1//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains the Base ARM implementation of the TargetInstrInfo class.
10//
11//===----------------------------------------------------------------------===//
12
13#include "ARMBaseInstrInfo.h"
14#include "ARMBaseRegisterInfo.h"
15#include "ARMConstantPoolValue.h"
16#include "ARMFeatures.h"
17#include "ARMHazardRecognizer.h"
18#include "ARMMachineFunctionInfo.h"
19#include "ARMSubtarget.h"
20#include "MCTargetDesc/ARMAddressingModes.h"
21#include "MCTargetDesc/ARMBaseInfo.h"
22#include "MVETailPredUtils.h"
23#include "llvm/ADT/DenseMap.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/CodeGen/DFAPacketizer.h"
28#include "llvm/CodeGen/LiveVariables.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineConstantPool.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineMemOperand.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineOperand.h"
38#include "llvm/CodeGen/MachinePipeliner.h"
39#include "llvm/CodeGen/MachineRegisterInfo.h"
40#include "llvm/CodeGen/MachineScheduler.h"
41#include "llvm/CodeGen/MultiHazardRecognizer.h"
42#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
43#include "llvm/CodeGen/SelectionDAGNodes.h"
44#include "llvm/CodeGen/TargetInstrInfo.h"
45#include "llvm/CodeGen/TargetRegisterInfo.h"
46#include "llvm/CodeGen/TargetSchedule.h"
47#include "llvm/IR/Attributes.h"
48#include "llvm/IR/Constants.h"
49#include "llvm/IR/DebugLoc.h"
50#include "llvm/IR/Function.h"
51#include "llvm/IR/GlobalValue.h"
52#include "llvm/MC/MCAsmInfo.h"
53#include "llvm/MC/MCInstrDesc.h"
54#include "llvm/MC/MCInstrItineraries.h"
55#include "llvm/Support/BranchProbability.h"
56#include "llvm/Support/Casting.h"
57#include "llvm/Support/CommandLine.h"
58#include "llvm/Support/Compiler.h"
59#include "llvm/Support/Debug.h"
60#include "llvm/Support/ErrorHandling.h"
61#include "llvm/Support/raw_ostream.h"
62#include "llvm/Target/TargetMachine.h"
63#include "llvm/TargetParser/Triple.h"
64#include <algorithm>
65#include <cassert>
66#include <cstdint>
67#include <iterator>
68#include <new>
69#include <utility>
70#include <vector>
71
72using namespace llvm;
73
74#define DEBUG_TYPE "arm-instrinfo"
75
76#define GET_INSTRINFO_CTOR_DTOR
77#include "ARMGenInstrInfo.inc"
78
79static cl::opt<bool>
80EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
81 cl::desc("Enable ARM 2-addr to 3-addr conv"));
82
83/// ARM_MLxEntry - Record information about MLA / MLS instructions.
84struct ARM_MLxEntry {
85 uint16_t MLxOpc; // MLA / MLS opcode
86 uint16_t MulOpc; // Expanded multiplication opcode
87 uint16_t AddSubOpc; // Expanded add / sub opcode
88 bool NegAcc; // True if the acc is negated before the add / sub.
89 bool HasLane; // True if instruction has an extra "lane" operand.
90};
91
92static const ARM_MLxEntry ARM_MLxTable[] = {
93 // MLxOpc, MulOpc, AddSubOpc, NegAcc, HasLane
94 // fp scalar ops
95 { ARM::VMLAS, ARM::VMULS, ARM::VADDS, false, false },
96 { ARM::VMLSS, ARM::VMULS, ARM::VSUBS, false, false },
97 { ARM::VMLAD, ARM::VMULD, ARM::VADDD, false, false },
98 { ARM::VMLSD, ARM::VMULD, ARM::VSUBD, false, false },
99 { ARM::VNMLAS, ARM::VNMULS, ARM::VSUBS, true, false },
100 { ARM::VNMLSS, ARM::VMULS, ARM::VSUBS, true, false },
101 { ARM::VNMLAD, ARM::VNMULD, ARM::VSUBD, true, false },
102 { ARM::VNMLSD, ARM::VMULD, ARM::VSUBD, true, false },
103
104 // fp SIMD ops
105 { ARM::VMLAfd, ARM::VMULfd, ARM::VADDfd, false, false },
106 { ARM::VMLSfd, ARM::VMULfd, ARM::VSUBfd, false, false },
107 { ARM::VMLAfq, ARM::VMULfq, ARM::VADDfq, false, false },
108 { ARM::VMLSfq, ARM::VMULfq, ARM::VSUBfq, false, false },
109 { ARM::VMLAslfd, ARM::VMULslfd, ARM::VADDfd, false, true },
110 { ARM::VMLSslfd, ARM::VMULslfd, ARM::VSUBfd, false, true },
111 { ARM::VMLAslfq, ARM::VMULslfq, ARM::VADDfq, false, true },
112 { ARM::VMLSslfq, ARM::VMULslfq, ARM::VSUBfq, false, true },
113};
114
115ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
116 : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
117 Subtarget(STI) {
118 for (unsigned i = 0, e = std::size(ARM_MLxTable); i != e; ++i) {
119 if (!MLxEntryMap.insert(KV: std::make_pair(x: ARM_MLxTable[i].MLxOpc, y&: i)).second)
120 llvm_unreachable("Duplicated entries?");
121 MLxHazardOpcodes.insert(V: ARM_MLxTable[i].AddSubOpc);
122 MLxHazardOpcodes.insert(V: ARM_MLxTable[i].MulOpc);
123 }
124}
125
126// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
127// currently defaults to no prepass hazard recognizer.
128ScheduleHazardRecognizer *
129ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
130 const ScheduleDAG *DAG) const {
131 if (usePreRAHazardRecognizer()) {
132 const InstrItineraryData *II =
133 static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
134 return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
135 }
136 return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
137}
138
139// Called during:
140// - pre-RA scheduling
141// - post-RA scheduling when FeatureUseMISched is set
142ScheduleHazardRecognizer *ARMBaseInstrInfo::CreateTargetMIHazardRecognizer(
143 const InstrItineraryData *II, const ScheduleDAGMI *DAG) const {
144 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
145
146 // We would like to restrict this hazard recognizer to only
147 // post-RA scheduling; we can tell that we're post-RA because we don't
148 // track VRegLiveness.
149 // Cortex-M7: TRM indicates that there is a single ITCM bank and two DTCM
150 // banks banked on bit 2. Assume that TCMs are in use.
151 if (Subtarget.isCortexM7() && !DAG->hasVRegLiveness())
152 MHR->AddHazardRecognizer(
153 std::make_unique<ARMBankConflictHazardRecognizer>(args&: DAG, args: 0x4, args: true));
154
155 // Not inserting ARMHazardRecognizerFPMLx because that would change
156 // legacy behavior
157
158 auto BHR = TargetInstrInfo::CreateTargetMIHazardRecognizer(II, DAG);
159 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
160 return MHR;
161}
162
163// Called during post-RA scheduling when FeatureUseMISched is not set
164ScheduleHazardRecognizer *ARMBaseInstrInfo::
165CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
166 const ScheduleDAG *DAG) const {
167 MultiHazardRecognizer *MHR = new MultiHazardRecognizer();
168
169 if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
170 MHR->AddHazardRecognizer(std::make_unique<ARMHazardRecognizerFPMLx>());
171
172 auto BHR = TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
173 if (BHR)
174 MHR->AddHazardRecognizer(std::unique_ptr<ScheduleHazardRecognizer>(BHR));
175 return MHR;
176}
177
178MachineInstr *
179ARMBaseInstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV,
180 LiveIntervals *LIS) const {
181 // FIXME: Thumb2 support.
182
183 if (!EnableARM3Addr)
184 return nullptr;
185
186 MachineFunction &MF = *MI.getParent()->getParent();
187 uint64_t TSFlags = MI.getDesc().TSFlags;
188 bool isPre = false;
189 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
190 default: return nullptr;
191 case ARMII::IndexModePre:
192 isPre = true;
193 break;
194 case ARMII::IndexModePost:
195 break;
196 }
197
198 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
199 // operation.
200 unsigned MemOpc = getUnindexedOpcode(Opc: MI.getOpcode());
201 if (MemOpc == 0)
202 return nullptr;
203
204 MachineInstr *UpdateMI = nullptr;
205 MachineInstr *MemMI = nullptr;
206 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
207 const MCInstrDesc &MCID = MI.getDesc();
208 unsigned NumOps = MCID.getNumOperands();
209 bool isLoad = !MI.mayStore();
210 const MachineOperand &WB = isLoad ? MI.getOperand(i: 1) : MI.getOperand(i: 0);
211 const MachineOperand &Base = MI.getOperand(i: 2);
212 const MachineOperand &Offset = MI.getOperand(i: NumOps - 3);
213 Register WBReg = WB.getReg();
214 Register BaseReg = Base.getReg();
215 Register OffReg = Offset.getReg();
216 unsigned OffImm = MI.getOperand(i: NumOps - 2).getImm();
217 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(i: NumOps - 1).getImm();
218 switch (AddrMode) {
219 default: llvm_unreachable("Unknown indexed op!");
220 case ARMII::AddrMode2: {
221 bool isSub = ARM_AM::getAM2Op(AM2Opc: OffImm) == ARM_AM::sub;
222 unsigned Amt = ARM_AM::getAM2Offset(AM2Opc: OffImm);
223 if (OffReg == 0) {
224 if (ARM_AM::getSOImmVal(Arg: Amt) == -1)
225 // Can't encode it in a so_imm operand. This transformation will
226 // add more than 1 instruction. Abandon!
227 return nullptr;
228 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
229 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
230 .addReg(BaseReg)
231 .addImm(Amt)
232 .add(predOps(Pred))
233 .add(condCodeOp());
234 } else if (Amt != 0) {
235 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(AM2Opc: OffImm);
236 unsigned SOOpc = ARM_AM::getSORegOpc(ShOp: ShOpc, Imm: Amt);
237 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
238 get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
239 .addReg(BaseReg)
240 .addReg(OffReg)
241 .addReg(0)
242 .addImm(SOOpc)
243 .add(predOps(Pred))
244 .add(condCodeOp());
245 } else
246 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
247 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
248 .addReg(BaseReg)
249 .addReg(OffReg)
250 .add(predOps(Pred))
251 .add(condCodeOp());
252 break;
253 }
254 case ARMII::AddrMode3 : {
255 bool isSub = ARM_AM::getAM3Op(AM3Opc: OffImm) == ARM_AM::sub;
256 unsigned Amt = ARM_AM::getAM3Offset(AM3Opc: OffImm);
257 if (OffReg == 0)
258 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
259 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
260 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
261 .addReg(BaseReg)
262 .addImm(Amt)
263 .add(predOps(Pred))
264 .add(condCodeOp());
265 else
266 UpdateMI = BuildMI(MF, MI.getDebugLoc(),
267 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
268 .addReg(BaseReg)
269 .addReg(OffReg)
270 .add(predOps(Pred))
271 .add(condCodeOp());
272 break;
273 }
274 }
275
276 std::vector<MachineInstr*> NewMIs;
277 if (isPre) {
278 if (isLoad)
279 MemMI =
280 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(i: 0).getReg())
281 .addReg(WBReg)
282 .addImm(0)
283 .addImm(Pred);
284 else
285 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
286 .addReg(MI.getOperand(i: 1).getReg())
287 .addReg(WBReg)
288 .addReg(0)
289 .addImm(0)
290 .addImm(Pred);
291 NewMIs.push_back(x: MemMI);
292 NewMIs.push_back(x: UpdateMI);
293 } else {
294 if (isLoad)
295 MemMI =
296 BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(i: 0).getReg())
297 .addReg(BaseReg)
298 .addImm(0)
299 .addImm(Pred);
300 else
301 MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
302 .addReg(MI.getOperand(i: 1).getReg())
303 .addReg(BaseReg)
304 .addReg(0)
305 .addImm(0)
306 .addImm(Pred);
307 if (WB.isDead())
308 UpdateMI->getOperand(i: 0).setIsDead();
309 NewMIs.push_back(x: UpdateMI);
310 NewMIs.push_back(x: MemMI);
311 }
312
313 // Transfer LiveVariables states, kill / dead info.
314 if (LV) {
315 for (const MachineOperand &MO : MI.operands()) {
316 if (MO.isReg() && MO.getReg().isVirtual()) {
317 Register Reg = MO.getReg();
318
319 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
320 if (MO.isDef()) {
321 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
322 if (MO.isDead())
323 LV->addVirtualRegisterDead(IncomingReg: Reg, MI&: *NewMI);
324 }
325 if (MO.isUse() && MO.isKill()) {
326 for (unsigned j = 0; j < 2; ++j) {
327 // Look at the two new MI's in reverse order.
328 MachineInstr *NewMI = NewMIs[j];
329 if (!NewMI->readsRegister(Reg, /*TRI=*/nullptr))
330 continue;
331 LV->addVirtualRegisterKilled(IncomingReg: Reg, MI&: *NewMI);
332 if (VI.removeKill(MI))
333 VI.Kills.push_back(x: NewMI);
334 break;
335 }
336 }
337 }
338 }
339 }
340
341 MachineBasicBlock &MBB = *MI.getParent();
342 MBB.insert(I: MI, MI: NewMIs[1]);
343 MBB.insert(I: MI, MI: NewMIs[0]);
344 return NewMIs[0];
345}
346
347// Branch analysis.
348// Cond vector output format:
349// 0 elements indicates an unconditional branch
350// 2 elements indicates a conditional branch; the elements are
351// the condition to check and the CPSR.
352// 3 elements indicates a hardware loop end; the elements
353// are the opcode, the operand value to test, and a dummy
354// operand used to pad out to 3 operands.
355bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
356 MachineBasicBlock *&TBB,
357 MachineBasicBlock *&FBB,
358 SmallVectorImpl<MachineOperand> &Cond,
359 bool AllowModify) const {
360 TBB = nullptr;
361 FBB = nullptr;
362
363 MachineBasicBlock::instr_iterator I = MBB.instr_end();
364 if (I == MBB.instr_begin())
365 return false; // Empty blocks are easy.
366 --I;
367
368 // Walk backwards from the end of the basic block until the branch is
369 // analyzed or we give up.
370 while (isPredicated(MI: *I) || I->isTerminator() || I->isDebugValue()) {
371 // Flag to be raised on unanalyzeable instructions. This is useful in cases
372 // where we want to clean up on the end of the basic block before we bail
373 // out.
374 bool CantAnalyze = false;
375
376 // Skip over DEBUG values, predicated nonterminators and speculation
377 // barrier terminators.
378 while (I->isDebugInstr() || !I->isTerminator() ||
379 isSpeculationBarrierEndBBOpcode(I->getOpcode()) ||
380 I->getOpcode() == ARM::t2DoLoopStartTP){
381 if (I == MBB.instr_begin())
382 return false;
383 --I;
384 }
385
386 if (isIndirectBranchOpcode(Opc: I->getOpcode()) ||
387 isJumpTableBranchOpcode(Opc: I->getOpcode())) {
388 // Indirect branches and jump tables can't be analyzed, but we still want
389 // to clean up any instructions at the tail of the basic block.
390 CantAnalyze = true;
391 } else if (isUncondBranchOpcode(Opc: I->getOpcode())) {
392 TBB = I->getOperand(i: 0).getMBB();
393 } else if (isCondBranchOpcode(Opc: I->getOpcode())) {
394 // Bail out if we encounter multiple conditional branches.
395 if (!Cond.empty())
396 return true;
397
398 assert(!FBB && "FBB should have been null.");
399 FBB = TBB;
400 TBB = I->getOperand(i: 0).getMBB();
401 Cond.push_back(Elt: I->getOperand(i: 1));
402 Cond.push_back(Elt: I->getOperand(i: 2));
403 } else if (I->isReturn()) {
404 // Returns can't be analyzed, but we should run cleanup.
405 CantAnalyze = true;
406 } else if (I->getOpcode() == ARM::t2LoopEnd &&
407 MBB.getParent()
408 ->getSubtarget<ARMSubtarget>()
409 .enableMachinePipeliner()) {
410 if (!Cond.empty())
411 return true;
412 FBB = TBB;
413 TBB = I->getOperand(i: 1).getMBB();
414 Cond.push_back(Elt: MachineOperand::CreateImm(Val: I->getOpcode()));
415 Cond.push_back(Elt: I->getOperand(i: 0));
416 Cond.push_back(Elt: MachineOperand::CreateImm(Val: 0));
417 } else {
418 // We encountered other unrecognized terminator. Bail out immediately.
419 return true;
420 }
421
422 // Cleanup code - to be run for unpredicated unconditional branches and
423 // returns.
424 if (!isPredicated(MI: *I) &&
425 (isUncondBranchOpcode(Opc: I->getOpcode()) ||
426 isIndirectBranchOpcode(Opc: I->getOpcode()) ||
427 isJumpTableBranchOpcode(Opc: I->getOpcode()) ||
428 I->isReturn())) {
429 // Forget any previous condition branch information - it no longer applies.
430 Cond.clear();
431 FBB = nullptr;
432
433 // If we can modify the function, delete everything below this
434 // unconditional branch.
435 if (AllowModify) {
436 MachineBasicBlock::iterator DI = std::next(x: I);
437 while (DI != MBB.instr_end()) {
438 MachineInstr &InstToDelete = *DI;
439 ++DI;
440 // Speculation barriers must not be deleted.
441 if (isSpeculationBarrierEndBBOpcode(Opc: InstToDelete.getOpcode()))
442 continue;
443 InstToDelete.eraseFromParent();
444 }
445 }
446 }
447
448 if (CantAnalyze) {
449 // We may not be able to analyze the block, but we could still have
450 // an unconditional branch as the last instruction in the block, which
451 // just branches to layout successor. If this is the case, then just
452 // remove it if we're allowed to make modifications.
453 if (AllowModify && !isPredicated(MI: MBB.back()) &&
454 isUncondBranchOpcode(Opc: MBB.back().getOpcode()) &&
455 TBB && MBB.isLayoutSuccessor(MBB: TBB))
456 removeBranch(MBB);
457 return true;
458 }
459
460 if (I == MBB.instr_begin())
461 return false;
462
463 --I;
464 }
465
466 // We made it past the terminators without bailing out - we must have
467 // analyzed this branch successfully.
468 return false;
469}
470
471unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
472 int *BytesRemoved) const {
473 assert(!BytesRemoved && "code size not handled");
474
475 MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
476 if (I == MBB.end())
477 return 0;
478
479 if (!isUncondBranchOpcode(I->getOpcode()) &&
480 !isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
481 return 0;
482
483 // Remove the branch.
484 I->eraseFromParent();
485
486 I = MBB.end();
487
488 if (I == MBB.begin()) return 1;
489 --I;
490 if (!isCondBranchOpcode(I->getOpcode()) && I->getOpcode() != ARM::t2LoopEnd)
491 return 1;
492
493 // Remove the branch.
494 I->eraseFromParent();
495 return 2;
496}
497
498unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
499 MachineBasicBlock *TBB,
500 MachineBasicBlock *FBB,
501 ArrayRef<MachineOperand> Cond,
502 const DebugLoc &DL,
503 int *BytesAdded) const {
504 assert(!BytesAdded && "code size not handled");
505 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
506 int BOpc = !AFI->isThumbFunction()
507 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
508 int BccOpc = !AFI->isThumbFunction()
509 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
510 bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();
511
512 // Shouldn't be a fall through.
513 assert(TBB && "insertBranch must not be told to insert a fallthrough");
514 assert((Cond.size() == 2 || Cond.size() == 0 || Cond.size() == 3) &&
515 "ARM branch conditions have two or three components!");
516
517 // For conditional branches, we use addOperand to preserve CPSR flags.
518
519 if (!FBB) {
520 if (Cond.empty()) { // Unconditional branch?
521 if (isThumb)
522 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(Pred: ARMCC::AL));
523 else
524 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
525 } else if (Cond.size() == 2) {
526 BuildMI(&MBB, DL, get(BccOpc))
527 .addMBB(TBB)
528 .addImm(Cond[0].getImm())
529 .add(Cond[1]);
530 } else
531 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
532 return 1;
533 }
534
535 // Two-way conditional branch.
536 if (Cond.size() == 2)
537 BuildMI(&MBB, DL, get(BccOpc))
538 .addMBB(TBB)
539 .addImm(Cond[0].getImm())
540 .add(Cond[1]);
541 else if (Cond.size() == 3)
542 BuildMI(&MBB, DL, get(Cond[0].getImm())).add(Cond[1]).addMBB(TBB);
543 if (isThumb)
544 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(Pred: ARMCC::AL));
545 else
546 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
547 return 2;
548}
549
550bool ARMBaseInstrInfo::
551reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
552 if (Cond.size() == 2) {
553 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
554 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
555 return false;
556 }
557 return true;
558}
559
560bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
561 if (MI.isBundle()) {
562 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
563 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
564 while (++I != E && I->isInsideBundle()) {
565 int PIdx = I->findFirstPredOperandIdx();
566 if (PIdx != -1 && I->getOperand(i: PIdx).getImm() != ARMCC::AL)
567 return true;
568 }
569 return false;
570 }
571
572 int PIdx = MI.findFirstPredOperandIdx();
573 return PIdx != -1 && MI.getOperand(i: PIdx).getImm() != ARMCC::AL;
574}
575
576std::string ARMBaseInstrInfo::createMIROperandComment(
577 const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
578 const TargetRegisterInfo *TRI) const {
579
580 // First, let's see if there is a generic comment for this operand
581 std::string GenericComment =
582 TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
583 if (!GenericComment.empty())
584 return GenericComment;
585
586 // If not, check if we have an immediate operand.
587 if (!Op.isImm())
588 return std::string();
589
590 // And print its corresponding condition code if the immediate is a
591 // predicate.
592 int FirstPredOp = MI.findFirstPredOperandIdx();
593 if (FirstPredOp != (int) OpIdx)
594 return std::string();
595
596 std::string CC = "CC::";
597 CC += ARMCondCodeToString(CC: (ARMCC::CondCodes)Op.getImm());
598 return CC;
599}
600
601bool ARMBaseInstrInfo::PredicateInstruction(
602 MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
603 unsigned Opc = MI.getOpcode();
604 if (isUncondBranchOpcode(Opc)) {
605 MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
606 MachineInstrBuilder(*MI.getParent()->getParent(), MI)
607 .addImm(Val: Pred[0].getImm())
608 .addReg(RegNo: Pred[1].getReg());
609 return true;
610 }
611
612 int PIdx = MI.findFirstPredOperandIdx();
613 if (PIdx != -1) {
614 MachineOperand &PMO = MI.getOperand(i: PIdx);
615 PMO.setImm(Pred[0].getImm());
616 MI.getOperand(i: PIdx+1).setReg(Pred[1].getReg());
617
618 // Thumb 1 arithmetic instructions do not set CPSR when executed inside an
619 // IT block. This affects how they are printed.
620 const MCInstrDesc &MCID = MI.getDesc();
621 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
622 assert(MCID.operands()[1].isOptionalDef() &&
623 "CPSR def isn't expected operand");
624 assert((MI.getOperand(1).isDead() ||
625 MI.getOperand(1).getReg() != ARM::CPSR) &&
626 "if conversion tried to stop defining used CPSR");
627 MI.getOperand(1).setReg(ARM::NoRegister);
628 }
629
630 return true;
631 }
632 return false;
633}
634
635bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
636 ArrayRef<MachineOperand> Pred2) const {
637 if (Pred1.size() > 2 || Pred2.size() > 2)
638 return false;
639
640 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
641 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
642 if (CC1 == CC2)
643 return true;
644
645 switch (CC1) {
646 default:
647 return false;
648 case ARMCC::AL:
649 return true;
650 case ARMCC::HS:
651 return CC2 == ARMCC::HI;
652 case ARMCC::LS:
653 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
654 case ARMCC::GE:
655 return CC2 == ARMCC::GT;
656 case ARMCC::LE:
657 return CC2 == ARMCC::LT;
658 }
659}
660
661bool ARMBaseInstrInfo::ClobbersPredicate(MachineInstr &MI,
662 std::vector<MachineOperand> &Pred,
663 bool SkipDead) const {
664 bool Found = false;
665 for (const MachineOperand &MO : MI.operands()) {
666 bool ClobbersCPSR = MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR);
667 bool IsCPSR = MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR;
668 if (ClobbersCPSR || IsCPSR) {
669
670 // Filter out T1 instructions that have a dead CPSR,
671 // allowing IT blocks to be generated containing T1 instructions
672 const MCInstrDesc &MCID = MI.getDesc();
673 if (MCID.TSFlags & ARMII::ThumbArithFlagSetting && MO.isDead() &&
674 SkipDead)
675 continue;
676
677 Pred.push_back(x: MO);
678 Found = true;
679 }
680 }
681
682 return Found;
683}
684
685bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
686 for (const auto &MO : MI.operands())
687 if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
688 return true;
689 return false;
690}
691
692static bool isEligibleForITBlock(const MachineInstr *MI) {
693 switch (MI->getOpcode()) {
694 default: return true;
695 case ARM::tADC: // ADC (register) T1
696 case ARM::tADDi3: // ADD (immediate) T1
697 case ARM::tADDi8: // ADD (immediate) T2
698 case ARM::tADDrr: // ADD (register) T1
699 case ARM::tAND: // AND (register) T1
700 case ARM::tASRri: // ASR (immediate) T1
701 case ARM::tASRrr: // ASR (register) T1
702 case ARM::tBIC: // BIC (register) T1
703 case ARM::tEOR: // EOR (register) T1
704 case ARM::tLSLri: // LSL (immediate) T1
705 case ARM::tLSLrr: // LSL (register) T1
706 case ARM::tLSRri: // LSR (immediate) T1
707 case ARM::tLSRrr: // LSR (register) T1
708 case ARM::tMUL: // MUL T1
709 case ARM::tMVN: // MVN (register) T1
710 case ARM::tORR: // ORR (register) T1
711 case ARM::tROR: // ROR (register) T1
712 case ARM::tRSB: // RSB (immediate) T1
713 case ARM::tSBC: // SBC (register) T1
714 case ARM::tSUBi3: // SUB (immediate) T1
715 case ARM::tSUBi8: // SUB (immediate) T2
716 case ARM::tSUBrr: // SUB (register) T1
717 return !ARMBaseInstrInfo::isCPSRDefined(MI: *MI);
718 }
719}
720
721/// isPredicable - Return true if the specified instruction can be predicated.
722/// By default, this returns true for every instruction with a
723/// PredicateOperand.
724bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
725 if (!MI.isPredicable())
726 return false;
727
728 if (MI.isBundle())
729 return false;
730
731 if (!isEligibleForITBlock(MI: &MI))
732 return false;
733
734 const MachineFunction *MF = MI.getParent()->getParent();
735 const ARMFunctionInfo *AFI =
736 MF->getInfo<ARMFunctionInfo>();
737
738 // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
739 // In their ARM encoding, they can't be encoded in a conditional form.
740 if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
741 return false;
742
743 // Make indirect control flow changes unpredicable when SLS mitigation is
744 // enabled.
745 const ARMSubtarget &ST = MF->getSubtarget<ARMSubtarget>();
746 if (ST.hardenSlsRetBr() && isIndirectControlFlowNotComingBack(MI))
747 return false;
748 if (ST.hardenSlsBlr() && isIndirectCall(MI))
749 return false;
750
751 if (AFI->isThumb2Function()) {
752 if (getSubtarget().restrictIT())
753 return isV8EligibleForIT(Instr: &MI);
754 }
755
756 return true;
757}
758
759namespace llvm {
760
761template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
762 for (const MachineOperand &MO : MI->operands()) {
763 if (!MO.isReg() || MO.isUndef() || MO.isUse())
764 continue;
765 if (MO.getReg() != ARM::CPSR)
766 continue;
767 if (!MO.isDead())
768 return false;
769 }
770 // all definitions of CPSR are dead
771 return true;
772}
773
774} // end namespace llvm
775
776/// GetInstSize - Return the size of the specified MachineInstr.
777///
778unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
779 const MachineBasicBlock &MBB = *MI.getParent();
780 const MachineFunction *MF = MBB.getParent();
781 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
782
783 const MCInstrDesc &MCID = MI.getDesc();
784
785 switch (MI.getOpcode()) {
786 default:
787 // Return the size specified in .td file. If there's none, return 0, as we
788 // can't define a default size (Thumb1 instructions are 2 bytes, Thumb2
789 // instructions are 2-4 bytes, and ARM instructions are 4 bytes), in
790 // contrast to AArch64 instructions which have a default size of 4 bytes for
791 // example.
792 return MCID.getSize();
793 case TargetOpcode::BUNDLE:
794 return getInstBundleLength(MI);
795 case ARM::CONSTPOOL_ENTRY:
796 case ARM::JUMPTABLE_INSTS:
797 case ARM::JUMPTABLE_ADDRS:
798 case ARM::JUMPTABLE_TBB:
799 case ARM::JUMPTABLE_TBH:
800 // If this machine instr is a constant pool entry, its size is recorded as
801 // operand #2.
802 return MI.getOperand(i: 2).getImm();
803 case ARM::SPACE:
804 return MI.getOperand(i: 1).getImm();
805 case ARM::INLINEASM:
806 case ARM::INLINEASM_BR: {
807 // If this machine instr is an inline asm, measure it.
808 unsigned Size = getInlineAsmLength(MI.getOperand(i: 0).getSymbolName(), *MAI);
809 if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
810 Size = alignTo(Value: Size, Align: 4);
811 return Size;
812 }
813 }
814}
815
816unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
817 unsigned Size = 0;
818 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
819 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
820 while (++I != E && I->isInsideBundle()) {
821 assert(!I->isBundle() && "No nested bundle!");
822 Size += getInstSizeInBytes(MI: *I);
823 }
824 return Size;
825}
826
827void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
828 MachineBasicBlock::iterator I,
829 unsigned DestReg, bool KillSrc,
830 const ARMSubtarget &Subtarget) const {
831 unsigned Opc = Subtarget.isThumb()
832 ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
833 : ARM::MRS;
834
835 MachineInstrBuilder MIB =
836 BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);
837
838 // There is only 1 A/R class MRS instruction, and it always refers to
839 // APSR. However, there are lots of other possibilities on M-class cores.
840 if (Subtarget.isMClass())
841 MIB.addImm(Val: 0x800);
842
843 MIB.add(predOps(ARMCC::AL))
844 .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
845}
846
847void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
848 MachineBasicBlock::iterator I,
849 unsigned SrcReg, bool KillSrc,
850 const ARMSubtarget &Subtarget) const {
851 unsigned Opc = Subtarget.isThumb()
852 ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
853 : ARM::MSR;
854
855 MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));
856
857 if (Subtarget.isMClass())
858 MIB.addImm(Val: 0x800);
859 else
860 MIB.addImm(Val: 8);
861
862 MIB.addReg(SrcReg, getKillRegState(KillSrc))
863 .add(predOps(ARMCC::AL))
864 .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
865}
866
867void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
868 MIB.addImm(Val: ARMVCC::None);
869 MIB.addReg(RegNo: 0);
870 MIB.addReg(RegNo: 0); // tp_reg
871}
872
873void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
874 Register DestReg) {
875 addUnpredicatedMveVpredNOp(MIB);
876 MIB.addReg(RegNo: DestReg, flags: RegState::Undef);
877}
878
879void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
880 MIB.addImm(Val: Cond);
881 MIB.addReg(ARM::VPR, RegState::Implicit);
882 MIB.addReg(RegNo: 0); // tp_reg
883}
884
885void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
886 unsigned Cond, unsigned Inactive) {
887 addPredicatedMveVpredNOp(MIB, Cond);
888 MIB.addReg(RegNo: Inactive);
889}
890
891void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
892 MachineBasicBlock::iterator I,
893 const DebugLoc &DL, MCRegister DestReg,
894 MCRegister SrcReg, bool KillSrc) const {
895 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
896 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
897
898 if (GPRDest && GPRSrc) {
899 BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
900 .addReg(SrcReg, getKillRegState(KillSrc))
901 .add(predOps(ARMCC::AL))
902 .add(condCodeOp());
903 return;
904 }
905
906 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
907 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
908
909 unsigned Opc = 0;
910 if (SPRDest && SPRSrc)
911 Opc = ARM::VMOVS;
912 else if (GPRDest && SPRSrc)
913 Opc = ARM::VMOVRS;
914 else if (SPRDest && GPRSrc)
915 Opc = ARM::VMOVSR;
916 else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
917 Opc = ARM::VMOVD;
918 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
919 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MQPRCopy;
920
921 if (Opc) {
922 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
923 MIB.addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc));
924 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
925 MIB.addReg(RegNo: SrcReg, flags: getKillRegState(B: KillSrc));
926 if (Opc == ARM::MVE_VORR)
927 addUnpredicatedMveVpredROp(MIB, DestReg);
928 else if (Opc != ARM::MQPRCopy)
929 MIB.add(MOs: predOps(Pred: ARMCC::AL));
930 return;
931 }
932
933 // Handle register classes that require multiple instructions.
934 unsigned BeginIdx = 0;
935 unsigned SubRegs = 0;
936 int Spacing = 1;
937
938 // Use VORRq when possible.
939 if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
940 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
941 BeginIdx = ARM::qsub_0;
942 SubRegs = 2;
943 } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
944 Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
945 BeginIdx = ARM::qsub_0;
946 SubRegs = 4;
947 // Fall back to VMOVD.
948 } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
949 Opc = ARM::VMOVD;
950 BeginIdx = ARM::dsub_0;
951 SubRegs = 2;
952 } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
953 Opc = ARM::VMOVD;
954 BeginIdx = ARM::dsub_0;
955 SubRegs = 3;
956 } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
957 Opc = ARM::VMOVD;
958 BeginIdx = ARM::dsub_0;
959 SubRegs = 4;
960 } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
961 Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
962 BeginIdx = ARM::gsub_0;
963 SubRegs = 2;
964 } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
965 Opc = ARM::VMOVD;
966 BeginIdx = ARM::dsub_0;
967 SubRegs = 2;
968 Spacing = 2;
969 } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
970 Opc = ARM::VMOVD;
971 BeginIdx = ARM::dsub_0;
972 SubRegs = 3;
973 Spacing = 2;
974 } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
975 Opc = ARM::VMOVD;
976 BeginIdx = ARM::dsub_0;
977 SubRegs = 4;
978 Spacing = 2;
979 } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
980 !Subtarget.hasFP64()) {
981 Opc = ARM::VMOVS;
982 BeginIdx = ARM::ssub_0;
983 SubRegs = 2;
984 } else if (SrcReg == ARM::CPSR) {
985 copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
986 return;
987 } else if (DestReg == ARM::CPSR) {
988 copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
989 return;
990 } else if (DestReg == ARM::VPR) {
991 assert(ARM::GPRRegClass.contains(SrcReg));
992 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
993 .addReg(SrcReg, getKillRegState(KillSrc))
994 .add(predOps(ARMCC::AL));
995 return;
996 } else if (SrcReg == ARM::VPR) {
997 assert(ARM::GPRRegClass.contains(DestReg));
998 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
999 .addReg(SrcReg, getKillRegState(KillSrc))
1000 .add(predOps(ARMCC::AL));
1001 return;
1002 } else if (DestReg == ARM::FPSCR_NZCV) {
1003 assert(ARM::GPRRegClass.contains(SrcReg));
1004 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
1005 .addReg(SrcReg, getKillRegState(KillSrc))
1006 .add(predOps(ARMCC::AL));
1007 return;
1008 } else if (SrcReg == ARM::FPSCR_NZCV) {
1009 assert(ARM::GPRRegClass.contains(DestReg));
1010 BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
1011 .addReg(SrcReg, getKillRegState(KillSrc))
1012 .add(predOps(ARMCC::AL));
1013 return;
1014 }
1015
1016 assert(Opc && "Impossible reg-to-reg copy");
1017
1018 const TargetRegisterInfo *TRI = &getRegisterInfo();
1019 MachineInstrBuilder Mov;
1020
1021 // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
1022 if (TRI->regsOverlap(RegA: SrcReg, RegB: TRI->getSubReg(Reg: DestReg, Idx: BeginIdx))) {
1023 BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
1024 Spacing = -Spacing;
1025 }
1026#ifndef NDEBUG
1027 SmallSet<unsigned, 4> DstRegs;
1028#endif
1029 for (unsigned i = 0; i != SubRegs; ++i) {
1030 Register Dst = TRI->getSubReg(Reg: DestReg, Idx: BeginIdx + i * Spacing);
1031 Register Src = TRI->getSubReg(Reg: SrcReg, Idx: BeginIdx + i * Spacing);
1032 assert(Dst && Src && "Bad sub-register");
1033#ifndef NDEBUG
1034 assert(!DstRegs.count(Src) && "destructive vector copy");
1035 DstRegs.insert(V: Dst);
1036#endif
1037 Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
1038 // VORR (NEON or MVE) takes two source operands.
1039 if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
1040 Mov.addReg(RegNo: Src);
1041 }
1042 // MVE VORR takes predicate operands in place of an ordinary condition.
1043 if (Opc == ARM::MVE_VORR)
1044 addUnpredicatedMveVpredROp(MIB&: Mov, DestReg: Dst);
1045 else
1046 Mov = Mov.add(MOs: predOps(Pred: ARMCC::AL));
1047 // MOVr can set CC.
1048 if (Opc == ARM::MOVr)
1049 Mov = Mov.add(MO: condCodeOp());
1050 }
1051 // Add implicit super-register defs and kills to the last instruction.
1052 Mov->addRegisterDefined(Reg: DestReg, RegInfo: TRI);
1053 if (KillSrc)
1054 Mov->addRegisterKilled(IncomingReg: SrcReg, RegInfo: TRI);
1055}
1056
1057std::optional<DestSourcePair>
1058ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
1059 // VMOVRRD is also a copy instruction but it requires
1060 // special way of handling. It is more complex copy version
1061 // and since that we are not considering it. For recognition
1062 // of such instruction isExtractSubregLike MI interface fuction
1063 // could be used.
1064 // VORRq is considered as a move only if two inputs are
1065 // the same register.
1066 if (!MI.isMoveReg() ||
1067 (MI.getOpcode() == ARM::VORRq &&
1068 MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
1069 return std::nullopt;
1070 return DestSourcePair{MI.getOperand(i: 0), MI.getOperand(i: 1)};
1071}
1072
1073std::optional<ParamLoadedValue>
1074ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
1075 Register Reg) const {
1076 if (auto DstSrcPair = isCopyInstrImpl(MI)) {
1077 Register DstReg = DstSrcPair->Destination->getReg();
1078
1079 // TODO: We don't handle cases where the forwarding reg is narrower/wider
1080 // than the copy registers. Consider for example:
1081 //
1082 // s16 = VMOVS s0
1083 // s17 = VMOVS s1
1084 // call @callee(d0)
1085 //
1086 // We'd like to describe the call site value of d0 as d8, but this requires
1087 // gathering and merging the descriptions for the two VMOVS instructions.
1088 //
1089 // We also don't handle the reverse situation, where the forwarding reg is
1090 // narrower than the copy destination:
1091 //
1092 // d8 = VMOVD d0
1093 // call @callee(s1)
1094 //
1095 // We need to produce a fragment description (the call site value of s1 is
1096 // /not/ just d8).
1097 if (DstReg != Reg)
1098 return std::nullopt;
1099 }
1100 return TargetInstrInfo::describeLoadedValue(MI, Reg);
1101}
1102
1103const MachineInstrBuilder &
1104ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
1105 unsigned SubIdx, unsigned State,
1106 const TargetRegisterInfo *TRI) const {
1107 if (!SubIdx)
1108 return MIB.addReg(RegNo: Reg, flags: State);
1109
1110 if (Register::isPhysicalRegister(Reg))
1111 return MIB.addReg(RegNo: TRI->getSubReg(Reg, Idx: SubIdx), flags: State);
1112 return MIB.addReg(RegNo: Reg, flags: State, SubReg: SubIdx);
1113}
1114
1115void ARMBaseInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
1116 MachineBasicBlock::iterator I,
1117 Register SrcReg, bool isKill, int FI,
1118 const TargetRegisterClass *RC,
1119 const TargetRegisterInfo *TRI,
1120 Register VReg) const {
1121 MachineFunction &MF = *MBB.getParent();
1122 MachineFrameInfo &MFI = MF.getFrameInfo();
1123 Align Alignment = MFI.getObjectAlign(ObjectIdx: FI);
1124
1125 MachineMemOperand *MMO = MF.getMachineMemOperand(
1126 PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOStore,
1127 Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: Alignment);
1128
1129 switch (TRI->getSpillSize(RC: *RC)) {
1130 case 2:
1131 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1132 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
1133 .addReg(SrcReg, getKillRegState(isKill))
1134 .addFrameIndex(FI)
1135 .addImm(0)
1136 .addMemOperand(MMO)
1137 .add(predOps(ARMCC::AL));
1138 } else
1139 llvm_unreachable("Unknown reg class!");
1140 break;
1141 case 4:
1142 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1143 BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
1144 .addReg(SrcReg, getKillRegState(isKill))
1145 .addFrameIndex(FI)
1146 .addImm(0)
1147 .addMemOperand(MMO)
1148 .add(predOps(ARMCC::AL));
1149 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1150 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
1151 .addReg(SrcReg, getKillRegState(isKill))
1152 .addFrameIndex(FI)
1153 .addImm(0)
1154 .addMemOperand(MMO)
1155 .add(predOps(ARMCC::AL));
1156 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1157 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
1158 .addReg(SrcReg, getKillRegState(isKill))
1159 .addFrameIndex(FI)
1160 .addImm(0)
1161 .addMemOperand(MMO)
1162 .add(predOps(ARMCC::AL));
1163 } else
1164 llvm_unreachable("Unknown reg class!");
1165 break;
1166 case 8:
1167 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1168 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
1169 .addReg(SrcReg, getKillRegState(isKill))
1170 .addFrameIndex(FI)
1171 .addImm(0)
1172 .addMemOperand(MMO)
1173 .add(predOps(ARMCC::AL));
1174 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1175 if (Subtarget.hasV5TEOps()) {
1176 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
1177 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1178 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1179 MIB.addFrameIndex(Idx: FI).addReg(RegNo: 0).addImm(Val: 0).addMemOperand(MMO)
1180 .add(MOs: predOps(Pred: ARMCC::AL));
1181 } else {
1182 // Fallback to STM instruction, which has existed since the dawn of
1183 // time.
1184 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
1185 .addFrameIndex(FI)
1186 .addMemOperand(MMO)
1187 .add(predOps(ARMCC::AL));
1188 AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
1189 AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
1190 }
1191 } else
1192 llvm_unreachable("Unknown reg class!");
1193 break;
1194 case 16:
1195 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1196 // Use aligned spills if the stack can be realigned.
1197 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1198 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
1199 .addFrameIndex(FI)
1200 .addImm(16)
1201 .addReg(SrcReg, getKillRegState(isKill))
1202 .addMemOperand(MMO)
1203 .add(predOps(ARMCC::AL));
1204 } else {
1205 BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
1206 .addReg(SrcReg, getKillRegState(isKill))
1207 .addFrameIndex(FI)
1208 .addMemOperand(MMO)
1209 .add(predOps(ARMCC::AL));
1210 }
1211 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1212 Subtarget.hasMVEIntegerOps()) {
1213 auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
1214 MIB.addReg(SrcReg, getKillRegState(B: isKill))
1215 .addFrameIndex(FI)
1216 .addImm(0)
1217 .addMemOperand(MMO);
1218 addUnpredicatedMveVpredNOp(MIB);
1219 } else
1220 llvm_unreachable("Unknown reg class!");
1221 break;
1222 case 24:
1223 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1224 // Use aligned spills if the stack can be realigned.
1225 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1226 Subtarget.hasNEON()) {
1227 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
1228 .addFrameIndex(FI)
1229 .addImm(16)
1230 .addReg(SrcReg, getKillRegState(isKill))
1231 .addMemOperand(MMO)
1232 .add(predOps(ARMCC::AL));
1233 } else {
1234 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1235 get(ARM::VSTMDIA))
1236 .addFrameIndex(FI)
1237 .add(predOps(ARMCC::AL))
1238 .addMemOperand(MMO);
1239 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1240 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1241 AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1242 }
1243 } else
1244 llvm_unreachable("Unknown reg class!");
1245 break;
1246 case 32:
1247 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1248 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1249 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1250 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1251 Subtarget.hasNEON()) {
1252 // FIXME: It's possible to only store part of the QQ register if the
1253 // spilled def has a sub-register index.
1254 BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
1255 .addFrameIndex(FI)
1256 .addImm(16)
1257 .addReg(SrcReg, getKillRegState(isKill))
1258 .addMemOperand(MMO)
1259 .add(predOps(ARMCC::AL));
1260 } else if (Subtarget.hasMVEIntegerOps()) {
1261 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQPRStore))
1262 .addReg(SrcReg, getKillRegState(isKill))
1263 .addFrameIndex(FI)
1264 .addMemOperand(MMO);
1265 } else {
1266 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
1267 get(ARM::VSTMDIA))
1268 .addFrameIndex(FI)
1269 .add(predOps(ARMCC::AL))
1270 .addMemOperand(MMO);
1271 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1272 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1273 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1274 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1275 }
1276 } else
1277 llvm_unreachable("Unknown reg class!");
1278 break;
1279 case 64:
1280 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1281 Subtarget.hasMVEIntegerOps()) {
1282 BuildMI(MBB, I, DebugLoc(), get(ARM::MQQQQPRStore))
1283 .addReg(SrcReg, getKillRegState(isKill))
1284 .addFrameIndex(FI)
1285 .addMemOperand(MMO);
1286 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1287 MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
1288 .addFrameIndex(FI)
1289 .add(predOps(ARMCC::AL))
1290 .addMemOperand(MMO);
1291 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
1292 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
1293 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
1294 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
1295 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
1296 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
1297 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
1298 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
1299 } else
1300 llvm_unreachable("Unknown reg class!");
1301 break;
1302 default:
1303 llvm_unreachable("Unknown reg class!");
1304 }
1305}
1306
1307Register ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
1308 int &FrameIndex) const {
1309 switch (MI.getOpcode()) {
1310 default: break;
1311 case ARM::STRrs:
1312 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
1313 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isReg() &&
1314 MI.getOperand(i: 3).isImm() && MI.getOperand(i: 2).getReg() == 0 &&
1315 MI.getOperand(i: 3).getImm() == 0) {
1316 FrameIndex = MI.getOperand(i: 1).getIndex();
1317 return MI.getOperand(i: 0).getReg();
1318 }
1319 break;
1320 case ARM::STRi12:
1321 case ARM::t2STRi12:
1322 case ARM::tSTRspi:
1323 case ARM::VSTRD:
1324 case ARM::VSTRS:
1325 case ARM::VSTR_P0_off:
1326 case ARM::MVE_VSTRWU32:
1327 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isImm() &&
1328 MI.getOperand(i: 2).getImm() == 0) {
1329 FrameIndex = MI.getOperand(i: 1).getIndex();
1330 return MI.getOperand(i: 0).getReg();
1331 }
1332 break;
1333 case ARM::VST1q64:
1334 case ARM::VST1d64TPseudo:
1335 case ARM::VST1d64QPseudo:
1336 if (MI.getOperand(i: 0).isFI() && MI.getOperand(i: 2).getSubReg() == 0) {
1337 FrameIndex = MI.getOperand(i: 0).getIndex();
1338 return MI.getOperand(i: 2).getReg();
1339 }
1340 break;
1341 case ARM::VSTMQIA:
1342 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 0).getSubReg() == 0) {
1343 FrameIndex = MI.getOperand(i: 1).getIndex();
1344 return MI.getOperand(i: 0).getReg();
1345 }
1346 break;
1347 case ARM::MQQPRStore:
1348 case ARM::MQQQQPRStore:
1349 if (MI.getOperand(i: 1).isFI()) {
1350 FrameIndex = MI.getOperand(i: 1).getIndex();
1351 return MI.getOperand(i: 0).getReg();
1352 }
1353 break;
1354 }
1355
1356 return 0;
1357}
1358
1359Register ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
1360 int &FrameIndex) const {
1361 SmallVector<const MachineMemOperand *, 1> Accesses;
1362 if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
1363 Accesses.size() == 1) {
1364 FrameIndex =
1365 cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue())
1366 ->getFrameIndex();
1367 return true;
1368 }
1369 return false;
1370}
1371
1372void ARMBaseInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
1373 MachineBasicBlock::iterator I,
1374 Register DestReg, int FI,
1375 const TargetRegisterClass *RC,
1376 const TargetRegisterInfo *TRI,
1377 Register VReg) const {
1378 DebugLoc DL;
1379 if (I != MBB.end()) DL = I->getDebugLoc();
1380 MachineFunction &MF = *MBB.getParent();
1381 MachineFrameInfo &MFI = MF.getFrameInfo();
1382 const Align Alignment = MFI.getObjectAlign(ObjectIdx: FI);
1383 MachineMemOperand *MMO = MF.getMachineMemOperand(
1384 PtrInfo: MachinePointerInfo::getFixedStack(MF, FI), F: MachineMemOperand::MOLoad,
1385 Size: MFI.getObjectSize(ObjectIdx: FI), BaseAlignment: Alignment);
1386
1387 switch (TRI->getSpillSize(RC: *RC)) {
1388 case 2:
1389 if (ARM::HPRRegClass.hasSubClassEq(RC)) {
1390 BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
1391 .addFrameIndex(FI)
1392 .addImm(0)
1393 .addMemOperand(MMO)
1394 .add(predOps(ARMCC::AL));
1395 } else
1396 llvm_unreachable("Unknown reg class!");
1397 break;
1398 case 4:
1399 if (ARM::GPRRegClass.hasSubClassEq(RC)) {
1400 BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
1401 .addFrameIndex(FI)
1402 .addImm(0)
1403 .addMemOperand(MMO)
1404 .add(predOps(ARMCC::AL));
1405 } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
1406 BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
1407 .addFrameIndex(FI)
1408 .addImm(0)
1409 .addMemOperand(MMO)
1410 .add(predOps(ARMCC::AL));
1411 } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
1412 BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
1413 .addFrameIndex(FI)
1414 .addImm(0)
1415 .addMemOperand(MMO)
1416 .add(predOps(ARMCC::AL));
1417 } else
1418 llvm_unreachable("Unknown reg class!");
1419 break;
1420 case 8:
1421 if (ARM::DPRRegClass.hasSubClassEq(RC)) {
1422 BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
1423 .addFrameIndex(FI)
1424 .addImm(0)
1425 .addMemOperand(MMO)
1426 .add(predOps(ARMCC::AL));
1427 } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
1428 MachineInstrBuilder MIB;
1429
1430 if (Subtarget.hasV5TEOps()) {
1431 MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
1432 AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1433 AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1434 MIB.addFrameIndex(Idx: FI).addReg(RegNo: 0).addImm(Val: 0).addMemOperand(MMO)
1435 .add(MOs: predOps(Pred: ARMCC::AL));
1436 } else {
1437 // Fallback to LDM instruction, which has existed since the dawn of
1438 // time.
1439 MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
1440 .addFrameIndex(FI)
1441 .addMemOperand(MMO)
1442 .add(predOps(ARMCC::AL));
1443 MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
1444 MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
1445 }
1446
1447 if (DestReg.isPhysical())
1448 MIB.addReg(RegNo: DestReg, flags: RegState::ImplicitDefine);
1449 } else
1450 llvm_unreachable("Unknown reg class!");
1451 break;
1452 case 16:
1453 if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
1454 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
1455 BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
1456 .addFrameIndex(FI)
1457 .addImm(16)
1458 .addMemOperand(MMO)
1459 .add(predOps(ARMCC::AL));
1460 } else {
1461 BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
1462 .addFrameIndex(FI)
1463 .addMemOperand(MMO)
1464 .add(predOps(ARMCC::AL));
1465 }
1466 } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
1467 Subtarget.hasMVEIntegerOps()) {
1468 auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
1469 MIB.addFrameIndex(FI)
1470 .addImm(0)
1471 .addMemOperand(MMO);
1472 addUnpredicatedMveVpredNOp(MIB);
1473 } else
1474 llvm_unreachable("Unknown reg class!");
1475 break;
1476 case 24:
1477 if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
1478 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1479 Subtarget.hasNEON()) {
1480 BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
1481 .addFrameIndex(FI)
1482 .addImm(16)
1483 .addMemOperand(MMO)
1484 .add(predOps(ARMCC::AL));
1485 } else {
1486 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1487 .addFrameIndex(FI)
1488 .addMemOperand(MMO)
1489 .add(predOps(ARMCC::AL));
1490 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1491 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1492 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1493 if (DestReg.isPhysical())
1494 MIB.addReg(RegNo: DestReg, flags: RegState::ImplicitDefine);
1495 }
1496 } else
1497 llvm_unreachable("Unknown reg class!");
1498 break;
1499 case 32:
1500 if (ARM::QQPRRegClass.hasSubClassEq(RC) ||
1501 ARM::MQQPRRegClass.hasSubClassEq(RC) ||
1502 ARM::DQuadRegClass.hasSubClassEq(RC)) {
1503 if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
1504 Subtarget.hasNEON()) {
1505 BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
1506 .addFrameIndex(FI)
1507 .addImm(16)
1508 .addMemOperand(MMO)
1509 .add(predOps(ARMCC::AL));
1510 } else if (Subtarget.hasMVEIntegerOps()) {
1511 BuildMI(MBB, I, DL, get(ARM::MQQPRLoad), DestReg)
1512 .addFrameIndex(FI)
1513 .addMemOperand(MMO);
1514 } else {
1515 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1516 .addFrameIndex(FI)
1517 .add(predOps(ARMCC::AL))
1518 .addMemOperand(MMO);
1519 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1520 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1521 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1522 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1523 if (DestReg.isPhysical())
1524 MIB.addReg(RegNo: DestReg, flags: RegState::ImplicitDefine);
1525 }
1526 } else
1527 llvm_unreachable("Unknown reg class!");
1528 break;
1529 case 64:
1530 if (ARM::MQQQQPRRegClass.hasSubClassEq(RC) &&
1531 Subtarget.hasMVEIntegerOps()) {
1532 BuildMI(MBB, I, DL, get(ARM::MQQQQPRLoad), DestReg)
1533 .addFrameIndex(FI)
1534 .addMemOperand(MMO);
1535 } else if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
1536 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
1537 .addFrameIndex(FI)
1538 .add(predOps(ARMCC::AL))
1539 .addMemOperand(MMO);
1540 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
1541 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
1542 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
1543 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
1544 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
1545 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
1546 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
1547 MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
1548 if (DestReg.isPhysical())
1549 MIB.addReg(RegNo: DestReg, flags: RegState::ImplicitDefine);
1550 } else
1551 llvm_unreachable("Unknown reg class!");
1552 break;
1553 default:
1554 llvm_unreachable("Unknown regclass!");
1555 }
1556}
1557
1558Register ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
1559 int &FrameIndex) const {
1560 switch (MI.getOpcode()) {
1561 default: break;
1562 case ARM::LDRrs:
1563 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
1564 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isReg() &&
1565 MI.getOperand(i: 3).isImm() && MI.getOperand(i: 2).getReg() == 0 &&
1566 MI.getOperand(i: 3).getImm() == 0) {
1567 FrameIndex = MI.getOperand(i: 1).getIndex();
1568 return MI.getOperand(i: 0).getReg();
1569 }
1570 break;
1571 case ARM::LDRi12:
1572 case ARM::t2LDRi12:
1573 case ARM::tLDRspi:
1574 case ARM::VLDRD:
1575 case ARM::VLDRS:
1576 case ARM::VLDR_P0_off:
1577 case ARM::MVE_VLDRWU32:
1578 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 2).isImm() &&
1579 MI.getOperand(i: 2).getImm() == 0) {
1580 FrameIndex = MI.getOperand(i: 1).getIndex();
1581 return MI.getOperand(i: 0).getReg();
1582 }
1583 break;
1584 case ARM::VLD1q64:
1585 case ARM::VLD1d8TPseudo:
1586 case ARM::VLD1d16TPseudo:
1587 case ARM::VLD1d32TPseudo:
1588 case ARM::VLD1d64TPseudo:
1589 case ARM::VLD1d8QPseudo:
1590 case ARM::VLD1d16QPseudo:
1591 case ARM::VLD1d32QPseudo:
1592 case ARM::VLD1d64QPseudo:
1593 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 0).getSubReg() == 0) {
1594 FrameIndex = MI.getOperand(i: 1).getIndex();
1595 return MI.getOperand(i: 0).getReg();
1596 }
1597 break;
1598 case ARM::VLDMQIA:
1599 if (MI.getOperand(i: 1).isFI() && MI.getOperand(i: 0).getSubReg() == 0) {
1600 FrameIndex = MI.getOperand(i: 1).getIndex();
1601 return MI.getOperand(i: 0).getReg();
1602 }
1603 break;
1604 case ARM::MQQPRLoad:
1605 case ARM::MQQQQPRLoad:
1606 if (MI.getOperand(i: 1).isFI()) {
1607 FrameIndex = MI.getOperand(i: 1).getIndex();
1608 return MI.getOperand(i: 0).getReg();
1609 }
1610 break;
1611 }
1612
1613 return 0;
1614}
1615
1616Register ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
1617 int &FrameIndex) const {
1618 SmallVector<const MachineMemOperand *, 1> Accesses;
1619 if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
1620 Accesses.size() == 1) {
1621 FrameIndex =
1622 cast<FixedStackPseudoSourceValue>(Val: Accesses.front()->getPseudoValue())
1623 ->getFrameIndex();
1624 return true;
1625 }
1626 return false;
1627}
1628
1629/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
1630/// depending on whether the result is used.
1631void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
1632 bool isThumb1 = Subtarget.isThumb1Only();
1633 bool isThumb2 = Subtarget.isThumb2();
1634 const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();
1635
1636 DebugLoc dl = MI->getDebugLoc();
1637 MachineBasicBlock *BB = MI->getParent();
1638
1639 MachineInstrBuilder LDM, STM;
1640 if (isThumb1 || !MI->getOperand(i: 1).isDead()) {
1641 MachineOperand LDWb(MI->getOperand(i: 1));
1642 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
1643 : isThumb1 ? ARM::tLDMIA_UPD
1644 : ARM::LDMIA_UPD))
1645 .add(LDWb);
1646 } else {
1647 LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
1648 }
1649
1650 if (isThumb1 || !MI->getOperand(i: 0).isDead()) {
1651 MachineOperand STWb(MI->getOperand(i: 0));
1652 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
1653 : isThumb1 ? ARM::tSTMIA_UPD
1654 : ARM::STMIA_UPD))
1655 .add(STWb);
1656 } else {
1657 STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
1658 }
1659
1660 MachineOperand LDBase(MI->getOperand(i: 3));
1661 LDM.add(MO: LDBase).add(MOs: predOps(Pred: ARMCC::AL));
1662
1663 MachineOperand STBase(MI->getOperand(i: 2));
1664 STM.add(MO: STBase).add(MOs: predOps(Pred: ARMCC::AL));
1665
1666 // Sort the scratch registers into ascending order.
1667 const TargetRegisterInfo &TRI = getRegisterInfo();
1668 SmallVector<unsigned, 6> ScratchRegs;
1669 for (MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 5))
1670 ScratchRegs.push_back(Elt: MO.getReg());
1671 llvm::sort(C&: ScratchRegs,
1672 Comp: [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
1673 return TRI.getEncodingValue(RegNo: Reg1) <
1674 TRI.getEncodingValue(RegNo: Reg2);
1675 });
1676
1677 for (const auto &Reg : ScratchRegs) {
1678 LDM.addReg(RegNo: Reg, flags: RegState::Define);
1679 STM.addReg(RegNo: Reg, flags: RegState::Kill);
1680 }
1681
1682 BB->erase(I: MI);
1683}
1684
1685bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
1686 if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
1687 expandLoadStackGuard(MI);
1688 MI.getParent()->erase(I: MI);
1689 return true;
1690 }
1691
1692 if (MI.getOpcode() == ARM::MEMCPY) {
1693 expandMEMCPY(MI);
1694 return true;
1695 }
1696
1697 // This hook gets to expand COPY instructions before they become
1698 // copyPhysReg() calls. Look for VMOVS instructions that can legally be
1699 // widened to VMOVD. We prefer the VMOVD when possible because it may be
1700 // changed into a VORR that can go down the NEON pipeline.
1701 if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
1702 return false;
1703
1704 // Look for a copy between even S-registers. That is where we keep floats
1705 // when using NEON v2f32 instructions for f32 arithmetic.
1706 Register DstRegS = MI.getOperand(i: 0).getReg();
1707 Register SrcRegS = MI.getOperand(i: 1).getReg();
1708 if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
1709 return false;
1710
1711 const TargetRegisterInfo *TRI = &getRegisterInfo();
1712 unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
1713 &ARM::DPRRegClass);
1714 unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
1715 &ARM::DPRRegClass);
1716 if (!DstRegD || !SrcRegD)
1717 return false;
1718
1719 // We want to widen this into a DstRegD = VMOVD SrcRegD copy. This is only
1720 // legal if the COPY already defines the full DstRegD, and it isn't a
1721 // sub-register insertion.
1722 if (!MI.definesRegister(Reg: DstRegD, TRI) || MI.readsRegister(Reg: DstRegD, TRI))
1723 return false;
1724
1725 // A dead copy shouldn't show up here, but reject it just in case.
1726 if (MI.getOperand(i: 0).isDead())
1727 return false;
1728
1729 // All clear, widen the COPY.
1730 LLVM_DEBUG(dbgs() << "widening: " << MI);
1731 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
1732
1733 // Get rid of the old implicit-def of DstRegD. Leave it if it defines a Q-reg
1734 // or some other super-register.
1735 int ImpDefIdx = MI.findRegisterDefOperandIdx(Reg: DstRegD, /*TRI=*/nullptr);
1736 if (ImpDefIdx != -1)
1737 MI.removeOperand(OpNo: ImpDefIdx);
1738
1739 // Change the opcode and operands.
1740 MI.setDesc(get(ARM::VMOVD));
1741 MI.getOperand(i: 0).setReg(DstRegD);
1742 MI.getOperand(i: 1).setReg(SrcRegD);
1743 MIB.add(MOs: predOps(Pred: ARMCC::AL));
1744
1745 // We are now reading SrcRegD instead of SrcRegS. This may upset the
1746 // register scavenger and machine verifier, so we need to indicate that we
1747 // are reading an undefined value from SrcRegD, but a proper value from
1748 // SrcRegS.
1749 MI.getOperand(i: 1).setIsUndef();
1750 MIB.addReg(RegNo: SrcRegS, flags: RegState::Implicit);
1751
1752 // SrcRegD may actually contain an unrelated value in the ssub_1
1753 // sub-register. Don't kill it. Only kill the ssub_0 sub-register.
1754 if (MI.getOperand(i: 1).isKill()) {
1755 MI.getOperand(i: 1).setIsKill(false);
1756 MI.addRegisterKilled(IncomingReg: SrcRegS, RegInfo: TRI, AddIfNotFound: true);
1757 }
1758
1759 LLVM_DEBUG(dbgs() << "replaced by: " << MI);
1760 return true;
1761}
1762
1763/// Create a copy of a const pool value. Update CPI to the new index and return
1764/// the label UID.
1765static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
1766 MachineConstantPool *MCP = MF.getConstantPool();
1767 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1768
1769 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
1770 assert(MCPE.isMachineConstantPoolEntry() &&
1771 "Expecting a machine constantpool entry!");
1772 ARMConstantPoolValue *ACPV =
1773 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
1774
1775 unsigned PCLabelId = AFI->createPICLabelUId();
1776 ARMConstantPoolValue *NewCPV = nullptr;
1777
1778 // FIXME: The below assumes PIC relocation model and that the function
1779 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
1780 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
1781 // instructions, so that's probably OK, but is PIC always correct when
1782 // we get here?
1783 if (ACPV->isGlobalValue())
1784 NewCPV = ARMConstantPoolConstant::Create(
1785 C: cast<ARMConstantPoolConstant>(Val: ACPV)->getGV(), ID: PCLabelId, Kind: ARMCP::CPValue,
1786 PCAdj: 4, Modifier: ACPV->getModifier(), AddCurrentAddress: ACPV->mustAddCurrentAddress());
1787 else if (ACPV->isExtSymbol())
1788 NewCPV = ARMConstantPoolSymbol::
1789 Create(C&: MF.getFunction().getContext(),
1790 s: cast<ARMConstantPoolSymbol>(Val: ACPV)->getSymbol(), ID: PCLabelId, PCAdj: 4);
1791 else if (ACPV->isBlockAddress())
1792 NewCPV = ARMConstantPoolConstant::
1793 Create(C: cast<ARMConstantPoolConstant>(Val: ACPV)->getBlockAddress(), ID: PCLabelId,
1794 Kind: ARMCP::CPBlockAddress, PCAdj: 4);
1795 else if (ACPV->isLSDA())
1796 NewCPV = ARMConstantPoolConstant::Create(C: &MF.getFunction(), ID: PCLabelId,
1797 Kind: ARMCP::CPLSDA, PCAdj: 4);
1798 else if (ACPV->isMachineBasicBlock())
1799 NewCPV = ARMConstantPoolMBB::
1800 Create(C&: MF.getFunction().getContext(),
1801 mbb: cast<ARMConstantPoolMBB>(Val: ACPV)->getMBB(), ID: PCLabelId, PCAdj: 4);
1802 else
1803 llvm_unreachable("Unexpected ARM constantpool value type!!");
1804 CPI = MCP->getConstantPoolIndex(V: NewCPV, Alignment: MCPE.getAlign());
1805 return PCLabelId;
1806}
1807
1808void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
1809 MachineBasicBlock::iterator I,
1810 Register DestReg, unsigned SubIdx,
1811 const MachineInstr &Orig,
1812 const TargetRegisterInfo &TRI) const {
1813 unsigned Opcode = Orig.getOpcode();
1814 switch (Opcode) {
1815 default: {
1816 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig: &Orig);
1817 MI->substituteRegister(FromReg: Orig.getOperand(i: 0).getReg(), ToReg: DestReg, SubIdx, RegInfo: TRI);
1818 MBB.insert(I, MI);
1819 break;
1820 }
1821 case ARM::tLDRpci_pic:
1822 case ARM::t2LDRpci_pic: {
1823 MachineFunction &MF = *MBB.getParent();
1824 unsigned CPI = Orig.getOperand(i: 1).getIndex();
1825 unsigned PCLabelId = duplicateCPV(MF, CPI);
1826 BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
1827 .addConstantPoolIndex(CPI)
1828 .addImm(PCLabelId)
1829 .cloneMemRefs(Orig);
1830 break;
1831 }
1832 }
1833}
1834
1835MachineInstr &
1836ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
1837 MachineBasicBlock::iterator InsertBefore,
1838 const MachineInstr &Orig) const {
1839 MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
1840 MachineBasicBlock::instr_iterator I = Cloned.getIterator();
1841 for (;;) {
1842 switch (I->getOpcode()) {
1843 case ARM::tLDRpci_pic:
1844 case ARM::t2LDRpci_pic: {
1845 MachineFunction &MF = *MBB.getParent();
1846 unsigned CPI = I->getOperand(i: 1).getIndex();
1847 unsigned PCLabelId = duplicateCPV(MF, CPI);
1848 I->getOperand(i: 1).setIndex(CPI);
1849 I->getOperand(i: 2).setImm(PCLabelId);
1850 break;
1851 }
1852 }
1853 if (!I->isBundledWithSucc())
1854 break;
1855 ++I;
1856 }
1857 return Cloned;
1858}
1859
1860bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
1861 const MachineInstr &MI1,
1862 const MachineRegisterInfo *MRI) const {
1863 unsigned Opcode = MI0.getOpcode();
1864 if (Opcode == ARM::t2LDRpci || Opcode == ARM::t2LDRpci_pic ||
1865 Opcode == ARM::tLDRpci || Opcode == ARM::tLDRpci_pic ||
1866 Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1867 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1868 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1869 Opcode == ARM::t2MOV_ga_pcrel) {
1870 if (MI1.getOpcode() != Opcode)
1871 return false;
1872 if (MI0.getNumOperands() != MI1.getNumOperands())
1873 return false;
1874
1875 const MachineOperand &MO0 = MI0.getOperand(i: 1);
1876 const MachineOperand &MO1 = MI1.getOperand(i: 1);
1877 if (MO0.getOffset() != MO1.getOffset())
1878 return false;
1879
1880 if (Opcode == ARM::LDRLIT_ga_pcrel || Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
1881 Opcode == ARM::tLDRLIT_ga_pcrel || Opcode == ARM::t2LDRLIT_ga_pcrel ||
1882 Opcode == ARM::MOV_ga_pcrel || Opcode == ARM::MOV_ga_pcrel_ldr ||
1883 Opcode == ARM::t2MOV_ga_pcrel)
1884 // Ignore the PC labels.
1885 return MO0.getGlobal() == MO1.getGlobal();
1886
1887 const MachineFunction *MF = MI0.getParent()->getParent();
1888 const MachineConstantPool *MCP = MF->getConstantPool();
1889 int CPI0 = MO0.getIndex();
1890 int CPI1 = MO1.getIndex();
1891 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1892 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1893 bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
1894 bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
1895 if (isARMCP0 && isARMCP1) {
1896 ARMConstantPoolValue *ACPV0 =
1897 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1898 ARMConstantPoolValue *ACPV1 =
1899 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1900 return ACPV0->hasSameValue(ACPV: ACPV1);
1901 } else if (!isARMCP0 && !isARMCP1) {
1902 return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
1903 }
1904 return false;
1905 } else if (Opcode == ARM::PICLDR) {
1906 if (MI1.getOpcode() != Opcode)
1907 return false;
1908 if (MI0.getNumOperands() != MI1.getNumOperands())
1909 return false;
1910
1911 Register Addr0 = MI0.getOperand(i: 1).getReg();
1912 Register Addr1 = MI1.getOperand(i: 1).getReg();
1913 if (Addr0 != Addr1) {
1914 if (!MRI || !Addr0.isVirtual() || !Addr1.isVirtual())
1915 return false;
1916
1917 // This assumes SSA form.
1918 MachineInstr *Def0 = MRI->getVRegDef(Reg: Addr0);
1919 MachineInstr *Def1 = MRI->getVRegDef(Reg: Addr1);
1920 // Check if the loaded value, e.g. a constantpool of a global address, are
1921 // the same.
1922 if (!produceSameValue(MI0: *Def0, MI1: *Def1, MRI))
1923 return false;
1924 }
1925
1926 for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
1927 // %12 = PICLDR %11, 0, 14, %noreg
1928 const MachineOperand &MO0 = MI0.getOperand(i);
1929 const MachineOperand &MO1 = MI1.getOperand(i);
1930 if (!MO0.isIdenticalTo(Other: MO1))
1931 return false;
1932 }
1933 return true;
1934 }
1935
1936 return MI0.isIdenticalTo(Other: MI1, Check: MachineInstr::IgnoreVRegDefs);
1937}
1938
1939/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1940/// determine if two loads are loading from the same base address. It should
1941/// only return true if the base pointers are the same and the only differences
1942/// between the two addresses is the offset. It also returns the offsets by
1943/// reference.
1944///
1945/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
1946/// is permanently disabled.
1947bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1948 int64_t &Offset1,
1949 int64_t &Offset2) const {
1950 // Don't worry about Thumb: just ARM and Thumb2.
1951 if (Subtarget.isThumb1Only()) return false;
1952
1953 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1954 return false;
1955
1956 auto IsLoadOpcode = [&](unsigned Opcode) {
1957 switch (Opcode) {
1958 default:
1959 return false;
1960 case ARM::LDRi12:
1961 case ARM::LDRBi12:
1962 case ARM::LDRD:
1963 case ARM::LDRH:
1964 case ARM::LDRSB:
1965 case ARM::LDRSH:
1966 case ARM::VLDRD:
1967 case ARM::VLDRS:
1968 case ARM::t2LDRi8:
1969 case ARM::t2LDRBi8:
1970 case ARM::t2LDRDi8:
1971 case ARM::t2LDRSHi8:
1972 case ARM::t2LDRi12:
1973 case ARM::t2LDRBi12:
1974 case ARM::t2LDRSHi12:
1975 return true;
1976 }
1977 };
1978
1979 if (!IsLoadOpcode(Load1->getMachineOpcode()) ||
1980 !IsLoadOpcode(Load2->getMachineOpcode()))
1981 return false;
1982
1983 // Check if base addresses and chain operands match.
1984 if (Load1->getOperand(Num: 0) != Load2->getOperand(Num: 0) ||
1985 Load1->getOperand(Num: 4) != Load2->getOperand(Num: 4))
1986 return false;
1987
1988 // Index should be Reg0.
1989 if (Load1->getOperand(Num: 3) != Load2->getOperand(Num: 3))
1990 return false;
1991
1992 // Determine the offsets.
1993 if (isa<ConstantSDNode>(Val: Load1->getOperand(Num: 1)) &&
1994 isa<ConstantSDNode>(Val: Load2->getOperand(Num: 1))) {
1995 Offset1 = cast<ConstantSDNode>(Val: Load1->getOperand(Num: 1))->getSExtValue();
1996 Offset2 = cast<ConstantSDNode>(Val: Load2->getOperand(Num: 1))->getSExtValue();
1997 return true;
1998 }
1999
2000 return false;
2001}
2002
2003/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
2004/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
2005/// be scheduled togther. On some targets if two loads are loading from
2006/// addresses in the same cache line, it's better if they are scheduled
2007/// together. This function takes two integers that represent the load offsets
2008/// from the common base address. It returns true if it decides it's desirable
2009/// to schedule the two loads together. "NumLoads" is the number of loads that
2010/// have already been scheduled after Load1.
2011///
2012/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
2013/// is permanently disabled.
2014bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
2015 int64_t Offset1, int64_t Offset2,
2016 unsigned NumLoads) const {
2017 // Don't worry about Thumb: just ARM and Thumb2.
2018 if (Subtarget.isThumb1Only()) return false;
2019
2020 assert(Offset2 > Offset1);
2021
2022 if ((Offset2 - Offset1) / 8 > 64)
2023 return false;
2024
2025 // Check if the machine opcodes are different. If they are different
2026 // then we consider them to not be of the same base address,
2027 // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
2028 // In this case, they are considered to be the same because they are different
2029 // encoding forms of the same basic instruction.
2030 if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
2031 !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
2032 Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
2033 (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
2034 Load2->getMachineOpcode() == ARM::t2LDRBi8)))
2035 return false; // FIXME: overly conservative?
2036
2037 // Four loads in a row should be sufficient.
2038 if (NumLoads >= 3)
2039 return false;
2040
2041 return true;
2042}
2043
2044bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
2045 const MachineBasicBlock *MBB,
2046 const MachineFunction &MF) const {
2047 // Debug info is never a scheduling boundary. It's necessary to be explicit
2048 // due to the special treatment of IT instructions below, otherwise a
2049 // dbg_value followed by an IT will result in the IT instruction being
2050 // considered a scheduling hazard, which is wrong. It should be the actual
2051 // instruction preceding the dbg_value instruction(s), just like it is
2052 // when debug info is not present.
2053 if (MI.isDebugInstr())
2054 return false;
2055
2056 // Terminators and labels can't be scheduled around.
2057 if (MI.isTerminator() || MI.isPosition())
2058 return true;
2059
2060 // INLINEASM_BR can jump to another block
2061 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
2062 return true;
2063
2064 if (isSEHInstruction(MI))
2065 return true;
2066
2067 // Treat the start of the IT block as a scheduling boundary, but schedule
2068 // t2IT along with all instructions following it.
2069 // FIXME: This is a big hammer. But the alternative is to add all potential
2070 // true and anti dependencies to IT block instructions as implicit operands
2071 // to the t2IT instruction. The added compile time and complexity does not
2072 // seem worth it.
2073 MachineBasicBlock::const_iterator I = MI;
2074 // Make sure to skip any debug instructions
2075 while (++I != MBB->end() && I->isDebugInstr())
2076 ;
2077 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
2078 return true;
2079
2080 // Don't attempt to schedule around any instruction that defines
2081 // a stack-oriented pointer, as it's unlikely to be profitable. This
2082 // saves compile time, because it doesn't require every single
2083 // stack slot reference to depend on the instruction that does the
2084 // modification.
2085 // Calls don't actually change the stack pointer, even if they have imp-defs.
2086 // No ARM calling conventions change the stack pointer. (X86 calling
2087 // conventions sometimes do).
2088 if (!MI.isCall() && MI.definesRegister(ARM::SP, /*TRI=*/nullptr))
2089 return true;
2090
2091 return false;
2092}
2093
2094bool ARMBaseInstrInfo::
2095isProfitableToIfCvt(MachineBasicBlock &MBB,
2096 unsigned NumCycles, unsigned ExtraPredCycles,
2097 BranchProbability Probability) const {
2098 if (!NumCycles)
2099 return false;
2100
2101 // If we are optimizing for size, see if the branch in the predecessor can be
2102 // lowered to cbn?z by the constant island lowering pass, and return false if
2103 // so. This results in a shorter instruction sequence.
2104 if (MBB.getParent()->getFunction().hasOptSize()) {
2105 MachineBasicBlock *Pred = *MBB.pred_begin();
2106 if (!Pred->empty()) {
2107 MachineInstr *LastMI = &*Pred->rbegin();
2108 if (LastMI->getOpcode() == ARM::t2Bcc) {
2109 const TargetRegisterInfo *TRI = &getRegisterInfo();
2110 MachineInstr *CmpMI = findCMPToFoldIntoCBZ(Br: LastMI, TRI);
2111 if (CmpMI)
2112 return false;
2113 }
2114 }
2115 }
2116 return isProfitableToIfCvt(TMBB&: MBB, NumT: NumCycles, ExtraT: ExtraPredCycles,
2117 FMBB&: MBB, NumF: 0, ExtraF: 0, Probability);
2118}
2119
2120bool ARMBaseInstrInfo::
2121isProfitableToIfCvt(MachineBasicBlock &TBB,
2122 unsigned TCycles, unsigned TExtra,
2123 MachineBasicBlock &FBB,
2124 unsigned FCycles, unsigned FExtra,
2125 BranchProbability Probability) const {
2126 if (!TCycles)
2127 return false;
2128
2129 // In thumb code we often end up trading one branch for a IT block, and
2130 // if we are cloning the instruction can increase code size. Prevent
2131 // blocks with multiple predecesors from being ifcvted to prevent this
2132 // cloning.
2133 if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
2134 if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
2135 return false;
2136 }
2137
2138 // Attempt to estimate the relative costs of predication versus branching.
2139 // Here we scale up each component of UnpredCost to avoid precision issue when
2140 // scaling TCycles/FCycles by Probability.
2141 const unsigned ScalingUpFactor = 1024;
2142
2143 unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
2144 unsigned UnpredCost;
2145 if (!Subtarget.hasBranchPredictor()) {
2146 // When we don't have a branch predictor it's always cheaper to not take a
2147 // branch than take it, so we have to take that into account.
2148 unsigned NotTakenBranchCost = 1;
2149 unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
2150 unsigned TUnpredCycles, FUnpredCycles;
2151 if (!FCycles) {
2152 // Triangle: TBB is the fallthrough
2153 TUnpredCycles = TCycles + NotTakenBranchCost;
2154 FUnpredCycles = TakenBranchCost;
2155 } else {
2156 // Diamond: TBB is the block that is branched to, FBB is the fallthrough
2157 TUnpredCycles = TCycles + TakenBranchCost;
2158 FUnpredCycles = FCycles + NotTakenBranchCost;
2159 // The branch at the end of FBB will disappear when it's predicated, so
2160 // discount it from PredCost.
2161 PredCost -= 1 * ScalingUpFactor;
2162 }
2163 // The total cost is the cost of each path scaled by their probabilites
2164 unsigned TUnpredCost = Probability.scale(Num: TUnpredCycles * ScalingUpFactor);
2165 unsigned FUnpredCost = Probability.getCompl().scale(Num: FUnpredCycles * ScalingUpFactor);
2166 UnpredCost = TUnpredCost + FUnpredCost;
2167 // When predicating assume that the first IT can be folded away but later
2168 // ones cost one cycle each
2169 if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
2170 PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
2171 }
2172 } else {
2173 unsigned TUnpredCost = Probability.scale(Num: TCycles * ScalingUpFactor);
2174 unsigned FUnpredCost =
2175 Probability.getCompl().scale(Num: FCycles * ScalingUpFactor);
2176 UnpredCost = TUnpredCost + FUnpredCost;
2177 UnpredCost += 1 * ScalingUpFactor; // The branch itself
2178 UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
2179 }
2180
2181 return PredCost <= UnpredCost;
2182}
2183
2184unsigned
2185ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
2186 unsigned NumInsts) const {
2187 // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
2188 // ARM has a condition code field in every predicable instruction, using it
2189 // doesn't change code size.
2190 if (!Subtarget.isThumb2())
2191 return 0;
2192
2193 // It's possible that the size of the IT is restricted to a single block.
2194 unsigned MaxInsts = Subtarget.restrictIT() ? 1 : 4;
2195 return divideCeil(Numerator: NumInsts, Denominator: MaxInsts) * 2;
2196}
2197
2198unsigned
2199ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
2200 // If this branch is likely to be folded into the comparison to form a
2201 // CB(N)Z, then removing it won't reduce code size at all, because that will
2202 // just replace the CB(N)Z with a CMP.
2203 if (MI.getOpcode() == ARM::t2Bcc &&
2204 findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
2205 return 0;
2206
2207 unsigned Size = getInstSizeInBytes(MI);
2208
2209 // For Thumb2, all branches are 32-bit instructions during the if conversion
2210 // pass, but may be replaced with 16-bit instructions during size reduction.
2211 // Since the branches considered by if conversion tend to be forward branches
2212 // over small basic blocks, they are very likely to be in range for the
2213 // narrow instructions, so we assume the final code size will be half what it
2214 // currently is.
2215 if (Subtarget.isThumb2())
2216 Size /= 2;
2217
2218 return Size;
2219}
2220
2221bool
2222ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
2223 MachineBasicBlock &FMBB) const {
2224 // Reduce false anti-dependencies to let the target's out-of-order execution
2225 // engine do its thing.
2226 return Subtarget.isProfitableToUnpredicate();
2227}
2228
2229/// getInstrPredicate - If instruction is predicated, returns its predicate
2230/// condition, otherwise returns AL. It also returns the condition code
2231/// register by reference.
2232ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
2233 Register &PredReg) {
2234 int PIdx = MI.findFirstPredOperandIdx();
2235 if (PIdx == -1) {
2236 PredReg = 0;
2237 return ARMCC::AL;
2238 }
2239
2240 PredReg = MI.getOperand(i: PIdx+1).getReg();
2241 return (ARMCC::CondCodes)MI.getOperand(i: PIdx).getImm();
2242}
2243
2244unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
2245 if (Opc == ARM::B)
2246 return ARM::Bcc;
2247 if (Opc == ARM::tB)
2248 return ARM::tBcc;
2249 if (Opc == ARM::t2B)
2250 return ARM::t2Bcc;
2251
2252 llvm_unreachable("Unknown unconditional branch opcode!");
2253}
2254
2255MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
2256 bool NewMI,
2257 unsigned OpIdx1,
2258 unsigned OpIdx2) const {
2259 switch (MI.getOpcode()) {
2260 case ARM::MOVCCr:
2261 case ARM::t2MOVCCr: {
2262 // MOVCC can be commuted by inverting the condition.
2263 Register PredReg;
2264 ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
2265 // MOVCC AL can't be inverted. Shouldn't happen.
2266 if (CC == ARMCC::AL || PredReg != ARM::CPSR)
2267 return nullptr;
2268 MachineInstr *CommutedMI =
2269 TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2270 if (!CommutedMI)
2271 return nullptr;
2272 // After swapping the MOVCC operands, also invert the condition.
2273 CommutedMI->getOperand(i: CommutedMI->findFirstPredOperandIdx())
2274 .setImm(ARMCC::getOppositeCondition(CC));
2275 return CommutedMI;
2276 }
2277 }
2278 return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
2279}
2280
2281/// Identify instructions that can be folded into a MOVCC instruction, and
2282/// return the defining instruction.
2283MachineInstr *
2284ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
2285 const TargetInstrInfo *TII) const {
2286 if (!Reg.isVirtual())
2287 return nullptr;
2288 if (!MRI.hasOneNonDBGUse(RegNo: Reg))
2289 return nullptr;
2290 MachineInstr *MI = MRI.getVRegDef(Reg);
2291 if (!MI)
2292 return nullptr;
2293 // Check if MI can be predicated and folded into the MOVCC.
2294 if (!isPredicable(MI: *MI))
2295 return nullptr;
2296 // Check if MI has any non-dead defs or physreg uses. This also detects
2297 // predicated instructions which will be reading CPSR.
2298 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI->operands(), N: 1)) {
2299 // Reject frame index operands, PEI can't handle the predicated pseudos.
2300 if (MO.isFI() || MO.isCPI() || MO.isJTI())
2301 return nullptr;
2302 if (!MO.isReg())
2303 continue;
2304 // MI can't have any tied operands, that would conflict with predication.
2305 if (MO.isTied())
2306 return nullptr;
2307 if (MO.getReg().isPhysical())
2308 return nullptr;
2309 if (MO.isDef() && !MO.isDead())
2310 return nullptr;
2311 }
2312 bool DontMoveAcrossStores = true;
2313 if (!MI->isSafeToMove(/* AliasAnalysis = */ AA: nullptr, SawStore&: DontMoveAcrossStores))
2314 return nullptr;
2315 return MI;
2316}
2317
2318bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
2319 SmallVectorImpl<MachineOperand> &Cond,
2320 unsigned &TrueOp, unsigned &FalseOp,
2321 bool &Optimizable) const {
2322 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2323 "Unknown select instruction");
2324 // MOVCC operands:
2325 // 0: Def.
2326 // 1: True use.
2327 // 2: False use.
2328 // 3: Condition code.
2329 // 4: CPSR use.
2330 TrueOp = 1;
2331 FalseOp = 2;
2332 Cond.push_back(Elt: MI.getOperand(i: 3));
2333 Cond.push_back(Elt: MI.getOperand(i: 4));
2334 // We can always fold a def.
2335 Optimizable = true;
2336 return false;
2337}
2338
2339MachineInstr *
2340ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
2341 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
2342 bool PreferFalse) const {
2343 assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
2344 "Unknown select instruction");
2345 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
2346 MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(i: 2).getReg(), MRI, this);
2347 bool Invert = !DefMI;
2348 if (!DefMI)
2349 DefMI = canFoldIntoMOVCC(MI.getOperand(i: 1).getReg(), MRI, this);
2350 if (!DefMI)
2351 return nullptr;
2352
2353 // Find new register class to use.
2354 MachineOperand FalseReg = MI.getOperand(i: Invert ? 2 : 1);
2355 MachineOperand TrueReg = MI.getOperand(i: Invert ? 1 : 2);
2356 Register DestReg = MI.getOperand(i: 0).getReg();
2357 const TargetRegisterClass *FalseClass = MRI.getRegClass(Reg: FalseReg.getReg());
2358 const TargetRegisterClass *TrueClass = MRI.getRegClass(Reg: TrueReg.getReg());
2359 if (!MRI.constrainRegClass(Reg: DestReg, RC: FalseClass))
2360 return nullptr;
2361 if (!MRI.constrainRegClass(Reg: DestReg, RC: TrueClass))
2362 return nullptr;
2363
2364 // Create a new predicated version of DefMI.
2365 // Rfalse is the first use.
2366 MachineInstrBuilder NewMI =
2367 BuildMI(BB&: *MI.getParent(), I&: MI, MIMD: MI.getDebugLoc(), MCID: DefMI->getDesc(), DestReg);
2368
2369 // Copy all the DefMI operands, excluding its (null) predicate.
2370 const MCInstrDesc &DefDesc = DefMI->getDesc();
2371 for (unsigned i = 1, e = DefDesc.getNumOperands();
2372 i != e && !DefDesc.operands()[i].isPredicate(); ++i)
2373 NewMI.add(MO: DefMI->getOperand(i));
2374
2375 unsigned CondCode = MI.getOperand(i: 3).getImm();
2376 if (Invert)
2377 NewMI.addImm(Val: ARMCC::getOppositeCondition(CC: ARMCC::CondCodes(CondCode)));
2378 else
2379 NewMI.addImm(Val: CondCode);
2380 NewMI.add(MO: MI.getOperand(i: 4));
2381
2382 // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
2383 if (NewMI->hasOptionalDef())
2384 NewMI.add(MO: condCodeOp());
2385
2386 // The output register value when the predicate is false is an implicit
2387 // register operand tied to the first def.
2388 // The tie makes the register allocator ensure the FalseReg is allocated the
2389 // same register as operand 0.
2390 FalseReg.setImplicit();
2391 NewMI.add(MO: FalseReg);
2392 NewMI->tieOperands(DefIdx: 0, UseIdx: NewMI->getNumOperands() - 1);
2393
2394 // Update SeenMIs set: register newly created MI and erase removed DefMI.
2395 SeenMIs.insert(Ptr: NewMI);
2396 SeenMIs.erase(Ptr: DefMI);
2397
2398 // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
2399 // DefMI would be invalid when tranferred inside the loop. Checking for a
2400 // loop is expensive, but at least remove kill flags if they are in different
2401 // BBs.
2402 if (DefMI->getParent() != MI.getParent())
2403 NewMI->clearKillInfo();
2404
2405 // The caller will erase MI, but not DefMI.
2406 DefMI->eraseFromParent();
2407 return NewMI;
2408}
2409
2410/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
2411/// instruction is encoded with an 'S' bit is determined by the optional CPSR
2412/// def operand.
2413///
2414/// This will go away once we can teach tblgen how to set the optional CPSR def
2415/// operand itself.
2416struct AddSubFlagsOpcodePair {
2417 uint16_t PseudoOpc;
2418 uint16_t MachineOpc;
2419};
2420
2421static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
2422 {ARM::ADDSri, ARM::ADDri},
2423 {ARM::ADDSrr, ARM::ADDrr},
2424 {ARM::ADDSrsi, ARM::ADDrsi},
2425 {ARM::ADDSrsr, ARM::ADDrsr},
2426
2427 {ARM::SUBSri, ARM::SUBri},
2428 {ARM::SUBSrr, ARM::SUBrr},
2429 {ARM::SUBSrsi, ARM::SUBrsi},
2430 {ARM::SUBSrsr, ARM::SUBrsr},
2431
2432 {ARM::RSBSri, ARM::RSBri},
2433 {ARM::RSBSrsi, ARM::RSBrsi},
2434 {ARM::RSBSrsr, ARM::RSBrsr},
2435
2436 {ARM::tADDSi3, ARM::tADDi3},
2437 {ARM::tADDSi8, ARM::tADDi8},
2438 {ARM::tADDSrr, ARM::tADDrr},
2439 {ARM::tADCS, ARM::tADC},
2440
2441 {ARM::tSUBSi3, ARM::tSUBi3},
2442 {ARM::tSUBSi8, ARM::tSUBi8},
2443 {ARM::tSUBSrr, ARM::tSUBrr},
2444 {ARM::tSBCS, ARM::tSBC},
2445 {ARM::tRSBS, ARM::tRSB},
2446 {ARM::tLSLSri, ARM::tLSLri},
2447
2448 {ARM::t2ADDSri, ARM::t2ADDri},
2449 {ARM::t2ADDSrr, ARM::t2ADDrr},
2450 {ARM::t2ADDSrs, ARM::t2ADDrs},
2451
2452 {ARM::t2SUBSri, ARM::t2SUBri},
2453 {ARM::t2SUBSrr, ARM::t2SUBrr},
2454 {ARM::t2SUBSrs, ARM::t2SUBrs},
2455
2456 {ARM::t2RSBSri, ARM::t2RSBri},
2457 {ARM::t2RSBSrs, ARM::t2RSBrs},
2458};
2459
2460unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
2461 for (const auto &Entry : AddSubFlagsOpcodeMap)
2462 if (OldOpc == Entry.PseudoOpc)
2463 return Entry.MachineOpc;
2464 return 0;
2465}
2466
2467void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
2468 MachineBasicBlock::iterator &MBBI,
2469 const DebugLoc &dl, Register DestReg,
2470 Register BaseReg, int NumBytes,
2471 ARMCC::CondCodes Pred, Register PredReg,
2472 const ARMBaseInstrInfo &TII,
2473 unsigned MIFlags) {
2474 if (NumBytes == 0 && DestReg != BaseReg) {
2475 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
2476 .addReg(BaseReg, RegState::Kill)
2477 .add(predOps(Pred, PredReg))
2478 .add(condCodeOp())
2479 .setMIFlags(MIFlags);
2480 return;
2481 }
2482
2483 bool isSub = NumBytes < 0;
2484 if (isSub) NumBytes = -NumBytes;
2485
2486 while (NumBytes) {
2487 unsigned RotAmt = ARM_AM::getSOImmValRotate(Imm: NumBytes);
2488 unsigned ThisVal = NumBytes & llvm::rotr<uint32_t>(V: 0xFF, R: RotAmt);
2489 assert(ThisVal && "Didn't extract field correctly");
2490
2491 // We will handle these bits from offset, clear them.
2492 NumBytes &= ~ThisVal;
2493
2494 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
2495
2496 // Build the new ADD / SUB.
2497 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
2498 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
2499 .addReg(BaseReg, RegState::Kill)
2500 .addImm(ThisVal)
2501 .add(predOps(Pred, PredReg))
2502 .add(condCodeOp())
2503 .setMIFlags(MIFlags);
2504 BaseReg = DestReg;
2505 }
2506}
2507
2508bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
2509 MachineFunction &MF, MachineInstr *MI,
2510 unsigned NumBytes) {
2511 // This optimisation potentially adds lots of load and store
2512 // micro-operations, it's only really a great benefit to code-size.
2513 if (!Subtarget.hasMinSize())
2514 return false;
2515
2516 // If only one register is pushed/popped, LLVM can use an LDR/STR
2517 // instead. We can't modify those so make sure we're dealing with an
2518 // instruction we understand.
2519 bool IsPop = isPopOpcode(Opc: MI->getOpcode());
2520 bool IsPush = isPushOpcode(Opc: MI->getOpcode());
2521 if (!IsPush && !IsPop)
2522 return false;
2523
2524 bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
2525 MI->getOpcode() == ARM::VLDMDIA_UPD;
2526 bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
2527 MI->getOpcode() == ARM::tPOP ||
2528 MI->getOpcode() == ARM::tPOP_RET;
2529
2530 assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
2531 MI->getOperand(1).getReg() == ARM::SP)) &&
2532 "trying to fold sp update into non-sp-updating push/pop");
2533
2534 // The VFP push & pop act on D-registers, so we can only fold an adjustment
2535 // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
2536 // if this is violated.
2537 if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
2538 return false;
2539
2540 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
2541 // pred) so the list starts at 4. Thumb1 starts after the predicate.
2542 int RegListIdx = IsT1PushPop ? 2 : 4;
2543
2544 // Calculate the space we'll need in terms of registers.
2545 unsigned RegsNeeded;
2546 const TargetRegisterClass *RegClass;
2547 if (IsVFPPushPop) {
2548 RegsNeeded = NumBytes / 8;
2549 RegClass = &ARM::DPRRegClass;
2550 } else {
2551 RegsNeeded = NumBytes / 4;
2552 RegClass = &ARM::GPRRegClass;
2553 }
2554
2555 // We're going to have to strip all list operands off before
2556 // re-adding them since the order matters, so save the existing ones
2557 // for later.
2558 SmallVector<MachineOperand, 4> RegList;
2559
2560 // We're also going to need the first register transferred by this
2561 // instruction, which won't necessarily be the first register in the list.
2562 unsigned FirstRegEnc = -1;
2563
2564 const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
2565 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
2566 MachineOperand &MO = MI->getOperand(i);
2567 RegList.push_back(Elt: MO);
2568
2569 if (MO.isReg() && !MO.isImplicit() &&
2570 TRI->getEncodingValue(RegNo: MO.getReg()) < FirstRegEnc)
2571 FirstRegEnc = TRI->getEncodingValue(RegNo: MO.getReg());
2572 }
2573
2574 const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(MF: &MF);
2575
2576 // Now try to find enough space in the reglist to allocate NumBytes.
2577 for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
2578 --CurRegEnc) {
2579 unsigned CurReg = RegClass->getRegister(i: CurRegEnc);
2580 if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
2581 continue;
2582 if (!IsPop) {
2583 // Pushing any register is completely harmless, mark the register involved
2584 // as undef since we don't care about its value and must not restore it
2585 // during stack unwinding.
2586 RegList.push_back(Elt: MachineOperand::CreateReg(Reg: CurReg, isDef: false, isImp: false,
2587 isKill: false, isDead: false, isUndef: true));
2588 --RegsNeeded;
2589 continue;
2590 }
2591
2592 // However, we can only pop an extra register if it's not live. For
2593 // registers live within the function we might clobber a return value
2594 // register; the other way a register can be live here is if it's
2595 // callee-saved.
2596 if (isCalleeSavedRegister(Reg: CurReg, CSRegs) ||
2597 MI->getParent()->computeRegisterLiveness(TRI, Reg: CurReg, Before: MI) !=
2598 MachineBasicBlock::LQR_Dead) {
2599 // VFP pops don't allow holes in the register list, so any skip is fatal
2600 // for our transformation. GPR pops do, so we should just keep looking.
2601 if (IsVFPPushPop)
2602 return false;
2603 else
2604 continue;
2605 }
2606
2607 // Mark the unimportant registers as <def,dead> in the POP.
2608 RegList.push_back(Elt: MachineOperand::CreateReg(Reg: CurReg, isDef: true, isImp: false, isKill: false,
2609 isDead: true));
2610 --RegsNeeded;
2611 }
2612
2613 if (RegsNeeded > 0)
2614 return false;
2615
2616 // Finally we know we can profitably perform the optimisation so go
2617 // ahead: strip all existing registers off and add them back again
2618 // in the right order.
2619 for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
2620 MI->removeOperand(OpNo: i);
2621
2622 // Add the complete list back in.
2623 MachineInstrBuilder MIB(MF, &*MI);
2624 for (const MachineOperand &MO : llvm::reverse(C&: RegList))
2625 MIB.add(MO);
2626
2627 return true;
2628}
2629
2630bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
2631 Register FrameReg, int &Offset,
2632 const ARMBaseInstrInfo &TII) {
2633 unsigned Opcode = MI.getOpcode();
2634 const MCInstrDesc &Desc = MI.getDesc();
2635 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
2636 bool isSub = false;
2637
2638 // Memory operands in inline assembly always use AddrMode2.
2639 if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
2640 AddrMode = ARMII::AddrMode2;
2641
2642 if (Opcode == ARM::ADDri) {
2643 Offset += MI.getOperand(i: FrameRegIdx+1).getImm();
2644 if (Offset == 0) {
2645 // Turn it into a move.
2646 MI.setDesc(TII.get(ARM::MOVr));
2647 MI.getOperand(i: FrameRegIdx).ChangeToRegister(Reg: FrameReg, isDef: false);
2648 MI.removeOperand(OpNo: FrameRegIdx+1);
2649 Offset = 0;
2650 return true;
2651 } else if (Offset < 0) {
2652 Offset = -Offset;
2653 isSub = true;
2654 MI.setDesc(TII.get(ARM::SUBri));
2655 }
2656
2657 // Common case: small offset, fits into instruction.
2658 if (ARM_AM::getSOImmVal(Arg: Offset) != -1) {
2659 // Replace the FrameIndex with sp / fp
2660 MI.getOperand(i: FrameRegIdx).ChangeToRegister(Reg: FrameReg, isDef: false);
2661 MI.getOperand(i: FrameRegIdx+1).ChangeToImmediate(ImmVal: Offset);
2662 Offset = 0;
2663 return true;
2664 }
2665
2666 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
2667 // as possible.
2668 unsigned RotAmt = ARM_AM::getSOImmValRotate(Imm: Offset);
2669 unsigned ThisImmVal = Offset & llvm::rotr<uint32_t>(V: 0xFF, R: RotAmt);
2670
2671 // We will handle these bits from offset, clear them.
2672 Offset &= ~ThisImmVal;
2673
2674 // Get the properly encoded SOImmVal field.
2675 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
2676 "Bit extraction didn't work?");
2677 MI.getOperand(i: FrameRegIdx+1).ChangeToImmediate(ImmVal: ThisImmVal);
2678 } else {
2679 unsigned ImmIdx = 0;
2680 int InstrOffs = 0;
2681 unsigned NumBits = 0;
2682 unsigned Scale = 1;
2683 switch (AddrMode) {
2684 case ARMII::AddrMode_i12:
2685 ImmIdx = FrameRegIdx + 1;
2686 InstrOffs = MI.getOperand(i: ImmIdx).getImm();
2687 NumBits = 12;
2688 break;
2689 case ARMII::AddrMode2:
2690 ImmIdx = FrameRegIdx+2;
2691 InstrOffs = ARM_AM::getAM2Offset(AM2Opc: MI.getOperand(i: ImmIdx).getImm());
2692 if (ARM_AM::getAM2Op(AM2Opc: MI.getOperand(i: ImmIdx).getImm()) == ARM_AM::sub)
2693 InstrOffs *= -1;
2694 NumBits = 12;
2695 break;
2696 case ARMII::AddrMode3:
2697 ImmIdx = FrameRegIdx+2;
2698 InstrOffs = ARM_AM::getAM3Offset(AM3Opc: MI.getOperand(i: ImmIdx).getImm());
2699 if (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: ImmIdx).getImm()) == ARM_AM::sub)
2700 InstrOffs *= -1;
2701 NumBits = 8;
2702 break;
2703 case ARMII::AddrMode4:
2704 case ARMII::AddrMode6:
2705 // Can't fold any offset even if it's zero.
2706 return false;
2707 case ARMII::AddrMode5:
2708 ImmIdx = FrameRegIdx+1;
2709 InstrOffs = ARM_AM::getAM5Offset(AM5Opc: MI.getOperand(i: ImmIdx).getImm());
2710 if (ARM_AM::getAM5Op(AM5Opc: MI.getOperand(i: ImmIdx).getImm()) == ARM_AM::sub)
2711 InstrOffs *= -1;
2712 NumBits = 8;
2713 Scale = 4;
2714 break;
2715 case ARMII::AddrMode5FP16:
2716 ImmIdx = FrameRegIdx+1;
2717 InstrOffs = ARM_AM::getAM5Offset(AM5Opc: MI.getOperand(i: ImmIdx).getImm());
2718 if (ARM_AM::getAM5Op(AM5Opc: MI.getOperand(i: ImmIdx).getImm()) == ARM_AM::sub)
2719 InstrOffs *= -1;
2720 NumBits = 8;
2721 Scale = 2;
2722 break;
2723 case ARMII::AddrModeT2_i7:
2724 case ARMII::AddrModeT2_i7s2:
2725 case ARMII::AddrModeT2_i7s4:
2726 ImmIdx = FrameRegIdx+1;
2727 InstrOffs = MI.getOperand(i: ImmIdx).getImm();
2728 NumBits = 7;
2729 Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
2730 AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
2731 break;
2732 default:
2733 llvm_unreachable("Unsupported addressing mode!");
2734 }
2735
2736 Offset += InstrOffs * Scale;
2737 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
2738 if (Offset < 0) {
2739 Offset = -Offset;
2740 isSub = true;
2741 }
2742
2743 // Attempt to fold address comp. if opcode has offset bits
2744 if (NumBits > 0) {
2745 // Common case: small offset, fits into instruction.
2746 MachineOperand &ImmOp = MI.getOperand(i: ImmIdx);
2747 int ImmedOffset = Offset / Scale;
2748 unsigned Mask = (1 << NumBits) - 1;
2749 if ((unsigned)Offset <= Mask * Scale) {
2750 // Replace the FrameIndex with sp
2751 MI.getOperand(i: FrameRegIdx).ChangeToRegister(Reg: FrameReg, isDef: false);
2752 // FIXME: When addrmode2 goes away, this will simplify (like the
2753 // T2 version), as the LDR.i12 versions don't need the encoding
2754 // tricks for the offset value.
2755 if (isSub) {
2756 if (AddrMode == ARMII::AddrMode_i12)
2757 ImmedOffset = -ImmedOffset;
2758 else
2759 ImmedOffset |= 1 << NumBits;
2760 }
2761 ImmOp.ChangeToImmediate(ImmVal: ImmedOffset);
2762 Offset = 0;
2763 return true;
2764 }
2765
2766 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
2767 ImmedOffset = ImmedOffset & Mask;
2768 if (isSub) {
2769 if (AddrMode == ARMII::AddrMode_i12)
2770 ImmedOffset = -ImmedOffset;
2771 else
2772 ImmedOffset |= 1 << NumBits;
2773 }
2774 ImmOp.ChangeToImmediate(ImmVal: ImmedOffset);
2775 Offset &= ~(Mask*Scale);
2776 }
2777 }
2778
2779 Offset = (isSub) ? -Offset : Offset;
2780 return Offset == 0;
2781}
2782
2783/// analyzeCompare - For a comparison instruction, return the source registers
2784/// in SrcReg and SrcReg2 if having two register operands, and the value it
2785/// compares against in CmpValue. Return true if the comparison instruction
2786/// can be analyzed.
2787bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
2788 Register &SrcReg2, int64_t &CmpMask,
2789 int64_t &CmpValue) const {
2790 switch (MI.getOpcode()) {
2791 default: break;
2792 case ARM::CMPri:
2793 case ARM::t2CMPri:
2794 case ARM::tCMPi8:
2795 SrcReg = MI.getOperand(i: 0).getReg();
2796 SrcReg2 = 0;
2797 CmpMask = ~0;
2798 CmpValue = MI.getOperand(i: 1).getImm();
2799 return true;
2800 case ARM::CMPrr:
2801 case ARM::t2CMPrr:
2802 case ARM::tCMPr:
2803 SrcReg = MI.getOperand(i: 0).getReg();
2804 SrcReg2 = MI.getOperand(i: 1).getReg();
2805 CmpMask = ~0;
2806 CmpValue = 0;
2807 return true;
2808 case ARM::TSTri:
2809 case ARM::t2TSTri:
2810 SrcReg = MI.getOperand(i: 0).getReg();
2811 SrcReg2 = 0;
2812 CmpMask = MI.getOperand(i: 1).getImm();
2813 CmpValue = 0;
2814 return true;
2815 }
2816
2817 return false;
2818}
2819
2820/// isSuitableForMask - Identify a suitable 'and' instruction that
2821/// operates on the given source register and applies the same mask
2822/// as a 'tst' instruction. Provide a limited look-through for copies.
2823/// When successful, MI will hold the found instruction.
2824static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
2825 int CmpMask, bool CommonUse) {
2826 switch (MI->getOpcode()) {
2827 case ARM::ANDri:
2828 case ARM::t2ANDri:
2829 if (CmpMask != MI->getOperand(i: 2).getImm())
2830 return false;
2831 if (SrcReg == MI->getOperand(i: CommonUse ? 1 : 0).getReg())
2832 return true;
2833 break;
2834 }
2835
2836 return false;
2837}
2838
2839/// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
2840/// the condition code if we modify the instructions such that flags are
2841/// set by ADD(a,b,X).
2842inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
2843 switch (CC) {
2844 default: return ARMCC::AL;
2845 case ARMCC::HS: return ARMCC::LO;
2846 case ARMCC::LO: return ARMCC::HS;
2847 case ARMCC::VS: return ARMCC::VS;
2848 case ARMCC::VC: return ARMCC::VC;
2849 }
2850}
2851
2852/// isRedundantFlagInstr - check whether the first instruction, whose only
2853/// purpose is to update flags, can be made redundant.
2854/// CMPrr can be made redundant by SUBrr if the operands are the same.
2855/// CMPri can be made redundant by SUBri if the operands are the same.
2856/// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
2857/// This function can be extended later on.
2858inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
2859 Register SrcReg, Register SrcReg2,
2860 int64_t ImmValue,
2861 const MachineInstr *OI,
2862 bool &IsThumb1) {
2863 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2864 (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
2865 ((OI->getOperand(1).getReg() == SrcReg &&
2866 OI->getOperand(2).getReg() == SrcReg2) ||
2867 (OI->getOperand(1).getReg() == SrcReg2 &&
2868 OI->getOperand(2).getReg() == SrcReg))) {
2869 IsThumb1 = false;
2870 return true;
2871 }
2872
2873 if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
2874 ((OI->getOperand(2).getReg() == SrcReg &&
2875 OI->getOperand(3).getReg() == SrcReg2) ||
2876 (OI->getOperand(2).getReg() == SrcReg2 &&
2877 OI->getOperand(3).getReg() == SrcReg))) {
2878 IsThumb1 = true;
2879 return true;
2880 }
2881
2882 if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
2883 (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
2884 OI->getOperand(1).getReg() == SrcReg &&
2885 OI->getOperand(2).getImm() == ImmValue) {
2886 IsThumb1 = false;
2887 return true;
2888 }
2889
2890 if (CmpI->getOpcode() == ARM::tCMPi8 &&
2891 (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
2892 OI->getOperand(2).getReg() == SrcReg &&
2893 OI->getOperand(3).getImm() == ImmValue) {
2894 IsThumb1 = true;
2895 return true;
2896 }
2897
2898 if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
2899 (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
2900 OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
2901 OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
2902 OI->getOperand(0).getReg() == SrcReg &&
2903 OI->getOperand(1).getReg() == SrcReg2) {
2904 IsThumb1 = false;
2905 return true;
2906 }
2907
2908 if (CmpI->getOpcode() == ARM::tCMPr &&
2909 (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
2910 OI->getOpcode() == ARM::tADDrr) &&
2911 OI->getOperand(0).getReg() == SrcReg &&
2912 OI->getOperand(2).getReg() == SrcReg2) {
2913 IsThumb1 = true;
2914 return true;
2915 }
2916
2917 return false;
2918}
2919
2920static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
2921 switch (MI->getOpcode()) {
2922 default: return false;
2923 case ARM::tLSLri:
2924 case ARM::tLSRri:
2925 case ARM::tLSLrr:
2926 case ARM::tLSRrr:
2927 case ARM::tSUBrr:
2928 case ARM::tADDrr:
2929 case ARM::tADDi3:
2930 case ARM::tADDi8:
2931 case ARM::tSUBi3:
2932 case ARM::tSUBi8:
2933 case ARM::tMUL:
2934 case ARM::tADC:
2935 case ARM::tSBC:
2936 case ARM::tRSB:
2937 case ARM::tAND:
2938 case ARM::tORR:
2939 case ARM::tEOR:
2940 case ARM::tBIC:
2941 case ARM::tMVN:
2942 case ARM::tASRri:
2943 case ARM::tASRrr:
2944 case ARM::tROR:
2945 IsThumb1 = true;
2946 [[fallthrough]];
2947 case ARM::RSBrr:
2948 case ARM::RSBri:
2949 case ARM::RSCrr:
2950 case ARM::RSCri:
2951 case ARM::ADDrr:
2952 case ARM::ADDri:
2953 case ARM::ADCrr:
2954 case ARM::ADCri:
2955 case ARM::SUBrr:
2956 case ARM::SUBri:
2957 case ARM::SBCrr:
2958 case ARM::SBCri:
2959 case ARM::t2RSBri:
2960 case ARM::t2ADDrr:
2961 case ARM::t2ADDri:
2962 case ARM::t2ADCrr:
2963 case ARM::t2ADCri:
2964 case ARM::t2SUBrr:
2965 case ARM::t2SUBri:
2966 case ARM::t2SBCrr:
2967 case ARM::t2SBCri:
2968 case ARM::ANDrr:
2969 case ARM::ANDri:
2970 case ARM::ANDrsr:
2971 case ARM::ANDrsi:
2972 case ARM::t2ANDrr:
2973 case ARM::t2ANDri:
2974 case ARM::t2ANDrs:
2975 case ARM::ORRrr:
2976 case ARM::ORRri:
2977 case ARM::ORRrsr:
2978 case ARM::ORRrsi:
2979 case ARM::t2ORRrr:
2980 case ARM::t2ORRri:
2981 case ARM::t2ORRrs:
2982 case ARM::EORrr:
2983 case ARM::EORri:
2984 case ARM::EORrsr:
2985 case ARM::EORrsi:
2986 case ARM::t2EORrr:
2987 case ARM::t2EORri:
2988 case ARM::t2EORrs:
2989 case ARM::BICri:
2990 case ARM::BICrr:
2991 case ARM::BICrsi:
2992 case ARM::BICrsr:
2993 case ARM::t2BICri:
2994 case ARM::t2BICrr:
2995 case ARM::t2BICrs:
2996 case ARM::t2LSRri:
2997 case ARM::t2LSRrr:
2998 case ARM::t2LSLri:
2999 case ARM::t2LSLrr:
3000 case ARM::MOVsr:
3001 case ARM::MOVsi:
3002 return true;
3003 }
3004}
3005
3006/// optimizeCompareInstr - Convert the instruction supplying the argument to the
3007/// comparison into one that sets the zero bit in the flags register;
3008/// Remove a redundant Compare instruction if an earlier instruction can set the
3009/// flags in the same way as Compare.
3010/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
3011/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
3012/// condition code of instructions which use the flags.
3013bool ARMBaseInstrInfo::optimizeCompareInstr(
3014 MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask,
3015 int64_t CmpValue, const MachineRegisterInfo *MRI) const {
3016 // Get the unique definition of SrcReg.
3017 MachineInstr *MI = MRI->getUniqueVRegDef(Reg: SrcReg);
3018 if (!MI) return false;
3019
3020 // Masked compares sometimes use the same register as the corresponding 'and'.
3021 if (CmpMask != ~0) {
3022 if (!isSuitableForMask(MI, SrcReg, CmpMask, CommonUse: false) || isPredicated(MI: *MI)) {
3023 MI = nullptr;
3024 for (MachineRegisterInfo::use_instr_iterator
3025 UI = MRI->use_instr_begin(RegNo: SrcReg), UE = MRI->use_instr_end();
3026 UI != UE; ++UI) {
3027 if (UI->getParent() != CmpInstr.getParent())
3028 continue;
3029 MachineInstr *PotentialAND = &*UI;
3030 if (!isSuitableForMask(MI&: PotentialAND, SrcReg, CmpMask, CommonUse: true) ||
3031 isPredicated(MI: *PotentialAND))
3032 continue;
3033 MI = PotentialAND;
3034 break;
3035 }
3036 if (!MI) return false;
3037 }
3038 }
3039
3040 // Get ready to iterate backward from CmpInstr.
3041 MachineBasicBlock::iterator I = CmpInstr, E = MI,
3042 B = CmpInstr.getParent()->begin();
3043
3044 // Early exit if CmpInstr is at the beginning of the BB.
3045 if (I == B) return false;
3046
3047 // There are two possible candidates which can be changed to set CPSR:
3048 // One is MI, the other is a SUB or ADD instruction.
3049 // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
3050 // ADDr[ri](r1, r2, X).
3051 // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
3052 MachineInstr *SubAdd = nullptr;
3053 if (SrcReg2 != 0)
3054 // MI is not a candidate for CMPrr.
3055 MI = nullptr;
3056 else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
3057 // Conservatively refuse to convert an instruction which isn't in the same
3058 // BB as the comparison.
3059 // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
3060 // Thus we cannot return here.
3061 if (CmpInstr.getOpcode() == ARM::CMPri ||
3062 CmpInstr.getOpcode() == ARM::t2CMPri ||
3063 CmpInstr.getOpcode() == ARM::tCMPi8)
3064 MI = nullptr;
3065 else
3066 return false;
3067 }
3068
3069 bool IsThumb1 = false;
3070 if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
3071 return false;
3072
3073 // We also want to do this peephole for cases like this: if (a*b == 0),
3074 // and optimise away the CMP instruction from the generated code sequence:
3075 // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
3076 // resulting from the select instruction, but these MOVS instructions for
3077 // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
3078 // However, if we only have MOVS instructions in between the CMP and the
3079 // other instruction (the MULS in this example), then the CPSR is dead so we
3080 // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
3081 // reordering and then continue the analysis hoping we can eliminate the
3082 // CMP. This peephole works on the vregs, so is still in SSA form. As a
3083 // consequence, the movs won't redefine/kill the MUL operands which would
3084 // make this reordering illegal.
3085 const TargetRegisterInfo *TRI = &getRegisterInfo();
3086 if (MI && IsThumb1) {
3087 --I;
3088 if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
3089 bool CanReorder = true;
3090 for (; I != E; --I) {
3091 if (I->getOpcode() != ARM::tMOVi8) {
3092 CanReorder = false;
3093 break;
3094 }
3095 }
3096 if (CanReorder) {
3097 MI = MI->removeFromParent();
3098 E = CmpInstr;
3099 CmpInstr.getParent()->insert(I: E, MI);
3100 }
3101 }
3102 I = CmpInstr;
3103 E = MI;
3104 }
3105
3106 // Check that CPSR isn't set between the comparison instruction and the one we
3107 // want to change. At the same time, search for SubAdd.
3108 bool SubAddIsThumb1 = false;
3109 do {
3110 const MachineInstr &Instr = *--I;
3111
3112 // Check whether CmpInstr can be made redundant by the current instruction.
3113 if (isRedundantFlagInstr(CmpI: &CmpInstr, SrcReg, SrcReg2, ImmValue: CmpValue, OI: &Instr,
3114 IsThumb1&: SubAddIsThumb1)) {
3115 SubAdd = &*I;
3116 break;
3117 }
3118
3119 // Allow E (which was initially MI) to be SubAdd but do not search before E.
3120 if (I == E)
3121 break;
3122
3123 if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
3124 Instr.readsRegister(ARM::CPSR, TRI))
3125 // This instruction modifies or uses CPSR after the one we want to
3126 // change. We can't do this transformation.
3127 return false;
3128
3129 if (I == B) {
3130 // In some cases, we scan the use-list of an instruction for an AND;
3131 // that AND is in the same BB, but may not be scheduled before the
3132 // corresponding TST. In that case, bail out.
3133 //
3134 // FIXME: We could try to reschedule the AND.
3135 return false;
3136 }
3137 } while (true);
3138
3139 // Return false if no candidates exist.
3140 if (!MI && !SubAdd)
3141 return false;
3142
3143 // If we found a SubAdd, use it as it will be closer to the CMP
3144 if (SubAdd) {
3145 MI = SubAdd;
3146 IsThumb1 = SubAddIsThumb1;
3147 }
3148
3149 // We can't use a predicated instruction - it doesn't always write the flags.
3150 if (isPredicated(MI: *MI))
3151 return false;
3152
3153 // Scan forward for the use of CPSR
3154 // When checking against MI: if it's a conditional code that requires
3155 // checking of the V bit or C bit, then this is not safe to do.
3156 // It is safe to remove CmpInstr if CPSR is redefined or killed.
3157 // If we are done with the basic block, we need to check whether CPSR is
3158 // live-out.
3159 SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
3160 OperandsToUpdate;
3161 bool isSafe = false;
3162 I = CmpInstr;
3163 E = CmpInstr.getParent()->end();
3164 while (!isSafe && ++I != E) {
3165 const MachineInstr &Instr = *I;
3166 for (unsigned IO = 0, EO = Instr.getNumOperands();
3167 !isSafe && IO != EO; ++IO) {
3168 const MachineOperand &MO = Instr.getOperand(i: IO);
3169 if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
3170 isSafe = true;
3171 break;
3172 }
3173 if (!MO.isReg() || MO.getReg() != ARM::CPSR)
3174 continue;
3175 if (MO.isDef()) {
3176 isSafe = true;
3177 break;
3178 }
3179 // Condition code is after the operand before CPSR except for VSELs.
3180 ARMCC::CondCodes CC;
3181 bool IsInstrVSel = true;
3182 switch (Instr.getOpcode()) {
3183 default:
3184 IsInstrVSel = false;
3185 CC = (ARMCC::CondCodes)Instr.getOperand(i: IO - 1).getImm();
3186 break;
3187 case ARM::VSELEQD:
3188 case ARM::VSELEQS:
3189 case ARM::VSELEQH:
3190 CC = ARMCC::EQ;
3191 break;
3192 case ARM::VSELGTD:
3193 case ARM::VSELGTS:
3194 case ARM::VSELGTH:
3195 CC = ARMCC::GT;
3196 break;
3197 case ARM::VSELGED:
3198 case ARM::VSELGES:
3199 case ARM::VSELGEH:
3200 CC = ARMCC::GE;
3201 break;
3202 case ARM::VSELVSD:
3203 case ARM::VSELVSS:
3204 case ARM::VSELVSH:
3205 CC = ARMCC::VS;
3206 break;
3207 }
3208
3209 if (SubAdd) {
3210 // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
3211 // on CMP needs to be updated to be based on SUB.
3212 // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
3213 // needs to be modified.
3214 // Push the condition code operands to OperandsToUpdate.
3215 // If it is safe to remove CmpInstr, the condition code of these
3216 // operands will be modified.
3217 unsigned Opc = SubAdd->getOpcode();
3218 bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
3219 Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
3220 Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
3221 Opc == ARM::tSUBi8;
3222 unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
3223 if (!IsSub ||
3224 (SrcReg2 != 0 && SubAdd->getOperand(i: OpI).getReg() == SrcReg2 &&
3225 SubAdd->getOperand(i: OpI + 1).getReg() == SrcReg)) {
3226 // VSel doesn't support condition code update.
3227 if (IsInstrVSel)
3228 return false;
3229 // Ensure we can swap the condition.
3230 ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
3231 if (NewCC == ARMCC::AL)
3232 return false;
3233 OperandsToUpdate.push_back(
3234 Elt: std::make_pair(x: &((*I).getOperand(i: IO - 1)), y&: NewCC));
3235 }
3236 } else {
3237 // No SubAdd, so this is x = <op> y, z; cmp x, 0.
3238 switch (CC) {
3239 case ARMCC::EQ: // Z
3240 case ARMCC::NE: // Z
3241 case ARMCC::MI: // N
3242 case ARMCC::PL: // N
3243 case ARMCC::AL: // none
3244 // CPSR can be used multiple times, we should continue.
3245 break;
3246 case ARMCC::HS: // C
3247 case ARMCC::LO: // C
3248 case ARMCC::VS: // V
3249 case ARMCC::VC: // V
3250 case ARMCC::HI: // C Z
3251 case ARMCC::LS: // C Z
3252 case ARMCC::GE: // N V
3253 case ARMCC::LT: // N V
3254 case ARMCC::GT: // Z N V
3255 case ARMCC::LE: // Z N V
3256 // The instruction uses the V bit or C bit which is not safe.
3257 return false;
3258 }
3259 }
3260 }
3261 }
3262
3263 // If CPSR is not killed nor re-defined, we should check whether it is
3264 // live-out. If it is live-out, do not optimize.
3265 if (!isSafe) {
3266 MachineBasicBlock *MBB = CmpInstr.getParent();
3267 for (MachineBasicBlock *Succ : MBB->successors())
3268 if (Succ->isLiveIn(ARM::CPSR))
3269 return false;
3270 }
3271
3272 // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
3273 // set CPSR so this is represented as an explicit output)
3274 if (!IsThumb1) {
3275 unsigned CPSRRegNum = MI->getNumExplicitOperands() - 1;
3276 MI->getOperand(CPSRRegNum).setReg(ARM::CPSR);
3277 MI->getOperand(i: CPSRRegNum).setIsDef(true);
3278 }
3279 assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
3280 CmpInstr.eraseFromParent();
3281
3282 // Modify the condition code of operands in OperandsToUpdate.
3283 // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
3284 // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
3285 for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
3286 OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);
3287
3288 MI->clearRegisterDeads(ARM::CPSR);
3289
3290 return true;
3291}
3292
3293bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
3294 // Do not sink MI if it might be used to optimize a redundant compare.
3295 // We heuristically only look at the instruction immediately following MI to
3296 // avoid potentially searching the entire basic block.
3297 if (isPredicated(MI))
3298 return true;
3299 MachineBasicBlock::const_iterator Next = &MI;
3300 ++Next;
3301 Register SrcReg, SrcReg2;
3302 int64_t CmpMask, CmpValue;
3303 bool IsThumb1;
3304 if (Next != MI.getParent()->end() &&
3305 analyzeCompare(MI: *Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
3306 isRedundantFlagInstr(CmpI: &*Next, SrcReg, SrcReg2, ImmValue: CmpValue, OI: &MI, IsThumb1))
3307 return false;
3308 return true;
3309}
3310
3311bool ARMBaseInstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
3312 Register Reg,
3313 MachineRegisterInfo *MRI) const {
3314 // Fold large immediates into add, sub, or, xor.
3315 unsigned DefOpc = DefMI.getOpcode();
3316 if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm &&
3317 DefOpc != ARM::tMOVi32imm)
3318 return false;
3319 if (!DefMI.getOperand(i: 1).isImm())
3320 // Could be t2MOVi32imm @xx
3321 return false;
3322
3323 if (!MRI->hasOneNonDBGUse(RegNo: Reg))
3324 return false;
3325
3326 const MCInstrDesc &DefMCID = DefMI.getDesc();
3327 if (DefMCID.hasOptionalDef()) {
3328 unsigned NumOps = DefMCID.getNumOperands();
3329 const MachineOperand &MO = DefMI.getOperand(i: NumOps - 1);
3330 if (MO.getReg() == ARM::CPSR && !MO.isDead())
3331 // If DefMI defines CPSR and it is not dead, it's obviously not safe
3332 // to delete DefMI.
3333 return false;
3334 }
3335
3336 const MCInstrDesc &UseMCID = UseMI.getDesc();
3337 if (UseMCID.hasOptionalDef()) {
3338 unsigned NumOps = UseMCID.getNumOperands();
3339 if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
3340 // If the instruction sets the flag, do not attempt this optimization
3341 // since it may change the semantics of the code.
3342 return false;
3343 }
3344
3345 unsigned UseOpc = UseMI.getOpcode();
3346 unsigned NewUseOpc = 0;
3347 uint32_t ImmVal = (uint32_t)DefMI.getOperand(i: 1).getImm();
3348 uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
3349 bool Commute = false;
3350 switch (UseOpc) {
3351 default: return false;
3352 case ARM::SUBrr:
3353 case ARM::ADDrr:
3354 case ARM::ORRrr:
3355 case ARM::EORrr:
3356 case ARM::t2SUBrr:
3357 case ARM::t2ADDrr:
3358 case ARM::t2ORRrr:
3359 case ARM::t2EORrr: {
3360 Commute = UseMI.getOperand(i: 2).getReg() != Reg;
3361 switch (UseOpc) {
3362 default: break;
3363 case ARM::ADDrr:
3364 case ARM::SUBrr:
3365 if (UseOpc == ARM::SUBrr && Commute)
3366 return false;
3367
3368 // ADD/SUB are special because they're essentially the same operation, so
3369 // we can handle a larger range of immediates.
3370 if (ARM_AM::isSOImmTwoPartVal(V: ImmVal))
3371 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
3372 else if (ARM_AM::isSOImmTwoPartVal(V: -ImmVal)) {
3373 ImmVal = -ImmVal;
3374 NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
3375 } else
3376 return false;
3377 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(V: ImmVal);
3378 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(V: ImmVal);
3379 break;
3380 case ARM::ORRrr:
3381 case ARM::EORrr:
3382 if (!ARM_AM::isSOImmTwoPartVal(V: ImmVal))
3383 return false;
3384 SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(V: ImmVal);
3385 SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(V: ImmVal);
3386 switch (UseOpc) {
3387 default: break;
3388 case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
3389 case ARM::EORrr: NewUseOpc = ARM::EORri; break;
3390 }
3391 break;
3392 case ARM::t2ADDrr:
3393 case ARM::t2SUBrr: {
3394 if (UseOpc == ARM::t2SUBrr && Commute)
3395 return false;
3396
3397 // ADD/SUB are special because they're essentially the same operation, so
3398 // we can handle a larger range of immediates.
3399 const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
3400 const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
3401 const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
3402 if (ARM_AM::isT2SOImmTwoPartVal(Imm: ImmVal))
3403 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
3404 else if (ARM_AM::isT2SOImmTwoPartVal(Imm: -ImmVal)) {
3405 ImmVal = -ImmVal;
3406 NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
3407 } else
3408 return false;
3409 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(Imm: ImmVal);
3410 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(Imm: ImmVal);
3411 break;
3412 }
3413 case ARM::t2ORRrr:
3414 case ARM::t2EORrr:
3415 if (!ARM_AM::isT2SOImmTwoPartVal(Imm: ImmVal))
3416 return false;
3417 SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(Imm: ImmVal);
3418 SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(Imm: ImmVal);
3419 switch (UseOpc) {
3420 default: break;
3421 case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
3422 case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
3423 }
3424 break;
3425 }
3426 }
3427 }
3428
3429 unsigned OpIdx = Commute ? 2 : 1;
3430 Register Reg1 = UseMI.getOperand(i: OpIdx).getReg();
3431 bool isKill = UseMI.getOperand(i: OpIdx).isKill();
3432 const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
3433 Register NewReg = MRI->createVirtualRegister(RegClass: TRC);
3434 BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
3435 NewReg)
3436 .addReg(Reg1, getKillRegState(B: isKill))
3437 .addImm(SOImmValV1)
3438 .add(predOps(Pred: ARMCC::AL))
3439 .add(condCodeOp());
3440 UseMI.setDesc(get(NewUseOpc));
3441 UseMI.getOperand(i: 1).setReg(NewReg);
3442 UseMI.getOperand(i: 1).setIsKill();
3443 UseMI.getOperand(i: 2).ChangeToImmediate(ImmVal: SOImmValV2);
3444 DefMI.eraseFromParent();
3445 // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
3446 // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
3447 // Then the below code will not be needed, as the input/output register
3448 // classes will be rgpr or gprSP.
3449 // For now, we fix the UseMI operand explicitly here:
3450 switch(NewUseOpc){
3451 case ARM::t2ADDspImm:
3452 case ARM::t2SUBspImm:
3453 case ARM::t2ADDri:
3454 case ARM::t2SUBri:
3455 MRI->constrainRegClass(Reg: UseMI.getOperand(i: 0).getReg(), RC: TRC);
3456 }
3457 return true;
3458}
3459
3460static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
3461 const MachineInstr &MI) {
3462 switch (MI.getOpcode()) {
3463 default: {
3464 const MCInstrDesc &Desc = MI.getDesc();
3465 int UOps = ItinData->getNumMicroOps(ItinClassIndx: Desc.getSchedClass());
3466 assert(UOps >= 0 && "bad # UOps");
3467 return UOps;
3468 }
3469
3470 case ARM::LDRrs:
3471 case ARM::LDRBrs:
3472 case ARM::STRrs:
3473 case ARM::STRBrs: {
3474 unsigned ShOpVal = MI.getOperand(i: 3).getImm();
3475 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
3476 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
3477 if (!isSub &&
3478 (ShImm == 0 ||
3479 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3480 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
3481 return 1;
3482 return 2;
3483 }
3484
3485 case ARM::LDRH:
3486 case ARM::STRH: {
3487 if (!MI.getOperand(i: 2).getReg())
3488 return 1;
3489
3490 unsigned ShOpVal = MI.getOperand(i: 3).getImm();
3491 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
3492 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
3493 if (!isSub &&
3494 (ShImm == 0 ||
3495 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3496 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
3497 return 1;
3498 return 2;
3499 }
3500
3501 case ARM::LDRSB:
3502 case ARM::LDRSH:
3503 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 3).getImm()) == ARM_AM::sub) ? 3 : 2;
3504
3505 case ARM::LDRSB_POST:
3506 case ARM::LDRSH_POST: {
3507 Register Rt = MI.getOperand(i: 0).getReg();
3508 Register Rm = MI.getOperand(i: 3).getReg();
3509 return (Rt == Rm) ? 4 : 3;
3510 }
3511
3512 case ARM::LDR_PRE_REG:
3513 case ARM::LDRB_PRE_REG: {
3514 Register Rt = MI.getOperand(i: 0).getReg();
3515 Register Rm = MI.getOperand(i: 3).getReg();
3516 if (Rt == Rm)
3517 return 3;
3518 unsigned ShOpVal = MI.getOperand(i: 4).getImm();
3519 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
3520 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
3521 if (!isSub &&
3522 (ShImm == 0 ||
3523 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3524 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
3525 return 2;
3526 return 3;
3527 }
3528
3529 case ARM::STR_PRE_REG:
3530 case ARM::STRB_PRE_REG: {
3531 unsigned ShOpVal = MI.getOperand(i: 4).getImm();
3532 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
3533 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
3534 if (!isSub &&
3535 (ShImm == 0 ||
3536 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3537 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
3538 return 2;
3539 return 3;
3540 }
3541
3542 case ARM::LDRH_PRE:
3543 case ARM::STRH_PRE: {
3544 Register Rt = MI.getOperand(i: 0).getReg();
3545 Register Rm = MI.getOperand(i: 3).getReg();
3546 if (!Rm)
3547 return 2;
3548 if (Rt == Rm)
3549 return 3;
3550 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 4).getImm()) == ARM_AM::sub) ? 3 : 2;
3551 }
3552
3553 case ARM::LDR_POST_REG:
3554 case ARM::LDRB_POST_REG:
3555 case ARM::LDRH_POST: {
3556 Register Rt = MI.getOperand(i: 0).getReg();
3557 Register Rm = MI.getOperand(i: 3).getReg();
3558 return (Rt == Rm) ? 3 : 2;
3559 }
3560
3561 case ARM::LDR_PRE_IMM:
3562 case ARM::LDRB_PRE_IMM:
3563 case ARM::LDR_POST_IMM:
3564 case ARM::LDRB_POST_IMM:
3565 case ARM::STRB_POST_IMM:
3566 case ARM::STRB_POST_REG:
3567 case ARM::STRB_PRE_IMM:
3568 case ARM::STRH_POST:
3569 case ARM::STR_POST_IMM:
3570 case ARM::STR_POST_REG:
3571 case ARM::STR_PRE_IMM:
3572 return 2;
3573
3574 case ARM::LDRSB_PRE:
3575 case ARM::LDRSH_PRE: {
3576 Register Rm = MI.getOperand(i: 3).getReg();
3577 if (Rm == 0)
3578 return 3;
3579 Register Rt = MI.getOperand(i: 0).getReg();
3580 if (Rt == Rm)
3581 return 4;
3582 unsigned ShOpVal = MI.getOperand(i: 4).getImm();
3583 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
3584 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
3585 if (!isSub &&
3586 (ShImm == 0 ||
3587 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
3588 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
3589 return 3;
3590 return 4;
3591 }
3592
3593 case ARM::LDRD: {
3594 Register Rt = MI.getOperand(i: 0).getReg();
3595 Register Rn = MI.getOperand(i: 2).getReg();
3596 Register Rm = MI.getOperand(i: 3).getReg();
3597 if (Rm)
3598 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 4).getImm()) == ARM_AM::sub) ? 4
3599 : 3;
3600 return (Rt == Rn) ? 3 : 2;
3601 }
3602
3603 case ARM::STRD: {
3604 Register Rm = MI.getOperand(i: 3).getReg();
3605 if (Rm)
3606 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 4).getImm()) == ARM_AM::sub) ? 4
3607 : 3;
3608 return 2;
3609 }
3610
3611 case ARM::LDRD_POST:
3612 case ARM::t2LDRD_POST:
3613 return 3;
3614
3615 case ARM::STRD_POST:
3616 case ARM::t2STRD_POST:
3617 return 4;
3618
3619 case ARM::LDRD_PRE: {
3620 Register Rt = MI.getOperand(i: 0).getReg();
3621 Register Rn = MI.getOperand(i: 3).getReg();
3622 Register Rm = MI.getOperand(i: 4).getReg();
3623 if (Rm)
3624 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 5).getImm()) == ARM_AM::sub) ? 5
3625 : 4;
3626 return (Rt == Rn) ? 4 : 3;
3627 }
3628
3629 case ARM::t2LDRD_PRE: {
3630 Register Rt = MI.getOperand(i: 0).getReg();
3631 Register Rn = MI.getOperand(i: 3).getReg();
3632 return (Rt == Rn) ? 4 : 3;
3633 }
3634
3635 case ARM::STRD_PRE: {
3636 Register Rm = MI.getOperand(i: 4).getReg();
3637 if (Rm)
3638 return (ARM_AM::getAM3Op(AM3Opc: MI.getOperand(i: 5).getImm()) == ARM_AM::sub) ? 5
3639 : 4;
3640 return 3;
3641 }
3642
3643 case ARM::t2STRD_PRE:
3644 return 3;
3645
3646 case ARM::t2LDR_POST:
3647 case ARM::t2LDRB_POST:
3648 case ARM::t2LDRB_PRE:
3649 case ARM::t2LDRSBi12:
3650 case ARM::t2LDRSBi8:
3651 case ARM::t2LDRSBpci:
3652 case ARM::t2LDRSBs:
3653 case ARM::t2LDRH_POST:
3654 case ARM::t2LDRH_PRE:
3655 case ARM::t2LDRSBT:
3656 case ARM::t2LDRSB_POST:
3657 case ARM::t2LDRSB_PRE:
3658 case ARM::t2LDRSH_POST:
3659 case ARM::t2LDRSH_PRE:
3660 case ARM::t2LDRSHi12:
3661 case ARM::t2LDRSHi8:
3662 case ARM::t2LDRSHpci:
3663 case ARM::t2LDRSHs:
3664 return 2;
3665
3666 case ARM::t2LDRDi8: {
3667 Register Rt = MI.getOperand(i: 0).getReg();
3668 Register Rn = MI.getOperand(i: 2).getReg();
3669 return (Rt == Rn) ? 3 : 2;
3670 }
3671
3672 case ARM::t2STRB_POST:
3673 case ARM::t2STRB_PRE:
3674 case ARM::t2STRBs:
3675 case ARM::t2STRDi8:
3676 case ARM::t2STRH_POST:
3677 case ARM::t2STRH_PRE:
3678 case ARM::t2STRHs:
3679 case ARM::t2STR_POST:
3680 case ARM::t2STR_PRE:
3681 case ARM::t2STRs:
3682 return 2;
3683 }
3684}
3685
3686// Return the number of 32-bit words loaded by LDM or stored by STM. If this
3687// can't be easily determined return 0 (missing MachineMemOperand).
3688//
3689// FIXME: The current MachineInstr design does not support relying on machine
3690// mem operands to determine the width of a memory access. Instead, we expect
3691// the target to provide this information based on the instruction opcode and
3692// operands. However, using MachineMemOperand is the best solution now for
3693// two reasons:
3694//
3695// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
3696// operands. This is much more dangerous than using the MachineMemOperand
3697// sizes because CodeGen passes can insert/remove optional machine operands. In
3698// fact, it's totally incorrect for preRA passes and appears to be wrong for
3699// postRA passes as well.
3700//
3701// 2) getNumLDMAddresses is only used by the scheduling machine model and any
3702// machine model that calls this should handle the unknown (zero size) case.
3703//
3704// Long term, we should require a target hook that verifies MachineMemOperand
3705// sizes during MC lowering. That target hook should be local to MC lowering
3706// because we can't ensure that it is aware of other MI forms. Doing this will
3707// ensure that MachineMemOperands are correctly propagated through all passes.
3708unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
3709 unsigned Size = 0;
3710 for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
3711 E = MI.memoperands_end();
3712 I != E; ++I) {
3713 Size += (*I)->getSize().getValue();
3714 }
3715 // FIXME: The scheduler currently can't handle values larger than 16. But
3716 // the values can actually go up to 32 for floating-point load/store
3717 // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
3718 // operations isn't right; we could end up with "extra" memory operands for
3719 // various reasons, like tail merge merging two memory operations.
3720 return std::min(a: Size / 4, b: 16U);
3721}
3722
3723static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
3724 unsigned NumRegs) {
3725 unsigned UOps = 1 + NumRegs; // 1 for address computation.
3726 switch (Opc) {
3727 default:
3728 break;
3729 case ARM::VLDMDIA_UPD:
3730 case ARM::VLDMDDB_UPD:
3731 case ARM::VLDMSIA_UPD:
3732 case ARM::VLDMSDB_UPD:
3733 case ARM::VSTMDIA_UPD:
3734 case ARM::VSTMDDB_UPD:
3735 case ARM::VSTMSIA_UPD:
3736 case ARM::VSTMSDB_UPD:
3737 case ARM::LDMIA_UPD:
3738 case ARM::LDMDA_UPD:
3739 case ARM::LDMDB_UPD:
3740 case ARM::LDMIB_UPD:
3741 case ARM::STMIA_UPD:
3742 case ARM::STMDA_UPD:
3743 case ARM::STMDB_UPD:
3744 case ARM::STMIB_UPD:
3745 case ARM::tLDMIA_UPD:
3746 case ARM::tSTMIA_UPD:
3747 case ARM::t2LDMIA_UPD:
3748 case ARM::t2LDMDB_UPD:
3749 case ARM::t2STMIA_UPD:
3750 case ARM::t2STMDB_UPD:
3751 ++UOps; // One for base register writeback.
3752 break;
3753 case ARM::LDMIA_RET:
3754 case ARM::tPOP_RET:
3755 case ARM::t2LDMIA_RET:
3756 UOps += 2; // One for base reg wb, one for write to pc.
3757 break;
3758 }
3759 return UOps;
3760}
3761
3762unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
3763 const MachineInstr &MI) const {
3764 if (!ItinData || ItinData->isEmpty())
3765 return 1;
3766
3767 const MCInstrDesc &Desc = MI.getDesc();
3768 unsigned Class = Desc.getSchedClass();
3769 int ItinUOps = ItinData->getNumMicroOps(ItinClassIndx: Class);
3770 if (ItinUOps >= 0) {
3771 if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
3772 return getNumMicroOpsSwiftLdSt(ItinData, MI);
3773
3774 return ItinUOps;
3775 }
3776
3777 unsigned Opc = MI.getOpcode();
3778 switch (Opc) {
3779 default:
3780 llvm_unreachable("Unexpected multi-uops instruction!");
3781 case ARM::VLDMQIA:
3782 case ARM::VSTMQIA:
3783 return 2;
3784
3785 // The number of uOps for load / store multiple are determined by the number
3786 // registers.
3787 //
3788 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
3789 // same cycle. The scheduling for the first load / store must be done
3790 // separately by assuming the address is not 64-bit aligned.
3791 //
3792 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
3793 // is not 64-bit aligned, then AGU would take an extra cycle. For VFP / NEON
3794 // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
3795 case ARM::VLDMDIA:
3796 case ARM::VLDMDIA_UPD:
3797 case ARM::VLDMDDB_UPD:
3798 case ARM::VLDMSIA:
3799 case ARM::VLDMSIA_UPD:
3800 case ARM::VLDMSDB_UPD:
3801 case ARM::VSTMDIA:
3802 case ARM::VSTMDIA_UPD:
3803 case ARM::VSTMDDB_UPD:
3804 case ARM::VSTMSIA:
3805 case ARM::VSTMSIA_UPD:
3806 case ARM::VSTMSDB_UPD: {
3807 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
3808 return (NumRegs / 2) + (NumRegs % 2) + 1;
3809 }
3810
3811 case ARM::LDMIA_RET:
3812 case ARM::LDMIA:
3813 case ARM::LDMDA:
3814 case ARM::LDMDB:
3815 case ARM::LDMIB:
3816 case ARM::LDMIA_UPD:
3817 case ARM::LDMDA_UPD:
3818 case ARM::LDMDB_UPD:
3819 case ARM::LDMIB_UPD:
3820 case ARM::STMIA:
3821 case ARM::STMDA:
3822 case ARM::STMDB:
3823 case ARM::STMIB:
3824 case ARM::STMIA_UPD:
3825 case ARM::STMDA_UPD:
3826 case ARM::STMDB_UPD:
3827 case ARM::STMIB_UPD:
3828 case ARM::tLDMIA:
3829 case ARM::tLDMIA_UPD:
3830 case ARM::tSTMIA_UPD:
3831 case ARM::tPOP_RET:
3832 case ARM::tPOP:
3833 case ARM::tPUSH:
3834 case ARM::t2LDMIA_RET:
3835 case ARM::t2LDMIA:
3836 case ARM::t2LDMDB:
3837 case ARM::t2LDMIA_UPD:
3838 case ARM::t2LDMDB_UPD:
3839 case ARM::t2STMIA:
3840 case ARM::t2STMDB:
3841 case ARM::t2STMIA_UPD:
3842 case ARM::t2STMDB_UPD: {
3843 unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
3844 switch (Subtarget.getLdStMultipleTiming()) {
3845 case ARMSubtarget::SingleIssuePlusExtras:
3846 return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
3847 case ARMSubtarget::SingleIssue:
3848 // Assume the worst.
3849 return NumRegs;
3850 case ARMSubtarget::DoubleIssue: {
3851 if (NumRegs < 4)
3852 return 2;
3853 // 4 registers would be issued: 2, 2.
3854 // 5 registers would be issued: 2, 2, 1.
3855 unsigned UOps = (NumRegs / 2);
3856 if (NumRegs % 2)
3857 ++UOps;
3858 return UOps;
3859 }
3860 case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
3861 unsigned UOps = (NumRegs / 2);
3862 // If there are odd number of registers or if it's not 64-bit aligned,
3863 // then it takes an extra AGU (Address Generation Unit) cycle.
3864 if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
3865 (*MI.memoperands_begin())->getAlign() < Align(8))
3866 ++UOps;
3867 return UOps;
3868 }
3869 }
3870 }
3871 }
3872 llvm_unreachable("Didn't find the number of microops");
3873}
3874
3875std::optional<unsigned>
3876ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
3877 const MCInstrDesc &DefMCID, unsigned DefClass,
3878 unsigned DefIdx, unsigned DefAlign) const {
3879 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3880 if (RegNo <= 0)
3881 // Def is the address writeback.
3882 return ItinData->getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefIdx);
3883
3884 unsigned DefCycle;
3885 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3886 // (regno / 2) + (regno % 2) + 1
3887 DefCycle = RegNo / 2 + 1;
3888 if (RegNo % 2)
3889 ++DefCycle;
3890 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3891 DefCycle = RegNo;
3892 bool isSLoad = false;
3893
3894 switch (DefMCID.getOpcode()) {
3895 default: break;
3896 case ARM::VLDMSIA:
3897 case ARM::VLDMSIA_UPD:
3898 case ARM::VLDMSDB_UPD:
3899 isSLoad = true;
3900 break;
3901 }
3902
3903 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3904 // then it takes an extra cycle.
3905 if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
3906 ++DefCycle;
3907 } else {
3908 // Assume the worst.
3909 DefCycle = RegNo + 2;
3910 }
3911
3912 return DefCycle;
3913}
3914
3915std::optional<unsigned>
3916ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
3917 const MCInstrDesc &DefMCID, unsigned DefClass,
3918 unsigned DefIdx, unsigned DefAlign) const {
3919 int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
3920 if (RegNo <= 0)
3921 // Def is the address writeback.
3922 return ItinData->getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefIdx);
3923
3924 unsigned DefCycle;
3925 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3926 // 4 registers would be issued: 1, 2, 1.
3927 // 5 registers would be issued: 1, 2, 2.
3928 DefCycle = RegNo / 2;
3929 if (DefCycle < 1)
3930 DefCycle = 1;
3931 // Result latency is issue cycle + 2: E2.
3932 DefCycle += 2;
3933 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3934 DefCycle = (RegNo / 2);
3935 // If there are odd number of registers or if it's not 64-bit aligned,
3936 // then it takes an extra AGU (Address Generation Unit) cycle.
3937 if ((RegNo % 2) || DefAlign < 8)
3938 ++DefCycle;
3939 // Result latency is AGU cycles + 2.
3940 DefCycle += 2;
3941 } else {
3942 // Assume the worst.
3943 DefCycle = RegNo + 2;
3944 }
3945
3946 return DefCycle;
3947}
3948
3949std::optional<unsigned>
3950ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
3951 const MCInstrDesc &UseMCID, unsigned UseClass,
3952 unsigned UseIdx, unsigned UseAlign) const {
3953 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3954 if (RegNo <= 0)
3955 return ItinData->getOperandCycle(ItinClassIndx: UseClass, OperandIdx: UseIdx);
3956
3957 unsigned UseCycle;
3958 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3959 // (regno / 2) + (regno % 2) + 1
3960 UseCycle = RegNo / 2 + 1;
3961 if (RegNo % 2)
3962 ++UseCycle;
3963 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
3964 UseCycle = RegNo;
3965 bool isSStore = false;
3966
3967 switch (UseMCID.getOpcode()) {
3968 default: break;
3969 case ARM::VSTMSIA:
3970 case ARM::VSTMSIA_UPD:
3971 case ARM::VSTMSDB_UPD:
3972 isSStore = true;
3973 break;
3974 }
3975
3976 // If there are odd number of 'S' registers or if it's not 64-bit aligned,
3977 // then it takes an extra cycle.
3978 if ((isSStore && (RegNo % 2)) || UseAlign < 8)
3979 ++UseCycle;
3980 } else {
3981 // Assume the worst.
3982 UseCycle = RegNo + 2;
3983 }
3984
3985 return UseCycle;
3986}
3987
3988std::optional<unsigned>
3989ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
3990 const MCInstrDesc &UseMCID, unsigned UseClass,
3991 unsigned UseIdx, unsigned UseAlign) const {
3992 int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
3993 if (RegNo <= 0)
3994 return ItinData->getOperandCycle(ItinClassIndx: UseClass, OperandIdx: UseIdx);
3995
3996 unsigned UseCycle;
3997 if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
3998 UseCycle = RegNo / 2;
3999 if (UseCycle < 2)
4000 UseCycle = 2;
4001 // Read in E3.
4002 UseCycle += 2;
4003 } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
4004 UseCycle = (RegNo / 2);
4005 // If there are odd number of registers or if it's not 64-bit aligned,
4006 // then it takes an extra AGU (Address Generation Unit) cycle.
4007 if ((RegNo % 2) || UseAlign < 8)
4008 ++UseCycle;
4009 } else {
4010 // Assume the worst.
4011 UseCycle = 1;
4012 }
4013 return UseCycle;
4014}
4015
4016std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4017 const InstrItineraryData *ItinData, const MCInstrDesc &DefMCID,
4018 unsigned DefIdx, unsigned DefAlign, const MCInstrDesc &UseMCID,
4019 unsigned UseIdx, unsigned UseAlign) const {
4020 unsigned DefClass = DefMCID.getSchedClass();
4021 unsigned UseClass = UseMCID.getSchedClass();
4022
4023 if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
4024 return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
4025
4026 // This may be a def / use of a variable_ops instruction, the operand
4027 // latency might be determinable dynamically. Let the target try to
4028 // figure it out.
4029 std::optional<unsigned> DefCycle;
4030 bool LdmBypass = false;
4031 switch (DefMCID.getOpcode()) {
4032 default:
4033 DefCycle = ItinData->getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefIdx);
4034 break;
4035
4036 case ARM::VLDMDIA:
4037 case ARM::VLDMDIA_UPD:
4038 case ARM::VLDMDDB_UPD:
4039 case ARM::VLDMSIA:
4040 case ARM::VLDMSIA_UPD:
4041 case ARM::VLDMSDB_UPD:
4042 DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4043 break;
4044
4045 case ARM::LDMIA_RET:
4046 case ARM::LDMIA:
4047 case ARM::LDMDA:
4048 case ARM::LDMDB:
4049 case ARM::LDMIB:
4050 case ARM::LDMIA_UPD:
4051 case ARM::LDMDA_UPD:
4052 case ARM::LDMDB_UPD:
4053 case ARM::LDMIB_UPD:
4054 case ARM::tLDMIA:
4055 case ARM::tLDMIA_UPD:
4056 case ARM::tPUSH:
4057 case ARM::t2LDMIA_RET:
4058 case ARM::t2LDMIA:
4059 case ARM::t2LDMDB:
4060 case ARM::t2LDMIA_UPD:
4061 case ARM::t2LDMDB_UPD:
4062 LdmBypass = true;
4063 DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
4064 break;
4065 }
4066
4067 if (!DefCycle)
4068 // We can't seem to determine the result latency of the def, assume it's 2.
4069 DefCycle = 2;
4070
4071 std::optional<unsigned> UseCycle;
4072 switch (UseMCID.getOpcode()) {
4073 default:
4074 UseCycle = ItinData->getOperandCycle(ItinClassIndx: UseClass, OperandIdx: UseIdx);
4075 break;
4076
4077 case ARM::VSTMDIA:
4078 case ARM::VSTMDIA_UPD:
4079 case ARM::VSTMDDB_UPD:
4080 case ARM::VSTMSIA:
4081 case ARM::VSTMSIA_UPD:
4082 case ARM::VSTMSDB_UPD:
4083 UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4084 break;
4085
4086 case ARM::STMIA:
4087 case ARM::STMDA:
4088 case ARM::STMDB:
4089 case ARM::STMIB:
4090 case ARM::STMIA_UPD:
4091 case ARM::STMDA_UPD:
4092 case ARM::STMDB_UPD:
4093 case ARM::STMIB_UPD:
4094 case ARM::tSTMIA_UPD:
4095 case ARM::tPOP_RET:
4096 case ARM::tPOP:
4097 case ARM::t2STMIA:
4098 case ARM::t2STMDB:
4099 case ARM::t2STMIA_UPD:
4100 case ARM::t2STMDB_UPD:
4101 UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
4102 break;
4103 }
4104
4105 if (!UseCycle)
4106 // Assume it's read in the first stage.
4107 UseCycle = 1;
4108
4109 if (UseCycle > *DefCycle + 1)
4110 return std::nullopt;
4111
4112 UseCycle = *DefCycle - *UseCycle + 1;
4113 if (UseCycle > 0u) {
4114 if (LdmBypass) {
4115 // It's a variable_ops instruction so we can't use DefIdx here. Just use
4116 // first def operand.
4117 if (ItinData->hasPipelineForwarding(DefClass, DefIdx: DefMCID.getNumOperands()-1,
4118 UseClass, UseIdx))
4119 UseCycle = *UseCycle - 1;
4120 } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
4121 UseClass, UseIdx)) {
4122 UseCycle = *UseCycle - 1;
4123 }
4124 }
4125
4126 return UseCycle;
4127}
4128
4129static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
4130 const MachineInstr *MI, unsigned Reg,
4131 unsigned &DefIdx, unsigned &Dist) {
4132 Dist = 0;
4133
4134 MachineBasicBlock::const_iterator I = MI; ++I;
4135 MachineBasicBlock::const_instr_iterator II = std::prev(x: I.getInstrIterator());
4136 assert(II->isInsideBundle() && "Empty bundle?");
4137
4138 int Idx = -1;
4139 while (II->isInsideBundle()) {
4140 Idx = II->findRegisterDefOperandIdx(Reg, TRI, isDead: false, Overlap: true);
4141 if (Idx != -1)
4142 break;
4143 --II;
4144 ++Dist;
4145 }
4146
4147 assert(Idx != -1 && "Cannot find bundled definition!");
4148 DefIdx = Idx;
4149 return &*II;
4150}
4151
4152static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
4153 const MachineInstr &MI, unsigned Reg,
4154 unsigned &UseIdx, unsigned &Dist) {
4155 Dist = 0;
4156
4157 MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
4158 assert(II->isInsideBundle() && "Empty bundle?");
4159 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4160
4161 // FIXME: This doesn't properly handle multiple uses.
4162 int Idx = -1;
4163 while (II != E && II->isInsideBundle()) {
4164 Idx = II->findRegisterUseOperandIdx(Reg, TRI, isKill: false);
4165 if (Idx != -1)
4166 break;
4167 if (II->getOpcode() != ARM::t2IT)
4168 ++Dist;
4169 ++II;
4170 }
4171
4172 if (Idx == -1) {
4173 Dist = 0;
4174 return nullptr;
4175 }
4176
4177 UseIdx = Idx;
4178 return &*II;
4179}
4180
4181/// Return the number of cycles to add to (or subtract from) the static
4182/// itinerary based on the def opcode and alignment. The caller will ensure that
4183/// adjusted latency is at least one cycle.
4184static int adjustDefLatency(const ARMSubtarget &Subtarget,
4185 const MachineInstr &DefMI,
4186 const MCInstrDesc &DefMCID, unsigned DefAlign) {
4187 int Adjust = 0;
4188 if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
4189 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4190 // variants are one cycle cheaper.
4191 switch (DefMCID.getOpcode()) {
4192 default: break;
4193 case ARM::LDRrs:
4194 case ARM::LDRBrs: {
4195 unsigned ShOpVal = DefMI.getOperand(i: 3).getImm();
4196 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
4197 if (ShImm == 0 ||
4198 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl))
4199 --Adjust;
4200 break;
4201 }
4202 case ARM::t2LDRs:
4203 case ARM::t2LDRBs:
4204 case ARM::t2LDRHs:
4205 case ARM::t2LDRSHs: {
4206 // Thumb2 mode: lsl only.
4207 unsigned ShAmt = DefMI.getOperand(i: 3).getImm();
4208 if (ShAmt == 0 || ShAmt == 2)
4209 --Adjust;
4210 break;
4211 }
4212 }
4213 } else if (Subtarget.isSwift()) {
4214 // FIXME: Properly handle all of the latency adjustments for address
4215 // writeback.
4216 switch (DefMCID.getOpcode()) {
4217 default: break;
4218 case ARM::LDRrs:
4219 case ARM::LDRBrs: {
4220 unsigned ShOpVal = DefMI.getOperand(i: 3).getImm();
4221 bool isSub = ARM_AM::getAM2Op(AM2Opc: ShOpVal) == ARM_AM::sub;
4222 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
4223 if (!isSub &&
4224 (ShImm == 0 ||
4225 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4226 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl)))
4227 Adjust -= 2;
4228 else if (!isSub &&
4229 ShImm == 1 && ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsr)
4230 --Adjust;
4231 break;
4232 }
4233 case ARM::t2LDRs:
4234 case ARM::t2LDRBs:
4235 case ARM::t2LDRHs:
4236 case ARM::t2LDRSHs: {
4237 // Thumb2 mode: lsl only.
4238 unsigned ShAmt = DefMI.getOperand(i: 3).getImm();
4239 if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
4240 Adjust -= 2;
4241 break;
4242 }
4243 }
4244 }
4245
4246 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
4247 switch (DefMCID.getOpcode()) {
4248 default: break;
4249 case ARM::VLD1q8:
4250 case ARM::VLD1q16:
4251 case ARM::VLD1q32:
4252 case ARM::VLD1q64:
4253 case ARM::VLD1q8wb_fixed:
4254 case ARM::VLD1q16wb_fixed:
4255 case ARM::VLD1q32wb_fixed:
4256 case ARM::VLD1q64wb_fixed:
4257 case ARM::VLD1q8wb_register:
4258 case ARM::VLD1q16wb_register:
4259 case ARM::VLD1q32wb_register:
4260 case ARM::VLD1q64wb_register:
4261 case ARM::VLD2d8:
4262 case ARM::VLD2d16:
4263 case ARM::VLD2d32:
4264 case ARM::VLD2q8:
4265 case ARM::VLD2q16:
4266 case ARM::VLD2q32:
4267 case ARM::VLD2d8wb_fixed:
4268 case ARM::VLD2d16wb_fixed:
4269 case ARM::VLD2d32wb_fixed:
4270 case ARM::VLD2q8wb_fixed:
4271 case ARM::VLD2q16wb_fixed:
4272 case ARM::VLD2q32wb_fixed:
4273 case ARM::VLD2d8wb_register:
4274 case ARM::VLD2d16wb_register:
4275 case ARM::VLD2d32wb_register:
4276 case ARM::VLD2q8wb_register:
4277 case ARM::VLD2q16wb_register:
4278 case ARM::VLD2q32wb_register:
4279 case ARM::VLD3d8:
4280 case ARM::VLD3d16:
4281 case ARM::VLD3d32:
4282 case ARM::VLD1d64T:
4283 case ARM::VLD3d8_UPD:
4284 case ARM::VLD3d16_UPD:
4285 case ARM::VLD3d32_UPD:
4286 case ARM::VLD1d64Twb_fixed:
4287 case ARM::VLD1d64Twb_register:
4288 case ARM::VLD3q8_UPD:
4289 case ARM::VLD3q16_UPD:
4290 case ARM::VLD3q32_UPD:
4291 case ARM::VLD4d8:
4292 case ARM::VLD4d16:
4293 case ARM::VLD4d32:
4294 case ARM::VLD1d64Q:
4295 case ARM::VLD4d8_UPD:
4296 case ARM::VLD4d16_UPD:
4297 case ARM::VLD4d32_UPD:
4298 case ARM::VLD1d64Qwb_fixed:
4299 case ARM::VLD1d64Qwb_register:
4300 case ARM::VLD4q8_UPD:
4301 case ARM::VLD4q16_UPD:
4302 case ARM::VLD4q32_UPD:
4303 case ARM::VLD1DUPq8:
4304 case ARM::VLD1DUPq16:
4305 case ARM::VLD1DUPq32:
4306 case ARM::VLD1DUPq8wb_fixed:
4307 case ARM::VLD1DUPq16wb_fixed:
4308 case ARM::VLD1DUPq32wb_fixed:
4309 case ARM::VLD1DUPq8wb_register:
4310 case ARM::VLD1DUPq16wb_register:
4311 case ARM::VLD1DUPq32wb_register:
4312 case ARM::VLD2DUPd8:
4313 case ARM::VLD2DUPd16:
4314 case ARM::VLD2DUPd32:
4315 case ARM::VLD2DUPd8wb_fixed:
4316 case ARM::VLD2DUPd16wb_fixed:
4317 case ARM::VLD2DUPd32wb_fixed:
4318 case ARM::VLD2DUPd8wb_register:
4319 case ARM::VLD2DUPd16wb_register:
4320 case ARM::VLD2DUPd32wb_register:
4321 case ARM::VLD4DUPd8:
4322 case ARM::VLD4DUPd16:
4323 case ARM::VLD4DUPd32:
4324 case ARM::VLD4DUPd8_UPD:
4325 case ARM::VLD4DUPd16_UPD:
4326 case ARM::VLD4DUPd32_UPD:
4327 case ARM::VLD1LNd8:
4328 case ARM::VLD1LNd16:
4329 case ARM::VLD1LNd32:
4330 case ARM::VLD1LNd8_UPD:
4331 case ARM::VLD1LNd16_UPD:
4332 case ARM::VLD1LNd32_UPD:
4333 case ARM::VLD2LNd8:
4334 case ARM::VLD2LNd16:
4335 case ARM::VLD2LNd32:
4336 case ARM::VLD2LNq16:
4337 case ARM::VLD2LNq32:
4338 case ARM::VLD2LNd8_UPD:
4339 case ARM::VLD2LNd16_UPD:
4340 case ARM::VLD2LNd32_UPD:
4341 case ARM::VLD2LNq16_UPD:
4342 case ARM::VLD2LNq32_UPD:
4343 case ARM::VLD4LNd8:
4344 case ARM::VLD4LNd16:
4345 case ARM::VLD4LNd32:
4346 case ARM::VLD4LNq16:
4347 case ARM::VLD4LNq32:
4348 case ARM::VLD4LNd8_UPD:
4349 case ARM::VLD4LNd16_UPD:
4350 case ARM::VLD4LNd32_UPD:
4351 case ARM::VLD4LNq16_UPD:
4352 case ARM::VLD4LNq32_UPD:
4353 // If the address is not 64-bit aligned, the latencies of these
4354 // instructions increases by one.
4355 ++Adjust;
4356 break;
4357 }
4358 }
4359 return Adjust;
4360}
4361
4362std::optional<unsigned> ARMBaseInstrInfo::getOperandLatency(
4363 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4364 unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const {
4365 // No operand latency. The caller may fall back to getInstrLatency.
4366 if (!ItinData || ItinData->isEmpty())
4367 return std::nullopt;
4368
4369 const MachineOperand &DefMO = DefMI.getOperand(i: DefIdx);
4370 Register Reg = DefMO.getReg();
4371
4372 const MachineInstr *ResolvedDefMI = &DefMI;
4373 unsigned DefAdj = 0;
4374 if (DefMI.isBundle())
4375 ResolvedDefMI =
4376 getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
4377 if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
4378 ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
4379 return 1;
4380 }
4381
4382 const MachineInstr *ResolvedUseMI = &UseMI;
4383 unsigned UseAdj = 0;
4384 if (UseMI.isBundle()) {
4385 ResolvedUseMI =
4386 getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
4387 if (!ResolvedUseMI)
4388 return std::nullopt;
4389 }
4390
4391 return getOperandLatencyImpl(
4392 ItinData, DefMI: *ResolvedDefMI, DefIdx, DefMCID: ResolvedDefMI->getDesc(), DefAdj, DefMO,
4393 Reg, UseMI: *ResolvedUseMI, UseIdx, UseMCID: ResolvedUseMI->getDesc(), UseAdj);
4394}
4395
4396std::optional<unsigned> ARMBaseInstrInfo::getOperandLatencyImpl(
4397 const InstrItineraryData *ItinData, const MachineInstr &DefMI,
4398 unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
4399 const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
4400 unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
4401 if (Reg == ARM::CPSR) {
4402 if (DefMI.getOpcode() == ARM::FMSTAT) {
4403 // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
4404 return Subtarget.isLikeA9() ? 1 : 20;
4405 }
4406
4407 // CPSR set and branch can be paired in the same cycle.
4408 if (UseMI.isBranch())
4409 return 0;
4410
4411 // Otherwise it takes the instruction latency (generally one).
4412 unsigned Latency = getInstrLatency(ItinData, MI: DefMI);
4413
4414 // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
4415 // its uses. Instructions which are otherwise scheduled between them may
4416 // incur a code size penalty (not able to use the CPSR setting 16-bit
4417 // instructions).
4418 if (Latency > 0 && Subtarget.isThumb2()) {
4419 const MachineFunction *MF = DefMI.getParent()->getParent();
4420 // FIXME: Use Function::hasOptSize().
4421 if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
4422 --Latency;
4423 }
4424 return Latency;
4425 }
4426
4427 if (DefMO.isImplicit() || UseMI.getOperand(i: UseIdx).isImplicit())
4428 return std::nullopt;
4429
4430 unsigned DefAlign = DefMI.hasOneMemOperand()
4431 ? (*DefMI.memoperands_begin())->getAlign().value()
4432 : 0;
4433 unsigned UseAlign = UseMI.hasOneMemOperand()
4434 ? (*UseMI.memoperands_begin())->getAlign().value()
4435 : 0;
4436
4437 // Get the itinerary's latency if possible, and handle variable_ops.
4438 std::optional<unsigned> Latency = getOperandLatency(
4439 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4440 // Unable to find operand latency. The caller may resort to getInstrLatency.
4441 if (!Latency)
4442 return std::nullopt;
4443
4444 // Adjust for IT block position.
4445 int Adj = DefAdj + UseAdj;
4446
4447 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4448 Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
4449 if (Adj >= 0 || (int)*Latency > -Adj) {
4450 return *Latency + Adj;
4451 }
4452 // Return the itinerary latency, which may be zero but not less than zero.
4453 return Latency;
4454}
4455
4456std::optional<unsigned>
4457ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
4458 SDNode *DefNode, unsigned DefIdx,
4459 SDNode *UseNode, unsigned UseIdx) const {
4460 if (!DefNode->isMachineOpcode())
4461 return 1;
4462
4463 const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());
4464
4465 if (isZeroCost(DefMCID.Opcode))
4466 return 0;
4467
4468 if (!ItinData || ItinData->isEmpty())
4469 return DefMCID.mayLoad() ? 3 : 1;
4470
4471 if (!UseNode->isMachineOpcode()) {
4472 std::optional<unsigned> Latency =
4473 ItinData->getOperandCycle(ItinClassIndx: DefMCID.getSchedClass(), OperandIdx: DefIdx);
4474 int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
4475 int Threshold = 1 + Adj;
4476 return !Latency || Latency <= (unsigned)Threshold ? 1 : *Latency - Adj;
4477 }
4478
4479 const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
4480 auto *DefMN = cast<MachineSDNode>(Val: DefNode);
4481 unsigned DefAlign = !DefMN->memoperands_empty()
4482 ? (*DefMN->memoperands_begin())->getAlign().value()
4483 : 0;
4484 auto *UseMN = cast<MachineSDNode>(Val: UseNode);
4485 unsigned UseAlign = !UseMN->memoperands_empty()
4486 ? (*UseMN->memoperands_begin())->getAlign().value()
4487 : 0;
4488 std::optional<unsigned> Latency = getOperandLatency(
4489 ItinData, DefMCID, DefIdx, DefAlign, UseMCID, UseIdx, UseAlign);
4490 if (!Latency)
4491 return std::nullopt;
4492
4493 if (Latency > 1U &&
4494 (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
4495 Subtarget.isCortexA7())) {
4496 // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
4497 // variants are one cycle cheaper.
4498 switch (DefMCID.getOpcode()) {
4499 default: break;
4500 case ARM::LDRrs:
4501 case ARM::LDRBrs: {
4502 unsigned ShOpVal = DefNode->getConstantOperandVal(Num: 2);
4503 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
4504 if (ShImm == 0 ||
4505 (ShImm == 2 && ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl))
4506 Latency = *Latency - 1;
4507 break;
4508 }
4509 case ARM::t2LDRs:
4510 case ARM::t2LDRBs:
4511 case ARM::t2LDRHs:
4512 case ARM::t2LDRSHs: {
4513 // Thumb2 mode: lsl only.
4514 unsigned ShAmt = DefNode->getConstantOperandVal(Num: 2);
4515 if (ShAmt == 0 || ShAmt == 2)
4516 Latency = *Latency - 1;
4517 break;
4518 }
4519 }
4520 } else if (DefIdx == 0 && Latency > 2U && Subtarget.isSwift()) {
4521 // FIXME: Properly handle all of the latency adjustments for address
4522 // writeback.
4523 switch (DefMCID.getOpcode()) {
4524 default: break;
4525 case ARM::LDRrs:
4526 case ARM::LDRBrs: {
4527 unsigned ShOpVal = DefNode->getConstantOperandVal(Num: 2);
4528 unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc: ShOpVal);
4529 if (ShImm == 0 ||
4530 ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
4531 ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsl))
4532 Latency = *Latency - 2;
4533 else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(AM2Opc: ShOpVal) == ARM_AM::lsr)
4534 Latency = *Latency - 1;
4535 break;
4536 }
4537 case ARM::t2LDRs:
4538 case ARM::t2LDRBs:
4539 case ARM::t2LDRHs:
4540 case ARM::t2LDRSHs:
4541 // Thumb2 mode: lsl 0-3 only.
4542 Latency = *Latency - 2;
4543 break;
4544 }
4545 }
4546
4547 if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
4548 switch (DefMCID.getOpcode()) {
4549 default: break;
4550 case ARM::VLD1q8:
4551 case ARM::VLD1q16:
4552 case ARM::VLD1q32:
4553 case ARM::VLD1q64:
4554 case ARM::VLD1q8wb_register:
4555 case ARM::VLD1q16wb_register:
4556 case ARM::VLD1q32wb_register:
4557 case ARM::VLD1q64wb_register:
4558 case ARM::VLD1q8wb_fixed:
4559 case ARM::VLD1q16wb_fixed:
4560 case ARM::VLD1q32wb_fixed:
4561 case ARM::VLD1q64wb_fixed:
4562 case ARM::VLD2d8:
4563 case ARM::VLD2d16:
4564 case ARM::VLD2d32:
4565 case ARM::VLD2q8Pseudo:
4566 case ARM::VLD2q16Pseudo:
4567 case ARM::VLD2q32Pseudo:
4568 case ARM::VLD2d8wb_fixed:
4569 case ARM::VLD2d16wb_fixed:
4570 case ARM::VLD2d32wb_fixed:
4571 case ARM::VLD2q8PseudoWB_fixed:
4572 case ARM::VLD2q16PseudoWB_fixed:
4573 case ARM::VLD2q32PseudoWB_fixed:
4574 case ARM::VLD2d8wb_register:
4575 case ARM::VLD2d16wb_register:
4576 case ARM::VLD2d32wb_register:
4577 case ARM::VLD2q8PseudoWB_register:
4578 case ARM::VLD2q16PseudoWB_register:
4579 case ARM::VLD2q32PseudoWB_register:
4580 case ARM::VLD3d8Pseudo:
4581 case ARM::VLD3d16Pseudo:
4582 case ARM::VLD3d32Pseudo:
4583 case ARM::VLD1d8TPseudo:
4584 case ARM::VLD1d16TPseudo:
4585 case ARM::VLD1d32TPseudo:
4586 case ARM::VLD1d64TPseudo:
4587 case ARM::VLD1d64TPseudoWB_fixed:
4588 case ARM::VLD1d64TPseudoWB_register:
4589 case ARM::VLD3d8Pseudo_UPD:
4590 case ARM::VLD3d16Pseudo_UPD:
4591 case ARM::VLD3d32Pseudo_UPD:
4592 case ARM::VLD3q8Pseudo_UPD:
4593 case ARM::VLD3q16Pseudo_UPD:
4594 case ARM::VLD3q32Pseudo_UPD:
4595 case ARM::VLD3q8oddPseudo:
4596 case ARM::VLD3q16oddPseudo:
4597 case ARM::VLD3q32oddPseudo:
4598 case ARM::VLD3q8oddPseudo_UPD:
4599 case ARM::VLD3q16oddPseudo_UPD:
4600 case ARM::VLD3q32oddPseudo_UPD:
4601 case ARM::VLD4d8Pseudo:
4602 case ARM::VLD4d16Pseudo:
4603 case ARM::VLD4d32Pseudo:
4604 case ARM::VLD1d8QPseudo:
4605 case ARM::VLD1d16QPseudo:
4606 case ARM::VLD1d32QPseudo:
4607 case ARM::VLD1d64QPseudo:
4608 case ARM::VLD1d64QPseudoWB_fixed:
4609 case ARM::VLD1d64QPseudoWB_register:
4610 case ARM::VLD1q8HighQPseudo:
4611 case ARM::VLD1q8LowQPseudo_UPD:
4612 case ARM::VLD1q8HighTPseudo:
4613 case ARM::VLD1q8LowTPseudo_UPD:
4614 case ARM::VLD1q16HighQPseudo:
4615 case ARM::VLD1q16LowQPseudo_UPD:
4616 case ARM::VLD1q16HighTPseudo:
4617 case ARM::VLD1q16LowTPseudo_UPD:
4618 case ARM::VLD1q32HighQPseudo:
4619 case ARM::VLD1q32LowQPseudo_UPD:
4620 case ARM::VLD1q32HighTPseudo:
4621 case ARM::VLD1q32LowTPseudo_UPD:
4622 case ARM::VLD1q64HighQPseudo:
4623 case ARM::VLD1q64LowQPseudo_UPD:
4624 case ARM::VLD1q64HighTPseudo:
4625 case ARM::VLD1q64LowTPseudo_UPD:
4626 case ARM::VLD4d8Pseudo_UPD:
4627 case ARM::VLD4d16Pseudo_UPD:
4628 case ARM::VLD4d32Pseudo_UPD:
4629 case ARM::VLD4q8Pseudo_UPD:
4630 case ARM::VLD4q16Pseudo_UPD:
4631 case ARM::VLD4q32Pseudo_UPD:
4632 case ARM::VLD4q8oddPseudo:
4633 case ARM::VLD4q16oddPseudo:
4634 case ARM::VLD4q32oddPseudo:
4635 case ARM::VLD4q8oddPseudo_UPD:
4636 case ARM::VLD4q16oddPseudo_UPD:
4637 case ARM::VLD4q32oddPseudo_UPD:
4638 case ARM::VLD1DUPq8:
4639 case ARM::VLD1DUPq16:
4640 case ARM::VLD1DUPq32:
4641 case ARM::VLD1DUPq8wb_fixed:
4642 case ARM::VLD1DUPq16wb_fixed:
4643 case ARM::VLD1DUPq32wb_fixed:
4644 case ARM::VLD1DUPq8wb_register:
4645 case ARM::VLD1DUPq16wb_register:
4646 case ARM::VLD1DUPq32wb_register:
4647 case ARM::VLD2DUPd8:
4648 case ARM::VLD2DUPd16:
4649 case ARM::VLD2DUPd32:
4650 case ARM::VLD2DUPd8wb_fixed:
4651 case ARM::VLD2DUPd16wb_fixed:
4652 case ARM::VLD2DUPd32wb_fixed:
4653 case ARM::VLD2DUPd8wb_register:
4654 case ARM::VLD2DUPd16wb_register:
4655 case ARM::VLD2DUPd32wb_register:
4656 case ARM::VLD2DUPq8EvenPseudo:
4657 case ARM::VLD2DUPq8OddPseudo:
4658 case ARM::VLD2DUPq16EvenPseudo:
4659 case ARM::VLD2DUPq16OddPseudo:
4660 case ARM::VLD2DUPq32EvenPseudo:
4661 case ARM::VLD2DUPq32OddPseudo:
4662 case ARM::VLD3DUPq8EvenPseudo:
4663 case ARM::VLD3DUPq8OddPseudo:
4664 case ARM::VLD3DUPq16EvenPseudo:
4665 case ARM::VLD3DUPq16OddPseudo:
4666 case ARM::VLD3DUPq32EvenPseudo:
4667 case ARM::VLD3DUPq32OddPseudo:
4668 case ARM::VLD4DUPd8Pseudo:
4669 case ARM::VLD4DUPd16Pseudo:
4670 case ARM::VLD4DUPd32Pseudo:
4671 case ARM::VLD4DUPd8Pseudo_UPD:
4672 case ARM::VLD4DUPd16Pseudo_UPD:
4673 case ARM::VLD4DUPd32Pseudo_UPD:
4674 case ARM::VLD4DUPq8EvenPseudo:
4675 case ARM::VLD4DUPq8OddPseudo:
4676 case ARM::VLD4DUPq16EvenPseudo:
4677 case ARM::VLD4DUPq16OddPseudo:
4678 case ARM::VLD4DUPq32EvenPseudo:
4679 case ARM::VLD4DUPq32OddPseudo:
4680 case ARM::VLD1LNq8Pseudo:
4681 case ARM::VLD1LNq16Pseudo:
4682 case ARM::VLD1LNq32Pseudo:
4683 case ARM::VLD1LNq8Pseudo_UPD:
4684 case ARM::VLD1LNq16Pseudo_UPD:
4685 case ARM::VLD1LNq32Pseudo_UPD:
4686 case ARM::VLD2LNd8Pseudo:
4687 case ARM::VLD2LNd16Pseudo:
4688 case ARM::VLD2LNd32Pseudo:
4689 case ARM::VLD2LNq16Pseudo:
4690 case ARM::VLD2LNq32Pseudo:
4691 case ARM::VLD2LNd8Pseudo_UPD:
4692 case ARM::VLD2LNd16Pseudo_UPD:
4693 case ARM::VLD2LNd32Pseudo_UPD:
4694 case ARM::VLD2LNq16Pseudo_UPD:
4695 case ARM::VLD2LNq32Pseudo_UPD:
4696 case ARM::VLD4LNd8Pseudo:
4697 case ARM::VLD4LNd16Pseudo:
4698 case ARM::VLD4LNd32Pseudo:
4699 case ARM::VLD4LNq16Pseudo:
4700 case ARM::VLD4LNq32Pseudo:
4701 case ARM::VLD4LNd8Pseudo_UPD:
4702 case ARM::VLD4LNd16Pseudo_UPD:
4703 case ARM::VLD4LNd32Pseudo_UPD:
4704 case ARM::VLD4LNq16Pseudo_UPD:
4705 case ARM::VLD4LNq32Pseudo_UPD:
4706 // If the address is not 64-bit aligned, the latencies of these
4707 // instructions increases by one.
4708 Latency = *Latency + 1;
4709 break;
4710 }
4711
4712 return Latency;
4713}
4714
4715unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
4716 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4717 MI.isImplicitDef())
4718 return 0;
4719
4720 if (MI.isBundle())
4721 return 0;
4722
4723 const MCInstrDesc &MCID = MI.getDesc();
4724
4725 if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4726 !Subtarget.cheapPredicableCPSRDef())) {
4727 // When predicated, CPSR is an additional source operand for CPSR updating
4728 // instructions, this apparently increases their latencies.
4729 return 1;
4730 }
4731 return 0;
4732}
4733
4734unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4735 const MachineInstr &MI,
4736 unsigned *PredCost) const {
4737 if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
4738 MI.isImplicitDef())
4739 return 1;
4740
4741 // An instruction scheduler typically runs on unbundled instructions, however
4742 // other passes may query the latency of a bundled instruction.
4743 if (MI.isBundle()) {
4744 unsigned Latency = 0;
4745 MachineBasicBlock::const_instr_iterator I = MI.getIterator();
4746 MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
4747 while (++I != E && I->isInsideBundle()) {
4748 if (I->getOpcode() != ARM::t2IT)
4749 Latency += getInstrLatency(ItinData, MI: *I, PredCost);
4750 }
4751 return Latency;
4752 }
4753
4754 const MCInstrDesc &MCID = MI.getDesc();
4755 if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
4756 !Subtarget.cheapPredicableCPSRDef()))) {
4757 // When predicated, CPSR is an additional source operand for CPSR updating
4758 // instructions, this apparently increases their latencies.
4759 *PredCost = 1;
4760 }
4761 // Be sure to call getStageLatency for an empty itinerary in case it has a
4762 // valid MinLatency property.
4763 if (!ItinData)
4764 return MI.mayLoad() ? 3 : 1;
4765
4766 unsigned Class = MCID.getSchedClass();
4767
4768 // For instructions with variable uops, use uops as latency.
4769 if (!ItinData->isEmpty() && ItinData->getNumMicroOps(ItinClassIndx: Class) < 0)
4770 return getNumMicroOps(ItinData, MI);
4771
4772 // For the common case, fall back on the itinerary's latency.
4773 unsigned Latency = ItinData->getStageLatency(ItinClassIndx: Class);
4774
4775 // Adjust for dynamic def-side opcode variants not captured by the itinerary.
4776 unsigned DefAlign =
4777 MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
4778 int Adj = adjustDefLatency(Subtarget, DefMI: MI, DefMCID: MCID, DefAlign);
4779 if (Adj >= 0 || (int)Latency > -Adj) {
4780 return Latency + Adj;
4781 }
4782 return Latency;
4783}
4784
4785unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
4786 SDNode *Node) const {
4787 if (!Node->isMachineOpcode())
4788 return 1;
4789
4790 if (!ItinData || ItinData->isEmpty())
4791 return 1;
4792
4793 unsigned Opcode = Node->getMachineOpcode();
4794 switch (Opcode) {
4795 default:
4796 return ItinData->getStageLatency(ItinClassIndx: get(Opcode).getSchedClass());
4797 case ARM::VLDMQIA:
4798 case ARM::VSTMQIA:
4799 return 2;
4800 }
4801}
4802
4803bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
4804 const MachineRegisterInfo *MRI,
4805 const MachineInstr &DefMI,
4806 unsigned DefIdx,
4807 const MachineInstr &UseMI,
4808 unsigned UseIdx) const {
4809 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4810 unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
4811 if (Subtarget.nonpipelinedVFP() &&
4812 (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
4813 return true;
4814
4815 // Hoist VFP / NEON instructions with 4 or higher latency.
4816 unsigned Latency =
4817 SchedModel.computeOperandLatency(DefMI: &DefMI, DefOperIdx: DefIdx, UseMI: &UseMI, UseOperIdx: UseIdx);
4818 if (Latency <= 3)
4819 return false;
4820 return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
4821 UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
4822}
4823
4824bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
4825 const MachineInstr &DefMI,
4826 unsigned DefIdx) const {
4827 const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
4828 if (!ItinData || ItinData->isEmpty())
4829 return false;
4830
4831 unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
4832 if (DDomain == ARMII::DomainGeneral) {
4833 unsigned DefClass = DefMI.getDesc().getSchedClass();
4834 std::optional<unsigned> DefCycle =
4835 ItinData->getOperandCycle(ItinClassIndx: DefClass, OperandIdx: DefIdx);
4836 return DefCycle && DefCycle <= 2U;
4837 }
4838 return false;
4839}
4840
4841bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
4842 StringRef &ErrInfo) const {
4843 if (convertAddSubFlagsOpcode(OldOpc: MI.getOpcode())) {
4844 ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
4845 return false;
4846 }
4847 if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
4848 // Make sure we don't generate a lo-lo mov that isn't supported.
4849 if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
4850 !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
4851 ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
4852 return false;
4853 }
4854 }
4855 if (MI.getOpcode() == ARM::tPUSH ||
4856 MI.getOpcode() == ARM::tPOP ||
4857 MI.getOpcode() == ARM::tPOP_RET) {
4858 for (const MachineOperand &MO : llvm::drop_begin(RangeOrContainer: MI.operands(), N: 2)) {
4859 if (MO.isImplicit() || !MO.isReg())
4860 continue;
4861 Register Reg = MO.getReg();
4862 if (Reg < ARM::R0 || Reg > ARM::R7) {
4863 if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
4864 !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
4865 ErrInfo = "Unsupported register in Thumb1 push/pop";
4866 return false;
4867 }
4868 }
4869 }
4870 }
4871 if (MI.getOpcode() == ARM::MVE_VMOV_q_rr) {
4872 assert(MI.getOperand(4).isImm() && MI.getOperand(5).isImm());
4873 if ((MI.getOperand(i: 4).getImm() != 2 && MI.getOperand(i: 4).getImm() != 3) ||
4874 MI.getOperand(i: 4).getImm() != MI.getOperand(i: 5).getImm() + 2) {
4875 ErrInfo = "Incorrect array index for MVE_VMOV_q_rr";
4876 return false;
4877 }
4878 }
4879
4880 // Check the address model by taking the first Imm operand and checking it is
4881 // legal for that addressing mode.
4882 ARMII::AddrMode AddrMode =
4883 (ARMII::AddrMode)(MI.getDesc().TSFlags & ARMII::AddrModeMask);
4884 switch (AddrMode) {
4885 default:
4886 break;
4887 case ARMII::AddrModeT2_i7:
4888 case ARMII::AddrModeT2_i7s2:
4889 case ARMII::AddrModeT2_i7s4:
4890 case ARMII::AddrModeT2_i8:
4891 case ARMII::AddrModeT2_i8pos:
4892 case ARMII::AddrModeT2_i8neg:
4893 case ARMII::AddrModeT2_i8s4:
4894 case ARMII::AddrModeT2_i12: {
4895 uint32_t Imm = 0;
4896 for (auto Op : MI.operands()) {
4897 if (Op.isImm()) {
4898 Imm = Op.getImm();
4899 break;
4900 }
4901 }
4902 if (!isLegalAddressImm(MI.getOpcode(), Imm, this)) {
4903 ErrInfo = "Incorrect AddrMode Imm for instruction";
4904 return false;
4905 }
4906 break;
4907 }
4908 }
4909 return true;
4910}
4911
4912void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
4913 unsigned LoadImmOpc,
4914 unsigned LoadOpc) const {
4915 assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
4916 "ROPI/RWPI not currently supported with stack guard");
4917
4918 MachineBasicBlock &MBB = *MI->getParent();
4919 DebugLoc DL = MI->getDebugLoc();
4920 Register Reg = MI->getOperand(i: 0).getReg();
4921 MachineInstrBuilder MIB;
4922 unsigned int Offset = 0;
4923
4924 if (LoadImmOpc == ARM::MRC || LoadImmOpc == ARM::t2MRC) {
4925 assert(!Subtarget.isReadTPSoft() &&
4926 "TLS stack protector requires hardware TLS register");
4927
4928 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4929 .addImm(15)
4930 .addImm(0)
4931 .addImm(13)
4932 .addImm(0)
4933 .addImm(3)
4934 .add(predOps(Pred: ARMCC::AL));
4935
4936 Module &M = *MBB.getParent()->getFunction().getParent();
4937 Offset = M.getStackProtectorGuardOffset();
4938 if (Offset & ~0xfffU) {
4939 // The offset won't fit in the LDR's 12-bit immediate field, so emit an
4940 // extra ADD to cover the delta. This gives us a guaranteed 8 additional
4941 // bits, resulting in a range of 0 to +1 MiB for the guard offset.
4942 unsigned AddOpc = (LoadImmOpc == ARM::MRC) ? ARM::ADDri : ARM::t2ADDri;
4943 BuildMI(MBB, MI, DL, get(AddOpc), Reg)
4944 .addReg(Reg, RegState::Kill)
4945 .addImm(Offset & ~0xfffU)
4946 .add(predOps(Pred: ARMCC::AL))
4947 .addReg(0);
4948 Offset &= 0xfffU;
4949 }
4950 } else {
4951 const GlobalValue *GV =
4952 cast<GlobalValue>(Val: (*MI->memoperands_begin())->getValue());
4953 bool IsIndirect = Subtarget.isGVIndirectSymbol(GV);
4954
4955 unsigned TargetFlags = ARMII::MO_NO_FLAG;
4956 if (Subtarget.isTargetMachO()) {
4957 TargetFlags |= ARMII::MO_NONLAZY;
4958 } else if (Subtarget.isTargetCOFF()) {
4959 if (GV->hasDLLImportStorageClass())
4960 TargetFlags |= ARMII::MO_DLLIMPORT;
4961 else if (IsIndirect)
4962 TargetFlags |= ARMII::MO_COFFSTUB;
4963 } else if (IsIndirect) {
4964 TargetFlags |= ARMII::MO_GOT;
4965 }
4966
4967 if (LoadImmOpc == ARM::tMOVi32imm) { // Thumb-1 execute-only
4968 Register CPSRSaveReg = ARM::R12; // Use R12 as scratch register
4969 auto APSREncoding =
4970 ARMSysReg::lookupMClassSysRegByName("apsr_nzcvq")->Encoding;
4971 BuildMI(MBB, MI, DL, get(ARM::t2MRS_M), CPSRSaveReg)
4972 .addImm(APSREncoding)
4973 .add(predOps(ARMCC::AL));
4974 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4975 .addGlobalAddress(GV, 0, TargetFlags);
4976 BuildMI(MBB, MI, DL, get(ARM::t2MSR_M))
4977 .addImm(APSREncoding)
4978 .addReg(CPSRSaveReg, RegState::Kill)
4979 .add(predOps(ARMCC::AL));
4980 } else {
4981 BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
4982 .addGlobalAddress(GV, 0, TargetFlags);
4983 }
4984
4985 if (IsIndirect) {
4986 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4987 MIB.addReg(RegNo: Reg, flags: RegState::Kill).addImm(Val: 0);
4988 auto Flags = MachineMemOperand::MOLoad |
4989 MachineMemOperand::MODereferenceable |
4990 MachineMemOperand::MOInvariant;
4991 MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
4992 PtrInfo: MachinePointerInfo::getGOT(MF&: *MBB.getParent()), F: Flags, Size: 4, BaseAlignment: Align(4));
4993 MIB.addMemOperand(MMO).add(MOs: predOps(Pred: ARMCC::AL));
4994 }
4995 }
4996
4997 MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
4998 MIB.addReg(RegNo: Reg, flags: RegState::Kill)
4999 .addImm(Val: Offset)
5000 .cloneMemRefs(OtherMI: *MI)
5001 .add(MOs: predOps(Pred: ARMCC::AL));
5002}
5003
5004bool
5005ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
5006 unsigned &AddSubOpc,
5007 bool &NegAcc, bool &HasLane) const {
5008 DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Val: Opcode);
5009 if (I == MLxEntryMap.end())
5010 return false;
5011
5012 const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
5013 MulOpc = Entry.MulOpc;
5014 AddSubOpc = Entry.AddSubOpc;
5015 NegAcc = Entry.NegAcc;
5016 HasLane = Entry.HasLane;
5017 return true;
5018}
5019
5020//===----------------------------------------------------------------------===//
5021// Execution domains.
5022//===----------------------------------------------------------------------===//
5023//
5024// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
5025// and some can go down both. The vmov instructions go down the VFP pipeline,
5026// but they can be changed to vorr equivalents that are executed by the NEON
5027// pipeline.
5028//
5029// We use the following execution domain numbering:
5030//
5031enum ARMExeDomain {
5032 ExeGeneric = 0,
5033 ExeVFP = 1,
5034 ExeNEON = 2
5035};
5036
5037//
5038// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
5039//
5040std::pair<uint16_t, uint16_t>
5041ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
5042 // If we don't have access to NEON instructions then we won't be able
5043 // to swizzle anything to the NEON domain. Check to make sure.
5044 if (Subtarget.hasNEON()) {
5045 // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
5046 // if they are not predicated.
5047 if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
5048 return std::make_pair(x: ExeVFP, y: (1 << ExeVFP) | (1 << ExeNEON));
5049
5050 // CortexA9 is particularly picky about mixing the two and wants these
5051 // converted.
5052 if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
5053 (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
5054 MI.getOpcode() == ARM::VMOVS))
5055 return std::make_pair(x: ExeVFP, y: (1 << ExeVFP) | (1 << ExeNEON));
5056 }
5057 // No other instructions can be swizzled, so just determine their domain.
5058 unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;
5059
5060 if (Domain & ARMII::DomainNEON)
5061 return std::make_pair(x: ExeNEON, y: 0);
5062
5063 // Certain instructions can go either way on Cortex-A8.
5064 // Treat them as NEON instructions.
5065 if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
5066 return std::make_pair(x: ExeNEON, y: 0);
5067
5068 if (Domain & ARMII::DomainVFP)
5069 return std::make_pair(x: ExeVFP, y: 0);
5070
5071 return std::make_pair(x: ExeGeneric, y: 0);
5072}
5073
5074static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
5075 unsigned SReg, unsigned &Lane) {
5076 unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
5077 Lane = 0;
5078
5079 if (DReg != ARM::NoRegister)
5080 return DReg;
5081
5082 Lane = 1;
5083 DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);
5084
5085 assert(DReg && "S-register with no D super-register?");
5086 return DReg;
5087}
5088
5089/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
5090/// set ImplicitSReg to a register number that must be marked as implicit-use or
5091/// zero if no register needs to be defined as implicit-use.
5092///
5093/// If the function cannot determine if an SPR should be marked implicit use or
5094/// not, it returns false.
5095///
5096/// This function handles cases where an instruction is being modified from taking
5097/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
5098/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
5099/// lane of the DPR).
5100///
5101/// If the other SPR is defined, an implicit-use of it should be added. Else,
5102/// (including the case where the DPR itself is defined), it should not.
5103///
5104static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
5105 MachineInstr &MI, unsigned DReg,
5106 unsigned Lane, unsigned &ImplicitSReg) {
5107 // If the DPR is defined or used already, the other SPR lane will be chained
5108 // correctly, so there is nothing to be done.
5109 if (MI.definesRegister(Reg: DReg, TRI) || MI.readsRegister(Reg: DReg, TRI)) {
5110 ImplicitSReg = 0;
5111 return true;
5112 }
5113
5114 // Otherwise we need to go searching to see if the SPR is set explicitly.
5115 ImplicitSReg = TRI->getSubReg(DReg,
5116 (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
5117 MachineBasicBlock::LivenessQueryResult LQR =
5118 MI.getParent()->computeRegisterLiveness(TRI, Reg: ImplicitSReg, Before: MI);
5119
5120 if (LQR == MachineBasicBlock::LQR_Live)
5121 return true;
5122 else if (LQR == MachineBasicBlock::LQR_Unknown)
5123 return false;
5124
5125 // If the register is known not to be live, there is no need to add an
5126 // implicit-use.
5127 ImplicitSReg = 0;
5128 return true;
5129}
5130
5131void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
5132 unsigned Domain) const {
5133 unsigned DstReg, SrcReg, DReg;
5134 unsigned Lane;
5135 MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
5136 const TargetRegisterInfo *TRI = &getRegisterInfo();
5137 switch (MI.getOpcode()) {
5138 default:
5139 llvm_unreachable("cannot handle opcode!");
5140 break;
5141 case ARM::VMOVD:
5142 if (Domain != ExeNEON)
5143 break;
5144
5145 // Zap the predicate operands.
5146 assert(!isPredicated(MI) && "Cannot predicate a VORRd");
5147
5148 // Make sure we've got NEON instructions.
5149 assert(Subtarget.hasNEON() && "VORRd requires NEON");
5150
5151 // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
5152 DstReg = MI.getOperand(i: 0).getReg();
5153 SrcReg = MI.getOperand(i: 1).getReg();
5154
5155 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5156 MI.removeOperand(OpNo: i - 1);
5157
5158 // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
5159 MI.setDesc(get(ARM::VORRd));
5160 MIB.addReg(RegNo: DstReg, flags: RegState::Define)
5161 .addReg(RegNo: SrcReg)
5162 .addReg(RegNo: SrcReg)
5163 .add(MOs: predOps(Pred: ARMCC::AL));
5164 break;
5165 case ARM::VMOVRS:
5166 if (Domain != ExeNEON)
5167 break;
5168 assert(!isPredicated(MI) && "Cannot predicate a VGETLN");
5169
5170 // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
5171 DstReg = MI.getOperand(i: 0).getReg();
5172 SrcReg = MI.getOperand(i: 1).getReg();
5173
5174 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5175 MI.removeOperand(OpNo: i - 1);
5176
5177 DReg = getCorrespondingDRegAndLane(TRI, SReg: SrcReg, Lane);
5178
5179 // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
5180 // Note that DSrc has been widened and the other lane may be undef, which
5181 // contaminates the entire register.
5182 MI.setDesc(get(ARM::VGETLNi32));
5183 MIB.addReg(RegNo: DstReg, flags: RegState::Define)
5184 .addReg(RegNo: DReg, flags: RegState::Undef)
5185 .addImm(Val: Lane)
5186 .add(MOs: predOps(Pred: ARMCC::AL));
5187
5188 // The old source should be an implicit use, otherwise we might think it
5189 // was dead before here.
5190 MIB.addReg(RegNo: SrcReg, flags: RegState::Implicit);
5191 break;
5192 case ARM::VMOVSR: {
5193 if (Domain != ExeNEON)
5194 break;
5195 assert(!isPredicated(MI) && "Cannot predicate a VSETLN");
5196
5197 // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
5198 DstReg = MI.getOperand(i: 0).getReg();
5199 SrcReg = MI.getOperand(i: 1).getReg();
5200
5201 DReg = getCorrespondingDRegAndLane(TRI, SReg: DstReg, Lane);
5202
5203 unsigned ImplicitSReg;
5204 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
5205 break;
5206
5207 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5208 MI.removeOperand(OpNo: i - 1);
5209
5210 // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
5211 // Again DDst may be undefined at the beginning of this instruction.
5212 MI.setDesc(get(ARM::VSETLNi32));
5213 MIB.addReg(RegNo: DReg, flags: RegState::Define)
5214 .addReg(RegNo: DReg, flags: getUndefRegState(B: !MI.readsRegister(Reg: DReg, TRI)))
5215 .addReg(RegNo: SrcReg)
5216 .addImm(Val: Lane)
5217 .add(MOs: predOps(Pred: ARMCC::AL));
5218
5219 // The narrower destination must be marked as set to keep previous chains
5220 // in place.
5221 MIB.addReg(RegNo: DstReg, flags: RegState::Define | RegState::Implicit);
5222 if (ImplicitSReg != 0)
5223 MIB.addReg(RegNo: ImplicitSReg, flags: RegState::Implicit);
5224 break;
5225 }
5226 case ARM::VMOVS: {
5227 if (Domain != ExeNEON)
5228 break;
5229
5230 // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
5231 DstReg = MI.getOperand(i: 0).getReg();
5232 SrcReg = MI.getOperand(i: 1).getReg();
5233
5234 unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
5235 DDst = getCorrespondingDRegAndLane(TRI, SReg: DstReg, Lane&: DstLane);
5236 DSrc = getCorrespondingDRegAndLane(TRI, SReg: SrcReg, Lane&: SrcLane);
5237
5238 unsigned ImplicitSReg;
5239 if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg: DSrc, Lane: SrcLane, ImplicitSReg))
5240 break;
5241
5242 for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
5243 MI.removeOperand(OpNo: i - 1);
5244
5245 if (DSrc == DDst) {
5246 // Destination can be:
5247 // %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
5248 MI.setDesc(get(ARM::VDUPLN32d));
5249 MIB.addReg(RegNo: DDst, flags: RegState::Define)
5250 .addReg(RegNo: DDst, flags: getUndefRegState(B: !MI.readsRegister(Reg: DDst, TRI)))
5251 .addImm(Val: SrcLane)
5252 .add(MOs: predOps(Pred: ARMCC::AL));
5253
5254 // Neither the source or the destination are naturally represented any
5255 // more, so add them in manually.
5256 MIB.addReg(RegNo: DstReg, flags: RegState::Implicit | RegState::Define);
5257 MIB.addReg(RegNo: SrcReg, flags: RegState::Implicit);
5258 if (ImplicitSReg != 0)
5259 MIB.addReg(RegNo: ImplicitSReg, flags: RegState::Implicit);
5260 break;
5261 }
5262
5263 // In general there's no single instruction that can perform an S <-> S
5264 // move in NEON space, but a pair of VEXT instructions *can* do the
5265 // job. It turns out that the VEXTs needed will only use DSrc once, with
5266 // the position based purely on the combination of lane-0 and lane-1
5267 // involved. For example
5268 // vmov s0, s2 -> vext.32 d0, d0, d1, #1 vext.32 d0, d0, d0, #1
5269 // vmov s1, s3 -> vext.32 d0, d1, d0, #1 vext.32 d0, d0, d0, #1
5270 // vmov s0, s3 -> vext.32 d0, d0, d0, #1 vext.32 d0, d1, d0, #1
5271 // vmov s1, s2 -> vext.32 d0, d0, d0, #1 vext.32 d0, d0, d1, #1
5272 //
5273 // Pattern of the MachineInstrs is:
5274 // %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
5275 MachineInstrBuilder NewMIB;
5276 NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
5277 DDst);
5278
5279 // On the first instruction, both DSrc and DDst may be undef if present.
5280 // Specifically when the original instruction didn't have them as an
5281 // <imp-use>.
5282 unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
5283 bool CurUndef = !MI.readsRegister(Reg: CurReg, TRI);
5284 NewMIB.addReg(RegNo: CurReg, flags: getUndefRegState(B: CurUndef));
5285
5286 CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
5287 CurUndef = !MI.readsRegister(Reg: CurReg, TRI);
5288 NewMIB.addReg(RegNo: CurReg, flags: getUndefRegState(B: CurUndef))
5289 .addImm(Val: 1)
5290 .add(MOs: predOps(Pred: ARMCC::AL));
5291
5292 if (SrcLane == DstLane)
5293 NewMIB.addReg(RegNo: SrcReg, flags: RegState::Implicit);
5294
5295 MI.setDesc(get(ARM::VEXTd32));
5296 MIB.addReg(RegNo: DDst, flags: RegState::Define);
5297
5298 // On the second instruction, DDst has definitely been defined above, so
5299 // it is not undef. DSrc, if present, can be undef as above.
5300 CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
5301 CurUndef = CurReg == DSrc && !MI.readsRegister(Reg: CurReg, TRI);
5302 MIB.addReg(RegNo: CurReg, flags: getUndefRegState(B: CurUndef));
5303
5304 CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
5305 CurUndef = CurReg == DSrc && !MI.readsRegister(Reg: CurReg, TRI);
5306 MIB.addReg(RegNo: CurReg, flags: getUndefRegState(B: CurUndef))
5307 .addImm(Val: 1)
5308 .add(MOs: predOps(Pred: ARMCC::AL));
5309
5310 if (SrcLane != DstLane)
5311 MIB.addReg(RegNo: SrcReg, flags: RegState::Implicit);
5312
5313 // As before, the original destination is no longer represented, add it
5314 // implicitly.
5315 MIB.addReg(RegNo: DstReg, flags: RegState::Define | RegState::Implicit);
5316 if (ImplicitSReg != 0)
5317 MIB.addReg(RegNo: ImplicitSReg, flags: RegState::Implicit);
5318 break;
5319 }
5320 }
5321}
5322
5323//===----------------------------------------------------------------------===//
5324// Partial register updates
5325//===----------------------------------------------------------------------===//
5326//
5327// Swift renames NEON registers with 64-bit granularity. That means any
5328// instruction writing an S-reg implicitly reads the containing D-reg. The
5329// problem is mostly avoided by translating f32 operations to v2f32 operations
5330// on D-registers, but f32 loads are still a problem.
5331//
5332// These instructions can load an f32 into a NEON register:
5333//
5334// VLDRS - Only writes S, partial D update.
5335// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
5336// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
5337//
5338// FCONSTD can be used as a dependency-breaking instruction.
5339unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
5340 const MachineInstr &MI, unsigned OpNum,
5341 const TargetRegisterInfo *TRI) const {
5342 auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
5343 if (!PartialUpdateClearance)
5344 return 0;
5345
5346 assert(TRI && "Need TRI instance");
5347
5348 const MachineOperand &MO = MI.getOperand(i: OpNum);
5349 if (MO.readsReg())
5350 return 0;
5351 Register Reg = MO.getReg();
5352 int UseOp = -1;
5353
5354 switch (MI.getOpcode()) {
5355 // Normal instructions writing only an S-register.
5356 case ARM::VLDRS:
5357 case ARM::FCONSTS:
5358 case ARM::VMOVSR:
5359 case ARM::VMOVv8i8:
5360 case ARM::VMOVv4i16:
5361 case ARM::VMOVv2i32:
5362 case ARM::VMOVv2f32:
5363 case ARM::VMOVv1i64:
5364 UseOp = MI.findRegisterUseOperandIdx(Reg, TRI, isKill: false);
5365 break;
5366
5367 // Explicitly reads the dependency.
5368 case ARM::VLD1LNd32:
5369 UseOp = 3;
5370 break;
5371 default:
5372 return 0;
5373 }
5374
5375 // If this instruction actually reads a value from Reg, there is no unwanted
5376 // dependency.
5377 if (UseOp != -1 && MI.getOperand(i: UseOp).readsReg())
5378 return 0;
5379
5380 // We must be able to clobber the whole D-reg.
5381 if (Reg.isVirtual()) {
5382 // Virtual register must be a def undef foo:ssub_0 operand.
5383 if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
5384 return 0;
5385 } else if (ARM::SPRRegClass.contains(Reg)) {
5386 // Physical register: MI must define the full D-reg.
5387 unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
5388 &ARM::DPRRegClass);
5389 if (!DReg || !MI.definesRegister(Reg: DReg, TRI))
5390 return 0;
5391 }
5392
5393 // MI has an unwanted D-register dependency.
5394 // Avoid defs in the previous N instructrions.
5395 return PartialUpdateClearance;
5396}
5397
5398// Break a partial register dependency after getPartialRegUpdateClearance
5399// returned non-zero.
5400void ARMBaseInstrInfo::breakPartialRegDependency(
5401 MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
5402 assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
5403 assert(TRI && "Need TRI instance");
5404
5405 const MachineOperand &MO = MI.getOperand(i: OpNum);
5406 Register Reg = MO.getReg();
5407 assert(Reg.isPhysical() && "Can't break virtual register dependencies.");
5408 unsigned DReg = Reg;
5409
5410 // If MI defines an S-reg, find the corresponding D super-register.
5411 if (ARM::SPRRegClass.contains(Reg)) {
5412 DReg = ARM::D0 + (Reg - ARM::S0) / 2;
5413 assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
5414 }
5415
5416 assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
5417 assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");
5418
5419 // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
5420 // the full D-register by loading the same value to both lanes. The
5421 // instruction is micro-coded with 2 uops, so don't do this until we can
5422 // properly schedule micro-coded instructions. The dispatcher stalls cause
5423 // too big regressions.
5424
5425 // Insert the dependency-breaking FCONSTD before MI.
5426 // 96 is the encoding of 0.5, but the actual value doesn't matter here.
5427 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
5428 .addImm(96)
5429 .add(predOps(ARMCC::AL));
5430 MI.addRegisterKilled(IncomingReg: DReg, RegInfo: TRI, AddIfNotFound: true);
5431}
5432
5433bool ARMBaseInstrInfo::hasNOP() const {
5434 return Subtarget.hasFeature(ARM::HasV6KOps);
5435}
5436
5437bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
5438 if (MI->getNumOperands() < 4)
5439 return true;
5440 unsigned ShOpVal = MI->getOperand(i: 3).getImm();
5441 unsigned ShImm = ARM_AM::getSORegOffset(Op: ShOpVal);
5442 // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
5443 if ((ShImm == 1 && ARM_AM::getSORegShOp(Op: ShOpVal) == ARM_AM::lsr) ||
5444 ((ShImm == 1 || ShImm == 2) &&
5445 ARM_AM::getSORegShOp(Op: ShOpVal) == ARM_AM::lsl))
5446 return true;
5447
5448 return false;
5449}
5450
5451bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
5452 const MachineInstr &MI, unsigned DefIdx,
5453 SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
5454 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5455 assert(MI.isRegSequenceLike() && "Invalid kind of instruction");
5456
5457 switch (MI.getOpcode()) {
5458 case ARM::VMOVDRR:
5459 // dX = VMOVDRR rY, rZ
5460 // is the same as:
5461 // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
5462 // Populate the InputRegs accordingly.
5463 // rY
5464 const MachineOperand *MOReg = &MI.getOperand(i: 1);
5465 if (!MOReg->isUndef())
5466 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5467 MOReg->getSubReg(), ARM::ssub_0));
5468 // rZ
5469 MOReg = &MI.getOperand(i: 2);
5470 if (!MOReg->isUndef())
5471 InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
5472 MOReg->getSubReg(), ARM::ssub_1));
5473 return true;
5474 }
5475 llvm_unreachable("Target dependent opcode missing");
5476}
5477
5478bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
5479 const MachineInstr &MI, unsigned DefIdx,
5480 RegSubRegPairAndIdx &InputReg) const {
5481 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5482 assert(MI.isExtractSubregLike() && "Invalid kind of instruction");
5483
5484 switch (MI.getOpcode()) {
5485 case ARM::VMOVRRD:
5486 // rX, rY = VMOVRRD dZ
5487 // is the same as:
5488 // rX = EXTRACT_SUBREG dZ, ssub_0
5489 // rY = EXTRACT_SUBREG dZ, ssub_1
5490 const MachineOperand &MOReg = MI.getOperand(i: 2);
5491 if (MOReg.isUndef())
5492 return false;
5493 InputReg.Reg = MOReg.getReg();
5494 InputReg.SubReg = MOReg.getSubReg();
5495 InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
5496 return true;
5497 }
5498 llvm_unreachable("Target dependent opcode missing");
5499}
5500
5501bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
5502 const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
5503 RegSubRegPairAndIdx &InsertedReg) const {
5504 assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
5505 assert(MI.isInsertSubregLike() && "Invalid kind of instruction");
5506
5507 switch (MI.getOpcode()) {
5508 case ARM::VSETLNi32:
5509 case ARM::MVE_VMOV_to_lane_32:
5510 // dX = VSETLNi32 dY, rZ, imm
5511 // qX = MVE_VMOV_to_lane_32 qY, rZ, imm
5512 const MachineOperand &MOBaseReg = MI.getOperand(i: 1);
5513 const MachineOperand &MOInsertedReg = MI.getOperand(i: 2);
5514 if (MOInsertedReg.isUndef())
5515 return false;
5516 const MachineOperand &MOIndex = MI.getOperand(i: 3);
5517 BaseReg.Reg = MOBaseReg.getReg();
5518 BaseReg.SubReg = MOBaseReg.getSubReg();
5519
5520 InsertedReg.Reg = MOInsertedReg.getReg();
5521 InsertedReg.SubReg = MOInsertedReg.getSubReg();
5522 InsertedReg.SubIdx = ARM::ssub_0 + MOIndex.getImm();
5523 return true;
5524 }
5525 llvm_unreachable("Target dependent opcode missing");
5526}
5527
5528std::pair<unsigned, unsigned>
5529ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
5530 const unsigned Mask = ARMII::MO_OPTION_MASK;
5531 return std::make_pair(x: TF & Mask, y: TF & ~Mask);
5532}
5533
5534ArrayRef<std::pair<unsigned, const char *>>
5535ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
5536 using namespace ARMII;
5537
5538 static const std::pair<unsigned, const char *> TargetFlags[] = {
5539 {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"},
5540 {MO_LO_0_7, "arm-lo-0-7"}, {MO_HI_0_7, "arm-hi-0-7"},
5541 {MO_LO_8_15, "arm-lo-8-15"}, {MO_HI_8_15, "arm-hi-8-15"},
5542 };
5543 return ArrayRef(TargetFlags);
5544}
5545
5546ArrayRef<std::pair<unsigned, const char *>>
5547ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
5548 using namespace ARMII;
5549
5550 static const std::pair<unsigned, const char *> TargetFlags[] = {
5551 {MO_COFFSTUB, "arm-coffstub"},
5552 {MO_GOT, "arm-got"},
5553 {MO_SBREL, "arm-sbrel"},
5554 {MO_DLLIMPORT, "arm-dllimport"},
5555 {MO_SECREL, "arm-secrel"},
5556 {MO_NONLAZY, "arm-nonlazy"}};
5557 return ArrayRef(TargetFlags);
5558}
5559
5560std::optional<RegImmPair>
5561ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI, Register Reg) const {
5562 int Sign = 1;
5563 unsigned Opcode = MI.getOpcode();
5564 int64_t Offset = 0;
5565
5566 // TODO: Handle cases where Reg is a super- or sub-register of the
5567 // destination register.
5568 const MachineOperand &Op0 = MI.getOperand(i: 0);
5569 if (!Op0.isReg() || Reg != Op0.getReg())
5570 return std::nullopt;
5571
5572 // We describe SUBri or ADDri instructions.
5573 if (Opcode == ARM::SUBri)
5574 Sign = -1;
5575 else if (Opcode != ARM::ADDri)
5576 return std::nullopt;
5577
5578 // TODO: Third operand can be global address (usually some string). Since
5579 // strings can be relocated we cannot calculate their offsets for
5580 // now.
5581 if (!MI.getOperand(i: 1).isReg() || !MI.getOperand(i: 2).isImm())
5582 return std::nullopt;
5583
5584 Offset = MI.getOperand(i: 2).getImm() * Sign;
5585 return RegImmPair{MI.getOperand(i: 1).getReg(), Offset};
5586}
5587
5588bool llvm::registerDefinedBetween(unsigned Reg,
5589 MachineBasicBlock::iterator From,
5590 MachineBasicBlock::iterator To,
5591 const TargetRegisterInfo *TRI) {
5592 for (auto I = From; I != To; ++I)
5593 if (I->modifiesRegister(Reg, TRI))
5594 return true;
5595 return false;
5596}
5597
5598MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
5599 const TargetRegisterInfo *TRI) {
5600 // Search backwards to the instruction that defines CSPR. This may or not
5601 // be a CMP, we check that after this loop. If we find another instruction
5602 // that reads cpsr, we return nullptr.
5603 MachineBasicBlock::iterator CmpMI = Br;
5604 while (CmpMI != Br->getParent()->begin()) {
5605 --CmpMI;
5606 if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
5607 break;
5608 if (CmpMI->readsRegister(ARM::CPSR, TRI))
5609 break;
5610 }
5611
5612 // Check that this inst is a CMP r[0-7], #0 and that the register
5613 // is not redefined between the cmp and the br.
5614 if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
5615 return nullptr;
5616 Register Reg = CmpMI->getOperand(i: 0).getReg();
5617 Register PredReg;
5618 ARMCC::CondCodes Pred = getInstrPredicate(MI: *CmpMI, PredReg);
5619 if (Pred != ARMCC::AL || CmpMI->getOperand(i: 1).getImm() != 0)
5620 return nullptr;
5621 if (!isARMLowRegister(Reg))
5622 return nullptr;
5623 if (registerDefinedBetween(Reg, From: CmpMI->getNextNode(), To: Br, TRI))
5624 return nullptr;
5625
5626 return &*CmpMI;
5627}
5628
5629unsigned llvm::ConstantMaterializationCost(unsigned Val,
5630 const ARMSubtarget *Subtarget,
5631 bool ForCodesize) {
5632 if (Subtarget->isThumb()) {
5633 if (Val <= 255) // MOV
5634 return ForCodesize ? 2 : 1;
5635 if (Subtarget->hasV6T2Ops() && (Val <= 0xffff || // MOV
5636 ARM_AM::getT2SOImmVal(Arg: Val) != -1 || // MOVW
5637 ARM_AM::getT2SOImmVal(Arg: ~Val) != -1)) // MVN
5638 return ForCodesize ? 4 : 1;
5639 if (Val <= 510) // MOV + ADDi8
5640 return ForCodesize ? 4 : 2;
5641 if (~Val <= 255) // MOV + MVN
5642 return ForCodesize ? 4 : 2;
5643 if (ARM_AM::isThumbImmShiftedVal(V: Val)) // MOV + LSL
5644 return ForCodesize ? 4 : 2;
5645 } else {
5646 if (ARM_AM::getSOImmVal(Arg: Val) != -1) // MOV
5647 return ForCodesize ? 4 : 1;
5648 if (ARM_AM::getSOImmVal(Arg: ~Val) != -1) // MVN
5649 return ForCodesize ? 4 : 1;
5650 if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
5651 return ForCodesize ? 4 : 1;
5652 if (ARM_AM::isSOImmTwoPartVal(V: Val)) // two instrs
5653 return ForCodesize ? 8 : 2;
5654 if (ARM_AM::isSOImmTwoPartValNeg(V: Val)) // two instrs
5655 return ForCodesize ? 8 : 2;
5656 }
5657 if (Subtarget->useMovt()) // MOVW + MOVT
5658 return ForCodesize ? 8 : 2;
5659 return ForCodesize ? 8 : 3; // Literal pool load
5660}
5661
5662bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
5663 const ARMSubtarget *Subtarget,
5664 bool ForCodesize) {
5665 // Check with ForCodesize
5666 unsigned Cost1 = ConstantMaterializationCost(Val: Val1, Subtarget, ForCodesize);
5667 unsigned Cost2 = ConstantMaterializationCost(Val: Val2, Subtarget, ForCodesize);
5668 if (Cost1 < Cost2)
5669 return true;
5670 if (Cost1 > Cost2)
5671 return false;
5672
5673 // If they are equal, try with !ForCodesize
5674 return ConstantMaterializationCost(Val: Val1, Subtarget, ForCodesize: !ForCodesize) <
5675 ConstantMaterializationCost(Val: Val2, Subtarget, ForCodesize: !ForCodesize);
5676}
5677
5678/// Constants defining how certain sequences should be outlined.
5679/// This encompasses how an outlined function should be called, and what kind of
5680/// frame should be emitted for that outlined function.
5681///
5682/// \p MachineOutlinerTailCall implies that the function is being created from
5683/// a sequence of instructions ending in a return.
5684///
5685/// That is,
5686///
5687/// I1 OUTLINED_FUNCTION:
5688/// I2 --> B OUTLINED_FUNCTION I1
5689/// BX LR I2
5690/// BX LR
5691///
5692/// +-------------------------+--------+-----+
5693/// | | Thumb2 | ARM |
5694/// +-------------------------+--------+-----+
5695/// | Call overhead in Bytes | 4 | 4 |
5696/// | Frame overhead in Bytes | 0 | 0 |
5697/// | Stack fixup required | No | No |
5698/// +-------------------------+--------+-----+
5699///
5700/// \p MachineOutlinerThunk implies that the function is being created from
5701/// a sequence of instructions ending in a call. The outlined function is
5702/// called with a BL instruction, and the outlined function tail-calls the
5703/// original call destination.
5704///
5705/// That is,
5706///
5707/// I1 OUTLINED_FUNCTION:
5708/// I2 --> BL OUTLINED_FUNCTION I1
5709/// BL f I2
5710/// B f
5711///
5712/// +-------------------------+--------+-----+
5713/// | | Thumb2 | ARM |
5714/// +-------------------------+--------+-----+
5715/// | Call overhead in Bytes | 4 | 4 |
5716/// | Frame overhead in Bytes | 0 | 0 |
5717/// | Stack fixup required | No | No |
5718/// +-------------------------+--------+-----+
5719///
5720/// \p MachineOutlinerNoLRSave implies that the function should be called using
5721/// a BL instruction, but doesn't require LR to be saved and restored. This
5722/// happens when LR is known to be dead.
5723///
5724/// That is,
5725///
5726/// I1 OUTLINED_FUNCTION:
5727/// I2 --> BL OUTLINED_FUNCTION I1
5728/// I3 I2
5729/// I3
5730/// BX LR
5731///
5732/// +-------------------------+--------+-----+
5733/// | | Thumb2 | ARM |
5734/// +-------------------------+--------+-----+
5735/// | Call overhead in Bytes | 4 | 4 |
5736/// | Frame overhead in Bytes | 2 | 4 |
5737/// | Stack fixup required | No | No |
5738/// +-------------------------+--------+-----+
5739///
5740/// \p MachineOutlinerRegSave implies that the function should be called with a
5741/// save and restore of LR to an available register. This allows us to avoid
5742/// stack fixups. Note that this outlining variant is compatible with the
5743/// NoLRSave case.
5744///
5745/// That is,
5746///
5747/// I1 Save LR OUTLINED_FUNCTION:
5748/// I2 --> BL OUTLINED_FUNCTION I1
5749/// I3 Restore LR I2
5750/// I3
5751/// BX LR
5752///
5753/// +-------------------------+--------+-----+
5754/// | | Thumb2 | ARM |
5755/// +-------------------------+--------+-----+
5756/// | Call overhead in Bytes | 8 | 12 |
5757/// | Frame overhead in Bytes | 2 | 4 |
5758/// | Stack fixup required | No | No |
5759/// +-------------------------+--------+-----+
5760///
5761/// \p MachineOutlinerDefault implies that the function should be called with
5762/// a save and restore of LR to the stack.
5763///
5764/// That is,
5765///
5766/// I1 Save LR OUTLINED_FUNCTION:
5767/// I2 --> BL OUTLINED_FUNCTION I1
5768/// I3 Restore LR I2
5769/// I3
5770/// BX LR
5771///
5772/// +-------------------------+--------+-----+
5773/// | | Thumb2 | ARM |
5774/// +-------------------------+--------+-----+
5775/// | Call overhead in Bytes | 8 | 12 |
5776/// | Frame overhead in Bytes | 2 | 4 |
5777/// | Stack fixup required | Yes | Yes |
5778/// +-------------------------+--------+-----+
5779
5780enum MachineOutlinerClass {
5781 MachineOutlinerTailCall,
5782 MachineOutlinerThunk,
5783 MachineOutlinerNoLRSave,
5784 MachineOutlinerRegSave,
5785 MachineOutlinerDefault
5786};
5787
5788enum MachineOutlinerMBBFlags {
5789 LRUnavailableSomewhere = 0x2,
5790 HasCalls = 0x4,
5791 UnsafeRegsDead = 0x8
5792};
5793
5794struct OutlinerCosts {
5795 int CallTailCall;
5796 int FrameTailCall;
5797 int CallThunk;
5798 int FrameThunk;
5799 int CallNoLRSave;
5800 int FrameNoLRSave;
5801 int CallRegSave;
5802 int FrameRegSave;
5803 int CallDefault;
5804 int FrameDefault;
5805 int SaveRestoreLROnStack;
5806
5807 OutlinerCosts(const ARMSubtarget &target)
5808 : CallTailCall(target.isThumb() ? 4 : 4),
5809 FrameTailCall(target.isThumb() ? 0 : 0),
5810 CallThunk(target.isThumb() ? 4 : 4),
5811 FrameThunk(target.isThumb() ? 0 : 0),
5812 CallNoLRSave(target.isThumb() ? 4 : 4),
5813 FrameNoLRSave(target.isThumb() ? 2 : 4),
5814 CallRegSave(target.isThumb() ? 8 : 12),
5815 FrameRegSave(target.isThumb() ? 2 : 4),
5816 CallDefault(target.isThumb() ? 8 : 12),
5817 FrameDefault(target.isThumb() ? 2 : 4),
5818 SaveRestoreLROnStack(target.isThumb() ? 8 : 8) {}
5819};
5820
5821Register
5822ARMBaseInstrInfo::findRegisterToSaveLRTo(outliner::Candidate &C) const {
5823 MachineFunction *MF = C.getMF();
5824 const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
5825 const ARMBaseRegisterInfo *ARI =
5826 static_cast<const ARMBaseRegisterInfo *>(&TRI);
5827
5828 BitVector regsReserved = ARI->getReservedRegs(MF: *MF);
5829 // Check if there is an available register across the sequence that we can
5830 // use.
5831 for (Register Reg : ARM::rGPRRegClass) {
5832 if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
5833 Reg != ARM::LR && // LR is not reserved, but don't use it.
5834 Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
5835 C.isAvailableAcrossAndOutOfSeq(Reg, TRI) &&
5836 C.isAvailableInsideSeq(Reg, TRI))
5837 return Reg;
5838 }
5839 return Register();
5840}
5841
5842// Compute liveness of LR at the point after the interval [I, E), which
5843// denotes a *backward* iteration through instructions. Used only for return
5844// basic blocks, which do not end with a tail call.
5845static bool isLRAvailable(const TargetRegisterInfo &TRI,
5846 MachineBasicBlock::reverse_iterator I,
5847 MachineBasicBlock::reverse_iterator E) {
5848 // At the end of the function LR dead.
5849 bool Live = false;
5850 for (; I != E; ++I) {
5851 const MachineInstr &MI = *I;
5852
5853 // Check defs of LR.
5854 if (MI.modifiesRegister(ARM::LR, &TRI))
5855 Live = false;
5856
5857 // Check uses of LR.
5858 unsigned Opcode = MI.getOpcode();
5859 if (Opcode == ARM::BX_RET || Opcode == ARM::MOVPCLR ||
5860 Opcode == ARM::SUBS_PC_LR || Opcode == ARM::tBX_RET ||
5861 Opcode == ARM::tBXNS_RET) {
5862 // These instructions use LR, but it's not an (explicit or implicit)
5863 // operand.
5864 Live = true;
5865 continue;
5866 }
5867 if (MI.readsRegister(ARM::LR, &TRI))
5868 Live = true;
5869 }
5870 return !Live;
5871}
5872
5873std::optional<outliner::OutlinedFunction>
5874ARMBaseInstrInfo::getOutliningCandidateInfo(
5875 std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
5876 outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
5877
5878 unsigned SequenceSize = 0;
5879 for (auto &MI : FirstCand)
5880 SequenceSize += getInstSizeInBytes(MI);
5881
5882 // Properties about candidate MBBs that hold for all of them.
5883 unsigned FlagsSetInAll = 0xF;
5884
5885 // Compute liveness information for each candidate, and set FlagsSetInAll.
5886 const TargetRegisterInfo &TRI = getRegisterInfo();
5887 for (outliner::Candidate &C : RepeatedSequenceLocs)
5888 FlagsSetInAll &= C.Flags;
5889
5890 // According to the ARM Procedure Call Standard, the following are
5891 // undefined on entry/exit from a function call:
5892 //
5893 // * Register R12(IP),
5894 // * Condition codes (and thus the CPSR register)
5895 //
5896 // Since we control the instructions which are part of the outlined regions
5897 // we don't need to be fully compliant with the AAPCS, but we have to
5898 // guarantee that if a veneer is inserted at link time the code is still
5899 // correct. Because of this, we can't outline any sequence of instructions
5900 // where one of these registers is live into/across it. Thus, we need to
5901 // delete those candidates.
5902 auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
5903 // If the unsafe registers in this block are all dead, then we don't need
5904 // to compute liveness here.
5905 if (C.Flags & UnsafeRegsDead)
5906 return false;
5907 return C.isAnyUnavailableAcrossOrOutOfSeq({ARM::R12, ARM::CPSR}, TRI);
5908 };
5909
5910 // Are there any candidates where those registers are live?
5911 if (!(FlagsSetInAll & UnsafeRegsDead)) {
5912 // Erase every candidate that violates the restrictions above. (It could be
5913 // true that we have viable candidates, so it's not worth bailing out in
5914 // the case that, say, 1 out of 20 candidates violate the restructions.)
5915 llvm::erase_if(C&: RepeatedSequenceLocs, P: CantGuaranteeValueAcrossCall);
5916
5917 // If the sequence doesn't have enough candidates left, then we're done.
5918 if (RepeatedSequenceLocs.size() < 2)
5919 return std::nullopt;
5920 }
5921
5922 // We expect the majority of the outlining candidates to be in consensus with
5923 // regard to return address sign and authentication, and branch target
5924 // enforcement, in other words, partitioning according to all the four
5925 // possible combinations of PAC-RET and BTI is going to yield one big subset
5926 // and three small (likely empty) subsets. That allows us to cull incompatible
5927 // candidates separately for PAC-RET and BTI.
5928
5929 // Partition the candidates in two sets: one with BTI enabled and one with BTI
5930 // disabled. Remove the candidates from the smaller set. If they are the same
5931 // number prefer the non-BTI ones for outlining, since they have less
5932 // overhead.
5933 auto NoBTI =
5934 llvm::partition(Range&: RepeatedSequenceLocs, P: [](const outliner::Candidate &C) {
5935 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5936 return AFI.branchTargetEnforcement();
5937 });
5938 if (std::distance(first: RepeatedSequenceLocs.begin(), last: NoBTI) >
5939 std::distance(first: NoBTI, last: RepeatedSequenceLocs.end()))
5940 RepeatedSequenceLocs.erase(first: NoBTI, last: RepeatedSequenceLocs.end());
5941 else
5942 RepeatedSequenceLocs.erase(first: RepeatedSequenceLocs.begin(), last: NoBTI);
5943
5944 if (RepeatedSequenceLocs.size() < 2)
5945 return std::nullopt;
5946
5947 // Likewise, partition the candidates according to PAC-RET enablement.
5948 auto NoPAC =
5949 llvm::partition(Range&: RepeatedSequenceLocs, P: [](const outliner::Candidate &C) {
5950 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
5951 // If the function happens to not spill the LR, do not disqualify it
5952 // from the outlining.
5953 return AFI.shouldSignReturnAddress(SpillsLR: true);
5954 });
5955 if (std::distance(first: RepeatedSequenceLocs.begin(), last: NoPAC) >
5956 std::distance(first: NoPAC, last: RepeatedSequenceLocs.end()))
5957 RepeatedSequenceLocs.erase(first: NoPAC, last: RepeatedSequenceLocs.end());
5958 else
5959 RepeatedSequenceLocs.erase(first: RepeatedSequenceLocs.begin(), last: NoPAC);
5960
5961 if (RepeatedSequenceLocs.size() < 2)
5962 return std::nullopt;
5963
5964 // At this point, we have only "safe" candidates to outline. Figure out
5965 // frame + call instruction information.
5966
5967 unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back().getOpcode();
5968
5969 // Helper lambda which sets call information for every candidate.
5970 auto SetCandidateCallInfo =
5971 [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
5972 for (outliner::Candidate &C : RepeatedSequenceLocs)
5973 C.setCallInfo(CID: CallID, CO: NumBytesForCall);
5974 };
5975
5976 OutlinerCosts Costs(Subtarget);
5977
5978 const auto &SomeMFI =
5979 *RepeatedSequenceLocs.front().getMF()->getInfo<ARMFunctionInfo>();
5980 // Adjust costs to account for the BTI instructions.
5981 if (SomeMFI.branchTargetEnforcement()) {
5982 Costs.FrameDefault += 4;
5983 Costs.FrameNoLRSave += 4;
5984 Costs.FrameRegSave += 4;
5985 Costs.FrameTailCall += 4;
5986 Costs.FrameThunk += 4;
5987 }
5988
5989 // Adjust costs to account for sign and authentication instructions.
5990 if (SomeMFI.shouldSignReturnAddress(SpillsLR: true)) {
5991 Costs.CallDefault += 8; // +PAC instr, +AUT instr
5992 Costs.SaveRestoreLROnStack += 8; // +PAC instr, +AUT instr
5993 }
5994
5995 unsigned FrameID = MachineOutlinerDefault;
5996 unsigned NumBytesToCreateFrame = Costs.FrameDefault;
5997
5998 // If the last instruction in any candidate is a terminator, then we should
5999 // tail call all of the candidates.
6000 if (RepeatedSequenceLocs[0].back().isTerminator()) {
6001 FrameID = MachineOutlinerTailCall;
6002 NumBytesToCreateFrame = Costs.FrameTailCall;
6003 SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
6004 } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
6005 LastInstrOpcode == ARM::BLX_noip || LastInstrOpcode == ARM::tBL ||
6006 LastInstrOpcode == ARM::tBLXr ||
6007 LastInstrOpcode == ARM::tBLXr_noip ||
6008 LastInstrOpcode == ARM::tBLXi) {
6009 FrameID = MachineOutlinerThunk;
6010 NumBytesToCreateFrame = Costs.FrameThunk;
6011 SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
6012 } else {
6013 // We need to decide how to emit calls + frames. We can always emit the same
6014 // frame if we don't need to save to the stack. If we have to save to the
6015 // stack, then we need a different frame.
6016 unsigned NumBytesNoStackCalls = 0;
6017 std::vector<outliner::Candidate> CandidatesWithoutStackFixups;
6018
6019 for (outliner::Candidate &C : RepeatedSequenceLocs) {
6020 // LR liveness is overestimated in return blocks, unless they end with a
6021 // tail call.
6022 const auto Last = C.getMBB()->rbegin();
6023 const bool LRIsAvailable =
6024 C.getMBB()->isReturnBlock() && !Last->isCall()
6025 ? isLRAvailable(TRI, Last,
6026 (MachineBasicBlock::reverse_iterator)C.begin())
6027 : C.isAvailableAcrossAndOutOfSeq(ARM::LR, TRI);
6028 if (LRIsAvailable) {
6029 FrameID = MachineOutlinerNoLRSave;
6030 NumBytesNoStackCalls += Costs.CallNoLRSave;
6031 C.setCallInfo(CID: MachineOutlinerNoLRSave, CO: Costs.CallNoLRSave);
6032 CandidatesWithoutStackFixups.push_back(x: C);
6033 }
6034
6035 // Is an unused register available? If so, we won't modify the stack, so
6036 // we can outline with the same frame type as those that don't save LR.
6037 else if (findRegisterToSaveLRTo(C)) {
6038 FrameID = MachineOutlinerRegSave;
6039 NumBytesNoStackCalls += Costs.CallRegSave;
6040 C.setCallInfo(CID: MachineOutlinerRegSave, CO: Costs.CallRegSave);
6041 CandidatesWithoutStackFixups.push_back(x: C);
6042 }
6043
6044 // Is SP used in the sequence at all? If not, we don't have to modify
6045 // the stack, so we are guaranteed to get the same frame.
6046 else if (C.isAvailableInsideSeq(ARM::SP, TRI)) {
6047 NumBytesNoStackCalls += Costs.CallDefault;
6048 C.setCallInfo(CID: MachineOutlinerDefault, CO: Costs.CallDefault);
6049 CandidatesWithoutStackFixups.push_back(x: C);
6050 }
6051
6052 // If we outline this, we need to modify the stack. Pretend we don't
6053 // outline this by saving all of its bytes.
6054 else
6055 NumBytesNoStackCalls += SequenceSize;
6056 }
6057
6058 // If there are no places where we have to save LR, then note that we don't
6059 // have to update the stack. Otherwise, give every candidate the default
6060 // call type
6061 if (NumBytesNoStackCalls <=
6062 RepeatedSequenceLocs.size() * Costs.CallDefault) {
6063 RepeatedSequenceLocs = CandidatesWithoutStackFixups;
6064 FrameID = MachineOutlinerNoLRSave;
6065 } else
6066 SetCandidateCallInfo(MachineOutlinerDefault, Costs.CallDefault);
6067 }
6068
6069 // Does every candidate's MBB contain a call? If so, then we might have a
6070 // call in the range.
6071 if (FlagsSetInAll & MachineOutlinerMBBFlags::HasCalls) {
6072 // check if the range contains a call. These require a save + restore of
6073 // the link register.
6074 if (std::any_of(first: FirstCand.begin(), last: std::prev(x: FirstCand.end()),
6075 pred: [](const MachineInstr &MI) { return MI.isCall(); }))
6076 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6077
6078 // Handle the last instruction separately. If it is tail call, then the
6079 // last instruction is a call, we don't want to save + restore in this
6080 // case. However, it could be possible that the last instruction is a
6081 // call without it being valid to tail call this sequence. We should
6082 // consider this as well.
6083 else if (FrameID != MachineOutlinerThunk &&
6084 FrameID != MachineOutlinerTailCall && FirstCand.back().isCall())
6085 NumBytesToCreateFrame += Costs.SaveRestoreLROnStack;
6086 }
6087
6088 return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
6089 NumBytesToCreateFrame, FrameID);
6090}
6091
6092bool ARMBaseInstrInfo::checkAndUpdateStackOffset(MachineInstr *MI,
6093 int64_t Fixup,
6094 bool Updt) const {
6095 int SPIdx = MI->findRegisterUseOperandIdx(ARM::SP, /*TRI=*/nullptr);
6096 unsigned AddrMode = (MI->getDesc().TSFlags & ARMII::AddrModeMask);
6097 if (SPIdx < 0)
6098 // No SP operand
6099 return true;
6100 else if (SPIdx != 1 && (AddrMode != ARMII::AddrModeT2_i8s4 || SPIdx != 2))
6101 // If SP is not the base register we can't do much
6102 return false;
6103
6104 // Stack might be involved but addressing mode doesn't handle any offset.
6105 // Rq: AddrModeT1_[1|2|4] don't operate on SP
6106 if (AddrMode == ARMII::AddrMode1 || // Arithmetic instructions
6107 AddrMode == ARMII::AddrMode4 || // Load/Store Multiple
6108 AddrMode == ARMII::AddrMode6 || // Neon Load/Store Multiple
6109 AddrMode == ARMII::AddrModeT2_so || // SP can't be used as based register
6110 AddrMode == ARMII::AddrModeT2_pc || // PCrel access
6111 AddrMode == ARMII::AddrMode2 || // Used by PRE and POST indexed LD/ST
6112 AddrMode == ARMII::AddrModeT2_i7 || // v8.1-M MVE
6113 AddrMode == ARMII::AddrModeT2_i7s2 || // v8.1-M MVE
6114 AddrMode == ARMII::AddrModeT2_i7s4 || // v8.1-M sys regs VLDR/VSTR
6115 AddrMode == ARMII::AddrModeNone ||
6116 AddrMode == ARMII::AddrModeT2_i8 || // Pre/Post inc instructions
6117 AddrMode == ARMII::AddrModeT2_i8neg) // Always negative imm
6118 return false;
6119
6120 unsigned NumOps = MI->getDesc().getNumOperands();
6121 unsigned ImmIdx = NumOps - 3;
6122
6123 const MachineOperand &Offset = MI->getOperand(i: ImmIdx);
6124 assert(Offset.isImm() && "Is not an immediate");
6125 int64_t OffVal = Offset.getImm();
6126
6127 if (OffVal < 0)
6128 // Don't override data if the are below SP.
6129 return false;
6130
6131 unsigned NumBits = 0;
6132 unsigned Scale = 1;
6133
6134 switch (AddrMode) {
6135 case ARMII::AddrMode3:
6136 if (ARM_AM::getAM3Op(AM3Opc: OffVal) == ARM_AM::sub)
6137 return false;
6138 OffVal = ARM_AM::getAM3Offset(AM3Opc: OffVal);
6139 NumBits = 8;
6140 break;
6141 case ARMII::AddrMode5:
6142 if (ARM_AM::getAM5Op(AM5Opc: OffVal) == ARM_AM::sub)
6143 return false;
6144 OffVal = ARM_AM::getAM5Offset(AM5Opc: OffVal);
6145 NumBits = 8;
6146 Scale = 4;
6147 break;
6148 case ARMII::AddrMode5FP16:
6149 if (ARM_AM::getAM5FP16Op(AM5Opc: OffVal) == ARM_AM::sub)
6150 return false;
6151 OffVal = ARM_AM::getAM5FP16Offset(AM5Opc: OffVal);
6152 NumBits = 8;
6153 Scale = 2;
6154 break;
6155 case ARMII::AddrModeT2_i8pos:
6156 NumBits = 8;
6157 break;
6158 case ARMII::AddrModeT2_i8s4:
6159 // FIXME: Values are already scaled in this addressing mode.
6160 assert((Fixup & 3) == 0 && "Can't encode this offset!");
6161 NumBits = 10;
6162 break;
6163 case ARMII::AddrModeT2_ldrex:
6164 NumBits = 8;
6165 Scale = 4;
6166 break;
6167 case ARMII::AddrModeT2_i12:
6168 case ARMII::AddrMode_i12:
6169 NumBits = 12;
6170 break;
6171 case ARMII::AddrModeT1_s: // SP-relative LD/ST
6172 NumBits = 8;
6173 Scale = 4;
6174 break;
6175 default:
6176 llvm_unreachable("Unsupported addressing mode!");
6177 }
6178 // Make sure the offset is encodable for instructions that scale the
6179 // immediate.
6180 assert(((OffVal * Scale + Fixup) & (Scale - 1)) == 0 &&
6181 "Can't encode this offset!");
6182 OffVal += Fixup / Scale;
6183
6184 unsigned Mask = (1 << NumBits) - 1;
6185
6186 if (OffVal <= Mask) {
6187 if (Updt)
6188 MI->getOperand(i: ImmIdx).setImm(OffVal);
6189 return true;
6190 }
6191
6192 return false;
6193}
6194
6195void ARMBaseInstrInfo::mergeOutliningCandidateAttributes(
6196 Function &F, std::vector<outliner::Candidate> &Candidates) const {
6197 outliner::Candidate &C = Candidates.front();
6198 // branch-target-enforcement is guaranteed to be consistent between all
6199 // candidates, so we only need to look at one.
6200 const Function &CFn = C.getMF()->getFunction();
6201 if (CFn.hasFnAttribute(Kind: "branch-target-enforcement"))
6202 F.addFnAttr(Attr: CFn.getFnAttribute(Kind: "branch-target-enforcement"));
6203
6204 ARMGenInstrInfo::mergeOutliningCandidateAttributes(F, Candidates);
6205}
6206
6207bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
6208 MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
6209 const Function &F = MF.getFunction();
6210
6211 // Can F be deduplicated by the linker? If it can, don't outline from it.
6212 if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
6213 return false;
6214
6215 // Don't outline from functions with section markings; the program could
6216 // expect that all the code is in the named section.
6217 // FIXME: Allow outlining from multiple functions with the same section
6218 // marking.
6219 if (F.hasSection())
6220 return false;
6221
6222 // FIXME: Thumb1 outlining is not handled
6223 if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
6224 return false;
6225
6226 // It's safe to outline from MF.
6227 return true;
6228}
6229
6230bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
6231 unsigned &Flags) const {
6232 // Check if LR is available through all of the MBB. If it's not, then set
6233 // a flag.
6234 assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
6235 "Suitable Machine Function for outlining must track liveness");
6236
6237 LiveRegUnits LRU(getRegisterInfo());
6238
6239 for (MachineInstr &MI : llvm::reverse(C&: MBB))
6240 LRU.accumulate(MI);
6241
6242 // Check if each of the unsafe registers are available...
6243 bool R12AvailableInBlock = LRU.available(ARM::R12);
6244 bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);
6245
6246 // If all of these are dead (and not live out), we know we don't have to check
6247 // them later.
6248 if (R12AvailableInBlock && CPSRAvailableInBlock)
6249 Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;
6250
6251 // Now, add the live outs to the set.
6252 LRU.addLiveOuts(MBB);
6253
6254 // If any of these registers is available in the MBB, but also a live out of
6255 // the block, then we know outlining is unsafe.
6256 if (R12AvailableInBlock && !LRU.available(ARM::R12))
6257 return false;
6258 if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
6259 return false;
6260
6261 // Check if there's a call inside this MachineBasicBlock. If there is, then
6262 // set a flag.
6263 if (any_of(Range&: MBB, P: [](MachineInstr &MI) { return MI.isCall(); }))
6264 Flags |= MachineOutlinerMBBFlags::HasCalls;
6265
6266 // LR liveness is overestimated in return blocks.
6267
6268 bool LRIsAvailable =
6269 MBB.isReturnBlock() && !MBB.back().isCall()
6270 ? isLRAvailable(getRegisterInfo(), MBB.rbegin(), MBB.rend())
6271 : LRU.available(ARM::LR);
6272 if (!LRIsAvailable)
6273 Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;
6274
6275 return true;
6276}
6277
6278outliner::InstrType
6279ARMBaseInstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT,
6280 unsigned Flags) const {
6281 MachineInstr &MI = *MIT;
6282 const TargetRegisterInfo *TRI = &getRegisterInfo();
6283
6284 // PIC instructions contain labels, outlining them would break offset
6285 // computing. unsigned Opc = MI.getOpcode();
6286 unsigned Opc = MI.getOpcode();
6287 if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
6288 Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
6289 Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
6290 Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
6291 Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
6292 Opc == ARM::t2MOV_ga_pcrel)
6293 return outliner::InstrType::Illegal;
6294
6295 // Be conservative with ARMv8.1 MVE instructions.
6296 if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
6297 Opc == ARM::t2DoLoopStartTP || Opc == ARM::t2WhileLoopStart ||
6298 Opc == ARM::t2WhileLoopStartLR || Opc == ARM::t2WhileLoopStartTP ||
6299 Opc == ARM::t2LoopDec || Opc == ARM::t2LoopEnd ||
6300 Opc == ARM::t2LoopEndDec)
6301 return outliner::InstrType::Illegal;
6302
6303 const MCInstrDesc &MCID = MI.getDesc();
6304 uint64_t MIFlags = MCID.TSFlags;
6305 if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
6306 return outliner::InstrType::Illegal;
6307
6308 // Is this a terminator for a basic block?
6309 if (MI.isTerminator())
6310 // TargetInstrInfo::getOutliningType has already filtered out anything
6311 // that would break this, so we can allow it here.
6312 return outliner::InstrType::Legal;
6313
6314 // Don't outline if link register or program counter value are used.
6315 if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
6316 return outliner::InstrType::Illegal;
6317
6318 if (MI.isCall()) {
6319 // Get the function associated with the call. Look at each operand and find
6320 // the one that represents the calle and get its name.
6321 const Function *Callee = nullptr;
6322 for (const MachineOperand &MOP : MI.operands()) {
6323 if (MOP.isGlobal()) {
6324 Callee = dyn_cast<Function>(Val: MOP.getGlobal());
6325 break;
6326 }
6327 }
6328
6329 // Dont't outline calls to "mcount" like functions, in particular Linux
6330 // kernel function tracing relies on it.
6331 if (Callee &&
6332 (Callee->getName() == "\01__gnu_mcount_nc" ||
6333 Callee->getName() == "\01mcount" || Callee->getName() == "__mcount"))
6334 return outliner::InstrType::Illegal;
6335
6336 // If we don't know anything about the callee, assume it depends on the
6337 // stack layout of the caller. In that case, it's only legal to outline
6338 // as a tail-call. Explicitly list the call instructions we know about so
6339 // we don't get unexpected results with call pseudo-instructions.
6340 auto UnknownCallOutlineType = outliner::InstrType::Illegal;
6341 if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
6342 Opc == ARM::BLX_noip || Opc == ARM::tBLXr || Opc == ARM::tBLXr_noip ||
6343 Opc == ARM::tBLXi)
6344 UnknownCallOutlineType = outliner::InstrType::LegalTerminator;
6345
6346 if (!Callee)
6347 return UnknownCallOutlineType;
6348
6349 // We have a function we have information about. Check if it's something we
6350 // can safely outline.
6351 MachineFunction *MF = MI.getParent()->getParent();
6352 MachineFunction *CalleeMF = MF->getMMI().getMachineFunction(F: *Callee);
6353
6354 // We don't know what's going on with the callee at all. Don't touch it.
6355 if (!CalleeMF)
6356 return UnknownCallOutlineType;
6357
6358 // Check if we know anything about the callee saves on the function. If we
6359 // don't, then don't touch it, since that implies that we haven't computed
6360 // anything about its stack frame yet.
6361 MachineFrameInfo &MFI = CalleeMF->getFrameInfo();
6362 if (!MFI.isCalleeSavedInfoValid() || MFI.getStackSize() > 0 ||
6363 MFI.getNumObjects() > 0)
6364 return UnknownCallOutlineType;
6365
6366 // At this point, we can say that CalleeMF ought to not pass anything on the
6367 // stack. Therefore, we can outline it.
6368 return outliner::InstrType::Legal;
6369 }
6370
6371 // Since calls are handled, don't touch LR or PC
6372 if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
6373 return outliner::InstrType::Illegal;
6374
6375 // Does this use the stack?
6376 if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
6377 // True if there is no chance that any outlined candidate from this range
6378 // could require stack fixups. That is, both
6379 // * LR is available in the range (No save/restore around call)
6380 // * The range doesn't include calls (No save/restore in outlined frame)
6381 // are true.
6382 // These conditions also ensure correctness of the return address
6383 // authentication - we insert sign and authentication instructions only if
6384 // we save/restore LR on stack, but then this condition ensures that the
6385 // outlined range does not modify the SP, therefore the SP value used for
6386 // signing is the same as the one used for authentication.
6387 // FIXME: This is very restrictive; the flags check the whole block,
6388 // not just the bit we will try to outline.
6389 bool MightNeedStackFixUp =
6390 (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
6391 MachineOutlinerMBBFlags::HasCalls));
6392
6393 if (!MightNeedStackFixUp)
6394 return outliner::InstrType::Legal;
6395
6396 // Any modification of SP will break our code to save/restore LR.
6397 // FIXME: We could handle some instructions which add a constant offset to
6398 // SP, with a bit more work.
6399 if (MI.modifiesRegister(ARM::SP, TRI))
6400 return outliner::InstrType::Illegal;
6401
6402 // At this point, we have a stack instruction that we might need to fix up.
6403 // up. We'll handle it if it's a load or store.
6404 if (checkAndUpdateStackOffset(MI: &MI, Fixup: Subtarget.getStackAlignment().value(),
6405 Updt: false))
6406 return outliner::InstrType::Legal;
6407
6408 // We can't fix it up, so don't outline it.
6409 return outliner::InstrType::Illegal;
6410 }
6411
6412 // Be conservative with IT blocks.
6413 if (MI.readsRegister(ARM::ITSTATE, TRI) ||
6414 MI.modifiesRegister(ARM::ITSTATE, TRI))
6415 return outliner::InstrType::Illegal;
6416
6417 // Don't outline CFI instructions.
6418 if (MI.isCFIInstruction())
6419 return outliner::InstrType::Illegal;
6420
6421 return outliner::InstrType::Legal;
6422}
6423
6424void ARMBaseInstrInfo::fixupPostOutline(MachineBasicBlock &MBB) const {
6425 for (MachineInstr &MI : MBB) {
6426 checkAndUpdateStackOffset(MI: &MI, Fixup: Subtarget.getStackAlignment().value(), Updt: true);
6427 }
6428}
6429
6430void ARMBaseInstrInfo::saveLROnStack(MachineBasicBlock &MBB,
6431 MachineBasicBlock::iterator It, bool CFI,
6432 bool Auth) const {
6433 int Align = std::max(a: Subtarget.getStackAlignment().value(), b: uint64_t(8));
6434 unsigned MIFlags = CFI ? MachineInstr::FrameSetup : 0;
6435 assert(Align >= 8 && Align <= 256);
6436 if (Auth) {
6437 assert(Subtarget.isThumb2());
6438 // Compute PAC in R12. Outlining ensures R12 is dead across the outlined
6439 // sequence.
6440 BuildMI(MBB, It, DebugLoc(), get(ARM::t2PAC)).setMIFlags(MIFlags);
6441 BuildMI(MBB, It, DebugLoc(), get(ARM::t2STRD_PRE), ARM::SP)
6442 .addReg(ARM::R12, RegState::Kill)
6443 .addReg(ARM::LR, RegState::Kill)
6444 .addReg(ARM::SP)
6445 .addImm(-Align)
6446 .add(predOps(ARMCC::AL))
6447 .setMIFlags(MIFlags);
6448 } else {
6449 unsigned Opc = Subtarget.isThumb() ? ARM::t2STR_PRE : ARM::STR_PRE_IMM;
6450 BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::SP)
6451 .addReg(ARM::LR, RegState::Kill)
6452 .addReg(ARM::SP)
6453 .addImm(-Align)
6454 .add(predOps(ARMCC::AL))
6455 .setMIFlags(MIFlags);
6456 }
6457
6458 if (!CFI)
6459 return;
6460
6461 MachineFunction &MF = *MBB.getParent();
6462
6463 // Add a CFI, saying CFA is offset by Align bytes from SP.
6464 int64_t StackPosEntry =
6465 MF.addFrameInst(Inst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: Align));
6466 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6467 .addCFIIndex(StackPosEntry)
6468 .setMIFlags(MachineInstr::FrameSetup);
6469
6470 // Add a CFI saying that the LR that we want to find is now higher than
6471 // before.
6472 int LROffset = Auth ? Align - 4 : Align;
6473 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6474 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6475 int64_t LRPosEntry = MF.addFrameInst(
6476 Inst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfLR, Offset: -LROffset));
6477 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6478 .addCFIIndex(LRPosEntry)
6479 .setMIFlags(MachineInstr::FrameSetup);
6480 if (Auth) {
6481 // Add a CFI for the location of the return adddress PAC.
6482 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6483 int64_t RACPosEntry = MF.addFrameInst(
6484 Inst: MCCFIInstruction::createOffset(L: nullptr, Register: DwarfRAC, Offset: -Align));
6485 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6486 .addCFIIndex(RACPosEntry)
6487 .setMIFlags(MachineInstr::FrameSetup);
6488 }
6489}
6490
6491void ARMBaseInstrInfo::emitCFIForLRSaveToReg(MachineBasicBlock &MBB,
6492 MachineBasicBlock::iterator It,
6493 Register Reg) const {
6494 MachineFunction &MF = *MBB.getParent();
6495 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6496 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6497 unsigned DwarfReg = MRI->getDwarfRegNum(RegNum: Reg, isEH: true);
6498
6499 int64_t LRPosEntry = MF.addFrameInst(
6500 Inst: MCCFIInstruction::createRegister(L: nullptr, Register1: DwarfLR, Register2: DwarfReg));
6501 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6502 .addCFIIndex(LRPosEntry)
6503 .setMIFlags(MachineInstr::FrameSetup);
6504}
6505
6506void ARMBaseInstrInfo::restoreLRFromStack(MachineBasicBlock &MBB,
6507 MachineBasicBlock::iterator It,
6508 bool CFI, bool Auth) const {
6509 int Align = Subtarget.getStackAlignment().value();
6510 unsigned MIFlags = CFI ? MachineInstr::FrameDestroy : 0;
6511 if (Auth) {
6512 assert(Subtarget.isThumb2());
6513 // Restore return address PAC and LR.
6514 BuildMI(MBB, It, DebugLoc(), get(ARM::t2LDRD_POST))
6515 .addReg(ARM::R12, RegState::Define)
6516 .addReg(ARM::LR, RegState::Define)
6517 .addReg(ARM::SP, RegState::Define)
6518 .addReg(ARM::SP)
6519 .addImm(Align)
6520 .add(predOps(ARMCC::AL))
6521 .setMIFlags(MIFlags);
6522 // LR authentication is after the CFI instructions, below.
6523 } else {
6524 unsigned Opc = Subtarget.isThumb() ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
6525 MachineInstrBuilder MIB = BuildMI(MBB, It, DebugLoc(), get(Opc), ARM::LR)
6526 .addReg(ARM::SP, RegState::Define)
6527 .addReg(ARM::SP);
6528 if (!Subtarget.isThumb())
6529 MIB.addReg(RegNo: 0);
6530 MIB.addImm(Val: Subtarget.getStackAlignment().value())
6531 .add(MOs: predOps(Pred: ARMCC::AL))
6532 .setMIFlags(MIFlags);
6533 }
6534
6535 if (CFI) {
6536 // Now stack has moved back up...
6537 MachineFunction &MF = *MBB.getParent();
6538 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6539 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6540 int64_t StackPosEntry =
6541 MF.addFrameInst(Inst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset: 0));
6542 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6543 .addCFIIndex(StackPosEntry)
6544 .setMIFlags(MachineInstr::FrameDestroy);
6545
6546 // ... and we have restored LR.
6547 int64_t LRPosEntry =
6548 MF.addFrameInst(Inst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfLR));
6549 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6550 .addCFIIndex(LRPosEntry)
6551 .setMIFlags(MachineInstr::FrameDestroy);
6552
6553 if (Auth) {
6554 unsigned DwarfRAC = MRI->getDwarfRegNum(ARM::RA_AUTH_CODE, true);
6555 int64_t Entry =
6556 MF.addFrameInst(Inst: MCCFIInstruction::createUndefined(L: nullptr, Register: DwarfRAC));
6557 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6558 .addCFIIndex(Entry)
6559 .setMIFlags(MachineInstr::FrameDestroy);
6560 }
6561 }
6562
6563 if (Auth)
6564 BuildMI(MBB, It, DebugLoc(), get(ARM::t2AUT));
6565}
6566
6567void ARMBaseInstrInfo::emitCFIForLRRestoreFromReg(
6568 MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {
6569 MachineFunction &MF = *MBB.getParent();
6570 const MCRegisterInfo *MRI = Subtarget.getRegisterInfo();
6571 unsigned DwarfLR = MRI->getDwarfRegNum(ARM::LR, true);
6572
6573 int64_t LRPosEntry =
6574 MF.addFrameInst(Inst: MCCFIInstruction::createRestore(L: nullptr, Register: DwarfLR));
6575 BuildMI(MBB, It, DebugLoc(), get(ARM::CFI_INSTRUCTION))
6576 .addCFIIndex(LRPosEntry)
6577 .setMIFlags(MachineInstr::FrameDestroy);
6578}
6579
6580void ARMBaseInstrInfo::buildOutlinedFrame(
6581 MachineBasicBlock &MBB, MachineFunction &MF,
6582 const outliner::OutlinedFunction &OF) const {
6583 // For thunk outlining, rewrite the last instruction from a call to a
6584 // tail-call.
6585 if (OF.FrameConstructionID == MachineOutlinerThunk) {
6586 MachineInstr *Call = &*--MBB.instr_end();
6587 bool isThumb = Subtarget.isThumb();
6588 unsigned FuncOp = isThumb ? 2 : 0;
6589 unsigned Opc = Call->getOperand(FuncOp).isReg()
6590 ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
6591 : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
6592 : ARM::tTAILJMPdND
6593 : ARM::TAILJMPd;
6594 MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
6595 .add(Call->getOperand(i: FuncOp));
6596 if (isThumb && !Call->getOperand(i: FuncOp).isReg())
6597 MIB.add(MOs: predOps(Pred: ARMCC::AL));
6598 Call->eraseFromParent();
6599 }
6600
6601 // Is there a call in the outlined range?
6602 auto IsNonTailCall = [](MachineInstr &MI) {
6603 return MI.isCall() && !MI.isReturn();
6604 };
6605 if (llvm::any_of(Range: MBB.instrs(), P: IsNonTailCall)) {
6606 MachineBasicBlock::iterator It = MBB.begin();
6607 MachineBasicBlock::iterator Et = MBB.end();
6608
6609 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6610 OF.FrameConstructionID == MachineOutlinerThunk)
6611 Et = std::prev(x: MBB.end());
6612
6613 // We have to save and restore LR, we need to add it to the liveins if it
6614 // is not already part of the set. This is suffient since outlined
6615 // functions only have one block.
6616 if (!MBB.isLiveIn(ARM::LR))
6617 MBB.addLiveIn(ARM::LR);
6618
6619 // Insert a save before the outlined region
6620 bool Auth = OF.Candidates.front()
6621 .getMF()
6622 ->getInfo<ARMFunctionInfo>()
6623 ->shouldSignReturnAddress(SpillsLR: true);
6624 saveLROnStack(MBB, It, CFI: true, Auth);
6625
6626 // Fix up the instructions in the range, since we're going to modify the
6627 // stack.
6628 assert(OF.FrameConstructionID != MachineOutlinerDefault &&
6629 "Can only fix up stack references once");
6630 fixupPostOutline(MBB);
6631
6632 // Insert a restore before the terminator for the function. Restore LR.
6633 restoreLRFromStack(MBB, It: Et, CFI: true, Auth);
6634 }
6635
6636 // If this is a tail call outlined function, then there's already a return.
6637 if (OF.FrameConstructionID == MachineOutlinerTailCall ||
6638 OF.FrameConstructionID == MachineOutlinerThunk)
6639 return;
6640
6641 // Here we have to insert the return ourselves. Get the correct opcode from
6642 // current feature set.
6643 BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
6644 .add(predOps(Pred: ARMCC::AL));
6645
6646 // Did we have to modify the stack by saving the link register?
6647 if (OF.FrameConstructionID != MachineOutlinerDefault &&
6648 OF.Candidates[0].CallConstructionID != MachineOutlinerDefault)
6649 return;
6650
6651 // We modified the stack.
6652 // Walk over the basic block and fix up all the stack accesses.
6653 fixupPostOutline(MBB);
6654}
6655
6656MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
6657 Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
6658 MachineFunction &MF, outliner::Candidate &C) const {
6659 MachineInstrBuilder MIB;
6660 MachineBasicBlock::iterator CallPt;
6661 unsigned Opc;
6662 bool isThumb = Subtarget.isThumb();
6663
6664 // Are we tail calling?
6665 if (C.CallConstructionID == MachineOutlinerTailCall) {
6666 // If yes, then we can just branch to the label.
6667 Opc = isThumb
6668 ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
6669 : ARM::TAILJMPd;
6670 MIB = BuildMI(MF, DebugLoc(), get(Opc))
6671 .addGlobalAddress(M.getNamedValue(Name: MF.getName()));
6672 if (isThumb)
6673 MIB.add(MOs: predOps(Pred: ARMCC::AL));
6674 It = MBB.insert(I: It, MI: MIB);
6675 return It;
6676 }
6677
6678 // Create the call instruction.
6679 Opc = isThumb ? ARM::tBL : ARM::BL;
6680 MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
6681 if (isThumb)
6682 CallMIB.add(MOs: predOps(Pred: ARMCC::AL));
6683 CallMIB.addGlobalAddress(GV: M.getNamedValue(Name: MF.getName()));
6684
6685 if (C.CallConstructionID == MachineOutlinerNoLRSave ||
6686 C.CallConstructionID == MachineOutlinerThunk) {
6687 // No, so just insert the call.
6688 It = MBB.insert(I: It, MI: CallMIB);
6689 return It;
6690 }
6691
6692 const ARMFunctionInfo &AFI = *C.getMF()->getInfo<ARMFunctionInfo>();
6693 // Can we save to a register?
6694 if (C.CallConstructionID == MachineOutlinerRegSave) {
6695 Register Reg = findRegisterToSaveLRTo(C);
6696 assert(Reg != 0 && "No callee-saved register available?");
6697
6698 // Save and restore LR from that register.
6699 copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
6700 if (!AFI.isLRSpilled())
6701 emitCFIForLRSaveToReg(MBB, It, Reg);
6702 CallPt = MBB.insert(I: It, MI: CallMIB);
6703 copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
6704 if (!AFI.isLRSpilled())
6705 emitCFIForLRRestoreFromReg(MBB, It);
6706 It--;
6707 return CallPt;
6708 }
6709 // We have the default case. Save and restore from SP.
6710 if (!MBB.isLiveIn(ARM::LR))
6711 MBB.addLiveIn(ARM::LR);
6712 bool Auth = !AFI.isLRSpilled() && AFI.shouldSignReturnAddress(SpillsLR: true);
6713 saveLROnStack(MBB, It, CFI: !AFI.isLRSpilled(), Auth);
6714 CallPt = MBB.insert(I: It, MI: CallMIB);
6715 restoreLRFromStack(MBB, It, CFI: !AFI.isLRSpilled(), Auth);
6716 It--;
6717 return CallPt;
6718}
6719
6720bool ARMBaseInstrInfo::shouldOutlineFromFunctionByDefault(
6721 MachineFunction &MF) const {
6722 return Subtarget.isMClass() && MF.getFunction().hasMinSize();
6723}
6724
6725bool ARMBaseInstrInfo::isReallyTriviallyReMaterializable(
6726 const MachineInstr &MI) const {
6727 // Try hard to rematerialize any VCTPs because if we spill P0, it will block
6728 // the tail predication conversion. This means that the element count
6729 // register has to be live for longer, but that has to be better than
6730 // spill/restore and VPT predication.
6731 return (isVCTP(&MI) && !isPredicated(MI)) ||
6732 TargetInstrInfo::isReallyTriviallyReMaterializable(MI);
6733}
6734
6735unsigned llvm::getBLXOpcode(const MachineFunction &MF) {
6736 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_noip
6737 : ARM::BLX;
6738}
6739
6740unsigned llvm::gettBLXrOpcode(const MachineFunction &MF) {
6741 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::tBLXr_noip
6742 : ARM::tBLXr;
6743}
6744
6745unsigned llvm::getBLXpredOpcode(const MachineFunction &MF) {
6746 return (MF.getSubtarget<ARMSubtarget>().hardenSlsBlr()) ? ARM::BLX_pred_noip
6747 : ARM::BLX_pred;
6748}
6749
6750namespace {
6751class ARMPipelinerLoopInfo : public TargetInstrInfo::PipelinerLoopInfo {
6752 MachineInstr *EndLoop, *LoopCount;
6753 MachineFunction *MF;
6754 const TargetInstrInfo *TII;
6755
6756 // Bitset[0 .. MAX_STAGES-1] ... iterations needed
6757 // [LAST_IS_USE] : last reference to register in schedule is a use
6758 // [SEEN_AS_LIVE] : Normal pressure algorithm believes register is live
6759 static int constexpr MAX_STAGES = 30;
6760 static int constexpr LAST_IS_USE = MAX_STAGES;
6761 static int constexpr SEEN_AS_LIVE = MAX_STAGES + 1;
6762 typedef std::bitset<MAX_STAGES + 2> IterNeed;
6763 typedef std::map<unsigned, IterNeed> IterNeeds;
6764
6765 void bumpCrossIterationPressure(RegPressureTracker &RPT,
6766 const IterNeeds &CIN);
6767 bool tooMuchRegisterPressure(SwingSchedulerDAG &SSD, SMSchedule &SMS);
6768
6769 // Meanings of the various stuff with loop types:
6770 // t2Bcc:
6771 // EndLoop = branch at end of original BB that will become a kernel
6772 // LoopCount = CC setter live into branch
6773 // t2LoopEnd:
6774 // EndLoop = branch at end of original BB
6775 // LoopCount = t2LoopDec
6776public:
6777 ARMPipelinerLoopInfo(MachineInstr *EndLoop, MachineInstr *LoopCount)
6778 : EndLoop(EndLoop), LoopCount(LoopCount),
6779 MF(EndLoop->getParent()->getParent()),
6780 TII(MF->getSubtarget().getInstrInfo()) {}
6781
6782 bool shouldIgnoreForPipelining(const MachineInstr *MI) const override {
6783 // Only ignore the terminator.
6784 return MI == EndLoop || MI == LoopCount;
6785 }
6786
6787 bool shouldUseSchedule(SwingSchedulerDAG &SSD, SMSchedule &SMS) override {
6788 if (tooMuchRegisterPressure(SSD, SMS))
6789 return false;
6790
6791 return true;
6792 }
6793
6794 std::optional<bool> createTripCountGreaterCondition(
6795 int TC, MachineBasicBlock &MBB,
6796 SmallVectorImpl<MachineOperand> &Cond) override {
6797
6798 if (isCondBranchOpcode(Opc: EndLoop->getOpcode())) {
6799 Cond.push_back(Elt: EndLoop->getOperand(i: 1));
6800 Cond.push_back(Elt: EndLoop->getOperand(i: 2));
6801 if (EndLoop->getOperand(i: 0).getMBB() == EndLoop->getParent()) {
6802 TII->reverseBranchCondition(Cond);
6803 }
6804 return {};
6805 } else if (EndLoop->getOpcode() == ARM::t2LoopEnd) {
6806 // General case just lets the unrolled t2LoopDec do the subtraction and
6807 // therefore just needs to check if zero has been reached.
6808 MachineInstr *LoopDec = nullptr;
6809 for (auto &I : MBB.instrs())
6810 if (I.getOpcode() == ARM::t2LoopDec)
6811 LoopDec = &I;
6812 assert(LoopDec && "Unable to find copied LoopDec");
6813 // Check if we're done with the loop.
6814 BuildMI(&MBB, LoopDec->getDebugLoc(), TII->get(ARM::t2CMPri))
6815 .addReg(LoopDec->getOperand(0).getReg())
6816 .addImm(0)
6817 .addImm(ARMCC::AL)
6818 .addReg(ARM::NoRegister);
6819 Cond.push_back(Elt: MachineOperand::CreateImm(Val: ARMCC::EQ));
6820 Cond.push_back(MachineOperand::CreateReg(ARM::CPSR, false));
6821 return {};
6822 } else
6823 llvm_unreachable("Unknown EndLoop");
6824 }
6825
6826 void setPreheader(MachineBasicBlock *NewPreheader) override {}
6827
6828 void adjustTripCount(int TripCountAdjust) override {}
6829
6830 void disposed() override {}
6831};
6832
6833void ARMPipelinerLoopInfo::bumpCrossIterationPressure(RegPressureTracker &RPT,
6834 const IterNeeds &CIN) {
6835 // Increase pressure by the amounts in CrossIterationNeeds
6836 for (const auto &N : CIN) {
6837 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6838 for (int I = 0; I < Cnt; ++I)
6839 RPT.increaseRegPressure(RegUnit: Register(N.first), PreviousMask: LaneBitmask::getNone(),
6840 NewMask: LaneBitmask::getAll());
6841 }
6842 // Decrease pressure by the amounts in CrossIterationNeeds
6843 for (const auto &N : CIN) {
6844 int Cnt = N.second.count() - N.second[SEEN_AS_LIVE] * 2;
6845 for (int I = 0; I < Cnt; ++I)
6846 RPT.decreaseRegPressure(RegUnit: Register(N.first), PreviousMask: LaneBitmask::getAll(),
6847 NewMask: LaneBitmask::getNone());
6848 }
6849}
6850
6851bool ARMPipelinerLoopInfo::tooMuchRegisterPressure(SwingSchedulerDAG &SSD,
6852 SMSchedule &SMS) {
6853 IterNeeds CrossIterationNeeds;
6854
6855 // Determine which values will be loop-carried after the schedule is
6856 // applied
6857
6858 for (auto &SU : SSD.SUnits) {
6859 const MachineInstr *MI = SU.getInstr();
6860 int Stg = SMS.stageScheduled(SU: const_cast<SUnit *>(&SU));
6861 for (auto &S : SU.Succs)
6862 if (MI->isPHI() && S.getKind() == SDep::Anti) {
6863 Register Reg = S.getReg();
6864 if (Reg.isVirtual())
6865 CrossIterationNeeds.insert(x: std::make_pair(x: Reg.id(), y: IterNeed()))
6866 .first->second.set(position: 0);
6867 } else if (S.isAssignedRegDep()) {
6868 int OStg = SMS.stageScheduled(SU: S.getSUnit());
6869 if (OStg >= 0 && OStg != Stg) {
6870 Register Reg = S.getReg();
6871 if (Reg.isVirtual())
6872 CrossIterationNeeds.insert(x: std::make_pair(x: Reg.id(), y: IterNeed()))
6873 .first->second |= ((1 << (OStg - Stg)) - 1);
6874 }
6875 }
6876 }
6877
6878 // Determine more-or-less what the proposed schedule (reversed) is going to
6879 // be; it might not be quite the same because the within-cycle ordering
6880 // created by SMSchedule depends upon changes to help with address offsets and
6881 // the like.
6882 std::vector<SUnit *> ProposedSchedule;
6883 for (int Cycle = SMS.getFinalCycle(); Cycle >= SMS.getFirstCycle(); --Cycle)
6884 for (int Stage = 0, StageEnd = SMS.getMaxStageCount(); Stage <= StageEnd;
6885 ++Stage) {
6886 std::deque<SUnit *> Instrs =
6887 SMS.getInstructions(cycle: Cycle + Stage * SMS.getInitiationInterval());
6888 std::sort(first: Instrs.begin(), last: Instrs.end(),
6889 comp: [](SUnit *A, SUnit *B) { return A->NodeNum > B->NodeNum; });
6890 for (SUnit *SU : Instrs)
6891 ProposedSchedule.push_back(x: SU);
6892 }
6893
6894 // Learn whether the last use/def of each cross-iteration register is a use or
6895 // def. If it is a def, RegisterPressure will implicitly increase max pressure
6896 // and we do not have to add the pressure.
6897 for (auto *SU : ProposedSchedule)
6898 for (ConstMIBundleOperands OperI(*SU->getInstr()); OperI.isValid();
6899 ++OperI) {
6900 auto MO = *OperI;
6901 if (!MO.isReg() || !MO.getReg())
6902 continue;
6903 Register Reg = MO.getReg();
6904 auto CIter = CrossIterationNeeds.find(x: Reg.id());
6905 if (CIter == CrossIterationNeeds.end() || CIter->second[LAST_IS_USE] ||
6906 CIter->second[SEEN_AS_LIVE])
6907 continue;
6908 if (MO.isDef() && !MO.isDead())
6909 CIter->second.set(position: SEEN_AS_LIVE);
6910 else if (MO.isUse())
6911 CIter->second.set(position: LAST_IS_USE);
6912 }
6913 for (auto &CI : CrossIterationNeeds)
6914 CI.second.reset(position: LAST_IS_USE);
6915
6916 RegionPressure RecRegPressure;
6917 RegPressureTracker RPTracker(RecRegPressure);
6918 RegisterClassInfo RegClassInfo;
6919 RegClassInfo.runOnMachineFunction(MF: *MF);
6920 RPTracker.init(mf: MF, rci: &RegClassInfo, lis: nullptr, mbb: EndLoop->getParent(),
6921 pos: EndLoop->getParent()->end(), TrackLaneMasks: false, TrackUntiedDefs: false);
6922 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
6923
6924 bumpCrossIterationPressure(RPT&: RPTracker, CIN: CrossIterationNeeds);
6925
6926 for (auto *SU : ProposedSchedule) {
6927 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
6928 RPTracker.setPos(std::next(x: CurInstI));
6929 RPTracker.recede();
6930
6931 // Track what cross-iteration registers would be seen as live
6932 for (ConstMIBundleOperands OperI(*CurInstI); OperI.isValid(); ++OperI) {
6933 auto MO = *OperI;
6934 if (!MO.isReg() || !MO.getReg())
6935 continue;
6936 Register Reg = MO.getReg();
6937 if (MO.isDef() && !MO.isDead()) {
6938 auto CIter = CrossIterationNeeds.find(x: Reg.id());
6939 if (CIter != CrossIterationNeeds.end()) {
6940 CIter->second.reset(position: 0);
6941 CIter->second.reset(position: SEEN_AS_LIVE);
6942 }
6943 }
6944 }
6945 for (auto &S : SU->Preds) {
6946 auto Stg = SMS.stageScheduled(SU);
6947 if (S.isAssignedRegDep()) {
6948 Register Reg = S.getReg();
6949 auto CIter = CrossIterationNeeds.find(x: Reg.id());
6950 if (CIter != CrossIterationNeeds.end()) {
6951 auto Stg2 = SMS.stageScheduled(SU: const_cast<SUnit *>(S.getSUnit()));
6952 assert(Stg2 <= Stg && "Data dependence upon earlier stage");
6953 if (Stg - Stg2 < MAX_STAGES)
6954 CIter->second.set(position: Stg - Stg2);
6955 CIter->second.set(position: SEEN_AS_LIVE);
6956 }
6957 }
6958 }
6959
6960 bumpCrossIterationPressure(RPT&: RPTracker, CIN: CrossIterationNeeds);
6961 }
6962
6963 auto &P = RPTracker.getPressure().MaxSetPressure;
6964 for (unsigned I = 0, E = P.size(); I < E; ++I)
6965 if (P[I] > TRI->getRegPressureSetLimit(MF: *MF, Idx: I)) {
6966 return true;
6967 }
6968 return false;
6969}
6970
6971} // namespace
6972
6973std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
6974ARMBaseInstrInfo::analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const {
6975 MachineBasicBlock::iterator I = LoopBB->getFirstTerminator();
6976 MachineBasicBlock *Preheader = *LoopBB->pred_begin();
6977 if (Preheader == LoopBB)
6978 Preheader = *std::next(x: LoopBB->pred_begin());
6979
6980 if (I != LoopBB->end() && I->getOpcode() == ARM::t2Bcc) {
6981 // If the branch is a Bcc, then the CPSR should be set somewhere within the
6982 // block. We need to determine the reaching definition of CPSR so that
6983 // it can be marked as non-pipelineable, allowing the pipeliner to force
6984 // it into stage 0 or give up if it cannot or will not do so.
6985 MachineInstr *CCSetter = nullptr;
6986 for (auto &L : LoopBB->instrs()) {
6987 if (L.isCall())
6988 return nullptr;
6989 if (isCPSRDefined(MI: L))
6990 CCSetter = &L;
6991 }
6992 if (CCSetter)
6993 return std::make_unique<ARMPipelinerLoopInfo>(args: &*I, args&: CCSetter);
6994 else
6995 return nullptr; // Unable to find the CC setter, so unable to guarantee
6996 // that pipeline will work
6997 }
6998
6999 // Recognize:
7000 // preheader:
7001 // %1 = t2DoopLoopStart %0
7002 // loop:
7003 // %2 = phi %1, <not loop>, %..., %loop
7004 // %3 = t2LoopDec %2, <imm>
7005 // t2LoopEnd %3, %loop
7006
7007 if (I != LoopBB->end() && I->getOpcode() == ARM::t2LoopEnd) {
7008 for (auto &L : LoopBB->instrs())
7009 if (L.isCall())
7010 return nullptr;
7011 else if (isVCTP(MI: &L))
7012 return nullptr;
7013 Register LoopDecResult = I->getOperand(i: 0).getReg();
7014 MachineRegisterInfo &MRI = LoopBB->getParent()->getRegInfo();
7015 MachineInstr *LoopDec = MRI.getUniqueVRegDef(Reg: LoopDecResult);
7016 if (!LoopDec || LoopDec->getOpcode() != ARM::t2LoopDec)
7017 return nullptr;
7018 MachineInstr *LoopStart = nullptr;
7019 for (auto &J : Preheader->instrs())
7020 if (J.getOpcode() == ARM::t2DoLoopStart)
7021 LoopStart = &J;
7022 if (!LoopStart)
7023 return nullptr;
7024 return std::make_unique<ARMPipelinerLoopInfo>(args: &*I, args&: LoopDec);
7025 }
7026 return nullptr;
7027}
7028

source code of llvm/lib/Target/ARM/ARMBaseInstrInfo.cpp