1//===------- CGObjCMac.cpp - Interface to Apple Objective-C Runtime -------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This provides Objective-C code generation targeting the Apple runtime.
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCleanup.h"
15#include "CGObjCRuntime.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "CodeGenModule.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Attr.h"
21#include "clang/AST/Decl.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/Mangle.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/LangOptions.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "clang/CodeGen/ConstantInitBuilder.h"
30#include "llvm/ADT/CachedHashString.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/SetVector.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/SmallString.h"
35#include "llvm/ADT/UniqueVector.h"
36#include "llvm/IR/DataLayout.h"
37#include "llvm/IR/InlineAsm.h"
38#include "llvm/IR/IntrinsicInst.h"
39#include "llvm/IR/LLVMContext.h"
40#include "llvm/IR/Module.h"
41#include "llvm/Support/ScopedPrinter.h"
42#include "llvm/Support/raw_ostream.h"
43#include <cstdio>
44
45using namespace clang;
46using namespace CodeGen;
47
48namespace {
49
50// FIXME: We should find a nicer way to make the labels for metadata, string
51// concatenation is lame.
52
53class ObjCCommonTypesHelper {
54protected:
55 llvm::LLVMContext &VMContext;
56
57private:
58 // The types of these functions don't really matter because we
59 // should always bitcast before calling them.
60
61 /// id objc_msgSend (id, SEL, ...)
62 ///
63 /// The default messenger, used for sends whose ABI is unchanged from
64 /// the all-integer/pointer case.
65 llvm::FunctionCallee getMessageSendFn() const {
66 // Add the non-lazy-bind attribute, since objc_msgSend is likely to
67 // be called a lot.
68 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
69 return CGM.CreateRuntimeFunction(
70 llvm::FunctionType::get(ObjectPtrTy, params, true), "objc_msgSend",
71 llvm::AttributeList::get(CGM.getLLVMContext(),
72 llvm::AttributeList::FunctionIndex,
73 llvm::Attribute::NonLazyBind));
74 }
75
76 /// void objc_msgSend_stret (id, SEL, ...)
77 ///
78 /// The messenger used when the return value is an aggregate returned
79 /// by indirect reference in the first argument, and therefore the
80 /// self and selector parameters are shifted over by one.
81 llvm::FunctionCallee getMessageSendStretFn() const {
82 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
83 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: CGM.VoidTy,
84 Params: params, isVarArg: true),
85 Name: "objc_msgSend_stret");
86 }
87
88 /// [double | long double] objc_msgSend_fpret(id self, SEL op, ...)
89 ///
90 /// The messenger used when the return value is returned on the x87
91 /// floating-point stack; without a special entrypoint, the nil case
92 /// would be unbalanced.
93 llvm::FunctionCallee getMessageSendFpretFn() const {
94 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
95 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: CGM.DoubleTy,
96 Params: params, isVarArg: true),
97 Name: "objc_msgSend_fpret");
98 }
99
100 /// _Complex long double objc_msgSend_fp2ret(id self, SEL op, ...)
101 ///
102 /// The messenger used when the return value is returned in two values on the
103 /// x87 floating point stack; without a special entrypoint, the nil case
104 /// would be unbalanced. Only used on 64-bit X86.
105 llvm::FunctionCallee getMessageSendFp2retFn() const {
106 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
107 llvm::Type *longDoubleType = llvm::Type::getX86_FP80Ty(C&: VMContext);
108 llvm::Type *resultType =
109 llvm::StructType::get(elt1: longDoubleType, elts: longDoubleType);
110
111 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: resultType,
112 Params: params, isVarArg: true),
113 Name: "objc_msgSend_fp2ret");
114 }
115
116 /// id objc_msgSendSuper(struct objc_super *super, SEL op, ...)
117 ///
118 /// The messenger used for super calls, which have different dispatch
119 /// semantics. The class passed is the superclass of the current
120 /// class.
121 llvm::FunctionCallee getMessageSendSuperFn() const {
122 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
123 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
124 Params: params, isVarArg: true),
125 Name: "objc_msgSendSuper");
126 }
127
128 /// id objc_msgSendSuper2(struct objc_super *super, SEL op, ...)
129 ///
130 /// A slightly different messenger used for super calls. The class
131 /// passed is the current class.
132 llvm::FunctionCallee getMessageSendSuperFn2() const {
133 llvm::Type *params[] = { SuperPtrTy, SelectorPtrTy };
134 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
135 Params: params, isVarArg: true),
136 Name: "objc_msgSendSuper2");
137 }
138
139 /// void objc_msgSendSuper_stret(void *stretAddr, struct objc_super *super,
140 /// SEL op, ...)
141 ///
142 /// The messenger used for super calls which return an aggregate indirectly.
143 llvm::FunctionCallee getMessageSendSuperStretFn() const {
144 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
145 return CGM.CreateRuntimeFunction(
146 Ty: llvm::FunctionType::get(Result: CGM.VoidTy, Params: params, isVarArg: true),
147 Name: "objc_msgSendSuper_stret");
148 }
149
150 /// void objc_msgSendSuper2_stret(void * stretAddr, struct objc_super *super,
151 /// SEL op, ...)
152 ///
153 /// objc_msgSendSuper_stret with the super2 semantics.
154 llvm::FunctionCallee getMessageSendSuperStretFn2() const {
155 llvm::Type *params[] = { Int8PtrTy, SuperPtrTy, SelectorPtrTy };
156 return CGM.CreateRuntimeFunction(
157 Ty: llvm::FunctionType::get(Result: CGM.VoidTy, Params: params, isVarArg: true),
158 Name: "objc_msgSendSuper2_stret");
159 }
160
161 llvm::FunctionCallee getMessageSendSuperFpretFn() const {
162 // There is no objc_msgSendSuper_fpret? How can that work?
163 return getMessageSendSuperFn();
164 }
165
166 llvm::FunctionCallee getMessageSendSuperFpretFn2() const {
167 // There is no objc_msgSendSuper_fpret? How can that work?
168 return getMessageSendSuperFn2();
169 }
170
171protected:
172 CodeGen::CodeGenModule &CGM;
173
174public:
175 llvm::IntegerType *ShortTy, *IntTy, *LongTy;
176 llvm::PointerType *Int8PtrTy, *Int8PtrPtrTy;
177 llvm::PointerType *Int8PtrProgramASTy;
178 llvm::Type *IvarOffsetVarTy;
179
180 /// ObjectPtrTy - LLVM type for object handles (typeof(id))
181 llvm::PointerType *ObjectPtrTy;
182
183 /// PtrObjectPtrTy - LLVM type for id *
184 llvm::PointerType *PtrObjectPtrTy;
185
186 /// SelectorPtrTy - LLVM type for selector handles (typeof(SEL))
187 llvm::PointerType *SelectorPtrTy;
188
189private:
190 /// ProtocolPtrTy - LLVM type for external protocol handles
191 /// (typeof(Protocol))
192 llvm::Type *ExternalProtocolPtrTy;
193
194public:
195 llvm::Type *getExternalProtocolPtrTy() {
196 if (!ExternalProtocolPtrTy) {
197 // FIXME: It would be nice to unify this with the opaque type, so that the
198 // IR comes out a bit cleaner.
199 CodeGen::CodeGenTypes &Types = CGM.getTypes();
200 ASTContext &Ctx = CGM.getContext();
201 llvm::Type *T = Types.ConvertType(T: Ctx.getObjCProtoType());
202 ExternalProtocolPtrTy = llvm::PointerType::getUnqual(ElementType: T);
203 }
204
205 return ExternalProtocolPtrTy;
206 }
207
208 // SuperCTy - clang type for struct objc_super.
209 QualType SuperCTy;
210 // SuperPtrCTy - clang type for struct objc_super *.
211 QualType SuperPtrCTy;
212
213 /// SuperTy - LLVM type for struct objc_super.
214 llvm::StructType *SuperTy;
215 /// SuperPtrTy - LLVM type for struct objc_super *.
216 llvm::PointerType *SuperPtrTy;
217
218 /// PropertyTy - LLVM type for struct objc_property (struct _prop_t
219 /// in GCC parlance).
220 llvm::StructType *PropertyTy;
221
222 /// PropertyListTy - LLVM type for struct objc_property_list
223 /// (_prop_list_t in GCC parlance).
224 llvm::StructType *PropertyListTy;
225 /// PropertyListPtrTy - LLVM type for struct objc_property_list*.
226 llvm::PointerType *PropertyListPtrTy;
227
228 // MethodTy - LLVM type for struct objc_method.
229 llvm::StructType *MethodTy;
230
231 /// CacheTy - LLVM type for struct objc_cache.
232 llvm::Type *CacheTy;
233 /// CachePtrTy - LLVM type for struct objc_cache *.
234 llvm::PointerType *CachePtrTy;
235
236 llvm::FunctionCallee getGetPropertyFn() {
237 CodeGen::CodeGenTypes &Types = CGM.getTypes();
238 ASTContext &Ctx = CGM.getContext();
239 // id objc_getProperty (id, SEL, ptrdiff_t, bool)
240 CanQualType IdType = Ctx.getCanonicalParamType(T: Ctx.getObjCIdType());
241 CanQualType SelType = Ctx.getCanonicalParamType(T: Ctx.getObjCSelType());
242 CanQualType Params[] = {
243 IdType, SelType,
244 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(), Ctx.BoolTy};
245 llvm::FunctionType *FTy =
246 Types.GetFunctionType(
247 Types.arrangeBuiltinFunctionDeclaration(IdType, Params));
248 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_getProperty");
249 }
250
251 llvm::FunctionCallee getSetPropertyFn() {
252 CodeGen::CodeGenTypes &Types = CGM.getTypes();
253 ASTContext &Ctx = CGM.getContext();
254 // void objc_setProperty (id, SEL, ptrdiff_t, id, bool, bool)
255 CanQualType IdType = Ctx.getCanonicalParamType(T: Ctx.getObjCIdType());
256 CanQualType SelType = Ctx.getCanonicalParamType(T: Ctx.getObjCSelType());
257 CanQualType Params[] = {
258 IdType,
259 SelType,
260 Ctx.getPointerDiffType()->getCanonicalTypeUnqualified(),
261 IdType,
262 Ctx.BoolTy,
263 Ctx.BoolTy};
264 llvm::FunctionType *FTy =
265 Types.GetFunctionType(
266 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
267 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_setProperty");
268 }
269
270 llvm::FunctionCallee getOptimizedSetPropertyFn(bool atomic, bool copy) {
271 CodeGen::CodeGenTypes &Types = CGM.getTypes();
272 ASTContext &Ctx = CGM.getContext();
273 // void objc_setProperty_atomic(id self, SEL _cmd,
274 // id newValue, ptrdiff_t offset);
275 // void objc_setProperty_nonatomic(id self, SEL _cmd,
276 // id newValue, ptrdiff_t offset);
277 // void objc_setProperty_atomic_copy(id self, SEL _cmd,
278 // id newValue, ptrdiff_t offset);
279 // void objc_setProperty_nonatomic_copy(id self, SEL _cmd,
280 // id newValue, ptrdiff_t offset);
281
282 SmallVector<CanQualType,4> Params;
283 CanQualType IdType = Ctx.getCanonicalParamType(T: Ctx.getObjCIdType());
284 CanQualType SelType = Ctx.getCanonicalParamType(T: Ctx.getObjCSelType());
285 Params.push_back(Elt: IdType);
286 Params.push_back(Elt: SelType);
287 Params.push_back(Elt: IdType);
288 Params.push_back(Elt: Ctx.getPointerDiffType()->getCanonicalTypeUnqualified());
289 llvm::FunctionType *FTy =
290 Types.GetFunctionType(
291 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
292 const char *name;
293 if (atomic && copy)
294 name = "objc_setProperty_atomic_copy";
295 else if (atomic && !copy)
296 name = "objc_setProperty_atomic";
297 else if (!atomic && copy)
298 name = "objc_setProperty_nonatomic_copy";
299 else
300 name = "objc_setProperty_nonatomic";
301
302 return CGM.CreateRuntimeFunction(Ty: FTy, Name: name);
303 }
304
305 llvm::FunctionCallee getCopyStructFn() {
306 CodeGen::CodeGenTypes &Types = CGM.getTypes();
307 ASTContext &Ctx = CGM.getContext();
308 // void objc_copyStruct (void *, const void *, size_t, bool, bool)
309 SmallVector<CanQualType,5> Params;
310 Params.push_back(Elt: Ctx.VoidPtrTy);
311 Params.push_back(Elt: Ctx.VoidPtrTy);
312 Params.push_back(Elt: Ctx.getSizeType());
313 Params.push_back(Elt: Ctx.BoolTy);
314 Params.push_back(Elt: Ctx.BoolTy);
315 llvm::FunctionType *FTy =
316 Types.GetFunctionType(
317 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
318 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_copyStruct");
319 }
320
321 /// This routine declares and returns address of:
322 /// void objc_copyCppObjectAtomic(
323 /// void *dest, const void *src,
324 /// void (*copyHelper) (void *dest, const void *source));
325 llvm::FunctionCallee getCppAtomicObjectFunction() {
326 CodeGen::CodeGenTypes &Types = CGM.getTypes();
327 ASTContext &Ctx = CGM.getContext();
328 /// void objc_copyCppObjectAtomic(void *dest, const void *src, void *helper);
329 SmallVector<CanQualType,3> Params;
330 Params.push_back(Elt: Ctx.VoidPtrTy);
331 Params.push_back(Elt: Ctx.VoidPtrTy);
332 Params.push_back(Elt: Ctx.VoidPtrTy);
333 llvm::FunctionType *FTy =
334 Types.GetFunctionType(
335 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
336 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_copyCppObjectAtomic");
337 }
338
339 llvm::FunctionCallee getEnumerationMutationFn() {
340 CodeGen::CodeGenTypes &Types = CGM.getTypes();
341 ASTContext &Ctx = CGM.getContext();
342 // void objc_enumerationMutation (id)
343 SmallVector<CanQualType,1> Params;
344 Params.push_back(Elt: Ctx.getCanonicalParamType(T: Ctx.getObjCIdType()));
345 llvm::FunctionType *FTy =
346 Types.GetFunctionType(
347 Types.arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Params));
348 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_enumerationMutation");
349 }
350
351 llvm::FunctionCallee getLookUpClassFn() {
352 CodeGen::CodeGenTypes &Types = CGM.getTypes();
353 ASTContext &Ctx = CGM.getContext();
354 // Class objc_lookUpClass (const char *)
355 SmallVector<CanQualType,1> Params;
356 Params.push_back(
357 Elt: Ctx.getCanonicalType(Ctx.getPointerType(Ctx.CharTy.withConst())));
358 llvm::FunctionType *FTy =
359 Types.GetFunctionType(Info: Types.arrangeBuiltinFunctionDeclaration(
360 resultType: Ctx.getCanonicalType(T: Ctx.getObjCClassType()),
361 argTypes: Params));
362 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_lookUpClass");
363 }
364
365 /// GcReadWeakFn -- LLVM objc_read_weak (id *src) function.
366 llvm::FunctionCallee getGcReadWeakFn() {
367 // id objc_read_weak (id *)
368 llvm::Type *args[] = { ObjectPtrTy->getPointerTo() };
369 llvm::FunctionType *FTy =
370 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
371 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_read_weak");
372 }
373
374 /// GcAssignWeakFn -- LLVM objc_assign_weak function.
375 llvm::FunctionCallee getGcAssignWeakFn() {
376 // id objc_assign_weak (id, id *)
377 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
378 llvm::FunctionType *FTy =
379 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
380 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_assign_weak");
381 }
382
383 /// GcAssignGlobalFn -- LLVM objc_assign_global function.
384 llvm::FunctionCallee getGcAssignGlobalFn() {
385 // id objc_assign_global(id, id *)
386 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
387 llvm::FunctionType *FTy =
388 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
389 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_assign_global");
390 }
391
392 /// GcAssignThreadLocalFn -- LLVM objc_assign_threadlocal function.
393 llvm::FunctionCallee getGcAssignThreadLocalFn() {
394 // id objc_assign_threadlocal(id src, id * dest)
395 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
396 llvm::FunctionType *FTy =
397 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
398 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_assign_threadlocal");
399 }
400
401 /// GcAssignIvarFn -- LLVM objc_assign_ivar function.
402 llvm::FunctionCallee getGcAssignIvarFn() {
403 // id objc_assign_ivar(id, id *, ptrdiff_t)
404 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo(),
405 CGM.PtrDiffTy };
406 llvm::FunctionType *FTy =
407 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
408 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_assign_ivar");
409 }
410
411 /// GcMemmoveCollectableFn -- LLVM objc_memmove_collectable function.
412 llvm::FunctionCallee GcMemmoveCollectableFn() {
413 // void *objc_memmove_collectable(void *dst, const void *src, size_t size)
414 llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, LongTy };
415 llvm::FunctionType *FTy = llvm::FunctionType::get(Result: Int8PtrTy, Params: args, isVarArg: false);
416 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_memmove_collectable");
417 }
418
419 /// GcAssignStrongCastFn -- LLVM objc_assign_strongCast function.
420 llvm::FunctionCallee getGcAssignStrongCastFn() {
421 // id objc_assign_strongCast(id, id *)
422 llvm::Type *args[] = { ObjectPtrTy, ObjectPtrTy->getPointerTo() };
423 llvm::FunctionType *FTy =
424 llvm::FunctionType::get(Result: ObjectPtrTy, Params: args, isVarArg: false);
425 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_assign_strongCast");
426 }
427
428 /// ExceptionThrowFn - LLVM objc_exception_throw function.
429 llvm::FunctionCallee getExceptionThrowFn() {
430 // void objc_exception_throw(id)
431 llvm::Type *args[] = { ObjectPtrTy };
432 llvm::FunctionType *FTy =
433 llvm::FunctionType::get(Result: CGM.VoidTy, Params: args, isVarArg: false);
434 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_exception_throw");
435 }
436
437 /// ExceptionRethrowFn - LLVM objc_exception_rethrow function.
438 llvm::FunctionCallee getExceptionRethrowFn() {
439 // void objc_exception_rethrow(void)
440 llvm::FunctionType *FTy = llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false);
441 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_exception_rethrow");
442 }
443
444 /// SyncEnterFn - LLVM object_sync_enter function.
445 llvm::FunctionCallee getSyncEnterFn() {
446 // int objc_sync_enter (id)
447 llvm::Type *args[] = { ObjectPtrTy };
448 llvm::FunctionType *FTy =
449 llvm::FunctionType::get(Result: CGM.IntTy, Params: args, isVarArg: false);
450 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_sync_enter");
451 }
452
453 /// SyncExitFn - LLVM object_sync_exit function.
454 llvm::FunctionCallee getSyncExitFn() {
455 // int objc_sync_exit (id)
456 llvm::Type *args[] = { ObjectPtrTy };
457 llvm::FunctionType *FTy =
458 llvm::FunctionType::get(Result: CGM.IntTy, Params: args, isVarArg: false);
459 return CGM.CreateRuntimeFunction(Ty: FTy, Name: "objc_sync_exit");
460 }
461
462 llvm::FunctionCallee getSendFn(bool IsSuper) const {
463 return IsSuper ? getMessageSendSuperFn() : getMessageSendFn();
464 }
465
466 llvm::FunctionCallee getSendFn2(bool IsSuper) const {
467 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFn();
468 }
469
470 llvm::FunctionCallee getSendStretFn(bool IsSuper) const {
471 return IsSuper ? getMessageSendSuperStretFn() : getMessageSendStretFn();
472 }
473
474 llvm::FunctionCallee getSendStretFn2(bool IsSuper) const {
475 return IsSuper ? getMessageSendSuperStretFn2() : getMessageSendStretFn();
476 }
477
478 llvm::FunctionCallee getSendFpretFn(bool IsSuper) const {
479 return IsSuper ? getMessageSendSuperFpretFn() : getMessageSendFpretFn();
480 }
481
482 llvm::FunctionCallee getSendFpretFn2(bool IsSuper) const {
483 return IsSuper ? getMessageSendSuperFpretFn2() : getMessageSendFpretFn();
484 }
485
486 llvm::FunctionCallee getSendFp2retFn(bool IsSuper) const {
487 return IsSuper ? getMessageSendSuperFn() : getMessageSendFp2retFn();
488 }
489
490 llvm::FunctionCallee getSendFp2RetFn2(bool IsSuper) const {
491 return IsSuper ? getMessageSendSuperFn2() : getMessageSendFp2retFn();
492 }
493
494 ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm);
495};
496
497/// ObjCTypesHelper - Helper class that encapsulates lazy
498/// construction of varies types used during ObjC generation.
499class ObjCTypesHelper : public ObjCCommonTypesHelper {
500public:
501 /// SymtabTy - LLVM type for struct objc_symtab.
502 llvm::StructType *SymtabTy;
503 /// SymtabPtrTy - LLVM type for struct objc_symtab *.
504 llvm::PointerType *SymtabPtrTy;
505 /// ModuleTy - LLVM type for struct objc_module.
506 llvm::StructType *ModuleTy;
507
508 /// ProtocolTy - LLVM type for struct objc_protocol.
509 llvm::StructType *ProtocolTy;
510 /// ProtocolPtrTy - LLVM type for struct objc_protocol *.
511 llvm::PointerType *ProtocolPtrTy;
512 /// ProtocolExtensionTy - LLVM type for struct
513 /// objc_protocol_extension.
514 llvm::StructType *ProtocolExtensionTy;
515 /// ProtocolExtensionTy - LLVM type for struct
516 /// objc_protocol_extension *.
517 llvm::PointerType *ProtocolExtensionPtrTy;
518 /// MethodDescriptionTy - LLVM type for struct
519 /// objc_method_description.
520 llvm::StructType *MethodDescriptionTy;
521 /// MethodDescriptionListTy - LLVM type for struct
522 /// objc_method_description_list.
523 llvm::StructType *MethodDescriptionListTy;
524 /// MethodDescriptionListPtrTy - LLVM type for struct
525 /// objc_method_description_list *.
526 llvm::PointerType *MethodDescriptionListPtrTy;
527 /// ProtocolListTy - LLVM type for struct objc_property_list.
528 llvm::StructType *ProtocolListTy;
529 /// ProtocolListPtrTy - LLVM type for struct objc_property_list*.
530 llvm::PointerType *ProtocolListPtrTy;
531 /// CategoryTy - LLVM type for struct objc_category.
532 llvm::StructType *CategoryTy;
533 /// ClassTy - LLVM type for struct objc_class.
534 llvm::StructType *ClassTy;
535 /// ClassPtrTy - LLVM type for struct objc_class *.
536 llvm::PointerType *ClassPtrTy;
537 /// ClassExtensionTy - LLVM type for struct objc_class_ext.
538 llvm::StructType *ClassExtensionTy;
539 /// ClassExtensionPtrTy - LLVM type for struct objc_class_ext *.
540 llvm::PointerType *ClassExtensionPtrTy;
541 // IvarTy - LLVM type for struct objc_ivar.
542 llvm::StructType *IvarTy;
543 /// IvarListTy - LLVM type for struct objc_ivar_list.
544 llvm::StructType *IvarListTy;
545 /// IvarListPtrTy - LLVM type for struct objc_ivar_list *.
546 llvm::PointerType *IvarListPtrTy;
547 /// MethodListTy - LLVM type for struct objc_method_list.
548 llvm::StructType *MethodListTy;
549 /// MethodListPtrTy - LLVM type for struct objc_method_list *.
550 llvm::PointerType *MethodListPtrTy;
551
552 /// ExceptionDataTy - LLVM type for struct _objc_exception_data.
553 llvm::StructType *ExceptionDataTy;
554
555 /// ExceptionTryEnterFn - LLVM objc_exception_try_enter function.
556 llvm::FunctionCallee getExceptionTryEnterFn() {
557 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
558 return CGM.CreateRuntimeFunction(
559 Ty: llvm::FunctionType::get(Result: CGM.VoidTy, Params: params, isVarArg: false),
560 Name: "objc_exception_try_enter");
561 }
562
563 /// ExceptionTryExitFn - LLVM objc_exception_try_exit function.
564 llvm::FunctionCallee getExceptionTryExitFn() {
565 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
566 return CGM.CreateRuntimeFunction(
567 Ty: llvm::FunctionType::get(Result: CGM.VoidTy, Params: params, isVarArg: false),
568 Name: "objc_exception_try_exit");
569 }
570
571 /// ExceptionExtractFn - LLVM objc_exception_extract function.
572 llvm::FunctionCallee getExceptionExtractFn() {
573 llvm::Type *params[] = { ExceptionDataTy->getPointerTo() };
574 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
575 Params: params, isVarArg: false),
576 Name: "objc_exception_extract");
577 }
578
579 /// ExceptionMatchFn - LLVM objc_exception_match function.
580 llvm::FunctionCallee getExceptionMatchFn() {
581 llvm::Type *params[] = { ClassPtrTy, ObjectPtrTy };
582 return CGM.CreateRuntimeFunction(
583 Ty: llvm::FunctionType::get(Result: CGM.Int32Ty, Params: params, isVarArg: false),
584 Name: "objc_exception_match");
585 }
586
587 /// SetJmpFn - LLVM _setjmp function.
588 llvm::FunctionCallee getSetJmpFn() {
589 // This is specifically the prototype for x86.
590 llvm::Type *params[] = { CGM.Int32Ty->getPointerTo() };
591 return CGM.CreateRuntimeFunction(
592 llvm::FunctionType::get(CGM.Int32Ty, params, false), "_setjmp",
593 llvm::AttributeList::get(CGM.getLLVMContext(),
594 llvm::AttributeList::FunctionIndex,
595 llvm::Attribute::NonLazyBind));
596 }
597
598public:
599 ObjCTypesHelper(CodeGen::CodeGenModule &cgm);
600};
601
602/// ObjCNonFragileABITypesHelper - will have all types needed by objective-c's
603/// modern abi
604class ObjCNonFragileABITypesHelper : public ObjCCommonTypesHelper {
605public:
606 // MethodListnfABITy - LLVM for struct _method_list_t
607 llvm::StructType *MethodListnfABITy;
608
609 // MethodListnfABIPtrTy - LLVM for struct _method_list_t*
610 llvm::PointerType *MethodListnfABIPtrTy;
611
612 // ProtocolnfABITy = LLVM for struct _protocol_t
613 llvm::StructType *ProtocolnfABITy;
614
615 // ProtocolnfABIPtrTy = LLVM for struct _protocol_t*
616 llvm::PointerType *ProtocolnfABIPtrTy;
617
618 // ProtocolListnfABITy - LLVM for struct _objc_protocol_list
619 llvm::StructType *ProtocolListnfABITy;
620
621 // ProtocolListnfABIPtrTy - LLVM for struct _objc_protocol_list*
622 llvm::PointerType *ProtocolListnfABIPtrTy;
623
624 // ClassnfABITy - LLVM for struct _class_t
625 llvm::StructType *ClassnfABITy;
626
627 // ClassnfABIPtrTy - LLVM for struct _class_t*
628 llvm::PointerType *ClassnfABIPtrTy;
629
630 // IvarnfABITy - LLVM for struct _ivar_t
631 llvm::StructType *IvarnfABITy;
632
633 // IvarListnfABITy - LLVM for struct _ivar_list_t
634 llvm::StructType *IvarListnfABITy;
635
636 // IvarListnfABIPtrTy = LLVM for struct _ivar_list_t*
637 llvm::PointerType *IvarListnfABIPtrTy;
638
639 // ClassRonfABITy - LLVM for struct _class_ro_t
640 llvm::StructType *ClassRonfABITy;
641
642 // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
643 llvm::PointerType *ImpnfABITy;
644
645 // CategorynfABITy - LLVM for struct _category_t
646 llvm::StructType *CategorynfABITy;
647
648 // New types for nonfragile abi messaging.
649
650 // MessageRefTy - LLVM for:
651 // struct _message_ref_t {
652 // IMP messenger;
653 // SEL name;
654 // };
655 llvm::StructType *MessageRefTy;
656 // MessageRefCTy - clang type for struct _message_ref_t
657 QualType MessageRefCTy;
658
659 // MessageRefPtrTy - LLVM for struct _message_ref_t*
660 llvm::Type *MessageRefPtrTy;
661 // MessageRefCPtrTy - clang type for struct _message_ref_t*
662 QualType MessageRefCPtrTy;
663
664 // SuperMessageRefTy - LLVM for:
665 // struct _super_message_ref_t {
666 // SUPER_IMP messenger;
667 // SEL name;
668 // };
669 llvm::StructType *SuperMessageRefTy;
670
671 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
672 llvm::PointerType *SuperMessageRefPtrTy;
673
674 llvm::FunctionCallee getMessageSendFixupFn() {
675 // id objc_msgSend_fixup(id, struct message_ref_t*, ...)
676 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
677 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
678 Params: params, isVarArg: true),
679 Name: "objc_msgSend_fixup");
680 }
681
682 llvm::FunctionCallee getMessageSendFpretFixupFn() {
683 // id objc_msgSend_fpret_fixup(id, struct message_ref_t*, ...)
684 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
685 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
686 Params: params, isVarArg: true),
687 Name: "objc_msgSend_fpret_fixup");
688 }
689
690 llvm::FunctionCallee getMessageSendStretFixupFn() {
691 // id objc_msgSend_stret_fixup(id, struct message_ref_t*, ...)
692 llvm::Type *params[] = { ObjectPtrTy, MessageRefPtrTy };
693 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
694 Params: params, isVarArg: true),
695 Name: "objc_msgSend_stret_fixup");
696 }
697
698 llvm::FunctionCallee getMessageSendSuper2FixupFn() {
699 // id objc_msgSendSuper2_fixup (struct objc_super *,
700 // struct _super_message_ref_t*, ...)
701 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
702 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
703 Params: params, isVarArg: true),
704 Name: "objc_msgSendSuper2_fixup");
705 }
706
707 llvm::FunctionCallee getMessageSendSuper2StretFixupFn() {
708 // id objc_msgSendSuper2_stret_fixup(struct objc_super *,
709 // struct _super_message_ref_t*, ...)
710 llvm::Type *params[] = { SuperPtrTy, SuperMessageRefPtrTy };
711 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: ObjectPtrTy,
712 Params: params, isVarArg: true),
713 Name: "objc_msgSendSuper2_stret_fixup");
714 }
715
716 llvm::FunctionCallee getObjCEndCatchFn() {
717 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: CGM.VoidTy, isVarArg: false),
718 Name: "objc_end_catch");
719 }
720
721 llvm::FunctionCallee getObjCBeginCatchFn() {
722 llvm::Type *params[] = { Int8PtrTy };
723 return CGM.CreateRuntimeFunction(Ty: llvm::FunctionType::get(Result: Int8PtrTy,
724 Params: params, isVarArg: false),
725 Name: "objc_begin_catch");
726 }
727
728 /// Class objc_loadClassref (void *)
729 ///
730 /// Loads from a classref. For Objective-C stub classes, this invokes the
731 /// initialization callback stored inside the stub. For all other classes
732 /// this simply dereferences the pointer.
733 llvm::FunctionCallee getLoadClassrefFn() const {
734 // Add the non-lazy-bind attribute, since objc_loadClassref is likely to
735 // be called a lot.
736 //
737 // Also it is safe to make it readnone, since we never load or store the
738 // classref except by calling this function.
739 llvm::Type *params[] = { Int8PtrPtrTy };
740 llvm::LLVMContext &C = CGM.getLLVMContext();
741 llvm::AttributeSet AS = llvm::AttributeSet::get(C, {
742 llvm::Attribute::get(C, llvm::Attribute::NonLazyBind),
743 llvm::Attribute::getWithMemoryEffects(C, llvm::MemoryEffects::none()),
744 llvm::Attribute::get(C, llvm::Attribute::NoUnwind),
745 });
746 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
747 Ty: llvm::FunctionType::get(Result: ClassnfABIPtrTy, Params: params, isVarArg: false),
748 Name: "objc_loadClassref",
749 ExtraAttrs: llvm::AttributeList::get(C&: CGM.getLLVMContext(),
750 Index: llvm::AttributeList::FunctionIndex, Attrs: AS));
751 if (!CGM.getTriple().isOSBinFormatCOFF())
752 cast<llvm::Function>(Val: F.getCallee())->setLinkage(
753 llvm::Function::ExternalWeakLinkage);
754
755 return F;
756 }
757
758 llvm::StructType *EHTypeTy;
759 llvm::Type *EHTypePtrTy;
760
761 ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm);
762};
763
764enum class ObjCLabelType {
765 ClassName,
766 MethodVarName,
767 MethodVarType,
768 PropertyName,
769};
770
771class CGObjCCommonMac : public CodeGen::CGObjCRuntime {
772public:
773 class SKIP_SCAN {
774 public:
775 unsigned skip;
776 unsigned scan;
777 SKIP_SCAN(unsigned _skip = 0, unsigned _scan = 0)
778 : skip(_skip), scan(_scan) {}
779 };
780
781 /// opcode for captured block variables layout 'instructions'.
782 /// In the following descriptions, 'I' is the value of the immediate field.
783 /// (field following the opcode).
784 ///
785 enum BLOCK_LAYOUT_OPCODE {
786 /// An operator which affects how the following layout should be
787 /// interpreted.
788 /// I == 0: Halt interpretation and treat everything else as
789 /// a non-pointer. Note that this instruction is equal
790 /// to '\0'.
791 /// I != 0: Currently unused.
792 BLOCK_LAYOUT_OPERATOR = 0,
793
794 /// The next I+1 bytes do not contain a value of object pointer type.
795 /// Note that this can leave the stream unaligned, meaning that
796 /// subsequent word-size instructions do not begin at a multiple of
797 /// the pointer size.
798 BLOCK_LAYOUT_NON_OBJECT_BYTES = 1,
799
800 /// The next I+1 words do not contain a value of object pointer type.
801 /// This is simply an optimized version of BLOCK_LAYOUT_BYTES for
802 /// when the required skip quantity is a multiple of the pointer size.
803 BLOCK_LAYOUT_NON_OBJECT_WORDS = 2,
804
805 /// The next I+1 words are __strong pointers to Objective-C
806 /// objects or blocks.
807 BLOCK_LAYOUT_STRONG = 3,
808
809 /// The next I+1 words are pointers to __block variables.
810 BLOCK_LAYOUT_BYREF = 4,
811
812 /// The next I+1 words are __weak pointers to Objective-C
813 /// objects or blocks.
814 BLOCK_LAYOUT_WEAK = 5,
815
816 /// The next I+1 words are __unsafe_unretained pointers to
817 /// Objective-C objects or blocks.
818 BLOCK_LAYOUT_UNRETAINED = 6
819
820 /// The next I+1 words are block or object pointers with some
821 /// as-yet-unspecified ownership semantics. If we add more
822 /// flavors of ownership semantics, values will be taken from
823 /// this range.
824 ///
825 /// This is included so that older tools can at least continue
826 /// processing the layout past such things.
827 //BLOCK_LAYOUT_OWNERSHIP_UNKNOWN = 7..10,
828
829 /// All other opcodes are reserved. Halt interpretation and
830 /// treat everything else as opaque.
831 };
832
833 class RUN_SKIP {
834 public:
835 enum BLOCK_LAYOUT_OPCODE opcode;
836 CharUnits block_var_bytepos;
837 CharUnits block_var_size;
838 RUN_SKIP(enum BLOCK_LAYOUT_OPCODE Opcode = BLOCK_LAYOUT_OPERATOR,
839 CharUnits BytePos = CharUnits::Zero(),
840 CharUnits Size = CharUnits::Zero())
841 : opcode(Opcode), block_var_bytepos(BytePos), block_var_size(Size) {}
842
843 // Allow sorting based on byte pos.
844 bool operator<(const RUN_SKIP &b) const {
845 return block_var_bytepos < b.block_var_bytepos;
846 }
847 };
848
849protected:
850 llvm::LLVMContext &VMContext;
851 // FIXME! May not be needing this after all.
852 unsigned ObjCABI;
853
854 // arc/mrr layout of captured block literal variables.
855 SmallVector<RUN_SKIP, 16> RunSkipBlockVars;
856
857 /// LazySymbols - Symbols to generate a lazy reference for. See
858 /// DefinedSymbols and FinishModule().
859 llvm::SetVector<IdentifierInfo*> LazySymbols;
860
861 /// DefinedSymbols - External symbols which are defined by this
862 /// module. The symbols in this list and LazySymbols are used to add
863 /// special linker symbols which ensure that Objective-C modules are
864 /// linked properly.
865 llvm::SetVector<IdentifierInfo*> DefinedSymbols;
866
867 /// ClassNames - uniqued class names.
868 llvm::StringMap<llvm::GlobalVariable*> ClassNames;
869
870 /// MethodVarNames - uniqued method variable names.
871 llvm::DenseMap<Selector, llvm::GlobalVariable*> MethodVarNames;
872
873 /// DefinedCategoryNames - list of category names in form Class_Category.
874 llvm::SmallSetVector<llvm::CachedHashString, 16> DefinedCategoryNames;
875
876 /// MethodVarTypes - uniqued method type signatures. We have to use
877 /// a StringMap here because have no other unique reference.
878 llvm::StringMap<llvm::GlobalVariable*> MethodVarTypes;
879
880 /// MethodDefinitions - map of methods which have been defined in
881 /// this translation unit.
882 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> MethodDefinitions;
883
884 /// DirectMethodDefinitions - map of direct methods which have been defined in
885 /// this translation unit.
886 llvm::DenseMap<const ObjCMethodDecl*, llvm::Function*> DirectMethodDefinitions;
887
888 /// PropertyNames - uniqued method variable names.
889 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> PropertyNames;
890
891 /// ClassReferences - uniqued class references.
892 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> ClassReferences;
893
894 /// SelectorReferences - uniqued selector references.
895 llvm::DenseMap<Selector, llvm::GlobalVariable*> SelectorReferences;
896
897 /// Protocols - Protocols for which an objc_protocol structure has
898 /// been emitted. Forward declarations are handled by creating an
899 /// empty structure whose initializer is filled in when/if defined.
900 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> Protocols;
901
902 /// DefinedProtocols - Protocols which have actually been
903 /// defined. We should not need this, see FIXME in GenerateProtocol.
904 llvm::DenseSet<IdentifierInfo*> DefinedProtocols;
905
906 /// DefinedClasses - List of defined classes.
907 SmallVector<llvm::GlobalValue*, 16> DefinedClasses;
908
909 /// ImplementedClasses - List of @implemented classes.
910 SmallVector<const ObjCInterfaceDecl*, 16> ImplementedClasses;
911
912 /// DefinedNonLazyClasses - List of defined "non-lazy" classes.
913 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyClasses;
914
915 /// DefinedCategories - List of defined categories.
916 SmallVector<llvm::GlobalValue*, 16> DefinedCategories;
917
918 /// DefinedStubCategories - List of defined categories on class stubs.
919 SmallVector<llvm::GlobalValue*, 16> DefinedStubCategories;
920
921 /// DefinedNonLazyCategories - List of defined "non-lazy" categories.
922 SmallVector<llvm::GlobalValue*, 16> DefinedNonLazyCategories;
923
924 /// Cached reference to the class for constant strings. This value has type
925 /// int * but is actually an Obj-C class pointer.
926 llvm::WeakTrackingVH ConstantStringClassRef;
927
928 /// The LLVM type corresponding to NSConstantString.
929 llvm::StructType *NSConstantStringType = nullptr;
930
931 llvm::StringMap<llvm::GlobalVariable *> NSConstantStringMap;
932
933 /// GetMethodVarName - Return a unique constant for the given
934 /// selector's name. The return value has type char *.
935 llvm::Constant *GetMethodVarName(Selector Sel);
936 llvm::Constant *GetMethodVarName(IdentifierInfo *Ident);
937
938 /// GetMethodVarType - Return a unique constant for the given
939 /// method's type encoding string. The return value has type char *.
940
941 // FIXME: This is a horrible name.
942 llvm::Constant *GetMethodVarType(const ObjCMethodDecl *D,
943 bool Extended = false);
944 llvm::Constant *GetMethodVarType(const FieldDecl *D);
945
946 /// GetPropertyName - Return a unique constant for the given
947 /// name. The return value has type char *.
948 llvm::Constant *GetPropertyName(IdentifierInfo *Ident);
949
950 // FIXME: This can be dropped once string functions are unified.
951 llvm::Constant *GetPropertyTypeString(const ObjCPropertyDecl *PD,
952 const Decl *Container);
953
954 /// GetClassName - Return a unique constant for the given selector's
955 /// runtime name (which may change via use of objc_runtime_name attribute on
956 /// class or protocol definition. The return value has type char *.
957 llvm::Constant *GetClassName(StringRef RuntimeName);
958
959 llvm::Function *GetMethodDefinition(const ObjCMethodDecl *MD);
960
961 /// BuildIvarLayout - Builds ivar layout bitmap for the class
962 /// implementation for the __strong or __weak case.
963 ///
964 /// \param hasMRCWeakIvars - Whether we are compiling in MRC and there
965 /// are any weak ivars defined directly in the class. Meaningless unless
966 /// building a weak layout. Does not guarantee that the layout will
967 /// actually have any entries, because the ivar might be under-aligned.
968 llvm::Constant *BuildIvarLayout(const ObjCImplementationDecl *OI,
969 CharUnits beginOffset,
970 CharUnits endOffset,
971 bool forStrongLayout,
972 bool hasMRCWeakIvars);
973
974 llvm::Constant *BuildStrongIvarLayout(const ObjCImplementationDecl *OI,
975 CharUnits beginOffset,
976 CharUnits endOffset) {
977 return BuildIvarLayout(OI, beginOffset, endOffset, forStrongLayout: true, hasMRCWeakIvars: false);
978 }
979
980 llvm::Constant *BuildWeakIvarLayout(const ObjCImplementationDecl *OI,
981 CharUnits beginOffset,
982 CharUnits endOffset,
983 bool hasMRCWeakIvars) {
984 return BuildIvarLayout(OI, beginOffset, endOffset, forStrongLayout: false, hasMRCWeakIvars);
985 }
986
987 Qualifiers::ObjCLifetime getBlockCaptureLifetime(QualType QT, bool ByrefLayout);
988
989 void UpdateRunSkipBlockVars(bool IsByref,
990 Qualifiers::ObjCLifetime LifeTime,
991 CharUnits FieldOffset,
992 CharUnits FieldSize);
993
994 void BuildRCBlockVarRecordLayout(const RecordType *RT,
995 CharUnits BytePos, bool &HasUnion,
996 bool ByrefLayout=false);
997
998 void BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
999 const RecordDecl *RD,
1000 ArrayRef<const FieldDecl*> RecFields,
1001 CharUnits BytePos, bool &HasUnion,
1002 bool ByrefLayout);
1003
1004 uint64_t InlineLayoutInstruction(SmallVectorImpl<unsigned char> &Layout);
1005
1006 llvm::Constant *getBitmapBlockLayout(bool ComputeByrefLayout);
1007
1008 /// GetIvarLayoutName - Returns a unique constant for the given
1009 /// ivar layout bitmap.
1010 llvm::Constant *GetIvarLayoutName(IdentifierInfo *Ident,
1011 const ObjCCommonTypesHelper &ObjCTypes);
1012
1013 /// EmitPropertyList - Emit the given property list. The return
1014 /// value has type PropertyListPtrTy.
1015 llvm::Constant *EmitPropertyList(Twine Name,
1016 const Decl *Container,
1017 const ObjCContainerDecl *OCD,
1018 const ObjCCommonTypesHelper &ObjCTypes,
1019 bool IsClassProperty);
1020
1021 /// EmitProtocolMethodTypes - Generate the array of extended method type
1022 /// strings. The return value has type Int8PtrPtrTy.
1023 llvm::Constant *EmitProtocolMethodTypes(Twine Name,
1024 ArrayRef<llvm::Constant*> MethodTypes,
1025 const ObjCCommonTypesHelper &ObjCTypes);
1026
1027 /// GetProtocolRef - Return a reference to the internal protocol
1028 /// description, creating an empty one if it has not been
1029 /// defined. The return value has type ProtocolPtrTy.
1030 llvm::Constant *GetProtocolRef(const ObjCProtocolDecl *PD);
1031
1032 /// Return a reference to the given Class using runtime calls rather than
1033 /// by a symbol reference.
1034 llvm::Value *EmitClassRefViaRuntime(CodeGenFunction &CGF,
1035 const ObjCInterfaceDecl *ID,
1036 ObjCCommonTypesHelper &ObjCTypes);
1037
1038 std::string GetSectionName(StringRef Section, StringRef MachOAttributes);
1039
1040public:
1041 /// CreateMetadataVar - Create a global variable with internal
1042 /// linkage for use by the Objective-C runtime.
1043 ///
1044 /// This is a convenience wrapper which not only creates the
1045 /// variable, but also sets the section and alignment and adds the
1046 /// global to the "llvm.used" list.
1047 ///
1048 /// \param Name - The variable name.
1049 /// \param Init - The variable initializer; this is also used to
1050 /// define the type of the variable.
1051 /// \param Section - The section the variable should go into, or empty.
1052 /// \param Align - The alignment for the variable, or 0.
1053 /// \param AddToUsed - Whether the variable should be added to
1054 /// "llvm.used".
1055 llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1056 ConstantStructBuilder &Init,
1057 StringRef Section, CharUnits Align,
1058 bool AddToUsed);
1059 llvm::GlobalVariable *CreateMetadataVar(Twine Name,
1060 llvm::Constant *Init,
1061 StringRef Section, CharUnits Align,
1062 bool AddToUsed);
1063
1064 llvm::GlobalVariable *CreateCStringLiteral(StringRef Name,
1065 ObjCLabelType LabelType,
1066 bool ForceNonFragileABI = false,
1067 bool NullTerminate = true);
1068
1069protected:
1070 CodeGen::RValue EmitMessageSend(CodeGen::CodeGenFunction &CGF,
1071 ReturnValueSlot Return,
1072 QualType ResultType,
1073 Selector Sel,
1074 llvm::Value *Arg0,
1075 QualType Arg0Ty,
1076 bool IsSuper,
1077 const CallArgList &CallArgs,
1078 const ObjCMethodDecl *OMD,
1079 const ObjCInterfaceDecl *ClassReceiver,
1080 const ObjCCommonTypesHelper &ObjCTypes);
1081
1082 /// EmitImageInfo - Emit the image info marker used to encode some module
1083 /// level information.
1084 void EmitImageInfo();
1085
1086public:
1087 CGObjCCommonMac(CodeGen::CodeGenModule &cgm)
1088 : CGObjCRuntime(cgm), VMContext(cgm.getLLVMContext()) {}
1089
1090 bool isNonFragileABI() const {
1091 return ObjCABI == 2;
1092 }
1093
1094 ConstantAddress GenerateConstantString(const StringLiteral *SL) override;
1095 ConstantAddress GenerateConstantNSString(const StringLiteral *SL);
1096
1097 llvm::Function *GenerateMethod(const ObjCMethodDecl *OMD,
1098 const ObjCContainerDecl *CD=nullptr) override;
1099
1100 llvm::Function *GenerateDirectMethod(const ObjCMethodDecl *OMD,
1101 const ObjCContainerDecl *CD);
1102
1103 void GenerateDirectMethodPrologue(CodeGenFunction &CGF, llvm::Function *Fn,
1104 const ObjCMethodDecl *OMD,
1105 const ObjCContainerDecl *CD) override;
1106
1107 void GenerateProtocol(const ObjCProtocolDecl *PD) override;
1108
1109 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1110 /// object for the given declaration, emitting it if needed. These
1111 /// forward references will be filled in with empty bodies if no
1112 /// definition is seen. The return value has type ProtocolPtrTy.
1113 virtual llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD)=0;
1114
1115 virtual llvm::Constant *getNSConstantStringClassRef() = 0;
1116
1117 llvm::Constant *BuildGCBlockLayout(CodeGen::CodeGenModule &CGM,
1118 const CGBlockInfo &blockInfo) override;
1119 llvm::Constant *BuildRCBlockLayout(CodeGen::CodeGenModule &CGM,
1120 const CGBlockInfo &blockInfo) override;
1121 std::string getRCBlockLayoutStr(CodeGen::CodeGenModule &CGM,
1122 const CGBlockInfo &blockInfo) override;
1123
1124 llvm::Constant *BuildByrefLayout(CodeGen::CodeGenModule &CGM,
1125 QualType T) override;
1126
1127private:
1128 void fillRunSkipBlockVars(CodeGenModule &CGM, const CGBlockInfo &blockInfo);
1129};
1130
1131namespace {
1132
1133enum class MethodListType {
1134 CategoryInstanceMethods,
1135 CategoryClassMethods,
1136 InstanceMethods,
1137 ClassMethods,
1138 ProtocolInstanceMethods,
1139 ProtocolClassMethods,
1140 OptionalProtocolInstanceMethods,
1141 OptionalProtocolClassMethods,
1142};
1143
1144/// A convenience class for splitting the methods of a protocol into
1145/// the four interesting groups.
1146class ProtocolMethodLists {
1147public:
1148 enum Kind {
1149 RequiredInstanceMethods,
1150 RequiredClassMethods,
1151 OptionalInstanceMethods,
1152 OptionalClassMethods
1153 };
1154 enum {
1155 NumProtocolMethodLists = 4
1156 };
1157
1158 static MethodListType getMethodListKind(Kind kind) {
1159 switch (kind) {
1160 case RequiredInstanceMethods:
1161 return MethodListType::ProtocolInstanceMethods;
1162 case RequiredClassMethods:
1163 return MethodListType::ProtocolClassMethods;
1164 case OptionalInstanceMethods:
1165 return MethodListType::OptionalProtocolInstanceMethods;
1166 case OptionalClassMethods:
1167 return MethodListType::OptionalProtocolClassMethods;
1168 }
1169 llvm_unreachable("bad kind");
1170 }
1171
1172 SmallVector<const ObjCMethodDecl *, 4> Methods[NumProtocolMethodLists];
1173
1174 static ProtocolMethodLists get(const ObjCProtocolDecl *PD) {
1175 ProtocolMethodLists result;
1176
1177 for (auto *MD : PD->methods()) {
1178 size_t index = (2 * size_t(MD->isOptional()))
1179 + (size_t(MD->isClassMethod()));
1180 result.Methods[index].push_back(MD);
1181 }
1182
1183 return result;
1184 }
1185
1186 template <class Self>
1187 SmallVector<llvm::Constant*, 8> emitExtendedTypesArray(Self *self) const {
1188 // In both ABIs, the method types list is parallel with the
1189 // concatenation of the methods arrays in the following order:
1190 // instance methods
1191 // class methods
1192 // optional instance methods
1193 // optional class methods
1194 SmallVector<llvm::Constant*, 8> result;
1195
1196 // Methods is already in the correct order for both ABIs.
1197 for (auto &list : Methods) {
1198 for (auto MD : list) {
1199 result.push_back(Elt: self->GetMethodVarType(MD, true));
1200 }
1201 }
1202
1203 return result;
1204 }
1205
1206 template <class Self>
1207 llvm::Constant *emitMethodList(Self *self, const ObjCProtocolDecl *PD,
1208 Kind kind) const {
1209 return self->emitMethodList(PD->getObjCRuntimeNameAsString(),
1210 getMethodListKind(kind), Methods[kind]);
1211 }
1212};
1213
1214} // end anonymous namespace
1215
1216class CGObjCMac : public CGObjCCommonMac {
1217private:
1218 friend ProtocolMethodLists;
1219
1220 ObjCTypesHelper ObjCTypes;
1221
1222 /// EmitModuleInfo - Another marker encoding module level
1223 /// information.
1224 void EmitModuleInfo();
1225
1226 /// EmitModuleSymols - Emit module symbols, the list of defined
1227 /// classes and categories. The result has type SymtabPtrTy.
1228 llvm::Constant *EmitModuleSymbols();
1229
1230 /// FinishModule - Write out global data structures at the end of
1231 /// processing a translation unit.
1232 void FinishModule();
1233
1234 /// EmitClassExtension - Generate the class extension structure used
1235 /// to store the weak ivar layout and properties. The return value
1236 /// has type ClassExtensionPtrTy.
1237 llvm::Constant *EmitClassExtension(const ObjCImplementationDecl *ID,
1238 CharUnits instanceSize,
1239 bool hasMRCWeakIvars,
1240 bool isMetaclass);
1241
1242 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1243 /// for the given class.
1244 llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1245 const ObjCInterfaceDecl *ID);
1246
1247 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1248 IdentifierInfo *II);
1249
1250 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1251
1252 /// EmitSuperClassRef - Emits reference to class's main metadata class.
1253 llvm::Value *EmitSuperClassRef(const ObjCInterfaceDecl *ID);
1254
1255 /// EmitIvarList - Emit the ivar list for the given
1256 /// implementation. If ForClass is true the list of class ivars
1257 /// (i.e. metaclass ivars) is emitted, otherwise the list of
1258 /// interface ivars will be emitted. The return value has type
1259 /// IvarListPtrTy.
1260 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID,
1261 bool ForClass);
1262
1263 /// EmitMetaClass - Emit a forward reference to the class structure
1264 /// for the metaclass of the given interface. The return value has
1265 /// type ClassPtrTy.
1266 llvm::Constant *EmitMetaClassRef(const ObjCInterfaceDecl *ID);
1267
1268 /// EmitMetaClass - Emit a class structure for the metaclass of the
1269 /// given implementation. The return value has type ClassPtrTy.
1270 llvm::Constant *EmitMetaClass(const ObjCImplementationDecl *ID,
1271 llvm::Constant *Protocols,
1272 ArrayRef<const ObjCMethodDecl *> Methods);
1273
1274 void emitMethodConstant(ConstantArrayBuilder &builder,
1275 const ObjCMethodDecl *MD);
1276
1277 void emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
1278 const ObjCMethodDecl *MD);
1279
1280 /// EmitMethodList - Emit the method list for the given
1281 /// implementation. The return value has type MethodListPtrTy.
1282 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1283 ArrayRef<const ObjCMethodDecl *> Methods);
1284
1285 /// GetOrEmitProtocol - Get the protocol object for the given
1286 /// declaration, emitting it if necessary. The return value has type
1287 /// ProtocolPtrTy.
1288 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1289
1290 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1291 /// object for the given declaration, emitting it if needed. These
1292 /// forward references will be filled in with empty bodies if no
1293 /// definition is seen. The return value has type ProtocolPtrTy.
1294 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1295
1296 /// EmitProtocolExtension - Generate the protocol extension
1297 /// structure used to store optional instance and class methods, and
1298 /// protocol properties. The return value has type
1299 /// ProtocolExtensionPtrTy.
1300 llvm::Constant *
1301 EmitProtocolExtension(const ObjCProtocolDecl *PD,
1302 const ProtocolMethodLists &methodLists);
1303
1304 /// EmitProtocolList - Generate the list of referenced
1305 /// protocols. The return value has type ProtocolListPtrTy.
1306 llvm::Constant *EmitProtocolList(Twine Name,
1307 ObjCProtocolDecl::protocol_iterator begin,
1308 ObjCProtocolDecl::protocol_iterator end);
1309
1310 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1311 /// for the given selector.
1312 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1313 Address EmitSelectorAddr(Selector Sel);
1314
1315public:
1316 CGObjCMac(CodeGen::CodeGenModule &cgm);
1317
1318 llvm::Constant *getNSConstantStringClassRef() override;
1319
1320 llvm::Function *ModuleInitFunction() override;
1321
1322 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1323 ReturnValueSlot Return,
1324 QualType ResultType,
1325 Selector Sel, llvm::Value *Receiver,
1326 const CallArgList &CallArgs,
1327 const ObjCInterfaceDecl *Class,
1328 const ObjCMethodDecl *Method) override;
1329
1330 CodeGen::RValue
1331 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1332 ReturnValueSlot Return, QualType ResultType,
1333 Selector Sel, const ObjCInterfaceDecl *Class,
1334 bool isCategoryImpl, llvm::Value *Receiver,
1335 bool IsClassMessage, const CallArgList &CallArgs,
1336 const ObjCMethodDecl *Method) override;
1337
1338 llvm::Value *GetClass(CodeGenFunction &CGF,
1339 const ObjCInterfaceDecl *ID) override;
1340
1341 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override;
1342 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override;
1343
1344 /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1345 /// untyped one.
1346 llvm::Value *GetSelector(CodeGenFunction &CGF,
1347 const ObjCMethodDecl *Method) override;
1348
1349 llvm::Constant *GetEHType(QualType T) override;
1350
1351 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1352
1353 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1354
1355 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1356
1357 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1358 const ObjCProtocolDecl *PD) override;
1359
1360 llvm::FunctionCallee GetPropertyGetFunction() override;
1361 llvm::FunctionCallee GetPropertySetFunction() override;
1362 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1363 bool copy) override;
1364 llvm::FunctionCallee GetGetStructFunction() override;
1365 llvm::FunctionCallee GetSetStructFunction() override;
1366 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override;
1367 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override;
1368 llvm::FunctionCallee EnumerationMutationFunction() override;
1369
1370 void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1371 const ObjCAtTryStmt &S) override;
1372 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1373 const ObjCAtSynchronizedStmt &S) override;
1374 void EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF, const Stmt &S);
1375 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1376 bool ClearInsertionPoint=true) override;
1377 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1378 Address AddrWeakObj) override;
1379 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1380 llvm::Value *src, Address dst) override;
1381 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1382 llvm::Value *src, Address dest,
1383 bool threadlocal = false) override;
1384 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1385 llvm::Value *src, Address dest,
1386 llvm::Value *ivarOffset) override;
1387 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1388 llvm::Value *src, Address dest) override;
1389 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1390 Address dest, Address src,
1391 llvm::Value *size) override;
1392
1393 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1394 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1395 unsigned CVRQualifiers) override;
1396 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1397 const ObjCInterfaceDecl *Interface,
1398 const ObjCIvarDecl *Ivar) override;
1399};
1400
1401class CGObjCNonFragileABIMac : public CGObjCCommonMac {
1402private:
1403 friend ProtocolMethodLists;
1404 ObjCNonFragileABITypesHelper ObjCTypes;
1405 llvm::GlobalVariable* ObjCEmptyCacheVar;
1406 llvm::Constant* ObjCEmptyVtableVar;
1407
1408 /// SuperClassReferences - uniqued super class references.
1409 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> SuperClassReferences;
1410
1411 /// MetaClassReferences - uniqued meta class references.
1412 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> MetaClassReferences;
1413
1414 /// EHTypeReferences - uniqued class ehtype references.
1415 llvm::DenseMap<IdentifierInfo*, llvm::GlobalVariable*> EHTypeReferences;
1416
1417 /// VTableDispatchMethods - List of methods for which we generate
1418 /// vtable-based message dispatch.
1419 llvm::DenseSet<Selector> VTableDispatchMethods;
1420
1421 /// DefinedMetaClasses - List of defined meta-classes.
1422 std::vector<llvm::GlobalValue*> DefinedMetaClasses;
1423
1424 /// isVTableDispatchedSelector - Returns true if SEL is a
1425 /// vtable-based selector.
1426 bool isVTableDispatchedSelector(Selector Sel);
1427
1428 /// FinishNonFragileABIModule - Write out global data structures at the end of
1429 /// processing a translation unit.
1430 void FinishNonFragileABIModule();
1431
1432 /// AddModuleClassList - Add the given list of class pointers to the
1433 /// module with the provided symbol and section names.
1434 void AddModuleClassList(ArrayRef<llvm::GlobalValue *> Container,
1435 StringRef SymbolName, StringRef SectionName);
1436
1437 llvm::GlobalVariable * BuildClassRoTInitializer(unsigned flags,
1438 unsigned InstanceStart,
1439 unsigned InstanceSize,
1440 const ObjCImplementationDecl *ID);
1441 llvm::GlobalVariable *BuildClassObject(const ObjCInterfaceDecl *CI,
1442 bool isMetaclass,
1443 llvm::Constant *IsAGV,
1444 llvm::Constant *SuperClassGV,
1445 llvm::Constant *ClassRoGV,
1446 bool HiddenVisibility);
1447
1448 void emitMethodConstant(ConstantArrayBuilder &builder,
1449 const ObjCMethodDecl *MD,
1450 bool forProtocol);
1451
1452 /// Emit the method list for the given implementation. The return value
1453 /// has type MethodListnfABITy.
1454 llvm::Constant *emitMethodList(Twine Name, MethodListType MLT,
1455 ArrayRef<const ObjCMethodDecl *> Methods);
1456
1457 /// EmitIvarList - Emit the ivar list for the given
1458 /// implementation. If ForClass is true the list of class ivars
1459 /// (i.e. metaclass ivars) is emitted, otherwise the list of
1460 /// interface ivars will be emitted. The return value has type
1461 /// IvarListnfABIPtrTy.
1462 llvm::Constant *EmitIvarList(const ObjCImplementationDecl *ID);
1463
1464 llvm::Constant *EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
1465 const ObjCIvarDecl *Ivar,
1466 unsigned long int offset);
1467
1468 /// GetOrEmitProtocol - Get the protocol object for the given
1469 /// declaration, emitting it if necessary. The return value has type
1470 /// ProtocolPtrTy.
1471 llvm::Constant *GetOrEmitProtocol(const ObjCProtocolDecl *PD) override;
1472
1473 /// GetOrEmitProtocolRef - Get a forward reference to the protocol
1474 /// object for the given declaration, emitting it if needed. These
1475 /// forward references will be filled in with empty bodies if no
1476 /// definition is seen. The return value has type ProtocolPtrTy.
1477 llvm::Constant *GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) override;
1478
1479 /// EmitProtocolList - Generate the list of referenced
1480 /// protocols. The return value has type ProtocolListPtrTy.
1481 llvm::Constant *EmitProtocolList(Twine Name,
1482 ObjCProtocolDecl::protocol_iterator begin,
1483 ObjCProtocolDecl::protocol_iterator end);
1484
1485 CodeGen::RValue EmitVTableMessageSend(CodeGen::CodeGenFunction &CGF,
1486 ReturnValueSlot Return,
1487 QualType ResultType,
1488 Selector Sel,
1489 llvm::Value *Receiver,
1490 QualType Arg0Ty,
1491 bool IsSuper,
1492 const CallArgList &CallArgs,
1493 const ObjCMethodDecl *Method);
1494
1495 /// GetClassGlobal - Return the global variable for the Objective-C
1496 /// class of the given name.
1497 llvm::Constant *GetClassGlobal(StringRef Name,
1498 ForDefinition_t IsForDefinition,
1499 bool Weak = false, bool DLLImport = false);
1500 llvm::Constant *GetClassGlobal(const ObjCInterfaceDecl *ID,
1501 bool isMetaclass,
1502 ForDefinition_t isForDefinition);
1503
1504 llvm::Constant *GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID);
1505
1506 llvm::Value *EmitLoadOfClassRef(CodeGenFunction &CGF,
1507 const ObjCInterfaceDecl *ID,
1508 llvm::GlobalVariable *Entry);
1509
1510 /// EmitClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1511 /// for the given class reference.
1512 llvm::Value *EmitClassRef(CodeGenFunction &CGF,
1513 const ObjCInterfaceDecl *ID);
1514
1515 llvm::Value *EmitClassRefFromId(CodeGenFunction &CGF,
1516 IdentifierInfo *II,
1517 const ObjCInterfaceDecl *ID);
1518
1519 llvm::Value *EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) override;
1520
1521 /// EmitSuperClassRef - Return a Value*, of type ObjCTypes.ClassPtrTy,
1522 /// for the given super class reference.
1523 llvm::Value *EmitSuperClassRef(CodeGenFunction &CGF,
1524 const ObjCInterfaceDecl *ID);
1525
1526 /// EmitMetaClassRef - Return a Value * of the address of _class_t
1527 /// meta-data
1528 llvm::Value *EmitMetaClassRef(CodeGenFunction &CGF,
1529 const ObjCInterfaceDecl *ID, bool Weak);
1530
1531 /// ObjCIvarOffsetVariable - Returns the ivar offset variable for
1532 /// the given ivar.
1533 ///
1534 llvm::GlobalVariable * ObjCIvarOffsetVariable(
1535 const ObjCInterfaceDecl *ID,
1536 const ObjCIvarDecl *Ivar);
1537
1538 /// EmitSelector - Return a Value*, of type ObjCTypes.SelectorPtrTy,
1539 /// for the given selector.
1540 llvm::Value *EmitSelector(CodeGenFunction &CGF, Selector Sel);
1541 Address EmitSelectorAddr(Selector Sel);
1542
1543 /// GetInterfaceEHType - Get the cached ehtype for the given Objective-C
1544 /// interface. The return value has type EHTypePtrTy.
1545 llvm::Constant *GetInterfaceEHType(const ObjCInterfaceDecl *ID,
1546 ForDefinition_t IsForDefinition);
1547
1548 StringRef getMetaclassSymbolPrefix() const { return "OBJC_METACLASS_$_"; }
1549
1550 StringRef getClassSymbolPrefix() const { return "OBJC_CLASS_$_"; }
1551
1552 void GetClassSizeInfo(const ObjCImplementationDecl *OID,
1553 uint32_t &InstanceStart,
1554 uint32_t &InstanceSize);
1555
1556 // Shamelessly stolen from Analysis/CFRefCount.cpp
1557 Selector GetNullarySelector(const char* name) const {
1558 IdentifierInfo* II = &CGM.getContext().Idents.get(Name: name);
1559 return CGM.getContext().Selectors.getSelector(NumArgs: 0, IIV: &II);
1560 }
1561
1562 Selector GetUnarySelector(const char* name) const {
1563 IdentifierInfo* II = &CGM.getContext().Idents.get(Name: name);
1564 return CGM.getContext().Selectors.getSelector(NumArgs: 1, IIV: &II);
1565 }
1566
1567 /// ImplementationIsNonLazy - Check whether the given category or
1568 /// class implementation is "non-lazy".
1569 bool ImplementationIsNonLazy(const ObjCImplDecl *OD) const;
1570
1571 bool IsIvarOffsetKnownIdempotent(const CodeGen::CodeGenFunction &CGF,
1572 const ObjCIvarDecl *IV) {
1573 // Annotate the load as an invariant load iff inside an instance method
1574 // and ivar belongs to instance method's class and one of its super class.
1575 // This check is needed because the ivar offset is a lazily
1576 // initialised value that may depend on objc_msgSend to perform a fixup on
1577 // the first message dispatch.
1578 //
1579 // An additional opportunity to mark the load as invariant arises when the
1580 // base of the ivar access is a parameter to an Objective C method.
1581 // However, because the parameters are not available in the current
1582 // interface, we cannot perform this check.
1583 //
1584 // Note that for direct methods, because objc_msgSend is skipped,
1585 // and that the method may be inlined, this optimization actually
1586 // can't be performed.
1587 if (const ObjCMethodDecl *MD =
1588 dyn_cast_or_null<ObjCMethodDecl>(Val: CGF.CurFuncDecl))
1589 if (MD->isInstanceMethod() && !MD->isDirectMethod())
1590 if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
1591 return IV->getContainingInterface()->isSuperClassOf(I: ID);
1592 return false;
1593 }
1594
1595 bool isClassLayoutKnownStatically(const ObjCInterfaceDecl *ID) {
1596 // NSObject is a fixed size. If we can see the @implementation of a class
1597 // which inherits from NSObject then we know that all it's offsets also must
1598 // be fixed. FIXME: Can we do this if see a chain of super classes with
1599 // implementations leading to NSObject?
1600 return ID->getImplementation() && ID->getSuperClass() &&
1601 ID->getSuperClass()->getName() == "NSObject";
1602 }
1603
1604public:
1605 CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm);
1606
1607 llvm::Constant *getNSConstantStringClassRef() override;
1608
1609 llvm::Function *ModuleInitFunction() override;
1610
1611 CodeGen::RValue GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
1612 ReturnValueSlot Return,
1613 QualType ResultType, Selector Sel,
1614 llvm::Value *Receiver,
1615 const CallArgList &CallArgs,
1616 const ObjCInterfaceDecl *Class,
1617 const ObjCMethodDecl *Method) override;
1618
1619 CodeGen::RValue
1620 GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
1621 ReturnValueSlot Return, QualType ResultType,
1622 Selector Sel, const ObjCInterfaceDecl *Class,
1623 bool isCategoryImpl, llvm::Value *Receiver,
1624 bool IsClassMessage, const CallArgList &CallArgs,
1625 const ObjCMethodDecl *Method) override;
1626
1627 llvm::Value *GetClass(CodeGenFunction &CGF,
1628 const ObjCInterfaceDecl *ID) override;
1629
1630 llvm::Value *GetSelector(CodeGenFunction &CGF, Selector Sel) override
1631 { return EmitSelector(CGF, Sel); }
1632 Address GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) override
1633 { return EmitSelectorAddr(Sel); }
1634
1635 /// The NeXT/Apple runtimes do not support typed selectors; just emit an
1636 /// untyped one.
1637 llvm::Value *GetSelector(CodeGenFunction &CGF,
1638 const ObjCMethodDecl *Method) override
1639 { return EmitSelector(CGF, Sel: Method->getSelector()); }
1640
1641 void GenerateCategory(const ObjCCategoryImplDecl *CMD) override;
1642
1643 void GenerateClass(const ObjCImplementationDecl *ClassDecl) override;
1644
1645 void RegisterAlias(const ObjCCompatibleAliasDecl *OAD) override {}
1646
1647 llvm::Value *GenerateProtocolRef(CodeGenFunction &CGF,
1648 const ObjCProtocolDecl *PD) override;
1649
1650 llvm::Constant *GetEHType(QualType T) override;
1651
1652 llvm::FunctionCallee GetPropertyGetFunction() override {
1653 return ObjCTypes.getGetPropertyFn();
1654 }
1655 llvm::FunctionCallee GetPropertySetFunction() override {
1656 return ObjCTypes.getSetPropertyFn();
1657 }
1658
1659 llvm::FunctionCallee GetOptimizedPropertySetFunction(bool atomic,
1660 bool copy) override {
1661 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
1662 }
1663
1664 llvm::FunctionCallee GetSetStructFunction() override {
1665 return ObjCTypes.getCopyStructFn();
1666 }
1667
1668 llvm::FunctionCallee GetGetStructFunction() override {
1669 return ObjCTypes.getCopyStructFn();
1670 }
1671
1672 llvm::FunctionCallee GetCppAtomicObjectSetFunction() override {
1673 return ObjCTypes.getCppAtomicObjectFunction();
1674 }
1675
1676 llvm::FunctionCallee GetCppAtomicObjectGetFunction() override {
1677 return ObjCTypes.getCppAtomicObjectFunction();
1678 }
1679
1680 llvm::FunctionCallee EnumerationMutationFunction() override {
1681 return ObjCTypes.getEnumerationMutationFn();
1682 }
1683
1684 void EmitTryStmt(CodeGen::CodeGenFunction &CGF,
1685 const ObjCAtTryStmt &S) override;
1686 void EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
1687 const ObjCAtSynchronizedStmt &S) override;
1688 void EmitThrowStmt(CodeGen::CodeGenFunction &CGF, const ObjCAtThrowStmt &S,
1689 bool ClearInsertionPoint=true) override;
1690 llvm::Value * EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
1691 Address AddrWeakObj) override;
1692 void EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
1693 llvm::Value *src, Address edst) override;
1694 void EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
1695 llvm::Value *src, Address dest,
1696 bool threadlocal = false) override;
1697 void EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
1698 llvm::Value *src, Address dest,
1699 llvm::Value *ivarOffset) override;
1700 void EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
1701 llvm::Value *src, Address dest) override;
1702 void EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
1703 Address dest, Address src,
1704 llvm::Value *size) override;
1705 LValue EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF, QualType ObjectTy,
1706 llvm::Value *BaseValue, const ObjCIvarDecl *Ivar,
1707 unsigned CVRQualifiers) override;
1708 llvm::Value *EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
1709 const ObjCInterfaceDecl *Interface,
1710 const ObjCIvarDecl *Ivar) override;
1711};
1712
1713/// A helper class for performing the null-initialization of a return
1714/// value.
1715struct NullReturnState {
1716 llvm::BasicBlock *NullBB = nullptr;
1717 NullReturnState() = default;
1718
1719 /// Perform a null-check of the given receiver.
1720 void init(CodeGenFunction &CGF, llvm::Value *receiver) {
1721 // Make blocks for the null-receiver and call edges.
1722 NullBB = CGF.createBasicBlock(name: "msgSend.null-receiver");
1723 llvm::BasicBlock *callBB = CGF.createBasicBlock(name: "msgSend.call");
1724
1725 // Check for a null receiver and, if there is one, jump to the
1726 // null-receiver block. There's no point in trying to avoid it:
1727 // we're always going to put *something* there, because otherwise
1728 // we shouldn't have done this null-check in the first place.
1729 llvm::Value *isNull = CGF.Builder.CreateIsNull(Arg: receiver);
1730 CGF.Builder.CreateCondBr(Cond: isNull, True: NullBB, False: callBB);
1731
1732 // Otherwise, start performing the call.
1733 CGF.EmitBlock(BB: callBB);
1734 }
1735
1736 /// Complete the null-return operation. It is valid to call this
1737 /// regardless of whether 'init' has been called.
1738 RValue complete(CodeGenFunction &CGF,
1739 ReturnValueSlot returnSlot,
1740 RValue result,
1741 QualType resultType,
1742 const CallArgList &CallArgs,
1743 const ObjCMethodDecl *Method) {
1744 // If we never had to do a null-check, just use the raw result.
1745 if (!NullBB) return result;
1746
1747 // The continuation block. This will be left null if we don't have an
1748 // IP, which can happen if the method we're calling is marked noreturn.
1749 llvm::BasicBlock *contBB = nullptr;
1750
1751 // Finish the call path.
1752 llvm::BasicBlock *callBB = CGF.Builder.GetInsertBlock();
1753 if (callBB) {
1754 contBB = CGF.createBasicBlock(name: "msgSend.cont");
1755 CGF.Builder.CreateBr(Dest: contBB);
1756 }
1757
1758 // Okay, start emitting the null-receiver block.
1759 CGF.EmitBlock(BB: NullBB);
1760
1761 // Destroy any consumed arguments we've got.
1762 if (Method) {
1763 CGObjCRuntime::destroyCalleeDestroyedArguments(CGF, method: Method, callArgs: CallArgs);
1764 }
1765
1766 // The phi code below assumes that we haven't needed any control flow yet.
1767 assert(CGF.Builder.GetInsertBlock() == NullBB);
1768
1769 // If we've got a void return, just jump to the continuation block.
1770 if (result.isScalar() && resultType->isVoidType()) {
1771 // No jumps required if the message-send was noreturn.
1772 if (contBB) CGF.EmitBlock(BB: contBB);
1773 return result;
1774 }
1775
1776 // If we've got a scalar return, build a phi.
1777 if (result.isScalar()) {
1778 // Derive the null-initialization value.
1779 llvm::Value *null =
1780 CGF.EmitFromMemory(Value: CGF.CGM.EmitNullConstant(T: resultType), Ty: resultType);
1781
1782 // If no join is necessary, just flow out.
1783 if (!contBB) return RValue::get(V: null);
1784
1785 // Otherwise, build a phi.
1786 CGF.EmitBlock(BB: contBB);
1787 llvm::PHINode *phi = CGF.Builder.CreatePHI(Ty: null->getType(), NumReservedValues: 2);
1788 phi->addIncoming(V: result.getScalarVal(), BB: callBB);
1789 phi->addIncoming(V: null, BB: NullBB);
1790 return RValue::get(V: phi);
1791 }
1792
1793 // If we've got an aggregate return, null the buffer out.
1794 // FIXME: maybe we should be doing things differently for all the
1795 // cases where the ABI has us returning (1) non-agg values in
1796 // memory or (2) agg values in registers.
1797 if (result.isAggregate()) {
1798 assert(result.isAggregate() && "null init of non-aggregate result?");
1799 if (!returnSlot.isUnused())
1800 CGF.EmitNullInitialization(DestPtr: result.getAggregateAddress(), Ty: resultType);
1801 if (contBB) CGF.EmitBlock(BB: contBB);
1802 return result;
1803 }
1804
1805 // Complex types.
1806 CGF.EmitBlock(BB: contBB);
1807 CodeGenFunction::ComplexPairTy callResult = result.getComplexVal();
1808
1809 // Find the scalar type and its zero value.
1810 llvm::Type *scalarTy = callResult.first->getType();
1811 llvm::Constant *scalarZero = llvm::Constant::getNullValue(Ty: scalarTy);
1812
1813 // Build phis for both coordinates.
1814 llvm::PHINode *real = CGF.Builder.CreatePHI(Ty: scalarTy, NumReservedValues: 2);
1815 real->addIncoming(V: callResult.first, BB: callBB);
1816 real->addIncoming(V: scalarZero, BB: NullBB);
1817 llvm::PHINode *imag = CGF.Builder.CreatePHI(Ty: scalarTy, NumReservedValues: 2);
1818 imag->addIncoming(V: callResult.second, BB: callBB);
1819 imag->addIncoming(V: scalarZero, BB: NullBB);
1820 return RValue::getComplex(V1: real, V2: imag);
1821 }
1822};
1823
1824} // end anonymous namespace
1825
1826/* *** Helper Functions *** */
1827
1828/// getConstantGEP() - Help routine to construct simple GEPs.
1829static llvm::Constant *getConstantGEP(llvm::LLVMContext &VMContext,
1830 llvm::GlobalVariable *C, unsigned idx0,
1831 unsigned idx1) {
1832 llvm::Value *Idxs[] = {
1833 llvm::ConstantInt::get(Ty: llvm::Type::getInt32Ty(C&: VMContext), V: idx0),
1834 llvm::ConstantInt::get(Ty: llvm::Type::getInt32Ty(C&: VMContext), V: idx1)
1835 };
1836 return llvm::ConstantExpr::getGetElementPtr(Ty: C->getValueType(), C, IdxList: Idxs);
1837}
1838
1839/// hasObjCExceptionAttribute - Return true if this class or any super
1840/// class has the __objc_exception__ attribute.
1841static bool hasObjCExceptionAttribute(ASTContext &Context,
1842 const ObjCInterfaceDecl *OID) {
1843 if (OID->hasAttr<ObjCExceptionAttr>())
1844 return true;
1845 if (const ObjCInterfaceDecl *Super = OID->getSuperClass())
1846 return hasObjCExceptionAttribute(Context, OID: Super);
1847 return false;
1848}
1849
1850static llvm::GlobalValue::LinkageTypes
1851getLinkageTypeForObjCMetadata(CodeGenModule &CGM, StringRef Section) {
1852 if (CGM.getTriple().isOSBinFormatMachO() &&
1853 (Section.empty() || Section.starts_with(Prefix: "__DATA")))
1854 return llvm::GlobalValue::InternalLinkage;
1855 return llvm::GlobalValue::PrivateLinkage;
1856}
1857
1858/// A helper function to create an internal or private global variable.
1859static llvm::GlobalVariable *
1860finishAndCreateGlobal(ConstantInitBuilder::StructBuilder &Builder,
1861 const llvm::Twine &Name, CodeGenModule &CGM) {
1862 std::string SectionName;
1863 if (CGM.getTriple().isOSBinFormatMachO())
1864 SectionName = "__DATA, __objc_const";
1865 auto *GV = Builder.finishAndCreateGlobal(
1866 Name, CGM.getPointerAlign(), /*constant*/ false,
1867 getLinkageTypeForObjCMetadata(CGM, Section: SectionName));
1868 GV->setSection(SectionName);
1869 return GV;
1870}
1871
1872/* *** CGObjCMac Public Interface *** */
1873
1874CGObjCMac::CGObjCMac(CodeGen::CodeGenModule &cgm) : CGObjCCommonMac(cgm),
1875 ObjCTypes(cgm) {
1876 ObjCABI = 1;
1877 EmitImageInfo();
1878}
1879
1880/// GetClass - Return a reference to the class for the given interface
1881/// decl.
1882llvm::Value *CGObjCMac::GetClass(CodeGenFunction &CGF,
1883 const ObjCInterfaceDecl *ID) {
1884 return EmitClassRef(CGF, ID);
1885}
1886
1887/// GetSelector - Return the pointer to the unique'd string for this selector.
1888llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, Selector Sel) {
1889 return EmitSelector(CGF, Sel);
1890}
1891Address CGObjCMac::GetAddrOfSelector(CodeGenFunction &CGF, Selector Sel) {
1892 return EmitSelectorAddr(Sel);
1893}
1894llvm::Value *CGObjCMac::GetSelector(CodeGenFunction &CGF, const ObjCMethodDecl
1895 *Method) {
1896 return EmitSelector(CGF, Sel: Method->getSelector());
1897}
1898
1899llvm::Constant *CGObjCMac::GetEHType(QualType T) {
1900 if (T->isObjCIdType() ||
1901 T->isObjCQualifiedIdType()) {
1902 return CGM.GetAddrOfRTTIDescriptor(
1903 Ty: CGM.getContext().getObjCIdRedefinitionType(), /*ForEH=*/true);
1904 }
1905 if (T->isObjCClassType() ||
1906 T->isObjCQualifiedClassType()) {
1907 return CGM.GetAddrOfRTTIDescriptor(
1908 Ty: CGM.getContext().getObjCClassRedefinitionType(), /*ForEH=*/true);
1909 }
1910 if (T->isObjCObjectPointerType())
1911 return CGM.GetAddrOfRTTIDescriptor(Ty: T, /*ForEH=*/true);
1912
1913 llvm_unreachable("asking for catch type for ObjC type in fragile runtime");
1914}
1915
1916/// Generate a constant CFString object.
1917/*
1918 struct __builtin_CFString {
1919 const int *isa; // point to __CFConstantStringClassReference
1920 int flags;
1921 const char *str;
1922 long length;
1923 };
1924*/
1925
1926/// or Generate a constant NSString object.
1927/*
1928 struct __builtin_NSString {
1929 const int *isa; // point to __NSConstantStringClassReference
1930 const char *str;
1931 unsigned int length;
1932 };
1933*/
1934
1935ConstantAddress
1936CGObjCCommonMac::GenerateConstantString(const StringLiteral *SL) {
1937 return (!CGM.getLangOpts().NoConstantCFStrings
1938 ? CGM.GetAddrOfConstantCFString(Literal: SL)
1939 : GenerateConstantNSString(SL));
1940}
1941
1942static llvm::StringMapEntry<llvm::GlobalVariable *> &
1943GetConstantStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
1944 const StringLiteral *Literal, unsigned &StringLength) {
1945 StringRef String = Literal->getString();
1946 StringLength = String.size();
1947 return *Map.insert(KV: std::make_pair(x&: String, y: nullptr)).first;
1948}
1949
1950llvm::Constant *CGObjCMac::getNSConstantStringClassRef() {
1951 if (llvm::Value *V = ConstantStringClassRef)
1952 return cast<llvm::Constant>(Val: V);
1953
1954 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1955 std::string str =
1956 StringClass.empty() ? "_NSConstantStringClassReference"
1957 : "_" + StringClass + "ClassReference";
1958
1959 llvm::Type *PTy = llvm::ArrayType::get(ElementType: CGM.IntTy, NumElements: 0);
1960 auto GV = CGM.CreateRuntimeVariable(Ty: PTy, Name: str);
1961 ConstantStringClassRef = GV;
1962 return GV;
1963}
1964
1965llvm::Constant *CGObjCNonFragileABIMac::getNSConstantStringClassRef() {
1966 if (llvm::Value *V = ConstantStringClassRef)
1967 return cast<llvm::Constant>(Val: V);
1968
1969 auto &StringClass = CGM.getLangOpts().ObjCConstantStringClass;
1970 std::string str =
1971 StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1972 : "OBJC_CLASS_$_" + StringClass;
1973 llvm::Constant *GV = GetClassGlobal(Name: str, IsForDefinition: NotForDefinition);
1974 ConstantStringClassRef = GV;
1975 return GV;
1976}
1977
1978ConstantAddress
1979CGObjCCommonMac::GenerateConstantNSString(const StringLiteral *Literal) {
1980 unsigned StringLength = 0;
1981 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
1982 GetConstantStringEntry(Map&: NSConstantStringMap, Literal, StringLength);
1983
1984 if (auto *C = Entry.second)
1985 return ConstantAddress(
1986 C, C->getValueType(), CharUnits::fromQuantity(Quantity: C->getAlignment()));
1987
1988 // If we don't already have it, get _NSConstantStringClassReference.
1989 llvm::Constant *Class = getNSConstantStringClassRef();
1990
1991 // If we don't already have it, construct the type for a constant NSString.
1992 if (!NSConstantStringType) {
1993 NSConstantStringType =
1994 llvm::StructType::create(Elements: {CGM.UnqualPtrTy, CGM.Int8PtrTy, CGM.IntTy},
1995 Name: "struct.__builtin_NSString");
1996 }
1997
1998 ConstantInitBuilder Builder(CGM);
1999 auto Fields = Builder.beginStruct(structTy: NSConstantStringType);
2000
2001 // Class pointer.
2002 Fields.add(value: Class);
2003
2004 // String pointer.
2005 llvm::Constant *C =
2006 llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Entry.first());
2007
2008 llvm::GlobalValue::LinkageTypes Linkage = llvm::GlobalValue::PrivateLinkage;
2009 bool isConstant = !CGM.getLangOpts().WritableStrings;
2010
2011 auto *GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), isConstant,
2012 Linkage, C, ".str");
2013 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2014 // Don't enforce the target's minimum global alignment, since the only use
2015 // of the string is via this class initializer.
2016 GV->setAlignment(llvm::Align(1));
2017 Fields.add(value: GV);
2018
2019 // String length.
2020 Fields.addInt(intTy: CGM.IntTy, value: StringLength);
2021
2022 // The struct.
2023 CharUnits Alignment = CGM.getPointerAlign();
2024 GV = Fields.finishAndCreateGlobal(args: "_unnamed_nsstring_", args&: Alignment,
2025 /*constant*/ args: true,
2026 args: llvm::GlobalVariable::PrivateLinkage);
2027 const char *NSStringSection = "__OBJC,__cstring_object,regular,no_dead_strip";
2028 const char *NSStringNonFragileABISection =
2029 "__DATA,__objc_stringobj,regular,no_dead_strip";
2030 // FIXME. Fix section.
2031 GV->setSection(CGM.getLangOpts().ObjCRuntime.isNonFragile()
2032 ? NSStringNonFragileABISection
2033 : NSStringSection);
2034 Entry.second = GV;
2035
2036 return ConstantAddress(GV, GV->getValueType(), Alignment);
2037}
2038
2039enum {
2040 kCFTaggedObjectID_Integer = (1 << 1) + 1
2041};
2042
2043/// Generates a message send where the super is the receiver. This is
2044/// a message send to self with special delivery semantics indicating
2045/// which class's method should be called.
2046CodeGen::RValue
2047CGObjCMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
2048 ReturnValueSlot Return,
2049 QualType ResultType,
2050 Selector Sel,
2051 const ObjCInterfaceDecl *Class,
2052 bool isCategoryImpl,
2053 llvm::Value *Receiver,
2054 bool IsClassMessage,
2055 const CodeGen::CallArgList &CallArgs,
2056 const ObjCMethodDecl *Method) {
2057 // Create and init a super structure; this is a (receiver, class)
2058 // pair we will pass to objc_msgSendSuper.
2059 Address ObjCSuper =
2060 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
2061 "objc_super");
2062 llvm::Value *ReceiverAsObject =
2063 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
2064 CGF.Builder.CreateStore(Val: ReceiverAsObject,
2065 Addr: CGF.Builder.CreateStructGEP(Addr: ObjCSuper, Index: 0));
2066
2067 // If this is a class message the metaclass is passed as the target.
2068 llvm::Type *ClassTyPtr = llvm::PointerType::getUnqual(ObjCTypes.ClassTy);
2069 llvm::Value *Target;
2070 if (IsClassMessage) {
2071 if (isCategoryImpl) {
2072 // Message sent to 'super' in a class method defined in a category
2073 // implementation requires an odd treatment.
2074 // If we are in a class method, we must retrieve the
2075 // _metaclass_ for the current class, pointed at by
2076 // the class's "isa" pointer. The following assumes that
2077 // isa" is the first ivar in a class (which it must be).
2078 Target = EmitClassRef(CGF, ID: Class->getSuperClass());
2079 Target = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, Target, 0);
2080 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, Target,
2081 CGF.getPointerAlign());
2082 } else {
2083 llvm::Constant *MetaClassPtr = EmitMetaClassRef(ID: Class);
2084 llvm::Value *SuperPtr =
2085 CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, MetaClassPtr, 1);
2086 llvm::Value *Super = CGF.Builder.CreateAlignedLoad(ClassTyPtr, SuperPtr,
2087 CGF.getPointerAlign());
2088 Target = Super;
2089 }
2090 } else if (isCategoryImpl)
2091 Target = EmitClassRef(CGF, ID: Class->getSuperClass());
2092 else {
2093 llvm::Value *ClassPtr = EmitSuperClassRef(ID: Class);
2094 ClassPtr = CGF.Builder.CreateStructGEP(ObjCTypes.ClassTy, ClassPtr, 1);
2095 Target = CGF.Builder.CreateAlignedLoad(ClassTyPtr, ClassPtr,
2096 CGF.getPointerAlign());
2097 }
2098 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
2099 // ObjCTypes types.
2100 llvm::Type *ClassTy =
2101 CGM.getTypes().ConvertType(T: CGF.getContext().getObjCClassType());
2102 Target = CGF.Builder.CreateBitCast(V: Target, DestTy: ClassTy);
2103 CGF.Builder.CreateStore(Val: Target, Addr: CGF.Builder.CreateStructGEP(Addr: ObjCSuper, Index: 1));
2104 return EmitMessageSend(CGF, Return, ResultType, Sel, ObjCSuper.getPointer(),
2105 ObjCTypes.SuperPtrCTy, true, CallArgs, Method, Class,
2106 ObjCTypes);
2107}
2108
2109/// Generate code for a message send expression.
2110CodeGen::RValue CGObjCMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
2111 ReturnValueSlot Return,
2112 QualType ResultType,
2113 Selector Sel,
2114 llvm::Value *Receiver,
2115 const CallArgList &CallArgs,
2116 const ObjCInterfaceDecl *Class,
2117 const ObjCMethodDecl *Method) {
2118 return EmitMessageSend(CGF, Return, ResultType, Sel, Receiver,
2119 CGF.getContext().getObjCIdType(), false, CallArgs,
2120 Method, Class, ObjCTypes);
2121}
2122
2123CodeGen::RValue
2124CGObjCCommonMac::EmitMessageSend(CodeGen::CodeGenFunction &CGF,
2125 ReturnValueSlot Return,
2126 QualType ResultType,
2127 Selector Sel,
2128 llvm::Value *Arg0,
2129 QualType Arg0Ty,
2130 bool IsSuper,
2131 const CallArgList &CallArgs,
2132 const ObjCMethodDecl *Method,
2133 const ObjCInterfaceDecl *ClassReceiver,
2134 const ObjCCommonTypesHelper &ObjCTypes) {
2135 CodeGenTypes &Types = CGM.getTypes();
2136 auto selTy = CGF.getContext().getObjCSelType();
2137 llvm::Value *SelValue = llvm::UndefValue::get(T: Types.ConvertType(T: selTy));
2138
2139 CallArgList ActualArgs;
2140 if (!IsSuper)
2141 Arg0 = CGF.Builder.CreateBitCast(V: Arg0, DestTy: ObjCTypes.ObjectPtrTy);
2142 ActualArgs.add(rvalue: RValue::get(V: Arg0), type: Arg0Ty);
2143 if (!Method || !Method->isDirectMethod())
2144 ActualArgs.add(rvalue: RValue::get(V: SelValue), type: selTy);
2145 ActualArgs.addFrom(other: CallArgs);
2146
2147 // If we're calling a method, use the formal signature.
2148 MessageSendInfo MSI = getMessageSendInfo(method: Method, resultType: ResultType, callArgs&: ActualArgs);
2149
2150 if (Method)
2151 assert(CGM.getContext().getCanonicalType(Method->getReturnType()) ==
2152 CGM.getContext().getCanonicalType(ResultType) &&
2153 "Result type mismatch!");
2154
2155 bool ReceiverCanBeNull =
2156 canMessageReceiverBeNull(CGF, method: Method, isSuper: IsSuper, classReceiver: ClassReceiver, receiver: Arg0);
2157
2158 bool RequiresNullCheck = false;
2159 bool RequiresSelValue = true;
2160
2161 llvm::FunctionCallee Fn = nullptr;
2162 if (Method && Method->isDirectMethod()) {
2163 assert(!IsSuper);
2164 Fn = GenerateDirectMethod(Method, Method->getClassInterface());
2165 // Direct methods will synthesize the proper `_cmd` internally,
2166 // so just don't bother with setting the `_cmd` argument.
2167 RequiresSelValue = false;
2168 } else if (CGM.ReturnSlotInterferesWithArgs(FI: MSI.CallInfo)) {
2169 if (ReceiverCanBeNull) RequiresNullCheck = true;
2170 Fn = (ObjCABI == 2) ? ObjCTypes.getSendStretFn2(IsSuper)
2171 : ObjCTypes.getSendStretFn(IsSuper);
2172 } else if (CGM.ReturnTypeUsesFPRet(ResultType)) {
2173 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFpretFn2(IsSuper)
2174 : ObjCTypes.getSendFpretFn(IsSuper);
2175 } else if (CGM.ReturnTypeUsesFP2Ret(ResultType)) {
2176 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFp2RetFn2(IsSuper)
2177 : ObjCTypes.getSendFp2retFn(IsSuper);
2178 } else {
2179 // arm64 uses objc_msgSend for stret methods and yet null receiver check
2180 // must be made for it.
2181 if (ReceiverCanBeNull && CGM.ReturnTypeUsesSRet(FI: MSI.CallInfo))
2182 RequiresNullCheck = true;
2183 Fn = (ObjCABI == 2) ? ObjCTypes.getSendFn2(IsSuper)
2184 : ObjCTypes.getSendFn(IsSuper);
2185 }
2186
2187 // Cast function to proper signature
2188 llvm::Constant *BitcastFn = cast<llvm::Constant>(
2189 Val: CGF.Builder.CreateBitCast(V: Fn.getCallee(), DestTy: MSI.MessengerType));
2190
2191 // We don't need to emit a null check to zero out an indirect result if the
2192 // result is ignored.
2193 if (Return.isUnused())
2194 RequiresNullCheck = false;
2195
2196 // Emit a null-check if there's a consumed argument other than the receiver.
2197 if (!RequiresNullCheck && Method && Method->hasParamDestroyedInCallee())
2198 RequiresNullCheck = true;
2199
2200 NullReturnState nullReturn;
2201 if (RequiresNullCheck) {
2202 nullReturn.init(CGF, receiver: Arg0);
2203 }
2204
2205 // If a selector value needs to be passed, emit the load before the call.
2206 if (RequiresSelValue) {
2207 SelValue = GetSelector(CGF, Sel);
2208 ActualArgs[1] = CallArg(RValue::get(V: SelValue), selTy);
2209 }
2210
2211 llvm::CallBase *CallSite;
2212 CGCallee Callee = CGCallee::forDirect(functionPtr: BitcastFn);
2213 RValue rvalue = CGF.EmitCall(CallInfo: MSI.CallInfo, Callee, ReturnValue: Return, Args: ActualArgs,
2214 callOrInvoke: &CallSite);
2215
2216 // Mark the call as noreturn if the method is marked noreturn and the
2217 // receiver cannot be null.
2218 if (Method && Method->hasAttr<NoReturnAttr>() && !ReceiverCanBeNull) {
2219 CallSite->setDoesNotReturn();
2220 }
2221
2222 return nullReturn.complete(CGF, returnSlot: Return, result: rvalue, resultType: ResultType, CallArgs,
2223 Method: RequiresNullCheck ? Method : nullptr);
2224}
2225
2226static Qualifiers::GC GetGCAttrTypeForType(ASTContext &Ctx, QualType FQT,
2227 bool pointee = false) {
2228 // Note that GC qualification applies recursively to C pointer types
2229 // that aren't otherwise decorated. This is weird, but it's probably
2230 // an intentional workaround to the unreliable placement of GC qualifiers.
2231 if (FQT.isObjCGCStrong())
2232 return Qualifiers::Strong;
2233
2234 if (FQT.isObjCGCWeak())
2235 return Qualifiers::Weak;
2236
2237 if (auto ownership = FQT.getObjCLifetime()) {
2238 // Ownership does not apply recursively to C pointer types.
2239 if (pointee) return Qualifiers::GCNone;
2240 switch (ownership) {
2241 case Qualifiers::OCL_Weak: return Qualifiers::Weak;
2242 case Qualifiers::OCL_Strong: return Qualifiers::Strong;
2243 case Qualifiers::OCL_ExplicitNone: return Qualifiers::GCNone;
2244 case Qualifiers::OCL_Autoreleasing: llvm_unreachable("autoreleasing ivar?");
2245 case Qualifiers::OCL_None: llvm_unreachable("known nonzero");
2246 }
2247 llvm_unreachable("bad objc ownership");
2248 }
2249
2250 // Treat unqualified retainable pointers as strong.
2251 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2252 return Qualifiers::Strong;
2253
2254 // Walk into C pointer types, but only in GC.
2255 if (Ctx.getLangOpts().getGC() != LangOptions::NonGC) {
2256 if (const PointerType *PT = FQT->getAs<PointerType>())
2257 return GetGCAttrTypeForType(Ctx, FQT: PT->getPointeeType(), /*pointee*/ true);
2258 }
2259
2260 return Qualifiers::GCNone;
2261}
2262
2263namespace {
2264 struct IvarInfo {
2265 CharUnits Offset;
2266 uint64_t SizeInWords;
2267 IvarInfo(CharUnits offset, uint64_t sizeInWords)
2268 : Offset(offset), SizeInWords(sizeInWords) {}
2269
2270 // Allow sorting based on byte pos.
2271 bool operator<(const IvarInfo &other) const {
2272 return Offset < other.Offset;
2273 }
2274 };
2275
2276 /// A helper class for building GC layout strings.
2277 class IvarLayoutBuilder {
2278 CodeGenModule &CGM;
2279
2280 /// The start of the layout. Offsets will be relative to this value,
2281 /// and entries less than this value will be silently discarded.
2282 CharUnits InstanceBegin;
2283
2284 /// The end of the layout. Offsets will never exceed this value.
2285 CharUnits InstanceEnd;
2286
2287 /// Whether we're generating the strong layout or the weak layout.
2288 bool ForStrongLayout;
2289
2290 /// Whether the offsets in IvarsInfo might be out-of-order.
2291 bool IsDisordered = false;
2292
2293 llvm::SmallVector<IvarInfo, 8> IvarsInfo;
2294
2295 public:
2296 IvarLayoutBuilder(CodeGenModule &CGM, CharUnits instanceBegin,
2297 CharUnits instanceEnd, bool forStrongLayout)
2298 : CGM(CGM), InstanceBegin(instanceBegin), InstanceEnd(instanceEnd),
2299 ForStrongLayout(forStrongLayout) {
2300 }
2301
2302 void visitRecord(const RecordType *RT, CharUnits offset);
2303
2304 template <class Iterator, class GetOffsetFn>
2305 void visitAggregate(Iterator begin, Iterator end,
2306 CharUnits aggrOffset,
2307 const GetOffsetFn &getOffset);
2308
2309 void visitField(const FieldDecl *field, CharUnits offset);
2310
2311 /// Add the layout of a block implementation.
2312 void visitBlock(const CGBlockInfo &blockInfo);
2313
2314 /// Is there any information for an interesting bitmap?
2315 bool hasBitmapData() const { return !IvarsInfo.empty(); }
2316
2317 llvm::Constant *buildBitmap(CGObjCCommonMac &CGObjC,
2318 llvm::SmallVectorImpl<unsigned char> &buffer);
2319
2320 static void dump(ArrayRef<unsigned char> buffer) {
2321 const unsigned char *s = buffer.data();
2322 for (unsigned i = 0, e = buffer.size(); i < e; i++)
2323 if (!(s[i] & 0xf0))
2324 printf(format: "0x0%x%s", s[i], s[i] != 0 ? ", " : "");
2325 else
2326 printf(format: "0x%x%s", s[i], s[i] != 0 ? ", " : "");
2327 printf(format: "\n");
2328 }
2329 };
2330} // end anonymous namespace
2331
2332llvm::Constant *CGObjCCommonMac::BuildGCBlockLayout(CodeGenModule &CGM,
2333 const CGBlockInfo &blockInfo) {
2334
2335 llvm::Constant *nullPtr = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy);
2336 if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
2337 return nullPtr;
2338
2339 IvarLayoutBuilder builder(CGM, CharUnits::Zero(), blockInfo.BlockSize,
2340 /*for strong layout*/ true);
2341
2342 builder.visitBlock(blockInfo);
2343
2344 if (!builder.hasBitmapData())
2345 return nullPtr;
2346
2347 llvm::SmallVector<unsigned char, 32> buffer;
2348 llvm::Constant *C = builder.buildBitmap(CGObjC&: *this, buffer);
2349 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
2350 printf(format: "\n block variable layout for block: ");
2351 builder.dump(buffer);
2352 }
2353
2354 return C;
2355}
2356
2357void IvarLayoutBuilder::visitBlock(const CGBlockInfo &blockInfo) {
2358 // __isa is the first field in block descriptor and must assume by runtime's
2359 // convention that it is GC'able.
2360 IvarsInfo.push_back(Elt: IvarInfo(CharUnits::Zero(), 1));
2361
2362 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2363
2364 // Ignore the optional 'this' capture: C++ objects are not assumed
2365 // to be GC'ed.
2366
2367 CharUnits lastFieldOffset;
2368
2369 // Walk the captured variables.
2370 for (const auto &CI : blockDecl->captures()) {
2371 const VarDecl *variable = CI.getVariable();
2372 QualType type = variable->getType();
2373
2374 const CGBlockInfo::Capture &capture = blockInfo.getCapture(var: variable);
2375
2376 // Ignore constant captures.
2377 if (capture.isConstant()) continue;
2378
2379 CharUnits fieldOffset = capture.getOffset();
2380
2381 // Block fields are not necessarily ordered; if we detect that we're
2382 // adding them out-of-order, make sure we sort later.
2383 if (fieldOffset < lastFieldOffset)
2384 IsDisordered = true;
2385 lastFieldOffset = fieldOffset;
2386
2387 // __block variables are passed by their descriptor address.
2388 if (CI.isByRef()) {
2389 IvarsInfo.push_back(Elt: IvarInfo(fieldOffset, /*size in words*/ 1));
2390 continue;
2391 }
2392
2393 assert(!type->isArrayType() && "array variable should not be caught");
2394 if (const RecordType *record = type->getAs<RecordType>()) {
2395 visitRecord(RT: record, offset: fieldOffset);
2396 continue;
2397 }
2398
2399 Qualifiers::GC GCAttr = GetGCAttrTypeForType(Ctx&: CGM.getContext(), FQT: type);
2400
2401 if (GCAttr == Qualifiers::Strong) {
2402 assert(CGM.getContext().getTypeSize(type) ==
2403 CGM.getTarget().getPointerWidth(LangAS::Default));
2404 IvarsInfo.push_back(Elt: IvarInfo(fieldOffset, /*size in words*/ 1));
2405 }
2406 }
2407}
2408
2409/// getBlockCaptureLifetime - This routine returns life time of the captured
2410/// block variable for the purpose of block layout meta-data generation. FQT is
2411/// the type of the variable captured in the block.
2412Qualifiers::ObjCLifetime CGObjCCommonMac::getBlockCaptureLifetime(QualType FQT,
2413 bool ByrefLayout) {
2414 // If it has an ownership qualifier, we're done.
2415 if (auto lifetime = FQT.getObjCLifetime())
2416 return lifetime;
2417
2418 // If it doesn't, and this is ARC, it has no ownership.
2419 if (CGM.getLangOpts().ObjCAutoRefCount)
2420 return Qualifiers::OCL_None;
2421
2422 // In MRC, retainable pointers are owned by non-__block variables.
2423 if (FQT->isObjCObjectPointerType() || FQT->isBlockPointerType())
2424 return ByrefLayout ? Qualifiers::OCL_ExplicitNone : Qualifiers::OCL_Strong;
2425
2426 return Qualifiers::OCL_None;
2427}
2428
2429void CGObjCCommonMac::UpdateRunSkipBlockVars(bool IsByref,
2430 Qualifiers::ObjCLifetime LifeTime,
2431 CharUnits FieldOffset,
2432 CharUnits FieldSize) {
2433 // __block variables are passed by their descriptor address.
2434 if (IsByref)
2435 RunSkipBlockVars.push_back(Elt: RUN_SKIP(BLOCK_LAYOUT_BYREF, FieldOffset,
2436 FieldSize));
2437 else if (LifeTime == Qualifiers::OCL_Strong)
2438 RunSkipBlockVars.push_back(Elt: RUN_SKIP(BLOCK_LAYOUT_STRONG, FieldOffset,
2439 FieldSize));
2440 else if (LifeTime == Qualifiers::OCL_Weak)
2441 RunSkipBlockVars.push_back(Elt: RUN_SKIP(BLOCK_LAYOUT_WEAK, FieldOffset,
2442 FieldSize));
2443 else if (LifeTime == Qualifiers::OCL_ExplicitNone)
2444 RunSkipBlockVars.push_back(Elt: RUN_SKIP(BLOCK_LAYOUT_UNRETAINED, FieldOffset,
2445 FieldSize));
2446 else
2447 RunSkipBlockVars.push_back(Elt: RUN_SKIP(BLOCK_LAYOUT_NON_OBJECT_BYTES,
2448 FieldOffset,
2449 FieldSize));
2450}
2451
2452void CGObjCCommonMac::BuildRCRecordLayout(const llvm::StructLayout *RecLayout,
2453 const RecordDecl *RD,
2454 ArrayRef<const FieldDecl*> RecFields,
2455 CharUnits BytePos, bool &HasUnion,
2456 bool ByrefLayout) {
2457 bool IsUnion = (RD && RD->isUnion());
2458 CharUnits MaxUnionSize = CharUnits::Zero();
2459 const FieldDecl *MaxField = nullptr;
2460 const FieldDecl *LastFieldBitfieldOrUnnamed = nullptr;
2461 CharUnits MaxFieldOffset = CharUnits::Zero();
2462 CharUnits LastBitfieldOrUnnamedOffset = CharUnits::Zero();
2463
2464 if (RecFields.empty())
2465 return;
2466 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2467
2468 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
2469 const FieldDecl *Field = RecFields[i];
2470 // Note that 'i' here is actually the field index inside RD of Field,
2471 // although this dependency is hidden.
2472 const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(D: RD);
2473 CharUnits FieldOffset =
2474 CGM.getContext().toCharUnitsFromBits(BitSize: RL.getFieldOffset(FieldNo: i));
2475
2476 // Skip over unnamed or bitfields
2477 if (!Field->getIdentifier() || Field->isBitField()) {
2478 LastFieldBitfieldOrUnnamed = Field;
2479 LastBitfieldOrUnnamedOffset = FieldOffset;
2480 continue;
2481 }
2482
2483 LastFieldBitfieldOrUnnamed = nullptr;
2484 QualType FQT = Field->getType();
2485 if (FQT->isRecordType() || FQT->isUnionType()) {
2486 if (FQT->isUnionType())
2487 HasUnion = true;
2488
2489 BuildRCBlockVarRecordLayout(RT: FQT->castAs<RecordType>(),
2490 BytePos: BytePos + FieldOffset, HasUnion);
2491 continue;
2492 }
2493
2494 if (const ArrayType *Array = CGM.getContext().getAsArrayType(T: FQT)) {
2495 auto *CArray = cast<ConstantArrayType>(Val: Array);
2496 uint64_t ElCount = CArray->getSize().getZExtValue();
2497 assert(CArray && "only array with known element size is supported");
2498 FQT = CArray->getElementType();
2499 while (const ArrayType *Array = CGM.getContext().getAsArrayType(T: FQT)) {
2500 auto *CArray = cast<ConstantArrayType>(Val: Array);
2501 ElCount *= CArray->getSize().getZExtValue();
2502 FQT = CArray->getElementType();
2503 }
2504 if (FQT->isRecordType() && ElCount) {
2505 int OldIndex = RunSkipBlockVars.size() - 1;
2506 auto *RT = FQT->castAs<RecordType>();
2507 BuildRCBlockVarRecordLayout(RT: RT, BytePos: BytePos + FieldOffset, HasUnion);
2508
2509 // Replicate layout information for each array element. Note that
2510 // one element is already done.
2511 uint64_t ElIx = 1;
2512 for (int FirstIndex = RunSkipBlockVars.size() - 1 ;ElIx < ElCount; ElIx++) {
2513 CharUnits Size = CGM.getContext().getTypeSizeInChars(RT);
2514 for (int i = OldIndex+1; i <= FirstIndex; ++i)
2515 RunSkipBlockVars.push_back(
2516 Elt: RUN_SKIP(RunSkipBlockVars[i].opcode,
2517 RunSkipBlockVars[i].block_var_bytepos + Size*ElIx,
2518 RunSkipBlockVars[i].block_var_size));
2519 }
2520 continue;
2521 }
2522 }
2523 CharUnits FieldSize = CGM.getContext().getTypeSizeInChars(Field->getType());
2524 if (IsUnion) {
2525 CharUnits UnionIvarSize = FieldSize;
2526 if (UnionIvarSize > MaxUnionSize) {
2527 MaxUnionSize = UnionIvarSize;
2528 MaxField = Field;
2529 MaxFieldOffset = FieldOffset;
2530 }
2531 } else {
2532 UpdateRunSkipBlockVars(IsByref: false,
2533 LifeTime: getBlockCaptureLifetime(FQT, ByrefLayout),
2534 FieldOffset: BytePos + FieldOffset,
2535 FieldSize);
2536 }
2537 }
2538
2539 if (LastFieldBitfieldOrUnnamed) {
2540 if (LastFieldBitfieldOrUnnamed->isBitField()) {
2541 // Last field was a bitfield. Must update the info.
2542 uint64_t BitFieldSize
2543 = LastFieldBitfieldOrUnnamed->getBitWidthValue(Ctx: CGM.getContext());
2544 unsigned UnsSize = (BitFieldSize / ByteSizeInBits) +
2545 ((BitFieldSize % ByteSizeInBits) != 0);
2546 CharUnits Size = CharUnits::fromQuantity(Quantity: UnsSize);
2547 Size += LastBitfieldOrUnnamedOffset;
2548 UpdateRunSkipBlockVars(IsByref: false,
2549 LifeTime: getBlockCaptureLifetime(FQT: LastFieldBitfieldOrUnnamed->getType(),
2550 ByrefLayout),
2551 FieldOffset: BytePos + LastBitfieldOrUnnamedOffset,
2552 FieldSize: Size);
2553 } else {
2554 assert(!LastFieldBitfieldOrUnnamed->getIdentifier() &&"Expected unnamed");
2555 // Last field was unnamed. Must update skip info.
2556 CharUnits FieldSize
2557 = CGM.getContext().getTypeSizeInChars(LastFieldBitfieldOrUnnamed->getType());
2558 UpdateRunSkipBlockVars(IsByref: false,
2559 LifeTime: getBlockCaptureLifetime(FQT: LastFieldBitfieldOrUnnamed->getType(),
2560 ByrefLayout),
2561 FieldOffset: BytePos + LastBitfieldOrUnnamedOffset,
2562 FieldSize);
2563 }
2564 }
2565
2566 if (MaxField)
2567 UpdateRunSkipBlockVars(IsByref: false,
2568 LifeTime: getBlockCaptureLifetime(FQT: MaxField->getType(), ByrefLayout),
2569 FieldOffset: BytePos + MaxFieldOffset,
2570 FieldSize: MaxUnionSize);
2571}
2572
2573void CGObjCCommonMac::BuildRCBlockVarRecordLayout(const RecordType *RT,
2574 CharUnits BytePos,
2575 bool &HasUnion,
2576 bool ByrefLayout) {
2577 const RecordDecl *RD = RT->getDecl();
2578 SmallVector<const FieldDecl*, 16> Fields(RD->fields());
2579 llvm::Type *Ty = CGM.getTypes().ConvertType(T: QualType(RT, 0));
2580 const llvm::StructLayout *RecLayout =
2581 CGM.getDataLayout().getStructLayout(Ty: cast<llvm::StructType>(Val: Ty));
2582
2583 BuildRCRecordLayout(RecLayout, RD, RecFields: Fields, BytePos, HasUnion, ByrefLayout);
2584}
2585
2586/// InlineLayoutInstruction - This routine produce an inline instruction for the
2587/// block variable layout if it can. If not, it returns 0. Rules are as follow:
2588/// If ((uintptr_t) layout) < (1 << 12), the layout is inline. In the 64bit world,
2589/// an inline layout of value 0x0000000000000xyz is interpreted as follows:
2590/// x captured object pointers of BLOCK_LAYOUT_STRONG. Followed by
2591/// y captured object of BLOCK_LAYOUT_BYREF. Followed by
2592/// z captured object of BLOCK_LAYOUT_WEAK. If any of the above is missing, zero
2593/// replaces it. For example, 0x00000x00 means x BLOCK_LAYOUT_STRONG and no
2594/// BLOCK_LAYOUT_BYREF and no BLOCK_LAYOUT_WEAK objects are captured.
2595uint64_t CGObjCCommonMac::InlineLayoutInstruction(
2596 SmallVectorImpl<unsigned char> &Layout) {
2597 uint64_t Result = 0;
2598 if (Layout.size() <= 3) {
2599 unsigned size = Layout.size();
2600 unsigned strong_word_count = 0, byref_word_count=0, weak_word_count=0;
2601 unsigned char inst;
2602 enum BLOCK_LAYOUT_OPCODE opcode ;
2603 switch (size) {
2604 case 3:
2605 inst = Layout[0];
2606 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2607 if (opcode == BLOCK_LAYOUT_STRONG)
2608 strong_word_count = (inst & 0xF)+1;
2609 else
2610 return 0;
2611 inst = Layout[1];
2612 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2613 if (opcode == BLOCK_LAYOUT_BYREF)
2614 byref_word_count = (inst & 0xF)+1;
2615 else
2616 return 0;
2617 inst = Layout[2];
2618 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2619 if (opcode == BLOCK_LAYOUT_WEAK)
2620 weak_word_count = (inst & 0xF)+1;
2621 else
2622 return 0;
2623 break;
2624
2625 case 2:
2626 inst = Layout[0];
2627 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2628 if (opcode == BLOCK_LAYOUT_STRONG) {
2629 strong_word_count = (inst & 0xF)+1;
2630 inst = Layout[1];
2631 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2632 if (opcode == BLOCK_LAYOUT_BYREF)
2633 byref_word_count = (inst & 0xF)+1;
2634 else if (opcode == BLOCK_LAYOUT_WEAK)
2635 weak_word_count = (inst & 0xF)+1;
2636 else
2637 return 0;
2638 }
2639 else if (opcode == BLOCK_LAYOUT_BYREF) {
2640 byref_word_count = (inst & 0xF)+1;
2641 inst = Layout[1];
2642 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2643 if (opcode == BLOCK_LAYOUT_WEAK)
2644 weak_word_count = (inst & 0xF)+1;
2645 else
2646 return 0;
2647 }
2648 else
2649 return 0;
2650 break;
2651
2652 case 1:
2653 inst = Layout[0];
2654 opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2655 if (opcode == BLOCK_LAYOUT_STRONG)
2656 strong_word_count = (inst & 0xF)+1;
2657 else if (opcode == BLOCK_LAYOUT_BYREF)
2658 byref_word_count = (inst & 0xF)+1;
2659 else if (opcode == BLOCK_LAYOUT_WEAK)
2660 weak_word_count = (inst & 0xF)+1;
2661 else
2662 return 0;
2663 break;
2664
2665 default:
2666 return 0;
2667 }
2668
2669 // Cannot inline when any of the word counts is 15. Because this is one less
2670 // than the actual work count (so 15 means 16 actual word counts),
2671 // and we can only display 0 thru 15 word counts.
2672 if (strong_word_count == 16 || byref_word_count == 16 || weak_word_count == 16)
2673 return 0;
2674
2675 unsigned count =
2676 (strong_word_count != 0) + (byref_word_count != 0) + (weak_word_count != 0);
2677
2678 if (size == count) {
2679 if (strong_word_count)
2680 Result = strong_word_count;
2681 Result <<= 4;
2682 if (byref_word_count)
2683 Result += byref_word_count;
2684 Result <<= 4;
2685 if (weak_word_count)
2686 Result += weak_word_count;
2687 }
2688 }
2689 return Result;
2690}
2691
2692llvm::Constant *CGObjCCommonMac::getBitmapBlockLayout(bool ComputeByrefLayout) {
2693 llvm::Constant *nullPtr = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy);
2694 if (RunSkipBlockVars.empty())
2695 return nullPtr;
2696 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(AddrSpace: LangAS::Default);
2697 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2698 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2699
2700 // Sort on byte position; captures might not be allocated in order,
2701 // and unions can do funny things.
2702 llvm::array_pod_sort(Start: RunSkipBlockVars.begin(), End: RunSkipBlockVars.end());
2703 SmallVector<unsigned char, 16> Layout;
2704
2705 unsigned size = RunSkipBlockVars.size();
2706 for (unsigned i = 0; i < size; i++) {
2707 enum BLOCK_LAYOUT_OPCODE opcode = RunSkipBlockVars[i].opcode;
2708 CharUnits start_byte_pos = RunSkipBlockVars[i].block_var_bytepos;
2709 CharUnits end_byte_pos = start_byte_pos;
2710 unsigned j = i+1;
2711 while (j < size) {
2712 if (opcode == RunSkipBlockVars[j].opcode) {
2713 end_byte_pos = RunSkipBlockVars[j++].block_var_bytepos;
2714 i++;
2715 }
2716 else
2717 break;
2718 }
2719 CharUnits size_in_bytes =
2720 end_byte_pos - start_byte_pos + RunSkipBlockVars[j-1].block_var_size;
2721 if (j < size) {
2722 CharUnits gap =
2723 RunSkipBlockVars[j].block_var_bytepos -
2724 RunSkipBlockVars[j-1].block_var_bytepos - RunSkipBlockVars[j-1].block_var_size;
2725 size_in_bytes += gap;
2726 }
2727 CharUnits residue_in_bytes = CharUnits::Zero();
2728 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES) {
2729 residue_in_bytes = size_in_bytes % WordSizeInBytes;
2730 size_in_bytes -= residue_in_bytes;
2731 opcode = BLOCK_LAYOUT_NON_OBJECT_WORDS;
2732 }
2733
2734 unsigned size_in_words = size_in_bytes.getQuantity() / WordSizeInBytes;
2735 while (size_in_words >= 16) {
2736 // Note that value in imm. is one less that the actual
2737 // value. So, 0xf means 16 words follow!
2738 unsigned char inst = (opcode << 4) | 0xf;
2739 Layout.push_back(Elt: inst);
2740 size_in_words -= 16;
2741 }
2742 if (size_in_words > 0) {
2743 // Note that value in imm. is one less that the actual
2744 // value. So, we subtract 1 away!
2745 unsigned char inst = (opcode << 4) | (size_in_words-1);
2746 Layout.push_back(Elt: inst);
2747 }
2748 if (residue_in_bytes > CharUnits::Zero()) {
2749 unsigned char inst =
2750 (BLOCK_LAYOUT_NON_OBJECT_BYTES << 4) | (residue_in_bytes.getQuantity()-1);
2751 Layout.push_back(Elt: inst);
2752 }
2753 }
2754
2755 while (!Layout.empty()) {
2756 unsigned char inst = Layout.back();
2757 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2758 if (opcode == BLOCK_LAYOUT_NON_OBJECT_BYTES || opcode == BLOCK_LAYOUT_NON_OBJECT_WORDS)
2759 Layout.pop_back();
2760 else
2761 break;
2762 }
2763
2764 uint64_t Result = InlineLayoutInstruction(Layout);
2765 if (Result != 0) {
2766 // Block variable layout instruction has been inlined.
2767 if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2768 if (ComputeByrefLayout)
2769 printf(format: "\n Inline BYREF variable layout: ");
2770 else
2771 printf(format: "\n Inline block variable layout: ");
2772 printf(format: "0x0%" PRIx64 "", Result);
2773 if (auto numStrong = (Result & 0xF00) >> 8)
2774 printf(format: ", BL_STRONG:%d", (int) numStrong);
2775 if (auto numByref = (Result & 0x0F0) >> 4)
2776 printf(format: ", BL_BYREF:%d", (int) numByref);
2777 if (auto numWeak = (Result & 0x00F) >> 0)
2778 printf(format: ", BL_WEAK:%d", (int) numWeak);
2779 printf(format: ", BL_OPERATOR:0\n");
2780 }
2781 return llvm::ConstantInt::get(Ty: CGM.IntPtrTy, V: Result);
2782 }
2783
2784 unsigned char inst = (BLOCK_LAYOUT_OPERATOR << 4) | 0;
2785 Layout.push_back(Elt: inst);
2786 std::string BitMap;
2787 for (unsigned i = 0, e = Layout.size(); i != e; i++)
2788 BitMap += Layout[i];
2789
2790 if (CGM.getLangOpts().ObjCGCBitmapPrint) {
2791 if (ComputeByrefLayout)
2792 printf(format: "\n Byref variable layout: ");
2793 else
2794 printf(format: "\n Block variable layout: ");
2795 for (unsigned i = 0, e = BitMap.size(); i != e; i++) {
2796 unsigned char inst = BitMap[i];
2797 enum BLOCK_LAYOUT_OPCODE opcode = (enum BLOCK_LAYOUT_OPCODE) (inst >> 4);
2798 unsigned delta = 1;
2799 switch (opcode) {
2800 case BLOCK_LAYOUT_OPERATOR:
2801 printf(format: "BL_OPERATOR:");
2802 delta = 0;
2803 break;
2804 case BLOCK_LAYOUT_NON_OBJECT_BYTES:
2805 printf(format: "BL_NON_OBJECT_BYTES:");
2806 break;
2807 case BLOCK_LAYOUT_NON_OBJECT_WORDS:
2808 printf(format: "BL_NON_OBJECT_WORD:");
2809 break;
2810 case BLOCK_LAYOUT_STRONG:
2811 printf(format: "BL_STRONG:");
2812 break;
2813 case BLOCK_LAYOUT_BYREF:
2814 printf(format: "BL_BYREF:");
2815 break;
2816 case BLOCK_LAYOUT_WEAK:
2817 printf(format: "BL_WEAK:");
2818 break;
2819 case BLOCK_LAYOUT_UNRETAINED:
2820 printf(format: "BL_UNRETAINED:");
2821 break;
2822 }
2823 // Actual value of word count is one more that what is in the imm.
2824 // field of the instruction
2825 printf(format: "%d", (inst & 0xf) + delta);
2826 if (i < e-1)
2827 printf(format: ", ");
2828 else
2829 printf(format: "\n");
2830 }
2831 }
2832
2833 auto *Entry = CreateCStringLiteral(Name: BitMap, LabelType: ObjCLabelType::ClassName,
2834 /*ForceNonFragileABI=*/true,
2835 /*NullTerminate=*/false);
2836 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
2837}
2838
2839static std::string getBlockLayoutInfoString(
2840 const SmallVectorImpl<CGObjCCommonMac::RUN_SKIP> &RunSkipBlockVars,
2841 bool HasCopyDisposeHelpers) {
2842 std::string Str;
2843 for (const CGObjCCommonMac::RUN_SKIP &R : RunSkipBlockVars) {
2844 if (R.opcode == CGObjCCommonMac::BLOCK_LAYOUT_UNRETAINED) {
2845 // Copy/dispose helpers don't have any information about
2846 // __unsafe_unretained captures, so unconditionally concatenate a string.
2847 Str += "u";
2848 } else if (HasCopyDisposeHelpers) {
2849 // Information about __strong, __weak, or byref captures has already been
2850 // encoded into the names of the copy/dispose helpers. We have to add a
2851 // string here only when the copy/dispose helpers aren't generated (which
2852 // happens when the block is non-escaping).
2853 continue;
2854 } else {
2855 switch (R.opcode) {
2856 case CGObjCCommonMac::BLOCK_LAYOUT_STRONG:
2857 Str += "s";
2858 break;
2859 case CGObjCCommonMac::BLOCK_LAYOUT_BYREF:
2860 Str += "r";
2861 break;
2862 case CGObjCCommonMac::BLOCK_LAYOUT_WEAK:
2863 Str += "w";
2864 break;
2865 default:
2866 continue;
2867 }
2868 }
2869 Str += llvm::to_string(Value: R.block_var_bytepos.getQuantity());
2870 Str += "l" + llvm::to_string(Value: R.block_var_size.getQuantity());
2871 }
2872 return Str;
2873}
2874
2875void CGObjCCommonMac::fillRunSkipBlockVars(CodeGenModule &CGM,
2876 const CGBlockInfo &blockInfo) {
2877 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2878
2879 RunSkipBlockVars.clear();
2880 bool hasUnion = false;
2881
2882 unsigned WordSizeInBits = CGM.getTarget().getPointerWidth(AddrSpace: LangAS::Default);
2883 unsigned ByteSizeInBits = CGM.getTarget().getCharWidth();
2884 unsigned WordSizeInBytes = WordSizeInBits/ByteSizeInBits;
2885
2886 const BlockDecl *blockDecl = blockInfo.getBlockDecl();
2887
2888 // Calculate the basic layout of the block structure.
2889 const llvm::StructLayout *layout =
2890 CGM.getDataLayout().getStructLayout(Ty: blockInfo.StructureType);
2891
2892 // Ignore the optional 'this' capture: C++ objects are not assumed
2893 // to be GC'ed.
2894 if (blockInfo.BlockHeaderForcedGapSize != CharUnits::Zero())
2895 UpdateRunSkipBlockVars(IsByref: false, LifeTime: Qualifiers::OCL_None,
2896 FieldOffset: blockInfo.BlockHeaderForcedGapOffset,
2897 FieldSize: blockInfo.BlockHeaderForcedGapSize);
2898 // Walk the captured variables.
2899 for (const auto &CI : blockDecl->captures()) {
2900 const VarDecl *variable = CI.getVariable();
2901 QualType type = variable->getType();
2902
2903 const CGBlockInfo::Capture &capture = blockInfo.getCapture(var: variable);
2904
2905 // Ignore constant captures.
2906 if (capture.isConstant()) continue;
2907
2908 CharUnits fieldOffset =
2909 CharUnits::fromQuantity(Quantity: layout->getElementOffset(Idx: capture.getIndex()));
2910
2911 assert(!type->isArrayType() && "array variable should not be caught");
2912 if (!CI.isByRef())
2913 if (const RecordType *record = type->getAs<RecordType>()) {
2914 BuildRCBlockVarRecordLayout(RT: record, BytePos: fieldOffset, HasUnion&: hasUnion);
2915 continue;
2916 }
2917 CharUnits fieldSize;
2918 if (CI.isByRef())
2919 fieldSize = CharUnits::fromQuantity(Quantity: WordSizeInBytes);
2920 else
2921 fieldSize = CGM.getContext().getTypeSizeInChars(T: type);
2922 UpdateRunSkipBlockVars(IsByref: CI.isByRef(), LifeTime: getBlockCaptureLifetime(FQT: type, ByrefLayout: false),
2923 FieldOffset: fieldOffset, FieldSize: fieldSize);
2924 }
2925}
2926
2927llvm::Constant *
2928CGObjCCommonMac::BuildRCBlockLayout(CodeGenModule &CGM,
2929 const CGBlockInfo &blockInfo) {
2930 fillRunSkipBlockVars(CGM, blockInfo);
2931 return getBitmapBlockLayout(ComputeByrefLayout: false);
2932}
2933
2934std::string CGObjCCommonMac::getRCBlockLayoutStr(CodeGenModule &CGM,
2935 const CGBlockInfo &blockInfo) {
2936 fillRunSkipBlockVars(CGM, blockInfo);
2937 return getBlockLayoutInfoString(RunSkipBlockVars, HasCopyDisposeHelpers: blockInfo.NeedsCopyDispose);
2938}
2939
2940llvm::Constant *CGObjCCommonMac::BuildByrefLayout(CodeGen::CodeGenModule &CGM,
2941 QualType T) {
2942 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
2943 assert(!T->isArrayType() && "__block array variable should not be caught");
2944 CharUnits fieldOffset;
2945 RunSkipBlockVars.clear();
2946 bool hasUnion = false;
2947 if (const RecordType *record = T->getAs<RecordType>()) {
2948 BuildRCBlockVarRecordLayout(RT: record, BytePos: fieldOffset, HasUnion&: hasUnion, ByrefLayout: true /*ByrefLayout */);
2949 llvm::Constant *Result = getBitmapBlockLayout(ComputeByrefLayout: true);
2950 if (isa<llvm::ConstantInt>(Val: Result))
2951 Result = llvm::ConstantExpr::getIntToPtr(C: Result, Ty: CGM.Int8PtrTy);
2952 return Result;
2953 }
2954 llvm::Constant *nullPtr = llvm::Constant::getNullValue(Ty: CGM.Int8PtrTy);
2955 return nullPtr;
2956}
2957
2958llvm::Value *CGObjCMac::GenerateProtocolRef(CodeGenFunction &CGF,
2959 const ObjCProtocolDecl *PD) {
2960 // FIXME: I don't understand why gcc generates this, or where it is
2961 // resolved. Investigate. Its also wasteful to look this up over and over.
2962 LazySymbols.insert(X: &CGM.getContext().Idents.get(Name: "Protocol"));
2963
2964 return GetProtocolRef(PD);
2965}
2966
2967void CGObjCCommonMac::GenerateProtocol(const ObjCProtocolDecl *PD) {
2968 // FIXME: We shouldn't need this, the protocol decl should contain enough
2969 // information to tell us whether this was a declaration or a definition.
2970 DefinedProtocols.insert(PD->getIdentifier());
2971
2972 // If we have generated a forward reference to this protocol, emit
2973 // it now. Otherwise do nothing, the protocol objects are lazily
2974 // emitted.
2975 if (Protocols.count(Val: PD->getIdentifier()))
2976 GetOrEmitProtocol(PD);
2977}
2978
2979llvm::Constant *CGObjCCommonMac::GetProtocolRef(const ObjCProtocolDecl *PD) {
2980 if (DefinedProtocols.count(V: PD->getIdentifier()))
2981 return GetOrEmitProtocol(PD);
2982
2983 return GetOrEmitProtocolRef(PD);
2984}
2985
2986llvm::Value *CGObjCCommonMac::EmitClassRefViaRuntime(
2987 CodeGenFunction &CGF,
2988 const ObjCInterfaceDecl *ID,
2989 ObjCCommonTypesHelper &ObjCTypes) {
2990 llvm::FunctionCallee lookUpClassFn = ObjCTypes.getLookUpClassFn();
2991
2992 llvm::Value *className = CGF.CGM
2993 .GetAddrOfConstantCString(Str: std::string(
2994 ID->getObjCRuntimeNameAsString()))
2995 .getPointer();
2996 ASTContext &ctx = CGF.CGM.getContext();
2997 className =
2998 CGF.Builder.CreateBitCast(V: className,
2999 DestTy: CGF.ConvertType(
3000 ctx.getPointerType(ctx.CharTy.withConst())));
3001 llvm::CallInst *call = CGF.Builder.CreateCall(Callee: lookUpClassFn, Args: className);
3002 call->setDoesNotThrow();
3003 return call;
3004}
3005
3006/*
3007// Objective-C 1.0 extensions
3008struct _objc_protocol {
3009struct _objc_protocol_extension *isa;
3010char *protocol_name;
3011struct _objc_protocol_list *protocol_list;
3012struct _objc__method_prototype_list *instance_methods;
3013struct _objc__method_prototype_list *class_methods
3014};
3015
3016See EmitProtocolExtension().
3017*/
3018llvm::Constant *CGObjCMac::GetOrEmitProtocol(const ObjCProtocolDecl *PD) {
3019 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
3020
3021 // Early exit if a defining object has already been generated.
3022 if (Entry && Entry->hasInitializer())
3023 return Entry;
3024
3025 // Use the protocol definition, if there is one.
3026 if (const ObjCProtocolDecl *Def = PD->getDefinition())
3027 PD = Def;
3028
3029 // FIXME: I don't understand why gcc generates this, or where it is
3030 // resolved. Investigate. Its also wasteful to look this up over and over.
3031 LazySymbols.insert(X: &CGM.getContext().Idents.get(Name: "Protocol"));
3032
3033 // Construct method lists.
3034 auto methodLists = ProtocolMethodLists::get(PD);
3035
3036 ConstantInitBuilder builder(CGM);
3037 auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
3038 values.add(EmitProtocolExtension(PD, methodLists));
3039 values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
3040 values.add(EmitProtocolList(Name: "OBJC_PROTOCOL_REFS_" + PD->getName(),
3041 begin: PD->protocol_begin(), end: PD->protocol_end()));
3042 values.add(methodLists.emitMethodList(self: this, PD,
3043 kind: ProtocolMethodLists::RequiredInstanceMethods));
3044 values.add(methodLists.emitMethodList(self: this, PD,
3045 kind: ProtocolMethodLists::RequiredClassMethods));
3046
3047 if (Entry) {
3048 // Already created, update the initializer.
3049 assert(Entry->hasPrivateLinkage());
3050 values.finishAndSetAsInitializer(Entry);
3051 } else {
3052 Entry = values.finishAndCreateGlobal("OBJC_PROTOCOL_" + PD->getName(),
3053 CGM.getPointerAlign(),
3054 /*constant*/ false,
3055 llvm::GlobalValue::PrivateLinkage);
3056 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3057
3058 Protocols[PD->getIdentifier()] = Entry;
3059 }
3060 CGM.addCompilerUsedGlobal(GV: Entry);
3061
3062 return Entry;
3063}
3064
3065llvm::Constant *CGObjCMac::GetOrEmitProtocolRef(const ObjCProtocolDecl *PD) {
3066 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
3067
3068 if (!Entry) {
3069 // We use the initializer as a marker of whether this is a forward
3070 // reference or not. At module finalization we add the empty
3071 // contents for protocols which were referenced but never defined.
3072 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolTy,
3073 false, llvm::GlobalValue::PrivateLinkage,
3074 nullptr, "OBJC_PROTOCOL_" + PD->getName());
3075 Entry->setSection("__OBJC,__protocol,regular,no_dead_strip");
3076 // FIXME: Is this necessary? Why only for protocol?
3077 Entry->setAlignment(llvm::Align(4));
3078 }
3079
3080 return Entry;
3081}
3082
3083/*
3084 struct _objc_protocol_extension {
3085 uint32_t size;
3086 struct objc_method_description_list *optional_instance_methods;
3087 struct objc_method_description_list *optional_class_methods;
3088 struct objc_property_list *instance_properties;
3089 const char ** extendedMethodTypes;
3090 struct objc_property_list *class_properties;
3091 };
3092*/
3093llvm::Constant *
3094CGObjCMac::EmitProtocolExtension(const ObjCProtocolDecl *PD,
3095 const ProtocolMethodLists &methodLists) {
3096 auto optInstanceMethods =
3097 methodLists.emitMethodList(self: this, PD,
3098 kind: ProtocolMethodLists::OptionalInstanceMethods);
3099 auto optClassMethods =
3100 methodLists.emitMethodList(self: this, PD,
3101 kind: ProtocolMethodLists::OptionalClassMethods);
3102
3103 auto extendedMethodTypes =
3104 EmitProtocolMethodTypes("OBJC_PROTOCOL_METHOD_TYPES_" + PD->getName(),
3105 methodLists.emitExtendedTypesArray(this),
3106 ObjCTypes);
3107
3108 auto instanceProperties =
3109 EmitPropertyList("OBJC_$_PROP_PROTO_LIST_" + PD->getName(), nullptr, PD,
3110 ObjCTypes, false);
3111 auto classProperties =
3112 EmitPropertyList("OBJC_$_CLASS_PROP_PROTO_LIST_" + PD->getName(), nullptr,
3113 PD, ObjCTypes, true);
3114
3115 // Return null if no extension bits are used.
3116 if (optInstanceMethods->isNullValue() &&
3117 optClassMethods->isNullValue() &&
3118 extendedMethodTypes->isNullValue() &&
3119 instanceProperties->isNullValue() &&
3120 classProperties->isNullValue()) {
3121 return llvm::Constant::getNullValue(ObjCTypes.ProtocolExtensionPtrTy);
3122 }
3123
3124 uint64_t size =
3125 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolExtensionTy);
3126
3127 ConstantInitBuilder builder(CGM);
3128 auto values = builder.beginStruct(ObjCTypes.ProtocolExtensionTy);
3129 values.addInt(ObjCTypes.IntTy, size);
3130 values.add(optInstanceMethods);
3131 values.add(optClassMethods);
3132 values.add(instanceProperties);
3133 values.add(extendedMethodTypes);
3134 values.add(classProperties);
3135
3136 // No special section, but goes in llvm.used
3137 return CreateMetadataVar("_OBJC_PROTOCOLEXT_" + PD->getName(), values,
3138 StringRef(), CGM.getPointerAlign(), true);
3139}
3140
3141/*
3142 struct objc_protocol_list {
3143 struct objc_protocol_list *next;
3144 long count;
3145 Protocol *list[];
3146 };
3147*/
3148llvm::Constant *
3149CGObjCMac::EmitProtocolList(Twine name,
3150 ObjCProtocolDecl::protocol_iterator begin,
3151 ObjCProtocolDecl::protocol_iterator end) {
3152 // Just return null for empty protocol lists
3153 auto PDs = GetRuntimeProtocolList(begin, end);
3154 if (PDs.empty())
3155 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListPtrTy);
3156
3157 ConstantInitBuilder builder(CGM);
3158 auto values = builder.beginStruct();
3159
3160 // This field is only used by the runtime.
3161 values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3162
3163 // Reserve a slot for the count.
3164 auto countSlot = values.addPlaceholder();
3165
3166 auto refsArray = values.beginArray(ObjCTypes.ProtocolPtrTy);
3167 for (const auto *Proto : PDs)
3168 refsArray.add(GetProtocolRef(Proto));
3169
3170 auto count = refsArray.size();
3171
3172 // This list is null terminated.
3173 refsArray.addNullPointer(ObjCTypes.ProtocolPtrTy);
3174
3175 refsArray.finishAndAddTo(values);
3176 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
3177
3178 StringRef section;
3179 if (CGM.getTriple().isOSBinFormatMachO())
3180 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3181
3182 llvm::GlobalVariable *GV =
3183 CreateMetadataVar(name, values, section, CGM.getPointerAlign(), false);
3184 return GV;
3185}
3186
3187static void
3188PushProtocolProperties(llvm::SmallPtrSet<const IdentifierInfo*,16> &PropertySet,
3189 SmallVectorImpl<const ObjCPropertyDecl *> &Properties,
3190 const ObjCProtocolDecl *Proto,
3191 bool IsClassProperty) {
3192 for (const auto *PD : Proto->properties()) {
3193 if (IsClassProperty != PD->isClassProperty())
3194 continue;
3195 if (!PropertySet.insert(PD->getIdentifier()).second)
3196 continue;
3197 Properties.push_back(PD);
3198 }
3199
3200 for (const auto *P : Proto->protocols())
3201 PushProtocolProperties(PropertySet, Properties, Proto: P, IsClassProperty);
3202}
3203
3204/*
3205 struct _objc_property {
3206 const char * const name;
3207 const char * const attributes;
3208 };
3209
3210 struct _objc_property_list {
3211 uint32_t entsize; // sizeof (struct _objc_property)
3212 uint32_t prop_count;
3213 struct _objc_property[prop_count];
3214 };
3215*/
3216llvm::Constant *CGObjCCommonMac::EmitPropertyList(Twine Name,
3217 const Decl *Container,
3218 const ObjCContainerDecl *OCD,
3219 const ObjCCommonTypesHelper &ObjCTypes,
3220 bool IsClassProperty) {
3221 if (IsClassProperty) {
3222 // Make this entry NULL for OS X with deployment target < 10.11, for iOS
3223 // with deployment target < 9.0.
3224 const llvm::Triple &Triple = CGM.getTarget().getTriple();
3225 if ((Triple.isMacOSX() && Triple.isMacOSXVersionLT(Major: 10, Minor: 11)) ||
3226 (Triple.isiOS() && Triple.isOSVersionLT(Major: 9)))
3227 return llvm::Constant::getNullValue(Ty: ObjCTypes.PropertyListPtrTy);
3228 }
3229
3230 SmallVector<const ObjCPropertyDecl *, 16> Properties;
3231 llvm::SmallPtrSet<const IdentifierInfo*, 16> PropertySet;
3232
3233 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(OCD))
3234 for (const ObjCCategoryDecl *ClassExt : OID->known_extensions())
3235 for (auto *PD : ClassExt->properties()) {
3236 if (IsClassProperty != PD->isClassProperty())
3237 continue;
3238 if (PD->isDirectProperty())
3239 continue;
3240 PropertySet.insert(PD->getIdentifier());
3241 Properties.push_back(PD);
3242 }
3243
3244 for (const auto *PD : OCD->properties()) {
3245 if (IsClassProperty != PD->isClassProperty())
3246 continue;
3247 // Don't emit duplicate metadata for properties that were already in a
3248 // class extension.
3249 if (!PropertySet.insert(PD->getIdentifier()).second)
3250 continue;
3251 if (PD->isDirectProperty())
3252 continue;
3253 Properties.push_back(Elt: PD);
3254 }
3255
3256 if (const ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(Val: OCD)) {
3257 for (const auto *P : OID->all_referenced_protocols())
3258 PushProtocolProperties(PropertySet, Properties, Proto: P, IsClassProperty);
3259 }
3260 else if (const ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: OCD)) {
3261 for (const auto *P : CD->protocols())
3262 PushProtocolProperties(PropertySet, Properties, Proto: P, IsClassProperty);
3263 }
3264
3265 // Return null for empty list.
3266 if (Properties.empty())
3267 return llvm::Constant::getNullValue(Ty: ObjCTypes.PropertyListPtrTy);
3268
3269 unsigned propertySize =
3270 CGM.getDataLayout().getTypeAllocSize(Ty: ObjCTypes.PropertyTy);
3271
3272 ConstantInitBuilder builder(CGM);
3273 auto values = builder.beginStruct();
3274 values.addInt(intTy: ObjCTypes.IntTy, value: propertySize);
3275 values.addInt(intTy: ObjCTypes.IntTy, value: Properties.size());
3276 auto propertiesArray = values.beginArray(eltTy: ObjCTypes.PropertyTy);
3277 for (auto PD : Properties) {
3278 auto property = propertiesArray.beginStruct(ty: ObjCTypes.PropertyTy);
3279 property.add(value: GetPropertyName(Ident: PD->getIdentifier()));
3280 property.add(value: GetPropertyTypeString(PD, Container));
3281 property.finishAndAddTo(parent&: propertiesArray);
3282 }
3283 propertiesArray.finishAndAddTo(parent&: values);
3284
3285 StringRef Section;
3286 if (CGM.getTriple().isOSBinFormatMachO())
3287 Section = (ObjCABI == 2) ? "__DATA, __objc_const"
3288 : "__OBJC,__property,regular,no_dead_strip";
3289
3290 llvm::GlobalVariable *GV =
3291 CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3292 return GV;
3293}
3294
3295llvm::Constant *
3296CGObjCCommonMac::EmitProtocolMethodTypes(Twine Name,
3297 ArrayRef<llvm::Constant*> MethodTypes,
3298 const ObjCCommonTypesHelper &ObjCTypes) {
3299 // Return null for empty list.
3300 if (MethodTypes.empty())
3301 return llvm::Constant::getNullValue(Ty: ObjCTypes.Int8PtrPtrTy);
3302
3303 llvm::ArrayType *AT = llvm::ArrayType::get(ElementType: ObjCTypes.Int8PtrTy,
3304 NumElements: MethodTypes.size());
3305 llvm::Constant *Init = llvm::ConstantArray::get(T: AT, V: MethodTypes);
3306
3307 StringRef Section;
3308 if (CGM.getTriple().isOSBinFormatMachO() && ObjCABI == 2)
3309 Section = "__DATA, __objc_const";
3310
3311 llvm::GlobalVariable *GV =
3312 CreateMetadataVar(Name, Init, Section, CGM.getPointerAlign(), true);
3313 return GV;
3314}
3315
3316/*
3317 struct _objc_category {
3318 char *category_name;
3319 char *class_name;
3320 struct _objc_method_list *instance_methods;
3321 struct _objc_method_list *class_methods;
3322 struct _objc_protocol_list *protocols;
3323 uint32_t size; // sizeof(struct _objc_category)
3324 struct _objc_property_list *instance_properties;
3325 struct _objc_property_list *class_properties;
3326 };
3327*/
3328void CGObjCMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
3329 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategoryTy);
3330
3331 // FIXME: This is poor design, the OCD should have a pointer to the category
3332 // decl. Additionally, note that Category can be null for the @implementation
3333 // w/o an @interface case. Sema should just create one for us as it does for
3334 // @implementation so everyone else can live life under a clear blue sky.
3335 const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
3336 const ObjCCategoryDecl *Category =
3337 Interface->FindCategoryDeclaration(CategoryId: OCD->getIdentifier());
3338
3339 SmallString<256> ExtName;
3340 llvm::raw_svector_ostream(ExtName) << Interface->getName() << '_'
3341 << OCD->getName();
3342
3343 ConstantInitBuilder Builder(CGM);
3344 auto Values = Builder.beginStruct(ObjCTypes.CategoryTy);
3345
3346 enum {
3347 InstanceMethods,
3348 ClassMethods,
3349 NumMethodLists
3350 };
3351 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3352 for (const auto *MD : OCD->methods()) {
3353 if (!MD->isDirectMethod())
3354 Methods[unsigned(MD->isClassMethod())].push_back(MD);
3355 }
3356
3357 Values.add(GetClassName(RuntimeName: OCD->getName()));
3358 Values.add(GetClassName(Interface->getObjCRuntimeNameAsString()));
3359 LazySymbols.insert(Interface->getIdentifier());
3360
3361 Values.add(emitMethodList(Name: ExtName, MLT: MethodListType::CategoryInstanceMethods,
3362 Methods: Methods[InstanceMethods]));
3363 Values.add(emitMethodList(Name: ExtName, MLT: MethodListType::CategoryClassMethods,
3364 Methods: Methods[ClassMethods]));
3365 if (Category) {
3366 Values.add(
3367 EmitProtocolList(name: "OBJC_CATEGORY_PROTOCOLS_" + ExtName.str(),
3368 begin: Category->protocol_begin(), end: Category->protocol_end()));
3369 } else {
3370 Values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
3371 }
3372 Values.addInt(ObjCTypes.IntTy, Size);
3373
3374 // If there is no category @interface then there can be no properties.
3375 if (Category) {
3376 Values.add(EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
3377 OCD, Category, ObjCTypes, false));
3378 Values.add(EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(),
3379 OCD, Category, ObjCTypes, true));
3380 } else {
3381 Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3382 Values.addNullPointer(ObjCTypes.PropertyListPtrTy);
3383 }
3384
3385 llvm::GlobalVariable *GV =
3386 CreateMetadataVar("OBJC_CATEGORY_" + ExtName.str(), Values,
3387 "__OBJC,__category,regular,no_dead_strip",
3388 CGM.getPointerAlign(), true);
3389 DefinedCategories.push_back(Elt: GV);
3390 DefinedCategoryNames.insert(X: llvm::CachedHashString(ExtName));
3391 // method definition entries must be clear for next implementation.
3392 MethodDefinitions.clear();
3393}
3394
3395enum FragileClassFlags {
3396 /// Apparently: is not a meta-class.
3397 FragileABI_Class_Factory = 0x00001,
3398
3399 /// Is a meta-class.
3400 FragileABI_Class_Meta = 0x00002,
3401
3402 /// Has a non-trivial constructor or destructor.
3403 FragileABI_Class_HasCXXStructors = 0x02000,
3404
3405 /// Has hidden visibility.
3406 FragileABI_Class_Hidden = 0x20000,
3407
3408 /// Class implementation was compiled under ARC.
3409 FragileABI_Class_CompiledByARC = 0x04000000,
3410
3411 /// Class implementation was compiled under MRC and has MRC weak ivars.
3412 /// Exclusive with CompiledByARC.
3413 FragileABI_Class_HasMRCWeakIvars = 0x08000000,
3414};
3415
3416enum NonFragileClassFlags {
3417 /// Is a meta-class.
3418 NonFragileABI_Class_Meta = 0x00001,
3419
3420 /// Is a root class.
3421 NonFragileABI_Class_Root = 0x00002,
3422
3423 /// Has a non-trivial constructor or destructor.
3424 NonFragileABI_Class_HasCXXStructors = 0x00004,
3425
3426 /// Has hidden visibility.
3427 NonFragileABI_Class_Hidden = 0x00010,
3428
3429 /// Has the exception attribute.
3430 NonFragileABI_Class_Exception = 0x00020,
3431
3432 /// (Obsolete) ARC-specific: this class has a .release_ivars method
3433 NonFragileABI_Class_HasIvarReleaser = 0x00040,
3434
3435 /// Class implementation was compiled under ARC.
3436 NonFragileABI_Class_CompiledByARC = 0x00080,
3437
3438 /// Class has non-trivial destructors, but zero-initialization is okay.
3439 NonFragileABI_Class_HasCXXDestructorOnly = 0x00100,
3440
3441 /// Class implementation was compiled under MRC and has MRC weak ivars.
3442 /// Exclusive with CompiledByARC.
3443 NonFragileABI_Class_HasMRCWeakIvars = 0x00200,
3444};
3445
3446static bool hasWeakMember(QualType type) {
3447 if (type.getObjCLifetime() == Qualifiers::OCL_Weak) {
3448 return true;
3449 }
3450
3451 if (auto recType = type->getAs<RecordType>()) {
3452 for (auto *field : recType->getDecl()->fields()) {
3453 if (hasWeakMember(field->getType()))
3454 return true;
3455 }
3456 }
3457
3458 return false;
3459}
3460
3461/// For compatibility, we only want to set the "HasMRCWeakIvars" flag
3462/// (and actually fill in a layout string) if we really do have any
3463/// __weak ivars.
3464static bool hasMRCWeakIvars(CodeGenModule &CGM,
3465 const ObjCImplementationDecl *ID) {
3466 if (!CGM.getLangOpts().ObjCWeak) return false;
3467 assert(CGM.getLangOpts().getGC() == LangOptions::NonGC);
3468
3469 for (const ObjCIvarDecl *ivar =
3470 ID->getClassInterface()->all_declared_ivar_begin();
3471 ivar; ivar = ivar->getNextIvar()) {
3472 if (hasWeakMember(ivar->getType()))
3473 return true;
3474 }
3475
3476 return false;
3477}
3478
3479/*
3480 struct _objc_class {
3481 Class isa;
3482 Class super_class;
3483 const char *name;
3484 long version;
3485 long info;
3486 long instance_size;
3487 struct _objc_ivar_list *ivars;
3488 struct _objc_method_list *methods;
3489 struct _objc_cache *cache;
3490 struct _objc_protocol_list *protocols;
3491 // Objective-C 1.0 extensions (<rdr://4585769>)
3492 const char *ivar_layout;
3493 struct _objc_class_ext *ext;
3494 };
3495
3496 See EmitClassExtension();
3497*/
3498void CGObjCMac::GenerateClass(const ObjCImplementationDecl *ID) {
3499 IdentifierInfo *RuntimeName =
3500 &CGM.getContext().Idents.get(Name: ID->getObjCRuntimeNameAsString());
3501 DefinedSymbols.insert(X: RuntimeName);
3502
3503 std::string ClassName = ID->getNameAsString();
3504 // FIXME: Gross
3505 ObjCInterfaceDecl *Interface =
3506 const_cast<ObjCInterfaceDecl*>(ID->getClassInterface());
3507 llvm::Constant *Protocols =
3508 EmitProtocolList(name: "OBJC_CLASS_PROTOCOLS_" + ID->getName(),
3509 begin: Interface->all_referenced_protocol_begin(),
3510 end: Interface->all_referenced_protocol_end());
3511 unsigned Flags = FragileABI_Class_Factory;
3512 if (ID->hasNonZeroConstructors() || ID->hasDestructors())
3513 Flags |= FragileABI_Class_HasCXXStructors;
3514
3515 bool hasMRCWeak = false;
3516
3517 if (CGM.getLangOpts().ObjCAutoRefCount)
3518 Flags |= FragileABI_Class_CompiledByARC;
3519 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
3520 Flags |= FragileABI_Class_HasMRCWeakIvars;
3521
3522 CharUnits Size =
3523 CGM.getContext().getASTObjCImplementationLayout(D: ID).getSize();
3524
3525 // FIXME: Set CXX-structors flag.
3526 if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3527 Flags |= FragileABI_Class_Hidden;
3528
3529 enum {
3530 InstanceMethods,
3531 ClassMethods,
3532 NumMethodLists
3533 };
3534 SmallVector<const ObjCMethodDecl *, 16> Methods[NumMethodLists];
3535 for (const auto *MD : ID->methods()) {
3536 if (!MD->isDirectMethod())
3537 Methods[unsigned(MD->isClassMethod())].push_back(MD);
3538 }
3539
3540 for (const auto *PID : ID->property_impls()) {
3541 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
3542 if (PID->getPropertyDecl()->isDirectProperty())
3543 continue;
3544 if (ObjCMethodDecl *MD = PID->getGetterMethodDecl())
3545 if (GetMethodDefinition(MD))
3546 Methods[InstanceMethods].push_back(MD);
3547 if (ObjCMethodDecl *MD = PID->getSetterMethodDecl())
3548 if (GetMethodDefinition(MD))
3549 Methods[InstanceMethods].push_back(MD);
3550 }
3551 }
3552
3553 ConstantInitBuilder builder(CGM);
3554 auto values = builder.beginStruct(ObjCTypes.ClassTy);
3555 values.add(EmitMetaClass(ID, Protocols, Methods: Methods[ClassMethods]));
3556 if (ObjCInterfaceDecl *Super = Interface->getSuperClass()) {
3557 // Record a reference to the super class.
3558 LazySymbols.insert(Super->getIdentifier());
3559
3560 values.add(GetClassName(Super->getObjCRuntimeNameAsString()));
3561 } else {
3562 values.addNullPointer(ObjCTypes.ClassPtrTy);
3563 }
3564 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3565 // Version is always 0.
3566 values.addInt(ObjCTypes.LongTy, 0);
3567 values.addInt(ObjCTypes.LongTy, Flags);
3568 values.addInt(ObjCTypes.LongTy, Size.getQuantity());
3569 values.add(EmitIvarList(ID, ForClass: false));
3570 values.add(emitMethodList(Name: ID->getName(), MLT: MethodListType::InstanceMethods,
3571 Methods: Methods[InstanceMethods]));
3572 // cache is always NULL.
3573 values.addNullPointer(ObjCTypes.CachePtrTy);
3574 values.add(Protocols);
3575 values.add(BuildStrongIvarLayout(ID, CharUnits::Zero(), Size));
3576 values.add(EmitClassExtension(ID, instanceSize: Size, hasMRCWeakIvars: hasMRCWeak,
3577 /*isMetaclass*/ false));
3578
3579 std::string Name("OBJC_CLASS_");
3580 Name += ClassName;
3581 const char *Section = "__OBJC,__class,regular,no_dead_strip";
3582 // Check for a forward reference.
3583 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, AllowInternal: true);
3584 if (GV) {
3585 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3586 "Forward metaclass reference has incorrect type.");
3587 values.finishAndSetAsInitializer(GV);
3588 GV->setSection(Section);
3589 GV->setAlignment(CGM.getPointerAlign().getAsAlign());
3590 CGM.addCompilerUsedGlobal(GV);
3591 } else
3592 GV = CreateMetadataVar(Name, values, Section, CGM.getPointerAlign(), true);
3593 DefinedClasses.push_back(Elt: GV);
3594 ImplementedClasses.push_back(Elt: Interface);
3595 // method definition entries must be clear for next implementation.
3596 MethodDefinitions.clear();
3597}
3598
3599llvm::Constant *CGObjCMac::EmitMetaClass(const ObjCImplementationDecl *ID,
3600 llvm::Constant *Protocols,
3601 ArrayRef<const ObjCMethodDecl*> Methods) {
3602 unsigned Flags = FragileABI_Class_Meta;
3603 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassTy);
3604
3605 if (ID->getClassInterface()->getVisibility() == HiddenVisibility)
3606 Flags |= FragileABI_Class_Hidden;
3607
3608 ConstantInitBuilder builder(CGM);
3609 auto values = builder.beginStruct(ObjCTypes.ClassTy);
3610 // The isa for the metaclass is the root of the hierarchy.
3611 const ObjCInterfaceDecl *Root = ID->getClassInterface();
3612 while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
3613 Root = Super;
3614 values.add(GetClassName(Root->getObjCRuntimeNameAsString()));
3615 // The super class for the metaclass is emitted as the name of the
3616 // super class. The runtime fixes this up to point to the
3617 // *metaclass* for the super class.
3618 if (ObjCInterfaceDecl *Super = ID->getClassInterface()->getSuperClass()) {
3619 values.add(GetClassName(Super->getObjCRuntimeNameAsString()));
3620 } else {
3621 values.addNullPointer(ObjCTypes.ClassPtrTy);
3622 }
3623 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
3624 // Version is always 0.
3625 values.addInt(ObjCTypes.LongTy, 0);
3626 values.addInt(ObjCTypes.LongTy, Flags);
3627 values.addInt(ObjCTypes.LongTy, Size);
3628 values.add(EmitIvarList(ID, ForClass: true));
3629 values.add(emitMethodList(Name: ID->getName(), MLT: MethodListType::ClassMethods,
3630 Methods));
3631 // cache is always NULL.
3632 values.addNullPointer(ObjCTypes.CachePtrTy);
3633 values.add(Protocols);
3634 // ivar_layout for metaclass is always NULL.
3635 values.addNullPointer(ObjCTypes.Int8PtrTy);
3636 // The class extension is used to store class properties for metaclasses.
3637 values.add(EmitClassExtension(ID, instanceSize: CharUnits::Zero(), hasMRCWeakIvars: false/*hasMRCWeak*/,
3638 /*isMetaclass*/true));
3639
3640 std::string Name("OBJC_METACLASS_");
3641 Name += ID->getName();
3642
3643 // Check for a forward reference.
3644 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, AllowInternal: true);
3645 if (GV) {
3646 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3647 "Forward metaclass reference has incorrect type.");
3648 values.finishAndSetAsInitializer(GV);
3649 } else {
3650 GV = values.finishAndCreateGlobal(Name, CGM.getPointerAlign(),
3651 /*constant*/ false,
3652 llvm::GlobalValue::PrivateLinkage);
3653 }
3654 GV->setSection("__OBJC,__meta_class,regular,no_dead_strip");
3655 CGM.addCompilerUsedGlobal(GV);
3656
3657 return GV;
3658}
3659
3660llvm::Constant *CGObjCMac::EmitMetaClassRef(const ObjCInterfaceDecl *ID) {
3661 std::string Name = "OBJC_METACLASS_" + ID->getNameAsString();
3662
3663 // FIXME: Should we look these up somewhere other than the module. Its a bit
3664 // silly since we only generate these while processing an implementation, so
3665 // exactly one pointer would work if know when we entered/exitted an
3666 // implementation block.
3667
3668 // Check for an existing forward reference.
3669 // Previously, metaclass with internal linkage may have been defined.
3670 // pass 'true' as 2nd argument so it is returned.
3671 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, AllowInternal: true);
3672 if (!GV)
3673 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3674 llvm::GlobalValue::PrivateLinkage, nullptr,
3675 Name);
3676
3677 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3678 "Forward metaclass reference has incorrect type.");
3679 return GV;
3680}
3681
3682llvm::Value *CGObjCMac::EmitSuperClassRef(const ObjCInterfaceDecl *ID) {
3683 std::string Name = "OBJC_CLASS_" + ID->getNameAsString();
3684 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name, AllowInternal: true);
3685
3686 if (!GV)
3687 GV = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassTy, false,
3688 llvm::GlobalValue::PrivateLinkage, nullptr,
3689 Name);
3690
3691 assert(GV->getValueType() == ObjCTypes.ClassTy &&
3692 "Forward class metadata reference has incorrect type.");
3693 return GV;
3694}
3695
3696/*
3697 Emit a "class extension", which in this specific context means extra
3698 data that doesn't fit in the normal fragile-ABI class structure, and
3699 has nothing to do with the language concept of a class extension.
3700
3701 struct objc_class_ext {
3702 uint32_t size;
3703 const char *weak_ivar_layout;
3704 struct _objc_property_list *properties;
3705 };
3706*/
3707llvm::Constant *
3708CGObjCMac::EmitClassExtension(const ObjCImplementationDecl *ID,
3709 CharUnits InstanceSize, bool hasMRCWeakIvars,
3710 bool isMetaclass) {
3711 // Weak ivar layout.
3712 llvm::Constant *layout;
3713 if (isMetaclass) {
3714 layout = llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy);
3715 } else {
3716 layout = BuildWeakIvarLayout(ID, CharUnits::Zero(), InstanceSize,
3717 hasMRCWeakIvars);
3718 }
3719
3720 // Properties.
3721 llvm::Constant *propertyList =
3722 EmitPropertyList((isMetaclass ? Twine("_OBJC_$_CLASS_PROP_LIST_")
3723 : Twine("_OBJC_$_PROP_LIST_"))
3724 + ID->getName(),
3725 ID, ID->getClassInterface(), ObjCTypes, isMetaclass);
3726
3727 // Return null if no extension bits are used.
3728 if (layout->isNullValue() && propertyList->isNullValue()) {
3729 return llvm::Constant::getNullValue(ObjCTypes.ClassExtensionPtrTy);
3730 }
3731
3732 uint64_t size =
3733 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassExtensionTy);
3734
3735 ConstantInitBuilder builder(CGM);
3736 auto values = builder.beginStruct(ObjCTypes.ClassExtensionTy);
3737 values.addInt(ObjCTypes.IntTy, size);
3738 values.add(layout);
3739 values.add(propertyList);
3740
3741 return CreateMetadataVar("OBJC_CLASSEXT_" + ID->getName(), values,
3742 "__OBJC,__class_ext,regular,no_dead_strip",
3743 CGM.getPointerAlign(), true);
3744}
3745
3746/*
3747 struct objc_ivar {
3748 char *ivar_name;
3749 char *ivar_type;
3750 int ivar_offset;
3751 };
3752
3753 struct objc_ivar_list {
3754 int ivar_count;
3755 struct objc_ivar list[count];
3756 };
3757*/
3758llvm::Constant *CGObjCMac::EmitIvarList(const ObjCImplementationDecl *ID,
3759 bool ForClass) {
3760 // When emitting the root class GCC emits ivar entries for the
3761 // actual class structure. It is not clear if we need to follow this
3762 // behavior; for now lets try and get away with not doing it. If so,
3763 // the cleanest solution would be to make up an ObjCInterfaceDecl
3764 // for the class.
3765 if (ForClass)
3766 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3767
3768 const ObjCInterfaceDecl *OID = ID->getClassInterface();
3769
3770 ConstantInitBuilder builder(CGM);
3771 auto ivarList = builder.beginStruct();
3772 auto countSlot = ivarList.addPlaceholder();
3773 auto ivars = ivarList.beginArray(ObjCTypes.IvarTy);
3774
3775 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
3776 IVD; IVD = IVD->getNextIvar()) {
3777 // Ignore unnamed bit-fields.
3778 if (!IVD->getDeclName())
3779 continue;
3780
3781 auto ivar = ivars.beginStruct(ObjCTypes.IvarTy);
3782 ivar.add(GetMethodVarName(IVD->getIdentifier()));
3783 ivar.add(GetMethodVarType(IVD));
3784 ivar.addInt(ObjCTypes.IntTy, ComputeIvarBaseOffset(CGM, OID, IVD));
3785 ivar.finishAndAddTo(ivars);
3786 }
3787
3788 // Return null for empty list.
3789 auto count = ivars.size();
3790 if (count == 0) {
3791 ivars.abandon();
3792 ivarList.abandon();
3793 return llvm::Constant::getNullValue(ObjCTypes.IvarListPtrTy);
3794 }
3795
3796 ivars.finishAndAddTo(ivarList);
3797 ivarList.fillPlaceholderWithInt(countSlot, ObjCTypes.IntTy, count);
3798
3799 llvm::GlobalVariable *GV;
3800 GV = CreateMetadataVar("OBJC_INSTANCE_VARIABLES_" + ID->getName(), ivarList,
3801 "__OBJC,__instance_vars,regular,no_dead_strip",
3802 CGM.getPointerAlign(), true);
3803 return GV;
3804}
3805
3806/// Build a struct objc_method_description constant for the given method.
3807///
3808/// struct objc_method_description {
3809/// SEL method_name;
3810/// char *method_types;
3811/// };
3812void CGObjCMac::emitMethodDescriptionConstant(ConstantArrayBuilder &builder,
3813 const ObjCMethodDecl *MD) {
3814 auto description = builder.beginStruct(ObjCTypes.MethodDescriptionTy);
3815 description.add(GetMethodVarName(MD->getSelector()));
3816 description.add(GetMethodVarType(MD));
3817 description.finishAndAddTo(builder);
3818}
3819
3820/// Build a struct objc_method constant for the given method.
3821///
3822/// struct objc_method {
3823/// SEL method_name;
3824/// char *method_types;
3825/// void *method;
3826/// };
3827void CGObjCMac::emitMethodConstant(ConstantArrayBuilder &builder,
3828 const ObjCMethodDecl *MD) {
3829 llvm::Function *fn = GetMethodDefinition(MD);
3830 assert(fn && "no definition registered for method");
3831
3832 auto method = builder.beginStruct(ObjCTypes.MethodTy);
3833 method.add(GetMethodVarName(MD->getSelector()));
3834 method.add(GetMethodVarType(MD));
3835 method.add(fn);
3836 method.finishAndAddTo(builder);
3837}
3838
3839/// Build a struct objc_method_list or struct objc_method_description_list,
3840/// as appropriate.
3841///
3842/// struct objc_method_list {
3843/// struct objc_method_list *obsolete;
3844/// int count;
3845/// struct objc_method methods_list[count];
3846/// };
3847///
3848/// struct objc_method_description_list {
3849/// int count;
3850/// struct objc_method_description list[count];
3851/// };
3852llvm::Constant *CGObjCMac::emitMethodList(Twine name, MethodListType MLT,
3853 ArrayRef<const ObjCMethodDecl *> methods) {
3854 StringRef prefix;
3855 StringRef section;
3856 bool forProtocol = false;
3857 switch (MLT) {
3858 case MethodListType::CategoryInstanceMethods:
3859 prefix = "OBJC_CATEGORY_INSTANCE_METHODS_";
3860 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3861 forProtocol = false;
3862 break;
3863 case MethodListType::CategoryClassMethods:
3864 prefix = "OBJC_CATEGORY_CLASS_METHODS_";
3865 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3866 forProtocol = false;
3867 break;
3868 case MethodListType::InstanceMethods:
3869 prefix = "OBJC_INSTANCE_METHODS_";
3870 section = "__OBJC,__inst_meth,regular,no_dead_strip";
3871 forProtocol = false;
3872 break;
3873 case MethodListType::ClassMethods:
3874 prefix = "OBJC_CLASS_METHODS_";
3875 section = "__OBJC,__cls_meth,regular,no_dead_strip";
3876 forProtocol = false;
3877 break;
3878 case MethodListType::ProtocolInstanceMethods:
3879 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_";
3880 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3881 forProtocol = true;
3882 break;
3883 case MethodListType::ProtocolClassMethods:
3884 prefix = "OBJC_PROTOCOL_CLASS_METHODS_";
3885 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3886 forProtocol = true;
3887 break;
3888 case MethodListType::OptionalProtocolInstanceMethods:
3889 prefix = "OBJC_PROTOCOL_INSTANCE_METHODS_OPT_";
3890 section = "__OBJC,__cat_inst_meth,regular,no_dead_strip";
3891 forProtocol = true;
3892 break;
3893 case MethodListType::OptionalProtocolClassMethods:
3894 prefix = "OBJC_PROTOCOL_CLASS_METHODS_OPT_";
3895 section = "__OBJC,__cat_cls_meth,regular,no_dead_strip";
3896 forProtocol = true;
3897 break;
3898 }
3899
3900 // Return null for empty list.
3901 if (methods.empty())
3902 return llvm::Constant::getNullValue(forProtocol
3903 ? ObjCTypes.MethodDescriptionListPtrTy
3904 : ObjCTypes.MethodListPtrTy);
3905
3906 // For protocols, this is an objc_method_description_list, which has
3907 // a slightly different structure.
3908 if (forProtocol) {
3909 ConstantInitBuilder builder(CGM);
3910 auto values = builder.beginStruct();
3911 values.addInt(ObjCTypes.IntTy, methods.size());
3912 auto methodArray = values.beginArray(ObjCTypes.MethodDescriptionTy);
3913 for (auto MD : methods) {
3914 emitMethodDescriptionConstant(builder&: methodArray, MD);
3915 }
3916 methodArray.finishAndAddTo(values);
3917
3918 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3919 CGM.getPointerAlign(), true);
3920 return GV;
3921 }
3922
3923 // Otherwise, it's an objc_method_list.
3924 ConstantInitBuilder builder(CGM);
3925 auto values = builder.beginStruct();
3926 values.addNullPointer(ObjCTypes.Int8PtrTy);
3927 values.addInt(ObjCTypes.IntTy, methods.size());
3928 auto methodArray = values.beginArray(ObjCTypes.MethodTy);
3929 for (auto MD : methods) {
3930 if (!MD->isDirectMethod())
3931 emitMethodConstant(builder&: methodArray, MD);
3932 }
3933 methodArray.finishAndAddTo(values);
3934
3935 llvm::GlobalVariable *GV = CreateMetadataVar(prefix + name, values, section,
3936 CGM.getPointerAlign(), true);
3937 return GV;
3938}
3939
3940llvm::Function *CGObjCCommonMac::GenerateMethod(const ObjCMethodDecl *OMD,
3941 const ObjCContainerDecl *CD) {
3942 llvm::Function *Method;
3943
3944 if (OMD->isDirectMethod()) {
3945 Method = GenerateDirectMethod(OMD, CD);
3946 } else {
3947 auto Name = getSymbolNameForMethod(method: OMD);
3948
3949 CodeGenTypes &Types = CGM.getTypes();
3950 llvm::FunctionType *MethodTy =
3951 Types.GetFunctionType(Info: Types.arrangeObjCMethodDeclaration(MD: OMD));
3952 Method =
3953 llvm::Function::Create(Ty: MethodTy, Linkage: llvm::GlobalValue::InternalLinkage,
3954 N: Name, M: &CGM.getModule());
3955 }
3956
3957 MethodDefinitions.insert(KV: std::make_pair(x&: OMD, y&: Method));
3958
3959 return Method;
3960}
3961
3962llvm::Function *
3963CGObjCCommonMac::GenerateDirectMethod(const ObjCMethodDecl *OMD,
3964 const ObjCContainerDecl *CD) {
3965 auto *COMD = OMD->getCanonicalDecl();
3966 auto I = DirectMethodDefinitions.find(Val: COMD);
3967 llvm::Function *OldFn = nullptr, *Fn = nullptr;
3968
3969 if (I != DirectMethodDefinitions.end()) {
3970 // Objective-C allows for the declaration and implementation types
3971 // to differ slightly.
3972 //
3973 // If we're being asked for the Function associated for a method
3974 // implementation, a previous value might have been cached
3975 // based on the type of the canonical declaration.
3976 //
3977 // If these do not match, then we'll replace this function with
3978 // a new one that has the proper type below.
3979 if (!OMD->getBody() || COMD->getReturnType() == OMD->getReturnType())
3980 return I->second;
3981 OldFn = I->second;
3982 }
3983
3984 CodeGenTypes &Types = CGM.getTypes();
3985 llvm::FunctionType *MethodTy =
3986 Types.GetFunctionType(Info: Types.arrangeObjCMethodDeclaration(MD: OMD));
3987
3988 if (OldFn) {
3989 Fn = llvm::Function::Create(Ty: MethodTy, Linkage: llvm::GlobalValue::ExternalLinkage,
3990 N: "", M: &CGM.getModule());
3991 Fn->takeName(V: OldFn);
3992 OldFn->replaceAllUsesWith(V: Fn);
3993 OldFn->eraseFromParent();
3994
3995 // Replace the cached function in the map.
3996 I->second = Fn;
3997 } else {
3998 auto Name = getSymbolNameForMethod(method: OMD, /*include category*/ includeCategoryName: false);
3999
4000 Fn = llvm::Function::Create(Ty: MethodTy, Linkage: llvm::GlobalValue::ExternalLinkage,
4001 N: Name, M: &CGM.getModule());
4002 DirectMethodDefinitions.insert(KV: std::make_pair(x&: COMD, y&: Fn));
4003 }
4004
4005 return Fn;
4006}
4007
4008void CGObjCCommonMac::GenerateDirectMethodPrologue(
4009 CodeGenFunction &CGF, llvm::Function *Fn, const ObjCMethodDecl *OMD,
4010 const ObjCContainerDecl *CD) {
4011 auto &Builder = CGF.Builder;
4012 bool ReceiverCanBeNull = true;
4013 auto selfAddr = CGF.GetAddrOfLocalVar(OMD->getSelfDecl());
4014 auto selfValue = Builder.CreateLoad(selfAddr);
4015
4016 // Generate:
4017 //
4018 // /* for class methods only to force class lazy initialization */
4019 // self = [self self];
4020 //
4021 // /* unless the receiver is never NULL */
4022 // if (self == nil) {
4023 // return (ReturnType){ };
4024 // }
4025 //
4026 // _cmd = @selector(...)
4027 // ...
4028
4029 if (OMD->isClassMethod()) {
4030 const ObjCInterfaceDecl *OID = cast<ObjCInterfaceDecl>(Val: CD);
4031 assert(OID &&
4032 "GenerateDirectMethod() should be called with the Class Interface");
4033 Selector SelfSel = GetNullarySelector(name: "self", Ctx&: CGM.getContext());
4034 auto ResultType = CGF.getContext().getObjCIdType();
4035 RValue result;
4036 CallArgList Args;
4037
4038 // TODO: If this method is inlined, the caller might know that `self` is
4039 // already initialized; for example, it might be an ordinary Objective-C
4040 // method which always receives an initialized `self`, or it might have just
4041 // forced initialization on its own.
4042 //
4043 // We should find a way to eliminate this unnecessary initialization in such
4044 // cases in LLVM.
4045 result = GeneratePossiblySpecializedMessageSend(
4046 CGF, Return: ReturnValueSlot(), ResultType, Sel: SelfSel, Receiver: selfValue, Args, OID,
4047 Method: nullptr, isClassMessage: true);
4048 Builder.CreateStore(Val: result.getScalarVal(), Addr: selfAddr);
4049
4050 // Nullable `Class` expressions cannot be messaged with a direct method
4051 // so the only reason why the receive can be null would be because
4052 // of weak linking.
4053 ReceiverCanBeNull = isWeakLinkedClass(cls: OID);
4054 }
4055
4056 if (ReceiverCanBeNull) {
4057 llvm::BasicBlock *SelfIsNilBlock =
4058 CGF.createBasicBlock(name: "objc_direct_method.self_is_nil");
4059 llvm::BasicBlock *ContBlock =
4060 CGF.createBasicBlock(name: "objc_direct_method.cont");
4061
4062 // if (self == nil) {
4063 auto selfTy = cast<llvm::PointerType>(selfValue->getType());
4064 auto Zero = llvm::ConstantPointerNull::get(T: selfTy);
4065
4066 llvm::MDBuilder MDHelper(CGM.getLLVMContext());
4067 Builder.CreateCondBr(Builder.CreateICmpEQ(LHS: selfValue, RHS: Zero), SelfIsNilBlock,
4068 ContBlock, MDHelper.createBranchWeights(TrueWeight: 1, FalseWeight: 1 << 20));
4069
4070 CGF.EmitBlock(BB: SelfIsNilBlock);
4071
4072 // return (ReturnType){ };
4073 auto retTy = OMD->getReturnType();
4074 Builder.SetInsertPoint(SelfIsNilBlock);
4075 if (!retTy->isVoidType()) {
4076 CGF.EmitNullInitialization(DestPtr: CGF.ReturnValue, Ty: retTy);
4077 }
4078 CGF.EmitBranchThroughCleanup(Dest: CGF.ReturnBlock);
4079 // }
4080
4081 // rest of the body
4082 CGF.EmitBlock(BB: ContBlock);
4083 Builder.SetInsertPoint(ContBlock);
4084 }
4085
4086 // only synthesize _cmd if it's referenced
4087 if (OMD->getCmdDecl()->isUsed()) {
4088 // `_cmd` is not a parameter to direct methods, so storage must be
4089 // explicitly declared for it.
4090 CGF.EmitVarDecl(*OMD->getCmdDecl());
4091 Builder.CreateStore(Val: GetSelector(CGF, Method: OMD),
4092 Addr: CGF.GetAddrOfLocalVar(OMD->getCmdDecl()));
4093 }
4094}
4095
4096llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4097 ConstantStructBuilder &Init,
4098 StringRef Section,
4099 CharUnits Align,
4100 bool AddToUsed) {
4101 llvm::GlobalValue::LinkageTypes LT =
4102 getLinkageTypeForObjCMetadata(CGM, Section);
4103 llvm::GlobalVariable *GV =
4104 Init.finishAndCreateGlobal(args&: Name, args&: Align, /*constant*/ args: false, args&: LT);
4105 if (!Section.empty())
4106 GV->setSection(Section);
4107 if (AddToUsed)
4108 CGM.addCompilerUsedGlobal(GV);
4109 return GV;
4110}
4111
4112llvm::GlobalVariable *CGObjCCommonMac::CreateMetadataVar(Twine Name,
4113 llvm::Constant *Init,
4114 StringRef Section,
4115 CharUnits Align,
4116 bool AddToUsed) {
4117 llvm::Type *Ty = Init->getType();
4118 llvm::GlobalValue::LinkageTypes LT =
4119 getLinkageTypeForObjCMetadata(CGM, Section);
4120 llvm::GlobalVariable *GV =
4121 new llvm::GlobalVariable(CGM.getModule(), Ty, false, LT, Init, Name);
4122 if (!Section.empty())
4123 GV->setSection(Section);
4124 GV->setAlignment(Align.getAsAlign());
4125 if (AddToUsed)
4126 CGM.addCompilerUsedGlobal(GV);
4127 return GV;
4128}
4129
4130llvm::GlobalVariable *
4131CGObjCCommonMac::CreateCStringLiteral(StringRef Name, ObjCLabelType Type,
4132 bool ForceNonFragileABI,
4133 bool NullTerminate) {
4134 StringRef Label;
4135 switch (Type) {
4136 case ObjCLabelType::ClassName: Label = "OBJC_CLASS_NAME_"; break;
4137 case ObjCLabelType::MethodVarName: Label = "OBJC_METH_VAR_NAME_"; break;
4138 case ObjCLabelType::MethodVarType: Label = "OBJC_METH_VAR_TYPE_"; break;
4139 case ObjCLabelType::PropertyName: Label = "OBJC_PROP_NAME_ATTR_"; break;
4140 }
4141
4142 bool NonFragile = ForceNonFragileABI || isNonFragileABI();
4143
4144 StringRef Section;
4145 switch (Type) {
4146 case ObjCLabelType::ClassName:
4147 Section = NonFragile ? "__TEXT,__objc_classname,cstring_literals"
4148 : "__TEXT,__cstring,cstring_literals";
4149 break;
4150 case ObjCLabelType::MethodVarName:
4151 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4152 : "__TEXT,__cstring,cstring_literals";
4153 break;
4154 case ObjCLabelType::MethodVarType:
4155 Section = NonFragile ? "__TEXT,__objc_methtype,cstring_literals"
4156 : "__TEXT,__cstring,cstring_literals";
4157 break;
4158 case ObjCLabelType::PropertyName:
4159 Section = NonFragile ? "__TEXT,__objc_methname,cstring_literals"
4160 : "__TEXT,__cstring,cstring_literals";
4161 break;
4162 }
4163
4164 llvm::Constant *Value =
4165 llvm::ConstantDataArray::getString(Context&: VMContext, Initializer: Name, AddNull: NullTerminate);
4166 llvm::GlobalVariable *GV =
4167 new llvm::GlobalVariable(CGM.getModule(), Value->getType(),
4168 /*isConstant=*/true,
4169 llvm::GlobalValue::PrivateLinkage, Value, Label);
4170 if (CGM.getTriple().isOSBinFormatMachO())
4171 GV->setSection(Section);
4172 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4173 GV->setAlignment(CharUnits::One().getAsAlign());
4174 CGM.addCompilerUsedGlobal(GV);
4175
4176 return GV;
4177}
4178
4179llvm::Function *CGObjCMac::ModuleInitFunction() {
4180 // Abuse this interface function as a place to finalize.
4181 FinishModule();
4182 return nullptr;
4183}
4184
4185llvm::FunctionCallee CGObjCMac::GetPropertyGetFunction() {
4186 return ObjCTypes.getGetPropertyFn();
4187}
4188
4189llvm::FunctionCallee CGObjCMac::GetPropertySetFunction() {
4190 return ObjCTypes.getSetPropertyFn();
4191}
4192
4193llvm::FunctionCallee CGObjCMac::GetOptimizedPropertySetFunction(bool atomic,
4194 bool copy) {
4195 return ObjCTypes.getOptimizedSetPropertyFn(atomic, copy);
4196}
4197
4198llvm::FunctionCallee CGObjCMac::GetGetStructFunction() {
4199 return ObjCTypes.getCopyStructFn();
4200}
4201
4202llvm::FunctionCallee CGObjCMac::GetSetStructFunction() {
4203 return ObjCTypes.getCopyStructFn();
4204}
4205
4206llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectGetFunction() {
4207 return ObjCTypes.getCppAtomicObjectFunction();
4208}
4209
4210llvm::FunctionCallee CGObjCMac::GetCppAtomicObjectSetFunction() {
4211 return ObjCTypes.getCppAtomicObjectFunction();
4212}
4213
4214llvm::FunctionCallee CGObjCMac::EnumerationMutationFunction() {
4215 return ObjCTypes.getEnumerationMutationFn();
4216}
4217
4218void CGObjCMac::EmitTryStmt(CodeGenFunction &CGF, const ObjCAtTryStmt &S) {
4219 return EmitTryOrSynchronizedStmt(CGF, S);
4220}
4221
4222void CGObjCMac::EmitSynchronizedStmt(CodeGenFunction &CGF,
4223 const ObjCAtSynchronizedStmt &S) {
4224 return EmitTryOrSynchronizedStmt(CGF, S);
4225}
4226
4227namespace {
4228 struct PerformFragileFinally final : EHScopeStack::Cleanup {
4229 const Stmt &S;
4230 Address SyncArgSlot;
4231 Address CallTryExitVar;
4232 Address ExceptionData;
4233 ObjCTypesHelper &ObjCTypes;
4234 PerformFragileFinally(const Stmt *S,
4235 Address SyncArgSlot,
4236 Address CallTryExitVar,
4237 Address ExceptionData,
4238 ObjCTypesHelper *ObjCTypes)
4239 : S(*S), SyncArgSlot(SyncArgSlot), CallTryExitVar(CallTryExitVar),
4240 ExceptionData(ExceptionData), ObjCTypes(*ObjCTypes) {}
4241
4242 void Emit(CodeGenFunction &CGF, Flags flags) override {
4243 // Check whether we need to call objc_exception_try_exit.
4244 // In optimized code, this branch will always be folded.
4245 llvm::BasicBlock *FinallyCallExit =
4246 CGF.createBasicBlock(name: "finally.call_exit");
4247 llvm::BasicBlock *FinallyNoCallExit =
4248 CGF.createBasicBlock(name: "finally.no_call_exit");
4249 CGF.Builder.CreateCondBr(Cond: CGF.Builder.CreateLoad(Addr: CallTryExitVar),
4250 True: FinallyCallExit, False: FinallyNoCallExit);
4251
4252 CGF.EmitBlock(BB: FinallyCallExit);
4253 CGF.EmitNounwindRuntimeCall(callee: ObjCTypes.getExceptionTryExitFn(),
4254 args: ExceptionData.getPointer());
4255
4256 CGF.EmitBlock(BB: FinallyNoCallExit);
4257
4258 if (isa<ObjCAtTryStmt>(Val: S)) {
4259 if (const ObjCAtFinallyStmt* FinallyStmt =
4260 cast<ObjCAtTryStmt>(Val: S).getFinallyStmt()) {
4261 // Don't try to do the @finally if this is an EH cleanup.
4262 if (flags.isForEHCleanup()) return;
4263
4264 // Save the current cleanup destination in case there's
4265 // control flow inside the finally statement.
4266 llvm::Value *CurCleanupDest =
4267 CGF.Builder.CreateLoad(Addr: CGF.getNormalCleanupDestSlot());
4268
4269 CGF.EmitStmt(S: FinallyStmt->getFinallyBody());
4270
4271 if (CGF.HaveInsertPoint()) {
4272 CGF.Builder.CreateStore(Val: CurCleanupDest,
4273 Addr: CGF.getNormalCleanupDestSlot());
4274 } else {
4275 // Currently, the end of the cleanup must always exist.
4276 CGF.EnsureInsertPoint();
4277 }
4278 }
4279 } else {
4280 // Emit objc_sync_exit(expr); as finally's sole statement for
4281 // @synchronized.
4282 llvm::Value *SyncArg = CGF.Builder.CreateLoad(Addr: SyncArgSlot);
4283 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncExitFn(), SyncArg);
4284 }
4285 }
4286 };
4287
4288 class FragileHazards {
4289 CodeGenFunction &CGF;
4290 SmallVector<llvm::Value*, 20> Locals;
4291 llvm::DenseSet<llvm::BasicBlock*> BlocksBeforeTry;
4292
4293 llvm::InlineAsm *ReadHazard;
4294 llvm::InlineAsm *WriteHazard;
4295
4296 llvm::FunctionType *GetAsmFnType();
4297
4298 void collectLocals();
4299 void emitReadHazard(CGBuilderTy &Builder);
4300
4301 public:
4302 FragileHazards(CodeGenFunction &CGF);
4303
4304 void emitWriteHazard();
4305 void emitHazardsInNewBlocks();
4306 };
4307} // end anonymous namespace
4308
4309/// Create the fragile-ABI read and write hazards based on the current
4310/// state of the function, which is presumed to be immediately prior
4311/// to a @try block. These hazards are used to maintain correct
4312/// semantics in the face of optimization and the fragile ABI's
4313/// cavalier use of setjmp/longjmp.
4314FragileHazards::FragileHazards(CodeGenFunction &CGF) : CGF(CGF) {
4315 collectLocals();
4316
4317 if (Locals.empty()) return;
4318
4319 // Collect all the blocks in the function.
4320 for (llvm::Function::iterator
4321 I = CGF.CurFn->begin(), E = CGF.CurFn->end(); I != E; ++I)
4322 BlocksBeforeTry.insert(V: &*I);
4323
4324 llvm::FunctionType *AsmFnTy = GetAsmFnType();
4325
4326 // Create a read hazard for the allocas. This inhibits dead-store
4327 // optimizations and forces the values to memory. This hazard is
4328 // inserted before any 'throwing' calls in the protected scope to
4329 // reflect the possibility that the variables might be read from the
4330 // catch block if the call throws.
4331 {
4332 std::string Constraint;
4333 for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4334 if (I) Constraint += ',';
4335 Constraint += "*m";
4336 }
4337
4338 ReadHazard = llvm::InlineAsm::get(Ty: AsmFnTy, AsmString: "", Constraints: Constraint, hasSideEffects: true, isAlignStack: false);
4339 }
4340
4341 // Create a write hazard for the allocas. This inhibits folding
4342 // loads across the hazard. This hazard is inserted at the
4343 // beginning of the catch path to reflect the possibility that the
4344 // variables might have been written within the protected scope.
4345 {
4346 std::string Constraint;
4347 for (unsigned I = 0, E = Locals.size(); I != E; ++I) {
4348 if (I) Constraint += ',';
4349 Constraint += "=*m";
4350 }
4351
4352 WriteHazard = llvm::InlineAsm::get(Ty: AsmFnTy, AsmString: "", Constraints: Constraint, hasSideEffects: true, isAlignStack: false);
4353 }
4354}
4355
4356/// Emit a write hazard at the current location.
4357void FragileHazards::emitWriteHazard() {
4358 if (Locals.empty()) return;
4359
4360 llvm::CallInst *Call = CGF.EmitNounwindRuntimeCall(callee: WriteHazard, args: Locals);
4361 for (auto Pair : llvm::enumerate(Locals))
4362 Call->addParamAttr(Pair.index(), llvm::Attribute::get(
4363 CGF.getLLVMContext(), llvm::Attribute::ElementType,
4364 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType()));
4365}
4366
4367void FragileHazards::emitReadHazard(CGBuilderTy &Builder) {
4368 assert(!Locals.empty());
4369 llvm::CallInst *call = Builder.CreateCall(Callee: ReadHazard, Args: Locals);
4370 call->setDoesNotThrow();
4371 call->setCallingConv(CGF.getRuntimeCC());
4372 for (auto Pair : llvm::enumerate(Locals))
4373 call->addParamAttr(Pair.index(), llvm::Attribute::get(
4374 Builder.getContext(), llvm::Attribute::ElementType,
4375 cast<llvm::AllocaInst>(Pair.value())->getAllocatedType()));
4376}
4377
4378/// Emit read hazards in all the protected blocks, i.e. all the blocks
4379/// which have been inserted since the beginning of the try.
4380void FragileHazards::emitHazardsInNewBlocks() {
4381 if (Locals.empty()) return;
4382
4383 CGBuilderTy Builder(CGF, CGF.getLLVMContext());
4384
4385 // Iterate through all blocks, skipping those prior to the try.
4386 for (llvm::Function::iterator
4387 FI = CGF.CurFn->begin(), FE = CGF.CurFn->end(); FI != FE; ++FI) {
4388 llvm::BasicBlock &BB = *FI;
4389 if (BlocksBeforeTry.count(V: &BB)) continue;
4390
4391 // Walk through all the calls in the block.
4392 for (llvm::BasicBlock::iterator
4393 BI = BB.begin(), BE = BB.end(); BI != BE; ++BI) {
4394 llvm::Instruction &I = *BI;
4395
4396 // Ignore instructions that aren't non-intrinsic calls.
4397 // These are the only calls that can possibly call longjmp.
4398 if (!isa<llvm::CallInst>(Val: I) && !isa<llvm::InvokeInst>(Val: I))
4399 continue;
4400 if (isa<llvm::IntrinsicInst>(Val: I))
4401 continue;
4402
4403 // Ignore call sites marked nounwind. This may be questionable,
4404 // since 'nounwind' doesn't necessarily mean 'does not call longjmp'.
4405 if (cast<llvm::CallBase>(Val&: I).doesNotThrow())
4406 continue;
4407
4408 // Insert a read hazard before the call. This will ensure that
4409 // any writes to the locals are performed before making the
4410 // call. If the call throws, then this is sufficient to
4411 // guarantee correctness as long as it doesn't also write to any
4412 // locals.
4413 Builder.SetInsertPoint(TheBB: &BB, IP: BI);
4414 emitReadHazard(Builder);
4415 }
4416 }
4417}
4418
4419static void addIfPresent(llvm::DenseSet<llvm::Value*> &S, Address V) {
4420 if (V.isValid()) S.insert(V: V.getPointer());
4421}
4422
4423void FragileHazards::collectLocals() {
4424 // Compute a set of allocas to ignore.
4425 llvm::DenseSet<llvm::Value*> AllocasToIgnore;
4426 addIfPresent(S&: AllocasToIgnore, V: CGF.ReturnValue);
4427 addIfPresent(S&: AllocasToIgnore, V: CGF.NormalCleanupDest);
4428
4429 // Collect all the allocas currently in the function. This is
4430 // probably way too aggressive.
4431 llvm::BasicBlock &Entry = CGF.CurFn->getEntryBlock();
4432 for (llvm::BasicBlock::iterator
4433 I = Entry.begin(), E = Entry.end(); I != E; ++I)
4434 if (isa<llvm::AllocaInst>(Val: *I) && !AllocasToIgnore.count(V: &*I))
4435 Locals.push_back(Elt: &*I);
4436}
4437
4438llvm::FunctionType *FragileHazards::GetAsmFnType() {
4439 SmallVector<llvm::Type *, 16> tys(Locals.size());
4440 for (unsigned i = 0, e = Locals.size(); i != e; ++i)
4441 tys[i] = Locals[i]->getType();
4442 return llvm::FunctionType::get(Result: CGF.VoidTy, Params: tys, isVarArg: false);
4443}
4444
4445/*
4446
4447 Objective-C setjmp-longjmp (sjlj) Exception Handling
4448 --
4449
4450 A catch buffer is a setjmp buffer plus:
4451 - a pointer to the exception that was caught
4452 - a pointer to the previous exception data buffer
4453 - two pointers of reserved storage
4454 Therefore catch buffers form a stack, with a pointer to the top
4455 of the stack kept in thread-local storage.
4456
4457 objc_exception_try_enter pushes a catch buffer onto the EH stack.
4458 objc_exception_try_exit pops the given catch buffer, which is
4459 required to be the top of the EH stack.
4460 objc_exception_throw pops the top of the EH stack, writes the
4461 thrown exception into the appropriate field, and longjmps
4462 to the setjmp buffer. It crashes the process (with a printf
4463 and an abort()) if there are no catch buffers on the stack.
4464 objc_exception_extract just reads the exception pointer out of the
4465 catch buffer.
4466
4467 There's no reason an implementation couldn't use a light-weight
4468 setjmp here --- something like __builtin_setjmp, but API-compatible
4469 with the heavyweight setjmp. This will be more important if we ever
4470 want to implement correct ObjC/C++ exception interactions for the
4471 fragile ABI.
4472
4473 Note that for this use of setjmp/longjmp to be correct in the presence of
4474 optimization, we use inline assembly on the set of local variables to force
4475 flushing locals to memory immediately before any protected calls and to
4476 inhibit optimizing locals across the setjmp->catch edge.
4477
4478 The basic framework for a @try-catch-finally is as follows:
4479 {
4480 objc_exception_data d;
4481 id _rethrow = null;
4482 bool _call_try_exit = true;
4483
4484 objc_exception_try_enter(&d);
4485 if (!setjmp(d.jmp_buf)) {
4486 ... try body ...
4487 } else {
4488 // exception path
4489 id _caught = objc_exception_extract(&d);
4490
4491 // enter new try scope for handlers
4492 if (!setjmp(d.jmp_buf)) {
4493 ... match exception and execute catch blocks ...
4494
4495 // fell off end, rethrow.
4496 _rethrow = _caught;
4497 ... jump-through-finally to finally_rethrow ...
4498 } else {
4499 // exception in catch block
4500 _rethrow = objc_exception_extract(&d);
4501 _call_try_exit = false;
4502 ... jump-through-finally to finally_rethrow ...
4503 }
4504 }
4505 ... jump-through-finally to finally_end ...
4506
4507 finally:
4508 if (_call_try_exit)
4509 objc_exception_try_exit(&d);
4510
4511 ... finally block ....
4512 ... dispatch to finally destination ...
4513
4514 finally_rethrow:
4515 objc_exception_throw(_rethrow);
4516
4517 finally_end:
4518 }
4519
4520 This framework differs slightly from the one gcc uses, in that gcc
4521 uses _rethrow to determine if objc_exception_try_exit should be called
4522 and if the object should be rethrown. This breaks in the face of
4523 throwing nil and introduces unnecessary branches.
4524
4525 We specialize this framework for a few particular circumstances:
4526
4527 - If there are no catch blocks, then we avoid emitting the second
4528 exception handling context.
4529
4530 - If there is a catch-all catch block (i.e. @catch(...) or @catch(id
4531 e)) we avoid emitting the code to rethrow an uncaught exception.
4532
4533 - FIXME: If there is no @finally block we can do a few more
4534 simplifications.
4535
4536 Rethrows and Jumps-Through-Finally
4537 --
4538
4539 '@throw;' is supported by pushing the currently-caught exception
4540 onto ObjCEHStack while the @catch blocks are emitted.
4541
4542 Branches through the @finally block are handled with an ordinary
4543 normal cleanup. We do not register an EH cleanup; fragile-ABI ObjC
4544 exceptions are not compatible with C++ exceptions, and this is
4545 hardly the only place where this will go wrong.
4546
4547 @synchronized(expr) { stmt; } is emitted as if it were:
4548 id synch_value = expr;
4549 objc_sync_enter(synch_value);
4550 @try { stmt; } @finally { objc_sync_exit(synch_value); }
4551*/
4552
4553void CGObjCMac::EmitTryOrSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
4554 const Stmt &S) {
4555 bool isTry = isa<ObjCAtTryStmt>(Val: S);
4556
4557 // A destination for the fall-through edges of the catch handlers to
4558 // jump to.
4559 CodeGenFunction::JumpDest FinallyEnd =
4560 CGF.getJumpDestInCurrentScope(Name: "finally.end");
4561
4562 // A destination for the rethrow edge of the catch handlers to jump
4563 // to.
4564 CodeGenFunction::JumpDest FinallyRethrow =
4565 CGF.getJumpDestInCurrentScope(Name: "finally.rethrow");
4566
4567 // For @synchronized, call objc_sync_enter(sync.expr). The
4568 // evaluation of the expression must occur before we enter the
4569 // @synchronized. We can't avoid a temp here because we need the
4570 // value to be preserved. If the backend ever does liveness
4571 // correctly after setjmp, this will be unnecessary.
4572 Address SyncArgSlot = Address::invalid();
4573 if (!isTry) {
4574 llvm::Value *SyncArg =
4575 CGF.EmitScalarExpr(E: cast<ObjCAtSynchronizedStmt>(Val: S).getSynchExpr());
4576 SyncArg = CGF.Builder.CreateBitCast(SyncArg, ObjCTypes.ObjectPtrTy);
4577 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSyncEnterFn(), SyncArg);
4578
4579 SyncArgSlot = CGF.CreateTempAlloca(SyncArg->getType(),
4580 CGF.getPointerAlign(), "sync.arg");
4581 CGF.Builder.CreateStore(Val: SyncArg, Addr: SyncArgSlot);
4582 }
4583
4584 // Allocate memory for the setjmp buffer. This needs to be kept
4585 // live throughout the try and catch blocks.
4586 Address ExceptionData = CGF.CreateTempAlloca(ObjCTypes.ExceptionDataTy,
4587 CGF.getPointerAlign(),
4588 "exceptiondata.ptr");
4589
4590 // Create the fragile hazards. Note that this will not capture any
4591 // of the allocas required for exception processing, but will
4592 // capture the current basic block (which extends all the way to the
4593 // setjmp call) as "before the @try".
4594 FragileHazards Hazards(CGF);
4595
4596 // Create a flag indicating whether the cleanup needs to call
4597 // objc_exception_try_exit. This is true except when
4598 // - no catches match and we're branching through the cleanup
4599 // just to rethrow the exception, or
4600 // - a catch matched and we're falling out of the catch handler.
4601 // The setjmp-safety rule here is that we should always store to this
4602 // variable in a place that dominates the branch through the cleanup
4603 // without passing through any setjmps.
4604 Address CallTryExitVar = CGF.CreateTempAlloca(Ty: CGF.Builder.getInt1Ty(),
4605 align: CharUnits::One(),
4606 Name: "_call_try_exit");
4607
4608 // A slot containing the exception to rethrow. Only needed when we
4609 // have both a @catch and a @finally.
4610 Address PropagatingExnVar = Address::invalid();
4611
4612 // Push a normal cleanup to leave the try scope.
4613 CGF.EHStack.pushCleanup<PerformFragileFinally>(NormalAndEHCleanup, &S,
4614 SyncArgSlot,
4615 CallTryExitVar,
4616 ExceptionData,
4617 &ObjCTypes);
4618
4619 // Enter a try block:
4620 // - Call objc_exception_try_enter to push ExceptionData on top of
4621 // the EH stack.
4622 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4623 ExceptionData.getPointer());
4624
4625 // - Call setjmp on the exception data buffer.
4626 llvm::Constant *Zero = llvm::ConstantInt::get(Ty: CGF.Builder.getInt32Ty(), V: 0);
4627 llvm::Value *GEPIndexes[] = { Zero, Zero, Zero };
4628 llvm::Value *SetJmpBuffer = CGF.Builder.CreateGEP(
4629 ObjCTypes.ExceptionDataTy, ExceptionData.getPointer(), GEPIndexes,
4630 "setjmp_buffer");
4631 llvm::CallInst *SetJmpResult = CGF.EmitNounwindRuntimeCall(
4632 ObjCTypes.getSetJmpFn(), SetJmpBuffer, "setjmp_result");
4633 SetJmpResult->setCanReturnTwice();
4634
4635 // If setjmp returned 0, enter the protected block; otherwise,
4636 // branch to the handler.
4637 llvm::BasicBlock *TryBlock = CGF.createBasicBlock(name: "try");
4638 llvm::BasicBlock *TryHandler = CGF.createBasicBlock(name: "try.handler");
4639 llvm::Value *DidCatch =
4640 CGF.Builder.CreateIsNotNull(Arg: SetJmpResult, Name: "did_catch_exception");
4641 CGF.Builder.CreateCondBr(Cond: DidCatch, True: TryHandler, False: TryBlock);
4642
4643 // Emit the protected block.
4644 CGF.EmitBlock(BB: TryBlock);
4645 CGF.Builder.CreateStore(Val: CGF.Builder.getTrue(), Addr: CallTryExitVar);
4646 CGF.EmitStmt(S: isTry ? cast<ObjCAtTryStmt>(Val: S).getTryBody()
4647 : cast<ObjCAtSynchronizedStmt>(Val: S).getSynchBody());
4648
4649 CGBuilderTy::InsertPoint TryFallthroughIP = CGF.Builder.saveAndClearIP();
4650
4651 // Emit the exception handler block.
4652 CGF.EmitBlock(BB: TryHandler);
4653
4654 // Don't optimize loads of the in-scope locals across this point.
4655 Hazards.emitWriteHazard();
4656
4657 // For a @synchronized (or a @try with no catches), just branch
4658 // through the cleanup to the rethrow block.
4659 if (!isTry || !cast<ObjCAtTryStmt>(Val: S).getNumCatchStmts()) {
4660 // Tell the cleanup not to re-pop the exit.
4661 CGF.Builder.CreateStore(Val: CGF.Builder.getFalse(), Addr: CallTryExitVar);
4662 CGF.EmitBranchThroughCleanup(Dest: FinallyRethrow);
4663
4664 // Otherwise, we have to match against the caught exceptions.
4665 } else {
4666 // Retrieve the exception object. We may emit multiple blocks but
4667 // nothing can cross this so the value is already in SSA form.
4668 llvm::CallInst *Caught =
4669 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4670 ExceptionData.getPointer(), "caught");
4671
4672 // Push the exception to rethrow onto the EH value stack for the
4673 // benefit of any @throws in the handlers.
4674 CGF.ObjCEHValueStack.push_back(Elt: Caught);
4675
4676 const ObjCAtTryStmt* AtTryStmt = cast<ObjCAtTryStmt>(Val: &S);
4677
4678 bool HasFinally = (AtTryStmt->getFinallyStmt() != nullptr);
4679
4680 llvm::BasicBlock *CatchBlock = nullptr;
4681 llvm::BasicBlock *CatchHandler = nullptr;
4682 if (HasFinally) {
4683 // Save the currently-propagating exception before
4684 // objc_exception_try_enter clears the exception slot.
4685 PropagatingExnVar = CGF.CreateTempAlloca(Caught->getType(),
4686 CGF.getPointerAlign(),
4687 "propagating_exception");
4688 CGF.Builder.CreateStore(Val: Caught, Addr: PropagatingExnVar);
4689
4690 // Enter a new exception try block (in case a @catch block
4691 // throws an exception).
4692 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionTryEnterFn(),
4693 ExceptionData.getPointer());
4694
4695 llvm::CallInst *SetJmpResult =
4696 CGF.EmitNounwindRuntimeCall(ObjCTypes.getSetJmpFn(),
4697 SetJmpBuffer, "setjmp.result");
4698 SetJmpResult->setCanReturnTwice();
4699
4700 llvm::Value *Threw =
4701 CGF.Builder.CreateIsNotNull(Arg: SetJmpResult, Name: "did_catch_exception");
4702
4703 CatchBlock = CGF.createBasicBlock(name: "catch");
4704 CatchHandler = CGF.createBasicBlock(name: "catch_for_catch");
4705 CGF.Builder.CreateCondBr(Cond: Threw, True: CatchHandler, False: CatchBlock);
4706
4707 CGF.EmitBlock(BB: CatchBlock);
4708 }
4709
4710 CGF.Builder.CreateStore(Val: CGF.Builder.getInt1(V: HasFinally), Addr: CallTryExitVar);
4711
4712 // Handle catch list. As a special case we check if everything is
4713 // matched and avoid generating code for falling off the end if
4714 // so.
4715 bool AllMatched = false;
4716 for (const ObjCAtCatchStmt *CatchStmt : AtTryStmt->catch_stmts()) {
4717 const VarDecl *CatchParam = CatchStmt->getCatchParamDecl();
4718 const ObjCObjectPointerType *OPT = nullptr;
4719
4720 // catch(...) always matches.
4721 if (!CatchParam) {
4722 AllMatched = true;
4723 } else {
4724 OPT = CatchParam->getType()->getAs<ObjCObjectPointerType>();
4725
4726 // catch(id e) always matches under this ABI, since only
4727 // ObjC exceptions end up here in the first place.
4728 // FIXME: For the time being we also match id<X>; this should
4729 // be rejected by Sema instead.
4730 if (OPT && (OPT->isObjCIdType() || OPT->isObjCQualifiedIdType()))
4731 AllMatched = true;
4732 }
4733
4734 // If this is a catch-all, we don't need to test anything.
4735 if (AllMatched) {
4736 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4737
4738 if (CatchParam) {
4739 CGF.EmitAutoVarDecl(*CatchParam);
4740 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4741
4742 // These types work out because ConvertType(id) == i8*.
4743 EmitInitOfCatchParam(CGF, Caught, CatchParam);
4744 }
4745
4746 CGF.EmitStmt(CatchStmt->getCatchBody());
4747
4748 // The scope of the catch variable ends right here.
4749 CatchVarCleanups.ForceCleanup();
4750
4751 CGF.EmitBranchThroughCleanup(FinallyEnd);
4752 break;
4753 }
4754
4755 assert(OPT && "Unexpected non-object pointer type in @catch");
4756 const ObjCObjectType *ObjTy = OPT->getObjectType();
4757
4758 // FIXME: @catch (Class c) ?
4759 ObjCInterfaceDecl *IDecl = ObjTy->getInterface();
4760 assert(IDecl && "Catch parameter must have Objective-C type!");
4761
4762 // Check if the @catch block matches the exception object.
4763 llvm::Value *Class = EmitClassRef(CGF, IDecl);
4764
4765 llvm::Value *matchArgs[] = { Class, Caught };
4766 llvm::CallInst *Match =
4767 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionMatchFn(),
4768 matchArgs, "match");
4769
4770 llvm::BasicBlock *MatchedBlock = CGF.createBasicBlock("match");
4771 llvm::BasicBlock *NextCatchBlock = CGF.createBasicBlock("catch.next");
4772
4773 CGF.Builder.CreateCondBr(CGF.Builder.CreateIsNotNull(Match, "matched"),
4774 MatchedBlock, NextCatchBlock);
4775
4776 // Emit the @catch block.
4777 CGF.EmitBlock(MatchedBlock);
4778
4779 // Collect any cleanups for the catch variable. The scope lasts until
4780 // the end of the catch body.
4781 CodeGenFunction::RunCleanupsScope CatchVarCleanups(CGF);
4782
4783 CGF.EmitAutoVarDecl(*CatchParam);
4784 assert(CGF.HaveInsertPoint() && "DeclStmt destroyed insert point?");
4785
4786 // Initialize the catch variable.
4787 llvm::Value *Tmp =
4788 CGF.Builder.CreateBitCast(Caught,
4789 CGF.ConvertType(CatchParam->getType()));
4790 EmitInitOfCatchParam(CGF, Tmp, CatchParam);
4791
4792 CGF.EmitStmt(CatchStmt->getCatchBody());
4793
4794 // We're done with the catch variable.
4795 CatchVarCleanups.ForceCleanup();
4796
4797 CGF.EmitBranchThroughCleanup(FinallyEnd);
4798
4799 CGF.EmitBlock(NextCatchBlock);
4800 }
4801
4802 CGF.ObjCEHValueStack.pop_back();
4803
4804 // If nothing wanted anything to do with the caught exception,
4805 // kill the extract call.
4806 if (Caught->use_empty())
4807 Caught->eraseFromParent();
4808
4809 if (!AllMatched)
4810 CGF.EmitBranchThroughCleanup(Dest: FinallyRethrow);
4811
4812 if (HasFinally) {
4813 // Emit the exception handler for the @catch blocks.
4814 CGF.EmitBlock(BB: CatchHandler);
4815
4816 // In theory we might now need a write hazard, but actually it's
4817 // unnecessary because there's no local-accessing code between
4818 // the try's write hazard and here.
4819 //Hazards.emitWriteHazard();
4820
4821 // Extract the new exception and save it to the
4822 // propagating-exception slot.
4823 assert(PropagatingExnVar.isValid());
4824 llvm::CallInst *NewCaught =
4825 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4826 ExceptionData.getPointer(), "caught");
4827 CGF.Builder.CreateStore(Val: NewCaught, Addr: PropagatingExnVar);
4828
4829 // Don't pop the catch handler; the throw already did.
4830 CGF.Builder.CreateStore(Val: CGF.Builder.getFalse(), Addr: CallTryExitVar);
4831 CGF.EmitBranchThroughCleanup(Dest: FinallyRethrow);
4832 }
4833 }
4834
4835 // Insert read hazards as required in the new blocks.
4836 Hazards.emitHazardsInNewBlocks();
4837
4838 // Pop the cleanup.
4839 CGF.Builder.restoreIP(IP: TryFallthroughIP);
4840 if (CGF.HaveInsertPoint())
4841 CGF.Builder.CreateStore(Val: CGF.Builder.getTrue(), Addr: CallTryExitVar);
4842 CGF.PopCleanupBlock();
4843 CGF.EmitBlock(BB: FinallyEnd.getBlock(), IsFinished: true);
4844
4845 // Emit the rethrow block.
4846 CGBuilderTy::InsertPoint SavedIP = CGF.Builder.saveAndClearIP();
4847 CGF.EmitBlock(BB: FinallyRethrow.getBlock(), IsFinished: true);
4848 if (CGF.HaveInsertPoint()) {
4849 // If we have a propagating-exception variable, check it.
4850 llvm::Value *PropagatingExn;
4851 if (PropagatingExnVar.isValid()) {
4852 PropagatingExn = CGF.Builder.CreateLoad(Addr: PropagatingExnVar);
4853
4854 // Otherwise, just look in the buffer for the exception to throw.
4855 } else {
4856 llvm::CallInst *Caught =
4857 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionExtractFn(),
4858 ExceptionData.getPointer());
4859 PropagatingExn = Caught;
4860 }
4861
4862 CGF.EmitNounwindRuntimeCall(ObjCTypes.getExceptionThrowFn(),
4863 PropagatingExn);
4864 CGF.Builder.CreateUnreachable();
4865 }
4866
4867 CGF.Builder.restoreIP(IP: SavedIP);
4868}
4869
4870void CGObjCMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
4871 const ObjCAtThrowStmt &S,
4872 bool ClearInsertionPoint) {
4873 llvm::Value *ExceptionAsObject;
4874
4875 if (const Expr *ThrowExpr = S.getThrowExpr()) {
4876 llvm::Value *Exception = CGF.EmitObjCThrowOperand(expr: ThrowExpr);
4877 ExceptionAsObject =
4878 CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
4879 } else {
4880 assert((!CGF.ObjCEHValueStack.empty() && CGF.ObjCEHValueStack.back()) &&
4881 "Unexpected rethrow outside @catch block.");
4882 ExceptionAsObject = CGF.ObjCEHValueStack.back();
4883 }
4884
4885 CGF.EmitRuntimeCall(ObjCTypes.getExceptionThrowFn(), ExceptionAsObject)
4886 ->setDoesNotReturn();
4887 CGF.Builder.CreateUnreachable();
4888
4889 // Clear the insertion point to indicate we are in unreachable code.
4890 if (ClearInsertionPoint)
4891 CGF.Builder.ClearInsertionPoint();
4892}
4893
4894/// EmitObjCWeakRead - Code gen for loading value of a __weak
4895/// object: objc_read_weak (id *src)
4896///
4897llvm::Value * CGObjCMac::EmitObjCWeakRead(CodeGen::CodeGenFunction &CGF,
4898 Address AddrWeakObj) {
4899 llvm::Type* DestTy = AddrWeakObj.getElementType();
4900 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast(
4901 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy);
4902 llvm::Value *read_weak =
4903 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
4904 AddrWeakObjVal, "weakread");
4905 read_weak = CGF.Builder.CreateBitCast(V: read_weak, DestTy);
4906 return read_weak;
4907}
4908
4909/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
4910/// objc_assign_weak (id src, id *dst)
4911///
4912void CGObjCMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
4913 llvm::Value *src, Address dst) {
4914 llvm::Type * SrcTy = src->getType();
4915 if (!isa<llvm::PointerType>(Val: SrcTy)) {
4916 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
4917 assert(Size <= 8 && "does not support size > 8");
4918 src = (Size == 4) ? CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int32Ty)
4919 : CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int64Ty);
4920 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4921 }
4922 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4923 llvm::Value *dstVal =
4924 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4925 llvm::Value *args[] = { src, dstVal };
4926 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
4927 args, "weakassign");
4928}
4929
4930/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
4931/// objc_assign_global (id src, id *dst)
4932///
4933void CGObjCMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
4934 llvm::Value *src, Address dst,
4935 bool threadlocal) {
4936 llvm::Type * SrcTy = src->getType();
4937 if (!isa<llvm::PointerType>(Val: SrcTy)) {
4938 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
4939 assert(Size <= 8 && "does not support size > 8");
4940 src = (Size == 4) ? CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int32Ty)
4941 : CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int64Ty);
4942 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4943 }
4944 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4945 llvm::Value *dstVal =
4946 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4947 llvm::Value *args[] = {src, dstVal};
4948 if (!threadlocal)
4949 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
4950 args, "globalassign");
4951 else
4952 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
4953 args, "threadlocalassign");
4954}
4955
4956/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
4957/// objc_assign_ivar (id src, id *dst, ptrdiff_t ivaroffset)
4958///
4959void CGObjCMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
4960 llvm::Value *src, Address dst,
4961 llvm::Value *ivarOffset) {
4962 assert(ivarOffset && "EmitObjCIvarAssign - ivarOffset is NULL");
4963 llvm::Type * SrcTy = src->getType();
4964 if (!isa<llvm::PointerType>(Val: SrcTy)) {
4965 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
4966 assert(Size <= 8 && "does not support size > 8");
4967 src = (Size == 4) ? CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int32Ty)
4968 : CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int64Ty);
4969 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4970 }
4971 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4972 llvm::Value *dstVal =
4973 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4974 llvm::Value *args[] = {src, dstVal, ivarOffset};
4975 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
4976}
4977
4978/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
4979/// objc_assign_strongCast (id src, id *dst)
4980///
4981void CGObjCMac::EmitObjCStrongCastAssign(CodeGen::CodeGenFunction &CGF,
4982 llvm::Value *src, Address dst) {
4983 llvm::Type * SrcTy = src->getType();
4984 if (!isa<llvm::PointerType>(Val: SrcTy)) {
4985 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
4986 assert(Size <= 8 && "does not support size > 8");
4987 src = (Size == 4) ? CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int32Ty)
4988 : CGF.Builder.CreateBitCast(V: src, DestTy: CGM.Int64Ty);
4989 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
4990 }
4991 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
4992 llvm::Value *dstVal =
4993 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
4994 llvm::Value *args[] = {src, dstVal};
4995 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
4996 args, "strongassign");
4997}
4998
4999void CGObjCMac::EmitGCMemmoveCollectable(CodeGen::CodeGenFunction &CGF,
5000 Address DestPtr, Address SrcPtr,
5001 llvm::Value *size) {
5002 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), size };
5003 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
5004}
5005
5006/// EmitObjCValueForIvar - Code Gen for ivar reference.
5007///
5008LValue CGObjCMac::EmitObjCValueForIvar(CodeGen::CodeGenFunction &CGF,
5009 QualType ObjectTy,
5010 llvm::Value *BaseValue,
5011 const ObjCIvarDecl *Ivar,
5012 unsigned CVRQualifiers) {
5013 const ObjCInterfaceDecl *ID =
5014 ObjectTy->castAs<ObjCObjectType>()->getInterface();
5015 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
5016 EmitIvarOffset(CGF, Interface: ID, Ivar));
5017}
5018
5019llvm::Value *CGObjCMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
5020 const ObjCInterfaceDecl *Interface,
5021 const ObjCIvarDecl *Ivar) {
5022 uint64_t Offset = ComputeIvarBaseOffset(CGM, Interface, Ivar);
5023 return llvm::ConstantInt::get(
5024 CGM.getTypes().ConvertType(T: CGM.getContext().LongTy),
5025 Offset);
5026}
5027
5028/* *** Private Interface *** */
5029
5030std::string CGObjCCommonMac::GetSectionName(StringRef Section,
5031 StringRef MachOAttributes) {
5032 switch (CGM.getTriple().getObjectFormat()) {
5033 case llvm::Triple::UnknownObjectFormat:
5034 llvm_unreachable("unexpected object file format");
5035 case llvm::Triple::MachO: {
5036 if (MachOAttributes.empty())
5037 return ("__DATA," + Section).str();
5038 return ("__DATA," + Section + "," + MachOAttributes).str();
5039 }
5040 case llvm::Triple::ELF:
5041 assert(Section.starts_with("__") && "expected the name to begin with __");
5042 return Section.substr(Start: 2).str();
5043 case llvm::Triple::COFF:
5044 assert(Section.starts_with("__") && "expected the name to begin with __");
5045 return ("." + Section.substr(Start: 2) + "$B").str();
5046 case llvm::Triple::Wasm:
5047 case llvm::Triple::GOFF:
5048 case llvm::Triple::SPIRV:
5049 case llvm::Triple::XCOFF:
5050 case llvm::Triple::DXContainer:
5051 llvm::report_fatal_error(
5052 reason: "Objective-C support is unimplemented for object file format");
5053 }
5054
5055 llvm_unreachable("Unhandled llvm::Triple::ObjectFormatType enum");
5056}
5057
5058/// EmitImageInfo - Emit the image info marker used to encode some module
5059/// level information.
5060///
5061/// See: <rdr://4810609&4810587&4810587>
5062/// struct IMAGE_INFO {
5063/// unsigned version;
5064/// unsigned flags;
5065/// };
5066enum ImageInfoFlags {
5067 eImageInfo_FixAndContinue = (1 << 0), // This flag is no longer set by clang.
5068 eImageInfo_GarbageCollected = (1 << 1),
5069 eImageInfo_GCOnly = (1 << 2),
5070 eImageInfo_OptimizedByDyld = (1 << 3), // This flag is set by the dyld shared cache.
5071
5072 // A flag indicating that the module has no instances of a @synthesize of a
5073 // superclass variable. This flag used to be consumed by the runtime to work
5074 // around miscompile by gcc.
5075 eImageInfo_CorrectedSynthesize = (1 << 4), // This flag is no longer set by clang.
5076 eImageInfo_ImageIsSimulated = (1 << 5),
5077 eImageInfo_ClassProperties = (1 << 6)
5078};
5079
5080void CGObjCCommonMac::EmitImageInfo() {
5081 unsigned version = 0; // Version is unused?
5082 std::string Section =
5083 (ObjCABI == 1)
5084 ? "__OBJC,__image_info,regular"
5085 : GetSectionName(Section: "__objc_imageinfo", MachOAttributes: "regular,no_dead_strip");
5086
5087 // Generate module-level named metadata to convey this information to the
5088 // linker and code-gen.
5089 llvm::Module &Mod = CGM.getModule();
5090
5091 // Add the ObjC ABI version to the module flags.
5092 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C Version", Val: ObjCABI);
5093 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C Image Info Version",
5094 Val: version);
5095 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C Image Info Section",
5096 Val: llvm::MDString::get(Context&: VMContext, Str: Section));
5097
5098 auto Int8Ty = llvm::Type::getInt8Ty(C&: VMContext);
5099 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5100 // Non-GC overrides those files which specify GC.
5101 Mod.addModuleFlag(Behavior: llvm::Module::Error,
5102 Key: "Objective-C Garbage Collection",
5103 Val: llvm::ConstantInt::get(Ty: Int8Ty,V: 0));
5104 } else {
5105 // Add the ObjC garbage collection value.
5106 Mod.addModuleFlag(Behavior: llvm::Module::Error,
5107 Key: "Objective-C Garbage Collection",
5108 Val: llvm::ConstantInt::get(Ty: Int8Ty,
5109 V: (uint8_t)eImageInfo_GarbageCollected));
5110
5111 if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
5112 // Add the ObjC GC Only value.
5113 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C GC Only",
5114 Val: eImageInfo_GCOnly);
5115
5116 // Require that GC be specified and set to eImageInfo_GarbageCollected.
5117 llvm::Metadata *Ops[2] = {
5118 llvm::MDString::get(Context&: VMContext, Str: "Objective-C Garbage Collection"),
5119 llvm::ConstantAsMetadata::get(C: llvm::ConstantInt::get(
5120 Ty: Int8Ty, V: eImageInfo_GarbageCollected))};
5121 Mod.addModuleFlag(Behavior: llvm::Module::Require, Key: "Objective-C GC Only",
5122 Val: llvm::MDNode::get(Context&: VMContext, MDs: Ops));
5123 }
5124 }
5125
5126 // Indicate whether we're compiling this to run on a simulator.
5127 if (CGM.getTarget().getTriple().isSimulatorEnvironment())
5128 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C Is Simulated",
5129 Val: eImageInfo_ImageIsSimulated);
5130
5131 // Indicate whether we are generating class properties.
5132 Mod.addModuleFlag(Behavior: llvm::Module::Error, Key: "Objective-C Class Properties",
5133 Val: eImageInfo_ClassProperties);
5134}
5135
5136// struct objc_module {
5137// unsigned long version;
5138// unsigned long size;
5139// const char *name;
5140// Symtab symtab;
5141// };
5142
5143// FIXME: Get from somewhere
5144static const int ModuleVersion = 7;
5145
5146void CGObjCMac::EmitModuleInfo() {
5147 uint64_t Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ModuleTy);
5148
5149 ConstantInitBuilder builder(CGM);
5150 auto values = builder.beginStruct(ObjCTypes.ModuleTy);
5151 values.addInt(ObjCTypes.LongTy, ModuleVersion);
5152 values.addInt(ObjCTypes.LongTy, Size);
5153 // This used to be the filename, now it is unused. <rdr://4327263>
5154 values.add(GetClassName(StringRef("")));
5155 values.add(EmitModuleSymbols());
5156 CreateMetadataVar("OBJC_MODULES", values,
5157 "__OBJC,__module_info,regular,no_dead_strip",
5158 CGM.getPointerAlign(), true);
5159}
5160
5161llvm::Constant *CGObjCMac::EmitModuleSymbols() {
5162 unsigned NumClasses = DefinedClasses.size();
5163 unsigned NumCategories = DefinedCategories.size();
5164
5165 // Return null if no symbols were defined.
5166 if (!NumClasses && !NumCategories)
5167 return llvm::Constant::getNullValue(ObjCTypes.SymtabPtrTy);
5168
5169 ConstantInitBuilder builder(CGM);
5170 auto values = builder.beginStruct();
5171 values.addInt(ObjCTypes.LongTy, 0);
5172 values.addNullPointer(ObjCTypes.SelectorPtrTy);
5173 values.addInt(ObjCTypes.ShortTy, NumClasses);
5174 values.addInt(ObjCTypes.ShortTy, NumCategories);
5175
5176 // The runtime expects exactly the list of defined classes followed
5177 // by the list of defined categories, in a single array.
5178 auto array = values.beginArray(ObjCTypes.Int8PtrTy);
5179 for (unsigned i=0; i<NumClasses; i++) {
5180 const ObjCInterfaceDecl *ID = ImplementedClasses[i];
5181 assert(ID);
5182 if (ObjCImplementationDecl *IMP = ID->getImplementation())
5183 // We are implementing a weak imported interface. Give it external linkage
5184 if (ID->isWeakImported() && !IMP->isWeakImported())
5185 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
5186
5187 array.add(DefinedClasses[i]);
5188 }
5189 for (unsigned i=0; i<NumCategories; i++)
5190 array.add(DefinedCategories[i]);
5191
5192 array.finishAndAddTo(values);
5193
5194 llvm::GlobalVariable *GV = CreateMetadataVar(
5195 "OBJC_SYMBOLS", values, "__OBJC,__symbols,regular,no_dead_strip",
5196 CGM.getPointerAlign(), true);
5197 return GV;
5198}
5199
5200llvm::Value *CGObjCMac::EmitClassRefFromId(CodeGenFunction &CGF,
5201 IdentifierInfo *II) {
5202 LazySymbols.insert(X: II);
5203
5204 llvm::GlobalVariable *&Entry = ClassReferences[II];
5205
5206 if (!Entry) {
5207 Entry =
5208 CreateMetadataVar("OBJC_CLASS_REFERENCES_", GetClassName(II->getName()),
5209 "__OBJC,__cls_refs,literal_pointers,no_dead_strip",
5210 CGM.getPointerAlign(), true);
5211 }
5212
5213 return CGF.Builder.CreateAlignedLoad(Entry->getValueType(), Entry,
5214 CGF.getPointerAlign());
5215}
5216
5217llvm::Value *CGObjCMac::EmitClassRef(CodeGenFunction &CGF,
5218 const ObjCInterfaceDecl *ID) {
5219 // If the class has the objc_runtime_visible attribute, we need to
5220 // use the Objective-C runtime to get the class.
5221 if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
5222 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
5223
5224 IdentifierInfo *RuntimeName =
5225 &CGM.getContext().Idents.get(Name: ID->getObjCRuntimeNameAsString());
5226 return EmitClassRefFromId(CGF, II: RuntimeName);
5227}
5228
5229llvm::Value *CGObjCMac::EmitNSAutoreleasePoolClassRef(CodeGenFunction &CGF) {
5230 IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "NSAutoreleasePool");
5231 return EmitClassRefFromId(CGF, II);
5232}
5233
5234llvm::Value *CGObjCMac::EmitSelector(CodeGenFunction &CGF, Selector Sel) {
5235 return CGF.Builder.CreateLoad(Addr: EmitSelectorAddr(Sel));
5236}
5237
5238Address CGObjCMac::EmitSelectorAddr(Selector Sel) {
5239 CharUnits Align = CGM.getPointerAlign();
5240
5241 llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
5242 if (!Entry) {
5243 Entry = CreateMetadataVar(
5244 "OBJC_SELECTOR_REFERENCES_", GetMethodVarName(Sel),
5245 "__OBJC,__message_refs,literal_pointers,no_dead_strip", Align, true);
5246 Entry->setExternallyInitialized(true);
5247 }
5248
5249 return Address(Entry, ObjCTypes.SelectorPtrTy, Align);
5250}
5251
5252llvm::Constant *CGObjCCommonMac::GetClassName(StringRef RuntimeName) {
5253 llvm::GlobalVariable *&Entry = ClassNames[RuntimeName];
5254 if (!Entry)
5255 Entry = CreateCStringLiteral(Name: RuntimeName, Type: ObjCLabelType::ClassName);
5256 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
5257}
5258
5259llvm::Function *CGObjCCommonMac::GetMethodDefinition(const ObjCMethodDecl *MD) {
5260 return MethodDefinitions.lookup(Val: MD);
5261}
5262
5263/// GetIvarLayoutName - Returns a unique constant for the given
5264/// ivar layout bitmap.
5265llvm::Constant *CGObjCCommonMac::GetIvarLayoutName(IdentifierInfo *Ident,
5266 const ObjCCommonTypesHelper &ObjCTypes) {
5267 return llvm::Constant::getNullValue(Ty: ObjCTypes.Int8PtrTy);
5268}
5269
5270void IvarLayoutBuilder::visitRecord(const RecordType *RT,
5271 CharUnits offset) {
5272 const RecordDecl *RD = RT->getDecl();
5273
5274 // If this is a union, remember that we had one, because it might mess
5275 // up the ordering of layout entries.
5276 if (RD->isUnion())
5277 IsDisordered = true;
5278
5279 const ASTRecordLayout *recLayout = nullptr;
5280 visitAggregate(begin: RD->field_begin(), end: RD->field_end(), aggregateOffset: offset,
5281 getOffset: [&](const FieldDecl *field) -> CharUnits {
5282 if (!recLayout)
5283 recLayout = &CGM.getContext().getASTRecordLayout(D: RD);
5284 auto offsetInBits = recLayout->getFieldOffset(FieldNo: field->getFieldIndex());
5285 return CGM.getContext().toCharUnitsFromBits(BitSize: offsetInBits);
5286 });
5287}
5288
5289template <class Iterator, class GetOffsetFn>
5290void IvarLayoutBuilder::visitAggregate(Iterator begin, Iterator end,
5291 CharUnits aggregateOffset,
5292 const GetOffsetFn &getOffset) {
5293 for (; begin != end; ++begin) {
5294 auto field = *begin;
5295
5296 // Skip over bitfields.
5297 if (field->isBitField()) {
5298 continue;
5299 }
5300
5301 // Compute the offset of the field within the aggregate.
5302 CharUnits fieldOffset = aggregateOffset + getOffset(field);
5303
5304 visitField(field, offset: fieldOffset);
5305 }
5306}
5307
5308/// Collect layout information for the given fields into IvarsInfo.
5309void IvarLayoutBuilder::visitField(const FieldDecl *field,
5310 CharUnits fieldOffset) {
5311 QualType fieldType = field->getType();
5312
5313 // Drill down into arrays.
5314 uint64_t numElts = 1;
5315 if (auto arrayType = CGM.getContext().getAsIncompleteArrayType(fieldType)) {
5316 numElts = 0;
5317 fieldType = arrayType->getElementType();
5318 }
5319 // Unlike incomplete arrays, constant arrays can be nested.
5320 while (auto arrayType = CGM.getContext().getAsConstantArrayType(fieldType)) {
5321 numElts *= arrayType->getSize().getZExtValue();
5322 fieldType = arrayType->getElementType();
5323 }
5324
5325 assert(!fieldType->isArrayType() && "ivar of non-constant array type?");
5326
5327 // If we ended up with a zero-sized array, we've done what we can do within
5328 // the limits of this layout encoding.
5329 if (numElts == 0) return;
5330
5331 // Recurse if the base element type is a record type.
5332 if (auto recType = fieldType->getAs<RecordType>()) {
5333 size_t oldEnd = IvarsInfo.size();
5334
5335 visitRecord(RT: recType, offset: fieldOffset);
5336
5337 // If we have an array, replicate the first entry's layout information.
5338 auto numEltEntries = IvarsInfo.size() - oldEnd;
5339 if (numElts != 1 && numEltEntries != 0) {
5340 CharUnits eltSize = CGM.getContext().getTypeSizeInChars(recType);
5341 for (uint64_t eltIndex = 1; eltIndex != numElts; ++eltIndex) {
5342 // Copy the last numEltEntries onto the end of the array, adjusting
5343 // each for the element size.
5344 for (size_t i = 0; i != numEltEntries; ++i) {
5345 auto firstEntry = IvarsInfo[oldEnd + i];
5346 IvarsInfo.push_back(Elt: IvarInfo(firstEntry.Offset + eltIndex * eltSize,
5347 firstEntry.SizeInWords));
5348 }
5349 }
5350 }
5351
5352 return;
5353 }
5354
5355 // Classify the element type.
5356 Qualifiers::GC GCAttr = GetGCAttrTypeForType(Ctx&: CGM.getContext(), FQT: fieldType);
5357
5358 // If it matches what we're looking for, add an entry.
5359 if ((ForStrongLayout && GCAttr == Qualifiers::Strong)
5360 || (!ForStrongLayout && GCAttr == Qualifiers::Weak)) {
5361 assert(CGM.getContext().getTypeSizeInChars(fieldType)
5362 == CGM.getPointerSize());
5363 IvarsInfo.push_back(Elt: IvarInfo(fieldOffset, numElts));
5364 }
5365}
5366
5367/// buildBitmap - This routine does the horsework of taking the offsets of
5368/// strong/weak references and creating a bitmap. The bitmap is also
5369/// returned in the given buffer, suitable for being passed to \c dump().
5370llvm::Constant *IvarLayoutBuilder::buildBitmap(CGObjCCommonMac &CGObjC,
5371 llvm::SmallVectorImpl<unsigned char> &buffer) {
5372 // The bitmap is a series of skip/scan instructions, aligned to word
5373 // boundaries. The skip is performed first.
5374 const unsigned char MaxNibble = 0xF;
5375 const unsigned char SkipMask = 0xF0, SkipShift = 4;
5376 const unsigned char ScanMask = 0x0F, ScanShift = 0;
5377
5378 assert(!IvarsInfo.empty() && "generating bitmap for no data");
5379
5380 // Sort the ivar info on byte position in case we encounterred a
5381 // union nested in the ivar list.
5382 if (IsDisordered) {
5383 // This isn't a stable sort, but our algorithm should handle it fine.
5384 llvm::array_pod_sort(Start: IvarsInfo.begin(), End: IvarsInfo.end());
5385 } else {
5386 assert(llvm::is_sorted(IvarsInfo));
5387 }
5388 assert(IvarsInfo.back().Offset < InstanceEnd);
5389
5390 assert(buffer.empty());
5391
5392 // Skip the next N words.
5393 auto skip = [&](unsigned numWords) {
5394 assert(numWords > 0);
5395
5396 // Try to merge into the previous byte. Since scans happen second, we
5397 // can't do this if it includes a scan.
5398 if (!buffer.empty() && !(buffer.back() & ScanMask)) {
5399 unsigned lastSkip = buffer.back() >> SkipShift;
5400 if (lastSkip < MaxNibble) {
5401 unsigned claimed = std::min(a: MaxNibble - lastSkip, b: numWords);
5402 numWords -= claimed;
5403 lastSkip += claimed;
5404 buffer.back() = (lastSkip << SkipShift);
5405 }
5406 }
5407
5408 while (numWords >= MaxNibble) {
5409 buffer.push_back(Elt: MaxNibble << SkipShift);
5410 numWords -= MaxNibble;
5411 }
5412 if (numWords) {
5413 buffer.push_back(Elt: numWords << SkipShift);
5414 }
5415 };
5416
5417 // Scan the next N words.
5418 auto scan = [&](unsigned numWords) {
5419 assert(numWords > 0);
5420
5421 // Try to merge into the previous byte. Since scans happen second, we can
5422 // do this even if it includes a skip.
5423 if (!buffer.empty()) {
5424 unsigned lastScan = (buffer.back() & ScanMask) >> ScanShift;
5425 if (lastScan < MaxNibble) {
5426 unsigned claimed = std::min(a: MaxNibble - lastScan, b: numWords);
5427 numWords -= claimed;
5428 lastScan += claimed;
5429 buffer.back() = (buffer.back() & SkipMask) | (lastScan << ScanShift);
5430 }
5431 }
5432
5433 while (numWords >= MaxNibble) {
5434 buffer.push_back(Elt: MaxNibble << ScanShift);
5435 numWords -= MaxNibble;
5436 }
5437 if (numWords) {
5438 buffer.push_back(Elt: numWords << ScanShift);
5439 }
5440 };
5441
5442 // One past the end of the last scan.
5443 unsigned endOfLastScanInWords = 0;
5444 const CharUnits WordSize = CGM.getPointerSize();
5445
5446 // Consider all the scan requests.
5447 for (auto &request : IvarsInfo) {
5448 CharUnits beginOfScan = request.Offset - InstanceBegin;
5449
5450 // Ignore scan requests that don't start at an even multiple of the
5451 // word size. We can't encode them.
5452 if ((beginOfScan % WordSize) != 0) continue;
5453
5454 // Ignore scan requests that start before the instance start.
5455 // This assumes that scans never span that boundary. The boundary
5456 // isn't the true start of the ivars, because in the fragile-ARC case
5457 // it's rounded up to word alignment, but the test above should leave
5458 // us ignoring that possibility.
5459 if (beginOfScan.isNegative()) {
5460 assert(request.Offset + request.SizeInWords * WordSize <= InstanceBegin);
5461 continue;
5462 }
5463
5464 unsigned beginOfScanInWords = beginOfScan / WordSize;
5465 unsigned endOfScanInWords = beginOfScanInWords + request.SizeInWords;
5466
5467 // If the scan starts some number of words after the last one ended,
5468 // skip forward.
5469 if (beginOfScanInWords > endOfLastScanInWords) {
5470 skip(beginOfScanInWords - endOfLastScanInWords);
5471
5472 // Otherwise, start scanning where the last left off.
5473 } else {
5474 beginOfScanInWords = endOfLastScanInWords;
5475
5476 // If that leaves us with nothing to scan, ignore this request.
5477 if (beginOfScanInWords >= endOfScanInWords) continue;
5478 }
5479
5480 // Scan to the end of the request.
5481 assert(beginOfScanInWords < endOfScanInWords);
5482 scan(endOfScanInWords - beginOfScanInWords);
5483 endOfLastScanInWords = endOfScanInWords;
5484 }
5485
5486 if (buffer.empty())
5487 return llvm::ConstantPointerNull::get(T: CGM.Int8PtrTy);
5488
5489 // For GC layouts, emit a skip to the end of the allocation so that we
5490 // have precise information about the entire thing. This isn't useful
5491 // or necessary for the ARC-style layout strings.
5492 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
5493 unsigned lastOffsetInWords =
5494 (InstanceEnd - InstanceBegin + WordSize - CharUnits::One()) / WordSize;
5495 if (lastOffsetInWords > endOfLastScanInWords) {
5496 skip(lastOffsetInWords - endOfLastScanInWords);
5497 }
5498 }
5499
5500 // Null terminate the string.
5501 buffer.push_back(Elt: 0);
5502
5503 auto *Entry = CGObjC.CreateCStringLiteral(
5504 Name: reinterpret_cast<char *>(buffer.data()), Type: ObjCLabelType::ClassName);
5505 return getConstantGEP(VMContext&: CGM.getLLVMContext(), C: Entry, idx0: 0, idx1: 0);
5506}
5507
5508/// BuildIvarLayout - Builds ivar layout bitmap for the class
5509/// implementation for the __strong or __weak case.
5510/// The layout map displays which words in ivar list must be skipped
5511/// and which must be scanned by GC (see below). String is built of bytes.
5512/// Each byte is divided up in two nibbles (4-bit each). Left nibble is count
5513/// of words to skip and right nibble is count of words to scan. So, each
5514/// nibble represents up to 15 workds to skip or scan. Skipping the rest is
5515/// represented by a 0x00 byte which also ends the string.
5516/// 1. when ForStrongLayout is true, following ivars are scanned:
5517/// - id, Class
5518/// - object *
5519/// - __strong anything
5520///
5521/// 2. When ForStrongLayout is false, following ivars are scanned:
5522/// - __weak anything
5523///
5524llvm::Constant *
5525CGObjCCommonMac::BuildIvarLayout(const ObjCImplementationDecl *OMD,
5526 CharUnits beginOffset, CharUnits endOffset,
5527 bool ForStrongLayout, bool HasMRCWeakIvars) {
5528 // If this is MRC, and we're either building a strong layout or there
5529 // are no weak ivars, bail out early.
5530 llvm::Type *PtrTy = CGM.Int8PtrTy;
5531 if (CGM.getLangOpts().getGC() == LangOptions::NonGC &&
5532 !CGM.getLangOpts().ObjCAutoRefCount &&
5533 (ForStrongLayout || !HasMRCWeakIvars))
5534 return llvm::Constant::getNullValue(Ty: PtrTy);
5535
5536 const ObjCInterfaceDecl *OI = OMD->getClassInterface();
5537 SmallVector<const ObjCIvarDecl*, 32> ivars;
5538
5539 // GC layout strings include the complete object layout, possibly
5540 // inaccurately in the non-fragile ABI; the runtime knows how to fix this
5541 // up.
5542 //
5543 // ARC layout strings only include the class's ivars. In non-fragile
5544 // runtimes, that means starting at InstanceStart, rounded up to word
5545 // alignment. In fragile runtimes, there's no InstanceStart, so it means
5546 // starting at the offset of the first ivar, rounded up to word alignment.
5547 //
5548 // MRC weak layout strings follow the ARC style.
5549 CharUnits baseOffset;
5550 if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
5551 for (const ObjCIvarDecl *IVD = OI->all_declared_ivar_begin();
5552 IVD; IVD = IVD->getNextIvar())
5553 ivars.push_back(Elt: IVD);
5554
5555 if (isNonFragileABI()) {
5556 baseOffset = beginOffset; // InstanceStart
5557 } else if (!ivars.empty()) {
5558 baseOffset =
5559 CharUnits::fromQuantity(Quantity: ComputeIvarBaseOffset(CGM, OID: OMD, Ivar: ivars[0]));
5560 } else {
5561 baseOffset = CharUnits::Zero();
5562 }
5563
5564 baseOffset = baseOffset.alignTo(Align: CGM.getPointerAlign());
5565 }
5566 else {
5567 CGM.getContext().DeepCollectObjCIvars(OI, leafClass: true, Ivars&: ivars);
5568
5569 baseOffset = CharUnits::Zero();
5570 }
5571
5572 if (ivars.empty())
5573 return llvm::Constant::getNullValue(Ty: PtrTy);
5574
5575 IvarLayoutBuilder builder(CGM, baseOffset, endOffset, ForStrongLayout);
5576
5577 builder.visitAggregate(begin: ivars.begin(), end: ivars.end(), aggregateOffset: CharUnits::Zero(),
5578 getOffset: [&](const ObjCIvarDecl *ivar) -> CharUnits {
5579 return CharUnits::fromQuantity(Quantity: ComputeIvarBaseOffset(CGM, OID: OMD, Ivar: ivar));
5580 });
5581
5582 if (!builder.hasBitmapData())
5583 return llvm::Constant::getNullValue(Ty: PtrTy);
5584
5585 llvm::SmallVector<unsigned char, 4> buffer;
5586 llvm::Constant *C = builder.buildBitmap(CGObjC&: *this, buffer);
5587
5588 if (CGM.getLangOpts().ObjCGCBitmapPrint && !buffer.empty()) {
5589 printf("\n%s ivar layout for class '%s': ",
5590 ForStrongLayout ? "strong" : "weak",
5591 OMD->getClassInterface()->getName().str().c_str());
5592 builder.dump(buffer);
5593 }
5594 return C;
5595}
5596
5597llvm::Constant *CGObjCCommonMac::GetMethodVarName(Selector Sel) {
5598 llvm::GlobalVariable *&Entry = MethodVarNames[Sel];
5599 // FIXME: Avoid std::string in "Sel.getAsString()"
5600 if (!Entry)
5601 Entry = CreateCStringLiteral(Name: Sel.getAsString(), Type: ObjCLabelType::MethodVarName);
5602 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
5603}
5604
5605// FIXME: Merge into a single cstring creation function.
5606llvm::Constant *CGObjCCommonMac::GetMethodVarName(IdentifierInfo *ID) {
5607 return GetMethodVarName(Sel: CGM.getContext().Selectors.getNullarySelector(ID));
5608}
5609
5610llvm::Constant *CGObjCCommonMac::GetMethodVarType(const FieldDecl *Field) {
5611 std::string TypeStr;
5612 CGM.getContext().getObjCEncodingForType(T: Field->getType(), S&: TypeStr, Field);
5613
5614 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5615 if (!Entry)
5616 Entry = CreateCStringLiteral(Name: TypeStr, Type: ObjCLabelType::MethodVarType);
5617 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
5618}
5619
5620llvm::Constant *CGObjCCommonMac::GetMethodVarType(const ObjCMethodDecl *D,
5621 bool Extended) {
5622 std::string TypeStr =
5623 CGM.getContext().getObjCEncodingForMethodDecl(Decl: D, Extended);
5624
5625 llvm::GlobalVariable *&Entry = MethodVarTypes[TypeStr];
5626 if (!Entry)
5627 Entry = CreateCStringLiteral(Name: TypeStr, Type: ObjCLabelType::MethodVarType);
5628 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
5629}
5630
5631// FIXME: Merge into a single cstring creation function.
5632llvm::Constant *CGObjCCommonMac::GetPropertyName(IdentifierInfo *Ident) {
5633 llvm::GlobalVariable *&Entry = PropertyNames[Ident];
5634 if (!Entry)
5635 Entry = CreateCStringLiteral(Name: Ident->getName(), Type: ObjCLabelType::PropertyName);
5636 return getConstantGEP(VMContext, C: Entry, idx0: 0, idx1: 0);
5637}
5638
5639// FIXME: Merge into a single cstring creation function.
5640// FIXME: This Decl should be more precise.
5641llvm::Constant *
5642CGObjCCommonMac::GetPropertyTypeString(const ObjCPropertyDecl *PD,
5643 const Decl *Container) {
5644 std::string TypeStr =
5645 CGM.getContext().getObjCEncodingForPropertyDecl(PD, Container);
5646 return GetPropertyName(Ident: &CGM.getContext().Idents.get(Name: TypeStr));
5647}
5648
5649void CGObjCMac::FinishModule() {
5650 EmitModuleInfo();
5651
5652 // Emit the dummy bodies for any protocols which were referenced but
5653 // never defined.
5654 for (auto &entry : Protocols) {
5655 llvm::GlobalVariable *global = entry.second;
5656 if (global->hasInitializer())
5657 continue;
5658
5659 ConstantInitBuilder builder(CGM);
5660 auto values = builder.beginStruct(ObjCTypes.ProtocolTy);
5661 values.addNullPointer(ObjCTypes.ProtocolExtensionPtrTy);
5662 values.add(GetClassName(entry.first->getName()));
5663 values.addNullPointer(ObjCTypes.ProtocolListPtrTy);
5664 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5665 values.addNullPointer(ObjCTypes.MethodDescriptionListPtrTy);
5666 values.finishAndSetAsInitializer(global);
5667 CGM.addCompilerUsedGlobal(GV: global);
5668 }
5669
5670 // Add assembler directives to add lazy undefined symbol references
5671 // for classes which are referenced but not defined. This is
5672 // important for correct linker interaction.
5673 //
5674 // FIXME: It would be nice if we had an LLVM construct for this.
5675 if ((!LazySymbols.empty() || !DefinedSymbols.empty()) &&
5676 CGM.getTriple().isOSBinFormatMachO()) {
5677 SmallString<256> Asm;
5678 Asm += CGM.getModule().getModuleInlineAsm();
5679 if (!Asm.empty() && Asm.back() != '\n')
5680 Asm += '\n';
5681
5682 llvm::raw_svector_ostream OS(Asm);
5683 for (const auto *Sym : DefinedSymbols)
5684 OS << "\t.objc_class_name_" << Sym->getName() << "=0\n"
5685 << "\t.globl .objc_class_name_" << Sym->getName() << "\n";
5686 for (const auto *Sym : LazySymbols)
5687 OS << "\t.lazy_reference .objc_class_name_" << Sym->getName() << "\n";
5688 for (const auto &Category : DefinedCategoryNames)
5689 OS << "\t.objc_category_name_" << Category << "=0\n"
5690 << "\t.globl .objc_category_name_" << Category << "\n";
5691
5692 CGM.getModule().setModuleInlineAsm(OS.str());
5693 }
5694}
5695
5696CGObjCNonFragileABIMac::CGObjCNonFragileABIMac(CodeGen::CodeGenModule &cgm)
5697 : CGObjCCommonMac(cgm), ObjCTypes(cgm), ObjCEmptyCacheVar(nullptr),
5698 ObjCEmptyVtableVar(nullptr) {
5699 ObjCABI = 2;
5700}
5701
5702/* *** */
5703
5704ObjCCommonTypesHelper::ObjCCommonTypesHelper(CodeGen::CodeGenModule &cgm)
5705 : VMContext(cgm.getLLVMContext()), CGM(cgm), ExternalProtocolPtrTy(nullptr)
5706{
5707 CodeGen::CodeGenTypes &Types = CGM.getTypes();
5708 ASTContext &Ctx = CGM.getContext();
5709 unsigned ProgramAS = CGM.getDataLayout().getProgramAddressSpace();
5710
5711 ShortTy = cast<llvm::IntegerType>(Types.ConvertType(T: Ctx.ShortTy));
5712 IntTy = CGM.IntTy;
5713 LongTy = cast<llvm::IntegerType>(Types.ConvertType(T: Ctx.LongTy));
5714 Int8PtrTy = CGM.Int8PtrTy;
5715 Int8PtrProgramASTy = llvm::PointerType::get(ElementType: CGM.Int8Ty, AddressSpace: ProgramAS);
5716 Int8PtrPtrTy = CGM.Int8PtrPtrTy;
5717
5718 // arm64 targets use "int" ivar offset variables. All others,
5719 // including OS X x86_64 and Windows x86_64, use "long" ivar offsets.
5720 if (CGM.getTarget().getTriple().getArch() == llvm::Triple::aarch64)
5721 IvarOffsetVarTy = IntTy;
5722 else
5723 IvarOffsetVarTy = LongTy;
5724
5725 ObjectPtrTy =
5726 cast<llvm::PointerType>(Val: Types.ConvertType(T: Ctx.getObjCIdType()));
5727 PtrObjectPtrTy =
5728 llvm::PointerType::getUnqual(ElementType: ObjectPtrTy);
5729 SelectorPtrTy =
5730 cast<llvm::PointerType>(Val: Types.ConvertType(T: Ctx.getObjCSelType()));
5731
5732 // I'm not sure I like this. The implicit coordination is a bit
5733 // gross. We should solve this in a reasonable fashion because this
5734 // is a pretty common task (match some runtime data structure with
5735 // an LLVM data structure).
5736
5737 // FIXME: This is leaked.
5738 // FIXME: Merge with rewriter code?
5739
5740 // struct _objc_super {
5741 // id self;
5742 // Class cls;
5743 // }
5744 RecordDecl *RD = RecordDecl::Create(
5745 Ctx, TagTypeKind::Struct, Ctx.getTranslationUnitDecl(), SourceLocation(),
5746 SourceLocation(), &Ctx.Idents.get(Name: "_objc_super"));
5747 RD->addDecl(D: FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5748 nullptr, Ctx.getObjCIdType(), nullptr, nullptr,
5749 false, ICIS_NoInit));
5750 RD->addDecl(D: FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
5751 nullptr, Ctx.getObjCClassType(), nullptr,
5752 nullptr, false, ICIS_NoInit));
5753 RD->completeDefinition();
5754
5755 SuperCTy = Ctx.getTagDeclType(RD);
5756 SuperPtrCTy = Ctx.getPointerType(SuperCTy);
5757
5758 SuperTy = cast<llvm::StructType>(Types.ConvertType(SuperCTy));
5759 SuperPtrTy = llvm::PointerType::getUnqual(ElementType: SuperTy);
5760
5761 // struct _prop_t {
5762 // char *name;
5763 // char *attributes;
5764 // }
5765 PropertyTy = llvm::StructType::create(Name: "struct._prop_t", elt1: Int8PtrTy, elts: Int8PtrTy);
5766
5767 // struct _prop_list_t {
5768 // uint32_t entsize; // sizeof(struct _prop_t)
5769 // uint32_t count_of_properties;
5770 // struct _prop_t prop_list[count_of_properties];
5771 // }
5772 PropertyListTy = llvm::StructType::create(
5773 Name: "struct._prop_list_t", elt1: IntTy, elts: IntTy, elts: llvm::ArrayType::get(ElementType: PropertyTy, NumElements: 0));
5774 // struct _prop_list_t *
5775 PropertyListPtrTy = llvm::PointerType::getUnqual(ElementType: PropertyListTy);
5776
5777 // struct _objc_method {
5778 // SEL _cmd;
5779 // char *method_type;
5780 // char *_imp;
5781 // }
5782 MethodTy = llvm::StructType::create(Name: "struct._objc_method", elt1: SelectorPtrTy,
5783 elts: Int8PtrTy, elts: Int8PtrProgramASTy);
5784
5785 // struct _objc_cache *
5786 CacheTy = llvm::StructType::create(Context&: VMContext, Name: "struct._objc_cache");
5787 CachePtrTy = llvm::PointerType::getUnqual(ElementType: CacheTy);
5788}
5789
5790ObjCTypesHelper::ObjCTypesHelper(CodeGen::CodeGenModule &cgm)
5791 : ObjCCommonTypesHelper(cgm) {
5792 // struct _objc_method_description {
5793 // SEL name;
5794 // char *types;
5795 // }
5796 MethodDescriptionTy = llvm::StructType::create(
5797 Name: "struct._objc_method_description", elt1: SelectorPtrTy, elts: Int8PtrTy);
5798
5799 // struct _objc_method_description_list {
5800 // int count;
5801 // struct _objc_method_description[1];
5802 // }
5803 MethodDescriptionListTy =
5804 llvm::StructType::create(Name: "struct._objc_method_description_list", elt1: IntTy,
5805 elts: llvm::ArrayType::get(ElementType: MethodDescriptionTy, NumElements: 0));
5806
5807 // struct _objc_method_description_list *
5808 MethodDescriptionListPtrTy =
5809 llvm::PointerType::getUnqual(ElementType: MethodDescriptionListTy);
5810
5811 // Protocol description structures
5812
5813 // struct _objc_protocol_extension {
5814 // uint32_t size; // sizeof(struct _objc_protocol_extension)
5815 // struct _objc_method_description_list *optional_instance_methods;
5816 // struct _objc_method_description_list *optional_class_methods;
5817 // struct _objc_property_list *instance_properties;
5818 // const char ** extendedMethodTypes;
5819 // struct _objc_property_list *class_properties;
5820 // }
5821 ProtocolExtensionTy = llvm::StructType::create(
5822 Name: "struct._objc_protocol_extension", elt1: IntTy, elts: MethodDescriptionListPtrTy,
5823 elts: MethodDescriptionListPtrTy, elts: PropertyListPtrTy, elts: Int8PtrPtrTy,
5824 elts: PropertyListPtrTy);
5825
5826 // struct _objc_protocol_extension *
5827 ProtocolExtensionPtrTy = llvm::PointerType::getUnqual(ElementType: ProtocolExtensionTy);
5828
5829 // Handle recursive construction of Protocol and ProtocolList types
5830
5831 ProtocolTy =
5832 llvm::StructType::create(Context&: VMContext, Name: "struct._objc_protocol");
5833
5834 ProtocolListTy =
5835 llvm::StructType::create(Context&: VMContext, Name: "struct._objc_protocol_list");
5836 ProtocolListTy->setBody(elt1: llvm::PointerType::getUnqual(ElementType: ProtocolListTy), elts: LongTy,
5837 elts: llvm::ArrayType::get(ElementType: ProtocolTy, NumElements: 0));
5838
5839 // struct _objc_protocol {
5840 // struct _objc_protocol_extension *isa;
5841 // char *protocol_name;
5842 // struct _objc_protocol **_objc_protocol_list;
5843 // struct _objc_method_description_list *instance_methods;
5844 // struct _objc_method_description_list *class_methods;
5845 // }
5846 ProtocolTy->setBody(elt1: ProtocolExtensionPtrTy, elts: Int8PtrTy,
5847 elts: llvm::PointerType::getUnqual(ElementType: ProtocolListTy),
5848 elts: MethodDescriptionListPtrTy, elts: MethodDescriptionListPtrTy);
5849
5850 // struct _objc_protocol_list *
5851 ProtocolListPtrTy = llvm::PointerType::getUnqual(ElementType: ProtocolListTy);
5852
5853 ProtocolPtrTy = llvm::PointerType::getUnqual(ElementType: ProtocolTy);
5854
5855 // Class description structures
5856
5857 // struct _objc_ivar {
5858 // char *ivar_name;
5859 // char *ivar_type;
5860 // int ivar_offset;
5861 // }
5862 IvarTy = llvm::StructType::create(Name: "struct._objc_ivar", elt1: Int8PtrTy, elts: Int8PtrTy,
5863 elts: IntTy);
5864
5865 // struct _objc_ivar_list *
5866 IvarListTy =
5867 llvm::StructType::create(Context&: VMContext, Name: "struct._objc_ivar_list");
5868 IvarListPtrTy = llvm::PointerType::getUnqual(ElementType: IvarListTy);
5869
5870 // struct _objc_method_list *
5871 MethodListTy =
5872 llvm::StructType::create(Context&: VMContext, Name: "struct._objc_method_list");
5873 MethodListPtrTy = llvm::PointerType::getUnqual(ElementType: MethodListTy);
5874
5875 // struct _objc_class_extension *
5876 ClassExtensionTy = llvm::StructType::create(
5877 Name: "struct._objc_class_extension", elt1: IntTy, elts: Int8PtrTy, elts: PropertyListPtrTy);
5878 ClassExtensionPtrTy = llvm::PointerType::getUnqual(ElementType: ClassExtensionTy);
5879
5880 ClassTy = llvm::StructType::create(Context&: VMContext, Name: "struct._objc_class");
5881
5882 // struct _objc_class {
5883 // Class isa;
5884 // Class super_class;
5885 // char *name;
5886 // long version;
5887 // long info;
5888 // long instance_size;
5889 // struct _objc_ivar_list *ivars;
5890 // struct _objc_method_list *methods;
5891 // struct _objc_cache *cache;
5892 // struct _objc_protocol_list *protocols;
5893 // char *ivar_layout;
5894 // struct _objc_class_ext *ext;
5895 // };
5896 ClassTy->setBody(elt1: llvm::PointerType::getUnqual(ElementType: ClassTy),
5897 elts: llvm::PointerType::getUnqual(ElementType: ClassTy), elts: Int8PtrTy, elts: LongTy,
5898 elts: LongTy, elts: LongTy, elts: IvarListPtrTy, elts: MethodListPtrTy, elts: CachePtrTy,
5899 elts: ProtocolListPtrTy, elts: Int8PtrTy, elts: ClassExtensionPtrTy);
5900
5901 ClassPtrTy = llvm::PointerType::getUnqual(ElementType: ClassTy);
5902
5903 // struct _objc_category {
5904 // char *category_name;
5905 // char *class_name;
5906 // struct _objc_method_list *instance_method;
5907 // struct _objc_method_list *class_method;
5908 // struct _objc_protocol_list *protocols;
5909 // uint32_t size; // sizeof(struct _objc_category)
5910 // struct _objc_property_list *instance_properties;// category's @property
5911 // struct _objc_property_list *class_properties;
5912 // }
5913 CategoryTy = llvm::StructType::create(
5914 Name: "struct._objc_category", elt1: Int8PtrTy, elts: Int8PtrTy, elts: MethodListPtrTy,
5915 elts: MethodListPtrTy, elts: ProtocolListPtrTy, elts: IntTy, elts: PropertyListPtrTy,
5916 elts: PropertyListPtrTy);
5917
5918 // Global metadata structures
5919
5920 // struct _objc_symtab {
5921 // long sel_ref_cnt;
5922 // SEL *refs;
5923 // short cls_def_cnt;
5924 // short cat_def_cnt;
5925 // char *defs[cls_def_cnt + cat_def_cnt];
5926 // }
5927 SymtabTy = llvm::StructType::create(Name: "struct._objc_symtab", elt1: LongTy,
5928 elts: SelectorPtrTy, elts: ShortTy, elts: ShortTy,
5929 elts: llvm::ArrayType::get(ElementType: Int8PtrTy, NumElements: 0));
5930 SymtabPtrTy = llvm::PointerType::getUnqual(ElementType: SymtabTy);
5931
5932 // struct _objc_module {
5933 // long version;
5934 // long size; // sizeof(struct _objc_module)
5935 // char *name;
5936 // struct _objc_symtab* symtab;
5937 // }
5938 ModuleTy = llvm::StructType::create(Name: "struct._objc_module", elt1: LongTy, elts: LongTy,
5939 elts: Int8PtrTy, elts: SymtabPtrTy);
5940
5941 // FIXME: This is the size of the setjmp buffer and should be target
5942 // specific. 18 is what's used on 32-bit X86.
5943 uint64_t SetJmpBufferSize = 18;
5944
5945 // Exceptions
5946 llvm::Type *StackPtrTy = llvm::ArrayType::get(ElementType: CGM.Int8PtrTy, NumElements: 4);
5947
5948 ExceptionDataTy = llvm::StructType::create(
5949 Name: "struct._objc_exception_data",
5950 elt1: llvm::ArrayType::get(ElementType: CGM.Int32Ty, NumElements: SetJmpBufferSize), elts: StackPtrTy);
5951}
5952
5953ObjCNonFragileABITypesHelper::ObjCNonFragileABITypesHelper(CodeGen::CodeGenModule &cgm)
5954 : ObjCCommonTypesHelper(cgm) {
5955 // struct _method_list_t {
5956 // uint32_t entsize; // sizeof(struct _objc_method)
5957 // uint32_t method_count;
5958 // struct _objc_method method_list[method_count];
5959 // }
5960 MethodListnfABITy =
5961 llvm::StructType::create(Name: "struct.__method_list_t", elt1: IntTy, elts: IntTy,
5962 elts: llvm::ArrayType::get(ElementType: MethodTy, NumElements: 0));
5963 // struct method_list_t *
5964 MethodListnfABIPtrTy = llvm::PointerType::getUnqual(ElementType: MethodListnfABITy);
5965
5966 // struct _protocol_t {
5967 // id isa; // NULL
5968 // const char * const protocol_name;
5969 // const struct _protocol_list_t * protocol_list; // super protocols
5970 // const struct method_list_t * const instance_methods;
5971 // const struct method_list_t * const class_methods;
5972 // const struct method_list_t *optionalInstanceMethods;
5973 // const struct method_list_t *optionalClassMethods;
5974 // const struct _prop_list_t * properties;
5975 // const uint32_t size; // sizeof(struct _protocol_t)
5976 // const uint32_t flags; // = 0
5977 // const char ** extendedMethodTypes;
5978 // const char *demangledName;
5979 // const struct _prop_list_t * class_properties;
5980 // }
5981
5982 // Holder for struct _protocol_list_t *
5983 ProtocolListnfABITy =
5984 llvm::StructType::create(Context&: VMContext, Name: "struct._objc_protocol_list");
5985
5986 ProtocolnfABITy = llvm::StructType::create(
5987 Name: "struct._protocol_t", elt1: ObjectPtrTy, elts: Int8PtrTy,
5988 elts: llvm::PointerType::getUnqual(ElementType: ProtocolListnfABITy), elts: MethodListnfABIPtrTy,
5989 elts: MethodListnfABIPtrTy, elts: MethodListnfABIPtrTy, elts: MethodListnfABIPtrTy,
5990 elts: PropertyListPtrTy, elts: IntTy, elts: IntTy, elts: Int8PtrPtrTy, elts: Int8PtrTy,
5991 elts: PropertyListPtrTy);
5992
5993 // struct _protocol_t*
5994 ProtocolnfABIPtrTy = llvm::PointerType::getUnqual(ElementType: ProtocolnfABITy);
5995
5996 // struct _protocol_list_t {
5997 // long protocol_count; // Note, this is 32/64 bit
5998 // struct _protocol_t *[protocol_count];
5999 // }
6000 ProtocolListnfABITy->setBody(elt1: LongTy,
6001 elts: llvm::ArrayType::get(ElementType: ProtocolnfABIPtrTy, NumElements: 0));
6002
6003 // struct _objc_protocol_list*
6004 ProtocolListnfABIPtrTy = llvm::PointerType::getUnqual(ElementType: ProtocolListnfABITy);
6005
6006 // struct _ivar_t {
6007 // unsigned [long] int *offset; // pointer to ivar offset location
6008 // char *name;
6009 // char *type;
6010 // uint32_t alignment;
6011 // uint32_t size;
6012 // }
6013 IvarnfABITy = llvm::StructType::create(
6014 Name: "struct._ivar_t", elt1: llvm::PointerType::getUnqual(ElementType: IvarOffsetVarTy),
6015 elts: Int8PtrTy, elts: Int8PtrTy, elts: IntTy, elts: IntTy);
6016
6017 // struct _ivar_list_t {
6018 // uint32 entsize; // sizeof(struct _ivar_t)
6019 // uint32 count;
6020 // struct _iver_t list[count];
6021 // }
6022 IvarListnfABITy =
6023 llvm::StructType::create(Name: "struct._ivar_list_t", elt1: IntTy, elts: IntTy,
6024 elts: llvm::ArrayType::get(ElementType: IvarnfABITy, NumElements: 0));
6025
6026 IvarListnfABIPtrTy = llvm::PointerType::getUnqual(ElementType: IvarListnfABITy);
6027
6028 // struct _class_ro_t {
6029 // uint32_t const flags;
6030 // uint32_t const instanceStart;
6031 // uint32_t const instanceSize;
6032 // uint32_t const reserved; // only when building for 64bit targets
6033 // const uint8_t * const ivarLayout;
6034 // const char *const name;
6035 // const struct _method_list_t * const baseMethods;
6036 // const struct _objc_protocol_list *const baseProtocols;
6037 // const struct _ivar_list_t *const ivars;
6038 // const uint8_t * const weakIvarLayout;
6039 // const struct _prop_list_t * const properties;
6040 // }
6041
6042 // FIXME. Add 'reserved' field in 64bit abi mode!
6043 ClassRonfABITy = llvm::StructType::create(
6044 Name: "struct._class_ro_t", elt1: IntTy, elts: IntTy, elts: IntTy, elts: Int8PtrTy, elts: Int8PtrTy,
6045 elts: MethodListnfABIPtrTy, elts: ProtocolListnfABIPtrTy, elts: IvarListnfABIPtrTy,
6046 elts: Int8PtrTy, elts: PropertyListPtrTy);
6047
6048 // ImpnfABITy - LLVM for id (*)(id, SEL, ...)
6049 llvm::Type *params[] = { ObjectPtrTy, SelectorPtrTy };
6050 ImpnfABITy = llvm::FunctionType::get(Result: ObjectPtrTy, Params: params, isVarArg: false)
6051 ->getPointerTo();
6052
6053 // struct _class_t {
6054 // struct _class_t *isa;
6055 // struct _class_t * const superclass;
6056 // void *cache;
6057 // IMP *vtable;
6058 // struct class_ro_t *ro;
6059 // }
6060
6061 ClassnfABITy = llvm::StructType::create(Context&: VMContext, Name: "struct._class_t");
6062 ClassnfABITy->setBody(elt1: llvm::PointerType::getUnqual(ElementType: ClassnfABITy),
6063 elts: llvm::PointerType::getUnqual(ElementType: ClassnfABITy), elts: CachePtrTy,
6064 elts: llvm::PointerType::getUnqual(ElementType: ImpnfABITy),
6065 elts: llvm::PointerType::getUnqual(ElementType: ClassRonfABITy));
6066
6067 // LLVM for struct _class_t *
6068 ClassnfABIPtrTy = llvm::PointerType::getUnqual(ElementType: ClassnfABITy);
6069
6070 // struct _category_t {
6071 // const char * const name;
6072 // struct _class_t *const cls;
6073 // const struct _method_list_t * const instance_methods;
6074 // const struct _method_list_t * const class_methods;
6075 // const struct _protocol_list_t * const protocols;
6076 // const struct _prop_list_t * const properties;
6077 // const struct _prop_list_t * const class_properties;
6078 // const uint32_t size;
6079 // }
6080 CategorynfABITy = llvm::StructType::create(
6081 Name: "struct._category_t", elt1: Int8PtrTy, elts: ClassnfABIPtrTy, elts: MethodListnfABIPtrTy,
6082 elts: MethodListnfABIPtrTy, elts: ProtocolListnfABIPtrTy, elts: PropertyListPtrTy,
6083 elts: PropertyListPtrTy, elts: IntTy);
6084
6085 // New types for nonfragile abi messaging.
6086 CodeGen::CodeGenTypes &Types = CGM.getTypes();
6087 ASTContext &Ctx = CGM.getContext();
6088
6089 // MessageRefTy - LLVM for:
6090 // struct _message_ref_t {
6091 // IMP messenger;
6092 // SEL name;
6093 // };
6094
6095 // First the clang type for struct _message_ref_t
6096 RecordDecl *RD = RecordDecl::Create(
6097 Ctx, TagTypeKind::Struct, Ctx.getTranslationUnitDecl(), SourceLocation(),
6098 SourceLocation(), &Ctx.Idents.get(Name: "_message_ref_t"));
6099 RD->addDecl(D: FieldDecl::Create(C: Ctx, DC: RD, StartLoc: SourceLocation(), IdLoc: SourceLocation(),
6100 Id: nullptr, T: Ctx.VoidPtrTy, TInfo: nullptr, BW: nullptr, Mutable: false,
6101 InitStyle: ICIS_NoInit));
6102 RD->addDecl(D: FieldDecl::Create(Ctx, RD, SourceLocation(), SourceLocation(),
6103 nullptr, Ctx.getObjCSelType(), nullptr, nullptr,
6104 false, ICIS_NoInit));
6105 RD->completeDefinition();
6106
6107 MessageRefCTy = Ctx.getTagDeclType(RD);
6108 MessageRefCPtrTy = Ctx.getPointerType(MessageRefCTy);
6109 MessageRefTy = cast<llvm::StructType>(Types.ConvertType(MessageRefCTy));
6110
6111 // MessageRefPtrTy - LLVM for struct _message_ref_t*
6112 MessageRefPtrTy = llvm::PointerType::getUnqual(ElementType: MessageRefTy);
6113
6114 // SuperMessageRefTy - LLVM for:
6115 // struct _super_message_ref_t {
6116 // SUPER_IMP messenger;
6117 // SEL name;
6118 // };
6119 SuperMessageRefTy = llvm::StructType::create(Name: "struct._super_message_ref_t",
6120 elt1: ImpnfABITy, elts: SelectorPtrTy);
6121
6122 // SuperMessageRefPtrTy - LLVM for struct _super_message_ref_t*
6123 SuperMessageRefPtrTy = llvm::PointerType::getUnqual(ElementType: SuperMessageRefTy);
6124
6125
6126 // struct objc_typeinfo {
6127 // const void** vtable; // objc_ehtype_vtable + 2
6128 // const char* name; // c++ typeinfo string
6129 // Class cls;
6130 // };
6131 EHTypeTy = llvm::StructType::create(Name: "struct._objc_typeinfo",
6132 elt1: llvm::PointerType::getUnqual(ElementType: Int8PtrTy),
6133 elts: Int8PtrTy, elts: ClassnfABIPtrTy);
6134 EHTypePtrTy = llvm::PointerType::getUnqual(ElementType: EHTypeTy);
6135}
6136
6137llvm::Function *CGObjCNonFragileABIMac::ModuleInitFunction() {
6138 FinishNonFragileABIModule();
6139
6140 return nullptr;
6141}
6142
6143void CGObjCNonFragileABIMac::AddModuleClassList(
6144 ArrayRef<llvm::GlobalValue *> Container, StringRef SymbolName,
6145 StringRef SectionName) {
6146 unsigned NumClasses = Container.size();
6147
6148 if (!NumClasses)
6149 return;
6150
6151 SmallVector<llvm::Constant*, 8> Symbols(NumClasses);
6152 for (unsigned i=0; i<NumClasses; i++)
6153 Symbols[i] = Container[i];
6154
6155 llvm::Constant *Init =
6156 llvm::ConstantArray::get(llvm::ArrayType::get(ObjCTypes.Int8PtrTy,
6157 Symbols.size()),
6158 Symbols);
6159
6160 // Section name is obtained by calling GetSectionName, which returns
6161 // sections in the __DATA segment on MachO.
6162 assert((!CGM.getTriple().isOSBinFormatMachO() ||
6163 SectionName.starts_with("__DATA")) &&
6164 "SectionName expected to start with __DATA on MachO");
6165 llvm::GlobalVariable *GV = new llvm::GlobalVariable(
6166 CGM.getModule(), Init->getType(), false,
6167 llvm::GlobalValue::PrivateLinkage, Init, SymbolName);
6168 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(Ty: Init->getType()));
6169 GV->setSection(SectionName);
6170 CGM.addCompilerUsedGlobal(GV);
6171}
6172
6173void CGObjCNonFragileABIMac::FinishNonFragileABIModule() {
6174 // nonfragile abi has no module definition.
6175
6176 // Build list of all implemented class addresses in array
6177 // L_OBJC_LABEL_CLASS_$.
6178
6179 for (unsigned i=0, NumClasses=ImplementedClasses.size(); i<NumClasses; i++) {
6180 const ObjCInterfaceDecl *ID = ImplementedClasses[i];
6181 assert(ID);
6182 if (ObjCImplementationDecl *IMP = ID->getImplementation())
6183 // We are implementing a weak imported interface. Give it external linkage
6184 if (ID->isWeakImported() && !IMP->isWeakImported()) {
6185 DefinedClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6186 DefinedMetaClasses[i]->setLinkage(llvm::GlobalVariable::ExternalLinkage);
6187 }
6188 }
6189
6190 AddModuleClassList(Container: DefinedClasses, SymbolName: "OBJC_LABEL_CLASS_$",
6191 SectionName: GetSectionName("__objc_classlist",
6192 "regular,no_dead_strip"));
6193
6194 AddModuleClassList(Container: DefinedNonLazyClasses, SymbolName: "OBJC_LABEL_NONLAZY_CLASS_$",
6195 SectionName: GetSectionName("__objc_nlclslist",
6196 "regular,no_dead_strip"));
6197
6198 // Build list of all implemented category addresses in array
6199 // L_OBJC_LABEL_CATEGORY_$.
6200 AddModuleClassList(Container: DefinedCategories, SymbolName: "OBJC_LABEL_CATEGORY_$",
6201 SectionName: GetSectionName("__objc_catlist",
6202 "regular,no_dead_strip"));
6203 AddModuleClassList(Container: DefinedStubCategories, SymbolName: "OBJC_LABEL_STUB_CATEGORY_$",
6204 SectionName: GetSectionName("__objc_catlist2",
6205 "regular,no_dead_strip"));
6206 AddModuleClassList(Container: DefinedNonLazyCategories, SymbolName: "OBJC_LABEL_NONLAZY_CATEGORY_$",
6207 SectionName: GetSectionName("__objc_nlcatlist",
6208 "regular,no_dead_strip"));
6209
6210 EmitImageInfo();
6211}
6212
6213/// isVTableDispatchedSelector - Returns true if SEL is not in the list of
6214/// VTableDispatchMethods; false otherwise. What this means is that
6215/// except for the 19 selectors in the list, we generate 32bit-style
6216/// message dispatch call for all the rest.
6217bool CGObjCNonFragileABIMac::isVTableDispatchedSelector(Selector Sel) {
6218 // At various points we've experimented with using vtable-based
6219 // dispatch for all methods.
6220 switch (CGM.getCodeGenOpts().getObjCDispatchMethod()) {
6221 case CodeGenOptions::Legacy:
6222 return false;
6223 case CodeGenOptions::NonLegacy:
6224 return true;
6225 case CodeGenOptions::Mixed:
6226 break;
6227 }
6228
6229 // If so, see whether this selector is in the white-list of things which must
6230 // use the new dispatch convention. We lazily build a dense set for this.
6231 if (VTableDispatchMethods.empty()) {
6232 VTableDispatchMethods.insert(V: GetNullarySelector(name: "alloc"));
6233 VTableDispatchMethods.insert(V: GetNullarySelector(name: "class"));
6234 VTableDispatchMethods.insert(V: GetNullarySelector(name: "self"));
6235 VTableDispatchMethods.insert(V: GetNullarySelector(name: "isFlipped"));
6236 VTableDispatchMethods.insert(V: GetNullarySelector(name: "length"));
6237 VTableDispatchMethods.insert(V: GetNullarySelector(name: "count"));
6238
6239 // These are vtable-based if GC is disabled.
6240 // Optimistically use vtable dispatch for hybrid compiles.
6241 if (CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
6242 VTableDispatchMethods.insert(V: GetNullarySelector(name: "retain"));
6243 VTableDispatchMethods.insert(V: GetNullarySelector(name: "release"));
6244 VTableDispatchMethods.insert(V: GetNullarySelector(name: "autorelease"));
6245 }
6246
6247 VTableDispatchMethods.insert(V: GetUnarySelector(name: "allocWithZone"));
6248 VTableDispatchMethods.insert(V: GetUnarySelector(name: "isKindOfClass"));
6249 VTableDispatchMethods.insert(V: GetUnarySelector(name: "respondsToSelector"));
6250 VTableDispatchMethods.insert(V: GetUnarySelector(name: "objectForKey"));
6251 VTableDispatchMethods.insert(V: GetUnarySelector(name: "objectAtIndex"));
6252 VTableDispatchMethods.insert(V: GetUnarySelector(name: "isEqualToString"));
6253 VTableDispatchMethods.insert(V: GetUnarySelector(name: "isEqual"));
6254
6255 // These are vtable-based if GC is enabled.
6256 // Optimistically use vtable dispatch for hybrid compiles.
6257 if (CGM.getLangOpts().getGC() != LangOptions::NonGC) {
6258 VTableDispatchMethods.insert(V: GetNullarySelector(name: "hash"));
6259 VTableDispatchMethods.insert(V: GetUnarySelector(name: "addObject"));
6260
6261 // "countByEnumeratingWithState:objects:count"
6262 IdentifierInfo *KeyIdents[] = {
6263 &CGM.getContext().Idents.get(Name: "countByEnumeratingWithState"),
6264 &CGM.getContext().Idents.get(Name: "objects"),
6265 &CGM.getContext().Idents.get(Name: "count")
6266 };
6267 VTableDispatchMethods.insert(
6268 V: CGM.getContext().Selectors.getSelector(NumArgs: 3, IIV: KeyIdents));
6269 }
6270 }
6271
6272 return VTableDispatchMethods.count(V: Sel);
6273}
6274
6275/// BuildClassRoTInitializer - generate meta-data for:
6276/// struct _class_ro_t {
6277/// uint32_t const flags;
6278/// uint32_t const instanceStart;
6279/// uint32_t const instanceSize;
6280/// uint32_t const reserved; // only when building for 64bit targets
6281/// const uint8_t * const ivarLayout;
6282/// const char *const name;
6283/// const struct _method_list_t * const baseMethods;
6284/// const struct _protocol_list_t *const baseProtocols;
6285/// const struct _ivar_list_t *const ivars;
6286/// const uint8_t * const weakIvarLayout;
6287/// const struct _prop_list_t * const properties;
6288/// }
6289///
6290llvm::GlobalVariable * CGObjCNonFragileABIMac::BuildClassRoTInitializer(
6291 unsigned flags,
6292 unsigned InstanceStart,
6293 unsigned InstanceSize,
6294 const ObjCImplementationDecl *ID) {
6295 std::string ClassName = std::string(ID->getObjCRuntimeNameAsString());
6296
6297 CharUnits beginInstance = CharUnits::fromQuantity(Quantity: InstanceStart);
6298 CharUnits endInstance = CharUnits::fromQuantity(Quantity: InstanceSize);
6299
6300 bool hasMRCWeak = false;
6301 if (CGM.getLangOpts().ObjCAutoRefCount)
6302 flags |= NonFragileABI_Class_CompiledByARC;
6303 else if ((hasMRCWeak = hasMRCWeakIvars(CGM, ID)))
6304 flags |= NonFragileABI_Class_HasMRCWeakIvars;
6305
6306 ConstantInitBuilder builder(CGM);
6307 auto values = builder.beginStruct(ObjCTypes.ClassRonfABITy);
6308
6309 values.addInt(ObjCTypes.IntTy, flags);
6310 values.addInt(ObjCTypes.IntTy, InstanceStart);
6311 values.addInt(ObjCTypes.IntTy, InstanceSize);
6312 values.add((flags & NonFragileABI_Class_Meta)
6313 ? GetIvarLayoutName(nullptr, ObjCTypes)
6314 : BuildStrongIvarLayout(ID, beginInstance, endInstance));
6315 values.add(GetClassName(ID->getObjCRuntimeNameAsString()));
6316
6317 // const struct _method_list_t * const baseMethods;
6318 SmallVector<const ObjCMethodDecl*, 16> methods;
6319 if (flags & NonFragileABI_Class_Meta) {
6320 for (const auto *MD : ID->class_methods())
6321 if (!MD->isDirectMethod())
6322 methods.push_back(MD);
6323 } else {
6324 for (const auto *MD : ID->instance_methods())
6325 if (!MD->isDirectMethod())
6326 methods.push_back(MD);
6327 }
6328
6329 values.add(emitMethodList(Name: ID->getObjCRuntimeNameAsString(),
6330 MLT: (flags & NonFragileABI_Class_Meta)
6331 ? MethodListType::ClassMethods
6332 : MethodListType::InstanceMethods,
6333 Methods: methods));
6334
6335 const ObjCInterfaceDecl *OID = ID->getClassInterface();
6336 assert(OID && "CGObjCNonFragileABIMac::BuildClassRoTInitializer");
6337 values.add(EmitProtocolList(Name: "_OBJC_CLASS_PROTOCOLS_$_"
6338 + OID->getObjCRuntimeNameAsString(),
6339 begin: OID->all_referenced_protocol_begin(),
6340 end: OID->all_referenced_protocol_end()));
6341
6342 if (flags & NonFragileABI_Class_Meta) {
6343 values.addNullPointer(ObjCTypes.IvarListnfABIPtrTy);
6344 values.add(GetIvarLayoutName(nullptr, ObjCTypes));
6345 values.add(EmitPropertyList(
6346 "_OBJC_$_CLASS_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6347 ID, ID->getClassInterface(), ObjCTypes, true));
6348 } else {
6349 values.add(EmitIvarList(ID));
6350 values.add(BuildWeakIvarLayout(ID, beginInstance, endInstance, hasMRCWeak));
6351 values.add(EmitPropertyList(
6352 "_OBJC_$_PROP_LIST_" + ID->getObjCRuntimeNameAsString(),
6353 ID, ID->getClassInterface(), ObjCTypes, false));
6354 }
6355
6356 llvm::SmallString<64> roLabel;
6357 llvm::raw_svector_ostream(roLabel)
6358 << ((flags & NonFragileABI_Class_Meta) ? "_OBJC_METACLASS_RO_$_"
6359 : "_OBJC_CLASS_RO_$_")
6360 << ClassName;
6361
6362 return finishAndCreateGlobal(values, roLabel, CGM);
6363}
6364
6365/// Build the metaclass object for a class.
6366///
6367/// struct _class_t {
6368/// struct _class_t *isa;
6369/// struct _class_t * const superclass;
6370/// void *cache;
6371/// IMP *vtable;
6372/// struct class_ro_t *ro;
6373/// }
6374///
6375llvm::GlobalVariable *
6376CGObjCNonFragileABIMac::BuildClassObject(const ObjCInterfaceDecl *CI,
6377 bool isMetaclass,
6378 llvm::Constant *IsAGV,
6379 llvm::Constant *SuperClassGV,
6380 llvm::Constant *ClassRoGV,
6381 bool HiddenVisibility) {
6382 ConstantInitBuilder builder(CGM);
6383 auto values = builder.beginStruct(ObjCTypes.ClassnfABITy);
6384 values.add(IsAGV);
6385 if (SuperClassGV) {
6386 values.add(SuperClassGV);
6387 } else {
6388 values.addNullPointer(ObjCTypes.ClassnfABIPtrTy);
6389 }
6390 values.add(ObjCEmptyCacheVar);
6391 values.add(ObjCEmptyVtableVar);
6392 values.add(ClassRoGV);
6393
6394 llvm::GlobalVariable *GV =
6395 cast<llvm::GlobalVariable>(Val: GetClassGlobal(ID: CI, isMetaclass, isForDefinition: ForDefinition));
6396 values.finishAndSetAsInitializer(GV);
6397
6398 if (CGM.getTriple().isOSBinFormatMachO())
6399 GV->setSection("__DATA, __objc_data");
6400 GV->setAlignment(CGM.getDataLayout().getABITypeAlign(ObjCTypes.ClassnfABITy));
6401 if (!CGM.getTriple().isOSBinFormatCOFF())
6402 if (HiddenVisibility)
6403 GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6404 return GV;
6405}
6406
6407bool CGObjCNonFragileABIMac::ImplementationIsNonLazy(
6408 const ObjCImplDecl *OD) const {
6409 return OD->getClassMethod(GetNullarySelector("load")) != nullptr ||
6410 OD->getClassInterface()->hasAttr<ObjCNonLazyClassAttr>() ||
6411 OD->hasAttr<ObjCNonLazyClassAttr>();
6412}
6413
6414void CGObjCNonFragileABIMac::GetClassSizeInfo(const ObjCImplementationDecl *OID,
6415 uint32_t &InstanceStart,
6416 uint32_t &InstanceSize) {
6417 const ASTRecordLayout &RL =
6418 CGM.getContext().getASTObjCImplementationLayout(D: OID);
6419
6420 // InstanceSize is really instance end.
6421 InstanceSize = RL.getDataSize().getQuantity();
6422
6423 // If there are no fields, the start is the same as the end.
6424 if (!RL.getFieldCount())
6425 InstanceStart = InstanceSize;
6426 else
6427 InstanceStart = RL.getFieldOffset(FieldNo: 0) / CGM.getContext().getCharWidth();
6428}
6429
6430static llvm::GlobalValue::DLLStorageClassTypes getStorage(CodeGenModule &CGM,
6431 StringRef Name) {
6432 IdentifierInfo &II = CGM.getContext().Idents.get(Name);
6433 TranslationUnitDecl *TUDecl = CGM.getContext().getTranslationUnitDecl();
6434 DeclContext *DC = TranslationUnitDecl::castToDeclContext(D: TUDecl);
6435
6436 const VarDecl *VD = nullptr;
6437 for (const auto *Result : DC->lookup(Name: &II))
6438 if ((VD = dyn_cast<VarDecl>(Val: Result)))
6439 break;
6440
6441 if (!VD)
6442 return llvm::GlobalValue::DLLImportStorageClass;
6443 if (VD->hasAttr<DLLExportAttr>())
6444 return llvm::GlobalValue::DLLExportStorageClass;
6445 if (VD->hasAttr<DLLImportAttr>())
6446 return llvm::GlobalValue::DLLImportStorageClass;
6447 return llvm::GlobalValue::DefaultStorageClass;
6448}
6449
6450void CGObjCNonFragileABIMac::GenerateClass(const ObjCImplementationDecl *ID) {
6451 if (!ObjCEmptyCacheVar) {
6452 ObjCEmptyCacheVar =
6453 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.CacheTy, false,
6454 llvm::GlobalValue::ExternalLinkage, nullptr,
6455 "_objc_empty_cache");
6456 if (CGM.getTriple().isOSBinFormatCOFF())
6457 ObjCEmptyCacheVar->setDLLStorageClass(getStorage(CGM, Name: "_objc_empty_cache"));
6458
6459 // Only OS X with deployment version <10.9 use the empty vtable symbol
6460 const llvm::Triple &Triple = CGM.getTarget().getTriple();
6461 if (Triple.isMacOSX() && Triple.isMacOSXVersionLT(10, 9))
6462 ObjCEmptyVtableVar =
6463 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ImpnfABITy, false,
6464 llvm::GlobalValue::ExternalLinkage, nullptr,
6465 "_objc_empty_vtable");
6466 else
6467 ObjCEmptyVtableVar =
6468 llvm::ConstantPointerNull::get(ObjCTypes.ImpnfABITy->getPointerTo());
6469 }
6470
6471 // FIXME: Is this correct (that meta class size is never computed)?
6472 uint32_t InstanceStart =
6473 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ClassnfABITy);
6474 uint32_t InstanceSize = InstanceStart;
6475 uint32_t flags = NonFragileABI_Class_Meta;
6476
6477 llvm::Constant *SuperClassGV, *IsAGV;
6478
6479 const auto *CI = ID->getClassInterface();
6480 assert(CI && "CGObjCNonFragileABIMac::GenerateClass - class is 0");
6481
6482 // Build the flags for the metaclass.
6483 bool classIsHidden = (CGM.getTriple().isOSBinFormatCOFF())
6484 ? !CI->hasAttr<DLLExportAttr>()
6485 : CI->getVisibility() == HiddenVisibility;
6486 if (classIsHidden)
6487 flags |= NonFragileABI_Class_Hidden;
6488
6489 // FIXME: why is this flag set on the metaclass?
6490 // ObjC metaclasses have no fields and don't really get constructed.
6491 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6492 flags |= NonFragileABI_Class_HasCXXStructors;
6493 if (!ID->hasNonZeroConstructors())
6494 flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6495 }
6496
6497 if (!CI->getSuperClass()) {
6498 // class is root
6499 flags |= NonFragileABI_Class_Root;
6500
6501 SuperClassGV = GetClassGlobal(CI, /*metaclass*/ false, NotForDefinition);
6502 IsAGV = GetClassGlobal(CI, /*metaclass*/ true, NotForDefinition);
6503 } else {
6504 // Has a root. Current class is not a root.
6505 const ObjCInterfaceDecl *Root = ID->getClassInterface();
6506 while (const ObjCInterfaceDecl *Super = Root->getSuperClass())
6507 Root = Super;
6508
6509 const auto *Super = CI->getSuperClass();
6510 IsAGV = GetClassGlobal(ID: Root, /*metaclass*/ isMetaclass: true, isForDefinition: NotForDefinition);
6511 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ true, NotForDefinition);
6512 }
6513
6514 llvm::GlobalVariable *CLASS_RO_GV =
6515 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6516
6517 llvm::GlobalVariable *MetaTClass =
6518 BuildClassObject(CI: CI, /*metaclass*/ isMetaclass: true,
6519 IsAGV, SuperClassGV, ClassRoGV: CLASS_RO_GV, HiddenVisibility: classIsHidden);
6520 CGM.setGVProperties(MetaTClass, CI);
6521 DefinedMetaClasses.push_back(x: MetaTClass);
6522
6523 // Metadata for the class
6524 flags = 0;
6525 if (classIsHidden)
6526 flags |= NonFragileABI_Class_Hidden;
6527
6528 if (ID->hasNonZeroConstructors() || ID->hasDestructors()) {
6529 flags |= NonFragileABI_Class_HasCXXStructors;
6530
6531 // Set a flag to enable a runtime optimization when a class has
6532 // fields that require destruction but which don't require
6533 // anything except zero-initialization during construction. This
6534 // is most notably true of __strong and __weak types, but you can
6535 // also imagine there being C++ types with non-trivial default
6536 // constructors that merely set all fields to null.
6537 if (!ID->hasNonZeroConstructors())
6538 flags |= NonFragileABI_Class_HasCXXDestructorOnly;
6539 }
6540
6541 if (hasObjCExceptionAttribute(CGM.getContext(), CI))
6542 flags |= NonFragileABI_Class_Exception;
6543
6544 if (!CI->getSuperClass()) {
6545 flags |= NonFragileABI_Class_Root;
6546 SuperClassGV = nullptr;
6547 } else {
6548 // Has a root. Current class is not a root.
6549 const auto *Super = CI->getSuperClass();
6550 SuperClassGV = GetClassGlobal(Super, /*metaclass*/ false, NotForDefinition);
6551 }
6552
6553 GetClassSizeInfo(OID: ID, InstanceStart, InstanceSize);
6554 CLASS_RO_GV =
6555 BuildClassRoTInitializer(flags, InstanceStart, InstanceSize, ID);
6556
6557 llvm::GlobalVariable *ClassMD =
6558 BuildClassObject(CI: CI, /*metaclass*/ isMetaclass: false,
6559 IsAGV: MetaTClass, SuperClassGV, ClassRoGV: CLASS_RO_GV, HiddenVisibility: classIsHidden);
6560 CGM.setGVProperties(ClassMD, CI);
6561 DefinedClasses.push_back(Elt: ClassMD);
6562 ImplementedClasses.push_back(Elt: CI);
6563
6564 // Determine if this class is also "non-lazy".
6565 if (ImplementationIsNonLazy(ID))
6566 DefinedNonLazyClasses.push_back(Elt: ClassMD);
6567
6568 // Force the definition of the EHType if necessary.
6569 if (flags & NonFragileABI_Class_Exception)
6570 (void) GetInterfaceEHType(ID: CI, IsForDefinition: ForDefinition);
6571 // Make sure method definition entries are all clear for next implementation.
6572 MethodDefinitions.clear();
6573}
6574
6575/// GenerateProtocolRef - This routine is called to generate code for
6576/// a protocol reference expression; as in:
6577/// @code
6578/// @protocol(Proto1);
6579/// @endcode
6580/// It generates a weak reference to l_OBJC_PROTOCOL_REFERENCE_$_Proto1
6581/// which will hold address of the protocol meta-data.
6582///
6583llvm::Value *CGObjCNonFragileABIMac::GenerateProtocolRef(CodeGenFunction &CGF,
6584 const ObjCProtocolDecl *PD) {
6585
6586 // This routine is called for @protocol only. So, we must build definition
6587 // of protocol's meta-data (not a reference to it!)
6588 assert(!PD->isNonRuntimeProtocol() &&
6589 "attempting to get a protocol ref to a static protocol.");
6590 llvm::Constant *Init = GetOrEmitProtocol(PD);
6591
6592 std::string ProtocolName("_OBJC_PROTOCOL_REFERENCE_$_");
6593 ProtocolName += PD->getObjCRuntimeNameAsString();
6594
6595 CharUnits Align = CGF.getPointerAlign();
6596
6597 llvm::GlobalVariable *PTGV = CGM.getModule().getGlobalVariable(Name: ProtocolName);
6598 if (PTGV)
6599 return CGF.Builder.CreateAlignedLoad(Ty: PTGV->getValueType(), Addr: PTGV, Align);
6600 PTGV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), false,
6601 llvm::GlobalValue::WeakAnyLinkage, Init,
6602 ProtocolName);
6603 PTGV->setSection(GetSectionName("__objc_protorefs",
6604 "coalesced,no_dead_strip"));
6605 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6606 PTGV->setAlignment(Align.getAsAlign());
6607 if (!CGM.getTriple().isOSBinFormatMachO())
6608 PTGV->setComdat(CGM.getModule().getOrInsertComdat(Name: ProtocolName));
6609 CGM.addUsedGlobal(GV: PTGV);
6610 return CGF.Builder.CreateAlignedLoad(Ty: PTGV->getValueType(), Addr: PTGV, Align);
6611}
6612
6613/// GenerateCategory - Build metadata for a category implementation.
6614/// struct _category_t {
6615/// const char * const name;
6616/// struct _class_t *const cls;
6617/// const struct _method_list_t * const instance_methods;
6618/// const struct _method_list_t * const class_methods;
6619/// const struct _protocol_list_t * const protocols;
6620/// const struct _prop_list_t * const properties;
6621/// const struct _prop_list_t * const class_properties;
6622/// const uint32_t size;
6623/// }
6624///
6625void CGObjCNonFragileABIMac::GenerateCategory(const ObjCCategoryImplDecl *OCD) {
6626 const ObjCInterfaceDecl *Interface = OCD->getClassInterface();
6627 const char *Prefix = "_OBJC_$_CATEGORY_";
6628
6629 llvm::SmallString<64> ExtCatName(Prefix);
6630 ExtCatName += Interface->getObjCRuntimeNameAsString();
6631 ExtCatName += "_$_";
6632 ExtCatName += OCD->getNameAsString();
6633
6634 ConstantInitBuilder builder(CGM);
6635 auto values = builder.beginStruct(ObjCTypes.CategorynfABITy);
6636 values.add(GetClassName(RuntimeName: OCD->getIdentifier()->getName()));
6637 // meta-class entry symbol
6638 values.add(GetClassGlobal(ID: Interface, /*metaclass*/ isMetaclass: false, isForDefinition: NotForDefinition));
6639 std::string listName =
6640 (Interface->getObjCRuntimeNameAsString() + "_$_" + OCD->getName()).str();
6641
6642 SmallVector<const ObjCMethodDecl *, 16> instanceMethods;
6643 SmallVector<const ObjCMethodDecl *, 8> classMethods;
6644 for (const auto *MD : OCD->methods()) {
6645 if (MD->isDirectMethod())
6646 continue;
6647 if (MD->isInstanceMethod()) {
6648 instanceMethods.push_back(MD);
6649 } else {
6650 classMethods.push_back(MD);
6651 }
6652 }
6653
6654 auto instanceMethodList = emitMethodList(
6655 Name: listName, MLT: MethodListType::CategoryInstanceMethods, Methods: instanceMethods);
6656 auto classMethodList = emitMethodList(
6657 Name: listName, MLT: MethodListType::CategoryClassMethods, Methods: classMethods);
6658 values.add(instanceMethodList);
6659 values.add(classMethodList);
6660 // Keep track of whether we have actual metadata to emit.
6661 bool isEmptyCategory =
6662 instanceMethodList->isNullValue() && classMethodList->isNullValue();
6663
6664 const ObjCCategoryDecl *Category =
6665 Interface->FindCategoryDeclaration(CategoryId: OCD->getIdentifier());
6666 if (Category) {
6667 SmallString<256> ExtName;
6668 llvm::raw_svector_ostream(ExtName)
6669 << Interface->getObjCRuntimeNameAsString() << "_$_" << OCD->getName();
6670 auto protocolList =
6671 EmitProtocolList(Name: "_OBJC_CATEGORY_PROTOCOLS_$_" +
6672 Interface->getObjCRuntimeNameAsString() + "_$_" +
6673 Category->getName(),
6674 begin: Category->protocol_begin(), end: Category->protocol_end());
6675 auto propertyList = EmitPropertyList("_OBJC_$_PROP_LIST_" + ExtName.str(),
6676 OCD, Category, ObjCTypes, false);
6677 auto classPropertyList =
6678 EmitPropertyList("_OBJC_$_CLASS_PROP_LIST_" + ExtName.str(), OCD,
6679 Category, ObjCTypes, true);
6680 values.add(protocolList);
6681 values.add(propertyList);
6682 values.add(classPropertyList);
6683 isEmptyCategory &= protocolList->isNullValue() &&
6684 propertyList->isNullValue() &&
6685 classPropertyList->isNullValue();
6686 } else {
6687 values.addNullPointer(ObjCTypes.ProtocolListnfABIPtrTy);
6688 values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6689 values.addNullPointer(ObjCTypes.PropertyListPtrTy);
6690 }
6691
6692 if (isEmptyCategory) {
6693 // Empty category, don't emit any metadata.
6694 values.abandon();
6695 MethodDefinitions.clear();
6696 return;
6697 }
6698
6699 unsigned Size =
6700 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.CategorynfABITy);
6701 values.addInt(ObjCTypes.IntTy, Size);
6702
6703 llvm::GlobalVariable *GCATV =
6704 finishAndCreateGlobal(values, ExtCatName.str(), CGM);
6705 CGM.addCompilerUsedGlobal(GV: GCATV);
6706 if (Interface->hasAttr<ObjCClassStubAttr>())
6707 DefinedStubCategories.push_back(Elt: GCATV);
6708 else
6709 DefinedCategories.push_back(Elt: GCATV);
6710
6711 // Determine if this category is also "non-lazy".
6712 if (ImplementationIsNonLazy(OCD))
6713 DefinedNonLazyCategories.push_back(Elt: GCATV);
6714 // method definition entries must be clear for next implementation.
6715 MethodDefinitions.clear();
6716}
6717
6718/// emitMethodConstant - Return a struct objc_method constant. If
6719/// forProtocol is true, the implementation will be null; otherwise,
6720/// the method must have a definition registered with the runtime.
6721///
6722/// struct _objc_method {
6723/// SEL _cmd;
6724/// char *method_type;
6725/// char *_imp;
6726/// }
6727void CGObjCNonFragileABIMac::emitMethodConstant(ConstantArrayBuilder &builder,
6728 const ObjCMethodDecl *MD,
6729 bool forProtocol) {
6730 auto method = builder.beginStruct(ObjCTypes.MethodTy);
6731 method.add(GetMethodVarName(MD->getSelector()));
6732 method.add(GetMethodVarType(MD));
6733
6734 if (forProtocol) {
6735 // Protocol methods have no implementation. So, this entry is always NULL.
6736 method.addNullPointer(ObjCTypes.Int8PtrProgramASTy);
6737 } else {
6738 llvm::Function *fn = GetMethodDefinition(MD);
6739 assert(fn && "no definition for method?");
6740 method.add(fn);
6741 }
6742
6743 method.finishAndAddTo(builder);
6744}
6745
6746/// Build meta-data for method declarations.
6747///
6748/// struct _method_list_t {
6749/// uint32_t entsize; // sizeof(struct _objc_method)
6750/// uint32_t method_count;
6751/// struct _objc_method method_list[method_count];
6752/// }
6753///
6754llvm::Constant *
6755CGObjCNonFragileABIMac::emitMethodList(Twine name, MethodListType kind,
6756 ArrayRef<const ObjCMethodDecl *> methods) {
6757 // Return null for empty list.
6758 if (methods.empty())
6759 return llvm::Constant::getNullValue(ObjCTypes.MethodListnfABIPtrTy);
6760
6761 StringRef prefix;
6762 bool forProtocol;
6763 switch (kind) {
6764 case MethodListType::CategoryInstanceMethods:
6765 prefix = "_OBJC_$_CATEGORY_INSTANCE_METHODS_";
6766 forProtocol = false;
6767 break;
6768 case MethodListType::CategoryClassMethods:
6769 prefix = "_OBJC_$_CATEGORY_CLASS_METHODS_";
6770 forProtocol = false;
6771 break;
6772 case MethodListType::InstanceMethods:
6773 prefix = "_OBJC_$_INSTANCE_METHODS_";
6774 forProtocol = false;
6775 break;
6776 case MethodListType::ClassMethods:
6777 prefix = "_OBJC_$_CLASS_METHODS_";
6778 forProtocol = false;
6779 break;
6780
6781 case MethodListType::ProtocolInstanceMethods:
6782 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_";
6783 forProtocol = true;
6784 break;
6785 case MethodListType::ProtocolClassMethods:
6786 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_";
6787 forProtocol = true;
6788 break;
6789 case MethodListType::OptionalProtocolInstanceMethods:
6790 prefix = "_OBJC_$_PROTOCOL_INSTANCE_METHODS_OPT_";
6791 forProtocol = true;
6792 break;
6793 case MethodListType::OptionalProtocolClassMethods:
6794 prefix = "_OBJC_$_PROTOCOL_CLASS_METHODS_OPT_";
6795 forProtocol = true;
6796 break;
6797 }
6798
6799 ConstantInitBuilder builder(CGM);
6800 auto values = builder.beginStruct();
6801
6802 // sizeof(struct _objc_method)
6803 unsigned Size = CGM.getDataLayout().getTypeAllocSize(ObjCTypes.MethodTy);
6804 values.addInt(ObjCTypes.IntTy, Size);
6805 // method_count
6806 values.addInt(ObjCTypes.IntTy, methods.size());
6807 auto methodArray = values.beginArray(ObjCTypes.MethodTy);
6808 for (auto MD : methods)
6809 emitMethodConstant(builder&: methodArray, MD, forProtocol);
6810 methodArray.finishAndAddTo(values);
6811
6812 llvm::GlobalVariable *GV = finishAndCreateGlobal(Builder&: values, Name: prefix + name, CGM);
6813 CGM.addCompilerUsedGlobal(GV);
6814 return GV;
6815}
6816
6817/// ObjCIvarOffsetVariable - Returns the ivar offset variable for
6818/// the given ivar.
6819llvm::GlobalVariable *
6820CGObjCNonFragileABIMac::ObjCIvarOffsetVariable(const ObjCInterfaceDecl *ID,
6821 const ObjCIvarDecl *Ivar) {
6822 const ObjCInterfaceDecl *Container = Ivar->getContainingInterface();
6823 llvm::SmallString<64> Name("OBJC_IVAR_$_");
6824 Name += Container->getObjCRuntimeNameAsString();
6825 Name += ".";
6826 Name += Ivar->getName();
6827 llvm::GlobalVariable *IvarOffsetGV = CGM.getModule().getGlobalVariable(Name);
6828 if (!IvarOffsetGV) {
6829 IvarOffsetGV =
6830 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.IvarOffsetVarTy,
6831 false, llvm::GlobalValue::ExternalLinkage,
6832 nullptr, Name.str());
6833 if (CGM.getTriple().isOSBinFormatCOFF()) {
6834 bool IsPrivateOrPackage =
6835 Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6836 Ivar->getAccessControl() == ObjCIvarDecl::Package;
6837
6838 const ObjCInterfaceDecl *ContainingID = Ivar->getContainingInterface();
6839
6840 if (ContainingID->hasAttr<DLLImportAttr>())
6841 IvarOffsetGV
6842 ->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6843 else if (ContainingID->hasAttr<DLLExportAttr>() && !IsPrivateOrPackage)
6844 IvarOffsetGV
6845 ->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6846 }
6847 }
6848 return IvarOffsetGV;
6849}
6850
6851llvm::Constant *
6852CGObjCNonFragileABIMac::EmitIvarOffsetVar(const ObjCInterfaceDecl *ID,
6853 const ObjCIvarDecl *Ivar,
6854 unsigned long int Offset) {
6855 llvm::GlobalVariable *IvarOffsetGV = ObjCIvarOffsetVariable(ID, Ivar);
6856 IvarOffsetGV->setInitializer(
6857 llvm::ConstantInt::get(ObjCTypes.IvarOffsetVarTy, Offset));
6858 IvarOffsetGV->setAlignment(
6859 CGM.getDataLayout().getABITypeAlign(ObjCTypes.IvarOffsetVarTy));
6860
6861 if (!CGM.getTriple().isOSBinFormatCOFF()) {
6862 // FIXME: This matches gcc, but shouldn't the visibility be set on the use
6863 // as well (i.e., in ObjCIvarOffsetVariable).
6864 if (Ivar->getAccessControl() == ObjCIvarDecl::Private ||
6865 Ivar->getAccessControl() == ObjCIvarDecl::Package ||
6866 ID->getVisibility() == HiddenVisibility)
6867 IvarOffsetGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
6868 else
6869 IvarOffsetGV->setVisibility(llvm::GlobalValue::DefaultVisibility);
6870 }
6871
6872 // If ID's layout is known, then make the global constant. This serves as a
6873 // useful assertion: we'll never use this variable to calculate ivar offsets,
6874 // so if the runtime tries to patch it then we should crash.
6875 if (isClassLayoutKnownStatically(ID))
6876 IvarOffsetGV->setConstant(true);
6877
6878 if (CGM.getTriple().isOSBinFormatMachO())
6879 IvarOffsetGV->setSection("__DATA, __objc_ivar");
6880 return IvarOffsetGV;
6881}
6882
6883/// EmitIvarList - Emit the ivar list for the given
6884/// implementation. The return value has type
6885/// IvarListnfABIPtrTy.
6886/// struct _ivar_t {
6887/// unsigned [long] int *offset; // pointer to ivar offset location
6888/// char *name;
6889/// char *type;
6890/// uint32_t alignment;
6891/// uint32_t size;
6892/// }
6893/// struct _ivar_list_t {
6894/// uint32 entsize; // sizeof(struct _ivar_t)
6895/// uint32 count;
6896/// struct _iver_t list[count];
6897/// }
6898///
6899
6900llvm::Constant *CGObjCNonFragileABIMac::EmitIvarList(
6901 const ObjCImplementationDecl *ID) {
6902
6903 ConstantInitBuilder builder(CGM);
6904 auto ivarList = builder.beginStruct();
6905 ivarList.addInt(ObjCTypes.IntTy,
6906 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.IvarnfABITy));
6907 auto ivarCountSlot = ivarList.addPlaceholder();
6908 auto ivars = ivarList.beginArray(ObjCTypes.IvarnfABITy);
6909
6910 const ObjCInterfaceDecl *OID = ID->getClassInterface();
6911 assert(OID && "CGObjCNonFragileABIMac::EmitIvarList - null interface");
6912
6913 // FIXME. Consolidate this with similar code in GenerateClass.
6914
6915 for (const ObjCIvarDecl *IVD = OID->all_declared_ivar_begin();
6916 IVD; IVD = IVD->getNextIvar()) {
6917 // Ignore unnamed bit-fields.
6918 if (!IVD->getDeclName())
6919 continue;
6920
6921 auto ivar = ivars.beginStruct(ObjCTypes.IvarnfABITy);
6922 ivar.add(EmitIvarOffsetVar(ID: ID->getClassInterface(), Ivar: IVD,
6923 Offset: ComputeIvarBaseOffset(CGM, ID, IVD)));
6924 ivar.add(GetMethodVarName(IVD->getIdentifier()));
6925 ivar.add(GetMethodVarType(IVD));
6926 llvm::Type *FieldTy =
6927 CGM.getTypes().ConvertTypeForMem(T: IVD->getType());
6928 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: FieldTy);
6929 unsigned Align = CGM.getContext().getPreferredTypeAlign(
6930 IVD->getType().getTypePtr()) >> 3;
6931 Align = llvm::Log2_32(Value: Align);
6932 ivar.addInt(ObjCTypes.IntTy, Align);
6933 // NOTE. Size of a bitfield does not match gcc's, because of the
6934 // way bitfields are treated special in each. But I am told that
6935 // 'size' for bitfield ivars is ignored by the runtime so it does
6936 // not matter. If it matters, there is enough info to get the
6937 // bitfield right!
6938 ivar.addInt(ObjCTypes.IntTy, Size);
6939 ivar.finishAndAddTo(ivars);
6940 }
6941 // Return null for empty list.
6942 if (ivars.empty()) {
6943 ivars.abandon();
6944 ivarList.abandon();
6945 return llvm::Constant::getNullValue(ObjCTypes.IvarListnfABIPtrTy);
6946 }
6947
6948 auto ivarCount = ivars.size();
6949 ivars.finishAndAddTo(ivarList);
6950 ivarList.fillPlaceholderWithInt(ivarCountSlot, ObjCTypes.IntTy, ivarCount);
6951
6952 const char *Prefix = "_OBJC_$_INSTANCE_VARIABLES_";
6953 llvm::GlobalVariable *GV = finishAndCreateGlobal(
6954 Builder&: ivarList, Name: Prefix + OID->getObjCRuntimeNameAsString(), CGM);
6955 CGM.addCompilerUsedGlobal(GV);
6956 return GV;
6957}
6958
6959llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocolRef(
6960 const ObjCProtocolDecl *PD) {
6961 llvm::GlobalVariable *&Entry = Protocols[PD->getIdentifier()];
6962
6963 assert(!PD->isNonRuntimeProtocol() &&
6964 "attempting to GetOrEmit a non-runtime protocol");
6965 if (!Entry) {
6966 // We use the initializer as a marker of whether this is a forward
6967 // reference or not. At module finalization we add the empty
6968 // contents for protocols which were referenced but never defined.
6969 llvm::SmallString<64> Protocol;
6970 llvm::raw_svector_ostream(Protocol) << "_OBJC_PROTOCOL_$_"
6971 << PD->getObjCRuntimeNameAsString();
6972
6973 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABITy,
6974 false, llvm::GlobalValue::ExternalLinkage,
6975 nullptr, Protocol);
6976 if (!CGM.getTriple().isOSBinFormatMachO())
6977 Entry->setComdat(CGM.getModule().getOrInsertComdat(Name: Protocol));
6978 }
6979
6980 return Entry;
6981}
6982
6983/// GetOrEmitProtocol - Generate the protocol meta-data:
6984/// @code
6985/// struct _protocol_t {
6986/// id isa; // NULL
6987/// const char * const protocol_name;
6988/// const struct _protocol_list_t * protocol_list; // super protocols
6989/// const struct method_list_t * const instance_methods;
6990/// const struct method_list_t * const class_methods;
6991/// const struct method_list_t *optionalInstanceMethods;
6992/// const struct method_list_t *optionalClassMethods;
6993/// const struct _prop_list_t * properties;
6994/// const uint32_t size; // sizeof(struct _protocol_t)
6995/// const uint32_t flags; // = 0
6996/// const char ** extendedMethodTypes;
6997/// const char *demangledName;
6998/// const struct _prop_list_t * class_properties;
6999/// }
7000/// @endcode
7001///
7002
7003llvm::Constant *CGObjCNonFragileABIMac::GetOrEmitProtocol(
7004 const ObjCProtocolDecl *PD) {
7005 llvm::GlobalVariable *Entry = Protocols[PD->getIdentifier()];
7006
7007 // Early exit if a defining object has already been generated.
7008 if (Entry && Entry->hasInitializer())
7009 return Entry;
7010
7011 // Use the protocol definition, if there is one.
7012 assert(PD->hasDefinition() &&
7013 "emitting protocol metadata without definition");
7014 PD = PD->getDefinition();
7015
7016 auto methodLists = ProtocolMethodLists::get(PD);
7017
7018 ConstantInitBuilder builder(CGM);
7019 auto values = builder.beginStruct(ObjCTypes.ProtocolnfABITy);
7020
7021 // isa is NULL
7022 values.addNullPointer(ObjCTypes.ObjectPtrTy);
7023 values.add(GetClassName(PD->getObjCRuntimeNameAsString()));
7024 values.add(EmitProtocolList(Name: "_OBJC_$_PROTOCOL_REFS_"
7025 + PD->getObjCRuntimeNameAsString(),
7026 begin: PD->protocol_begin(),
7027 end: PD->protocol_end()));
7028 values.add(methodLists.emitMethodList(self: this, PD,
7029 kind: ProtocolMethodLists::RequiredInstanceMethods));
7030 values.add(methodLists.emitMethodList(self: this, PD,
7031 kind: ProtocolMethodLists::RequiredClassMethods));
7032 values.add(methodLists.emitMethodList(self: this, PD,
7033 kind: ProtocolMethodLists::OptionalInstanceMethods));
7034 values.add(methodLists.emitMethodList(self: this, PD,
7035 kind: ProtocolMethodLists::OptionalClassMethods));
7036 values.add(EmitPropertyList(
7037 "_OBJC_$_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7038 nullptr, PD, ObjCTypes, false));
7039 uint32_t Size =
7040 CGM.getDataLayout().getTypeAllocSize(ObjCTypes.ProtocolnfABITy);
7041 values.addInt(ObjCTypes.IntTy, Size);
7042 values.addInt(ObjCTypes.IntTy, 0);
7043 values.add(EmitProtocolMethodTypes("_OBJC_$_PROTOCOL_METHOD_TYPES_"
7044 + PD->getObjCRuntimeNameAsString(),
7045 methodLists.emitExtendedTypesArray(this),
7046 ObjCTypes));
7047
7048 // const char *demangledName;
7049 values.addNullPointer(ObjCTypes.Int8PtrTy);
7050
7051 values.add(EmitPropertyList(
7052 "_OBJC_$_CLASS_PROP_LIST_" + PD->getObjCRuntimeNameAsString(),
7053 nullptr, PD, ObjCTypes, true));
7054
7055 if (Entry) {
7056 // Already created, fix the linkage and update the initializer.
7057 Entry->setLinkage(llvm::GlobalValue::WeakAnyLinkage);
7058 values.finishAndSetAsInitializer(Entry);
7059 } else {
7060 llvm::SmallString<64> symbolName;
7061 llvm::raw_svector_ostream(symbolName)
7062 << "_OBJC_PROTOCOL_$_" << PD->getObjCRuntimeNameAsString();
7063
7064 Entry = values.finishAndCreateGlobal(symbolName, CGM.getPointerAlign(),
7065 /*constant*/ false,
7066 llvm::GlobalValue::WeakAnyLinkage);
7067 if (!CGM.getTriple().isOSBinFormatMachO())
7068 Entry->setComdat(CGM.getModule().getOrInsertComdat(Name: symbolName));
7069
7070 Protocols[PD->getIdentifier()] = Entry;
7071 }
7072 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7073 CGM.addUsedGlobal(GV: Entry);
7074
7075 // Use this protocol meta-data to build protocol list table in section
7076 // __DATA, __objc_protolist
7077 llvm::SmallString<64> ProtocolRef;
7078 llvm::raw_svector_ostream(ProtocolRef) << "_OBJC_LABEL_PROTOCOL_$_"
7079 << PD->getObjCRuntimeNameAsString();
7080
7081 llvm::GlobalVariable *PTGV =
7082 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ProtocolnfABIPtrTy,
7083 false, llvm::GlobalValue::WeakAnyLinkage, Entry,
7084 ProtocolRef);
7085 if (!CGM.getTriple().isOSBinFormatMachO())
7086 PTGV->setComdat(CGM.getModule().getOrInsertComdat(Name: ProtocolRef));
7087 PTGV->setAlignment(
7088 CGM.getDataLayout().getABITypeAlign(ObjCTypes.ProtocolnfABIPtrTy));
7089 PTGV->setSection(GetSectionName("__objc_protolist",
7090 "coalesced,no_dead_strip"));
7091 PTGV->setVisibility(llvm::GlobalValue::HiddenVisibility);
7092 CGM.addUsedGlobal(GV: PTGV);
7093 return Entry;
7094}
7095
7096/// EmitProtocolList - Generate protocol list meta-data:
7097/// @code
7098/// struct _protocol_list_t {
7099/// long protocol_count; // Note, this is 32/64 bit
7100/// struct _protocol_t[protocol_count];
7101/// }
7102/// @endcode
7103///
7104llvm::Constant *
7105CGObjCNonFragileABIMac::EmitProtocolList(Twine Name,
7106 ObjCProtocolDecl::protocol_iterator begin,
7107 ObjCProtocolDecl::protocol_iterator end) {
7108 // Just return null for empty protocol lists
7109 auto Protocols = GetRuntimeProtocolList(begin, end);
7110 if (Protocols.empty())
7111 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7112
7113 SmallVector<llvm::Constant *, 16> ProtocolRefs;
7114 ProtocolRefs.reserve(N: Protocols.size());
7115
7116 for (const auto *PD : Protocols)
7117 ProtocolRefs.push_back(GetProtocolRef(PD));
7118
7119 // If all of the protocols in the protocol list are objc_non_runtime_protocol
7120 // just return null
7121 if (ProtocolRefs.size() == 0)
7122 return llvm::Constant::getNullValue(ObjCTypes.ProtocolListnfABIPtrTy);
7123
7124 // FIXME: We shouldn't need to do this lookup here, should we?
7125 SmallString<256> TmpName;
7126 Name.toVector(Out&: TmpName);
7127 llvm::GlobalVariable *GV =
7128 CGM.getModule().getGlobalVariable(Name: TmpName.str(), AllowInternal: true);
7129 if (GV)
7130 return GV;
7131
7132 ConstantInitBuilder builder(CGM);
7133 auto values = builder.beginStruct();
7134 auto countSlot = values.addPlaceholder();
7135
7136 // A null-terminated array of protocols.
7137 auto array = values.beginArray(ObjCTypes.ProtocolnfABIPtrTy);
7138 for (auto const &proto : ProtocolRefs)
7139 array.add(proto);
7140 auto count = array.size();
7141 array.addNullPointer(ObjCTypes.ProtocolnfABIPtrTy);
7142
7143 array.finishAndAddTo(values);
7144 values.fillPlaceholderWithInt(countSlot, ObjCTypes.LongTy, count);
7145
7146 GV = finishAndCreateGlobal(Builder&: values, Name, CGM);
7147 CGM.addCompilerUsedGlobal(GV);
7148 return GV;
7149}
7150
7151/// EmitObjCValueForIvar - Code Gen for nonfragile ivar reference.
7152/// This code gen. amounts to generating code for:
7153/// @code
7154/// (type *)((char *)base + _OBJC_IVAR_$_.ivar;
7155/// @encode
7156///
7157LValue CGObjCNonFragileABIMac::EmitObjCValueForIvar(
7158 CodeGen::CodeGenFunction &CGF,
7159 QualType ObjectTy,
7160 llvm::Value *BaseValue,
7161 const ObjCIvarDecl *Ivar,
7162 unsigned CVRQualifiers) {
7163 ObjCInterfaceDecl *ID = ObjectTy->castAs<ObjCObjectType>()->getInterface();
7164 llvm::Value *Offset = EmitIvarOffset(CGF, Interface: ID, Ivar);
7165 return EmitValueForIvarAtOffset(CGF, ID, BaseValue, Ivar, CVRQualifiers,
7166 Offset);
7167}
7168
7169llvm::Value *
7170CGObjCNonFragileABIMac::EmitIvarOffset(CodeGen::CodeGenFunction &CGF,
7171 const ObjCInterfaceDecl *Interface,
7172 const ObjCIvarDecl *Ivar) {
7173 llvm::Value *IvarOffsetValue;
7174 if (isClassLayoutKnownStatically(ID: Interface)) {
7175 IvarOffsetValue = llvm::ConstantInt::get(
7176 ObjCTypes.IvarOffsetVarTy,
7177 ComputeIvarBaseOffset(CGM, Interface->getImplementation(), Ivar));
7178 } else {
7179 llvm::GlobalVariable *GV = ObjCIvarOffsetVariable(ID: Interface, Ivar);
7180 IvarOffsetValue =
7181 CGF.Builder.CreateAlignedLoad(GV->getValueType(), GV,
7182 CGF.getSizeAlign(), "ivar");
7183 if (IsIvarOffsetKnownIdempotent(CGF, IV: Ivar))
7184 cast<llvm::LoadInst>(Val: IvarOffsetValue)
7185 ->setMetadata(KindID: llvm::LLVMContext::MD_invariant_load,
7186 Node: llvm::MDNode::get(Context&: VMContext, MDs: std::nullopt));
7187 }
7188
7189 // This could be 32bit int or 64bit integer depending on the architecture.
7190 // Cast it to 64bit integer value, if it is a 32bit integer ivar offset value
7191 // as this is what caller always expects.
7192 if (ObjCTypes.IvarOffsetVarTy == ObjCTypes.IntTy)
7193 IvarOffsetValue = CGF.Builder.CreateIntCast(
7194 IvarOffsetValue, ObjCTypes.LongTy, true, "ivar.conv");
7195 return IvarOffsetValue;
7196}
7197
7198static void appendSelectorForMessageRefTable(std::string &buffer,
7199 Selector selector) {
7200 if (selector.isUnarySelector()) {
7201 buffer += selector.getNameForSlot(argIndex: 0);
7202 return;
7203 }
7204
7205 for (unsigned i = 0, e = selector.getNumArgs(); i != e; ++i) {
7206 buffer += selector.getNameForSlot(argIndex: i);
7207 buffer += '_';
7208 }
7209}
7210
7211/// Emit a "vtable" message send. We emit a weak hidden-visibility
7212/// struct, initially containing the selector pointer and a pointer to
7213/// a "fixup" variant of the appropriate objc_msgSend. To call, we
7214/// load and call the function pointer, passing the address of the
7215/// struct as the second parameter. The runtime determines whether
7216/// the selector is currently emitted using vtable dispatch; if so, it
7217/// substitutes a stub function which simply tail-calls through the
7218/// appropriate vtable slot, and if not, it substitues a stub function
7219/// which tail-calls objc_msgSend. Both stubs adjust the selector
7220/// argument to correctly point to the selector.
7221RValue
7222CGObjCNonFragileABIMac::EmitVTableMessageSend(CodeGenFunction &CGF,
7223 ReturnValueSlot returnSlot,
7224 QualType resultType,
7225 Selector selector,
7226 llvm::Value *arg0,
7227 QualType arg0Type,
7228 bool isSuper,
7229 const CallArgList &formalArgs,
7230 const ObjCMethodDecl *method) {
7231 // Compute the actual arguments.
7232 CallArgList args;
7233
7234 // First argument: the receiver / super-call structure.
7235 if (!isSuper)
7236 arg0 = CGF.Builder.CreateBitCast(arg0, ObjCTypes.ObjectPtrTy);
7237 args.add(rvalue: RValue::get(V: arg0), type: arg0Type);
7238
7239 // Second argument: a pointer to the message ref structure. Leave
7240 // the actual argument value blank for now.
7241 args.add(RValue::get(nullptr), ObjCTypes.MessageRefCPtrTy);
7242
7243 args.insert(I: args.end(), From: formalArgs.begin(), To: formalArgs.end());
7244
7245 MessageSendInfo MSI = getMessageSendInfo(method, resultType, args);
7246
7247 NullReturnState nullReturn;
7248
7249 // Find the function to call and the mangled name for the message
7250 // ref structure. Using a different mangled name wouldn't actually
7251 // be a problem; it would just be a waste.
7252 //
7253 // The runtime currently never uses vtable dispatch for anything
7254 // except normal, non-super message-sends.
7255 // FIXME: don't use this for that.
7256 llvm::FunctionCallee fn = nullptr;
7257 std::string messageRefName("_");
7258 if (CGM.ReturnSlotInterferesWithArgs(FI: MSI.CallInfo)) {
7259 if (isSuper) {
7260 fn = ObjCTypes.getMessageSendSuper2StretFixupFn();
7261 messageRefName += "objc_msgSendSuper2_stret_fixup";
7262 } else {
7263 nullReturn.init(CGF, receiver: arg0);
7264 fn = ObjCTypes.getMessageSendStretFixupFn();
7265 messageRefName += "objc_msgSend_stret_fixup";
7266 }
7267 } else if (!isSuper && CGM.ReturnTypeUsesFPRet(ResultType: resultType)) {
7268 fn = ObjCTypes.getMessageSendFpretFixupFn();
7269 messageRefName += "objc_msgSend_fpret_fixup";
7270 } else {
7271 if (isSuper) {
7272 fn = ObjCTypes.getMessageSendSuper2FixupFn();
7273 messageRefName += "objc_msgSendSuper2_fixup";
7274 } else {
7275 fn = ObjCTypes.getMessageSendFixupFn();
7276 messageRefName += "objc_msgSend_fixup";
7277 }
7278 }
7279 assert(fn && "CGObjCNonFragileABIMac::EmitMessageSend");
7280 messageRefName += '_';
7281
7282 // Append the selector name, except use underscores anywhere we
7283 // would have used colons.
7284 appendSelectorForMessageRefTable(buffer&: messageRefName, selector);
7285
7286 llvm::GlobalVariable *messageRef
7287 = CGM.getModule().getGlobalVariable(Name: messageRefName);
7288 if (!messageRef) {
7289 // Build the message ref structure.
7290 ConstantInitBuilder builder(CGM);
7291 auto values = builder.beginStruct();
7292 values.add(value: cast<llvm::Constant>(Val: fn.getCallee()));
7293 values.add(value: GetMethodVarName(selector));
7294 messageRef = values.finishAndCreateGlobal(args&: messageRefName,
7295 args: CharUnits::fromQuantity(Quantity: 16),
7296 /*constant*/ args: false,
7297 args: llvm::GlobalValue::WeakAnyLinkage);
7298 messageRef->setVisibility(llvm::GlobalValue::HiddenVisibility);
7299 messageRef->setSection(GetSectionName("__objc_msgrefs", "coalesced"));
7300 }
7301
7302 bool requiresnullCheck = false;
7303 if (CGM.getLangOpts().ObjCAutoRefCount && method)
7304 for (const auto *ParamDecl : method->parameters()) {
7305 if (ParamDecl->isDestroyedInCallee()) {
7306 if (!nullReturn.NullBB)
7307 nullReturn.init(CGF, receiver: arg0);
7308 requiresnullCheck = true;
7309 break;
7310 }
7311 }
7312
7313 Address mref =
7314 Address(CGF.Builder.CreateBitCast(messageRef, ObjCTypes.MessageRefPtrTy),
7315 ObjCTypes.MessageRefTy, CGF.getPointerAlign());
7316
7317 // Update the message ref argument.
7318 args[1].setRValue(RValue::get(V: mref.getPointer()));
7319
7320 // Load the function to call from the message ref table.
7321 Address calleeAddr = CGF.Builder.CreateStructGEP(Addr: mref, Index: 0);
7322 llvm::Value *calleePtr = CGF.Builder.CreateLoad(Addr: calleeAddr, Name: "msgSend_fn");
7323
7324 calleePtr = CGF.Builder.CreateBitCast(V: calleePtr, DestTy: MSI.MessengerType);
7325 CGCallee callee(CGCalleeInfo(), calleePtr);
7326
7327 RValue result = CGF.EmitCall(CallInfo: MSI.CallInfo, Callee: callee, ReturnValue: returnSlot, Args: args);
7328 return nullReturn.complete(CGF, returnSlot, result, resultType, CallArgs: formalArgs,
7329 Method: requiresnullCheck ? method : nullptr);
7330}
7331
7332/// Generate code for a message send expression in the nonfragile abi.
7333CodeGen::RValue
7334CGObjCNonFragileABIMac::GenerateMessageSend(CodeGen::CodeGenFunction &CGF,
7335 ReturnValueSlot Return,
7336 QualType ResultType,
7337 Selector Sel,
7338 llvm::Value *Receiver,
7339 const CallArgList &CallArgs,
7340 const ObjCInterfaceDecl *Class,
7341 const ObjCMethodDecl *Method) {
7342 return isVTableDispatchedSelector(Sel)
7343 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7344 Receiver, CGF.getContext().getObjCIdType(),
7345 false, CallArgs, Method)
7346 : EmitMessageSend(CGF, Return, ResultType, Sel,
7347 Receiver, CGF.getContext().getObjCIdType(),
7348 false, CallArgs, Method, Class, ObjCTypes);
7349}
7350
7351llvm::Constant *
7352CGObjCNonFragileABIMac::GetClassGlobal(const ObjCInterfaceDecl *ID,
7353 bool metaclass,
7354 ForDefinition_t isForDefinition) {
7355 auto prefix =
7356 (metaclass ? getMetaclassSymbolPrefix() : getClassSymbolPrefix());
7357 return GetClassGlobal((prefix + ID->getObjCRuntimeNameAsString()).str(),
7358 isForDefinition,
7359 ID->isWeakImported(),
7360 !isForDefinition
7361 && CGM.getTriple().isOSBinFormatCOFF()
7362 && ID->hasAttr<DLLImportAttr>());
7363}
7364
7365llvm::Constant *
7366CGObjCNonFragileABIMac::GetClassGlobal(StringRef Name,
7367 ForDefinition_t IsForDefinition,
7368 bool Weak, bool DLLImport) {
7369 llvm::GlobalValue::LinkageTypes L =
7370 Weak ? llvm::GlobalValue::ExternalWeakLinkage
7371 : llvm::GlobalValue::ExternalLinkage;
7372
7373 llvm::GlobalVariable *GV = CGM.getModule().getGlobalVariable(Name);
7374 if (!GV || GV->getValueType() != ObjCTypes.ClassnfABITy) {
7375 auto *NewGV = new llvm::GlobalVariable(ObjCTypes.ClassnfABITy, false, L,
7376 nullptr, Name);
7377
7378 if (DLLImport)
7379 NewGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
7380
7381 if (GV) {
7382 GV->replaceAllUsesWith(V: NewGV);
7383 GV->eraseFromParent();
7384 }
7385 GV = NewGV;
7386 CGM.getModule().insertGlobalVariable(GV);
7387 }
7388
7389 assert(GV->getLinkage() == L);
7390 return GV;
7391}
7392
7393llvm::Constant *
7394CGObjCNonFragileABIMac::GetClassGlobalForClassRef(const ObjCInterfaceDecl *ID) {
7395 llvm::Constant *ClassGV = GetClassGlobal(ID, /*metaclass*/ false,
7396 isForDefinition: NotForDefinition);
7397
7398 if (!ID->hasAttr<ObjCClassStubAttr>())
7399 return ClassGV;
7400
7401 ClassGV = llvm::ConstantExpr::getPointerCast(ClassGV, ObjCTypes.Int8PtrTy);
7402
7403 // Stub classes are pointer-aligned. Classrefs pointing at stub classes
7404 // must set the least significant bit set to 1.
7405 auto *Idx = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 1);
7406 return llvm::ConstantExpr::getGetElementPtr(Ty: CGM.Int8Ty, C: ClassGV, Idx);
7407}
7408
7409llvm::Value *
7410CGObjCNonFragileABIMac::EmitLoadOfClassRef(CodeGenFunction &CGF,
7411 const ObjCInterfaceDecl *ID,
7412 llvm::GlobalVariable *Entry) {
7413 if (ID && ID->hasAttr<ObjCClassStubAttr>()) {
7414 // Classrefs pointing at Objective-C stub classes must be loaded by calling
7415 // a special runtime function.
7416 return CGF.EmitRuntimeCall(
7417 ObjCTypes.getLoadClassrefFn(), Entry, "load_classref_result");
7418 }
7419
7420 CharUnits Align = CGF.getPointerAlign();
7421 return CGF.Builder.CreateAlignedLoad(Ty: Entry->getValueType(), Addr: Entry, Align);
7422}
7423
7424llvm::Value *
7425CGObjCNonFragileABIMac::EmitClassRefFromId(CodeGenFunction &CGF,
7426 IdentifierInfo *II,
7427 const ObjCInterfaceDecl *ID) {
7428 llvm::GlobalVariable *&Entry = ClassReferences[II];
7429
7430 if (!Entry) {
7431 llvm::Constant *ClassGV;
7432 if (ID) {
7433 ClassGV = GetClassGlobalForClassRef(ID);
7434 } else {
7435 ClassGV = GetClassGlobal(Name: (getClassSymbolPrefix() + II->getName()).str(),
7436 IsForDefinition: NotForDefinition);
7437 assert(ClassGV->getType() == ObjCTypes.ClassnfABIPtrTy &&
7438 "classref was emitted with the wrong type?");
7439 }
7440
7441 std::string SectionName =
7442 GetSectionName("__objc_classrefs", "regular,no_dead_strip");
7443 Entry = new llvm::GlobalVariable(
7444 CGM.getModule(), ClassGV->getType(), false,
7445 getLinkageTypeForObjCMetadata(CGM, Section: SectionName), ClassGV,
7446 "OBJC_CLASSLIST_REFERENCES_$_");
7447 Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7448 if (!ID || !ID->hasAttr<ObjCClassStubAttr>())
7449 Entry->setSection(SectionName);
7450
7451 CGM.addCompilerUsedGlobal(GV: Entry);
7452 }
7453
7454 return EmitLoadOfClassRef(CGF, ID, Entry);
7455}
7456
7457llvm::Value *CGObjCNonFragileABIMac::EmitClassRef(CodeGenFunction &CGF,
7458 const ObjCInterfaceDecl *ID) {
7459 // If the class has the objc_runtime_visible attribute, we need to
7460 // use the Objective-C runtime to get the class.
7461 if (ID->hasAttr<ObjCRuntimeVisibleAttr>())
7462 return EmitClassRefViaRuntime(CGF, ID, ObjCTypes);
7463
7464 return EmitClassRefFromId(CGF, II: ID->getIdentifier(), ID);
7465}
7466
7467llvm::Value *CGObjCNonFragileABIMac::EmitNSAutoreleasePoolClassRef(
7468 CodeGenFunction &CGF) {
7469 IdentifierInfo *II = &CGM.getContext().Idents.get(Name: "NSAutoreleasePool");
7470 return EmitClassRefFromId(CGF, II, ID: nullptr);
7471}
7472
7473llvm::Value *
7474CGObjCNonFragileABIMac::EmitSuperClassRef(CodeGenFunction &CGF,
7475 const ObjCInterfaceDecl *ID) {
7476 llvm::GlobalVariable *&Entry = SuperClassReferences[ID->getIdentifier()];
7477
7478 if (!Entry) {
7479 llvm::Constant *ClassGV = GetClassGlobalForClassRef(ID);
7480 std::string SectionName =
7481 GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7482 Entry = new llvm::GlobalVariable(CGM.getModule(), ClassGV->getType(), false,
7483 llvm::GlobalValue::PrivateLinkage, ClassGV,
7484 "OBJC_CLASSLIST_SUP_REFS_$_");
7485 Entry->setAlignment(CGF.getPointerAlign().getAsAlign());
7486 Entry->setSection(SectionName);
7487 CGM.addCompilerUsedGlobal(GV: Entry);
7488 }
7489
7490 return EmitLoadOfClassRef(CGF, ID, Entry);
7491}
7492
7493/// EmitMetaClassRef - Return a Value * of the address of _class_t
7494/// meta-data
7495///
7496llvm::Value *CGObjCNonFragileABIMac::EmitMetaClassRef(CodeGenFunction &CGF,
7497 const ObjCInterfaceDecl *ID,
7498 bool Weak) {
7499 CharUnits Align = CGF.getPointerAlign();
7500 llvm::GlobalVariable * &Entry = MetaClassReferences[ID->getIdentifier()];
7501 if (!Entry) {
7502 auto MetaClassGV = GetClassGlobal(ID, /*metaclass*/ true, isForDefinition: NotForDefinition);
7503 std::string SectionName =
7504 GetSectionName("__objc_superrefs", "regular,no_dead_strip");
7505 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.ClassnfABIPtrTy,
7506 false, llvm::GlobalValue::PrivateLinkage,
7507 MetaClassGV, "OBJC_CLASSLIST_SUP_REFS_$_");
7508 Entry->setAlignment(Align.getAsAlign());
7509 Entry->setSection(SectionName);
7510 CGM.addCompilerUsedGlobal(GV: Entry);
7511 }
7512
7513 return CGF.Builder.CreateAlignedLoad(ObjCTypes.ClassnfABIPtrTy, Entry, Align);
7514}
7515
7516/// GetClass - Return a reference to the class for the given interface
7517/// decl.
7518llvm::Value *CGObjCNonFragileABIMac::GetClass(CodeGenFunction &CGF,
7519 const ObjCInterfaceDecl *ID) {
7520 if (ID->isWeakImported()) {
7521 auto ClassGV = GetClassGlobal(ID, /*metaclass*/ false, isForDefinition: NotForDefinition);
7522 (void)ClassGV;
7523 assert(!isa<llvm::GlobalVariable>(ClassGV) ||
7524 cast<llvm::GlobalVariable>(ClassGV)->hasExternalWeakLinkage());
7525 }
7526
7527 return EmitClassRef(CGF, ID);
7528}
7529
7530/// Generates a message send where the super is the receiver. This is
7531/// a message send to self with special delivery semantics indicating
7532/// which class's method should be called.
7533CodeGen::RValue
7534CGObjCNonFragileABIMac::GenerateMessageSendSuper(CodeGen::CodeGenFunction &CGF,
7535 ReturnValueSlot Return,
7536 QualType ResultType,
7537 Selector Sel,
7538 const ObjCInterfaceDecl *Class,
7539 bool isCategoryImpl,
7540 llvm::Value *Receiver,
7541 bool IsClassMessage,
7542 const CodeGen::CallArgList &CallArgs,
7543 const ObjCMethodDecl *Method) {
7544 // ...
7545 // Create and init a super structure; this is a (receiver, class)
7546 // pair we will pass to objc_msgSendSuper.
7547 Address ObjCSuper =
7548 CGF.CreateTempAlloca(ObjCTypes.SuperTy, CGF.getPointerAlign(),
7549 "objc_super");
7550
7551 llvm::Value *ReceiverAsObject =
7552 CGF.Builder.CreateBitCast(Receiver, ObjCTypes.ObjectPtrTy);
7553 CGF.Builder.CreateStore(Val: ReceiverAsObject,
7554 Addr: CGF.Builder.CreateStructGEP(Addr: ObjCSuper, Index: 0));
7555
7556 // If this is a class message the metaclass is passed as the target.
7557 llvm::Value *Target;
7558 if (IsClassMessage)
7559 Target = EmitMetaClassRef(CGF, ID: Class, Weak: Class->isWeakImported());
7560 else
7561 Target = EmitSuperClassRef(CGF, ID: Class);
7562
7563 // FIXME: We shouldn't need to do this cast, rectify the ASTContext and
7564 // ObjCTypes types.
7565 llvm::Type *ClassTy =
7566 CGM.getTypes().ConvertType(T: CGF.getContext().getObjCClassType());
7567 Target = CGF.Builder.CreateBitCast(V: Target, DestTy: ClassTy);
7568 CGF.Builder.CreateStore(Val: Target, Addr: CGF.Builder.CreateStructGEP(Addr: ObjCSuper, Index: 1));
7569
7570 return (isVTableDispatchedSelector(Sel))
7571 ? EmitVTableMessageSend(CGF, Return, ResultType, Sel,
7572 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7573 true, CallArgs, Method)
7574 : EmitMessageSend(CGF, Return, ResultType, Sel,
7575 ObjCSuper.getPointer(), ObjCTypes.SuperPtrCTy,
7576 true, CallArgs, Method, Class, ObjCTypes);
7577}
7578
7579llvm::Value *CGObjCNonFragileABIMac::EmitSelector(CodeGenFunction &CGF,
7580 Selector Sel) {
7581 Address Addr = EmitSelectorAddr(Sel);
7582
7583 llvm::LoadInst* LI = CGF.Builder.CreateLoad(Addr);
7584 LI->setMetadata(KindID: llvm::LLVMContext::MD_invariant_load,
7585 Node: llvm::MDNode::get(Context&: VMContext, MDs: std::nullopt));
7586 return LI;
7587}
7588
7589Address CGObjCNonFragileABIMac::EmitSelectorAddr(Selector Sel) {
7590 llvm::GlobalVariable *&Entry = SelectorReferences[Sel];
7591 CharUnits Align = CGM.getPointerAlign();
7592 if (!Entry) {
7593 std::string SectionName =
7594 GetSectionName("__objc_selrefs", "literal_pointers,no_dead_strip");
7595 Entry = new llvm::GlobalVariable(
7596 CGM.getModule(), ObjCTypes.SelectorPtrTy, false,
7597 getLinkageTypeForObjCMetadata(CGM, SectionName), GetMethodVarName(Sel),
7598 "OBJC_SELECTOR_REFERENCES_");
7599 Entry->setExternallyInitialized(true);
7600 Entry->setSection(SectionName);
7601 Entry->setAlignment(Align.getAsAlign());
7602 CGM.addCompilerUsedGlobal(GV: Entry);
7603 }
7604
7605 return Address(Entry, ObjCTypes.SelectorPtrTy, Align);
7606}
7607
7608/// EmitObjCIvarAssign - Code gen for assigning to a __strong object.
7609/// objc_assign_ivar (id src, id *dst, ptrdiff_t)
7610///
7611void CGObjCNonFragileABIMac::EmitObjCIvarAssign(CodeGen::CodeGenFunction &CGF,
7612 llvm::Value *src,
7613 Address dst,
7614 llvm::Value *ivarOffset) {
7615 llvm::Type * SrcTy = src->getType();
7616 if (!isa<llvm::PointerType>(Val: SrcTy)) {
7617 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
7618 assert(Size <= 8 && "does not support size > 8");
7619 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7620 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7621 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7622 }
7623 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7624 llvm::Value *dstVal =
7625 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7626 llvm::Value *args[] = {src, dstVal, ivarOffset};
7627 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignIvarFn(), args);
7628}
7629
7630/// EmitObjCStrongCastAssign - Code gen for assigning to a __strong cast object.
7631/// objc_assign_strongCast (id src, id *dst)
7632///
7633void CGObjCNonFragileABIMac::EmitObjCStrongCastAssign(
7634 CodeGen::CodeGenFunction &CGF,
7635 llvm::Value *src, Address dst) {
7636 llvm::Type * SrcTy = src->getType();
7637 if (!isa<llvm::PointerType>(Val: SrcTy)) {
7638 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
7639 assert(Size <= 8 && "does not support size > 8");
7640 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7641 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7642 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7643 }
7644 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7645 llvm::Value *dstVal =
7646 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7647 llvm::Value *args[] = {src, dstVal};
7648 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignStrongCastFn(),
7649 args, "weakassign");
7650}
7651
7652void CGObjCNonFragileABIMac::EmitGCMemmoveCollectable(
7653 CodeGen::CodeGenFunction &CGF, Address DestPtr, Address SrcPtr,
7654 llvm::Value *Size) {
7655 llvm::Value *args[] = { DestPtr.getPointer(), SrcPtr.getPointer(), Size };
7656 CGF.EmitNounwindRuntimeCall(ObjCTypes.GcMemmoveCollectableFn(), args);
7657}
7658
7659/// EmitObjCWeakRead - Code gen for loading value of a __weak
7660/// object: objc_read_weak (id *src)
7661///
7662llvm::Value * CGObjCNonFragileABIMac::EmitObjCWeakRead(
7663 CodeGen::CodeGenFunction &CGF,
7664 Address AddrWeakObj) {
7665 llvm::Type *DestTy = AddrWeakObj.getElementType();
7666 llvm::Value *AddrWeakObjVal = CGF.Builder.CreateBitCast(
7667 AddrWeakObj.getPointer(), ObjCTypes.PtrObjectPtrTy);
7668 llvm::Value *read_weak =
7669 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcReadWeakFn(),
7670 AddrWeakObjVal, "weakread");
7671 read_weak = CGF.Builder.CreateBitCast(V: read_weak, DestTy);
7672 return read_weak;
7673}
7674
7675/// EmitObjCWeakAssign - Code gen for assigning to a __weak object.
7676/// objc_assign_weak (id src, id *dst)
7677///
7678void CGObjCNonFragileABIMac::EmitObjCWeakAssign(CodeGen::CodeGenFunction &CGF,
7679 llvm::Value *src, Address dst) {
7680 llvm::Type * SrcTy = src->getType();
7681 if (!isa<llvm::PointerType>(Val: SrcTy)) {
7682 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
7683 assert(Size <= 8 && "does not support size > 8");
7684 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7685 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7686 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7687 }
7688 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7689 llvm::Value *dstVal =
7690 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7691 llvm::Value *args[] = {src, dstVal};
7692 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignWeakFn(),
7693 args, "weakassign");
7694}
7695
7696/// EmitObjCGlobalAssign - Code gen for assigning to a __strong object.
7697/// objc_assign_global (id src, id *dst)
7698///
7699void CGObjCNonFragileABIMac::EmitObjCGlobalAssign(CodeGen::CodeGenFunction &CGF,
7700 llvm::Value *src, Address dst,
7701 bool threadlocal) {
7702 llvm::Type * SrcTy = src->getType();
7703 if (!isa<llvm::PointerType>(Val: SrcTy)) {
7704 unsigned Size = CGM.getDataLayout().getTypeAllocSize(Ty: SrcTy);
7705 assert(Size <= 8 && "does not support size > 8");
7706 src = (Size == 4 ? CGF.Builder.CreateBitCast(src, ObjCTypes.IntTy)
7707 : CGF.Builder.CreateBitCast(src, ObjCTypes.LongTy));
7708 src = CGF.Builder.CreateIntToPtr(src, ObjCTypes.Int8PtrTy);
7709 }
7710 src = CGF.Builder.CreateBitCast(src, ObjCTypes.ObjectPtrTy);
7711 llvm::Value *dstVal =
7712 CGF.Builder.CreateBitCast(dst.getPointer(), ObjCTypes.PtrObjectPtrTy);
7713 llvm::Value *args[] = {src, dstVal};
7714 if (!threadlocal)
7715 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignGlobalFn(),
7716 args, "globalassign");
7717 else
7718 CGF.EmitNounwindRuntimeCall(ObjCTypes.getGcAssignThreadLocalFn(),
7719 args, "threadlocalassign");
7720}
7721
7722void
7723CGObjCNonFragileABIMac::EmitSynchronizedStmt(CodeGen::CodeGenFunction &CGF,
7724 const ObjCAtSynchronizedStmt &S) {
7725 EmitAtSynchronizedStmt(CGF, S, ObjCTypes.getSyncEnterFn(),
7726 ObjCTypes.getSyncExitFn());
7727}
7728
7729llvm::Constant *
7730CGObjCNonFragileABIMac::GetEHType(QualType T) {
7731 // There's a particular fixed type info for 'id'.
7732 if (T->isObjCIdType() || T->isObjCQualifiedIdType()) {
7733 auto *IDEHType = CGM.getModule().getGlobalVariable(Name: "OBJC_EHTYPE_id");
7734 if (!IDEHType) {
7735 IDEHType =
7736 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy, false,
7737 llvm::GlobalValue::ExternalLinkage, nullptr,
7738 "OBJC_EHTYPE_id");
7739 if (CGM.getTriple().isOSBinFormatCOFF())
7740 IDEHType->setDLLStorageClass(getStorage(CGM, Name: "OBJC_EHTYPE_id"));
7741 }
7742 return IDEHType;
7743 }
7744
7745 // All other types should be Objective-C interface pointer types.
7746 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
7747 assert(PT && "Invalid @catch type.");
7748
7749 const ObjCInterfaceType *IT = PT->getInterfaceType();
7750 assert(IT && "Invalid @catch type.");
7751
7752 return GetInterfaceEHType(ID: IT->getDecl(), IsForDefinition: NotForDefinition);
7753}
7754
7755void CGObjCNonFragileABIMac::EmitTryStmt(CodeGen::CodeGenFunction &CGF,
7756 const ObjCAtTryStmt &S) {
7757 EmitTryCatchStmt(CGF, S, ObjCTypes.getObjCBeginCatchFn(),
7758 ObjCTypes.getObjCEndCatchFn(),
7759 ObjCTypes.getExceptionRethrowFn());
7760}
7761
7762/// EmitThrowStmt - Generate code for a throw statement.
7763void CGObjCNonFragileABIMac::EmitThrowStmt(CodeGen::CodeGenFunction &CGF,
7764 const ObjCAtThrowStmt &S,
7765 bool ClearInsertionPoint) {
7766 if (const Expr *ThrowExpr = S.getThrowExpr()) {
7767 llvm::Value *Exception = CGF.EmitObjCThrowOperand(expr: ThrowExpr);
7768 Exception = CGF.Builder.CreateBitCast(Exception, ObjCTypes.ObjectPtrTy);
7769 llvm::CallBase *Call =
7770 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionThrowFn(), Exception);
7771 Call->setDoesNotReturn();
7772 } else {
7773 llvm::CallBase *Call =
7774 CGF.EmitRuntimeCallOrInvoke(ObjCTypes.getExceptionRethrowFn());
7775 Call->setDoesNotReturn();
7776 }
7777
7778 CGF.Builder.CreateUnreachable();
7779 if (ClearInsertionPoint)
7780 CGF.Builder.ClearInsertionPoint();
7781}
7782
7783llvm::Constant *
7784CGObjCNonFragileABIMac::GetInterfaceEHType(const ObjCInterfaceDecl *ID,
7785 ForDefinition_t IsForDefinition) {
7786 llvm::GlobalVariable * &Entry = EHTypeReferences[ID->getIdentifier()];
7787 StringRef ClassName = ID->getObjCRuntimeNameAsString();
7788
7789 // If we don't need a definition, return the entry if found or check
7790 // if we use an external reference.
7791 if (!IsForDefinition) {
7792 if (Entry)
7793 return Entry;
7794
7795 // If this type (or a super class) has the __objc_exception__
7796 // attribute, emit an external reference.
7797 if (hasObjCExceptionAttribute(Context&: CGM.getContext(), OID: ID)) {
7798 std::string EHTypeName = ("OBJC_EHTYPE_$_" + ClassName).str();
7799 Entry = new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.EHTypeTy,
7800 false, llvm::GlobalValue::ExternalLinkage,
7801 nullptr, EHTypeName);
7802 CGM.setGVProperties(Entry, ID);
7803 return Entry;
7804 }
7805 }
7806
7807 // Otherwise we need to either make a new entry or fill in the initializer.
7808 assert((!Entry || !Entry->hasInitializer()) && "Duplicate EHType definition");
7809
7810 std::string VTableName = "objc_ehtype_vtable";
7811 auto *VTableGV = CGM.getModule().getGlobalVariable(Name: VTableName);
7812 if (!VTableGV) {
7813 VTableGV =
7814 new llvm::GlobalVariable(CGM.getModule(), ObjCTypes.Int8PtrTy, false,
7815 llvm::GlobalValue::ExternalLinkage, nullptr,
7816 VTableName);
7817 if (CGM.getTriple().isOSBinFormatCOFF())
7818 VTableGV->setDLLStorageClass(getStorage(CGM, Name: VTableName));
7819 }
7820
7821 llvm::Value *VTableIdx = llvm::ConstantInt::get(Ty: CGM.Int32Ty, V: 2);
7822 ConstantInitBuilder builder(CGM);
7823 auto values = builder.beginStruct(ObjCTypes.EHTypeTy);
7824 values.add(
7825 llvm::ConstantExpr::getInBoundsGetElementPtr(Ty: VTableGV->getValueType(),
7826 C: VTableGV, IdxList: VTableIdx));
7827 values.add(GetClassName(ClassName));
7828 values.add(GetClassGlobal(ID, /*metaclass*/ false, isForDefinition: NotForDefinition));
7829
7830 llvm::GlobalValue::LinkageTypes L = IsForDefinition
7831 ? llvm::GlobalValue::ExternalLinkage
7832 : llvm::GlobalValue::WeakAnyLinkage;
7833 if (Entry) {
7834 values.finishAndSetAsInitializer(Entry);
7835 Entry->setAlignment(CGM.getPointerAlign().getAsAlign());
7836 } else {
7837 Entry = values.finishAndCreateGlobal("OBJC_EHTYPE_$_" + ClassName,
7838 CGM.getPointerAlign(),
7839 /*constant*/ false,
7840 L);
7841 if (hasObjCExceptionAttribute(Context&: CGM.getContext(), OID: ID))
7842 CGM.setGVProperties(Entry, ID);
7843 }
7844 assert(Entry->getLinkage() == L);
7845
7846 if (!CGM.getTriple().isOSBinFormatCOFF())
7847 if (ID->getVisibility() == HiddenVisibility)
7848 Entry->setVisibility(llvm::GlobalValue::HiddenVisibility);
7849
7850 if (IsForDefinition)
7851 if (CGM.getTriple().isOSBinFormatMachO())
7852 Entry->setSection("__DATA,__objc_const");
7853
7854 return Entry;
7855}
7856
7857/* *** */
7858
7859CodeGen::CGObjCRuntime *
7860CodeGen::CreateMacObjCRuntime(CodeGen::CodeGenModule &CGM) {
7861 switch (CGM.getLangOpts().ObjCRuntime.getKind()) {
7862 case ObjCRuntime::FragileMacOSX:
7863 return new CGObjCMac(CGM);
7864
7865 case ObjCRuntime::MacOSX:
7866 case ObjCRuntime::iOS:
7867 case ObjCRuntime::WatchOS:
7868 return new CGObjCNonFragileABIMac(CGM);
7869
7870 case ObjCRuntime::GNUstep:
7871 case ObjCRuntime::GCC:
7872 case ObjCRuntime::ObjFW:
7873 llvm_unreachable("these runtimes are not Mac runtimes");
7874 }
7875 llvm_unreachable("bad runtime");
7876}
7877

source code of clang/lib/CodeGen/CGObjCMac.cpp