 0;
2647 }
2648
2649 return -1;
2650}
2651
2652static int
2653svm_range_get_range_boundaries(struct kfd_process *p, int64_t addr,
2654 unsigned long *start, unsigned long *last,
2655 bool *is_heap_stack)
2656{
2657 struct vm_area_struct *vma;
2658 struct interval_tree_node *node;
2659 struct rb_node *rb_node;
2660 unsigned long start_limit, end_limit;
2661
2662 vma = vma_lookup(mm: p->mm, addr: addr << PAGE_SHIFT);
2663 if (!vma) {
2664 pr_debug("VMA does not exist in address [0x%llx]\n", addr);
2665 return -EFAULT;
2666 }
2667
2668 *is_heap_stack = vma_is_initial_heap(vma) || vma_is_initial_stack(vma);
2669
2670 start_limit = max(vma->vm_start >> PAGE_SHIFT,
2671 (unsigned long)ALIGN_DOWN(addr, 2UL << 8));
2672 end_limit = min(vma->vm_end >> PAGE_SHIFT,
2673 (unsigned long)ALIGN(addr + 1, 2UL << 8));
2674 /* First range that starts after the fault address */
2675 node = interval_tree_iter_first(root: &p->svms.objects, start: addr + 1, ULONG_MAX);
2676 if (node) {
2677 end_limit = min(end_limit, node->start);
2678 /* Last range that ends before the fault address */
2679 rb_node = rb_prev(&node->rb);
2680 } else {
2681 /* Last range must end before addr because
2682 * there was no range after addr
2683 */
2684 rb_node = rb_last(&p->svms.objects.rb_root);
2685 }
2686 if (rb_node) {
2687 node = container_of(rb_node, struct interval_tree_node, rb);
2688 if (node->last >= addr) {
2689 WARN(1, "Overlap with prev node and page fault addr\n");
2690 return -EFAULT;
2691 }
2692 start_limit = max(start_limit, node->last + 1);
2693 }
2694
2695 *start = start_limit;
2696 *last = end_limit - 1;
2697
2698 pr_debug("vma [0x%lx 0x%lx] range [0x%lx 0x%lx] is_heap_stack %d\n",
2699 vma->vm_start >> PAGE_SHIFT, vma->vm_end >> PAGE_SHIFT,
2700 *start, *last, *is_heap_stack);
2701
2702 return 0;
2703}
2704
2705static int
2706svm_range_check_vm_userptr(struct kfd_process *p, uint64_t start, uint64_t last,
2707 uint64_t *bo_s, uint64_t *bo_l)
2708{
2709 struct amdgpu_bo_va_mapping *mapping;
2710 struct interval_tree_node *node;
2711 struct amdgpu_bo *bo = NULL;
2712 unsigned long userptr;
2713 uint32_t i;
2714 int r;
2715
2716 for (i = 0; i < p->n_pdds; i++) {
2717 struct amdgpu_vm *vm;
2718
2719 if (!p->pdds[i]->drm_priv)
2720 continue;
2721
2722 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
2723 r = amdgpu_bo_reserve(bo: vm->root.bo, no_intr: false);
2724 if (r)
2725 return r;
2726
2727 /* Check userptr by searching entire vm->va interval tree */
2728 node = interval_tree_iter_first(root: &vm->va, start: 0, last: ~0ULL);
2729 while (node) {
2730 mapping = container_of((struct rb_node *)node,
2731 struct amdgpu_bo_va_mapping, rb);
2732 bo = mapping->bo_va->base.bo;
2733
2734 if (!amdgpu_ttm_tt_affect_userptr(ttm: bo->tbo.ttm,
2735 start: start << PAGE_SHIFT,
2736 end: last << PAGE_SHIFT,
2737 userptr: &userptr)) {
2738 node = interval_tree_iter_next(node, start: 0, last: ~0ULL);
2739 continue;
2740 }
2741
2742 pr_debug("[0x%llx 0x%llx] already userptr mapped\n",
2743 start, last);
2744 if (bo_s && bo_l) {
2745 *bo_s = userptr >> PAGE_SHIFT;
2746 *bo_l = *bo_s + bo->tbo.ttm->num_pages - 1;
2747 }
2748 amdgpu_bo_unreserve(bo: vm->root.bo);
2749 return -EADDRINUSE;
2750 }
2751 amdgpu_bo_unreserve(bo: vm->root.bo);
2752 }
2753 return 0;
2754}
2755
2756static struct
2757svm_range *svm_range_create_unregistered_range(struct kfd_node *node,
2758 struct kfd_process *p,
2759 struct mm_struct *mm,
2760 int64_t addr)
2761{
2762 struct svm_range *prange = NULL;
2763 unsigned long start, last;
2764 uint32_t gpuid, gpuidx;
2765 bool is_heap_stack;
2766 uint64_t bo_s = 0;
2767 uint64_t bo_l = 0;
2768 int r;
2769
2770 if (svm_range_get_range_boundaries(p, addr, start: &start, last: &last,
2771 is_heap_stack: &is_heap_stack))
2772 return NULL;
2773
2774 r = svm_range_check_vm(p, start, last, bo_s: &bo_s, bo_l: &bo_l);
2775 if (r != -EADDRINUSE)
2776 r = svm_range_check_vm_userptr(p, start, last, bo_s: &bo_s, bo_l: &bo_l);
2777
2778 if (r == -EADDRINUSE) {
2779 if (addr >= bo_s && addr <= bo_l)
2780 return NULL;
2781
2782 /* Create one page svm range if 2MB range overlapping */
2783 start = addr;
2784 last = addr;
2785 }
2786
2787 prange = svm_range_new(svms: &p->svms, start, last, update_mem_usage: true);
2788 if (!prange) {
2789 pr_debug("Failed to create prange in address [0x%llx]\n", addr);
2790 return NULL;
2791 }
2792 if (kfd_process_gpuid_from_node(p, node, gpuid: &gpuid, gpuidx: &gpuidx)) {
2793 pr_debug("failed to get gpuid from kgd\n");
2794 svm_range_free(prange, do_unmap: true);
2795 return NULL;
2796 }
2797
2798 if (is_heap_stack)
2799 prange->preferred_loc = KFD_IOCTL_SVM_LOCATION_SYSMEM;
2800
2801 svm_range_add_to_svms(prange);
2802 svm_range_add_notifier_locked(mm, prange);
2803
2804 return prange;
2805}
2806
2807/* svm_range_skip_recover - decide if prange can be recovered
2808 * @prange: svm range structure
2809 *
2810 * GPU vm retry fault handle skip recover the range for cases:
2811 * 1. prange is on deferred list to be removed after unmap, it is stale fault,
2812 * deferred list work will drain the stale fault before free the prange.
2813 * 2. prange is on deferred list to add interval notifier after split, or
2814 * 3. prange is child range, it is split from parent prange, recover later
2815 * after interval notifier is added.
2816 *
2817 * Return: true to skip recover, false to recover
2818 */
2819static bool svm_range_skip_recover(struct svm_range *prange)
2820{
2821 struct svm_range_list *svms = prange->svms;
2822
2823 spin_lock(lock: &svms->deferred_list_lock);
2824 if (list_empty(head: &prange->deferred_list) &&
2825 list_empty(head: &prange->child_list)) {
2826 spin_unlock(lock: &svms->deferred_list_lock);
2827 return false;
2828 }
2829 spin_unlock(lock: &svms->deferred_list_lock);
2830
2831 if (prange->work_item.op == SVM_OP_UNMAP_RANGE) {
2832 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] unmapped\n",
2833 svms, prange, prange->start, prange->last);
2834 return true;
2835 }
2836 if (prange->work_item.op == SVM_OP_ADD_RANGE_AND_MAP ||
2837 prange->work_item.op == SVM_OP_ADD_RANGE) {
2838 pr_debug("svms 0x%p prange 0x%p [0x%lx 0x%lx] not added yet\n",
2839 svms, prange, prange->start, prange->last);
2840 return true;
2841 }
2842 return false;
2843}
2844
2845static void
2846svm_range_count_fault(struct kfd_node *node, struct kfd_process *p,
2847 int32_t gpuidx)
2848{
2849 struct kfd_process_device *pdd;
2850
2851 /* fault is on different page of same range
2852 * or fault is skipped to recover later
2853 * or fault is on invalid virtual address
2854 */
2855 if (gpuidx == MAX_GPU_INSTANCE) {
2856 uint32_t gpuid;
2857 int r;
2858
2859 r = kfd_process_gpuid_from_node(p, node, gpuid: &gpuid, gpuidx: &gpuidx);
2860 if (r < 0)
2861 return;
2862 }
2863
2864 /* fault is recovered
2865 * or fault cannot recover because GPU no access on the range
2866 */
2867 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
2868 if (pdd)
2869 WRITE_ONCE(pdd->faults, pdd->faults + 1);
2870}
2871
2872static bool
2873svm_fault_allowed(struct vm_area_struct *vma, bool write_fault)
2874{
2875 unsigned long requested = VM_READ;
2876
2877 if (write_fault)
2878 requested |= VM_WRITE;
2879
2880 pr_debug("requested 0x%lx, vma permission flags 0x%lx\n", requested,
2881 vma->vm_flags);
2882 return (vma->vm_flags & requested) == requested;
2883}
2884
2885int
2886svm_range_restore_pages(struct amdgpu_device *adev, unsigned int pasid,
2887 uint32_t vmid, uint32_t node_id,
2888 uint64_t addr, bool write_fault)
2889{
2890 unsigned long start, last, size;
2891 struct mm_struct *mm = NULL;
2892 struct svm_range_list *svms;
2893 struct svm_range *prange;
2894 struct kfd_process *p;
2895 ktime_t timestamp = ktime_get_boottime();
2896 struct kfd_node *node;
2897 int32_t best_loc;
2898 int32_t gpuidx = MAX_GPU_INSTANCE;
2899 bool write_locked = false;
2900 struct vm_area_struct *vma;
2901 bool migration = false;
2902 int r = 0;
2903
2904 if (!KFD_IS_SVM_API_SUPPORTED(adev)) {
2905 pr_debug("device does not support SVM\n");
2906 return -EFAULT;
2907 }
2908
2909 p = kfd_lookup_process_by_pasid(pasid);
2910 if (!p) {
2911 pr_debug("kfd process not founded pasid 0x%x\n", pasid);
2912 return 0;
2913 }
2914 svms = &p->svms;
2915
2916 pr_debug("restoring svms 0x%p fault address 0x%llx\n", svms, addr);
2917
2918 if (atomic_read(v: &svms->drain_pagefaults)) {
2919 pr_debug("draining retry fault, drop fault 0x%llx\n", addr);
2920 r = 0;
2921 goto out;
2922 }
2923
2924 if (!p->xnack_enabled) {
2925 pr_debug("XNACK not enabled for pasid 0x%x\n", pasid);
2926 r = -EFAULT;
2927 goto out;
2928 }
2929
2930 /* p->lead_thread is available as kfd_process_wq_release flush the work
2931 * before releasing task ref.
2932 */
2933 mm = get_task_mm(task: p->lead_thread);
2934 if (!mm) {
2935 pr_debug("svms 0x%p failed to get mm\n", svms);
2936 r = 0;
2937 goto out;
2938 }
2939
2940 node = kfd_node_by_irq_ids(adev, node_id, vmid);
2941 if (!node) {
2942 pr_debug("kfd node does not exist node_id: %d, vmid: %d\n", node_id,
2943 vmid);
2944 r = -EFAULT;
2945 goto out;
2946 }
2947 mmap_read_lock(mm);
2948retry_write_locked:
2949 mutex_lock(&svms->lock);
2950 prange = svm_range_from_addr(svms, addr, NULL);
2951 if (!prange) {
2952 pr_debug("failed to find prange svms 0x%p address [0x%llx]\n",
2953 svms, addr);
2954 if (!write_locked) {
2955 /* Need the write lock to create new range with MMU notifier.
2956 * Also flush pending deferred work to make sure the interval
2957 * tree is up to date before we add a new range
2958 */
2959 mutex_unlock(lock: &svms->lock);
2960 mmap_read_unlock(mm);
2961 mmap_write_lock(mm);
2962 write_locked = true;
2963 goto retry_write_locked;
2964 }
2965 prange = svm_range_create_unregistered_range(node, p, mm, addr);
2966 if (!prange) {
2967 pr_debug("failed to create unregistered range svms 0x%p address [0x%llx]\n",
2968 svms, addr);
2969 mmap_write_downgrade(mm);
2970 r = -EFAULT;
2971 goto out_unlock_svms;
2972 }
2973 }
2974 if (write_locked)
2975 mmap_write_downgrade(mm);
2976
2977 mutex_lock(&prange->migrate_mutex);
2978
2979 if (svm_range_skip_recover(prange)) {
2980 amdgpu_gmc_filter_faults_remove(adev: node->adev, addr, pasid);
2981 r = 0;
2982 goto out_unlock_range;
2983 }
2984
2985 /* skip duplicate vm fault on different pages of same range */
2986 if (ktime_before(cmp1: timestamp, ktime_add_ns(prange->validate_timestamp,
2987 AMDGPU_SVM_RANGE_RETRY_FAULT_PENDING))) {
2988 pr_debug("svms 0x%p [0x%lx %lx] already restored\n",
2989 svms, prange->start, prange->last);
2990 r = 0;
2991 goto out_unlock_range;
2992 }
2993
2994 /* __do_munmap removed VMA, return success as we are handling stale
2995 * retry fault.
2996 */
2997 vma = vma_lookup(mm, addr: addr << PAGE_SHIFT);
2998 if (!vma) {
2999 pr_debug("address 0x%llx VMA is removed\n", addr);
3000 r = 0;
3001 goto out_unlock_range;
3002 }
3003
3004 if (!svm_fault_allowed(vma, write_fault)) {
3005 pr_debug("fault addr 0x%llx no %s permission\n", addr,
3006 write_fault ? "write" : "read");
3007 r = -EPERM;
3008 goto out_unlock_range;
3009 }
3010
3011 best_loc = svm_range_best_restore_location(prange, node, gpuidx: &gpuidx);
3012 if (best_loc == -1) {
3013 pr_debug("svms %p failed get best restore loc [0x%lx 0x%lx]\n",
3014 svms, prange->start, prange->last);
3015 r = -EACCES;
3016 goto out_unlock_range;
3017 }
3018
3019 pr_debug("svms %p [0x%lx 0x%lx] best restore 0x%x, actual loc 0x%x\n",
3020 svms, prange->start, prange->last, best_loc,
3021 prange->actual_loc);
3022
3023 kfd_smi_event_page_fault_start(node, pid: p->lead_thread->pid, address: addr,
3024 write_fault, ts: timestamp);
3025
3026 /* Align migration range start and size to granularity size */
3027 size = 1UL << prange->granularity;
3028 start = max_t(unsigned long, ALIGN_DOWN(addr, size), prange->start);
3029 last = min_t(unsigned long, ALIGN(addr + 1, size) - 1, prange->last);
3030 if (prange->actual_loc != 0 || best_loc != 0) {
3031 migration = true;
3032
3033 if (best_loc) {
3034 r = svm_migrate_to_vram(prange, best_loc, start, last,
3035 mm, trigger: KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU);
3036 if (r) {
3037 pr_debug("svm_migrate_to_vram failed (%d) at %llx, falling back to system memory\n",
3038 r, addr);
3039 /* Fallback to system memory if migration to
3040 * VRAM failed
3041 */
3042 if (prange->actual_loc && prange->actual_loc != best_loc)
3043 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3044 trigger: KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3045 else
3046 r = 0;
3047 }
3048 } else {
3049 r = svm_migrate_vram_to_ram(prange, mm, start, last,
3050 trigger: KFD_MIGRATE_TRIGGER_PAGEFAULT_GPU, NULL);
3051 }
3052 if (r) {
3053 pr_debug("failed %d to migrate svms %p [0x%lx 0x%lx]\n",
3054 r, svms, start, last);
3055 goto out_unlock_range;
3056 }
3057 }
3058
3059 r = svm_range_validate_and_map(mm, map_start: start, map_last: last, prange, gpuidx, intr: false,
3060 wait: false, flush_tlb: false);
3061 if (r)
3062 pr_debug("failed %d to map svms 0x%p [0x%lx 0x%lx] to gpus\n",
3063 r, svms, start, last);
3064
3065 kfd_smi_event_page_fault_end(node, pid: p->lead_thread->pid, address: addr,
3066 migration);
3067
3068out_unlock_range:
3069 mutex_unlock(lock: &prange->migrate_mutex);
3070out_unlock_svms:
3071 mutex_unlock(lock: &svms->lock);
3072 mmap_read_unlock(mm);
3073
3074 svm_range_count_fault(node, p, gpuidx);
3075
3076 mmput(mm);
3077out:
3078 kfd_unref_process(p);
3079
3080 if (r == -EAGAIN) {
3081 pr_debug("recover vm fault later\n");
3082 amdgpu_gmc_filter_faults_remove(adev: node->adev, addr, pasid);
3083 r = 0;
3084 }
3085 return r;
3086}
3087
3088int
3089svm_range_switch_xnack_reserve_mem(struct kfd_process *p, bool xnack_enabled)
3090{
3091 struct svm_range *prange, *pchild;
3092 uint64_t reserved_size = 0;
3093 uint64_t size;
3094 int r = 0;
3095
3096 pr_debug("switching xnack from %d to %d\n", p->xnack_enabled, xnack_enabled);
3097
3098 mutex_lock(&p->svms.lock);
3099
3100 list_for_each_entry(prange, &p->svms.list, list) {
3101 svm_range_lock(prange);
3102 list_for_each_entry(pchild, &prange->child_list, child_list) {
3103 size = (pchild->last - pchild->start + 1) << PAGE_SHIFT;
3104 if (xnack_enabled) {
3105 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3106 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
3107 } else {
3108 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3109 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
3110 if (r)
3111 goto out_unlock;
3112 reserved_size += size;
3113 }
3114 }
3115
3116 size = (prange->last - prange->start + 1) << PAGE_SHIFT;
3117 if (xnack_enabled) {
3118 amdgpu_amdkfd_unreserve_mem_limit(NULL, size,
3119 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
3120 } else {
3121 r = amdgpu_amdkfd_reserve_mem_limit(NULL, size,
3122 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
3123 if (r)
3124 goto out_unlock;
3125 reserved_size += size;
3126 }
3127out_unlock:
3128 svm_range_unlock(prange);
3129 if (r)
3130 break;
3131 }
3132
3133 if (r)
3134 amdgpu_amdkfd_unreserve_mem_limit(NULL, size: reserved_size,
3135 KFD_IOC_ALLOC_MEM_FLAGS_USERPTR, xcp_id: 0);
3136 else
3137 /* Change xnack mode must be inside svms lock, to avoid race with
3138 * svm_range_deferred_list_work unreserve memory in parallel.
3139 */
3140 p->xnack_enabled = xnack_enabled;
3141
3142 mutex_unlock(lock: &p->svms.lock);
3143 return r;
3144}
3145
3146void svm_range_list_fini(struct kfd_process *p)
3147{
3148 struct svm_range *prange;
3149 struct svm_range *next;
3150
3151 pr_debug("pasid 0x%x svms 0x%p\n", p->pasid, &p->svms);
3152
3153 cancel_delayed_work_sync(dwork: &p->svms.restore_work);
3154
3155 /* Ensure list work is finished before process is destroyed */
3156 flush_work(work: &p->svms.deferred_list_work);
3157
3158 /*
3159 * Ensure no retry fault comes in afterwards, as page fault handler will
3160 * not find kfd process and take mm lock to recover fault.
3161 */
3162 atomic_inc(v: &p->svms.drain_pagefaults);
3163 svm_range_drain_retry_fault(svms: &p->svms);
3164
3165 list_for_each_entry_safe(prange, next, &p->svms.list, list) {
3166 svm_range_unlink(prange);
3167 svm_range_remove_notifier(prange);
3168 svm_range_free(prange, do_unmap: true);
3169 }
3170
3171 mutex_destroy(lock: &p->svms.lock);
3172
3173 pr_debug("pasid 0x%x svms 0x%p done\n", p->pasid, &p->svms);
3174}
3175
3176int svm_range_list_init(struct kfd_process *p)
3177{
3178 struct svm_range_list *svms = &p->svms;
3179 int i;
3180
3181 svms->objects = RB_ROOT_CACHED;
3182 mutex_init(&svms->lock);
3183 INIT_LIST_HEAD(list: &svms->list);
3184 atomic_set(v: &svms->evicted_ranges, i: 0);
3185 atomic_set(v: &svms->drain_pagefaults, i: 0);
3186 INIT_DELAYED_WORK(&svms->restore_work, svm_range_restore_work);
3187 INIT_WORK(&svms->deferred_list_work, svm_range_deferred_list_work);
3188 INIT_LIST_HEAD(list: &svms->deferred_range_list);
3189 INIT_LIST_HEAD(list: &svms->criu_svm_metadata_list);
3190 spin_lock_init(&svms->deferred_list_lock);
3191
3192 for (i = 0; i < p->n_pdds; i++)
3193 if (KFD_IS_SVM_API_SUPPORTED(p->pdds[i]->dev->adev))
3194 bitmap_set(map: svms->bitmap_supported, start: i, nbits: 1);
3195
3196 return 0;
3197}
3198
3199/**
3200 * svm_range_check_vm - check if virtual address range mapped already
3201 * @p: current kfd_process
3202 * @start: range start address, in pages
3203 * @last: range last address, in pages
3204 * @bo_s: mapping start address in pages if address range already mapped
3205 * @bo_l: mapping last address in pages if address range already mapped
3206 *
3207 * The purpose is to avoid virtual address ranges already allocated by
3208 * kfd_ioctl_alloc_memory_of_gpu ioctl.
3209 * It looks for each pdd in the kfd_process.
3210 *
3211 * Context: Process context
3212 *
3213 * Return 0 - OK, if the range is not mapped.
3214 * Otherwise error code:
3215 * -EADDRINUSE - if address is mapped already by kfd_ioctl_alloc_memory_of_gpu
3216 * -ERESTARTSYS - A wait for the buffer to become unreserved was interrupted by
3217 * a signal. Release all buffer reservations and return to user-space.
3218 */
3219static int
3220svm_range_check_vm(struct kfd_process *p, uint64_t start, uint64_t last,
3221 uint64_t *bo_s, uint64_t *bo_l)
3222{
3223 struct amdgpu_bo_va_mapping *mapping;
3224 struct interval_tree_node *node;
3225 uint32_t i;
3226 int r;
3227
3228 for (i = 0; i < p->n_pdds; i++) {
3229 struct amdgpu_vm *vm;
3230
3231 if (!p->pdds[i]->drm_priv)
3232 continue;
3233
3234 vm = drm_priv_to_vm(p->pdds[i]->drm_priv);
3235 r = amdgpu_bo_reserve(bo: vm->root.bo, no_intr: false);
3236 if (r)
3237 return r;
3238
3239 node = interval_tree_iter_first(root: &vm->va, start, last);
3240 if (node) {
3241 pr_debug("range [0x%llx 0x%llx] already TTM mapped\n",
3242 start, last);
3243 mapping = container_of((struct rb_node *)node,
3244 struct amdgpu_bo_va_mapping, rb);
3245 if (bo_s && bo_l) {
3246 *bo_s = mapping->start;
3247 *bo_l = mapping->last;
3248 }
3249 amdgpu_bo_unreserve(bo: vm->root.bo);
3250 return -EADDRINUSE;
3251 }
3252 amdgpu_bo_unreserve(bo: vm->root.bo);
3253 }
3254
3255 return 0;
3256}
3257
3258/**
3259 * svm_range_is_valid - check if virtual address range is valid
3260 * @p: current kfd_process
3261 * @start: range start address, in pages
3262 * @size: range size, in pages
3263 *
3264 * Valid virtual address range means it belongs to one or more VMAs
3265 *
3266 * Context: Process context
3267 *
3268 * Return:
3269 * 0 - OK, otherwise error code
3270 */
3271static int
3272svm_range_is_valid(struct kfd_process *p, uint64_t start, uint64_t size)
3273{
3274 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
3275 struct vm_area_struct *vma;
3276 unsigned long end;
3277 unsigned long start_unchg = start;
3278
3279 start <<= PAGE_SHIFT;
3280 end = start + (size << PAGE_SHIFT);
3281 do {
3282 vma = vma_lookup(mm: p->mm, addr: start);
3283 if (!vma || (vma->vm_flags & device_vma))
3284 return -EFAULT;
3285 start = min(end, vma->vm_end);
3286 } while (start < end);
3287
3288 return svm_range_check_vm(p, start: start_unchg, last: (end - 1) >> PAGE_SHIFT, NULL,
3289 NULL);
3290}
3291
3292/**
3293 * svm_range_best_prefetch_location - decide the best prefetch location
3294 * @prange: svm range structure
3295 *
3296 * For xnack off:
3297 * If range map to single GPU, the best prefetch location is prefetch_loc, which
3298 * can be CPU or GPU.
3299 *
3300 * If range is ACCESS or ACCESS_IN_PLACE by mGPUs, only if mGPU connection on
3301 * XGMI same hive, the best prefetch location is prefetch_loc GPU, othervise
3302 * the best prefetch location is always CPU, because GPU can not have coherent
3303 * mapping VRAM of other GPUs even with large-BAR PCIe connection.
3304 *
3305 * For xnack on:
3306 * If range is not ACCESS_IN_PLACE by mGPUs, the best prefetch location is
3307 * prefetch_loc, other GPU access will generate vm fault and trigger migration.
3308 *
3309 * If range is ACCESS_IN_PLACE by mGPUs, only if mGPU connection on XGMI same
3310 * hive, the best prefetch location is prefetch_loc GPU, otherwise the best
3311 * prefetch location is always CPU.
3312 *
3313 * Context: Process context
3314 *
3315 * Return:
3316 * 0 for CPU or GPU id
3317 */
3318static uint32_t
3319svm_range_best_prefetch_location(struct svm_range *prange)
3320{
3321 DECLARE_BITMAP(bitmap, MAX_GPU_INSTANCE);
3322 uint32_t best_loc = prange->prefetch_loc;
3323 struct kfd_process_device *pdd;
3324 struct kfd_node *bo_node;
3325 struct kfd_process *p;
3326 uint32_t gpuidx;
3327
3328 p = container_of(prange->svms, struct kfd_process, svms);
3329
3330 if (!best_loc || best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED)
3331 goto out;
3332
3333 bo_node = svm_range_get_node_by_id(prange, gpu_id: best_loc);
3334 if (!bo_node) {
3335 WARN_ONCE(1, "failed to get valid kfd node at id%x\n", best_loc);
3336 best_loc = 0;
3337 goto out;
3338 }
3339
3340 if (bo_node->adev->gmc.is_app_apu) {
3341 best_loc = 0;
3342 goto out;
3343 }
3344
3345 if (p->xnack_enabled)
3346 bitmap_copy(dst: bitmap, src: prange->bitmap_aip, MAX_GPU_INSTANCE);
3347 else
3348 bitmap_or(dst: bitmap, src1: prange->bitmap_access, src2: prange->bitmap_aip,
3349 MAX_GPU_INSTANCE);
3350
3351 for_each_set_bit(gpuidx, bitmap, MAX_GPU_INSTANCE) {
3352 pdd = kfd_process_device_from_gpuidx(p, gpuidx);
3353 if (!pdd) {
3354 pr_debug("failed to get device by idx 0x%x\n", gpuidx);
3355 continue;
3356 }
3357
3358 if (pdd->dev->adev == bo_node->adev)
3359 continue;
3360
3361 if (!svm_nodes_in_same_hive(node_a: pdd->dev, node_b: bo_node)) {
3362 best_loc = 0;
3363 break;
3364 }
3365 }
3366
3367out:
3368 pr_debug("xnack %d svms 0x%p [0x%lx 0x%lx] best loc 0x%x\n",
3369 p->xnack_enabled, &p->svms, prange->start, prange->last,
3370 best_loc);
3371
3372 return best_loc;
3373}
3374
3375/* svm_range_trigger_migration - start page migration if prefetch loc changed
3376 * @mm: current process mm_struct
3377 * @prange: svm range structure
3378 * @migrated: output, true if migration is triggered
3379 *
3380 * If range perfetch_loc is GPU, actual loc is cpu 0, then migrate the range
3381 * from ram to vram.
3382 * If range prefetch_loc is cpu 0, actual loc is GPU, then migrate the range
3383 * from vram to ram.
3384 *
3385 * If GPU vm fault retry is not enabled, migration interact with MMU notifier
3386 * and restore work:
3387 * 1. migrate_vma_setup invalidate pages, MMU notifier callback svm_range_evict
3388 * stops all queues, schedule restore work
3389 * 2. svm_range_restore_work wait for migration is done by
3390 * a. svm_range_validate_vram takes prange->migrate_mutex
3391 * b. svm_range_validate_ram HMM get pages wait for CPU fault handle returns
3392 * 3. restore work update mappings of GPU, resume all queues.
3393 *
3394 * Context: Process context
3395 *
3396 * Return:
3397 * 0 - OK, otherwise - error code of migration
3398 */
3399static int
3400svm_range_trigger_migration(struct mm_struct *mm, struct svm_range *prange,
3401 bool *migrated)
3402{
3403 uint32_t best_loc;
3404 int r = 0;
3405
3406 *migrated = false;
3407 best_loc = svm_range_best_prefetch_location(prange);
3408
3409 /* when best_loc is a gpu node and same as prange->actual_loc
3410 * we still need do migration as prange->actual_loc !=0 does
3411 * not mean all pages in prange are vram. hmm migrate will pick
3412 * up right pages during migration.
3413 */
3414 if ((best_loc == KFD_IOCTL_SVM_LOCATION_UNDEFINED) ||
3415 (best_loc == 0 && prange->actual_loc == 0))
3416 return 0;
3417
3418 if (!best_loc) {
3419 r = svm_migrate_vram_to_ram(prange, mm, start: prange->start, last: prange->last,
3420 trigger: KFD_MIGRATE_TRIGGER_PREFETCH, NULL);
3421 *migrated = !r;
3422 return r;
3423 }
3424
3425 r = svm_migrate_to_vram(prange, best_loc, start: prange->start, last: prange->last,
3426 mm, trigger: KFD_MIGRATE_TRIGGER_PREFETCH);
3427 *migrated = !r;
3428
3429 return r;
3430}
3431
3432int svm_range_schedule_evict_svm_bo(struct amdgpu_amdkfd_fence *fence)
3433{
3434 /* Dereferencing fence->svm_bo is safe here because the fence hasn't
3435 * signaled yet and we're under the protection of the fence->lock.
3436 * After the fence is signaled in svm_range_bo_release, we cannot get
3437 * here any more.
3438 *
3439 * Reference is dropped in svm_range_evict_svm_bo_worker.
3440 */
3441 if (svm_bo_ref_unless_zero(svm_bo: fence->svm_bo)) {
3442 WRITE_ONCE(fence->svm_bo->evicting, 1);
3443 schedule_work(work: &fence->svm_bo->eviction_work);
3444 }
3445
3446 return 0;
3447}
3448
3449static void svm_range_evict_svm_bo_worker(struct work_struct *work)
3450{
3451 struct svm_range_bo *svm_bo;
3452 struct mm_struct *mm;
3453 int r = 0;
3454
3455 svm_bo = container_of(work, struct svm_range_bo, eviction_work);
3456
3457 if (mmget_not_zero(mm: svm_bo->eviction_fence->mm)) {
3458 mm = svm_bo->eviction_fence->mm;
3459 } else {
3460 svm_range_bo_unref(svm_bo);
3461 return;
3462 }
3463
3464 mmap_read_lock(mm);
3465 spin_lock(lock: &svm_bo->list_lock);
3466 while (!list_empty(head: &svm_bo->range_list) && !r) {
3467 struct svm_range *prange =
3468 list_first_entry(&svm_bo->range_list,
3469 struct svm_range, svm_bo_list);
3470 int retries = 3;
3471
3472 list_del_init(entry: &prange->svm_bo_list);
3473 spin_unlock(lock: &svm_bo->list_lock);
3474
3475 pr_debug("svms 0x%p [0x%lx 0x%lx]\n", prange->svms,
3476 prange->start, prange->last);
3477
3478 mutex_lock(&prange->migrate_mutex);
3479 do {
3480 /* migrate all vram pages in this prange to sys ram
3481 * after that prange->actual_loc should be zero
3482 */
3483 r = svm_migrate_vram_to_ram(prange, mm,
3484 start: prange->start, last: prange->last,
3485 trigger: KFD_MIGRATE_TRIGGER_TTM_EVICTION, NULL);
3486 } while (!r && prange->actual_loc && --retries);
3487
3488 if (!r && prange->actual_loc)
3489 pr_info_once("Migration failed during eviction");
3490
3491 if (!prange->actual_loc) {
3492 mutex_lock(&prange->lock);
3493 prange->svm_bo = NULL;
3494 mutex_unlock(lock: &prange->lock);
3495 }
3496 mutex_unlock(lock: &prange->migrate_mutex);
3497
3498 spin_lock(lock: &svm_bo->list_lock);
3499 }
3500 spin_unlock(lock: &svm_bo->list_lock);
3501 mmap_read_unlock(mm);
3502 mmput(mm);
3503
3504 dma_fence_signal(fence: &svm_bo->eviction_fence->base);
3505
3506 /* This is the last reference to svm_bo, after svm_range_vram_node_free
3507 * has been called in svm_migrate_vram_to_ram
3508 */
3509 WARN_ONCE(!r && kref_read(&svm_bo->kref) != 1, "This was not the last reference\n");
3510 svm_range_bo_unref(svm_bo);
3511}
3512
3513static int
3514svm_range_set_attr(struct kfd_process *p, struct mm_struct *mm,
3515 uint64_t start, uint64_t size, uint32_t nattr,
3516 struct kfd_ioctl_svm_attribute *attrs)
3517{
3518 struct amdkfd_process_info *process_info = p->kgd_process_info;
3519 struct list_head update_list;
3520 struct list_head insert_list;
3521 struct list_head remove_list;
3522 struct list_head remap_list;
3523 struct svm_range_list *svms;
3524 struct svm_range *prange;
3525 struct svm_range *next;
3526 bool update_mapping = false;
3527 bool flush_tlb;
3528 int r, ret = 0;
3529
3530 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] pages 0x%llx\n",
3531 p->pasid, &p->svms, start, start + size - 1, size);
3532
3533 r = svm_range_check_attr(p, nattr, attrs);
3534 if (r)
3535 return r;
3536
3537 svms = &p->svms;
3538
3539 mutex_lock(&process_info->lock);
3540
3541 svm_range_list_lock_and_flush_work(svms, mm);
3542
3543 r = svm_range_is_valid(p, start, size);
3544 if (r) {
3545 pr_debug("invalid range r=%d\n", r);
3546 mmap_write_unlock(mm);
3547 goto out;
3548 }
3549
3550 mutex_lock(&svms->lock);
3551
3552 /* Add new range and split existing ranges as needed */
3553 r = svm_range_add(p, start, size, nattr, attrs, update_list: &update_list,
3554 insert_list: &insert_list, remove_list: &remove_list, remap_list: &remap_list);
3555 if (r) {
3556 mutex_unlock(lock: &svms->lock);
3557 mmap_write_unlock(mm);
3558 goto out;
3559 }
3560 /* Apply changes as a transaction */
3561 list_for_each_entry_safe(prange, next, &insert_list, list) {
3562 svm_range_add_to_svms(prange);
3563 svm_range_add_notifier_locked(mm, prange);
3564 }
3565 list_for_each_entry(prange, &update_list, update_list) {
3566 svm_range_apply_attrs(p, prange, nattr, attrs, update_mapping: &update_mapping);
3567 /* TODO: unmap ranges from GPU that lost access */
3568 }
3569 list_for_each_entry_safe(prange, next, &remove_list, update_list) {
3570 pr_debug("unlink old 0x%p prange 0x%p [0x%lx 0x%lx]\n",
3571 prange->svms, prange, prange->start,
3572 prange->last);
3573 svm_range_unlink(prange);
3574 svm_range_remove_notifier(prange);
3575 svm_range_free(prange, do_unmap: false);
3576 }
3577
3578 mmap_write_downgrade(mm);
3579 /* Trigger migrations and revalidate and map to GPUs as needed. If
3580 * this fails we may be left with partially completed actions. There
3581 * is no clean way of rolling back to the previous state in such a
3582 * case because the rollback wouldn't be guaranteed to work either.
3583 */
3584 list_for_each_entry(prange, &update_list, update_list) {
3585 bool migrated;
3586
3587 mutex_lock(&prange->migrate_mutex);
3588
3589 r = svm_range_trigger_migration(mm, prange, migrated: &migrated);
3590 if (r)
3591 goto out_unlock_range;
3592
3593 if (migrated && (!p->xnack_enabled ||
3594 (prange->flags & KFD_IOCTL_SVM_FLAG_GPU_ALWAYS_MAPPED)) &&
3595 prange->mapped_to_gpu) {
3596 pr_debug("restore_work will update mappings of GPUs\n");
3597 mutex_unlock(lock: &prange->migrate_mutex);
3598 continue;
3599 }
3600
3601 if (!migrated && !update_mapping) {
3602 mutex_unlock(lock: &prange->migrate_mutex);
3603 continue;
3604 }
3605
3606 flush_tlb = !migrated && update_mapping && prange->mapped_to_gpu;
3607
3608 r = svm_range_validate_and_map(mm, map_start: prange->start, map_last: prange->last, prange,
3609 MAX_GPU_INSTANCE, intr: true, wait: true, flush_tlb);
3610 if (r)
3611 pr_debug("failed %d to map svm range\n", r);
3612
3613out_unlock_range:
3614 mutex_unlock(lock: &prange->migrate_mutex);
3615 if (r)
3616 ret = r;
3617 }
3618
3619 list_for_each_entry(prange, &remap_list, update_list) {
3620 pr_debug("Remapping prange 0x%p [0x%lx 0x%lx]\n",
3621 prange, prange->start, prange->last);
3622 mutex_lock(&prange->migrate_mutex);
3623 r = svm_range_validate_and_map(mm, map_start: prange->start, map_last: prange->last, prange,
3624 MAX_GPU_INSTANCE, intr: true, wait: true, flush_tlb: prange->mapped_to_gpu);
3625 if (r)
3626 pr_debug("failed %d on remap svm range\n", r);
3627 mutex_unlock(lock: &prange->migrate_mutex);
3628 if (r)
3629 ret = r;
3630 }
3631
3632 dynamic_svm_range_dump(svms);
3633
3634 mutex_unlock(lock: &svms->lock);
3635 mmap_read_unlock(mm);
3636out:
3637 mutex_unlock(lock: &process_info->lock);
3638
3639 pr_debug("pasid 0x%x svms 0x%p [0x%llx 0x%llx] done, r=%d\n", p->pasid,
3640 &p->svms, start, start + size - 1, r);
3641
3642 return ret ? ret : r;
3643}
3644
3645static int
3646svm_range_get_attr(struct kfd_process *p, struct mm_struct *mm,
3647 uint64_t start, uint64_t size, uint32_t nattr,
3648 struct kfd_ioctl_svm_attribute *attrs)
3649{
3650 DECLARE_BITMAP(bitmap_access, MAX_GPU_INSTANCE);
3651 DECLARE_BITMAP(bitmap_aip, MAX_GPU_INSTANCE);
3652 bool get_preferred_loc = false;
3653 bool get_prefetch_loc = false;
3654 bool get_granularity = false;
3655 bool get_accessible = false;
3656 bool get_flags = false;
3657 uint64_t last = start + size - 1UL;
3658 uint8_t granularity = 0xff;
3659 struct interval_tree_node *node;
3660 struct svm_range_list *svms;
3661 struct svm_range *prange;
3662 uint32_t prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3663 uint32_t location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3664 uint32_t flags_and = 0xffffffff;
3665 uint32_t flags_or = 0;
3666 int gpuidx;
3667 uint32_t i;
3668 int r = 0;
3669
3670 pr_debug("svms 0x%p [0x%llx 0x%llx] nattr 0x%x\n", &p->svms, start,
3671 start + size - 1, nattr);
3672
3673 /* Flush pending deferred work to avoid racing with deferred actions from
3674 * previous memory map changes (e.g. munmap). Concurrent memory map changes
3675 * can still race with get_attr because we don't hold the mmap lock. But that
3676 * would be a race condition in the application anyway, and undefined
3677 * behaviour is acceptable in that case.
3678 */
3679 flush_work(work: &p->svms.deferred_list_work);
3680
3681 mmap_read_lock(mm);
3682 r = svm_range_is_valid(p, start, size);
3683 mmap_read_unlock(mm);
3684 if (r) {
3685 pr_debug("invalid range r=%d\n", r);
3686 return r;
3687 }
3688
3689 for (i = 0; i < nattr; i++) {
3690 switch (attrs[i].type) {
3691 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3692 get_preferred_loc = true;
3693 break;
3694 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3695 get_prefetch_loc = true;
3696 break;
3697 case KFD_IOCTL_SVM_ATTR_ACCESS:
3698 get_accessible = true;
3699 break;
3700 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3701 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3702 get_flags = true;
3703 break;
3704 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3705 get_granularity = true;
3706 break;
3707 case KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE:
3708 case KFD_IOCTL_SVM_ATTR_NO_ACCESS:
3709 fallthrough;
3710 default:
3711 pr_debug("get invalid attr type 0x%x\n", attrs[i].type);
3712 return -EINVAL;
3713 }
3714 }
3715
3716 svms = &p->svms;
3717
3718 mutex_lock(&svms->lock);
3719
3720 node = interval_tree_iter_first(root: &svms->objects, start, last);
3721 if (!node) {
3722 pr_debug("range attrs not found return default values\n");
3723 svm_range_set_default_attributes(location: &location, prefetch_loc: &prefetch_loc,
3724 granularity: &granularity, flags: &flags_and);
3725 flags_or = flags_and;
3726 if (p->xnack_enabled)
3727 bitmap_copy(dst: bitmap_access, src: svms->bitmap_supported,
3728 MAX_GPU_INSTANCE);
3729 else
3730 bitmap_zero(dst: bitmap_access, MAX_GPU_INSTANCE);
3731 bitmap_zero(dst: bitmap_aip, MAX_GPU_INSTANCE);
3732 goto fill_values;
3733 }
3734 bitmap_copy(dst: bitmap_access, src: svms->bitmap_supported, MAX_GPU_INSTANCE);
3735 bitmap_copy(dst: bitmap_aip, src: svms->bitmap_supported, MAX_GPU_INSTANCE);
3736
3737 while (node) {
3738 struct interval_tree_node *next;
3739
3740 prange = container_of(node, struct svm_range, it_node);
3741 next = interval_tree_iter_next(node, start, last);
3742
3743 if (get_preferred_loc) {
3744 if (prange->preferred_loc ==
3745 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3746 (location != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3747 location != prange->preferred_loc)) {
3748 location = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3749 get_preferred_loc = false;
3750 } else {
3751 location = prange->preferred_loc;
3752 }
3753 }
3754 if (get_prefetch_loc) {
3755 if (prange->prefetch_loc ==
3756 KFD_IOCTL_SVM_LOCATION_UNDEFINED ||
3757 (prefetch_loc != KFD_IOCTL_SVM_LOCATION_UNDEFINED &&
3758 prefetch_loc != prange->prefetch_loc)) {
3759 prefetch_loc = KFD_IOCTL_SVM_LOCATION_UNDEFINED;
3760 get_prefetch_loc = false;
3761 } else {
3762 prefetch_loc = prange->prefetch_loc;
3763 }
3764 }
3765 if (get_accessible) {
3766 bitmap_and(dst: bitmap_access, src1: bitmap_access,
3767 src2: prange->bitmap_access, MAX_GPU_INSTANCE);
3768 bitmap_and(dst: bitmap_aip, src1: bitmap_aip,
3769 src2: prange->bitmap_aip, MAX_GPU_INSTANCE);
3770 }
3771 if (get_flags) {
3772 flags_and &= prange->flags;
3773 flags_or |= prange->flags;
3774 }
3775
3776 if (get_granularity && prange->granularity < granularity)
3777 granularity = prange->granularity;
3778
3779 node = next;
3780 }
3781fill_values:
3782 mutex_unlock(lock: &svms->lock);
3783
3784 for (i = 0; i < nattr; i++) {
3785 switch (attrs[i].type) {
3786 case KFD_IOCTL_SVM_ATTR_PREFERRED_LOC:
3787 attrs[i].value = location;
3788 break;
3789 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3790 attrs[i].value = prefetch_loc;
3791 break;
3792 case KFD_IOCTL_SVM_ATTR_ACCESS:
3793 gpuidx = kfd_process_gpuidx_from_gpuid(p,
3794 gpu_id: attrs[i].value);
3795 if (gpuidx < 0) {
3796 pr_debug("invalid gpuid %x\n", attrs[i].value);
3797 return -EINVAL;
3798 }
3799 if (test_bit(gpuidx, bitmap_access))
3800 attrs[i].type = KFD_IOCTL_SVM_ATTR_ACCESS;
3801 else if (test_bit(gpuidx, bitmap_aip))
3802 attrs[i].type =
3803 KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE;
3804 else
3805 attrs[i].type = KFD_IOCTL_SVM_ATTR_NO_ACCESS;
3806 break;
3807 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3808 attrs[i].value = flags_and;
3809 break;
3810 case KFD_IOCTL_SVM_ATTR_CLR_FLAGS:
3811 attrs[i].value = ~flags_or;
3812 break;
3813 case KFD_IOCTL_SVM_ATTR_GRANULARITY:
3814 attrs[i].value = (uint32_t)granularity;
3815 break;
3816 }
3817 }
3818
3819 return 0;
3820}
3821
3822int kfd_criu_resume_svm(struct kfd_process *p)
3823{
3824 struct kfd_ioctl_svm_attribute *set_attr_new, *set_attr = NULL;
3825 int nattr_common = 4, nattr_accessibility = 1;
3826 struct criu_svm_metadata *criu_svm_md = NULL;
3827 struct svm_range_list *svms = &p->svms;
3828 struct criu_svm_metadata *next = NULL;
3829 uint32_t set_flags = 0xffffffff;
3830 int i, j, num_attrs, ret = 0;
3831 uint64_t set_attr_size;
3832 struct mm_struct *mm;
3833
3834 if (list_empty(head: &svms->criu_svm_metadata_list)) {
3835 pr_debug("No SVM data from CRIU restore stage 2\n");
3836 return ret;
3837 }
3838
3839 mm = get_task_mm(task: p->lead_thread);
3840 if (!mm) {
3841 pr_err("failed to get mm for the target process\n");
3842 return -ESRCH;
3843 }
3844
3845 num_attrs = nattr_common + (nattr_accessibility * p->n_pdds);
3846
3847 i = j = 0;
3848 list_for_each_entry(criu_svm_md, &svms->criu_svm_metadata_list, list) {
3849 pr_debug("criu_svm_md[%d]\n\tstart: 0x%llx size: 0x%llx (npages)\n",
3850 i, criu_svm_md->data.start_addr, criu_svm_md->data.size);
3851
3852 for (j = 0; j < num_attrs; j++) {
3853 pr_debug("\ncriu_svm_md[%d]->attrs[%d].type : 0x%x\ncriu_svm_md[%d]->attrs[%d].value : 0x%x\n",
3854 i, j, criu_svm_md->data.attrs[j].type,
3855 i, j, criu_svm_md->data.attrs[j].value);
3856 switch (criu_svm_md->data.attrs[j].type) {
3857 /* During Checkpoint operation, the query for
3858 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC attribute might
3859 * return KFD_IOCTL_SVM_LOCATION_UNDEFINED if they were
3860 * not used by the range which was checkpointed. Care
3861 * must be taken to not restore with an invalid value
3862 * otherwise the gpuidx value will be invalid and
3863 * set_attr would eventually fail so just replace those
3864 * with another dummy attribute such as
3865 * KFD_IOCTL_SVM_ATTR_SET_FLAGS.
3866 */
3867 case KFD_IOCTL_SVM_ATTR_PREFETCH_LOC:
3868 if (criu_svm_md->data.attrs[j].value ==
3869 KFD_IOCTL_SVM_LOCATION_UNDEFINED) {
3870 criu_svm_md->data.attrs[j].type =
3871 KFD_IOCTL_SVM_ATTR_SET_FLAGS;
3872 criu_svm_md->data.attrs[j].value = 0;
3873 }
3874 break;
3875 case KFD_IOCTL_SVM_ATTR_SET_FLAGS:
3876 set_flags = criu_svm_md->data.attrs[j].value;
3877 break;
3878 default:
3879 break;
3880 }
3881 }
3882
3883 /* CLR_FLAGS is not available via get_attr during checkpoint but
3884 * it needs to be inserted before restoring the ranges so
3885 * allocate extra space for it before calling set_attr
3886 */
3887 set_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
3888 (num_attrs + 1);
3889 set_attr_new = krealloc(objp: set_attr, new_size: set_attr_size,
3890 GFP_KERNEL);
3891 if (!set_attr_new) {
3892 ret = -ENOMEM;
3893 goto exit;
3894 }
3895 set_attr = set_attr_new;
3896
3897 memcpy(set_attr, criu_svm_md->data.attrs, num_attrs *
3898 sizeof(struct kfd_ioctl_svm_attribute));
3899 set_attr[num_attrs].type = KFD_IOCTL_SVM_ATTR_CLR_FLAGS;
3900 set_attr[num_attrs].value = ~set_flags;
3901
3902 ret = svm_range_set_attr(p, mm, start: criu_svm_md->data.start_addr,
3903 size: criu_svm_md->data.size, nattr: num_attrs + 1,
3904 attrs: set_attr);
3905 if (ret) {
3906 pr_err("CRIU: failed to set range attributes\n");
3907 goto exit;
3908 }
3909
3910 i++;
3911 }
3912exit:
3913 kfree(objp: set_attr);
3914 list_for_each_entry_safe(criu_svm_md, next, &svms->criu_svm_metadata_list, list) {
3915 pr_debug("freeing criu_svm_md[]\n\tstart: 0x%llx\n",
3916 criu_svm_md->data.start_addr);
3917 kfree(objp: criu_svm_md);
3918 }
3919
3920 mmput(mm);
3921 return ret;
3922
3923}
3924
3925int kfd_criu_restore_svm(struct kfd_process *p,
3926 uint8_t __user *user_priv_ptr,
3927 uint64_t *priv_data_offset,
3928 uint64_t max_priv_data_size)
3929{
3930 uint64_t svm_priv_data_size, svm_object_md_size, svm_attrs_size;
3931 int nattr_common = 4, nattr_accessibility = 1;
3932 struct criu_svm_metadata *criu_svm_md = NULL;
3933 struct svm_range_list *svms = &p->svms;
3934 uint32_t num_devices;
3935 int ret = 0;
3936
3937 num_devices = p->n_pdds;
3938 /* Handle one SVM range object at a time, also the number of gpus are
3939 * assumed to be same on the restore node, checking must be done while
3940 * evaluating the topology earlier
3941 */
3942
3943 svm_attrs_size = sizeof(struct kfd_ioctl_svm_attribute) *
3944 (nattr_common + nattr_accessibility * num_devices);
3945 svm_object_md_size = sizeof(struct criu_svm_metadata) + svm_attrs_size;
3946
3947 svm_priv_data_size = sizeof(struct kfd_criu_svm_range_priv_data) +
3948 svm_attrs_size;
3949
3950 criu_svm_md = kzalloc(size: svm_object_md_size, GFP_KERNEL);
3951 if (!criu_svm_md) {
3952 pr_err("failed to allocate memory to store svm metadata\n");
3953 return -ENOMEM;
3954 }
3955 if (*priv_data_offset + svm_priv_data_size > max_priv_data_size) {
3956 ret = -EINVAL;
3957 goto exit;
3958 }
3959
3960 ret = copy_from_user(to: &criu_svm_md->data, from: user_priv_ptr + *priv_data_offset,
3961 n: svm_priv_data_size);
3962 if (ret) {
3963 ret = -EFAULT;
3964 goto exit;
3965 }
3966 *priv_data_offset += svm_priv_data_size;
3967
3968 list_add_tail(new: &criu_svm_md->list, head: &svms->criu_svm_metadata_list);
3969
3970 return 0;
3971
3972
3973exit:
3974 kfree(objp: criu_svm_md);
3975 return ret;
3976}
3977
3978int svm_range_get_info(struct kfd_process *p, uint32_t *num_svm_ranges,
3979 uint64_t *svm_priv_data_size)
3980{
3981 uint64_t total_size, accessibility_size, common_attr_size;
3982 int nattr_common = 4, nattr_accessibility = 1;
3983 int num_devices = p->n_pdds;
3984 struct svm_range_list *svms;
3985 struct svm_range *prange;
3986 uint32_t count = 0;
3987
3988 *svm_priv_data_size = 0;
3989
3990 svms = &p->svms;
3991 if (!svms)
3992 return -EINVAL;
3993
3994 mutex_lock(&svms->lock);
3995 list_for_each_entry(prange, &svms->list, list) {
3996 pr_debug("prange: 0x%p start: 0x%lx\t npages: 0x%llx\t end: 0x%llx\n",
3997 prange, prange->start, prange->npages,
3998 prange->start + prange->npages - 1);
3999 count++;
4000 }
4001 mutex_unlock(lock: &svms->lock);
4002
4003 *num_svm_ranges = count;
4004 /* Only the accessbility attributes need to be queried for all the gpus
4005 * individually, remaining ones are spanned across the entire process
4006 * regardless of the various gpu nodes. Of the remaining attributes,
4007 * KFD_IOCTL_SVM_ATTR_CLR_FLAGS need not be saved.
4008 *
4009 * KFD_IOCTL_SVM_ATTR_PREFERRED_LOC
4010 * KFD_IOCTL_SVM_ATTR_PREFETCH_LOC
4011 * KFD_IOCTL_SVM_ATTR_SET_FLAGS
4012 * KFD_IOCTL_SVM_ATTR_GRANULARITY
4013 *
4014 * ** ACCESSBILITY ATTRIBUTES **
4015 * (Considered as one, type is altered during query, value is gpuid)
4016 * KFD_IOCTL_SVM_ATTR_ACCESS
4017 * KFD_IOCTL_SVM_ATTR_ACCESS_IN_PLACE
4018 * KFD_IOCTL_SVM_ATTR_NO_ACCESS
4019 */
4020 if (*num_svm_ranges > 0) {
4021 common_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4022 nattr_common;
4023 accessibility_size = sizeof(struct kfd_ioctl_svm_attribute) *
4024 nattr_accessibility * num_devices;
4025
4026 total_size = sizeof(struct kfd_criu_svm_range_priv_data) +
4027 common_attr_size + accessibility_size;
4028
4029 *svm_priv_data_size = *num_svm_ranges * total_size;
4030 }
4031
4032 pr_debug("num_svm_ranges %u total_priv_size %llu\n", *num_svm_ranges,
4033 *svm_priv_data_size);
4034 return 0;
4035}
4036
4037int kfd_criu_checkpoint_svm(struct kfd_process *p,
4038 uint8_t __user *user_priv_data,
4039 uint64_t *priv_data_offset)
4040{
4041 struct kfd_criu_svm_range_priv_data *svm_priv = NULL;
4042 struct kfd_ioctl_svm_attribute *query_attr = NULL;
4043 uint64_t svm_priv_data_size, query_attr_size = 0;
4044 int index, nattr_common = 4, ret = 0;
4045 struct svm_range_list *svms;
4046 int num_devices = p->n_pdds;
4047 struct svm_range *prange;
4048 struct mm_struct *mm;
4049
4050 svms = &p->svms;
4051 if (!svms)
4052 return -EINVAL;
4053
4054 mm = get_task_mm(task: p->lead_thread);
4055 if (!mm) {
4056 pr_err("failed to get mm for the target process\n");
4057 return -ESRCH;
4058 }
4059
4060 query_attr_size = sizeof(struct kfd_ioctl_svm_attribute) *
4061 (nattr_common + num_devices);
4062
4063 query_attr = kzalloc(size: query_attr_size, GFP_KERNEL);
4064 if (!query_attr) {
4065 ret = -ENOMEM;
4066 goto exit;
4067 }
4068
4069 query_attr[0].type = KFD_IOCTL_SVM_ATTR_PREFERRED_LOC;
4070 query_attr[1].type = KFD_IOCTL_SVM_ATTR_PREFETCH_LOC;
4071 query_attr[2].type = KFD_IOCTL_SVM_ATTR_SET_FLAGS;
4072 query_attr[3].type = KFD_IOCTL_SVM_ATTR_GRANULARITY;
4073
4074 for (index = 0; index < num_devices; index++) {
4075 struct kfd_process_device *pdd = p->pdds[index];
4076
4077 query_attr[index + nattr_common].type =
4078 KFD_IOCTL_SVM_ATTR_ACCESS;
4079 query_attr[index + nattr_common].value = pdd->user_gpu_id;
4080 }
4081
4082 svm_priv_data_size = sizeof(*svm_priv) + query_attr_size;
4083
4084 svm_priv = kzalloc(size: svm_priv_data_size, GFP_KERNEL);
4085 if (!svm_priv) {
4086 ret = -ENOMEM;
4087 goto exit_query;
4088 }
4089
4090 index = 0;
4091 list_for_each_entry(prange, &svms->list, list) {
4092
4093 svm_priv->object_type = KFD_CRIU_OBJECT_TYPE_SVM_RANGE;
4094 svm_priv->start_addr = prange->start;
4095 svm_priv->size = prange->npages;
4096 memcpy(&svm_priv->attrs, query_attr, query_attr_size);
4097 pr_debug("CRIU: prange: 0x%p start: 0x%lx\t npages: 0x%llx end: 0x%llx\t size: 0x%llx\n",
4098 prange, prange->start, prange->npages,
4099 prange->start + prange->npages - 1,
4100 prange->npages * PAGE_SIZE);
4101
4102 ret = svm_range_get_attr(p, mm, start: svm_priv->start_addr,
4103 size: svm_priv->size,
4104 nattr: (nattr_common + num_devices),
4105 attrs: svm_priv->attrs);
4106 if (ret) {
4107 pr_err("CRIU: failed to obtain range attributes\n");
4108 goto exit_priv;
4109 }
4110
4111 if (copy_to_user(to: user_priv_data + *priv_data_offset, from: svm_priv,
4112 n: svm_priv_data_size)) {
4113 pr_err("Failed to copy svm priv to user\n");
4114 ret = -EFAULT;
4115 goto exit_priv;
4116 }
4117
4118 *priv_data_offset += svm_priv_data_size;
4119
4120 }
4121
4122
4123exit_priv:
4124 kfree(objp: svm_priv);
4125exit_query:
4126 kfree(objp: query_attr);
4127exit:
4128 mmput(mm);
4129 return ret;
4130}
4131
4132int
4133svm_ioctl(struct kfd_process *p, enum kfd_ioctl_svm_op op, uint64_t start,
4134 uint64_t size, uint32_t nattrs, struct kfd_ioctl_svm_attribute *attrs)
4135{
4136 struct mm_struct *mm = current->mm;
4137 int r;
4138
4139 start >>= PAGE_SHIFT;
4140 size >>= PAGE_SHIFT;
4141
4142 switch (op) {
4143 case KFD_IOCTL_SVM_OP_SET_ATTR:
4144 r = svm_range_set_attr(p, mm, start, size, nattr: nattrs, attrs);
4145 break;
4146 case KFD_IOCTL_SVM_OP_GET_ATTR:
4147 r = svm_range_get_attr(p, mm, start, size, nattr: nattrs, attrs);
4148 break;
4149 default:
4150 r = EINVAL;
4151 break;
4152 }
4153
4154 return r;
4155}
4156

source code of linux/drivers/gpu/drm/amd/amdkfd/kfd_svm.c