1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include <linux/objtool.h>
5#include <linux/percpu.h>
6
7#include <asm/debugreg.h>
8#include <asm/mmu_context.h>
9
10#include "cpuid.h"
11#include "hyperv.h"
12#include "mmu.h"
13#include "nested.h"
14#include "pmu.h"
15#include "sgx.h"
16#include "trace.h"
17#include "vmx.h"
18#include "x86.h"
19#include "smm.h"
20
21static bool __read_mostly enable_shadow_vmcs = 1;
22module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
23
24static bool __read_mostly nested_early_check = 0;
25module_param(nested_early_check, bool, S_IRUGO);
26
27#define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
28
29/*
30 * Hyper-V requires all of these, so mark them as supported even though
31 * they are just treated the same as all-context.
32 */
33#define VMX_VPID_EXTENT_SUPPORTED_MASK \
34 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
35 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
36 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
38
39#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
40
41enum {
42 VMX_VMREAD_BITMAP,
43 VMX_VMWRITE_BITMAP,
44 VMX_BITMAP_NR
45};
46static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
47
48#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
49#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
50
51struct shadow_vmcs_field {
52 u16 encoding;
53 u16 offset;
54};
55static struct shadow_vmcs_field shadow_read_only_fields[] = {
56#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
57#include "vmcs_shadow_fields.h"
58};
59static int max_shadow_read_only_fields =
60 ARRAY_SIZE(shadow_read_only_fields);
61
62static struct shadow_vmcs_field shadow_read_write_fields[] = {
63#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
64#include "vmcs_shadow_fields.h"
65};
66static int max_shadow_read_write_fields =
67 ARRAY_SIZE(shadow_read_write_fields);
68
69static void init_vmcs_shadow_fields(void)
70{
71 int i, j;
72
73 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
74 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
75
76 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
77 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
78 u16 field = entry.encoding;
79
80 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
81 (i + 1 == max_shadow_read_only_fields ||
82 shadow_read_only_fields[i + 1].encoding != field + 1))
83 pr_err("Missing field from shadow_read_only_field %x\n",
84 field + 1);
85
86 clear_bit(nr: field, vmx_vmread_bitmap);
87 if (field & 1)
88#ifdef CONFIG_X86_64
89 continue;
90#else
91 entry.offset += sizeof(u32);
92#endif
93 shadow_read_only_fields[j++] = entry;
94 }
95 max_shadow_read_only_fields = j;
96
97 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
98 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
99 u16 field = entry.encoding;
100
101 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
102 (i + 1 == max_shadow_read_write_fields ||
103 shadow_read_write_fields[i + 1].encoding != field + 1))
104 pr_err("Missing field from shadow_read_write_field %x\n",
105 field + 1);
106
107 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
108 field <= GUEST_TR_AR_BYTES,
109 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
110
111 /*
112 * PML and the preemption timer can be emulated, but the
113 * processor cannot vmwrite to fields that don't exist
114 * on bare metal.
115 */
116 switch (field) {
117 case GUEST_PML_INDEX:
118 if (!cpu_has_vmx_pml())
119 continue;
120 break;
121 case VMX_PREEMPTION_TIMER_VALUE:
122 if (!cpu_has_vmx_preemption_timer())
123 continue;
124 break;
125 case GUEST_INTR_STATUS:
126 if (!cpu_has_vmx_apicv())
127 continue;
128 break;
129 default:
130 break;
131 }
132
133 clear_bit(nr: field, vmx_vmwrite_bitmap);
134 clear_bit(nr: field, vmx_vmread_bitmap);
135 if (field & 1)
136#ifdef CONFIG_X86_64
137 continue;
138#else
139 entry.offset += sizeof(u32);
140#endif
141 shadow_read_write_fields[j++] = entry;
142 }
143 max_shadow_read_write_fields = j;
144}
145
146/*
147 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
148 * set the success or error code of an emulated VMX instruction (as specified
149 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
150 * instruction.
151 */
152static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
153{
154 vmx_set_rflags(vcpu, rflags: vmx_get_rflags(vcpu)
155 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
156 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
157 return kvm_skip_emulated_instruction(vcpu);
158}
159
160static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
161{
162 vmx_set_rflags(vcpu, rflags: (vmx_get_rflags(vcpu)
163 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
164 X86_EFLAGS_SF | X86_EFLAGS_OF))
165 | X86_EFLAGS_CF);
166 return kvm_skip_emulated_instruction(vcpu);
167}
168
169static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
170 u32 vm_instruction_error)
171{
172 vmx_set_rflags(vcpu, rflags: (vmx_get_rflags(vcpu)
173 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
174 X86_EFLAGS_SF | X86_EFLAGS_OF))
175 | X86_EFLAGS_ZF);
176 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
177 /*
178 * We don't need to force sync to shadow VMCS because
179 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
180 * fields and thus must be synced.
181 */
182 if (nested_vmx_is_evmptr12_set(vmx: to_vmx(vcpu)))
183 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
184
185 return kvm_skip_emulated_instruction(vcpu);
186}
187
188static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
189{
190 struct vcpu_vmx *vmx = to_vmx(vcpu);
191
192 /*
193 * failValid writes the error number to the current VMCS, which
194 * can't be done if there isn't a current VMCS.
195 */
196 if (vmx->nested.current_vmptr == INVALID_GPA &&
197 !nested_vmx_is_evmptr12_valid(vmx))
198 return nested_vmx_failInvalid(vcpu);
199
200 return nested_vmx_failValid(vcpu, vm_instruction_error);
201}
202
203static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
204{
205 /* TODO: not to reset guest simply here. */
206 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
207 pr_debug_ratelimited("nested vmx abort, indicator %d\n", indicator);
208}
209
210static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
211{
212 return fixed_bits_valid(val: control, fixed0: low, fixed1: high);
213}
214
215static inline u64 vmx_control_msr(u32 low, u32 high)
216{
217 return low | ((u64)high << 32);
218}
219
220static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
221{
222 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
223 vmcs_write64(field: VMCS_LINK_POINTER, INVALID_GPA);
224 vmx->nested.need_vmcs12_to_shadow_sync = false;
225}
226
227static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
228{
229#ifdef CONFIG_KVM_HYPERV
230 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
231 struct vcpu_vmx *vmx = to_vmx(vcpu);
232
233 if (nested_vmx_is_evmptr12_valid(vmx)) {
234 kvm_vcpu_unmap(vcpu, map: &vmx->nested.hv_evmcs_map, dirty: true);
235 vmx->nested.hv_evmcs = NULL;
236 }
237
238 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
239
240 if (hv_vcpu) {
241 hv_vcpu->nested.pa_page_gpa = INVALID_GPA;
242 hv_vcpu->nested.vm_id = 0;
243 hv_vcpu->nested.vp_id = 0;
244 }
245#endif
246}
247
248static bool nested_evmcs_handle_vmclear(struct kvm_vcpu *vcpu, gpa_t vmptr)
249{
250#ifdef CONFIG_KVM_HYPERV
251 struct vcpu_vmx *vmx = to_vmx(vcpu);
252 /*
253 * When Enlightened VMEntry is enabled on the calling CPU we treat
254 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
255 * way to distinguish it from VMCS12) and we must not corrupt it by
256 * writing to the non-existent 'launch_state' field. The area doesn't
257 * have to be the currently active EVMCS on the calling CPU and there's
258 * nothing KVM has to do to transition it from 'active' to 'non-active'
259 * state. It is possible that the area will stay mapped as
260 * vmx->nested.hv_evmcs but this shouldn't be a problem.
261 */
262 if (!guest_cpuid_has_evmcs(vcpu) ||
263 !evmptr_is_valid(evmptr: nested_get_evmptr(vcpu)))
264 return false;
265
266 if (nested_vmx_evmcs(vmx) && vmptr == vmx->nested.hv_evmcs_vmptr)
267 nested_release_evmcs(vcpu);
268
269 return true;
270#else
271 return false;
272#endif
273}
274
275static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
276 struct loaded_vmcs *prev)
277{
278 struct vmcs_host_state *dest, *src;
279
280 if (unlikely(!vmx->guest_state_loaded))
281 return;
282
283 src = &prev->host_state;
284 dest = &vmx->loaded_vmcs->host_state;
285
286 vmx_set_host_fs_gs(host: dest, fs_sel: src->fs_sel, gs_sel: src->gs_sel, fs_base: src->fs_base, gs_base: src->gs_base);
287 dest->ldt_sel = src->ldt_sel;
288#ifdef CONFIG_X86_64
289 dest->ds_sel = src->ds_sel;
290 dest->es_sel = src->es_sel;
291#endif
292}
293
294static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
295{
296 struct vcpu_vmx *vmx = to_vmx(vcpu);
297 struct loaded_vmcs *prev;
298 int cpu;
299
300 if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
301 return;
302
303 cpu = get_cpu();
304 prev = vmx->loaded_vmcs;
305 vmx->loaded_vmcs = vmcs;
306 vmx_vcpu_load_vmcs(vcpu, cpu, buddy: prev);
307 vmx_sync_vmcs_host_state(vmx, prev);
308 put_cpu();
309
310 vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
311
312 /*
313 * All lazily updated registers will be reloaded from VMCS12 on both
314 * vmentry and vmexit.
315 */
316 vcpu->arch.regs_dirty = 0;
317}
318
319/*
320 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
321 * just stops using VMX.
322 */
323static void free_nested(struct kvm_vcpu *vcpu)
324{
325 struct vcpu_vmx *vmx = to_vmx(vcpu);
326
327 if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
328 vmx_switch_vmcs(vcpu, vmcs: &vmx->vmcs01);
329
330 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
331 return;
332
333 kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
334
335 vmx->nested.vmxon = false;
336 vmx->nested.smm.vmxon = false;
337 vmx->nested.vmxon_ptr = INVALID_GPA;
338 free_vpid(vpid: vmx->nested.vpid02);
339 vmx->nested.posted_intr_nv = -1;
340 vmx->nested.current_vmptr = INVALID_GPA;
341 if (enable_shadow_vmcs) {
342 vmx_disable_shadow_vmcs(vmx);
343 vmcs_clear(vmcs: vmx->vmcs01.shadow_vmcs);
344 free_vmcs(vmcs: vmx->vmcs01.shadow_vmcs);
345 vmx->vmcs01.shadow_vmcs = NULL;
346 }
347 kfree(objp: vmx->nested.cached_vmcs12);
348 vmx->nested.cached_vmcs12 = NULL;
349 kfree(objp: vmx->nested.cached_shadow_vmcs12);
350 vmx->nested.cached_shadow_vmcs12 = NULL;
351 /*
352 * Unpin physical memory we referred to in the vmcs02. The APIC access
353 * page's backing page (yeah, confusing) shouldn't actually be accessed,
354 * and if it is written, the contents are irrelevant.
355 */
356 kvm_vcpu_unmap(vcpu, map: &vmx->nested.apic_access_page_map, dirty: false);
357 kvm_vcpu_unmap(vcpu, map: &vmx->nested.virtual_apic_map, dirty: true);
358 kvm_vcpu_unmap(vcpu, map: &vmx->nested.pi_desc_map, dirty: true);
359 vmx->nested.pi_desc = NULL;
360
361 kvm_mmu_free_roots(kvm: vcpu->kvm, mmu: &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
362
363 nested_release_evmcs(vcpu);
364
365 free_loaded_vmcs(loaded_vmcs: &vmx->nested.vmcs02);
366}
367
368/*
369 * Ensure that the current vmcs of the logical processor is the
370 * vmcs01 of the vcpu before calling free_nested().
371 */
372void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
373{
374 vcpu_load(vcpu);
375 vmx_leave_nested(vcpu);
376 vcpu_put(vcpu);
377}
378
379#define EPTP_PA_MASK GENMASK_ULL(51, 12)
380
381static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
382{
383 return VALID_PAGE(root_hpa) &&
384 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
385}
386
387static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
388 gpa_t addr)
389{
390 unsigned long roots = 0;
391 uint i;
392 struct kvm_mmu_root_info *cached_root;
393
394 WARN_ON_ONCE(!mmu_is_nested(vcpu));
395
396 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
397 cached_root = &vcpu->arch.mmu->prev_roots[i];
398
399 if (nested_ept_root_matches(root_hpa: cached_root->hpa, root_eptp: cached_root->pgd,
400 eptp))
401 roots |= KVM_MMU_ROOT_PREVIOUS(i);
402 }
403 if (roots)
404 kvm_mmu_invalidate_addr(vcpu, mmu: vcpu->arch.mmu, addr, roots);
405}
406
407static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
408 struct x86_exception *fault)
409{
410 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
411 struct vcpu_vmx *vmx = to_vmx(vcpu);
412 u32 vm_exit_reason;
413 unsigned long exit_qualification = vcpu->arch.exit_qualification;
414
415 if (vmx->nested.pml_full) {
416 vm_exit_reason = EXIT_REASON_PML_FULL;
417 vmx->nested.pml_full = false;
418 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
419 } else {
420 if (fault->error_code & PFERR_RSVD_MASK)
421 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
422 else
423 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
424
425 /*
426 * Although the caller (kvm_inject_emulated_page_fault) would
427 * have already synced the faulting address in the shadow EPT
428 * tables for the current EPTP12, we also need to sync it for
429 * any other cached EPTP02s based on the same EP4TA, since the
430 * TLB associates mappings to the EP4TA rather than the full EPTP.
431 */
432 nested_ept_invalidate_addr(vcpu, eptp: vmcs12->ept_pointer,
433 addr: fault->address);
434 }
435
436 nested_vmx_vmexit(vcpu, vm_exit_reason, exit_intr_info: 0, exit_qualification);
437 vmcs12->guest_physical_address = fault->address;
438}
439
440static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
441{
442 struct vcpu_vmx *vmx = to_vmx(vcpu);
443 bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
444 int ept_lpage_level = ept_caps_to_lpage_level(ept_caps: vmx->nested.msrs.ept_caps);
445
446 kvm_init_shadow_ept_mmu(vcpu, execonly, huge_page_level: ept_lpage_level,
447 accessed_dirty: nested_ept_ad_enabled(vcpu),
448 new_eptp: nested_ept_get_eptp(vcpu));
449}
450
451static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
452{
453 WARN_ON(mmu_is_nested(vcpu));
454
455 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
456 nested_ept_new_eptp(vcpu);
457 vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
458 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
459 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
460
461 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
462}
463
464static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
465{
466 vcpu->arch.mmu = &vcpu->arch.root_mmu;
467 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
468}
469
470static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
471 u16 error_code)
472{
473 bool inequality, bit;
474
475 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
476 inequality =
477 (error_code & vmcs12->page_fault_error_code_mask) !=
478 vmcs12->page_fault_error_code_match;
479 return inequality ^ bit;
480}
481
482static bool nested_vmx_is_exception_vmexit(struct kvm_vcpu *vcpu, u8 vector,
483 u32 error_code)
484{
485 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
486
487 /*
488 * Drop bits 31:16 of the error code when performing the #PF mask+match
489 * check. All VMCS fields involved are 32 bits, but Intel CPUs never
490 * set bits 31:16 and VMX disallows setting bits 31:16 in the injected
491 * error code. Including the to-be-dropped bits in the check might
492 * result in an "impossible" or missed exit from L1's perspective.
493 */
494 if (vector == PF_VECTOR)
495 return nested_vmx_is_page_fault_vmexit(vmcs12, error_code: (u16)error_code);
496
497 return (vmcs12->exception_bitmap & (1u << vector));
498}
499
500static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
501 struct vmcs12 *vmcs12)
502{
503 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
504 return 0;
505
506 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
507 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
508 return -EINVAL;
509
510 return 0;
511}
512
513static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
514 struct vmcs12 *vmcs12)
515{
516 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
517 return 0;
518
519 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
520 return -EINVAL;
521
522 return 0;
523}
524
525static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
526 struct vmcs12 *vmcs12)
527{
528 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
529 return 0;
530
531 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
532 return -EINVAL;
533
534 return 0;
535}
536
537/*
538 * For x2APIC MSRs, ignore the vmcs01 bitmap. L1 can enable x2APIC without L1
539 * itself utilizing x2APIC. All MSRs were previously set to be intercepted,
540 * only the "disable intercept" case needs to be handled.
541 */
542static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
543 unsigned long *msr_bitmap_l0,
544 u32 msr, int type)
545{
546 if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(bitmap: msr_bitmap_l1, msr))
547 vmx_clear_msr_bitmap_read(bitmap: msr_bitmap_l0, msr);
548
549 if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(bitmap: msr_bitmap_l1, msr))
550 vmx_clear_msr_bitmap_write(bitmap: msr_bitmap_l0, msr);
551}
552
553static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554{
555 int msr;
556
557 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558 unsigned word = msr / BITS_PER_LONG;
559
560 msr_bitmap[word] = ~0;
561 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562 }
563}
564
565#define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw) \
566static inline \
567void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx, \
568 unsigned long *msr_bitmap_l1, \
569 unsigned long *msr_bitmap_l0, u32 msr) \
570{ \
571 if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) || \
572 vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr)) \
573 vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr); \
574 else \
575 vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr); \
576}
577BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
578BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
579
580static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
581 unsigned long *msr_bitmap_l1,
582 unsigned long *msr_bitmap_l0,
583 u32 msr, int types)
584{
585 if (types & MSR_TYPE_R)
586 nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
587 msr_bitmap_l0, msr);
588 if (types & MSR_TYPE_W)
589 nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
590 msr_bitmap_l0, msr);
591}
592
593/*
594 * Merge L0's and L1's MSR bitmap, return false to indicate that
595 * we do not use the hardware.
596 */
597static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
598 struct vmcs12 *vmcs12)
599{
600 struct vcpu_vmx *vmx = to_vmx(vcpu);
601 int msr;
602 unsigned long *msr_bitmap_l1;
603 unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
604 struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
605
606 /* Nothing to do if the MSR bitmap is not in use. */
607 if (!cpu_has_vmx_msr_bitmap() ||
608 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
609 return false;
610
611 /*
612 * MSR bitmap update can be skipped when:
613 * - MSR bitmap for L1 hasn't changed.
614 * - Nested hypervisor (L1) is attempting to launch the same L2 as
615 * before.
616 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
617 * and tells KVM (L0) there were no changes in MSR bitmap for L2.
618 */
619 if (!vmx->nested.force_msr_bitmap_recalc) {
620 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
621
622 if (evmcs && evmcs->hv_enlightenments_control.msr_bitmap &&
623 evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
624 return true;
625 }
626
627 if (kvm_vcpu_map(vcpu, gpa: gpa_to_gfn(gpa: vmcs12->msr_bitmap), map))
628 return false;
629
630 msr_bitmap_l1 = (unsigned long *)map->hva;
631
632 /*
633 * To keep the control flow simple, pay eight 8-byte writes (sixteen
634 * 4-byte writes on 32-bit systems) up front to enable intercepts for
635 * the x2APIC MSR range and selectively toggle those relevant to L2.
636 */
637 enable_x2apic_msr_intercepts(msr_bitmap: msr_bitmap_l0);
638
639 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
640 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
641 /*
642 * L0 need not intercept reads for MSRs between 0x800
643 * and 0x8ff, it just lets the processor take the value
644 * from the virtual-APIC page; take those 256 bits
645 * directly from the L1 bitmap.
646 */
647 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
648 unsigned word = msr / BITS_PER_LONG;
649
650 msr_bitmap_l0[word] = msr_bitmap_l1[word];
651 }
652 }
653
654 nested_vmx_disable_intercept_for_x2apic_msr(
655 msr_bitmap_l1, msr_bitmap_l0,
656 X2APIC_MSR(APIC_TASKPRI),
657 MSR_TYPE_R | MSR_TYPE_W);
658
659 if (nested_cpu_has_vid(vmcs12)) {
660 nested_vmx_disable_intercept_for_x2apic_msr(
661 msr_bitmap_l1, msr_bitmap_l0,
662 X2APIC_MSR(APIC_EOI),
663 MSR_TYPE_W);
664 nested_vmx_disable_intercept_for_x2apic_msr(
665 msr_bitmap_l1, msr_bitmap_l0,
666 X2APIC_MSR(APIC_SELF_IPI),
667 MSR_TYPE_W);
668 }
669 }
670
671 /*
672 * Always check vmcs01's bitmap to honor userspace MSR filters and any
673 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
674 */
675#ifdef CONFIG_X86_64
676 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
677 MSR_FS_BASE, MSR_TYPE_RW);
678
679 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
680 MSR_GS_BASE, MSR_TYPE_RW);
681
682 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
683 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
684#endif
685 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
686 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
687
688 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
689 MSR_IA32_PRED_CMD, MSR_TYPE_W);
690
691 nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
692 MSR_IA32_FLUSH_CMD, MSR_TYPE_W);
693
694 kvm_vcpu_unmap(vcpu, map: &vmx->nested.msr_bitmap_map, dirty: false);
695
696 vmx->nested.force_msr_bitmap_recalc = false;
697
698 return true;
699}
700
701static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
702 struct vmcs12 *vmcs12)
703{
704 struct vcpu_vmx *vmx = to_vmx(vcpu);
705 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
706
707 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
708 vmcs12->vmcs_link_pointer == INVALID_GPA)
709 return;
710
711 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
712 kvm_gfn_to_hva_cache_init(kvm: vcpu->kvm, ghc,
713 gpa: vmcs12->vmcs_link_pointer, VMCS12_SIZE))
714 return;
715
716 kvm_read_guest_cached(kvm: vmx->vcpu.kvm, ghc, data: get_shadow_vmcs12(vcpu),
717 VMCS12_SIZE);
718}
719
720static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
721 struct vmcs12 *vmcs12)
722{
723 struct vcpu_vmx *vmx = to_vmx(vcpu);
724 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
725
726 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
727 vmcs12->vmcs_link_pointer == INVALID_GPA)
728 return;
729
730 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
731 kvm_gfn_to_hva_cache_init(kvm: vcpu->kvm, ghc,
732 gpa: vmcs12->vmcs_link_pointer, VMCS12_SIZE))
733 return;
734
735 kvm_write_guest_cached(kvm: vmx->vcpu.kvm, ghc, data: get_shadow_vmcs12(vcpu),
736 VMCS12_SIZE);
737}
738
739/*
740 * In nested virtualization, check if L1 has set
741 * VM_EXIT_ACK_INTR_ON_EXIT
742 */
743static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
744{
745 return get_vmcs12(vcpu)->vm_exit_controls &
746 VM_EXIT_ACK_INTR_ON_EXIT;
747}
748
749static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
750 struct vmcs12 *vmcs12)
751{
752 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
753 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
754 return -EINVAL;
755 else
756 return 0;
757}
758
759static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
760 struct vmcs12 *vmcs12)
761{
762 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
763 !nested_cpu_has_apic_reg_virt(vmcs12) &&
764 !nested_cpu_has_vid(vmcs12) &&
765 !nested_cpu_has_posted_intr(vmcs12))
766 return 0;
767
768 /*
769 * If virtualize x2apic mode is enabled,
770 * virtualize apic access must be disabled.
771 */
772 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
773 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
774 return -EINVAL;
775
776 /*
777 * If virtual interrupt delivery is enabled,
778 * we must exit on external interrupts.
779 */
780 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
781 return -EINVAL;
782
783 /*
784 * bits 15:8 should be zero in posted_intr_nv,
785 * the descriptor address has been already checked
786 * in nested_get_vmcs12_pages.
787 *
788 * bits 5:0 of posted_intr_desc_addr should be zero.
789 */
790 if (nested_cpu_has_posted_intr(vmcs12) &&
791 (CC(!nested_cpu_has_vid(vmcs12)) ||
792 CC(!nested_exit_intr_ack_set(vcpu)) ||
793 CC((vmcs12->posted_intr_nv & 0xff00)) ||
794 CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
795 return -EINVAL;
796
797 /* tpr shadow is needed by all apicv features. */
798 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
799 return -EINVAL;
800
801 return 0;
802}
803
804static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
805 u32 count, u64 addr)
806{
807 if (count == 0)
808 return 0;
809
810 if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, gpa: addr, alignment: 16) ||
811 !kvm_vcpu_is_legal_gpa(vcpu, gpa: (addr + count * sizeof(struct vmx_msr_entry) - 1)))
812 return -EINVAL;
813
814 return 0;
815}
816
817static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
818 struct vmcs12 *vmcs12)
819{
820 if (CC(nested_vmx_check_msr_switch(vcpu,
821 vmcs12->vm_exit_msr_load_count,
822 vmcs12->vm_exit_msr_load_addr)) ||
823 CC(nested_vmx_check_msr_switch(vcpu,
824 vmcs12->vm_exit_msr_store_count,
825 vmcs12->vm_exit_msr_store_addr)))
826 return -EINVAL;
827
828 return 0;
829}
830
831static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
832 struct vmcs12 *vmcs12)
833{
834 if (CC(nested_vmx_check_msr_switch(vcpu,
835 vmcs12->vm_entry_msr_load_count,
836 vmcs12->vm_entry_msr_load_addr)))
837 return -EINVAL;
838
839 return 0;
840}
841
842static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
843 struct vmcs12 *vmcs12)
844{
845 if (!nested_cpu_has_pml(vmcs12))
846 return 0;
847
848 if (CC(!nested_cpu_has_ept(vmcs12)) ||
849 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
850 return -EINVAL;
851
852 return 0;
853}
854
855static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
856 struct vmcs12 *vmcs12)
857{
858 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
859 !nested_cpu_has_ept(vmcs12)))
860 return -EINVAL;
861 return 0;
862}
863
864static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
865 struct vmcs12 *vmcs12)
866{
867 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
868 !nested_cpu_has_ept(vmcs12)))
869 return -EINVAL;
870 return 0;
871}
872
873static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
874 struct vmcs12 *vmcs12)
875{
876 if (!nested_cpu_has_shadow_vmcs(vmcs12))
877 return 0;
878
879 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
880 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
881 return -EINVAL;
882
883 return 0;
884}
885
886static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
887 struct vmx_msr_entry *e)
888{
889 /* x2APIC MSR accesses are not allowed */
890 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
891 return -EINVAL;
892 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
893 CC(e->index == MSR_IA32_UCODE_REV))
894 return -EINVAL;
895 if (CC(e->reserved != 0))
896 return -EINVAL;
897 return 0;
898}
899
900static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
901 struct vmx_msr_entry *e)
902{
903 if (CC(e->index == MSR_FS_BASE) ||
904 CC(e->index == MSR_GS_BASE) ||
905 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
906 nested_vmx_msr_check_common(vcpu, e))
907 return -EINVAL;
908 return 0;
909}
910
911static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
912 struct vmx_msr_entry *e)
913{
914 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
915 nested_vmx_msr_check_common(vcpu, e))
916 return -EINVAL;
917 return 0;
918}
919
920static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
921{
922 struct vcpu_vmx *vmx = to_vmx(vcpu);
923 u64 vmx_misc = vmx_control_msr(low: vmx->nested.msrs.misc_low,
924 high: vmx->nested.msrs.misc_high);
925
926 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
927}
928
929/*
930 * Load guest's/host's msr at nested entry/exit.
931 * return 0 for success, entry index for failure.
932 *
933 * One of the failure modes for MSR load/store is when a list exceeds the
934 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
935 * as possible, process all valid entries before failing rather than precheck
936 * for a capacity violation.
937 */
938static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
939{
940 u32 i;
941 struct vmx_msr_entry e;
942 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
943
944 for (i = 0; i < count; i++) {
945 if (unlikely(i >= max_msr_list_size))
946 goto fail;
947
948 if (kvm_vcpu_read_guest(vcpu, gpa: gpa + i * sizeof(e),
949 data: &e, len: sizeof(e))) {
950 pr_debug_ratelimited(
951 "%s cannot read MSR entry (%u, 0x%08llx)\n",
952 __func__, i, gpa + i * sizeof(e));
953 goto fail;
954 }
955 if (nested_vmx_load_msr_check(vcpu, e: &e)) {
956 pr_debug_ratelimited(
957 "%s check failed (%u, 0x%x, 0x%x)\n",
958 __func__, i, e.index, e.reserved);
959 goto fail;
960 }
961 if (kvm_set_msr(vcpu, index: e.index, data: e.value)) {
962 pr_debug_ratelimited(
963 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
964 __func__, i, e.index, e.value);
965 goto fail;
966 }
967 }
968 return 0;
969fail:
970 /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
971 return i + 1;
972}
973
974static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
975 u32 msr_index,
976 u64 *data)
977{
978 struct vcpu_vmx *vmx = to_vmx(vcpu);
979
980 /*
981 * If the L0 hypervisor stored a more accurate value for the TSC that
982 * does not include the time taken for emulation of the L2->L1
983 * VM-exit in L0, use the more accurate value.
984 */
985 if (msr_index == MSR_IA32_TSC) {
986 int i = vmx_find_loadstore_msr_slot(m: &vmx->msr_autostore.guest,
987 MSR_IA32_TSC);
988
989 if (i >= 0) {
990 u64 val = vmx->msr_autostore.guest.val[i].value;
991
992 *data = kvm_read_l1_tsc(vcpu, host_tsc: val);
993 return true;
994 }
995 }
996
997 if (kvm_get_msr(vcpu, index: msr_index, data)) {
998 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
999 msr_index);
1000 return false;
1001 }
1002 return true;
1003}
1004
1005static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
1006 struct vmx_msr_entry *e)
1007{
1008 if (kvm_vcpu_read_guest(vcpu,
1009 gpa: gpa + i * sizeof(*e),
1010 data: e, len: 2 * sizeof(u32))) {
1011 pr_debug_ratelimited(
1012 "%s cannot read MSR entry (%u, 0x%08llx)\n",
1013 __func__, i, gpa + i * sizeof(*e));
1014 return false;
1015 }
1016 if (nested_vmx_store_msr_check(vcpu, e)) {
1017 pr_debug_ratelimited(
1018 "%s check failed (%u, 0x%x, 0x%x)\n",
1019 __func__, i, e->index, e->reserved);
1020 return false;
1021 }
1022 return true;
1023}
1024
1025static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1026{
1027 u64 data;
1028 u32 i;
1029 struct vmx_msr_entry e;
1030 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1031
1032 for (i = 0; i < count; i++) {
1033 if (unlikely(i >= max_msr_list_size))
1034 return -EINVAL;
1035
1036 if (!read_and_check_msr_entry(vcpu, gpa, i, e: &e))
1037 return -EINVAL;
1038
1039 if (!nested_vmx_get_vmexit_msr_value(vcpu, msr_index: e.index, data: &data))
1040 return -EINVAL;
1041
1042 if (kvm_vcpu_write_guest(vcpu,
1043 gpa: gpa + i * sizeof(e) +
1044 offsetof(struct vmx_msr_entry, value),
1045 data: &data, len: sizeof(data))) {
1046 pr_debug_ratelimited(
1047 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1048 __func__, i, e.index, data);
1049 return -EINVAL;
1050 }
1051 }
1052 return 0;
1053}
1054
1055static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1056{
1057 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1058 u32 count = vmcs12->vm_exit_msr_store_count;
1059 u64 gpa = vmcs12->vm_exit_msr_store_addr;
1060 struct vmx_msr_entry e;
1061 u32 i;
1062
1063 for (i = 0; i < count; i++) {
1064 if (!read_and_check_msr_entry(vcpu, gpa, i, e: &e))
1065 return false;
1066
1067 if (e.index == msr_index)
1068 return true;
1069 }
1070 return false;
1071}
1072
1073static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1074 u32 msr_index)
1075{
1076 struct vcpu_vmx *vmx = to_vmx(vcpu);
1077 struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1078 bool in_vmcs12_store_list;
1079 int msr_autostore_slot;
1080 bool in_autostore_list;
1081 int last;
1082
1083 msr_autostore_slot = vmx_find_loadstore_msr_slot(m: autostore, msr: msr_index);
1084 in_autostore_list = msr_autostore_slot >= 0;
1085 in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1086
1087 if (in_vmcs12_store_list && !in_autostore_list) {
1088 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1089 /*
1090 * Emulated VMEntry does not fail here. Instead a less
1091 * accurate value will be returned by
1092 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1093 * instead of reading the value from the vmcs02 VMExit
1094 * MSR-store area.
1095 */
1096 pr_warn_ratelimited(
1097 "Not enough msr entries in msr_autostore. Can't add msr %x\n",
1098 msr_index);
1099 return;
1100 }
1101 last = autostore->nr++;
1102 autostore->val[last].index = msr_index;
1103 } else if (!in_vmcs12_store_list && in_autostore_list) {
1104 last = --autostore->nr;
1105 autostore->val[msr_autostore_slot] = autostore->val[last];
1106 }
1107}
1108
1109/*
1110 * Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
1111 * emulating VM-Entry into a guest with EPT enabled. On failure, the expected
1112 * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1113 * @entry_failure_code.
1114 */
1115static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1116 bool nested_ept, bool reload_pdptrs,
1117 enum vm_entry_failure_code *entry_failure_code)
1118{
1119 if (CC(!kvm_vcpu_is_legal_cr3(vcpu, cr3))) {
1120 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1121 return -EINVAL;
1122 }
1123
1124 /*
1125 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1126 * must not be dereferenced.
1127 */
1128 if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1129 CC(!load_pdptrs(vcpu, cr3))) {
1130 *entry_failure_code = ENTRY_FAIL_PDPTE;
1131 return -EINVAL;
1132 }
1133
1134 vcpu->arch.cr3 = cr3;
1135 kvm_register_mark_dirty(vcpu, reg: VCPU_EXREG_CR3);
1136
1137 /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1138 kvm_init_mmu(vcpu);
1139
1140 if (!nested_ept)
1141 kvm_mmu_new_pgd(vcpu, new_pgd: cr3);
1142
1143 return 0;
1144}
1145
1146/*
1147 * Returns if KVM is able to config CPU to tag TLB entries
1148 * populated by L2 differently than TLB entries populated
1149 * by L1.
1150 *
1151 * If L0 uses EPT, L1 and L2 run with different EPTP because
1152 * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1153 * are tagged with different EPTP.
1154 *
1155 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1156 * with different VPID (L1 entries are tagged with vmx->vpid
1157 * while L2 entries are tagged with vmx->nested.vpid02).
1158 */
1159static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1160{
1161 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1162
1163 return enable_ept ||
1164 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1165}
1166
1167static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1168 struct vmcs12 *vmcs12,
1169 bool is_vmenter)
1170{
1171 struct vcpu_vmx *vmx = to_vmx(vcpu);
1172
1173 /* Handle pending Hyper-V TLB flush requests */
1174 kvm_hv_nested_transtion_tlb_flush(vcpu, tdp_enabled: enable_ept);
1175
1176 /*
1177 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1178 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1179 * full TLB flush from the guest's perspective. This is required even
1180 * if VPID is disabled in the host as KVM may need to synchronize the
1181 * MMU in response to the guest TLB flush.
1182 *
1183 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1184 * EPT is a special snowflake, as guest-physical mappings aren't
1185 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1186 * VPID disabled. As a result, KVM _never_ needs to sync nEPT
1187 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1188 * those mappings.
1189 */
1190 if (!nested_cpu_has_vpid(vmcs12)) {
1191 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1192 return;
1193 }
1194
1195 /* L2 should never have a VPID if VPID is disabled. */
1196 WARN_ON(!enable_vpid);
1197
1198 /*
1199 * VPID is enabled and in use by vmcs12. If vpid12 is changing, then
1200 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1201 * is the VPID incorporated into the MMU context. I.e. KVM must assume
1202 * that the new vpid12 has never been used and thus represents a new
1203 * guest ASID that cannot have entries in the TLB.
1204 */
1205 if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1206 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1207 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1208 return;
1209 }
1210
1211 /*
1212 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1213 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1214 * KVM was unable to allocate a VPID for L2, flush the current context
1215 * as the effective ASID is common to both L1 and L2.
1216 */
1217 if (!nested_has_guest_tlb_tag(vcpu))
1218 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1219}
1220
1221static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1222{
1223 superset &= mask;
1224 subset &= mask;
1225
1226 return (superset | subset) == superset;
1227}
1228
1229static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1230{
1231 const u64 feature_and_reserved =
1232 /* feature (except bit 48; see below) */
1233 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1234 /* reserved */
1235 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1236 u64 vmx_basic = vmcs_config.nested.basic;
1237
1238 if (!is_bitwise_subset(superset: vmx_basic, subset: data, mask: feature_and_reserved))
1239 return -EINVAL;
1240
1241 /*
1242 * KVM does not emulate a version of VMX that constrains physical
1243 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1244 */
1245 if (data & BIT_ULL(48))
1246 return -EINVAL;
1247
1248 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1249 vmx_basic_vmcs_revision_id(vmx_basic: data))
1250 return -EINVAL;
1251
1252 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(vmx_basic: data))
1253 return -EINVAL;
1254
1255 vmx->nested.msrs.basic = data;
1256 return 0;
1257}
1258
1259static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1260 u32 **low, u32 **high)
1261{
1262 switch (msr_index) {
1263 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1264 *low = &msrs->pinbased_ctls_low;
1265 *high = &msrs->pinbased_ctls_high;
1266 break;
1267 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1268 *low = &msrs->procbased_ctls_low;
1269 *high = &msrs->procbased_ctls_high;
1270 break;
1271 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1272 *low = &msrs->exit_ctls_low;
1273 *high = &msrs->exit_ctls_high;
1274 break;
1275 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1276 *low = &msrs->entry_ctls_low;
1277 *high = &msrs->entry_ctls_high;
1278 break;
1279 case MSR_IA32_VMX_PROCBASED_CTLS2:
1280 *low = &msrs->secondary_ctls_low;
1281 *high = &msrs->secondary_ctls_high;
1282 break;
1283 default:
1284 BUG();
1285 }
1286}
1287
1288static int
1289vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1290{
1291 u32 *lowp, *highp;
1292 u64 supported;
1293
1294 vmx_get_control_msr(msrs: &vmcs_config.nested, msr_index, low: &lowp, high: &highp);
1295
1296 supported = vmx_control_msr(low: *lowp, high: *highp);
1297
1298 /* Check must-be-1 bits are still 1. */
1299 if (!is_bitwise_subset(superset: data, subset: supported, GENMASK_ULL(31, 0)))
1300 return -EINVAL;
1301
1302 /* Check must-be-0 bits are still 0. */
1303 if (!is_bitwise_subset(superset: supported, subset: data, GENMASK_ULL(63, 32)))
1304 return -EINVAL;
1305
1306 vmx_get_control_msr(msrs: &vmx->nested.msrs, msr_index, low: &lowp, high: &highp);
1307 *lowp = data;
1308 *highp = data >> 32;
1309 return 0;
1310}
1311
1312static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1313{
1314 const u64 feature_and_reserved_bits =
1315 /* feature */
1316 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1317 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1318 /* reserved */
1319 GENMASK_ULL(13, 9) | BIT_ULL(31);
1320 u64 vmx_misc = vmx_control_msr(low: vmcs_config.nested.misc_low,
1321 high: vmcs_config.nested.misc_high);
1322
1323 if (!is_bitwise_subset(superset: vmx_misc, subset: data, mask: feature_and_reserved_bits))
1324 return -EINVAL;
1325
1326 if ((vmx->nested.msrs.pinbased_ctls_high &
1327 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1328 vmx_misc_preemption_timer_rate(vmx_misc: data) !=
1329 vmx_misc_preemption_timer_rate(vmx_misc))
1330 return -EINVAL;
1331
1332 if (vmx_misc_cr3_count(vmx_misc: data) > vmx_misc_cr3_count(vmx_misc))
1333 return -EINVAL;
1334
1335 if (vmx_misc_max_msr(vmx_misc: data) > vmx_misc_max_msr(vmx_misc))
1336 return -EINVAL;
1337
1338 if (vmx_misc_mseg_revid(vmx_misc: data) != vmx_misc_mseg_revid(vmx_misc))
1339 return -EINVAL;
1340
1341 vmx->nested.msrs.misc_low = data;
1342 vmx->nested.msrs.misc_high = data >> 32;
1343
1344 return 0;
1345}
1346
1347static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1348{
1349 u64 vmx_ept_vpid_cap = vmx_control_msr(low: vmcs_config.nested.ept_caps,
1350 high: vmcs_config.nested.vpid_caps);
1351
1352 /* Every bit is either reserved or a feature bit. */
1353 if (!is_bitwise_subset(superset: vmx_ept_vpid_cap, subset: data, mask: -1ULL))
1354 return -EINVAL;
1355
1356 vmx->nested.msrs.ept_caps = data;
1357 vmx->nested.msrs.vpid_caps = data >> 32;
1358 return 0;
1359}
1360
1361static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1362{
1363 switch (msr_index) {
1364 case MSR_IA32_VMX_CR0_FIXED0:
1365 return &msrs->cr0_fixed0;
1366 case MSR_IA32_VMX_CR4_FIXED0:
1367 return &msrs->cr4_fixed0;
1368 default:
1369 BUG();
1370 }
1371}
1372
1373static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1374{
1375 const u64 *msr = vmx_get_fixed0_msr(msrs: &vmcs_config.nested, msr_index);
1376
1377 /*
1378 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1379 * must be 1 in the restored value.
1380 */
1381 if (!is_bitwise_subset(superset: data, subset: *msr, mask: -1ULL))
1382 return -EINVAL;
1383
1384 *vmx_get_fixed0_msr(msrs: &vmx->nested.msrs, msr_index) = data;
1385 return 0;
1386}
1387
1388/*
1389 * Called when userspace is restoring VMX MSRs.
1390 *
1391 * Returns 0 on success, non-0 otherwise.
1392 */
1393int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1394{
1395 struct vcpu_vmx *vmx = to_vmx(vcpu);
1396
1397 /*
1398 * Don't allow changes to the VMX capability MSRs while the vCPU
1399 * is in VMX operation.
1400 */
1401 if (vmx->nested.vmxon)
1402 return -EBUSY;
1403
1404 switch (msr_index) {
1405 case MSR_IA32_VMX_BASIC:
1406 return vmx_restore_vmx_basic(vmx, data);
1407 case MSR_IA32_VMX_PINBASED_CTLS:
1408 case MSR_IA32_VMX_PROCBASED_CTLS:
1409 case MSR_IA32_VMX_EXIT_CTLS:
1410 case MSR_IA32_VMX_ENTRY_CTLS:
1411 /*
1412 * The "non-true" VMX capability MSRs are generated from the
1413 * "true" MSRs, so we do not support restoring them directly.
1414 *
1415 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1416 * should restore the "true" MSRs with the must-be-1 bits
1417 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1418 * DEFAULT SETTINGS".
1419 */
1420 return -EINVAL;
1421 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1422 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1423 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1424 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1425 case MSR_IA32_VMX_PROCBASED_CTLS2:
1426 return vmx_restore_control_msr(vmx, msr_index, data);
1427 case MSR_IA32_VMX_MISC:
1428 return vmx_restore_vmx_misc(vmx, data);
1429 case MSR_IA32_VMX_CR0_FIXED0:
1430 case MSR_IA32_VMX_CR4_FIXED0:
1431 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1432 case MSR_IA32_VMX_CR0_FIXED1:
1433 case MSR_IA32_VMX_CR4_FIXED1:
1434 /*
1435 * These MSRs are generated based on the vCPU's CPUID, so we
1436 * do not support restoring them directly.
1437 */
1438 return -EINVAL;
1439 case MSR_IA32_VMX_EPT_VPID_CAP:
1440 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1441 case MSR_IA32_VMX_VMCS_ENUM:
1442 vmx->nested.msrs.vmcs_enum = data;
1443 return 0;
1444 case MSR_IA32_VMX_VMFUNC:
1445 if (data & ~vmcs_config.nested.vmfunc_controls)
1446 return -EINVAL;
1447 vmx->nested.msrs.vmfunc_controls = data;
1448 return 0;
1449 default:
1450 /*
1451 * The rest of the VMX capability MSRs do not support restore.
1452 */
1453 return -EINVAL;
1454 }
1455}
1456
1457/* Returns 0 on success, non-0 otherwise. */
1458int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1459{
1460 switch (msr_index) {
1461 case MSR_IA32_VMX_BASIC:
1462 *pdata = msrs->basic;
1463 break;
1464 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1465 case MSR_IA32_VMX_PINBASED_CTLS:
1466 *pdata = vmx_control_msr(
1467 low: msrs->pinbased_ctls_low,
1468 high: msrs->pinbased_ctls_high);
1469 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1470 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1471 break;
1472 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1473 case MSR_IA32_VMX_PROCBASED_CTLS:
1474 *pdata = vmx_control_msr(
1475 low: msrs->procbased_ctls_low,
1476 high: msrs->procbased_ctls_high);
1477 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1478 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1479 break;
1480 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1481 case MSR_IA32_VMX_EXIT_CTLS:
1482 *pdata = vmx_control_msr(
1483 low: msrs->exit_ctls_low,
1484 high: msrs->exit_ctls_high);
1485 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1486 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1487 break;
1488 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1489 case MSR_IA32_VMX_ENTRY_CTLS:
1490 *pdata = vmx_control_msr(
1491 low: msrs->entry_ctls_low,
1492 high: msrs->entry_ctls_high);
1493 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1494 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1495 break;
1496 case MSR_IA32_VMX_MISC:
1497 *pdata = vmx_control_msr(
1498 low: msrs->misc_low,
1499 high: msrs->misc_high);
1500 break;
1501 case MSR_IA32_VMX_CR0_FIXED0:
1502 *pdata = msrs->cr0_fixed0;
1503 break;
1504 case MSR_IA32_VMX_CR0_FIXED1:
1505 *pdata = msrs->cr0_fixed1;
1506 break;
1507 case MSR_IA32_VMX_CR4_FIXED0:
1508 *pdata = msrs->cr4_fixed0;
1509 break;
1510 case MSR_IA32_VMX_CR4_FIXED1:
1511 *pdata = msrs->cr4_fixed1;
1512 break;
1513 case MSR_IA32_VMX_VMCS_ENUM:
1514 *pdata = msrs->vmcs_enum;
1515 break;
1516 case MSR_IA32_VMX_PROCBASED_CTLS2:
1517 *pdata = vmx_control_msr(
1518 low: msrs->secondary_ctls_low,
1519 high: msrs->secondary_ctls_high);
1520 break;
1521 case MSR_IA32_VMX_EPT_VPID_CAP:
1522 *pdata = msrs->ept_caps |
1523 ((u64)msrs->vpid_caps << 32);
1524 break;
1525 case MSR_IA32_VMX_VMFUNC:
1526 *pdata = msrs->vmfunc_controls;
1527 break;
1528 default:
1529 return 1;
1530 }
1531
1532 return 0;
1533}
1534
1535/*
1536 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1537 * been modified by the L1 guest. Note, "writable" in this context means
1538 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1539 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1540 * VM-exit information fields (which are actually writable if the vCPU is
1541 * configured to support "VMWRITE to any supported field in the VMCS").
1542 */
1543static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1544{
1545 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1546 struct vmcs12 *vmcs12 = get_vmcs12(vcpu: &vmx->vcpu);
1547 struct shadow_vmcs_field field;
1548 unsigned long val;
1549 int i;
1550
1551 if (WARN_ON(!shadow_vmcs))
1552 return;
1553
1554 preempt_disable();
1555
1556 vmcs_load(vmcs: shadow_vmcs);
1557
1558 for (i = 0; i < max_shadow_read_write_fields; i++) {
1559 field = shadow_read_write_fields[i];
1560 val = __vmcs_readl(field: field.encoding);
1561 vmcs12_write_any(vmcs12, field: field.encoding, offset: field.offset, field_value: val);
1562 }
1563
1564 vmcs_clear(vmcs: shadow_vmcs);
1565 vmcs_load(vmcs: vmx->loaded_vmcs->vmcs);
1566
1567 preempt_enable();
1568}
1569
1570static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1571{
1572 const struct shadow_vmcs_field *fields[] = {
1573 shadow_read_write_fields,
1574 shadow_read_only_fields
1575 };
1576 const int max_fields[] = {
1577 max_shadow_read_write_fields,
1578 max_shadow_read_only_fields
1579 };
1580 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1581 struct vmcs12 *vmcs12 = get_vmcs12(vcpu: &vmx->vcpu);
1582 struct shadow_vmcs_field field;
1583 unsigned long val;
1584 int i, q;
1585
1586 if (WARN_ON(!shadow_vmcs))
1587 return;
1588
1589 vmcs_load(vmcs: shadow_vmcs);
1590
1591 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1592 for (i = 0; i < max_fields[q]; i++) {
1593 field = fields[q][i];
1594 val = vmcs12_read_any(vmcs12, field: field.encoding,
1595 offset: field.offset);
1596 __vmcs_writel(field: field.encoding, value: val);
1597 }
1598 }
1599
1600 vmcs_clear(vmcs: shadow_vmcs);
1601 vmcs_load(vmcs: vmx->loaded_vmcs->vmcs);
1602}
1603
1604static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1605{
1606#ifdef CONFIG_KVM_HYPERV
1607 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1608 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1609 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu: &vmx->vcpu);
1610
1611 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1612 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1613 vmcs12->guest_rip = evmcs->guest_rip;
1614
1615 if (unlikely(!(hv_clean_fields &
1616 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ENLIGHTENMENTSCONTROL))) {
1617 hv_vcpu->nested.pa_page_gpa = evmcs->partition_assist_page;
1618 hv_vcpu->nested.vm_id = evmcs->hv_vm_id;
1619 hv_vcpu->nested.vp_id = evmcs->hv_vp_id;
1620 }
1621
1622 if (unlikely(!(hv_clean_fields &
1623 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1624 vmcs12->guest_rsp = evmcs->guest_rsp;
1625 vmcs12->guest_rflags = evmcs->guest_rflags;
1626 vmcs12->guest_interruptibility_info =
1627 evmcs->guest_interruptibility_info;
1628 /*
1629 * Not present in struct vmcs12:
1630 * vmcs12->guest_ssp = evmcs->guest_ssp;
1631 */
1632 }
1633
1634 if (unlikely(!(hv_clean_fields &
1635 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1636 vmcs12->cpu_based_vm_exec_control =
1637 evmcs->cpu_based_vm_exec_control;
1638 }
1639
1640 if (unlikely(!(hv_clean_fields &
1641 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1642 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1643 }
1644
1645 if (unlikely(!(hv_clean_fields &
1646 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1647 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1648 }
1649
1650 if (unlikely(!(hv_clean_fields &
1651 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1652 vmcs12->vm_entry_intr_info_field =
1653 evmcs->vm_entry_intr_info_field;
1654 vmcs12->vm_entry_exception_error_code =
1655 evmcs->vm_entry_exception_error_code;
1656 vmcs12->vm_entry_instruction_len =
1657 evmcs->vm_entry_instruction_len;
1658 }
1659
1660 if (unlikely(!(hv_clean_fields &
1661 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1662 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1663 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1664 vmcs12->host_cr0 = evmcs->host_cr0;
1665 vmcs12->host_cr3 = evmcs->host_cr3;
1666 vmcs12->host_cr4 = evmcs->host_cr4;
1667 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1668 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1669 vmcs12->host_rip = evmcs->host_rip;
1670 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1671 vmcs12->host_es_selector = evmcs->host_es_selector;
1672 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1673 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1674 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1675 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1676 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1677 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1678 vmcs12->host_ia32_perf_global_ctrl = evmcs->host_ia32_perf_global_ctrl;
1679 /*
1680 * Not present in struct vmcs12:
1681 * vmcs12->host_ia32_s_cet = evmcs->host_ia32_s_cet;
1682 * vmcs12->host_ssp = evmcs->host_ssp;
1683 * vmcs12->host_ia32_int_ssp_table_addr = evmcs->host_ia32_int_ssp_table_addr;
1684 */
1685 }
1686
1687 if (unlikely(!(hv_clean_fields &
1688 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1689 vmcs12->pin_based_vm_exec_control =
1690 evmcs->pin_based_vm_exec_control;
1691 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1692 vmcs12->secondary_vm_exec_control =
1693 evmcs->secondary_vm_exec_control;
1694 }
1695
1696 if (unlikely(!(hv_clean_fields &
1697 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1698 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1699 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1700 }
1701
1702 if (unlikely(!(hv_clean_fields &
1703 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1704 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1705 }
1706
1707 if (unlikely(!(hv_clean_fields &
1708 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1709 vmcs12->guest_es_base = evmcs->guest_es_base;
1710 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1711 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1712 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1713 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1714 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1715 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1716 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1717 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1718 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1719 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1720 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1721 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1722 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1723 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1724 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1725 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1726 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1727 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1728 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1729 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1730 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1731 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1732 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1733 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1734 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1735 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1736 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1737 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1738 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1739 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1740 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1741 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1742 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1743 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1744 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1745 }
1746
1747 if (unlikely(!(hv_clean_fields &
1748 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1749 vmcs12->tsc_offset = evmcs->tsc_offset;
1750 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1751 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1752 vmcs12->encls_exiting_bitmap = evmcs->encls_exiting_bitmap;
1753 vmcs12->tsc_multiplier = evmcs->tsc_multiplier;
1754 }
1755
1756 if (unlikely(!(hv_clean_fields &
1757 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1758 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1759 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1760 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1761 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1762 vmcs12->guest_cr0 = evmcs->guest_cr0;
1763 vmcs12->guest_cr3 = evmcs->guest_cr3;
1764 vmcs12->guest_cr4 = evmcs->guest_cr4;
1765 vmcs12->guest_dr7 = evmcs->guest_dr7;
1766 }
1767
1768 if (unlikely(!(hv_clean_fields &
1769 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1770 vmcs12->host_fs_base = evmcs->host_fs_base;
1771 vmcs12->host_gs_base = evmcs->host_gs_base;
1772 vmcs12->host_tr_base = evmcs->host_tr_base;
1773 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1774 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1775 vmcs12->host_rsp = evmcs->host_rsp;
1776 }
1777
1778 if (unlikely(!(hv_clean_fields &
1779 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1780 vmcs12->ept_pointer = evmcs->ept_pointer;
1781 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1782 }
1783
1784 if (unlikely(!(hv_clean_fields &
1785 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1786 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1787 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1788 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1789 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1790 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1791 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1792 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1793 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1794 vmcs12->guest_pending_dbg_exceptions =
1795 evmcs->guest_pending_dbg_exceptions;
1796 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1797 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1798 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1799 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1800 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1801 vmcs12->guest_ia32_perf_global_ctrl = evmcs->guest_ia32_perf_global_ctrl;
1802 /*
1803 * Not present in struct vmcs12:
1804 * vmcs12->guest_ia32_s_cet = evmcs->guest_ia32_s_cet;
1805 * vmcs12->guest_ia32_lbr_ctl = evmcs->guest_ia32_lbr_ctl;
1806 * vmcs12->guest_ia32_int_ssp_table_addr = evmcs->guest_ia32_int_ssp_table_addr;
1807 */
1808 }
1809
1810 /*
1811 * Not used?
1812 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1813 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1814 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1815 * vmcs12->page_fault_error_code_mask =
1816 * evmcs->page_fault_error_code_mask;
1817 * vmcs12->page_fault_error_code_match =
1818 * evmcs->page_fault_error_code_match;
1819 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1820 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1821 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1822 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1823 */
1824
1825 /*
1826 * Read only fields:
1827 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1828 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1829 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1830 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1831 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1832 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1833 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1834 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1835 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1836 * vmcs12->exit_qualification = evmcs->exit_qualification;
1837 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1838 *
1839 * Not present in struct vmcs12:
1840 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1841 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1842 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1843 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1844 */
1845
1846 return;
1847#else /* CONFIG_KVM_HYPERV */
1848 KVM_BUG_ON(1, vmx->vcpu.kvm);
1849#endif /* CONFIG_KVM_HYPERV */
1850}
1851
1852static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1853{
1854#ifdef CONFIG_KVM_HYPERV
1855 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1856 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
1857
1858 /*
1859 * Should not be changed by KVM:
1860 *
1861 * evmcs->host_es_selector = vmcs12->host_es_selector;
1862 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1863 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1864 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1865 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1866 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1867 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1868 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1869 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1870 * evmcs->host_cr0 = vmcs12->host_cr0;
1871 * evmcs->host_cr3 = vmcs12->host_cr3;
1872 * evmcs->host_cr4 = vmcs12->host_cr4;
1873 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1874 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1875 * evmcs->host_rip = vmcs12->host_rip;
1876 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1877 * evmcs->host_fs_base = vmcs12->host_fs_base;
1878 * evmcs->host_gs_base = vmcs12->host_gs_base;
1879 * evmcs->host_tr_base = vmcs12->host_tr_base;
1880 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1881 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1882 * evmcs->host_rsp = vmcs12->host_rsp;
1883 * sync_vmcs02_to_vmcs12() doesn't read these:
1884 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1885 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1886 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1887 * evmcs->ept_pointer = vmcs12->ept_pointer;
1888 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1889 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1890 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1891 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1892 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1893 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1894 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1895 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1896 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1897 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1898 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1899 * evmcs->page_fault_error_code_mask =
1900 * vmcs12->page_fault_error_code_mask;
1901 * evmcs->page_fault_error_code_match =
1902 * vmcs12->page_fault_error_code_match;
1903 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1904 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1905 * evmcs->tsc_offset = vmcs12->tsc_offset;
1906 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1907 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1908 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1909 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1910 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1911 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1912 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1913 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1914 * evmcs->guest_ia32_perf_global_ctrl = vmcs12->guest_ia32_perf_global_ctrl;
1915 * evmcs->host_ia32_perf_global_ctrl = vmcs12->host_ia32_perf_global_ctrl;
1916 * evmcs->encls_exiting_bitmap = vmcs12->encls_exiting_bitmap;
1917 * evmcs->tsc_multiplier = vmcs12->tsc_multiplier;
1918 *
1919 * Not present in struct vmcs12:
1920 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1921 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1922 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1923 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1924 * evmcs->host_ia32_s_cet = vmcs12->host_ia32_s_cet;
1925 * evmcs->host_ssp = vmcs12->host_ssp;
1926 * evmcs->host_ia32_int_ssp_table_addr = vmcs12->host_ia32_int_ssp_table_addr;
1927 * evmcs->guest_ia32_s_cet = vmcs12->guest_ia32_s_cet;
1928 * evmcs->guest_ia32_lbr_ctl = vmcs12->guest_ia32_lbr_ctl;
1929 * evmcs->guest_ia32_int_ssp_table_addr = vmcs12->guest_ia32_int_ssp_table_addr;
1930 * evmcs->guest_ssp = vmcs12->guest_ssp;
1931 */
1932
1933 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1934 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1935 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1936 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1937 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1938 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1939 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1940 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1941
1942 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1943 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1944 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1945 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1946 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1947 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1948 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1949 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1950 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1951 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1952
1953 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1954 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1955 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1956 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1957 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1958 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1959 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1960 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1961
1962 evmcs->guest_es_base = vmcs12->guest_es_base;
1963 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1964 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1965 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1966 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1967 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1968 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1969 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1970 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1971 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1972
1973 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1974 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1975
1976 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1977 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1978 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1979 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1980
1981 evmcs->guest_pending_dbg_exceptions =
1982 vmcs12->guest_pending_dbg_exceptions;
1983 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1984 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1985
1986 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1987 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1988
1989 evmcs->guest_cr0 = vmcs12->guest_cr0;
1990 evmcs->guest_cr3 = vmcs12->guest_cr3;
1991 evmcs->guest_cr4 = vmcs12->guest_cr4;
1992 evmcs->guest_dr7 = vmcs12->guest_dr7;
1993
1994 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1995
1996 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1997 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1998 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1999 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
2000 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
2001 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
2002 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
2003 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
2004
2005 evmcs->exit_qualification = vmcs12->exit_qualification;
2006
2007 evmcs->guest_linear_address = vmcs12->guest_linear_address;
2008 evmcs->guest_rsp = vmcs12->guest_rsp;
2009 evmcs->guest_rflags = vmcs12->guest_rflags;
2010
2011 evmcs->guest_interruptibility_info =
2012 vmcs12->guest_interruptibility_info;
2013 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
2014 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
2015 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
2016 evmcs->vm_entry_exception_error_code =
2017 vmcs12->vm_entry_exception_error_code;
2018 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
2019
2020 evmcs->guest_rip = vmcs12->guest_rip;
2021
2022 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
2023
2024 return;
2025#else /* CONFIG_KVM_HYPERV */
2026 KVM_BUG_ON(1, vmx->vcpu.kvm);
2027#endif /* CONFIG_KVM_HYPERV */
2028}
2029
2030/*
2031 * This is an equivalent of the nested hypervisor executing the vmptrld
2032 * instruction.
2033 */
2034static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
2035 struct kvm_vcpu *vcpu, bool from_launch)
2036{
2037#ifdef CONFIG_KVM_HYPERV
2038 struct vcpu_vmx *vmx = to_vmx(vcpu);
2039 bool evmcs_gpa_changed = false;
2040 u64 evmcs_gpa;
2041
2042 if (likely(!guest_cpuid_has_evmcs(vcpu)))
2043 return EVMPTRLD_DISABLED;
2044
2045 evmcs_gpa = nested_get_evmptr(vcpu);
2046 if (!evmptr_is_valid(evmptr: evmcs_gpa)) {
2047 nested_release_evmcs(vcpu);
2048 return EVMPTRLD_DISABLED;
2049 }
2050
2051 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
2052 vmx->nested.current_vmptr = INVALID_GPA;
2053
2054 nested_release_evmcs(vcpu);
2055
2056 if (kvm_vcpu_map(vcpu, gpa: gpa_to_gfn(gpa: evmcs_gpa),
2057 map: &vmx->nested.hv_evmcs_map))
2058 return EVMPTRLD_ERROR;
2059
2060 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2061
2062 /*
2063 * Currently, KVM only supports eVMCS version 1
2064 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2065 * value to first u32 field of eVMCS which should specify eVMCS
2066 * VersionNumber.
2067 *
2068 * Guest should be aware of supported eVMCS versions by host by
2069 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2070 * expected to set this CPUID leaf according to the value
2071 * returned in vmcs_version from nested_enable_evmcs().
2072 *
2073 * However, it turns out that Microsoft Hyper-V fails to comply
2074 * to their own invented interface: When Hyper-V use eVMCS, it
2075 * just sets first u32 field of eVMCS to revision_id specified
2076 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2077 * which is one of the supported versions specified in
2078 * CPUID.0x4000000A.EAX[0:15].
2079 *
2080 * To overcome Hyper-V bug, we accept here either a supported
2081 * eVMCS version or VMCS12 revision_id as valid values for first
2082 * u32 field of eVMCS.
2083 */
2084 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2085 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2086 nested_release_evmcs(vcpu);
2087 return EVMPTRLD_VMFAIL;
2088 }
2089
2090 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2091
2092 evmcs_gpa_changed = true;
2093 /*
2094 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2095 * reloaded from guest's memory (read only fields, fields not
2096 * present in struct hv_enlightened_vmcs, ...). Make sure there
2097 * are no leftovers.
2098 */
2099 if (from_launch) {
2100 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2101 memset(vmcs12, 0, sizeof(*vmcs12));
2102 vmcs12->hdr.revision_id = VMCS12_REVISION;
2103 }
2104
2105 }
2106
2107 /*
2108 * Clean fields data can't be used on VMLAUNCH and when we switch
2109 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2110 */
2111 if (from_launch || evmcs_gpa_changed) {
2112 vmx->nested.hv_evmcs->hv_clean_fields &=
2113 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2114
2115 vmx->nested.force_msr_bitmap_recalc = true;
2116 }
2117
2118 return EVMPTRLD_SUCCEEDED;
2119#else
2120 return EVMPTRLD_DISABLED;
2121#endif
2122}
2123
2124void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2125{
2126 struct vcpu_vmx *vmx = to_vmx(vcpu);
2127
2128 if (nested_vmx_is_evmptr12_valid(vmx))
2129 copy_vmcs12_to_enlightened(vmx);
2130 else
2131 copy_vmcs12_to_shadow(vmx);
2132
2133 vmx->nested.need_vmcs12_to_shadow_sync = false;
2134}
2135
2136static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2137{
2138 struct vcpu_vmx *vmx =
2139 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2140
2141 vmx->nested.preemption_timer_expired = true;
2142 kvm_make_request(KVM_REQ_EVENT, vcpu: &vmx->vcpu);
2143 kvm_vcpu_kick(vcpu: &vmx->vcpu);
2144
2145 return HRTIMER_NORESTART;
2146}
2147
2148static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2149{
2150 struct vcpu_vmx *vmx = to_vmx(vcpu);
2151 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2152
2153 u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, host_tsc: rdtsc()) >>
2154 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2155
2156 if (!vmx->nested.has_preemption_timer_deadline) {
2157 vmx->nested.preemption_timer_deadline =
2158 vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2159 vmx->nested.has_preemption_timer_deadline = true;
2160 }
2161 return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2162}
2163
2164static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2165 u64 preemption_timeout)
2166{
2167 struct vcpu_vmx *vmx = to_vmx(vcpu);
2168
2169 /*
2170 * A timer value of zero is architecturally guaranteed to cause
2171 * a VMExit prior to executing any instructions in the guest.
2172 */
2173 if (preemption_timeout == 0) {
2174 vmx_preemption_timer_fn(timer: &vmx->nested.preemption_timer);
2175 return;
2176 }
2177
2178 if (vcpu->arch.virtual_tsc_khz == 0)
2179 return;
2180
2181 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2182 preemption_timeout *= 1000000;
2183 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2184 hrtimer_start(timer: &vmx->nested.preemption_timer,
2185 ktime_add_ns(ktime_get(), preemption_timeout),
2186 mode: HRTIMER_MODE_ABS_PINNED);
2187}
2188
2189static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2190{
2191 if (vmx->nested.nested_run_pending &&
2192 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2193 return vmcs12->guest_ia32_efer;
2194 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2195 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2196 else
2197 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2198}
2199
2200static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2201{
2202 struct kvm *kvm = vmx->vcpu.kvm;
2203
2204 /*
2205 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2206 * according to L0's settings (vmcs12 is irrelevant here). Host
2207 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2208 * will be set as needed prior to VMLAUNCH/VMRESUME.
2209 */
2210 if (vmx->nested.vmcs02_initialized)
2211 return;
2212 vmx->nested.vmcs02_initialized = true;
2213
2214 /*
2215 * We don't care what the EPTP value is we just need to guarantee
2216 * it's valid so we don't get a false positive when doing early
2217 * consistency checks.
2218 */
2219 if (enable_ept && nested_early_check)
2220 vmcs_write64(field: EPT_POINTER,
2221 value: construct_eptp(vcpu: &vmx->vcpu, root_hpa: 0, PT64_ROOT_4LEVEL));
2222
2223 /* All VMFUNCs are currently emulated through L0 vmexits. */
2224 if (cpu_has_vmx_vmfunc())
2225 vmcs_write64(field: VM_FUNCTION_CONTROL, value: 0);
2226
2227 if (cpu_has_vmx_posted_intr())
2228 vmcs_write16(field: POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2229
2230 if (cpu_has_vmx_msr_bitmap())
2231 vmcs_write64(field: MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2232
2233 /*
2234 * PML is emulated for L2, but never enabled in hardware as the MMU
2235 * handles A/D emulation. Disabling PML for L2 also avoids having to
2236 * deal with filtering out L2 GPAs from the buffer.
2237 */
2238 if (enable_pml) {
2239 vmcs_write64(field: PML_ADDRESS, value: 0);
2240 vmcs_write16(field: GUEST_PML_INDEX, value: -1);
2241 }
2242
2243 if (cpu_has_vmx_encls_vmexit())
2244 vmcs_write64(field: ENCLS_EXITING_BITMAP, INVALID_GPA);
2245
2246 if (kvm_notify_vmexit_enabled(kvm))
2247 vmcs_write32(field: NOTIFY_WINDOW, value: kvm->arch.notify_window);
2248
2249 /*
2250 * Set the MSR load/store lists to match L0's settings. Only the
2251 * addresses are constant (for vmcs02), the counts can change based
2252 * on L2's behavior, e.g. switching to/from long mode.
2253 */
2254 vmcs_write64(field: VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2255 vmcs_write64(field: VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2256 vmcs_write64(field: VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2257
2258 vmx_set_constant_host_state(vmx);
2259}
2260
2261static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2262 struct vmcs12 *vmcs12)
2263{
2264 prepare_vmcs02_constant_state(vmx);
2265
2266 vmcs_write64(field: VMCS_LINK_POINTER, INVALID_GPA);
2267
2268 if (enable_vpid) {
2269 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2270 vmcs_write16(field: VIRTUAL_PROCESSOR_ID, value: vmx->nested.vpid02);
2271 else
2272 vmcs_write16(field: VIRTUAL_PROCESSOR_ID, value: vmx->vpid);
2273 }
2274}
2275
2276static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2277 struct vmcs12 *vmcs12)
2278{
2279 u32 exec_control;
2280 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2281
2282 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx))
2283 prepare_vmcs02_early_rare(vmx, vmcs12);
2284
2285 /*
2286 * PIN CONTROLS
2287 */
2288 exec_control = __pin_controls_get(vmcs: vmcs01);
2289 exec_control |= (vmcs12->pin_based_vm_exec_control &
2290 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2291
2292 /* Posted interrupts setting is only taken from vmcs12. */
2293 vmx->nested.pi_pending = false;
2294 if (nested_cpu_has_posted_intr(vmcs12))
2295 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2296 else
2297 exec_control &= ~PIN_BASED_POSTED_INTR;
2298 pin_controls_set(vmx, val: exec_control);
2299
2300 /*
2301 * EXEC CONTROLS
2302 */
2303 exec_control = __exec_controls_get(vmcs: vmcs01); /* L0's desires */
2304 exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2305 exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2306 exec_control &= ~CPU_BASED_TPR_SHADOW;
2307 exec_control |= vmcs12->cpu_based_vm_exec_control;
2308
2309 vmx->nested.l1_tpr_threshold = -1;
2310 if (exec_control & CPU_BASED_TPR_SHADOW)
2311 vmcs_write32(field: TPR_THRESHOLD, value: vmcs12->tpr_threshold);
2312#ifdef CONFIG_X86_64
2313 else
2314 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2315 CPU_BASED_CR8_STORE_EXITING;
2316#endif
2317
2318 /*
2319 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2320 * for I/O port accesses.
2321 */
2322 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2323 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2324
2325 /*
2326 * This bit will be computed in nested_get_vmcs12_pages, because
2327 * we do not have access to L1's MSR bitmap yet. For now, keep
2328 * the same bit as before, hoping to avoid multiple VMWRITEs that
2329 * only set/clear this bit.
2330 */
2331 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2332 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2333
2334 exec_controls_set(vmx, val: exec_control);
2335
2336 /*
2337 * SECONDARY EXEC CONTROLS
2338 */
2339 if (cpu_has_secondary_exec_ctrls()) {
2340 exec_control = __secondary_exec_controls_get(vmcs: vmcs01);
2341
2342 /* Take the following fields only from vmcs12 */
2343 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2344 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2345 SECONDARY_EXEC_ENABLE_INVPCID |
2346 SECONDARY_EXEC_ENABLE_RDTSCP |
2347 SECONDARY_EXEC_ENABLE_XSAVES |
2348 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2349 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2350 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2351 SECONDARY_EXEC_ENABLE_VMFUNC |
2352 SECONDARY_EXEC_DESC);
2353
2354 if (nested_cpu_has(vmcs12,
2355 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2356 exec_control |= vmcs12->secondary_vm_exec_control;
2357
2358 /* PML is emulated and never enabled in hardware for L2. */
2359 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2360
2361 /* VMCS shadowing for L2 is emulated for now */
2362 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2363
2364 /*
2365 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2366 * will not have to rewrite the controls just for this bit.
2367 */
2368 if (vmx_umip_emulated() && (vmcs12->guest_cr4 & X86_CR4_UMIP))
2369 exec_control |= SECONDARY_EXEC_DESC;
2370
2371 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2372 vmcs_write16(field: GUEST_INTR_STATUS,
2373 value: vmcs12->guest_intr_status);
2374
2375 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2376 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2377
2378 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2379 vmx_write_encls_bitmap(vcpu: &vmx->vcpu, vmcs12);
2380
2381 secondary_exec_controls_set(vmx, val: exec_control);
2382 }
2383
2384 /*
2385 * ENTRY CONTROLS
2386 *
2387 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2388 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2389 * on the related bits (if supported by the CPU) in the hope that
2390 * we can avoid VMWrites during vmx_set_efer().
2391 *
2392 * Similarly, take vmcs01's PERF_GLOBAL_CTRL in the hope that if KVM is
2393 * loading PERF_GLOBAL_CTRL via the VMCS for L1, then KVM will want to
2394 * do the same for L2.
2395 */
2396 exec_control = __vm_entry_controls_get(vmcs: vmcs01);
2397 exec_control |= (vmcs12->vm_entry_controls &
2398 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
2399 exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2400 if (cpu_has_load_ia32_efer()) {
2401 if (guest_efer & EFER_LMA)
2402 exec_control |= VM_ENTRY_IA32E_MODE;
2403 if (guest_efer != host_efer)
2404 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2405 }
2406 vm_entry_controls_set(vmx, val: exec_control);
2407
2408 /*
2409 * EXIT CONTROLS
2410 *
2411 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2412 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2413 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2414 */
2415 exec_control = __vm_exit_controls_get(vmcs: vmcs01);
2416 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2417 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2418 else
2419 exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2420 vm_exit_controls_set(vmx, val: exec_control);
2421
2422 /*
2423 * Interrupt/Exception Fields
2424 */
2425 if (vmx->nested.nested_run_pending) {
2426 vmcs_write32(field: VM_ENTRY_INTR_INFO_FIELD,
2427 value: vmcs12->vm_entry_intr_info_field);
2428 vmcs_write32(field: VM_ENTRY_EXCEPTION_ERROR_CODE,
2429 value: vmcs12->vm_entry_exception_error_code);
2430 vmcs_write32(field: VM_ENTRY_INSTRUCTION_LEN,
2431 value: vmcs12->vm_entry_instruction_len);
2432 vmcs_write32(field: GUEST_INTERRUPTIBILITY_INFO,
2433 value: vmcs12->guest_interruptibility_info);
2434 vmx->loaded_vmcs->nmi_known_unmasked =
2435 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2436 } else {
2437 vmcs_write32(field: VM_ENTRY_INTR_INFO_FIELD, value: 0);
2438 }
2439}
2440
2441static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2442{
2443 struct hv_enlightened_vmcs *hv_evmcs = nested_vmx_evmcs(vmx);
2444
2445 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2446 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2447 vmcs_write16(field: GUEST_ES_SELECTOR, value: vmcs12->guest_es_selector);
2448 vmcs_write16(field: GUEST_CS_SELECTOR, value: vmcs12->guest_cs_selector);
2449 vmcs_write16(field: GUEST_SS_SELECTOR, value: vmcs12->guest_ss_selector);
2450 vmcs_write16(field: GUEST_DS_SELECTOR, value: vmcs12->guest_ds_selector);
2451 vmcs_write16(field: GUEST_FS_SELECTOR, value: vmcs12->guest_fs_selector);
2452 vmcs_write16(field: GUEST_GS_SELECTOR, value: vmcs12->guest_gs_selector);
2453 vmcs_write16(field: GUEST_LDTR_SELECTOR, value: vmcs12->guest_ldtr_selector);
2454 vmcs_write16(field: GUEST_TR_SELECTOR, value: vmcs12->guest_tr_selector);
2455 vmcs_write32(field: GUEST_ES_LIMIT, value: vmcs12->guest_es_limit);
2456 vmcs_write32(field: GUEST_CS_LIMIT, value: vmcs12->guest_cs_limit);
2457 vmcs_write32(field: GUEST_SS_LIMIT, value: vmcs12->guest_ss_limit);
2458 vmcs_write32(field: GUEST_DS_LIMIT, value: vmcs12->guest_ds_limit);
2459 vmcs_write32(field: GUEST_FS_LIMIT, value: vmcs12->guest_fs_limit);
2460 vmcs_write32(field: GUEST_GS_LIMIT, value: vmcs12->guest_gs_limit);
2461 vmcs_write32(field: GUEST_LDTR_LIMIT, value: vmcs12->guest_ldtr_limit);
2462 vmcs_write32(field: GUEST_TR_LIMIT, value: vmcs12->guest_tr_limit);
2463 vmcs_write32(field: GUEST_GDTR_LIMIT, value: vmcs12->guest_gdtr_limit);
2464 vmcs_write32(field: GUEST_IDTR_LIMIT, value: vmcs12->guest_idtr_limit);
2465 vmcs_write32(field: GUEST_CS_AR_BYTES, value: vmcs12->guest_cs_ar_bytes);
2466 vmcs_write32(field: GUEST_SS_AR_BYTES, value: vmcs12->guest_ss_ar_bytes);
2467 vmcs_write32(field: GUEST_ES_AR_BYTES, value: vmcs12->guest_es_ar_bytes);
2468 vmcs_write32(field: GUEST_DS_AR_BYTES, value: vmcs12->guest_ds_ar_bytes);
2469 vmcs_write32(field: GUEST_FS_AR_BYTES, value: vmcs12->guest_fs_ar_bytes);
2470 vmcs_write32(field: GUEST_GS_AR_BYTES, value: vmcs12->guest_gs_ar_bytes);
2471 vmcs_write32(field: GUEST_LDTR_AR_BYTES, value: vmcs12->guest_ldtr_ar_bytes);
2472 vmcs_write32(field: GUEST_TR_AR_BYTES, value: vmcs12->guest_tr_ar_bytes);
2473 vmcs_writel(field: GUEST_ES_BASE, value: vmcs12->guest_es_base);
2474 vmcs_writel(field: GUEST_CS_BASE, value: vmcs12->guest_cs_base);
2475 vmcs_writel(field: GUEST_SS_BASE, value: vmcs12->guest_ss_base);
2476 vmcs_writel(field: GUEST_DS_BASE, value: vmcs12->guest_ds_base);
2477 vmcs_writel(field: GUEST_FS_BASE, value: vmcs12->guest_fs_base);
2478 vmcs_writel(field: GUEST_GS_BASE, value: vmcs12->guest_gs_base);
2479 vmcs_writel(field: GUEST_LDTR_BASE, value: vmcs12->guest_ldtr_base);
2480 vmcs_writel(field: GUEST_TR_BASE, value: vmcs12->guest_tr_base);
2481 vmcs_writel(field: GUEST_GDTR_BASE, value: vmcs12->guest_gdtr_base);
2482 vmcs_writel(field: GUEST_IDTR_BASE, value: vmcs12->guest_idtr_base);
2483
2484 vmx->segment_cache.bitmask = 0;
2485 }
2486
2487 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2488 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2489 vmcs_write32(field: GUEST_SYSENTER_CS, value: vmcs12->guest_sysenter_cs);
2490 vmcs_writel(field: GUEST_PENDING_DBG_EXCEPTIONS,
2491 value: vmcs12->guest_pending_dbg_exceptions);
2492 vmcs_writel(field: GUEST_SYSENTER_ESP, value: vmcs12->guest_sysenter_esp);
2493 vmcs_writel(field: GUEST_SYSENTER_EIP, value: vmcs12->guest_sysenter_eip);
2494
2495 /*
2496 * L1 may access the L2's PDPTR, so save them to construct
2497 * vmcs12
2498 */
2499 if (enable_ept) {
2500 vmcs_write64(field: GUEST_PDPTR0, value: vmcs12->guest_pdptr0);
2501 vmcs_write64(field: GUEST_PDPTR1, value: vmcs12->guest_pdptr1);
2502 vmcs_write64(field: GUEST_PDPTR2, value: vmcs12->guest_pdptr2);
2503 vmcs_write64(field: GUEST_PDPTR3, value: vmcs12->guest_pdptr3);
2504 }
2505
2506 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2507 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2508 vmcs_write64(field: GUEST_BNDCFGS, value: vmcs12->guest_bndcfgs);
2509 }
2510
2511 if (nested_cpu_has_xsaves(vmcs12))
2512 vmcs_write64(field: XSS_EXIT_BITMAP, value: vmcs12->xss_exit_bitmap);
2513
2514 /*
2515 * Whether page-faults are trapped is determined by a combination of
2516 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. If L0
2517 * doesn't care about page faults then we should set all of these to
2518 * L1's desires. However, if L0 does care about (some) page faults, it
2519 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2520 * simply ask to exit on each and every L2 page fault. This is done by
2521 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2522 * Note that below we don't need special code to set EB.PF beyond the
2523 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2524 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2525 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2526 */
2527 if (vmx_need_pf_intercept(vcpu: &vmx->vcpu)) {
2528 /*
2529 * TODO: if both L0 and L1 need the same MASK and MATCH,
2530 * go ahead and use it?
2531 */
2532 vmcs_write32(field: PAGE_FAULT_ERROR_CODE_MASK, value: 0);
2533 vmcs_write32(field: PAGE_FAULT_ERROR_CODE_MATCH, value: 0);
2534 } else {
2535 vmcs_write32(field: PAGE_FAULT_ERROR_CODE_MASK, value: vmcs12->page_fault_error_code_mask);
2536 vmcs_write32(field: PAGE_FAULT_ERROR_CODE_MATCH, value: vmcs12->page_fault_error_code_match);
2537 }
2538
2539 if (cpu_has_vmx_apicv()) {
2540 vmcs_write64(field: EOI_EXIT_BITMAP0, value: vmcs12->eoi_exit_bitmap0);
2541 vmcs_write64(field: EOI_EXIT_BITMAP1, value: vmcs12->eoi_exit_bitmap1);
2542 vmcs_write64(field: EOI_EXIT_BITMAP2, value: vmcs12->eoi_exit_bitmap2);
2543 vmcs_write64(field: EOI_EXIT_BITMAP3, value: vmcs12->eoi_exit_bitmap3);
2544 }
2545
2546 /*
2547 * Make sure the msr_autostore list is up to date before we set the
2548 * count in the vmcs02.
2549 */
2550 prepare_vmx_msr_autostore_list(vcpu: &vmx->vcpu, MSR_IA32_TSC);
2551
2552 vmcs_write32(field: VM_EXIT_MSR_STORE_COUNT, value: vmx->msr_autostore.guest.nr);
2553 vmcs_write32(field: VM_EXIT_MSR_LOAD_COUNT, value: vmx->msr_autoload.host.nr);
2554 vmcs_write32(field: VM_ENTRY_MSR_LOAD_COUNT, value: vmx->msr_autoload.guest.nr);
2555
2556 set_cr4_guest_host_mask(vmx);
2557}
2558
2559/*
2560 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2561 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2562 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2563 * guest in a way that will both be appropriate to L1's requests, and our
2564 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2565 * function also has additional necessary side-effects, like setting various
2566 * vcpu->arch fields.
2567 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2568 * is assigned to entry_failure_code on failure.
2569 */
2570static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2571 bool from_vmentry,
2572 enum vm_entry_failure_code *entry_failure_code)
2573{
2574 struct vcpu_vmx *vmx = to_vmx(vcpu);
2575 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
2576 bool load_guest_pdptrs_vmcs12 = false;
2577
2578 if (vmx->nested.dirty_vmcs12 || nested_vmx_is_evmptr12_valid(vmx)) {
2579 prepare_vmcs02_rare(vmx, vmcs12);
2580 vmx->nested.dirty_vmcs12 = false;
2581
2582 load_guest_pdptrs_vmcs12 = !nested_vmx_is_evmptr12_valid(vmx) ||
2583 !(evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2584 }
2585
2586 if (vmx->nested.nested_run_pending &&
2587 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2588 kvm_set_dr(vcpu, dr: 7, val: vmcs12->guest_dr7);
2589 vmcs_write64(field: GUEST_IA32_DEBUGCTL, value: vmcs12->guest_ia32_debugctl);
2590 } else {
2591 kvm_set_dr(vcpu, dr: 7, val: vcpu->arch.dr7);
2592 vmcs_write64(field: GUEST_IA32_DEBUGCTL, value: vmx->nested.pre_vmenter_debugctl);
2593 }
2594 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2595 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2596 vmcs_write64(field: GUEST_BNDCFGS, value: vmx->nested.pre_vmenter_bndcfgs);
2597 vmx_set_rflags(vcpu, rflags: vmcs12->guest_rflags);
2598
2599 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2600 * bitwise-or of what L1 wants to trap for L2, and what we want to
2601 * trap. Note that CR0.TS also needs updating - we do this later.
2602 */
2603 vmx_update_exception_bitmap(vcpu);
2604 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2605 vmcs_writel(field: CR0_GUEST_HOST_MASK, value: ~vcpu->arch.cr0_guest_owned_bits);
2606
2607 if (vmx->nested.nested_run_pending &&
2608 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2609 vmcs_write64(field: GUEST_IA32_PAT, value: vmcs12->guest_ia32_pat);
2610 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2611 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2612 vmcs_write64(field: GUEST_IA32_PAT, value: vmx->vcpu.arch.pat);
2613 }
2614
2615 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2616 l1_offset: vcpu->arch.l1_tsc_offset,
2617 l2_offset: vmx_get_l2_tsc_offset(vcpu),
2618 l2_multiplier: vmx_get_l2_tsc_multiplier(vcpu));
2619
2620 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2621 l1_multiplier: vcpu->arch.l1_tsc_scaling_ratio,
2622 l2_multiplier: vmx_get_l2_tsc_multiplier(vcpu));
2623
2624 vmcs_write64(field: TSC_OFFSET, value: vcpu->arch.tsc_offset);
2625 if (kvm_caps.has_tsc_control)
2626 vmcs_write64(field: TSC_MULTIPLIER, value: vcpu->arch.tsc_scaling_ratio);
2627
2628 nested_vmx_transition_tlb_flush(vcpu, vmcs12, is_vmenter: true);
2629
2630 if (nested_cpu_has_ept(vmcs12))
2631 nested_ept_init_mmu_context(vcpu);
2632
2633 /*
2634 * Override the CR0/CR4 read shadows after setting the effective guest
2635 * CR0/CR4. The common helpers also set the shadows, but they don't
2636 * account for vmcs12's cr0/4_guest_host_mask.
2637 */
2638 vmx_set_cr0(vcpu, cr0: vmcs12->guest_cr0);
2639 vmcs_writel(field: CR0_READ_SHADOW, value: nested_read_cr0(fields: vmcs12));
2640
2641 vmx_set_cr4(vcpu, cr4: vmcs12->guest_cr4);
2642 vmcs_writel(field: CR4_READ_SHADOW, value: nested_read_cr4(fields: vmcs12));
2643
2644 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2645 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2646 vmx_set_efer(vcpu, efer: vcpu->arch.efer);
2647
2648 /*
2649 * Guest state is invalid and unrestricted guest is disabled,
2650 * which means L1 attempted VMEntry to L2 with invalid state.
2651 * Fail the VMEntry.
2652 *
2653 * However when force loading the guest state (SMM exit or
2654 * loading nested state after migration, it is possible to
2655 * have invalid guest state now, which will be later fixed by
2656 * restoring L2 register state
2657 */
2658 if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2659 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2660 return -EINVAL;
2661 }
2662
2663 /* Shadow page tables on either EPT or shadow page tables. */
2664 if (nested_vmx_load_cr3(vcpu, cr3: vmcs12->guest_cr3, nested_ept: nested_cpu_has_ept(vmcs12),
2665 reload_pdptrs: from_vmentry, entry_failure_code))
2666 return -EINVAL;
2667
2668 /*
2669 * Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
2670 * on nested VM-Exit, which can occur without actually running L2 and
2671 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2672 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2673 * transition to HLT instead of running L2.
2674 */
2675 if (enable_ept)
2676 vmcs_writel(field: GUEST_CR3, value: vmcs12->guest_cr3);
2677
2678 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2679 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2680 is_pae_paging(vcpu)) {
2681 vmcs_write64(field: GUEST_PDPTR0, value: vmcs12->guest_pdptr0);
2682 vmcs_write64(field: GUEST_PDPTR1, value: vmcs12->guest_pdptr1);
2683 vmcs_write64(field: GUEST_PDPTR2, value: vmcs12->guest_pdptr2);
2684 vmcs_write64(field: GUEST_PDPTR3, value: vmcs12->guest_pdptr3);
2685 }
2686
2687 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2688 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2689 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2690 vmcs12->guest_ia32_perf_global_ctrl))) {
2691 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2692 return -EINVAL;
2693 }
2694
2695 kvm_rsp_write(vcpu, val: vmcs12->guest_rsp);
2696 kvm_rip_write(vcpu, val: vmcs12->guest_rip);
2697
2698 /*
2699 * It was observed that genuine Hyper-V running in L1 doesn't reset
2700 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2701 * bits when it changes a field in eVMCS. Mark all fields as clean
2702 * here.
2703 */
2704 if (nested_vmx_is_evmptr12_valid(vmx))
2705 evmcs->hv_clean_fields |= HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2706
2707 return 0;
2708}
2709
2710static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2711{
2712 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2713 nested_cpu_has_virtual_nmis(vmcs12)))
2714 return -EINVAL;
2715
2716 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2717 nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2718 return -EINVAL;
2719
2720 return 0;
2721}
2722
2723static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2724{
2725 struct vcpu_vmx *vmx = to_vmx(vcpu);
2726
2727 /* Check for memory type validity */
2728 switch (new_eptp & VMX_EPTP_MT_MASK) {
2729 case VMX_EPTP_MT_UC:
2730 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2731 return false;
2732 break;
2733 case VMX_EPTP_MT_WB:
2734 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2735 return false;
2736 break;
2737 default:
2738 return false;
2739 }
2740
2741 /* Page-walk levels validity. */
2742 switch (new_eptp & VMX_EPTP_PWL_MASK) {
2743 case VMX_EPTP_PWL_5:
2744 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2745 return false;
2746 break;
2747 case VMX_EPTP_PWL_4:
2748 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2749 return false;
2750 break;
2751 default:
2752 return false;
2753 }
2754
2755 /* Reserved bits should not be set */
2756 if (CC(!kvm_vcpu_is_legal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2757 return false;
2758
2759 /* AD, if set, should be supported */
2760 if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2761 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2762 return false;
2763 }
2764
2765 return true;
2766}
2767
2768/*
2769 * Checks related to VM-Execution Control Fields
2770 */
2771static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2772 struct vmcs12 *vmcs12)
2773{
2774 struct vcpu_vmx *vmx = to_vmx(vcpu);
2775
2776 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2777 vmx->nested.msrs.pinbased_ctls_low,
2778 vmx->nested.msrs.pinbased_ctls_high)) ||
2779 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2780 vmx->nested.msrs.procbased_ctls_low,
2781 vmx->nested.msrs.procbased_ctls_high)))
2782 return -EINVAL;
2783
2784 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2785 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2786 vmx->nested.msrs.secondary_ctls_low,
2787 vmx->nested.msrs.secondary_ctls_high)))
2788 return -EINVAL;
2789
2790 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2791 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2792 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2793 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2794 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2795 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2796 nested_vmx_check_nmi_controls(vmcs12) ||
2797 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2798 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2799 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2800 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2801 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2802 return -EINVAL;
2803
2804 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2805 nested_cpu_has_save_preemption_timer(vmcs12))
2806 return -EINVAL;
2807
2808 if (nested_cpu_has_ept(vmcs12) &&
2809 CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2810 return -EINVAL;
2811
2812 if (nested_cpu_has_vmfunc(vmcs12)) {
2813 if (CC(vmcs12->vm_function_control &
2814 ~vmx->nested.msrs.vmfunc_controls))
2815 return -EINVAL;
2816
2817 if (nested_cpu_has_eptp_switching(vmcs12)) {
2818 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2819 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2820 return -EINVAL;
2821 }
2822 }
2823
2824 return 0;
2825}
2826
2827/*
2828 * Checks related to VM-Exit Control Fields
2829 */
2830static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2831 struct vmcs12 *vmcs12)
2832{
2833 struct vcpu_vmx *vmx = to_vmx(vcpu);
2834
2835 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2836 vmx->nested.msrs.exit_ctls_low,
2837 vmx->nested.msrs.exit_ctls_high)) ||
2838 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2839 return -EINVAL;
2840
2841 return 0;
2842}
2843
2844/*
2845 * Checks related to VM-Entry Control Fields
2846 */
2847static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2848 struct vmcs12 *vmcs12)
2849{
2850 struct vcpu_vmx *vmx = to_vmx(vcpu);
2851
2852 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2853 vmx->nested.msrs.entry_ctls_low,
2854 vmx->nested.msrs.entry_ctls_high)))
2855 return -EINVAL;
2856
2857 /*
2858 * From the Intel SDM, volume 3:
2859 * Fields relevant to VM-entry event injection must be set properly.
2860 * These fields are the VM-entry interruption-information field, the
2861 * VM-entry exception error code, and the VM-entry instruction length.
2862 */
2863 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2864 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2865 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2866 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2867 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2868 bool should_have_error_code;
2869 bool urg = nested_cpu_has2(vmcs12,
2870 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2871 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2872
2873 /* VM-entry interruption-info field: interruption type */
2874 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2875 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2876 !nested_cpu_supports_monitor_trap_flag(vcpu)))
2877 return -EINVAL;
2878
2879 /* VM-entry interruption-info field: vector */
2880 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2881 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2882 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2883 return -EINVAL;
2884
2885 /* VM-entry interruption-info field: deliver error code */
2886 should_have_error_code =
2887 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2888 x86_exception_has_error_code(vector);
2889 if (CC(has_error_code != should_have_error_code))
2890 return -EINVAL;
2891
2892 /* VM-entry exception error code */
2893 if (CC(has_error_code &&
2894 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2895 return -EINVAL;
2896
2897 /* VM-entry interruption-info field: reserved bits */
2898 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2899 return -EINVAL;
2900
2901 /* VM-entry instruction length */
2902 switch (intr_type) {
2903 case INTR_TYPE_SOFT_EXCEPTION:
2904 case INTR_TYPE_SOFT_INTR:
2905 case INTR_TYPE_PRIV_SW_EXCEPTION:
2906 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2907 CC(vmcs12->vm_entry_instruction_len == 0 &&
2908 CC(!nested_cpu_has_zero_length_injection(vcpu))))
2909 return -EINVAL;
2910 }
2911 }
2912
2913 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2914 return -EINVAL;
2915
2916 return 0;
2917}
2918
2919static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2920 struct vmcs12 *vmcs12)
2921{
2922 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2923 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2924 nested_check_vm_entry_controls(vcpu, vmcs12))
2925 return -EINVAL;
2926
2927#ifdef CONFIG_KVM_HYPERV
2928 if (guest_cpuid_has_evmcs(vcpu))
2929 return nested_evmcs_check_controls(vmcs12);
2930#endif
2931
2932 return 0;
2933}
2934
2935static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2936 struct vmcs12 *vmcs12)
2937{
2938#ifdef CONFIG_X86_64
2939 if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2940 !!(vcpu->arch.efer & EFER_LMA)))
2941 return -EINVAL;
2942#endif
2943 return 0;
2944}
2945
2946static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2947 struct vmcs12 *vmcs12)
2948{
2949 bool ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2950
2951 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2952 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2953 CC(!kvm_vcpu_is_legal_cr3(vcpu, vmcs12->host_cr3)))
2954 return -EINVAL;
2955
2956 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2957 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2958 return -EINVAL;
2959
2960 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2961 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2962 return -EINVAL;
2963
2964 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2965 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2966 vmcs12->host_ia32_perf_global_ctrl)))
2967 return -EINVAL;
2968
2969 if (ia32e) {
2970 if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2971 return -EINVAL;
2972 } else {
2973 if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2974 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2975 CC((vmcs12->host_rip) >> 32))
2976 return -EINVAL;
2977 }
2978
2979 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2980 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2981 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2982 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2983 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2984 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2985 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2986 CC(vmcs12->host_cs_selector == 0) ||
2987 CC(vmcs12->host_tr_selector == 0) ||
2988 CC(vmcs12->host_ss_selector == 0 && !ia32e))
2989 return -EINVAL;
2990
2991 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2992 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2993 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2994 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2995 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2996 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2997 return -EINVAL;
2998
2999 /*
3000 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
3001 * IA32_EFER MSR must be 0 in the field for that register. In addition,
3002 * the values of the LMA and LME bits in the field must each be that of
3003 * the host address-space size VM-exit control.
3004 */
3005 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
3006 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
3007 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
3008 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
3009 return -EINVAL;
3010 }
3011
3012 return 0;
3013}
3014
3015static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
3016 struct vmcs12 *vmcs12)
3017{
3018 struct vcpu_vmx *vmx = to_vmx(vcpu);
3019 struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
3020 struct vmcs_hdr hdr;
3021
3022 if (vmcs12->vmcs_link_pointer == INVALID_GPA)
3023 return 0;
3024
3025 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
3026 return -EINVAL;
3027
3028 if (ghc->gpa != vmcs12->vmcs_link_pointer &&
3029 CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
3030 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
3031 return -EINVAL;
3032
3033 if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
3034 offsetof(struct vmcs12, hdr),
3035 sizeof(hdr))))
3036 return -EINVAL;
3037
3038 if (CC(hdr.revision_id != VMCS12_REVISION) ||
3039 CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
3040 return -EINVAL;
3041
3042 return 0;
3043}
3044
3045/*
3046 * Checks related to Guest Non-register State
3047 */
3048static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
3049{
3050 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
3051 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
3052 vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
3053 return -EINVAL;
3054
3055 return 0;
3056}
3057
3058static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
3059 struct vmcs12 *vmcs12,
3060 enum vm_entry_failure_code *entry_failure_code)
3061{
3062 bool ia32e = !!(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE);
3063
3064 *entry_failure_code = ENTRY_FAIL_DEFAULT;
3065
3066 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3067 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3068 return -EINVAL;
3069
3070 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3071 CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3072 return -EINVAL;
3073
3074 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3075 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3076 return -EINVAL;
3077
3078 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3079 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3080 return -EINVAL;
3081 }
3082
3083 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3084 CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3085 vmcs12->guest_ia32_perf_global_ctrl)))
3086 return -EINVAL;
3087
3088 if (CC((vmcs12->guest_cr0 & (X86_CR0_PG | X86_CR0_PE)) == X86_CR0_PG))
3089 return -EINVAL;
3090
3091 if (CC(ia32e && !(vmcs12->guest_cr4 & X86_CR4_PAE)) ||
3092 CC(ia32e && !(vmcs12->guest_cr0 & X86_CR0_PG)))
3093 return -EINVAL;
3094
3095 /*
3096 * If the load IA32_EFER VM-entry control is 1, the following checks
3097 * are performed on the field for the IA32_EFER MSR:
3098 * - Bits reserved in the IA32_EFER MSR must be 0.
3099 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3100 * the IA-32e mode guest VM-exit control. It must also be identical
3101 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3102 * CR0.PG) is 1.
3103 */
3104 if (to_vmx(vcpu)->nested.nested_run_pending &&
3105 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3106 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3107 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3108 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3109 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3110 return -EINVAL;
3111 }
3112
3113 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3114 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3115 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3116 return -EINVAL;
3117
3118 if (nested_check_guest_non_reg_state(vmcs12))
3119 return -EINVAL;
3120
3121 return 0;
3122}
3123
3124static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3125{
3126 struct vcpu_vmx *vmx = to_vmx(vcpu);
3127 unsigned long cr3, cr4;
3128 bool vm_fail;
3129
3130 if (!nested_early_check)
3131 return 0;
3132
3133 if (vmx->msr_autoload.host.nr)
3134 vmcs_write32(field: VM_EXIT_MSR_LOAD_COUNT, value: 0);
3135 if (vmx->msr_autoload.guest.nr)
3136 vmcs_write32(field: VM_ENTRY_MSR_LOAD_COUNT, value: 0);
3137
3138 preempt_disable();
3139
3140 vmx_prepare_switch_to_guest(vcpu);
3141
3142 /*
3143 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3144 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
3145 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3146 * there is no need to preserve other bits or save/restore the field.
3147 */
3148 vmcs_writel(field: GUEST_RFLAGS, value: 0);
3149
3150 cr3 = __get_current_cr3_fast();
3151 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3152 vmcs_writel(field: HOST_CR3, value: cr3);
3153 vmx->loaded_vmcs->host_state.cr3 = cr3;
3154 }
3155
3156 cr4 = cr4_read_shadow();
3157 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3158 vmcs_writel(field: HOST_CR4, value: cr4);
3159 vmx->loaded_vmcs->host_state.cr4 = cr4;
3160 }
3161
3162 vm_fail = __vmx_vcpu_run(vmx, regs: (unsigned long *)&vcpu->arch.regs,
3163 flags: __vmx_vcpu_run_flags(vmx));
3164
3165 if (vmx->msr_autoload.host.nr)
3166 vmcs_write32(field: VM_EXIT_MSR_LOAD_COUNT, value: vmx->msr_autoload.host.nr);
3167 if (vmx->msr_autoload.guest.nr)
3168 vmcs_write32(field: VM_ENTRY_MSR_LOAD_COUNT, value: vmx->msr_autoload.guest.nr);
3169
3170 if (vm_fail) {
3171 u32 error = vmcs_read32(field: VM_INSTRUCTION_ERROR);
3172
3173 preempt_enable();
3174
3175 trace_kvm_nested_vmenter_failed(
3176 "early hardware check VM-instruction error: ", error);
3177 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3178 return 1;
3179 }
3180
3181 /*
3182 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3183 */
3184 if (hw_breakpoint_active())
3185 set_debugreg(__this_cpu_read(cpu_dr7), reg: 7);
3186 local_irq_enable();
3187 preempt_enable();
3188
3189 /*
3190 * A non-failing VMEntry means we somehow entered guest mode with
3191 * an illegal RIP, and that's just the tip of the iceberg. There
3192 * is no telling what memory has been modified or what state has
3193 * been exposed to unknown code. Hitting this all but guarantees
3194 * a (very critical) hardware issue.
3195 */
3196 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3197 VMX_EXIT_REASONS_FAILED_VMENTRY));
3198
3199 return 0;
3200}
3201
3202#ifdef CONFIG_KVM_HYPERV
3203static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3204{
3205 struct vcpu_vmx *vmx = to_vmx(vcpu);
3206
3207 /*
3208 * hv_evmcs may end up being not mapped after migration (when
3209 * L2 was running), map it here to make sure vmcs12 changes are
3210 * properly reflected.
3211 */
3212 if (guest_cpuid_has_evmcs(vcpu) &&
3213 vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3214 enum nested_evmptrld_status evmptrld_status =
3215 nested_vmx_handle_enlightened_vmptrld(vcpu, from_launch: false);
3216
3217 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3218 evmptrld_status == EVMPTRLD_ERROR)
3219 return false;
3220
3221 /*
3222 * Post migration VMCS12 always provides the most actual
3223 * information, copy it to eVMCS upon entry.
3224 */
3225 vmx->nested.need_vmcs12_to_shadow_sync = true;
3226 }
3227
3228 return true;
3229}
3230#endif
3231
3232static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3233{
3234 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3235 struct vcpu_vmx *vmx = to_vmx(vcpu);
3236 struct kvm_host_map *map;
3237
3238 if (!vcpu->arch.pdptrs_from_userspace &&
3239 !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3240 /*
3241 * Reload the guest's PDPTRs since after a migration
3242 * the guest CR3 might be restored prior to setting the nested
3243 * state which can lead to a load of wrong PDPTRs.
3244 */
3245 if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3246 return false;
3247 }
3248
3249
3250 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3251 map = &vmx->nested.apic_access_page_map;
3252
3253 if (!kvm_vcpu_map(vcpu, gpa: gpa_to_gfn(gpa: vmcs12->apic_access_addr), map)) {
3254 vmcs_write64(field: APIC_ACCESS_ADDR, value: pfn_to_hpa(pfn: map->pfn));
3255 } else {
3256 pr_debug_ratelimited("%s: no backing for APIC-access address in vmcs12\n",
3257 __func__);
3258 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3259 vcpu->run->internal.suberror =
3260 KVM_INTERNAL_ERROR_EMULATION;
3261 vcpu->run->internal.ndata = 0;
3262 return false;
3263 }
3264 }
3265
3266 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3267 map = &vmx->nested.virtual_apic_map;
3268
3269 if (!kvm_vcpu_map(vcpu, gpa: gpa_to_gfn(gpa: vmcs12->virtual_apic_page_addr), map)) {
3270 vmcs_write64(field: VIRTUAL_APIC_PAGE_ADDR, value: pfn_to_hpa(pfn: map->pfn));
3271 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3272 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3273 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3274 /*
3275 * The processor will never use the TPR shadow, simply
3276 * clear the bit from the execution control. Such a
3277 * configuration is useless, but it happens in tests.
3278 * For any other configuration, failing the vm entry is
3279 * _not_ what the processor does but it's basically the
3280 * only possibility we have.
3281 */
3282 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3283 } else {
3284 /*
3285 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3286 * force VM-Entry to fail.
3287 */
3288 vmcs_write64(field: VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3289 }
3290 }
3291
3292 if (nested_cpu_has_posted_intr(vmcs12)) {
3293 map = &vmx->nested.pi_desc_map;
3294
3295 if (!kvm_vcpu_map(vcpu, gpa: gpa_to_gfn(gpa: vmcs12->posted_intr_desc_addr), map)) {
3296 vmx->nested.pi_desc =
3297 (struct pi_desc *)(((void *)map->hva) +
3298 offset_in_page(vmcs12->posted_intr_desc_addr));
3299 vmcs_write64(field: POSTED_INTR_DESC_ADDR,
3300 value: pfn_to_hpa(pfn: map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3301 } else {
3302 /*
3303 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3304 * access the contents of the VMCS12 posted interrupt
3305 * descriptor. (Note that KVM may do this when it
3306 * should not, per the architectural specification.)
3307 */
3308 vmx->nested.pi_desc = NULL;
3309 pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3310 }
3311 }
3312 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3313 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3314 else
3315 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3316
3317 return true;
3318}
3319
3320static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3321{
3322#ifdef CONFIG_KVM_HYPERV
3323 /*
3324 * Note: nested_get_evmcs_page() also updates 'vp_assist_page' copy
3325 * in 'struct kvm_vcpu_hv' in case eVMCS is in use, this is mandatory
3326 * to make nested_evmcs_l2_tlb_flush_enabled() work correctly post
3327 * migration.
3328 */
3329 if (!nested_get_evmcs_page(vcpu)) {
3330 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3331 __func__);
3332 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3333 vcpu->run->internal.suberror =
3334 KVM_INTERNAL_ERROR_EMULATION;
3335 vcpu->run->internal.ndata = 0;
3336
3337 return false;
3338 }
3339#endif
3340
3341 if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3342 return false;
3343
3344 return true;
3345}
3346
3347static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3348{
3349 struct vmcs12 *vmcs12;
3350 struct vcpu_vmx *vmx = to_vmx(vcpu);
3351 gpa_t dst;
3352
3353 if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3354 return 0;
3355
3356 if (WARN_ON_ONCE(vmx->nested.pml_full))
3357 return 1;
3358
3359 /*
3360 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3361 * set is already checked as part of A/D emulation.
3362 */
3363 vmcs12 = get_vmcs12(vcpu);
3364 if (!nested_cpu_has_pml(vmcs12))
3365 return 0;
3366
3367 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3368 vmx->nested.pml_full = true;
3369 return 1;
3370 }
3371
3372 gpa &= ~0xFFFull;
3373 dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3374
3375 if (kvm_write_guest_page(kvm: vcpu->kvm, gfn: gpa_to_gfn(gpa: dst), data: &gpa,
3376 offset_in_page(dst), len: sizeof(gpa)))
3377 return 0;
3378
3379 vmcs12->guest_pml_index--;
3380
3381 return 0;
3382}
3383
3384/*
3385 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3386 * for running VMX instructions (except VMXON, whose prerequisites are
3387 * slightly different). It also specifies what exception to inject otherwise.
3388 * Note that many of these exceptions have priority over VM exits, so they
3389 * don't have to be checked again here.
3390 */
3391static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3392{
3393 if (!to_vmx(vcpu)->nested.vmxon) {
3394 kvm_queue_exception(vcpu, UD_VECTOR);
3395 return 0;
3396 }
3397
3398 if (vmx_get_cpl(vcpu)) {
3399 kvm_inject_gp(vcpu, error_code: 0);
3400 return 0;
3401 }
3402
3403 return 1;
3404}
3405
3406static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3407{
3408 u8 rvi = vmx_get_rvi();
3409 u8 vppr = kvm_lapic_get_reg(apic: vcpu->arch.apic, APIC_PROCPRI);
3410
3411 return ((rvi & 0xf0) > (vppr & 0xf0));
3412}
3413
3414static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3415 struct vmcs12 *vmcs12);
3416
3417/*
3418 * If from_vmentry is false, this is being called from state restore (either RSM
3419 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3420 *
3421 * Returns:
3422 * NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3423 * NVMX_VMENTRY_VMFAIL: Consistency check VMFail
3424 * NVMX_VMENTRY_VMEXIT: Consistency check VMExit
3425 * NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3426 */
3427enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3428 bool from_vmentry)
3429{
3430 struct vcpu_vmx *vmx = to_vmx(vcpu);
3431 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3432 enum vm_entry_failure_code entry_failure_code;
3433 bool evaluate_pending_interrupts;
3434 union vmx_exit_reason exit_reason = {
3435 .basic = EXIT_REASON_INVALID_STATE,
3436 .failed_vmentry = 1,
3437 };
3438 u32 failed_index;
3439
3440 trace_kvm_nested_vmenter(kvm_rip_read(vcpu),
3441 vmx->nested.current_vmptr,
3442 vmcs12->guest_rip,
3443 vmcs12->guest_intr_status,
3444 vmcs12->vm_entry_intr_info_field,
3445 vmcs12->secondary_vm_exec_control & SECONDARY_EXEC_ENABLE_EPT,
3446 vmcs12->ept_pointer,
3447 vmcs12->guest_cr3,
3448 KVM_ISA_VMX);
3449
3450 kvm_service_local_tlb_flush_requests(vcpu);
3451
3452 evaluate_pending_interrupts = exec_controls_get(vmx) &
3453 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3454 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3455 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3456 if (!evaluate_pending_interrupts)
3457 evaluate_pending_interrupts |= kvm_apic_has_pending_init_or_sipi(vcpu);
3458
3459 if (!vmx->nested.nested_run_pending ||
3460 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3461 vmx->nested.pre_vmenter_debugctl = vmcs_read64(field: GUEST_IA32_DEBUGCTL);
3462 if (kvm_mpx_supported() &&
3463 (!vmx->nested.nested_run_pending ||
3464 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3465 vmx->nested.pre_vmenter_bndcfgs = vmcs_read64(field: GUEST_BNDCFGS);
3466
3467 /*
3468 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3469 * nested early checks are disabled. In the event of a "late" VM-Fail,
3470 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3471 * software model to the pre-VMEntry host state. When EPT is disabled,
3472 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3473 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3474 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3475 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3476 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3477 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3478 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3479 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3480 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3481 * path would need to manually save/restore vmcs01.GUEST_CR3.
3482 */
3483 if (!enable_ept && !nested_early_check)
3484 vmcs_writel(field: GUEST_CR3, value: vcpu->arch.cr3);
3485
3486 vmx_switch_vmcs(vcpu, vmcs: &vmx->nested.vmcs02);
3487
3488 prepare_vmcs02_early(vmx, vmcs01: &vmx->vmcs01, vmcs12);
3489
3490 if (from_vmentry) {
3491 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3492 vmx_switch_vmcs(vcpu, vmcs: &vmx->vmcs01);
3493 return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3494 }
3495
3496 if (nested_vmx_check_vmentry_hw(vcpu)) {
3497 vmx_switch_vmcs(vcpu, vmcs: &vmx->vmcs01);
3498 return NVMX_VMENTRY_VMFAIL;
3499 }
3500
3501 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3502 entry_failure_code: &entry_failure_code)) {
3503 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3504 vmcs12->exit_qualification = entry_failure_code;
3505 goto vmentry_fail_vmexit;
3506 }
3507 }
3508
3509 enter_guest_mode(vcpu);
3510
3511 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, entry_failure_code: &entry_failure_code)) {
3512 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3513 vmcs12->exit_qualification = entry_failure_code;
3514 goto vmentry_fail_vmexit_guest_mode;
3515 }
3516
3517 if (from_vmentry) {
3518 failed_index = nested_vmx_load_msr(vcpu,
3519 gpa: vmcs12->vm_entry_msr_load_addr,
3520 count: vmcs12->vm_entry_msr_load_count);
3521 if (failed_index) {
3522 exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3523 vmcs12->exit_qualification = failed_index;
3524 goto vmentry_fail_vmexit_guest_mode;
3525 }
3526 } else {
3527 /*
3528 * The MMU is not initialized to point at the right entities yet and
3529 * "get pages" would need to read data from the guest (i.e. we will
3530 * need to perform gpa to hpa translation). Request a call
3531 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3532 * have already been set at vmentry time and should not be reset.
3533 */
3534 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3535 }
3536
3537 /*
3538 * Re-evaluate pending events if L1 had a pending IRQ/NMI/INIT/SIPI
3539 * when it executed VMLAUNCH/VMRESUME, as entering non-root mode can
3540 * effectively unblock various events, e.g. INIT/SIPI cause VM-Exit
3541 * unconditionally.
3542 */
3543 if (unlikely(evaluate_pending_interrupts))
3544 kvm_make_request(KVM_REQ_EVENT, vcpu);
3545
3546 /*
3547 * Do not start the preemption timer hrtimer until after we know
3548 * we are successful, so that only nested_vmx_vmexit needs to cancel
3549 * the timer.
3550 */
3551 vmx->nested.preemption_timer_expired = false;
3552 if (nested_cpu_has_preemption_timer(vmcs12)) {
3553 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3554 vmx_start_preemption_timer(vcpu, preemption_timeout: timer_value);
3555 }
3556
3557 /*
3558 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3559 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3560 * returned as far as L1 is concerned. It will only return (and set
3561 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3562 */
3563 return NVMX_VMENTRY_SUCCESS;
3564
3565 /*
3566 * A failed consistency check that leads to a VMExit during L1's
3567 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3568 * 26.7 "VM-entry failures during or after loading guest state".
3569 */
3570vmentry_fail_vmexit_guest_mode:
3571 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3572 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3573 leave_guest_mode(vcpu);
3574
3575vmentry_fail_vmexit:
3576 vmx_switch_vmcs(vcpu, vmcs: &vmx->vmcs01);
3577
3578 if (!from_vmentry)
3579 return NVMX_VMENTRY_VMEXIT;
3580
3581 load_vmcs12_host_state(vcpu, vmcs12);
3582 vmcs12->vm_exit_reason = exit_reason.full;
3583 if (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx))
3584 vmx->nested.need_vmcs12_to_shadow_sync = true;
3585 return NVMX_VMENTRY_VMEXIT;
3586}
3587
3588/*
3589 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3590 * for running an L2 nested guest.
3591 */
3592static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3593{
3594 struct vmcs12 *vmcs12;
3595 enum nvmx_vmentry_status status;
3596 struct vcpu_vmx *vmx = to_vmx(vcpu);
3597 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3598 enum nested_evmptrld_status evmptrld_status;
3599
3600 if (!nested_vmx_check_permission(vcpu))
3601 return 1;
3602
3603 evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, from_launch: launch);
3604 if (evmptrld_status == EVMPTRLD_ERROR) {
3605 kvm_queue_exception(vcpu, UD_VECTOR);
3606 return 1;
3607 }
3608
3609 kvm_pmu_trigger_event(vcpu, eventsel: kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED);
3610
3611 if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3612 return nested_vmx_failInvalid(vcpu);
3613
3614 if (CC(!nested_vmx_is_evmptr12_valid(vmx) &&
3615 vmx->nested.current_vmptr == INVALID_GPA))
3616 return nested_vmx_failInvalid(vcpu);
3617
3618 vmcs12 = get_vmcs12(vcpu);
3619
3620 /*
3621 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3622 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3623 * rather than RFLAGS.ZF, and no error number is stored to the
3624 * VM-instruction error field.
3625 */
3626 if (CC(vmcs12->hdr.shadow_vmcs))
3627 return nested_vmx_failInvalid(vcpu);
3628
3629 if (nested_vmx_is_evmptr12_valid(vmx)) {
3630 struct hv_enlightened_vmcs *evmcs = nested_vmx_evmcs(vmx);
3631
3632 copy_enlightened_to_vmcs12(vmx, hv_clean_fields: evmcs->hv_clean_fields);
3633 /* Enlightened VMCS doesn't have launch state */
3634 vmcs12->launch_state = !launch;
3635 } else if (enable_shadow_vmcs) {
3636 copy_shadow_to_vmcs12(vmx);
3637 }
3638
3639 /*
3640 * The nested entry process starts with enforcing various prerequisites
3641 * on vmcs12 as required by the Intel SDM, and act appropriately when
3642 * they fail: As the SDM explains, some conditions should cause the
3643 * instruction to fail, while others will cause the instruction to seem
3644 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3645 * To speed up the normal (success) code path, we should avoid checking
3646 * for misconfigurations which will anyway be caught by the processor
3647 * when using the merged vmcs02.
3648 */
3649 if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3650 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3651
3652 if (CC(vmcs12->launch_state == launch))
3653 return nested_vmx_fail(vcpu,
3654 vm_instruction_error: launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3655 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3656
3657 if (nested_vmx_check_controls(vcpu, vmcs12))
3658 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3659
3660 if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3661 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3662
3663 if (nested_vmx_check_host_state(vcpu, vmcs12))
3664 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3665
3666 /*
3667 * We're finally done with prerequisite checking, and can start with
3668 * the nested entry.
3669 */
3670 vmx->nested.nested_run_pending = 1;
3671 vmx->nested.has_preemption_timer_deadline = false;
3672 status = nested_vmx_enter_non_root_mode(vcpu, from_vmentry: true);
3673 if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3674 goto vmentry_failed;
3675
3676 /* Emulate processing of posted interrupts on VM-Enter. */
3677 if (nested_cpu_has_posted_intr(vmcs12) &&
3678 kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3679 vmx->nested.pi_pending = true;
3680 kvm_make_request(KVM_REQ_EVENT, vcpu);
3681 kvm_apic_clear_irr(vcpu, vec: vmx->nested.posted_intr_nv);
3682 }
3683
3684 /* Hide L1D cache contents from the nested guest. */
3685 vmx->vcpu.arch.l1tf_flush_l1d = true;
3686
3687 /*
3688 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3689 * also be used as part of restoring nVMX state for
3690 * snapshot restore (migration).
3691 *
3692 * In this flow, it is assumed that vmcs12 cache was
3693 * transferred as part of captured nVMX state and should
3694 * therefore not be read from guest memory (which may not
3695 * exist on destination host yet).
3696 */
3697 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3698
3699 switch (vmcs12->guest_activity_state) {
3700 case GUEST_ACTIVITY_HLT:
3701 /*
3702 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3703 * awakened by event injection or by an NMI-window VM-exit or
3704 * by an interrupt-window VM-exit, halt the vcpu.
3705 */
3706 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3707 !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3708 !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3709 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3710 vmx->nested.nested_run_pending = 0;
3711 return kvm_emulate_halt_noskip(vcpu);
3712 }
3713 break;
3714 case GUEST_ACTIVITY_WAIT_SIPI:
3715 vmx->nested.nested_run_pending = 0;
3716 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3717 break;
3718 default:
3719 break;
3720 }
3721
3722 return 1;
3723
3724vmentry_failed:
3725 vmx->nested.nested_run_pending = 0;
3726 if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3727 return 0;
3728 if (status == NVMX_VMENTRY_VMEXIT)
3729 return 1;
3730 WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3731 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3732}
3733
3734/*
3735 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3736 * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3737 * This function returns the new value we should put in vmcs12.guest_cr0.
3738 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3739 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3740 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3741 * didn't trap the bit, because if L1 did, so would L0).
3742 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3743 * been modified by L2, and L1 knows it. So just leave the old value of
3744 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3745 * isn't relevant, because if L0 traps this bit it can set it to anything.
3746 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3747 * changed these bits, and therefore they need to be updated, but L0
3748 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3749 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3750 */
3751static inline unsigned long
3752vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3753{
3754 return
3755 /*1*/ (vmcs_readl(field: GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3756 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3757 /*3*/ (vmcs_readl(field: CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3758 vcpu->arch.cr0_guest_owned_bits));
3759}
3760
3761static inline unsigned long
3762vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3763{
3764 return
3765 /*1*/ (vmcs_readl(field: GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3766 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3767 /*3*/ (vmcs_readl(field: CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3768 vcpu->arch.cr4_guest_owned_bits));
3769}
3770
3771static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3772 struct vmcs12 *vmcs12,
3773 u32 vm_exit_reason, u32 exit_intr_info)
3774{
3775 u32 idt_vectoring;
3776 unsigned int nr;
3777
3778 /*
3779 * Per the SDM, VM-Exits due to double and triple faults are never
3780 * considered to occur during event delivery, even if the double/triple
3781 * fault is the result of an escalating vectoring issue.
3782 *
3783 * Note, the SDM qualifies the double fault behavior with "The original
3784 * event results in a double-fault exception". It's unclear why the
3785 * qualification exists since exits due to double fault can occur only
3786 * while vectoring a different exception (injected events are never
3787 * subject to interception), i.e. there's _always_ an original event.
3788 *
3789 * The SDM also uses NMI as a confusing example for the "original event
3790 * causes the VM exit directly" clause. NMI isn't special in any way,
3791 * the same rule applies to all events that cause an exit directly.
3792 * NMI is an odd choice for the example because NMIs can only occur on
3793 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3794 */
3795 if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3796 ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3797 is_double_fault(intr_info: exit_intr_info))) {
3798 vmcs12->idt_vectoring_info_field = 0;
3799 } else if (vcpu->arch.exception.injected) {
3800 nr = vcpu->arch.exception.vector;
3801 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3802
3803 if (kvm_exception_is_soft(nr)) {
3804 vmcs12->vm_exit_instruction_len =
3805 vcpu->arch.event_exit_inst_len;
3806 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3807 } else
3808 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3809
3810 if (vcpu->arch.exception.has_error_code) {
3811 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3812 vmcs12->idt_vectoring_error_code =
3813 vcpu->arch.exception.error_code;
3814 }
3815
3816 vmcs12->idt_vectoring_info_field = idt_vectoring;
3817 } else if (vcpu->arch.nmi_injected) {
3818 vmcs12->idt_vectoring_info_field =
3819 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3820 } else if (vcpu->arch.interrupt.injected) {
3821 nr = vcpu->arch.interrupt.nr;
3822 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3823
3824 if (vcpu->arch.interrupt.soft) {
3825 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3826 vmcs12->vm_entry_instruction_len =
3827 vcpu->arch.event_exit_inst_len;
3828 } else
3829 idt_vectoring |= INTR_TYPE_EXT_INTR;
3830
3831 vmcs12->idt_vectoring_info_field = idt_vectoring;
3832 } else {
3833 vmcs12->idt_vectoring_info_field = 0;
3834 }
3835}
3836
3837
3838void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3839{
3840 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3841 gfn_t gfn;
3842
3843 /*
3844 * Don't need to mark the APIC access page dirty; it is never
3845 * written to by the CPU during APIC virtualization.
3846 */
3847
3848 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3849 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3850 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3851 }
3852
3853 if (nested_cpu_has_posted_intr(vmcs12)) {
3854 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3855 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3856 }
3857}
3858
3859static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3860{
3861 struct vcpu_vmx *vmx = to_vmx(vcpu);
3862 int max_irr;
3863 void *vapic_page;
3864 u16 status;
3865
3866 if (!vmx->nested.pi_pending)
3867 return 0;
3868
3869 if (!vmx->nested.pi_desc)
3870 goto mmio_needed;
3871
3872 vmx->nested.pi_pending = false;
3873
3874 if (!pi_test_and_clear_on(pi_desc: vmx->nested.pi_desc))
3875 return 0;
3876
3877 max_irr = find_last_bit(addr: (unsigned long *)vmx->nested.pi_desc->pir, size: 256);
3878 if (max_irr != 256) {
3879 vapic_page = vmx->nested.virtual_apic_map.hva;
3880 if (!vapic_page)
3881 goto mmio_needed;
3882
3883 __kvm_apic_update_irr(pir: vmx->nested.pi_desc->pir,
3884 regs: vapic_page, max_irr: &max_irr);
3885 status = vmcs_read16(field: GUEST_INTR_STATUS);
3886 if ((u8)max_irr > ((u8)status & 0xff)) {
3887 status &= ~0xff;
3888 status |= (u8)max_irr;
3889 vmcs_write16(field: GUEST_INTR_STATUS, value: status);
3890 }
3891 }
3892
3893 nested_mark_vmcs12_pages_dirty(vcpu);
3894 return 0;
3895
3896mmio_needed:
3897 kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3898 return -ENXIO;
3899}
3900
3901static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu)
3902{
3903 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
3904 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
3905 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3906 unsigned long exit_qual;
3907
3908 if (ex->has_payload) {
3909 exit_qual = ex->payload;
3910 } else if (ex->vector == PF_VECTOR) {
3911 exit_qual = vcpu->arch.cr2;
3912 } else if (ex->vector == DB_VECTOR) {
3913 exit_qual = vcpu->arch.dr6;
3914 exit_qual &= ~DR6_BT;
3915 exit_qual ^= DR6_ACTIVE_LOW;
3916 } else {
3917 exit_qual = 0;
3918 }
3919
3920 /*
3921 * Unlike AMD's Paged Real Mode, which reports an error code on #PF
3922 * VM-Exits even if the CPU is in Real Mode, Intel VMX never sets the
3923 * "has error code" flags on VM-Exit if the CPU is in Real Mode.
3924 */
3925 if (ex->has_error_code && is_protmode(vcpu)) {
3926 /*
3927 * Intel CPUs do not generate error codes with bits 31:16 set,
3928 * and more importantly VMX disallows setting bits 31:16 in the
3929 * injected error code for VM-Entry. Drop the bits to mimic
3930 * hardware and avoid inducing failure on nested VM-Entry if L1
3931 * chooses to inject the exception back to L2. AMD CPUs _do_
3932 * generate "full" 32-bit error codes, so KVM allows userspace
3933 * to inject exception error codes with bits 31:16 set.
3934 */
3935 vmcs12->vm_exit_intr_error_code = (u16)ex->error_code;
3936 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3937 }
3938
3939 if (kvm_exception_is_soft(nr: ex->vector))
3940 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3941 else
3942 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3943
3944 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3945 vmx_get_nmi_mask(vcpu))
3946 intr_info |= INTR_INFO_UNBLOCK_NMI;
3947
3948 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, exit_intr_info: intr_info, exit_qualification: exit_qual);
3949}
3950
3951/*
3952 * Returns true if a debug trap is (likely) pending delivery. Infer the class
3953 * of a #DB (trap-like vs. fault-like) from the exception payload (to-be-DR6).
3954 * Using the payload is flawed because code breakpoints (fault-like) and data
3955 * breakpoints (trap-like) set the same bits in DR6 (breakpoint detected), i.e.
3956 * this will return false positives if a to-be-injected code breakpoint #DB is
3957 * pending (from KVM's perspective, but not "pending" across an instruction
3958 * boundary). ICEBP, a.k.a. INT1, is also not reflected here even though it
3959 * too is trap-like.
3960 *
3961 * KVM "works" despite these flaws as ICEBP isn't currently supported by the
3962 * emulator, Monitor Trap Flag is not marked pending on intercepted #DBs (the
3963 * #DB has already happened), and MTF isn't marked pending on code breakpoints
3964 * from the emulator (because such #DBs are fault-like and thus don't trigger
3965 * actions that fire on instruction retire).
3966 */
3967static unsigned long vmx_get_pending_dbg_trap(struct kvm_queued_exception *ex)
3968{
3969 if (!ex->pending || ex->vector != DB_VECTOR)
3970 return 0;
3971
3972 /* General Detect #DBs are always fault-like. */
3973 return ex->payload & ~DR6_BD;
3974}
3975
3976/*
3977 * Returns true if there's a pending #DB exception that is lower priority than
3978 * a pending Monitor Trap Flag VM-Exit. TSS T-flag #DBs are not emulated by
3979 * KVM, but could theoretically be injected by userspace. Note, this code is
3980 * imperfect, see above.
3981 */
3982static bool vmx_is_low_priority_db_trap(struct kvm_queued_exception *ex)
3983{
3984 return vmx_get_pending_dbg_trap(ex) & ~DR6_BT;
3985}
3986
3987/*
3988 * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3989 * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3990 * represents these debug traps with a payload that is said to be compatible
3991 * with the 'pending debug exceptions' field, write the payload to the VMCS
3992 * field if a VM-exit is delivered before the debug trap.
3993 */
3994static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3995{
3996 unsigned long pending_dbg;
3997
3998 pending_dbg = vmx_get_pending_dbg_trap(ex: &vcpu->arch.exception);
3999 if (pending_dbg)
4000 vmcs_writel(field: GUEST_PENDING_DBG_EXCEPTIONS, value: pending_dbg);
4001}
4002
4003static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
4004{
4005 return nested_cpu_has_preemption_timer(vmcs12: get_vmcs12(vcpu)) &&
4006 to_vmx(vcpu)->nested.preemption_timer_expired;
4007}
4008
4009static bool vmx_has_nested_events(struct kvm_vcpu *vcpu)
4010{
4011 return nested_vmx_preemption_timer_pending(vcpu) ||
4012 to_vmx(vcpu)->nested.mtf_pending;
4013}
4014
4015/*
4016 * Per the Intel SDM's table "Priority Among Concurrent Events", with minor
4017 * edits to fill in missing examples, e.g. #DB due to split-lock accesses,
4018 * and less minor edits to splice in the priority of VMX Non-Root specific
4019 * events, e.g. MTF and NMI/INTR-window exiting.
4020 *
4021 * 1 Hardware Reset and Machine Checks
4022 * - RESET
4023 * - Machine Check
4024 *
4025 * 2 Trap on Task Switch
4026 * - T flag in TSS is set (on task switch)
4027 *
4028 * 3 External Hardware Interventions
4029 * - FLUSH
4030 * - STOPCLK
4031 * - SMI
4032 * - INIT
4033 *
4034 * 3.5 Monitor Trap Flag (MTF) VM-exit[1]
4035 *
4036 * 4 Traps on Previous Instruction
4037 * - Breakpoints
4038 * - Trap-class Debug Exceptions (#DB due to TF flag set, data/I-O
4039 * breakpoint, or #DB due to a split-lock access)
4040 *
4041 * 4.3 VMX-preemption timer expired VM-exit
4042 *
4043 * 4.6 NMI-window exiting VM-exit[2]
4044 *
4045 * 5 Nonmaskable Interrupts (NMI)
4046 *
4047 * 5.5 Interrupt-window exiting VM-exit and Virtual-interrupt delivery
4048 *
4049 * 6 Maskable Hardware Interrupts
4050 *
4051 * 7 Code Breakpoint Fault
4052 *
4053 * 8 Faults from Fetching Next Instruction
4054 * - Code-Segment Limit Violation
4055 * - Code Page Fault
4056 * - Control protection exception (missing ENDBRANCH at target of indirect
4057 * call or jump)
4058 *
4059 * 9 Faults from Decoding Next Instruction
4060 * - Instruction length > 15 bytes
4061 * - Invalid Opcode
4062 * - Coprocessor Not Available
4063 *
4064 *10 Faults on Executing Instruction
4065 * - Overflow
4066 * - Bound error
4067 * - Invalid TSS
4068 * - Segment Not Present
4069 * - Stack fault
4070 * - General Protection
4071 * - Data Page Fault
4072 * - Alignment Check
4073 * - x86 FPU Floating-point exception
4074 * - SIMD floating-point exception
4075 * - Virtualization exception
4076 * - Control protection exception
4077 *
4078 * [1] Per the "Monitor Trap Flag" section: System-management interrupts (SMIs),
4079 * INIT signals, and higher priority events take priority over MTF VM exits.
4080 * MTF VM exits take priority over debug-trap exceptions and lower priority
4081 * events.
4082 *
4083 * [2] Debug-trap exceptions and higher priority events take priority over VM exits
4084 * caused by the VMX-preemption timer. VM exits caused by the VMX-preemption
4085 * timer take priority over VM exits caused by the "NMI-window exiting"
4086 * VM-execution control and lower priority events.
4087 *
4088 * [3] Debug-trap exceptions and higher priority events take priority over VM exits
4089 * caused by "NMI-window exiting". VM exits caused by this control take
4090 * priority over non-maskable interrupts (NMIs) and lower priority events.
4091 *
4092 * [4] Virtual-interrupt delivery has the same priority as that of VM exits due to
4093 * the 1-setting of the "interrupt-window exiting" VM-execution control. Thus,
4094 * non-maskable interrupts (NMIs) and higher priority events take priority over
4095 * delivery of a virtual interrupt; delivery of a virtual interrupt takes
4096 * priority over external interrupts and lower priority events.
4097 */
4098static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
4099{
4100 struct kvm_lapic *apic = vcpu->arch.apic;
4101 struct vcpu_vmx *vmx = to_vmx(vcpu);
4102 /*
4103 * Only a pending nested run blocks a pending exception. If there is a
4104 * previously injected event, the pending exception occurred while said
4105 * event was being delivered and thus needs to be handled.
4106 */
4107 bool block_nested_exceptions = vmx->nested.nested_run_pending;
4108 /*
4109 * New events (not exceptions) are only recognized at instruction
4110 * boundaries. If an event needs reinjection, then KVM is handling a
4111 * VM-Exit that occurred _during_ instruction execution; new events are
4112 * blocked until the instruction completes.
4113 */
4114 bool block_nested_events = block_nested_exceptions ||
4115 kvm_event_needs_reinjection(vcpu);
4116
4117 if (lapic_in_kernel(vcpu) &&
4118 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
4119 if (block_nested_events)
4120 return -EBUSY;
4121 nested_vmx_update_pending_dbg(vcpu);
4122 clear_bit(KVM_APIC_INIT, addr: &apic->pending_events);
4123 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
4124 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, exit_intr_info: 0, exit_qualification: 0);
4125
4126 /* MTF is discarded if the vCPU is in WFS. */
4127 vmx->nested.mtf_pending = false;
4128 return 0;
4129 }
4130
4131 if (lapic_in_kernel(vcpu) &&
4132 test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
4133 if (block_nested_events)
4134 return -EBUSY;
4135
4136 clear_bit(KVM_APIC_SIPI, addr: &apic->pending_events);
4137 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
4138 nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, exit_intr_info: 0,
4139 exit_qualification: apic->sipi_vector & 0xFFUL);
4140 return 0;
4141 }
4142 /* Fallthrough, the SIPI is completely ignored. */
4143 }
4144
4145 /*
4146 * Process exceptions that are higher priority than Monitor Trap Flag:
4147 * fault-like exceptions, TSS T flag #DB (not emulated by KVM, but
4148 * could theoretically come in from userspace), and ICEBP (INT1).
4149 *
4150 * TODO: SMIs have higher priority than MTF and trap-like #DBs (except
4151 * for TSS T flag #DBs). KVM also doesn't save/restore pending MTF
4152 * across SMI/RSM as it should; that needs to be addressed in order to
4153 * prioritize SMI over MTF and trap-like #DBs.
4154 */
4155 if (vcpu->arch.exception_vmexit.pending &&
4156 !vmx_is_low_priority_db_trap(ex: &vcpu->arch.exception_vmexit)) {
4157 if (block_nested_exceptions)
4158 return -EBUSY;
4159
4160 nested_vmx_inject_exception_vmexit(vcpu);
4161 return 0;
4162 }
4163
4164 if (vcpu->arch.exception.pending &&
4165 !vmx_is_low_priority_db_trap(ex: &vcpu->arch.exception)) {
4166 if (block_nested_exceptions)
4167 return -EBUSY;
4168 goto no_vmexit;
4169 }
4170
4171 if (vmx->nested.mtf_pending) {
4172 if (block_nested_events)
4173 return -EBUSY;
4174 nested_vmx_update_pending_dbg(vcpu);
4175 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, exit_intr_info: 0, exit_qualification: 0);
4176 return 0;
4177 }
4178
4179 if (vcpu->arch.exception_vmexit.pending) {
4180 if (block_nested_exceptions)
4181 return -EBUSY;
4182
4183 nested_vmx_inject_exception_vmexit(vcpu);
4184 return 0;
4185 }
4186
4187 if (vcpu->arch.exception.pending) {
4188 if (block_nested_exceptions)
4189 return -EBUSY;
4190 goto no_vmexit;
4191 }
4192
4193 if (nested_vmx_preemption_timer_pending(vcpu)) {
4194 if (block_nested_events)
4195 return -EBUSY;
4196 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, exit_intr_info: 0, exit_qualification: 0);
4197 return 0;
4198 }
4199
4200 if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
4201 if (block_nested_events)
4202 return -EBUSY;
4203 goto no_vmexit;
4204 }
4205
4206 if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
4207 if (block_nested_events)
4208 return -EBUSY;
4209 if (!nested_exit_on_nmi(vcpu))
4210 goto no_vmexit;
4211
4212 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
4213 NMI_VECTOR | INTR_TYPE_NMI_INTR |
4214 INTR_INFO_VALID_MASK, exit_qualification: 0);
4215 /*
4216 * The NMI-triggered VM exit counts as injection:
4217 * clear this one and block further NMIs.
4218 */
4219 vcpu->arch.nmi_pending = 0;
4220 vmx_set_nmi_mask(vcpu, masked: true);
4221 return 0;
4222 }
4223
4224 if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
4225 if (block_nested_events)
4226 return -EBUSY;
4227 if (!nested_exit_on_intr(vcpu))
4228 goto no_vmexit;
4229 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, exit_intr_info: 0, exit_qualification: 0);
4230 return 0;
4231 }
4232
4233no_vmexit:
4234 return vmx_complete_nested_posted_interrupt(vcpu);
4235}
4236
4237static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4238{
4239 ktime_t remaining =
4240 hrtimer_get_remaining(timer: &to_vmx(vcpu)->nested.preemption_timer);
4241 u64 value;
4242
4243 if (ktime_to_ns(kt: remaining) <= 0)
4244 return 0;
4245
4246 value = ktime_to_ns(kt: remaining) * vcpu->arch.virtual_tsc_khz;
4247 do_div(value, 1000000);
4248 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4249}
4250
4251static bool is_vmcs12_ext_field(unsigned long field)
4252{
4253 switch (field) {
4254 case GUEST_ES_SELECTOR:
4255 case GUEST_CS_SELECTOR:
4256 case GUEST_SS_SELECTOR:
4257 case GUEST_DS_SELECTOR:
4258 case GUEST_FS_SELECTOR:
4259 case GUEST_GS_SELECTOR:
4260 case GUEST_LDTR_SELECTOR:
4261 case GUEST_TR_SELECTOR:
4262 case GUEST_ES_LIMIT:
4263 case GUEST_CS_LIMIT:
4264 case GUEST_SS_LIMIT:
4265 case GUEST_DS_LIMIT:
4266 case GUEST_FS_LIMIT:
4267 case GUEST_GS_LIMIT:
4268 case GUEST_LDTR_LIMIT:
4269 case GUEST_TR_LIMIT:
4270 case GUEST_GDTR_LIMIT:
4271 case GUEST_IDTR_LIMIT:
4272 case GUEST_ES_AR_BYTES:
4273 case GUEST_DS_AR_BYTES:
4274 case GUEST_FS_AR_BYTES:
4275 case GUEST_GS_AR_BYTES:
4276 case GUEST_LDTR_AR_BYTES:
4277 case GUEST_TR_AR_BYTES:
4278 case GUEST_ES_BASE:
4279 case GUEST_CS_BASE:
4280 case GUEST_SS_BASE:
4281 case GUEST_DS_BASE:
4282 case GUEST_FS_BASE:
4283 case GUEST_GS_BASE:
4284 case GUEST_LDTR_BASE:
4285 case GUEST_TR_BASE:
4286 case GUEST_GDTR_BASE:
4287 case GUEST_IDTR_BASE:
4288 case GUEST_PENDING_DBG_EXCEPTIONS:
4289 case GUEST_BNDCFGS:
4290 return true;
4291 default:
4292 break;
4293 }
4294
4295 return false;
4296}
4297
4298static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4299 struct vmcs12 *vmcs12)
4300{
4301 struct vcpu_vmx *vmx = to_vmx(vcpu);
4302
4303 vmcs12->guest_es_selector = vmcs_read16(field: GUEST_ES_SELECTOR);
4304 vmcs12->guest_cs_selector = vmcs_read16(field: GUEST_CS_SELECTOR);
4305 vmcs12->guest_ss_selector = vmcs_read16(field: GUEST_SS_SELECTOR);
4306 vmcs12->guest_ds_selector = vmcs_read16(field: GUEST_DS_SELECTOR);
4307 vmcs12->guest_fs_selector = vmcs_read16(field: GUEST_FS_SELECTOR);
4308 vmcs12->guest_gs_selector = vmcs_read16(field: GUEST_GS_SELECTOR);
4309 vmcs12->guest_ldtr_selector = vmcs_read16(field: GUEST_LDTR_SELECTOR);
4310 vmcs12->guest_tr_selector = vmcs_read16(field: GUEST_TR_SELECTOR);
4311 vmcs12->guest_es_limit = vmcs_read32(field: GUEST_ES_LIMIT);
4312 vmcs12->guest_cs_limit = vmcs_read32(field: GUEST_CS_LIMIT);
4313 vmcs12->guest_ss_limit = vmcs_read32(field: GUEST_SS_LIMIT);
4314 vmcs12->guest_ds_limit = vmcs_read32(field: GUEST_DS_LIMIT);
4315 vmcs12->guest_fs_limit = vmcs_read32(field: GUEST_FS_LIMIT);
4316 vmcs12->guest_gs_limit = vmcs_read32(field: GUEST_GS_LIMIT);
4317 vmcs12->guest_ldtr_limit = vmcs_read32(field: GUEST_LDTR_LIMIT);
4318 vmcs12->guest_tr_limit = vmcs_read32(field: GUEST_TR_LIMIT);
4319 vmcs12->guest_gdtr_limit = vmcs_read32(field: GUEST_GDTR_LIMIT);
4320 vmcs12->guest_idtr_limit = vmcs_read32(field: GUEST_IDTR_LIMIT);
4321 vmcs12->guest_es_ar_bytes = vmcs_read32(field: GUEST_ES_AR_BYTES);
4322 vmcs12->guest_ds_ar_bytes = vmcs_read32(field: GUEST_DS_AR_BYTES);
4323 vmcs12->guest_fs_ar_bytes = vmcs_read32(field: GUEST_FS_AR_BYTES);
4324 vmcs12->guest_gs_ar_bytes = vmcs_read32(field: GUEST_GS_AR_BYTES);
4325 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(field: GUEST_LDTR_AR_BYTES);
4326 vmcs12->guest_tr_ar_bytes = vmcs_read32(field: GUEST_TR_AR_BYTES);
4327 vmcs12->guest_es_base = vmcs_readl(field: GUEST_ES_BASE);
4328 vmcs12->guest_cs_base = vmcs_readl(field: GUEST_CS_BASE);
4329 vmcs12->guest_ss_base = vmcs_readl(field: GUEST_SS_BASE);
4330 vmcs12->guest_ds_base = vmcs_readl(field: GUEST_DS_BASE);
4331 vmcs12->guest_fs_base = vmcs_readl(field: GUEST_FS_BASE);
4332 vmcs12->guest_gs_base = vmcs_readl(field: GUEST_GS_BASE);
4333 vmcs12->guest_ldtr_base = vmcs_readl(field: GUEST_LDTR_BASE);
4334 vmcs12->guest_tr_base = vmcs_readl(field: GUEST_TR_BASE);
4335 vmcs12->guest_gdtr_base = vmcs_readl(field: GUEST_GDTR_BASE);
4336 vmcs12->guest_idtr_base = vmcs_readl(field: GUEST_IDTR_BASE);
4337 vmcs12->guest_pending_dbg_exceptions =
4338 vmcs_readl(field: GUEST_PENDING_DBG_EXCEPTIONS);
4339
4340 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4341}
4342
4343static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4344 struct vmcs12 *vmcs12)
4345{
4346 struct vcpu_vmx *vmx = to_vmx(vcpu);
4347 int cpu;
4348
4349 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4350 return;
4351
4352
4353 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4354
4355 cpu = get_cpu();
4356 vmx->loaded_vmcs = &vmx->nested.vmcs02;
4357 vmx_vcpu_load_vmcs(vcpu, cpu, buddy: &vmx->vmcs01);
4358
4359 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4360
4361 vmx->loaded_vmcs = &vmx->vmcs01;
4362 vmx_vcpu_load_vmcs(vcpu, cpu, buddy: &vmx->nested.vmcs02);
4363 put_cpu();
4364}
4365
4366/*
4367 * Update the guest state fields of vmcs12 to reflect changes that
4368 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4369 * VM-entry controls is also updated, since this is really a guest
4370 * state bit.)
4371 */
4372static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4373{
4374 struct vcpu_vmx *vmx = to_vmx(vcpu);
4375
4376 if (nested_vmx_is_evmptr12_valid(vmx))
4377 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4378
4379 vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4380 !nested_vmx_is_evmptr12_valid(vmx);
4381
4382 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4383 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4384
4385 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4386 vmcs12->guest_rip = kvm_rip_read(vcpu);
4387 vmcs12->guest_rflags = vmcs_readl(field: GUEST_RFLAGS);
4388
4389 vmcs12->guest_cs_ar_bytes = vmcs_read32(field: GUEST_CS_AR_BYTES);
4390 vmcs12->guest_ss_ar_bytes = vmcs_read32(field: GUEST_SS_AR_BYTES);
4391
4392 vmcs12->guest_interruptibility_info =
4393 vmcs_read32(field: GUEST_INTERRUPTIBILITY_INFO);
4394
4395 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4396 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4397 else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4398 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4399 else
4400 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4401
4402 if (nested_cpu_has_preemption_timer(vmcs12) &&
4403 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4404 !vmx->nested.nested_run_pending)
4405 vmcs12->vmx_preemption_timer_value =
4406 vmx_get_preemption_timer_value(vcpu);
4407
4408 /*
4409 * In some cases (usually, nested EPT), L2 is allowed to change its
4410 * own CR3 without exiting. If it has changed it, we must keep it.
4411 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4412 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4413 *
4414 * Additionally, restore L2's PDPTR to vmcs12.
4415 */
4416 if (enable_ept) {
4417 vmcs12->guest_cr3 = vmcs_readl(field: GUEST_CR3);
4418 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4419 vmcs12->guest_pdptr0 = vmcs_read64(field: GUEST_PDPTR0);
4420 vmcs12->guest_pdptr1 = vmcs_read64(field: GUEST_PDPTR1);
4421 vmcs12->guest_pdptr2 = vmcs_read64(field: GUEST_PDPTR2);
4422 vmcs12->guest_pdptr3 = vmcs_read64(field: GUEST_PDPTR3);
4423 }
4424 }
4425
4426 vmcs12->guest_linear_address = vmcs_readl(field: GUEST_LINEAR_ADDRESS);
4427
4428 if (nested_cpu_has_vid(vmcs12))
4429 vmcs12->guest_intr_status = vmcs_read16(field: GUEST_INTR_STATUS);
4430
4431 vmcs12->vm_entry_controls =
4432 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4433 (vm_entry_controls_get(vmx: to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4434
4435 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4436 vmcs12->guest_dr7 = vcpu->arch.dr7;
4437
4438 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4439 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4440}
4441
4442/*
4443 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4444 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4445 * and this function updates it to reflect the changes to the guest state while
4446 * L2 was running (and perhaps made some exits which were handled directly by L0
4447 * without going back to L1), and to reflect the exit reason.
4448 * Note that we do not have to copy here all VMCS fields, just those that
4449 * could have changed by the L2 guest or the exit - i.e., the guest-state and
4450 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4451 * which already writes to vmcs12 directly.
4452 */
4453static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4454 u32 vm_exit_reason, u32 exit_intr_info,
4455 unsigned long exit_qualification)
4456{
4457 /* update exit information fields: */
4458 vmcs12->vm_exit_reason = vm_exit_reason;
4459 if (to_vmx(vcpu)->exit_reason.enclave_mode)
4460 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4461 vmcs12->exit_qualification = exit_qualification;
4462
4463 /*
4464 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4465 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4466 * exit info fields are unmodified.
4467 */
4468 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4469 vmcs12->launch_state = 1;
4470
4471 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4472 * instead of reading the real value. */
4473 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4474
4475 /*
4476 * Transfer the event that L0 or L1 may wanted to inject into
4477 * L2 to IDT_VECTORING_INFO_FIELD.
4478 */
4479 vmcs12_save_pending_event(vcpu, vmcs12,
4480 vm_exit_reason, exit_intr_info);
4481
4482 vmcs12->vm_exit_intr_info = exit_intr_info;
4483 vmcs12->vm_exit_instruction_len = vmcs_read32(field: VM_EXIT_INSTRUCTION_LEN);
4484 vmcs12->vmx_instruction_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
4485
4486 /*
4487 * According to spec, there's no need to store the guest's
4488 * MSRs if the exit is due to a VM-entry failure that occurs
4489 * during or after loading the guest state. Since this exit
4490 * does not fall in that category, we need to save the MSRs.
4491 */
4492 if (nested_vmx_store_msr(vcpu,
4493 gpa: vmcs12->vm_exit_msr_store_addr,
4494 count: vmcs12->vm_exit_msr_store_count))
4495 nested_vmx_abort(vcpu,
4496 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4497 }
4498}
4499
4500/*
4501 * A part of what we need to when the nested L2 guest exits and we want to
4502 * run its L1 parent, is to reset L1's guest state to the host state specified
4503 * in vmcs12.
4504 * This function is to be called not only on normal nested exit, but also on
4505 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4506 * Failures During or After Loading Guest State").
4507 * This function should be called when the active VMCS is L1's (vmcs01).
4508 */
4509static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4510 struct vmcs12 *vmcs12)
4511{
4512 enum vm_entry_failure_code ignored;
4513 struct kvm_segment seg;
4514
4515 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4516 vcpu->arch.efer = vmcs12->host_ia32_efer;
4517 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4518 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4519 else
4520 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4521 vmx_set_efer(vcpu, efer: vcpu->arch.efer);
4522
4523 kvm_rsp_write(vcpu, val: vmcs12->host_rsp);
4524 kvm_rip_write(vcpu, val: vmcs12->host_rip);
4525 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4526 vmx_set_interrupt_shadow(vcpu, mask: 0);
4527
4528 /*
4529 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4530 * actually changed, because vmx_set_cr0 refers to efer set above.
4531 *
4532 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4533 * (KVM doesn't change it);
4534 */
4535 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4536 vmx_set_cr0(vcpu, cr0: vmcs12->host_cr0);
4537
4538 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4539 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(field: CR4_GUEST_HOST_MASK);
4540 vmx_set_cr4(vcpu, cr4: vmcs12->host_cr4);
4541
4542 nested_ept_uninit_mmu_context(vcpu);
4543
4544 /*
4545 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4546 * couldn't have changed.
4547 */
4548 if (nested_vmx_load_cr3(vcpu, cr3: vmcs12->host_cr3, nested_ept: false, reload_pdptrs: true, entry_failure_code: &ignored))
4549 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4550
4551 nested_vmx_transition_tlb_flush(vcpu, vmcs12, is_vmenter: false);
4552
4553 vmcs_write32(field: GUEST_SYSENTER_CS, value: vmcs12->host_ia32_sysenter_cs);
4554 vmcs_writel(field: GUEST_SYSENTER_ESP, value: vmcs12->host_ia32_sysenter_esp);
4555 vmcs_writel(field: GUEST_SYSENTER_EIP, value: vmcs12->host_ia32_sysenter_eip);
4556 vmcs_writel(field: GUEST_IDTR_BASE, value: vmcs12->host_idtr_base);
4557 vmcs_writel(field: GUEST_GDTR_BASE, value: vmcs12->host_gdtr_base);
4558 vmcs_write32(field: GUEST_IDTR_LIMIT, value: 0xFFFF);
4559 vmcs_write32(field: GUEST_GDTR_LIMIT, value: 0xFFFF);
4560
4561 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
4562 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4563 vmcs_write64(field: GUEST_BNDCFGS, value: 0);
4564
4565 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4566 vmcs_write64(field: GUEST_IA32_PAT, value: vmcs12->host_ia32_pat);
4567 vcpu->arch.pat = vmcs12->host_ia32_pat;
4568 }
4569 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4570 kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4571 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4572 vmcs12->host_ia32_perf_global_ctrl));
4573
4574 /* Set L1 segment info according to Intel SDM
4575 27.5.2 Loading Host Segment and Descriptor-Table Registers */
4576 seg = (struct kvm_segment) {
4577 .base = 0,
4578 .limit = 0xFFFFFFFF,
4579 .selector = vmcs12->host_cs_selector,
4580 .type = 11,
4581 .present = 1,
4582 .s = 1,
4583 .g = 1
4584 };
4585 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4586 seg.l = 1;
4587 else
4588 seg.db = 1;
4589 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_CS);
4590 seg = (struct kvm_segment) {
4591 .base = 0,
4592 .limit = 0xFFFFFFFF,
4593 .type = 3,
4594 .present = 1,
4595 .s = 1,
4596 .db = 1,
4597 .g = 1
4598 };
4599 seg.selector = vmcs12->host_ds_selector;
4600 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_DS);
4601 seg.selector = vmcs12->host_es_selector;
4602 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_ES);
4603 seg.selector = vmcs12->host_ss_selector;
4604 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_SS);
4605 seg.selector = vmcs12->host_fs_selector;
4606 seg.base = vmcs12->host_fs_base;
4607 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_FS);
4608 seg.selector = vmcs12->host_gs_selector;
4609 seg.base = vmcs12->host_gs_base;
4610 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_GS);
4611 seg = (struct kvm_segment) {
4612 .base = vmcs12->host_tr_base,
4613 .limit = 0x67,
4614 .selector = vmcs12->host_tr_selector,
4615 .type = 11,
4616 .present = 1
4617 };
4618 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_TR);
4619
4620 memset(&seg, 0, sizeof(seg));
4621 seg.unusable = 1;
4622 __vmx_set_segment(vcpu, var: &seg, seg: VCPU_SREG_LDTR);
4623
4624 kvm_set_dr(vcpu, dr: 7, val: 0x400);
4625 vmcs_write64(field: GUEST_IA32_DEBUGCTL, value: 0);
4626
4627 if (nested_vmx_load_msr(vcpu, gpa: vmcs12->vm_exit_msr_load_addr,
4628 count: vmcs12->vm_exit_msr_load_count))
4629 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4630
4631 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4632}
4633
4634static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4635{
4636 struct vmx_uret_msr *efer_msr;
4637 unsigned int i;
4638
4639 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4640 return vmcs_read64(field: GUEST_IA32_EFER);
4641
4642 if (cpu_has_load_ia32_efer())
4643 return host_efer;
4644
4645 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4646 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4647 return vmx->msr_autoload.guest.val[i].value;
4648 }
4649
4650 efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4651 if (efer_msr)
4652 return efer_msr->data;
4653
4654 return host_efer;
4655}
4656
4657static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4658{
4659 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4660 struct vcpu_vmx *vmx = to_vmx(vcpu);
4661 struct vmx_msr_entry g, h;
4662 gpa_t gpa;
4663 u32 i, j;
4664
4665 vcpu->arch.pat = vmcs_read64(field: GUEST_IA32_PAT);
4666
4667 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4668 /*
4669 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4670 * as vmcs01.GUEST_DR7 contains a userspace defined value
4671 * and vcpu->arch.dr7 is not squirreled away before the
4672 * nested VMENTER (not worth adding a variable in nested_vmx).
4673 */
4674 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4675 kvm_set_dr(vcpu, dr: 7, DR7_FIXED_1);
4676 else
4677 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4678 }
4679
4680 /*
4681 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4682 * handle a variety of side effects to KVM's software model.
4683 */
4684 vmx_set_efer(vcpu, efer: nested_vmx_get_vmcs01_guest_efer(vmx));
4685
4686 vcpu->arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4687 vmx_set_cr0(vcpu, cr0: vmcs_readl(field: CR0_READ_SHADOW));
4688
4689 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(field: CR4_GUEST_HOST_MASK);
4690 vmx_set_cr4(vcpu, cr4: vmcs_readl(field: CR4_READ_SHADOW));
4691
4692 nested_ept_uninit_mmu_context(vcpu);
4693 vcpu->arch.cr3 = vmcs_readl(field: GUEST_CR3);
4694 kvm_register_mark_available(vcpu, reg: VCPU_EXREG_CR3);
4695
4696 /*
4697 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4698 * from vmcs01 (if necessary). The PDPTRs are not loaded on
4699 * VMFail, like everything else we just need to ensure our
4700 * software model is up-to-date.
4701 */
4702 if (enable_ept && is_pae_paging(vcpu))
4703 ept_save_pdptrs(vcpu);
4704
4705 kvm_mmu_reset_context(vcpu);
4706
4707 /*
4708 * This nasty bit of open coding is a compromise between blindly
4709 * loading L1's MSRs using the exit load lists (incorrect emulation
4710 * of VMFail), leaving the nested VM's MSRs in the software model
4711 * (incorrect behavior) and snapshotting the modified MSRs (too
4712 * expensive since the lists are unbound by hardware). For each
4713 * MSR that was (prematurely) loaded from the nested VMEntry load
4714 * list, reload it from the exit load list if it exists and differs
4715 * from the guest value. The intent is to stuff host state as
4716 * silently as possible, not to fully process the exit load list.
4717 */
4718 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4719 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4720 if (kvm_vcpu_read_guest(vcpu, gpa, data: &g, len: sizeof(g))) {
4721 pr_debug_ratelimited(
4722 "%s read MSR index failed (%u, 0x%08llx)\n",
4723 __func__, i, gpa);
4724 goto vmabort;
4725 }
4726
4727 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4728 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4729 if (kvm_vcpu_read_guest(vcpu, gpa, data: &h, len: sizeof(h))) {
4730 pr_debug_ratelimited(
4731 "%s read MSR failed (%u, 0x%08llx)\n",
4732 __func__, j, gpa);
4733 goto vmabort;
4734 }
4735 if (h.index != g.index)
4736 continue;
4737 if (h.value == g.value)
4738 break;
4739
4740 if (nested_vmx_load_msr_check(vcpu, e: &h)) {
4741 pr_debug_ratelimited(
4742 "%s check failed (%u, 0x%x, 0x%x)\n",
4743 __func__, j, h.index, h.reserved);
4744 goto vmabort;
4745 }
4746
4747 if (kvm_set_msr(vcpu, index: h.index, data: h.value)) {
4748 pr_debug_ratelimited(
4749 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4750 __func__, j, h.index, h.value);
4751 goto vmabort;
4752 }
4753 }
4754 }
4755
4756 return;
4757
4758vmabort:
4759 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4760}
4761
4762/*
4763 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4764 * and modify vmcs12 to make it see what it would expect to see there if
4765 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4766 */
4767void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4768 u32 exit_intr_info, unsigned long exit_qualification)
4769{
4770 struct vcpu_vmx *vmx = to_vmx(vcpu);
4771 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4772
4773 /* Pending MTF traps are discarded on VM-Exit. */
4774 vmx->nested.mtf_pending = false;
4775
4776 /* trying to cancel vmlaunch/vmresume is a bug */
4777 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4778
4779#ifdef CONFIG_KVM_HYPERV
4780 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4781 /*
4782 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4783 * Enlightened VMCS after migration and we still need to
4784 * do that when something is forcing L2->L1 exit prior to
4785 * the first L2 run.
4786 */
4787 (void)nested_get_evmcs_page(vcpu);
4788 }
4789#endif
4790
4791 /* Service pending TLB flush requests for L2 before switching to L1. */
4792 kvm_service_local_tlb_flush_requests(vcpu);
4793
4794 /*
4795 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4796 * now and the new vmentry. Ensure that the VMCS02 PDPTR fields are
4797 * up-to-date before switching to L1.
4798 */
4799 if (enable_ept && is_pae_paging(vcpu))
4800 vmx_ept_load_pdptrs(vcpu);
4801
4802 leave_guest_mode(vcpu);
4803
4804 if (nested_cpu_has_preemption_timer(vmcs12))
4805 hrtimer_cancel(timer: &to_vmx(vcpu)->nested.preemption_timer);
4806
4807 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4808 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4809 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4810 vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4811 }
4812
4813 if (likely(!vmx->fail)) {
4814 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4815
4816 if (vm_exit_reason != -1)
4817 prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4818 exit_intr_info, exit_qualification);
4819
4820 /*
4821 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4822 * also be used to capture vmcs12 cache as part of
4823 * capturing nVMX state for snapshot (migration).
4824 *
4825 * Otherwise, this flush will dirty guest memory at a
4826 * point it is already assumed by user-space to be
4827 * immutable.
4828 */
4829 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4830 } else {
4831 /*
4832 * The only expected VM-instruction error is "VM entry with
4833 * invalid control field(s)." Anything else indicates a
4834 * problem with L0. And we should never get here with a
4835 * VMFail of any type if early consistency checks are enabled.
4836 */
4837 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4838 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4839 WARN_ON_ONCE(nested_early_check);
4840 }
4841
4842 /*
4843 * Drop events/exceptions that were queued for re-injection to L2
4844 * (picked up via vmx_complete_interrupts()), as well as exceptions
4845 * that were pending for L2. Note, this must NOT be hoisted above
4846 * prepare_vmcs12(), events/exceptions queued for re-injection need to
4847 * be captured in vmcs12 (see vmcs12_save_pending_event()).
4848 */
4849 vcpu->arch.nmi_injected = false;
4850 kvm_clear_exception_queue(vcpu);
4851 kvm_clear_interrupt_queue(vcpu);
4852
4853 vmx_switch_vmcs(vcpu, vmcs: &vmx->vmcs01);
4854
4855 /*
4856 * If IBRS is advertised to the vCPU, KVM must flush the indirect
4857 * branch predictors when transitioning from L2 to L1, as L1 expects
4858 * hardware (KVM in this case) to provide separate predictor modes.
4859 * Bare metal isolates VMX root (host) from VMX non-root (guest), but
4860 * doesn't isolate different VMCSs, i.e. in this case, doesn't provide
4861 * separate modes for L2 vs L1.
4862 */
4863 if (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
4864 indirect_branch_prediction_barrier();
4865
4866 /* Update any VMCS fields that might have changed while L2 ran */
4867 vmcs_write32(field: VM_EXIT_MSR_LOAD_COUNT, value: vmx->msr_autoload.host.nr);
4868 vmcs_write32(field: VM_ENTRY_MSR_LOAD_COUNT, value: vmx->msr_autoload.guest.nr);
4869 vmcs_write64(field: TSC_OFFSET, value: vcpu->arch.tsc_offset);
4870 if (kvm_caps.has_tsc_control)
4871 vmcs_write64(field: TSC_MULTIPLIER, value: vcpu->arch.tsc_scaling_ratio);
4872
4873 if (vmx->nested.l1_tpr_threshold != -1)
4874 vmcs_write32(field: TPR_THRESHOLD, value: vmx->nested.l1_tpr_threshold);
4875
4876 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4877 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4878 vmx_set_virtual_apic_mode(vcpu);
4879 }
4880
4881 if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4882 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4883 vmx_update_cpu_dirty_logging(vcpu);
4884 }
4885
4886 /* Unpin physical memory we referred to in vmcs02 */
4887 kvm_vcpu_unmap(vcpu, map: &vmx->nested.apic_access_page_map, dirty: false);
4888 kvm_vcpu_unmap(vcpu, map: &vmx->nested.virtual_apic_map, dirty: true);
4889 kvm_vcpu_unmap(vcpu, map: &vmx->nested.pi_desc_map, dirty: true);
4890 vmx->nested.pi_desc = NULL;
4891
4892 if (vmx->nested.reload_vmcs01_apic_access_page) {
4893 vmx->nested.reload_vmcs01_apic_access_page = false;
4894 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4895 }
4896
4897 if (vmx->nested.update_vmcs01_apicv_status) {
4898 vmx->nested.update_vmcs01_apicv_status = false;
4899 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4900 }
4901
4902 if ((vm_exit_reason != -1) &&
4903 (enable_shadow_vmcs || nested_vmx_is_evmptr12_valid(vmx)))
4904 vmx->nested.need_vmcs12_to_shadow_sync = true;
4905
4906 /* in case we halted in L2 */
4907 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4908
4909 if (likely(!vmx->fail)) {
4910 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4911 nested_exit_intr_ack_set(vcpu)) {
4912 int irq = kvm_cpu_get_interrupt(v: vcpu);
4913 WARN_ON(irq < 0);
4914 vmcs12->vm_exit_intr_info = irq |
4915 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4916 }
4917
4918 if (vm_exit_reason != -1)
4919 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4920 vmcs12->exit_qualification,
4921 vmcs12->idt_vectoring_info_field,
4922 vmcs12->vm_exit_intr_info,
4923 vmcs12->vm_exit_intr_error_code,
4924 KVM_ISA_VMX);
4925
4926 load_vmcs12_host_state(vcpu, vmcs12);
4927
4928 return;
4929 }
4930
4931 /*
4932 * After an early L2 VM-entry failure, we're now back
4933 * in L1 which thinks it just finished a VMLAUNCH or
4934 * VMRESUME instruction, so we need to set the failure
4935 * flag and the VM-instruction error field of the VMCS
4936 * accordingly, and skip the emulated instruction.
4937 */
4938 (void)nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4939
4940 /*
4941 * Restore L1's host state to KVM's software model. We're here
4942 * because a consistency check was caught by hardware, which
4943 * means some amount of guest state has been propagated to KVM's
4944 * model and needs to be unwound to the host's state.
4945 */
4946 nested_vmx_restore_host_state(vcpu);
4947
4948 vmx->fail = 0;
4949}
4950
4951static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4952{
4953 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4954 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, exit_intr_info: 0, exit_qualification: 0);
4955}
4956
4957/*
4958 * Decode the memory-address operand of a vmx instruction, as recorded on an
4959 * exit caused by such an instruction (run by a guest hypervisor).
4960 * On success, returns 0. When the operand is invalid, returns 1 and throws
4961 * #UD, #GP, or #SS.
4962 */
4963int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4964 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4965{
4966 gva_t off;
4967 bool exn;
4968 struct kvm_segment s;
4969
4970 /*
4971 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4972 * Execution", on an exit, vmx_instruction_info holds most of the
4973 * addressing components of the operand. Only the displacement part
4974 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4975 * For how an actual address is calculated from all these components,
4976 * refer to Vol. 1, "Operand Addressing".
4977 */
4978 int scaling = vmx_instruction_info & 3;
4979 int addr_size = (vmx_instruction_info >> 7) & 7;
4980 bool is_reg = vmx_instruction_info & (1u << 10);
4981 int seg_reg = (vmx_instruction_info >> 15) & 7;
4982 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4983 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4984 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4985 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4986
4987 if (is_reg) {
4988 kvm_queue_exception(vcpu, UD_VECTOR);
4989 return 1;
4990 }
4991
4992 /* Addr = segment_base + offset */
4993 /* offset = base + [index * scale] + displacement */
4994 off = exit_qualification; /* holds the displacement */
4995 if (addr_size == 1)
4996 off = (gva_t)sign_extend64(value: off, index: 31);
4997 else if (addr_size == 0)
4998 off = (gva_t)sign_extend64(value: off, index: 15);
4999 if (base_is_valid)
5000 off += kvm_register_read(vcpu, reg: base_reg);
5001 if (index_is_valid)
5002 off += kvm_register_read(vcpu, reg: index_reg) << scaling;
5003 vmx_get_segment(vcpu, var: &s, seg: seg_reg);
5004
5005 /*
5006 * The effective address, i.e. @off, of a memory operand is truncated
5007 * based on the address size of the instruction. Note that this is
5008 * the *effective address*, i.e. the address prior to accounting for
5009 * the segment's base.
5010 */
5011 if (addr_size == 1) /* 32 bit */
5012 off &= 0xffffffff;
5013 else if (addr_size == 0) /* 16 bit */
5014 off &= 0xffff;
5015
5016 /* Checks for #GP/#SS exceptions. */
5017 exn = false;
5018 if (is_long_mode(vcpu)) {
5019 /*
5020 * The virtual/linear address is never truncated in 64-bit
5021 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
5022 * address when using FS/GS with a non-zero base.
5023 */
5024 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
5025 *ret = s.base + off;
5026 else
5027 *ret = off;
5028
5029 *ret = vmx_get_untagged_addr(vcpu, gva: *ret, flags: 0);
5030 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
5031 * non-canonical form. This is the only check on the memory
5032 * destination for long mode!
5033 */
5034 exn = is_noncanonical_address(la: *ret, vcpu);
5035 } else {
5036 /*
5037 * When not in long mode, the virtual/linear address is
5038 * unconditionally truncated to 32 bits regardless of the
5039 * address size.
5040 */
5041 *ret = (s.base + off) & 0xffffffff;
5042
5043 /* Protected mode: apply checks for segment validity in the
5044 * following order:
5045 * - segment type check (#GP(0) may be thrown)
5046 * - usability check (#GP(0)/#SS(0))
5047 * - limit check (#GP(0)/#SS(0))
5048 */
5049 if (wr)
5050 /* #GP(0) if the destination operand is located in a
5051 * read-only data segment or any code segment.
5052 */
5053 exn = ((s.type & 0xa) == 0 || (s.type & 8));
5054 else
5055 /* #GP(0) if the source operand is located in an
5056 * execute-only code segment
5057 */
5058 exn = ((s.type & 0xa) == 8);
5059 if (exn) {
5060 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code: 0);
5061 return 1;
5062 }
5063 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
5064 */
5065 exn = (s.unusable != 0);
5066
5067 /*
5068 * Protected mode: #GP(0)/#SS(0) if the memory operand is
5069 * outside the segment limit. All CPUs that support VMX ignore
5070 * limit checks for flat segments, i.e. segments with base==0,
5071 * limit==0xffffffff and of type expand-up data or code.
5072 */
5073 if (!(s.base == 0 && s.limit == 0xffffffff &&
5074 ((s.type & 8) || !(s.type & 4))))
5075 exn = exn || ((u64)off + len - 1 > s.limit);
5076 }
5077 if (exn) {
5078 kvm_queue_exception_e(vcpu,
5079 nr: seg_reg == VCPU_SREG_SS ?
5080 SS_VECTOR : GP_VECTOR,
5081 error_code: 0);
5082 return 1;
5083 }
5084
5085 return 0;
5086}
5087
5088static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
5089 int *ret)
5090{
5091 gva_t gva;
5092 struct x86_exception e;
5093 int r;
5094
5095 if (get_vmx_mem_address(vcpu, exit_qualification: vmx_get_exit_qual(vcpu),
5096 vmx_instruction_info: vmcs_read32(field: VMX_INSTRUCTION_INFO), wr: false,
5097 len: sizeof(*vmpointer), ret: &gva)) {
5098 *ret = 1;
5099 return -EINVAL;
5100 }
5101
5102 r = kvm_read_guest_virt(vcpu, addr: gva, val: vmpointer, bytes: sizeof(*vmpointer), exception: &e);
5103 if (r != X86EMUL_CONTINUE) {
5104 *ret = kvm_handle_memory_failure(vcpu, r, e: &e);
5105 return -EINVAL;
5106 }
5107
5108 return 0;
5109}
5110
5111/*
5112 * Allocate a shadow VMCS and associate it with the currently loaded
5113 * VMCS, unless such a shadow VMCS already exists. The newly allocated
5114 * VMCS is also VMCLEARed, so that it is ready for use.
5115 */
5116static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
5117{
5118 struct vcpu_vmx *vmx = to_vmx(vcpu);
5119 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
5120
5121 /*
5122 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
5123 * when L1 executes VMXOFF or the vCPU is forced out of nested
5124 * operation. VMXON faults if the CPU is already post-VMXON, so it
5125 * should be impossible to already have an allocated shadow VMCS. KVM
5126 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
5127 * always be the loaded VMCS.
5128 */
5129 if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
5130 return loaded_vmcs->shadow_vmcs;
5131
5132 loaded_vmcs->shadow_vmcs = alloc_vmcs(shadow: true);
5133 if (loaded_vmcs->shadow_vmcs)
5134 vmcs_clear(vmcs: loaded_vmcs->shadow_vmcs);
5135
5136 return loaded_vmcs->shadow_vmcs;
5137}
5138
5139static int enter_vmx_operation(struct kvm_vcpu *vcpu)
5140{
5141 struct vcpu_vmx *vmx = to_vmx(vcpu);
5142 int r;
5143
5144 r = alloc_loaded_vmcs(loaded_vmcs: &vmx->nested.vmcs02);
5145 if (r < 0)
5146 goto out_vmcs02;
5147
5148 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5149 if (!vmx->nested.cached_vmcs12)
5150 goto out_cached_vmcs12;
5151
5152 vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
5153 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
5154 if (!vmx->nested.cached_shadow_vmcs12)
5155 goto out_cached_shadow_vmcs12;
5156
5157 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
5158 goto out_shadow_vmcs;
5159
5160 hrtimer_init(timer: &vmx->nested.preemption_timer, CLOCK_MONOTONIC,
5161 mode: HRTIMER_MODE_ABS_PINNED);
5162 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
5163
5164 vmx->nested.vpid02 = allocate_vpid();
5165
5166 vmx->nested.vmcs02_initialized = false;
5167 vmx->nested.vmxon = true;
5168
5169 if (vmx_pt_mode_is_host_guest()) {
5170 vmx->pt_desc.guest.ctl = 0;
5171 pt_update_intercept_for_msr(vcpu);
5172 }
5173
5174 return 0;
5175
5176out_shadow_vmcs:
5177 kfree(objp: vmx->nested.cached_shadow_vmcs12);
5178
5179out_cached_shadow_vmcs12:
5180 kfree(objp: vmx->nested.cached_vmcs12);
5181
5182out_cached_vmcs12:
5183 free_loaded_vmcs(loaded_vmcs: &vmx->nested.vmcs02);
5184
5185out_vmcs02:
5186 return -ENOMEM;
5187}
5188
5189/* Emulate the VMXON instruction. */
5190static int handle_vmxon(struct kvm_vcpu *vcpu)
5191{
5192 int ret;
5193 gpa_t vmptr;
5194 uint32_t revision;
5195 struct vcpu_vmx *vmx = to_vmx(vcpu);
5196 const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
5197 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
5198
5199 /*
5200 * Manually check CR4.VMXE checks, KVM must force CR4.VMXE=1 to enter
5201 * the guest and so cannot rely on hardware to perform the check,
5202 * which has higher priority than VM-Exit (see Intel SDM's pseudocode
5203 * for VMXON).
5204 *
5205 * Rely on hardware for the other pre-VM-Exit checks, CR0.PE=1, !VM86
5206 * and !COMPATIBILITY modes. For an unrestricted guest, KVM doesn't
5207 * force any of the relevant guest state. For a restricted guest, KVM
5208 * does force CR0.PE=1, but only to also force VM86 in order to emulate
5209 * Real Mode, and so there's no need to check CR0.PE manually.
5210 */
5211 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_VMXE)) {
5212 kvm_queue_exception(vcpu, UD_VECTOR);
5213 return 1;
5214 }
5215
5216 /*
5217 * The CPL is checked for "not in VMX operation" and for "in VMX root",
5218 * and has higher priority than the VM-Fail due to being post-VMXON,
5219 * i.e. VMXON #GPs outside of VMX non-root if CPL!=0. In VMX non-root,
5220 * VMXON causes VM-Exit and KVM unconditionally forwards VMXON VM-Exits
5221 * from L2 to L1, i.e. there's no need to check for the vCPU being in
5222 * VMX non-root.
5223 *
5224 * Forwarding the VM-Exit unconditionally, i.e. without performing the
5225 * #UD checks (see above), is functionally ok because KVM doesn't allow
5226 * L1 to run L2 without CR4.VMXE=0, and because KVM never modifies L2's
5227 * CR0 or CR4, i.e. it's L2's responsibility to emulate #UDs that are
5228 * missed by hardware due to shadowing CR0 and/or CR4.
5229 */
5230 if (vmx_get_cpl(vcpu)) {
5231 kvm_inject_gp(vcpu, error_code: 0);
5232 return 1;
5233 }
5234
5235 if (vmx->nested.vmxon)
5236 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5237
5238 /*
5239 * Invalid CR0/CR4 generates #GP. These checks are performed if and
5240 * only if the vCPU isn't already in VMX operation, i.e. effectively
5241 * have lower priority than the VM-Fail above.
5242 */
5243 if (!nested_host_cr0_valid(vcpu, val: kvm_read_cr0(vcpu)) ||
5244 !nested_host_cr4_valid(vcpu, val: kvm_read_cr4(vcpu))) {
5245 kvm_inject_gp(vcpu, error_code: 0);
5246 return 1;
5247 }
5248
5249 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5250 != VMXON_NEEDED_FEATURES) {
5251 kvm_inject_gp(vcpu, error_code: 0);
5252 return 1;
5253 }
5254
5255 if (nested_vmx_get_vmptr(vcpu, vmpointer: &vmptr, ret: &ret))
5256 return ret;
5257
5258 /*
5259 * SDM 3: 24.11.5
5260 * The first 4 bytes of VMXON region contain the supported
5261 * VMCS revision identifier
5262 *
5263 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5264 * which replaces physical address width with 32
5265 */
5266 if (!page_address_valid(vcpu, gpa: vmptr))
5267 return nested_vmx_failInvalid(vcpu);
5268
5269 if (kvm_read_guest(kvm: vcpu->kvm, gpa: vmptr, data: &revision, len: sizeof(revision)) ||
5270 revision != VMCS12_REVISION)
5271 return nested_vmx_failInvalid(vcpu);
5272
5273 vmx->nested.vmxon_ptr = vmptr;
5274 ret = enter_vmx_operation(vcpu);
5275 if (ret)
5276 return ret;
5277
5278 return nested_vmx_succeed(vcpu);
5279}
5280
5281static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5282{
5283 struct vcpu_vmx *vmx = to_vmx(vcpu);
5284
5285 if (vmx->nested.current_vmptr == INVALID_GPA)
5286 return;
5287
5288 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12: get_vmcs12(vcpu));
5289
5290 if (enable_shadow_vmcs) {
5291 /* copy to memory all shadowed fields in case
5292 they were modified */
5293 copy_shadow_to_vmcs12(vmx);
5294 vmx_disable_shadow_vmcs(vmx);
5295 }
5296 vmx->nested.posted_intr_nv = -1;
5297
5298 /* Flush VMCS12 to guest memory */
5299 kvm_vcpu_write_guest_page(vcpu,
5300 gfn: vmx->nested.current_vmptr >> PAGE_SHIFT,
5301 data: vmx->nested.cached_vmcs12, offset: 0, VMCS12_SIZE);
5302
5303 kvm_mmu_free_roots(kvm: vcpu->kvm, mmu: &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5304
5305 vmx->nested.current_vmptr = INVALID_GPA;
5306}
5307
5308/* Emulate the VMXOFF instruction */
5309static int handle_vmxoff(struct kvm_vcpu *vcpu)
5310{
5311 if (!nested_vmx_check_permission(vcpu))
5312 return 1;
5313
5314 free_nested(vcpu);
5315
5316 if (kvm_apic_has_pending_init_or_sipi(vcpu))
5317 kvm_make_request(KVM_REQ_EVENT, vcpu);
5318
5319 return nested_vmx_succeed(vcpu);
5320}
5321
5322/* Emulate the VMCLEAR instruction */
5323static int handle_vmclear(struct kvm_vcpu *vcpu)
5324{
5325 struct vcpu_vmx *vmx = to_vmx(vcpu);
5326 u32 zero = 0;
5327 gpa_t vmptr;
5328 int r;
5329
5330 if (!nested_vmx_check_permission(vcpu))
5331 return 1;
5332
5333 if (nested_vmx_get_vmptr(vcpu, vmpointer: &vmptr, ret: &r))
5334 return r;
5335
5336 if (!page_address_valid(vcpu, gpa: vmptr))
5337 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMCLEAR_INVALID_ADDRESS);
5338
5339 if (vmptr == vmx->nested.vmxon_ptr)
5340 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMCLEAR_VMXON_POINTER);
5341
5342 if (likely(!nested_evmcs_handle_vmclear(vcpu, vmptr))) {
5343 if (vmptr == vmx->nested.current_vmptr)
5344 nested_release_vmcs12(vcpu);
5345
5346 /*
5347 * Silently ignore memory errors on VMCLEAR, Intel's pseudocode
5348 * for VMCLEAR includes a "ensure that data for VMCS referenced
5349 * by the operand is in memory" clause that guards writes to
5350 * memory, i.e. doing nothing for I/O is architecturally valid.
5351 *
5352 * FIXME: Suppress failures if and only if no memslot is found,
5353 * i.e. exit to userspace if __copy_to_user() fails.
5354 */
5355 (void)kvm_vcpu_write_guest(vcpu,
5356 gpa: vmptr + offsetof(struct vmcs12,
5357 launch_state),
5358 data: &zero, len: sizeof(zero));
5359 }
5360
5361 return nested_vmx_succeed(vcpu);
5362}
5363
5364/* Emulate the VMLAUNCH instruction */
5365static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5366{
5367 return nested_vmx_run(vcpu, launch: true);
5368}
5369
5370/* Emulate the VMRESUME instruction */
5371static int handle_vmresume(struct kvm_vcpu *vcpu)
5372{
5373
5374 return nested_vmx_run(vcpu, launch: false);
5375}
5376
5377static int handle_vmread(struct kvm_vcpu *vcpu)
5378{
5379 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5380 : get_vmcs12(vcpu);
5381 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5382 u32 instr_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
5383 struct vcpu_vmx *vmx = to_vmx(vcpu);
5384 struct x86_exception e;
5385 unsigned long field;
5386 u64 value;
5387 gva_t gva = 0;
5388 short offset;
5389 int len, r;
5390
5391 if (!nested_vmx_check_permission(vcpu))
5392 return 1;
5393
5394 /* Decode instruction info and find the field to read */
5395 field = kvm_register_read(vcpu, reg: (((instr_info) >> 28) & 0xf));
5396
5397 if (!nested_vmx_is_evmptr12_valid(vmx)) {
5398 /*
5399 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5400 * any VMREAD sets the ALU flags for VMfailInvalid.
5401 */
5402 if (vmx->nested.current_vmptr == INVALID_GPA ||
5403 (is_guest_mode(vcpu) &&
5404 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5405 return nested_vmx_failInvalid(vcpu);
5406
5407 offset = get_vmcs12_field_offset(field);
5408 if (offset < 0)
5409 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5410
5411 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5412 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5413
5414 /* Read the field, zero-extended to a u64 value */
5415 value = vmcs12_read_any(vmcs12, field, offset);
5416 } else {
5417 /*
5418 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5419 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5420 * unsupported. Unfortunately, certain versions of Windows 11
5421 * don't comply with this requirement which is not enforced in
5422 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5423 * workaround, as misbehaving guests will panic on VM-Fail.
5424 * Note, enlightened VMCS is incompatible with shadow VMCS so
5425 * all VMREADs from L2 should go to L1.
5426 */
5427 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5428 return nested_vmx_failInvalid(vcpu);
5429
5430 offset = evmcs_field_offset(field, NULL);
5431 if (offset < 0)
5432 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5433
5434 /* Read the field, zero-extended to a u64 value */
5435 value = evmcs_read_any(evmcs: nested_vmx_evmcs(vmx), field, offset);
5436 }
5437
5438 /*
5439 * Now copy part of this value to register or memory, as requested.
5440 * Note that the number of bits actually copied is 32 or 64 depending
5441 * on the guest's mode (32 or 64 bit), not on the given field's length.
5442 */
5443 if (instr_info & BIT(10)) {
5444 kvm_register_write(vcpu, reg: (((instr_info) >> 3) & 0xf), val: value);
5445 } else {
5446 len = is_64_bit_mode(vcpu) ? 8 : 4;
5447 if (get_vmx_mem_address(vcpu, exit_qualification,
5448 vmx_instruction_info: instr_info, wr: true, len, ret: &gva))
5449 return 1;
5450 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5451 r = kvm_write_guest_virt_system(vcpu, addr: gva, val: &value, bytes: len, exception: &e);
5452 if (r != X86EMUL_CONTINUE)
5453 return kvm_handle_memory_failure(vcpu, r, e: &e);
5454 }
5455
5456 return nested_vmx_succeed(vcpu);
5457}
5458
5459static bool is_shadow_field_rw(unsigned long field)
5460{
5461 switch (field) {
5462#define SHADOW_FIELD_RW(x, y) case x:
5463#include "vmcs_shadow_fields.h"
5464 return true;
5465 default:
5466 break;
5467 }
5468 return false;
5469}
5470
5471static bool is_shadow_field_ro(unsigned long field)
5472{
5473 switch (field) {
5474#define SHADOW_FIELD_RO(x, y) case x:
5475#include "vmcs_shadow_fields.h"
5476 return true;
5477 default:
5478 break;
5479 }
5480 return false;
5481}
5482
5483static int handle_vmwrite(struct kvm_vcpu *vcpu)
5484{
5485 struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5486 : get_vmcs12(vcpu);
5487 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5488 u32 instr_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
5489 struct vcpu_vmx *vmx = to_vmx(vcpu);
5490 struct x86_exception e;
5491 unsigned long field;
5492 short offset;
5493 gva_t gva;
5494 int len, r;
5495
5496 /*
5497 * The value to write might be 32 or 64 bits, depending on L1's long
5498 * mode, and eventually we need to write that into a field of several
5499 * possible lengths. The code below first zero-extends the value to 64
5500 * bit (value), and then copies only the appropriate number of
5501 * bits into the vmcs12 field.
5502 */
5503 u64 value = 0;
5504
5505 if (!nested_vmx_check_permission(vcpu))
5506 return 1;
5507
5508 /*
5509 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5510 * any VMWRITE sets the ALU flags for VMfailInvalid.
5511 */
5512 if (vmx->nested.current_vmptr == INVALID_GPA ||
5513 (is_guest_mode(vcpu) &&
5514 get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5515 return nested_vmx_failInvalid(vcpu);
5516
5517 if (instr_info & BIT(10))
5518 value = kvm_register_read(vcpu, reg: (((instr_info) >> 3) & 0xf));
5519 else {
5520 len = is_64_bit_mode(vcpu) ? 8 : 4;
5521 if (get_vmx_mem_address(vcpu, exit_qualification,
5522 vmx_instruction_info: instr_info, wr: false, len, ret: &gva))
5523 return 1;
5524 r = kvm_read_guest_virt(vcpu, addr: gva, val: &value, bytes: len, exception: &e);
5525 if (r != X86EMUL_CONTINUE)
5526 return kvm_handle_memory_failure(vcpu, r, e: &e);
5527 }
5528
5529 field = kvm_register_read(vcpu, reg: (((instr_info) >> 28) & 0xf));
5530
5531 offset = get_vmcs12_field_offset(field);
5532 if (offset < 0)
5533 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5534
5535 /*
5536 * If the vCPU supports "VMWRITE to any supported field in the
5537 * VMCS," then the "read-only" fields are actually read/write.
5538 */
5539 if (vmcs_field_readonly(field) &&
5540 !nested_cpu_has_vmwrite_any_field(vcpu))
5541 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5542
5543 /*
5544 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5545 * vmcs12, else we may crush a field or consume a stale value.
5546 */
5547 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5548 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5549
5550 /*
5551 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5552 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
5553 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5554 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5555 * from L1 will return a different value than VMREAD from L2 (L1 sees
5556 * the stripped down value, L2 sees the full value as stored by KVM).
5557 */
5558 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5559 value &= 0x1f0ff;
5560
5561 vmcs12_write_any(vmcs12, field, offset, field_value: value);
5562
5563 /*
5564 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5565 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
5566 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5567 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5568 */
5569 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5570 /*
5571 * L1 can read these fields without exiting, ensure the
5572 * shadow VMCS is up-to-date.
5573 */
5574 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5575 preempt_disable();
5576 vmcs_load(vmcs: vmx->vmcs01.shadow_vmcs);
5577
5578 __vmcs_writel(field, value);
5579
5580 vmcs_clear(vmcs: vmx->vmcs01.shadow_vmcs);
5581 vmcs_load(vmcs: vmx->loaded_vmcs->vmcs);
5582 preempt_enable();
5583 }
5584 vmx->nested.dirty_vmcs12 = true;
5585 }
5586
5587 return nested_vmx_succeed(vcpu);
5588}
5589
5590static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5591{
5592 vmx->nested.current_vmptr = vmptr;
5593 if (enable_shadow_vmcs) {
5594 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5595 vmcs_write64(field: VMCS_LINK_POINTER,
5596 __pa(vmx->vmcs01.shadow_vmcs));
5597 vmx->nested.need_vmcs12_to_shadow_sync = true;
5598 }
5599 vmx->nested.dirty_vmcs12 = true;
5600 vmx->nested.force_msr_bitmap_recalc = true;
5601}
5602
5603/* Emulate the VMPTRLD instruction */
5604static int handle_vmptrld(struct kvm_vcpu *vcpu)
5605{
5606 struct vcpu_vmx *vmx = to_vmx(vcpu);
5607 gpa_t vmptr;
5608 int r;
5609
5610 if (!nested_vmx_check_permission(vcpu))
5611 return 1;
5612
5613 if (nested_vmx_get_vmptr(vcpu, vmpointer: &vmptr, ret: &r))
5614 return r;
5615
5616 if (!page_address_valid(vcpu, gpa: vmptr))
5617 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMPTRLD_INVALID_ADDRESS);
5618
5619 if (vmptr == vmx->nested.vmxon_ptr)
5620 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_VMPTRLD_VMXON_POINTER);
5621
5622 /* Forbid normal VMPTRLD if Enlightened version was used */
5623 if (nested_vmx_is_evmptr12_valid(vmx))
5624 return 1;
5625
5626 if (vmx->nested.current_vmptr != vmptr) {
5627 struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5628 struct vmcs_hdr hdr;
5629
5630 if (kvm_gfn_to_hva_cache_init(kvm: vcpu->kvm, ghc, gpa: vmptr, VMCS12_SIZE)) {
5631 /*
5632 * Reads from an unbacked page return all 1s,
5633 * which means that the 32 bits located at the
5634 * given physical address won't match the required
5635 * VMCS12_REVISION identifier.
5636 */
5637 return nested_vmx_fail(vcpu,
5638 vm_instruction_error: VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5639 }
5640
5641 if (kvm_read_guest_offset_cached(kvm: vcpu->kvm, ghc, data: &hdr,
5642 offsetof(struct vmcs12, hdr),
5643 len: sizeof(hdr))) {
5644 return nested_vmx_fail(vcpu,
5645 vm_instruction_error: VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5646 }
5647
5648 if (hdr.revision_id != VMCS12_REVISION ||
5649 (hdr.shadow_vmcs &&
5650 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5651 return nested_vmx_fail(vcpu,
5652 vm_instruction_error: VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5653 }
5654
5655 nested_release_vmcs12(vcpu);
5656
5657 /*
5658 * Load VMCS12 from guest memory since it is not already
5659 * cached.
5660 */
5661 if (kvm_read_guest_cached(kvm: vcpu->kvm, ghc, data: vmx->nested.cached_vmcs12,
5662 VMCS12_SIZE)) {
5663 return nested_vmx_fail(vcpu,
5664 vm_instruction_error: VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5665 }
5666
5667 set_current_vmptr(vmx, vmptr);
5668 }
5669
5670 return nested_vmx_succeed(vcpu);
5671}
5672
5673/* Emulate the VMPTRST instruction */
5674static int handle_vmptrst(struct kvm_vcpu *vcpu)
5675{
5676 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5677 u32 instr_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
5678 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5679 struct x86_exception e;
5680 gva_t gva;
5681 int r;
5682
5683 if (!nested_vmx_check_permission(vcpu))
5684 return 1;
5685
5686 if (unlikely(nested_vmx_is_evmptr12_valid(to_vmx(vcpu))))
5687 return 1;
5688
5689 if (get_vmx_mem_address(vcpu, exit_qualification: exit_qual, vmx_instruction_info: instr_info,
5690 wr: true, len: sizeof(gpa_t), ret: &gva))
5691 return 1;
5692 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5693 r = kvm_write_guest_virt_system(vcpu, addr: gva, val: (void *)&current_vmptr,
5694 bytes: sizeof(gpa_t), exception: &e);
5695 if (r != X86EMUL_CONTINUE)
5696 return kvm_handle_memory_failure(vcpu, r, e: &e);
5697
5698 return nested_vmx_succeed(vcpu);
5699}
5700
5701/* Emulate the INVEPT instruction */
5702static int handle_invept(struct kvm_vcpu *vcpu)
5703{
5704 struct vcpu_vmx *vmx = to_vmx(vcpu);
5705 u32 vmx_instruction_info, types;
5706 unsigned long type, roots_to_free;
5707 struct kvm_mmu *mmu;
5708 gva_t gva;
5709 struct x86_exception e;
5710 struct {
5711 u64 eptp, gpa;
5712 } operand;
5713 int i, r, gpr_index;
5714
5715 if (!(vmx->nested.msrs.secondary_ctls_high &
5716 SECONDARY_EXEC_ENABLE_EPT) ||
5717 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5718 kvm_queue_exception(vcpu, UD_VECTOR);
5719 return 1;
5720 }
5721
5722 if (!nested_vmx_check_permission(vcpu))
5723 return 1;
5724
5725 vmx_instruction_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
5726 gpr_index = vmx_get_instr_info_reg2(vmx_instr_info: vmx_instruction_info);
5727 type = kvm_register_read(vcpu, reg: gpr_index);
5728
5729 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5730
5731 if (type >= 32 || !(types & (1 << type)))
5732 return nested_vmx_fail(vcpu, vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5733
5734 /* According to the Intel VMX instruction reference, the memory
5735 * operand is read even if it isn't needed (e.g., for type==global)
5736 */
5737 if (get_vmx_mem_address(vcpu, exit_qualification: vmx_get_exit_qual(vcpu),
5738 vmx_instruction_info, wr: false, len: sizeof(operand), ret: &gva))
5739 return 1;
5740 r = kvm_read_guest_virt(vcpu, addr: gva, val: &operand, bytes: sizeof(operand), exception: &e);
5741 if (r != X86EMUL_CONTINUE)
5742 return kvm_handle_memory_failure(vcpu, r, e: &e);
5743
5744 /*
5745 * Nested EPT roots are always held through guest_mmu,
5746 * not root_mmu.
5747 */
5748 mmu = &vcpu->arch.guest_mmu;
5749
5750 switch (type) {
5751 case VMX_EPT_EXTENT_CONTEXT:
5752 if (!nested_vmx_check_eptp(vcpu, new_eptp: operand.eptp))
5753 return nested_vmx_fail(vcpu,
5754 vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5755
5756 roots_to_free = 0;
5757 if (nested_ept_root_matches(root_hpa: mmu->root.hpa, root_eptp: mmu->root.pgd,
5758 eptp: operand.eptp))
5759 roots_to_free |= KVM_MMU_ROOT_CURRENT;
5760
5761 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5762 if (nested_ept_root_matches(root_hpa: mmu->prev_roots[i].hpa,
5763 root_eptp: mmu->prev_roots[i].pgd,
5764 eptp: operand.eptp))
5765 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5766 }
5767 break;
5768 case VMX_EPT_EXTENT_GLOBAL:
5769 roots_to_free = KVM_MMU_ROOTS_ALL;
5770 break;
5771 default:
5772 BUG();
5773 break;
5774 }
5775
5776 if (roots_to_free)
5777 kvm_mmu_free_roots(kvm: vcpu->kvm, mmu, roots_to_free);
5778
5779 return nested_vmx_succeed(vcpu);
5780}
5781
5782static int handle_invvpid(struct kvm_vcpu *vcpu)
5783{
5784 struct vcpu_vmx *vmx = to_vmx(vcpu);
5785 u32 vmx_instruction_info;
5786 unsigned long type, types;
5787 gva_t gva;
5788 struct x86_exception e;
5789 struct {
5790 u64 vpid;
5791 u64 gla;
5792 } operand;
5793 u16 vpid02;
5794 int r, gpr_index;
5795
5796 if (!(vmx->nested.msrs.secondary_ctls_high &
5797 SECONDARY_EXEC_ENABLE_VPID) ||
5798 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5799 kvm_queue_exception(vcpu, UD_VECTOR);
5800 return 1;
5801 }
5802
5803 if (!nested_vmx_check_permission(vcpu))
5804 return 1;
5805
5806 vmx_instruction_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
5807 gpr_index = vmx_get_instr_info_reg2(vmx_instr_info: vmx_instruction_info);
5808 type = kvm_register_read(vcpu, reg: gpr_index);
5809
5810 types = (vmx->nested.msrs.vpid_caps &
5811 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5812
5813 if (type >= 32 || !(types & (1 << type)))
5814 return nested_vmx_fail(vcpu,
5815 vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5816
5817 /* according to the intel vmx instruction reference, the memory
5818 * operand is read even if it isn't needed (e.g., for type==global)
5819 */
5820 if (get_vmx_mem_address(vcpu, exit_qualification: vmx_get_exit_qual(vcpu),
5821 vmx_instruction_info, wr: false, len: sizeof(operand), ret: &gva))
5822 return 1;
5823 r = kvm_read_guest_virt(vcpu, addr: gva, val: &operand, bytes: sizeof(operand), exception: &e);
5824 if (r != X86EMUL_CONTINUE)
5825 return kvm_handle_memory_failure(vcpu, r, e: &e);
5826
5827 if (operand.vpid >> 16)
5828 return nested_vmx_fail(vcpu,
5829 vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5830
5831 vpid02 = nested_get_vpid02(vcpu);
5832 switch (type) {
5833 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5834 /*
5835 * LAM doesn't apply to addresses that are inputs to TLB
5836 * invalidation.
5837 */
5838 if (!operand.vpid ||
5839 is_noncanonical_address(la: operand.gla, vcpu))
5840 return nested_vmx_fail(vcpu,
5841 vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5842 vpid_sync_vcpu_addr(vpid: vpid02, addr: operand.gla);
5843 break;
5844 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5845 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5846 if (!operand.vpid)
5847 return nested_vmx_fail(vcpu,
5848 vm_instruction_error: VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5849 vpid_sync_context(vpid: vpid02);
5850 break;
5851 case VMX_VPID_EXTENT_ALL_CONTEXT:
5852 vpid_sync_context(vpid: vpid02);
5853 break;
5854 default:
5855 WARN_ON_ONCE(1);
5856 return kvm_skip_emulated_instruction(vcpu);
5857 }
5858
5859 /*
5860 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5861 * linear mappings for L2 (tagged with L2's VPID). Free all guest
5862 * roots as VPIDs are not tracked in the MMU role.
5863 *
5864 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5865 * an MMU when EPT is disabled.
5866 *
5867 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5868 */
5869 if (!enable_ept)
5870 kvm_mmu_free_guest_mode_roots(kvm: vcpu->kvm, mmu: &vcpu->arch.root_mmu);
5871
5872 return nested_vmx_succeed(vcpu);
5873}
5874
5875static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5876 struct vmcs12 *vmcs12)
5877{
5878 u32 index = kvm_rcx_read(vcpu);
5879 u64 new_eptp;
5880
5881 if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5882 return 1;
5883 if (index >= VMFUNC_EPTP_ENTRIES)
5884 return 1;
5885
5886 if (kvm_vcpu_read_guest_page(vcpu, gfn: vmcs12->eptp_list_address >> PAGE_SHIFT,
5887 data: &new_eptp, offset: index * 8, len: 8))
5888 return 1;
5889
5890 /*
5891 * If the (L2) guest does a vmfunc to the currently
5892 * active ept pointer, we don't have to do anything else
5893 */
5894 if (vmcs12->ept_pointer != new_eptp) {
5895 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5896 return 1;
5897
5898 vmcs12->ept_pointer = new_eptp;
5899 nested_ept_new_eptp(vcpu);
5900
5901 if (!nested_cpu_has_vpid(vmcs12))
5902 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5903 }
5904
5905 return 0;
5906}
5907
5908static int handle_vmfunc(struct kvm_vcpu *vcpu)
5909{
5910 struct vcpu_vmx *vmx = to_vmx(vcpu);
5911 struct vmcs12 *vmcs12;
5912 u32 function = kvm_rax_read(vcpu);
5913
5914 /*
5915 * VMFUNC should never execute cleanly while L1 is active; KVM supports
5916 * VMFUNC for nested VMs, but not for L1.
5917 */
5918 if (WARN_ON_ONCE(!is_guest_mode(vcpu))) {
5919 kvm_queue_exception(vcpu, UD_VECTOR);
5920 return 1;
5921 }
5922
5923 vmcs12 = get_vmcs12(vcpu);
5924
5925 /*
5926 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5927 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5928 */
5929 if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5930 kvm_queue_exception(vcpu, UD_VECTOR);
5931 return 1;
5932 }
5933
5934 if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5935 goto fail;
5936
5937 switch (function) {
5938 case 0:
5939 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5940 goto fail;
5941 break;
5942 default:
5943 goto fail;
5944 }
5945 return kvm_skip_emulated_instruction(vcpu);
5946
5947fail:
5948 /*
5949 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5950 * nested VM-Exit. Pass the original exit reason, i.e. don't hardcode
5951 * EXIT_REASON_VMFUNC as the exit reason.
5952 */
5953 nested_vmx_vmexit(vcpu, vm_exit_reason: vmx->exit_reason.full,
5954 exit_intr_info: vmx_get_intr_info(vcpu),
5955 exit_qualification: vmx_get_exit_qual(vcpu));
5956 return 1;
5957}
5958
5959/*
5960 * Return true if an IO instruction with the specified port and size should cause
5961 * a VM-exit into L1.
5962 */
5963bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5964 int size)
5965{
5966 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5967 gpa_t bitmap, last_bitmap;
5968 u8 b;
5969
5970 last_bitmap = INVALID_GPA;
5971 b = -1;
5972
5973 while (size > 0) {
5974 if (port < 0x8000)
5975 bitmap = vmcs12->io_bitmap_a;
5976 else if (port < 0x10000)
5977 bitmap = vmcs12->io_bitmap_b;
5978 else
5979 return true;
5980 bitmap += (port & 0x7fff) / 8;
5981
5982 if (last_bitmap != bitmap)
5983 if (kvm_vcpu_read_guest(vcpu, gpa: bitmap, data: &b, len: 1))
5984 return true;
5985 if (b & (1 << (port & 7)))
5986 return true;
5987
5988 port++;
5989 size--;
5990 last_bitmap = bitmap;
5991 }
5992
5993 return false;
5994}
5995
5996static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5997 struct vmcs12 *vmcs12)
5998{
5999 unsigned long exit_qualification;
6000 unsigned short port;
6001 int size;
6002
6003 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6004 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
6005
6006 exit_qualification = vmx_get_exit_qual(vcpu);
6007
6008 port = exit_qualification >> 16;
6009 size = (exit_qualification & 7) + 1;
6010
6011 return nested_vmx_check_io_bitmaps(vcpu, port, size);
6012}
6013
6014/*
6015 * Return 1 if we should exit from L2 to L1 to handle an MSR access,
6016 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6017 * disinterest in the current event (read or write a specific MSR) by using an
6018 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6019 */
6020static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6021 struct vmcs12 *vmcs12,
6022 union vmx_exit_reason exit_reason)
6023{
6024 u32 msr_index = kvm_rcx_read(vcpu);
6025 gpa_t bitmap;
6026
6027 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6028 return true;
6029
6030 /*
6031 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6032 * for the four combinations of read/write and low/high MSR numbers.
6033 * First we need to figure out which of the four to use:
6034 */
6035 bitmap = vmcs12->msr_bitmap;
6036 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6037 bitmap += 2048;
6038 if (msr_index >= 0xc0000000) {
6039 msr_index -= 0xc0000000;
6040 bitmap += 1024;
6041 }
6042
6043 /* Then read the msr_index'th bit from this bitmap: */
6044 if (msr_index < 1024*8) {
6045 unsigned char b;
6046 if (kvm_vcpu_read_guest(vcpu, gpa: bitmap + msr_index/8, data: &b, len: 1))
6047 return true;
6048 return 1 & (b >> (msr_index & 7));
6049 } else
6050 return true; /* let L1 handle the wrong parameter */
6051}
6052
6053/*
6054 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6055 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6056 * intercept (via guest_host_mask etc.) the current event.
6057 */
6058static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6059 struct vmcs12 *vmcs12)
6060{
6061 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
6062 int cr = exit_qualification & 15;
6063 int reg;
6064 unsigned long val;
6065
6066 switch ((exit_qualification >> 4) & 3) {
6067 case 0: /* mov to cr */
6068 reg = (exit_qualification >> 8) & 15;
6069 val = kvm_register_read(vcpu, reg);
6070 switch (cr) {
6071 case 0:
6072 if (vmcs12->cr0_guest_host_mask &
6073 (val ^ vmcs12->cr0_read_shadow))
6074 return true;
6075 break;
6076 case 3:
6077 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6078 return true;
6079 break;
6080 case 4:
6081 if (vmcs12->cr4_guest_host_mask &
6082 (vmcs12->cr4_read_shadow ^ val))
6083 return true;
6084 break;
6085 case 8:
6086 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6087 return true;
6088 break;
6089 }
6090 break;
6091 case 2: /* clts */
6092 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6093 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6094 return true;
6095 break;
6096 case 1: /* mov from cr */
6097 switch (cr) {
6098 case 3:
6099 if (vmcs12->cpu_based_vm_exec_control &
6100 CPU_BASED_CR3_STORE_EXITING)
6101 return true;
6102 break;
6103 case 8:
6104 if (vmcs12->cpu_based_vm_exec_control &
6105 CPU_BASED_CR8_STORE_EXITING)
6106 return true;
6107 break;
6108 }
6109 break;
6110 case 3: /* lmsw */
6111 /*
6112 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6113 * cr0. Other attempted changes are ignored, with no exit.
6114 */
6115 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
6116 if (vmcs12->cr0_guest_host_mask & 0xe &
6117 (val ^ vmcs12->cr0_read_shadow))
6118 return true;
6119 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6120 !(vmcs12->cr0_read_shadow & 0x1) &&
6121 (val & 0x1))
6122 return true;
6123 break;
6124 }
6125 return false;
6126}
6127
6128static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
6129 struct vmcs12 *vmcs12)
6130{
6131 u32 encls_leaf;
6132
6133 if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
6134 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
6135 return false;
6136
6137 encls_leaf = kvm_rax_read(vcpu);
6138 if (encls_leaf > 62)
6139 encls_leaf = 63;
6140 return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
6141}
6142
6143static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
6144 struct vmcs12 *vmcs12, gpa_t bitmap)
6145{
6146 u32 vmx_instruction_info;
6147 unsigned long field;
6148 u8 b;
6149
6150 if (!nested_cpu_has_shadow_vmcs(vmcs12))
6151 return true;
6152
6153 /* Decode instruction info and find the field to access */
6154 vmx_instruction_info = vmcs_read32(field: VMX_INSTRUCTION_INFO);
6155 field = kvm_register_read(vcpu, reg: (((vmx_instruction_info) >> 28) & 0xf));
6156
6157 /* Out-of-range fields always cause a VM exit from L2 to L1 */
6158 if (field >> 15)
6159 return true;
6160
6161 if (kvm_vcpu_read_guest(vcpu, gpa: bitmap + field/8, data: &b, len: 1))
6162 return true;
6163
6164 return 1 & (b >> (field & 7));
6165}
6166
6167static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
6168{
6169 u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
6170
6171 if (nested_cpu_has_mtf(vmcs12))
6172 return true;
6173
6174 /*
6175 * An MTF VM-exit may be injected into the guest by setting the
6176 * interruption-type to 7 (other event) and the vector field to 0. Such
6177 * is the case regardless of the 'monitor trap flag' VM-execution
6178 * control.
6179 */
6180 return entry_intr_info == (INTR_INFO_VALID_MASK
6181 | INTR_TYPE_OTHER_EVENT);
6182}
6183
6184/*
6185 * Return true if L0 wants to handle an exit from L2 regardless of whether or not
6186 * L1 wants the exit. Only call this when in is_guest_mode (L2).
6187 */
6188static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
6189 union vmx_exit_reason exit_reason)
6190{
6191 u32 intr_info;
6192
6193 switch ((u16)exit_reason.basic) {
6194 case EXIT_REASON_EXCEPTION_NMI:
6195 intr_info = vmx_get_intr_info(vcpu);
6196 if (is_nmi(intr_info))
6197 return true;
6198 else if (is_page_fault(intr_info))
6199 return vcpu->arch.apf.host_apf_flags ||
6200 vmx_need_pf_intercept(vcpu);
6201 else if (is_debug(intr_info) &&
6202 vcpu->guest_debug &
6203 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6204 return true;
6205 else if (is_breakpoint(intr_info) &&
6206 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
6207 return true;
6208 else if (is_alignment_check(intr_info) &&
6209 !vmx_guest_inject_ac(vcpu))
6210 return true;
6211 return false;
6212 case EXIT_REASON_EXTERNAL_INTERRUPT:
6213 return true;
6214 case EXIT_REASON_MCE_DURING_VMENTRY:
6215 return true;
6216 case EXIT_REASON_EPT_VIOLATION:
6217 /*
6218 * L0 always deals with the EPT violation. If nested EPT is
6219 * used, and the nested mmu code discovers that the address is
6220 * missing in the guest EPT table (EPT12), the EPT violation
6221 * will be injected with nested_ept_inject_page_fault()
6222 */
6223 return true;
6224 case EXIT_REASON_EPT_MISCONFIG:
6225 /*
6226 * L2 never uses directly L1's EPT, but rather L0's own EPT
6227 * table (shadow on EPT) or a merged EPT table that L0 built
6228 * (EPT on EPT). So any problems with the structure of the
6229 * table is L0's fault.
6230 */
6231 return true;
6232 case EXIT_REASON_PREEMPTION_TIMER:
6233 return true;
6234 case EXIT_REASON_PML_FULL:
6235 /*
6236 * PML is emulated for an L1 VMM and should never be enabled in
6237 * vmcs02, always "handle" PML_FULL by exiting to userspace.
6238 */
6239 return true;
6240 case EXIT_REASON_VMFUNC:
6241 /* VM functions are emulated through L2->L0 vmexits. */
6242 return true;
6243 case EXIT_REASON_BUS_LOCK:
6244 /*
6245 * At present, bus lock VM exit is never exposed to L1.
6246 * Handle L2's bus locks in L0 directly.
6247 */
6248 return true;
6249#ifdef CONFIG_KVM_HYPERV
6250 case EXIT_REASON_VMCALL:
6251 /* Hyper-V L2 TLB flush hypercall is handled by L0 */
6252 return guest_hv_cpuid_has_l2_tlb_flush(vcpu) &&
6253 nested_evmcs_l2_tlb_flush_enabled(vcpu) &&
6254 kvm_hv_is_tlb_flush_hcall(vcpu);
6255#endif
6256 default:
6257 break;
6258 }
6259 return false;
6260}
6261
6262/*
6263 * Return 1 if L1 wants to intercept an exit from L2. Only call this when in
6264 * is_guest_mode (L2).
6265 */
6266static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6267 union vmx_exit_reason exit_reason)
6268{
6269 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6270 u32 intr_info;
6271
6272 switch ((u16)exit_reason.basic) {
6273 case EXIT_REASON_EXCEPTION_NMI:
6274 intr_info = vmx_get_intr_info(vcpu);
6275 if (is_nmi(intr_info))
6276 return true;
6277 else if (is_page_fault(intr_info))
6278 return true;
6279 return vmcs12->exception_bitmap &
6280 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6281 case EXIT_REASON_EXTERNAL_INTERRUPT:
6282 return nested_exit_on_intr(vcpu);
6283 case EXIT_REASON_TRIPLE_FAULT:
6284 return true;
6285 case EXIT_REASON_INTERRUPT_WINDOW:
6286 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6287 case EXIT_REASON_NMI_WINDOW:
6288 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6289 case EXIT_REASON_TASK_SWITCH:
6290 return true;
6291 case EXIT_REASON_CPUID:
6292 return true;
6293 case EXIT_REASON_HLT:
6294 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6295 case EXIT_REASON_INVD:
6296 return true;
6297 case EXIT_REASON_INVLPG:
6298 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6299 case EXIT_REASON_RDPMC:
6300 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6301 case EXIT_REASON_RDRAND:
6302 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6303 case EXIT_REASON_RDSEED:
6304 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6305 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6306 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6307 case EXIT_REASON_VMREAD:
6308 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6309 bitmap: vmcs12->vmread_bitmap);
6310 case EXIT_REASON_VMWRITE:
6311 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6312 bitmap: vmcs12->vmwrite_bitmap);
6313 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6314 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6315 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6316 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6317 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6318 /*
6319 * VMX instructions trap unconditionally. This allows L1 to
6320 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6321 */
6322 return true;
6323 case EXIT_REASON_CR_ACCESS:
6324 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6325 case EXIT_REASON_DR_ACCESS:
6326 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6327 case EXIT_REASON_IO_INSTRUCTION:
6328 return nested_vmx_exit_handled_io(vcpu, vmcs12);
6329 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6330 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6331 case EXIT_REASON_MSR_READ:
6332 case EXIT_REASON_MSR_WRITE:
6333 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6334 case EXIT_REASON_INVALID_STATE:
6335 return true;
6336 case EXIT_REASON_MWAIT_INSTRUCTION:
6337 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6338 case EXIT_REASON_MONITOR_TRAP_FLAG:
6339 return nested_vmx_exit_handled_mtf(vmcs12);
6340 case EXIT_REASON_MONITOR_INSTRUCTION:
6341 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6342 case EXIT_REASON_PAUSE_INSTRUCTION:
6343 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6344 nested_cpu_has2(vmcs12,
6345 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6346 case EXIT_REASON_MCE_DURING_VMENTRY:
6347 return true;
6348 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6349 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6350 case EXIT_REASON_APIC_ACCESS:
6351 case EXIT_REASON_APIC_WRITE:
6352 case EXIT_REASON_EOI_INDUCED:
6353 /*
6354 * The controls for "virtualize APIC accesses," "APIC-
6355 * register virtualization," and "virtual-interrupt
6356 * delivery" only come from vmcs12.
6357 */
6358 return true;
6359 case EXIT_REASON_INVPCID:
6360 return
6361 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6362 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6363 case EXIT_REASON_WBINVD:
6364 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6365 case EXIT_REASON_XSETBV:
6366 return true;
6367 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6368 /*
6369 * This should never happen, since it is not possible to
6370 * set XSS to a non-zero value---neither in L1 nor in L2.
6371 * If if it were, XSS would have to be checked against
6372 * the XSS exit bitmap in vmcs12.
6373 */
6374 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_XSAVES);
6375 case EXIT_REASON_UMWAIT:
6376 case EXIT_REASON_TPAUSE:
6377 return nested_cpu_has2(vmcs12,
6378 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6379 case EXIT_REASON_ENCLS:
6380 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6381 case EXIT_REASON_NOTIFY:
6382 /* Notify VM exit is not exposed to L1 */
6383 return false;
6384 default:
6385 return true;
6386 }
6387}
6388
6389/*
6390 * Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
6391 * reflected into L1.
6392 */
6393bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6394{
6395 struct vcpu_vmx *vmx = to_vmx(vcpu);
6396 union vmx_exit_reason exit_reason = vmx->exit_reason;
6397 unsigned long exit_qual;
6398 u32 exit_intr_info;
6399
6400 WARN_ON_ONCE(vmx->nested.nested_run_pending);
6401
6402 /*
6403 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6404 * has already loaded L2's state.
6405 */
6406 if (unlikely(vmx->fail)) {
6407 trace_kvm_nested_vmenter_failed(
6408 "hardware VM-instruction error: ",
6409 vmcs_read32(field: VM_INSTRUCTION_ERROR));
6410 exit_intr_info = 0;
6411 exit_qual = 0;
6412 goto reflect_vmexit;
6413 }
6414
6415 trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6416
6417 /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6418 if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6419 return false;
6420
6421 /* If L1 doesn't want the exit, handle it in L0. */
6422 if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6423 return false;
6424
6425 /*
6426 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
6427 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6428 * need to be synthesized by querying the in-kernel LAPIC, but external
6429 * interrupts are never reflected to L1 so it's a non-issue.
6430 */
6431 exit_intr_info = vmx_get_intr_info(vcpu);
6432 if (is_exception_with_error_code(intr_info: exit_intr_info)) {
6433 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6434
6435 vmcs12->vm_exit_intr_error_code =
6436 vmcs_read32(field: VM_EXIT_INTR_ERROR_CODE);
6437 }
6438 exit_qual = vmx_get_exit_qual(vcpu);
6439
6440reflect_vmexit:
6441 nested_vmx_vmexit(vcpu, vm_exit_reason: exit_reason.full, exit_intr_info, exit_qualification: exit_qual);
6442 return true;
6443}
6444
6445static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6446 struct kvm_nested_state __user *user_kvm_nested_state,
6447 u32 user_data_size)
6448{
6449 struct vcpu_vmx *vmx;
6450 struct vmcs12 *vmcs12;
6451 struct kvm_nested_state kvm_state = {
6452 .flags = 0,
6453 .format = KVM_STATE_NESTED_FORMAT_VMX,
6454 .size = sizeof(kvm_state),
6455 .hdr.vmx.flags = 0,
6456 .hdr.vmx.vmxon_pa = INVALID_GPA,
6457 .hdr.vmx.vmcs12_pa = INVALID_GPA,
6458 .hdr.vmx.preemption_timer_deadline = 0,
6459 };
6460 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6461 &user_kvm_nested_state->data.vmx[0];
6462
6463 if (!vcpu)
6464 return kvm_state.size + sizeof(*user_vmx_nested_state);
6465
6466 vmx = to_vmx(vcpu);
6467 vmcs12 = get_vmcs12(vcpu);
6468
6469 if (guest_can_use(vcpu, X86_FEATURE_VMX) &&
6470 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6471 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6472 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6473
6474 if (vmx_has_valid_vmcs12(vcpu)) {
6475 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6476
6477 /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6478 if (nested_vmx_is_evmptr12_set(vmx))
6479 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6480
6481 if (is_guest_mode(vcpu) &&
6482 nested_cpu_has_shadow_vmcs(vmcs12) &&
6483 vmcs12->vmcs_link_pointer != INVALID_GPA)
6484 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6485 }
6486
6487 if (vmx->nested.smm.vmxon)
6488 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6489
6490 if (vmx->nested.smm.guest_mode)
6491 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6492
6493 if (is_guest_mode(vcpu)) {
6494 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6495
6496 if (vmx->nested.nested_run_pending)
6497 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6498
6499 if (vmx->nested.mtf_pending)
6500 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6501
6502 if (nested_cpu_has_preemption_timer(vmcs12) &&
6503 vmx->nested.has_preemption_timer_deadline) {
6504 kvm_state.hdr.vmx.flags |=
6505 KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6506 kvm_state.hdr.vmx.preemption_timer_deadline =
6507 vmx->nested.preemption_timer_deadline;
6508 }
6509 }
6510 }
6511
6512 if (user_data_size < kvm_state.size)
6513 goto out;
6514
6515 if (copy_to_user(to: user_kvm_nested_state, from: &kvm_state, n: sizeof(kvm_state)))
6516 return -EFAULT;
6517
6518 if (!vmx_has_valid_vmcs12(vcpu))
6519 goto out;
6520
6521 /*
6522 * When running L2, the authoritative vmcs12 state is in the
6523 * vmcs02. When running L1, the authoritative vmcs12 state is
6524 * in the shadow or enlightened vmcs linked to vmcs01, unless
6525 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6526 * vmcs12 state is in the vmcs12 already.
6527 */
6528 if (is_guest_mode(vcpu)) {
6529 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6530 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6531 } else {
6532 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12: get_vmcs12(vcpu));
6533 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6534 if (nested_vmx_is_evmptr12_valid(vmx))
6535 /*
6536 * L1 hypervisor is not obliged to keep eVMCS
6537 * clean fields data always up-to-date while
6538 * not in guest mode, 'hv_clean_fields' is only
6539 * supposed to be actual upon vmentry so we need
6540 * to ignore it here and do full copy.
6541 */
6542 copy_enlightened_to_vmcs12(vmx, hv_clean_fields: 0);
6543 else if (enable_shadow_vmcs)
6544 copy_shadow_to_vmcs12(vmx);
6545 }
6546 }
6547
6548 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6549 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6550
6551 /*
6552 * Copy over the full allocated size of vmcs12 rather than just the size
6553 * of the struct.
6554 */
6555 if (copy_to_user(to: user_vmx_nested_state->vmcs12, from: vmcs12, VMCS12_SIZE))
6556 return -EFAULT;
6557
6558 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6559 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6560 if (copy_to_user(to: user_vmx_nested_state->shadow_vmcs12,
6561 from: get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6562 return -EFAULT;
6563 }
6564out:
6565 return kvm_state.size;
6566}
6567
6568void vmx_leave_nested(struct kvm_vcpu *vcpu)
6569{
6570 if (is_guest_mode(vcpu)) {
6571 to_vmx(vcpu)->nested.nested_run_pending = 0;
6572 nested_vmx_vmexit(vcpu, vm_exit_reason: -1, exit_intr_info: 0, exit_qualification: 0);
6573 }
6574 free_nested(vcpu);
6575}
6576
6577static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6578 struct kvm_nested_state __user *user_kvm_nested_state,
6579 struct kvm_nested_state *kvm_state)
6580{
6581 struct vcpu_vmx *vmx = to_vmx(vcpu);
6582 struct vmcs12 *vmcs12;
6583 enum vm_entry_failure_code ignored;
6584 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6585 &user_kvm_nested_state->data.vmx[0];
6586 int ret;
6587
6588 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6589 return -EINVAL;
6590
6591 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6592 if (kvm_state->hdr.vmx.smm.flags)
6593 return -EINVAL;
6594
6595 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6596 return -EINVAL;
6597
6598 /*
6599 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6600 * enable eVMCS capability on vCPU. However, since then
6601 * code was changed such that flag signals vmcs12 should
6602 * be copied into eVMCS in guest memory.
6603 *
6604 * To preserve backwards compatibility, allow user
6605 * to set this flag even when there is no VMXON region.
6606 */
6607 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6608 return -EINVAL;
6609 } else {
6610 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
6611 return -EINVAL;
6612
6613 if (!page_address_valid(vcpu, gpa: kvm_state->hdr.vmx.vmxon_pa))
6614 return -EINVAL;
6615 }
6616
6617 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6618 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6619 return -EINVAL;
6620
6621 if (kvm_state->hdr.vmx.smm.flags &
6622 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6623 return -EINVAL;
6624
6625 if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6626 return -EINVAL;
6627
6628 /*
6629 * SMM temporarily disables VMX, so we cannot be in guest mode,
6630 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
6631 * must be zero.
6632 */
6633 if (is_smm(vcpu) ?
6634 (kvm_state->flags &
6635 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6636 : kvm_state->hdr.vmx.smm.flags)
6637 return -EINVAL;
6638
6639 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6640 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6641 return -EINVAL;
6642
6643 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6644 (!guest_can_use(vcpu, X86_FEATURE_VMX) ||
6645 !vmx->nested.enlightened_vmcs_enabled))
6646 return -EINVAL;
6647
6648 vmx_leave_nested(vcpu);
6649
6650 if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6651 return 0;
6652
6653 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6654 ret = enter_vmx_operation(vcpu);
6655 if (ret)
6656 return ret;
6657
6658 /* Empty 'VMXON' state is permitted if no VMCS loaded */
6659 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6660 /* See vmx_has_valid_vmcs12. */
6661 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6662 (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6663 (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6664 return -EINVAL;
6665 else
6666 return 0;
6667 }
6668
6669 if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6670 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6671 !page_address_valid(vcpu, gpa: kvm_state->hdr.vmx.vmcs12_pa))
6672 return -EINVAL;
6673
6674 set_current_vmptr(vmx, vmptr: kvm_state->hdr.vmx.vmcs12_pa);
6675#ifdef CONFIG_KVM_HYPERV
6676 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6677 /*
6678 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6679 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6680 * restored yet. EVMCS will be mapped from
6681 * nested_get_vmcs12_pages().
6682 */
6683 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6684 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6685#endif
6686 } else {
6687 return -EINVAL;
6688 }
6689
6690 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6691 vmx->nested.smm.vmxon = true;
6692 vmx->nested.vmxon = false;
6693
6694 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6695 vmx->nested.smm.guest_mode = true;
6696 }
6697
6698 vmcs12 = get_vmcs12(vcpu);
6699 if (copy_from_user(to: vmcs12, from: user_vmx_nested_state->vmcs12, n: sizeof(*vmcs12)))
6700 return -EFAULT;
6701
6702 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6703 return -EINVAL;
6704
6705 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6706 return 0;
6707
6708 vmx->nested.nested_run_pending =
6709 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6710
6711 vmx->nested.mtf_pending =
6712 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6713
6714 ret = -EINVAL;
6715 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6716 vmcs12->vmcs_link_pointer != INVALID_GPA) {
6717 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6718
6719 if (kvm_state->size <
6720 sizeof(*kvm_state) +
6721 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6722 goto error_guest_mode;
6723
6724 if (copy_from_user(to: shadow_vmcs12,
6725 from: user_vmx_nested_state->shadow_vmcs12,
6726 n: sizeof(*shadow_vmcs12))) {
6727 ret = -EFAULT;
6728 goto error_guest_mode;
6729 }
6730
6731 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6732 !shadow_vmcs12->hdr.shadow_vmcs)
6733 goto error_guest_mode;
6734 }
6735
6736 vmx->nested.has_preemption_timer_deadline = false;
6737 if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6738 vmx->nested.has_preemption_timer_deadline = true;
6739 vmx->nested.preemption_timer_deadline =
6740 kvm_state->hdr.vmx.preemption_timer_deadline;
6741 }
6742
6743 if (nested_vmx_check_controls(vcpu, vmcs12) ||
6744 nested_vmx_check_host_state(vcpu, vmcs12) ||
6745 nested_vmx_check_guest_state(vcpu, vmcs12, entry_failure_code: &ignored))
6746 goto error_guest_mode;
6747
6748 vmx->nested.dirty_vmcs12 = true;
6749 vmx->nested.force_msr_bitmap_recalc = true;
6750 ret = nested_vmx_enter_non_root_mode(vcpu, from_vmentry: false);
6751 if (ret)
6752 goto error_guest_mode;
6753
6754 if (vmx->nested.mtf_pending)
6755 kvm_make_request(KVM_REQ_EVENT, vcpu);
6756
6757 return 0;
6758
6759error_guest_mode:
6760 vmx->nested.nested_run_pending = 0;
6761 return ret;
6762}
6763
6764void nested_vmx_set_vmcs_shadowing_bitmap(void)
6765{
6766 if (enable_shadow_vmcs) {
6767 vmcs_write64(field: VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6768 vmcs_write64(field: VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6769 }
6770}
6771
6772/*
6773 * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6. Undo
6774 * that madness to get the encoding for comparison.
6775 */
6776#define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6777
6778static u64 nested_vmx_calc_vmcs_enum_msr(void)
6779{
6780 /*
6781 * Note these are the so called "index" of the VMCS field encoding, not
6782 * the index into vmcs12.
6783 */
6784 unsigned int max_idx, idx;
6785 int i;
6786
6787 /*
6788 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6789 * vmcs12, regardless of whether or not the associated feature is
6790 * exposed to L1. Simply find the field with the highest index.
6791 */
6792 max_idx = 0;
6793 for (i = 0; i < nr_vmcs12_fields; i++) {
6794 /* The vmcs12 table is very, very sparsely populated. */
6795 if (!vmcs12_field_offsets[i])
6796 continue;
6797
6798 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6799 if (idx > max_idx)
6800 max_idx = idx;
6801 }
6802
6803 return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6804}
6805
6806static void nested_vmx_setup_pinbased_ctls(struct vmcs_config *vmcs_conf,
6807 struct nested_vmx_msrs *msrs)
6808{
6809 msrs->pinbased_ctls_low =
6810 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6811
6812 msrs->pinbased_ctls_high = vmcs_conf->pin_based_exec_ctrl;
6813 msrs->pinbased_ctls_high &=
6814 PIN_BASED_EXT_INTR_MASK |
6815 PIN_BASED_NMI_EXITING |
6816 PIN_BASED_VIRTUAL_NMIS |
6817 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6818 msrs->pinbased_ctls_high |=
6819 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6820 PIN_BASED_VMX_PREEMPTION_TIMER;
6821}
6822
6823static void nested_vmx_setup_exit_ctls(struct vmcs_config *vmcs_conf,
6824 struct nested_vmx_msrs *msrs)
6825{
6826 msrs->exit_ctls_low =
6827 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6828
6829 msrs->exit_ctls_high = vmcs_conf->vmexit_ctrl;
6830 msrs->exit_ctls_high &=
6831#ifdef CONFIG_X86_64
6832 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6833#endif
6834 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6835 VM_EXIT_CLEAR_BNDCFGS;
6836 msrs->exit_ctls_high |=
6837 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6838 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6839 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT |
6840 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6841
6842 /* We support free control of debug control saving. */
6843 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6844}
6845
6846static void nested_vmx_setup_entry_ctls(struct vmcs_config *vmcs_conf,
6847 struct nested_vmx_msrs *msrs)
6848{
6849 msrs->entry_ctls_low =
6850 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6851
6852 msrs->entry_ctls_high = vmcs_conf->vmentry_ctrl;
6853 msrs->entry_ctls_high &=
6854#ifdef CONFIG_X86_64
6855 VM_ENTRY_IA32E_MODE |
6856#endif
6857 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
6858 msrs->entry_ctls_high |=
6859 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER |
6860 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL);
6861
6862 /* We support free control of debug control loading. */
6863 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6864}
6865
6866static void nested_vmx_setup_cpubased_ctls(struct vmcs_config *vmcs_conf,
6867 struct nested_vmx_msrs *msrs)
6868{
6869 msrs->procbased_ctls_low =
6870 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6871
6872 msrs->procbased_ctls_high = vmcs_conf->cpu_based_exec_ctrl;
6873 msrs->procbased_ctls_high &=
6874 CPU_BASED_INTR_WINDOW_EXITING |
6875 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6876 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6877 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6878 CPU_BASED_CR3_STORE_EXITING |
6879#ifdef CONFIG_X86_64
6880 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6881#endif
6882 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6883 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6884 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6885 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6886 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6887 /*
6888 * We can allow some features even when not supported by the
6889 * hardware. For example, L1 can specify an MSR bitmap - and we
6890 * can use it to avoid exits to L1 - even when L0 runs L2
6891 * without MSR bitmaps.
6892 */
6893 msrs->procbased_ctls_high |=
6894 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6895 CPU_BASED_USE_MSR_BITMAPS;
6896
6897 /* We support free control of CR3 access interception. */
6898 msrs->procbased_ctls_low &=
6899 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6900}
6901
6902static void nested_vmx_setup_secondary_ctls(u32 ept_caps,
6903 struct vmcs_config *vmcs_conf,
6904 struct nested_vmx_msrs *msrs)
6905{
6906 msrs->secondary_ctls_low = 0;
6907
6908 msrs->secondary_ctls_high = vmcs_conf->cpu_based_2nd_exec_ctrl;
6909 msrs->secondary_ctls_high &=
6910 SECONDARY_EXEC_DESC |
6911 SECONDARY_EXEC_ENABLE_RDTSCP |
6912 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6913 SECONDARY_EXEC_WBINVD_EXITING |
6914 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6915 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6916 SECONDARY_EXEC_RDRAND_EXITING |
6917 SECONDARY_EXEC_ENABLE_INVPCID |
6918 SECONDARY_EXEC_ENABLE_VMFUNC |
6919 SECONDARY_EXEC_RDSEED_EXITING |
6920 SECONDARY_EXEC_ENABLE_XSAVES |
6921 SECONDARY_EXEC_TSC_SCALING |
6922 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
6923
6924 /*
6925 * We can emulate "VMCS shadowing," even if the hardware
6926 * doesn't support it.
6927 */
6928 msrs->secondary_ctls_high |=
6929 SECONDARY_EXEC_SHADOW_VMCS;
6930
6931 if (enable_ept) {
6932 /* nested EPT: emulate EPT also to L1 */
6933 msrs->secondary_ctls_high |=
6934 SECONDARY_EXEC_ENABLE_EPT;
6935 msrs->ept_caps =
6936 VMX_EPT_PAGE_WALK_4_BIT |
6937 VMX_EPT_PAGE_WALK_5_BIT |
6938 VMX_EPTP_WB_BIT |
6939 VMX_EPT_INVEPT_BIT |
6940 VMX_EPT_EXECUTE_ONLY_BIT;
6941
6942 msrs->ept_caps &= ept_caps;
6943 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6944 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6945 VMX_EPT_1GB_PAGE_BIT;
6946 if (enable_ept_ad_bits) {
6947 msrs->secondary_ctls_high |=
6948 SECONDARY_EXEC_ENABLE_PML;
6949 msrs->ept_caps |= VMX_EPT_AD_BIT;
6950 }
6951
6952 /*
6953 * Advertise EPTP switching irrespective of hardware support,
6954 * KVM emulates it in software so long as VMFUNC is supported.
6955 */
6956 if (cpu_has_vmx_vmfunc())
6957 msrs->vmfunc_controls = VMX_VMFUNC_EPTP_SWITCHING;
6958 }
6959
6960 /*
6961 * Old versions of KVM use the single-context version without
6962 * checking for support, so declare that it is supported even
6963 * though it is treated as global context. The alternative is
6964 * not failing the single-context invvpid, and it is worse.
6965 */
6966 if (enable_vpid) {
6967 msrs->secondary_ctls_high |=
6968 SECONDARY_EXEC_ENABLE_VPID;
6969 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6970 VMX_VPID_EXTENT_SUPPORTED_MASK;
6971 }
6972
6973 if (enable_unrestricted_guest)
6974 msrs->secondary_ctls_high |=
6975 SECONDARY_EXEC_UNRESTRICTED_GUEST;
6976
6977 if (flexpriority_enabled)
6978 msrs->secondary_ctls_high |=
6979 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6980
6981 if (enable_sgx)
6982 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6983}
6984
6985static void nested_vmx_setup_misc_data(struct vmcs_config *vmcs_conf,
6986 struct nested_vmx_msrs *msrs)
6987{
6988 msrs->misc_low = (u32)vmcs_conf->misc & VMX_MISC_SAVE_EFER_LMA;
6989 msrs->misc_low |=
6990 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6991 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6992 VMX_MISC_ACTIVITY_HLT |
6993 VMX_MISC_ACTIVITY_WAIT_SIPI;
6994 msrs->misc_high = 0;
6995}
6996
6997static void nested_vmx_setup_basic(struct nested_vmx_msrs *msrs)
6998{
6999 /*
7000 * This MSR reports some information about VMX support. We
7001 * should return information about the VMX we emulate for the
7002 * guest, and the VMCS structure we give it - not about the
7003 * VMX support of the underlying hardware.
7004 */
7005 msrs->basic =
7006 VMCS12_REVISION |
7007 VMX_BASIC_TRUE_CTLS |
7008 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
7009 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
7010
7011 if (cpu_has_vmx_basic_inout())
7012 msrs->basic |= VMX_BASIC_INOUT;
7013}
7014
7015static void nested_vmx_setup_cr_fixed(struct nested_vmx_msrs *msrs)
7016{
7017 /*
7018 * These MSRs specify bits which the guest must keep fixed on
7019 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
7020 * We picked the standard core2 setting.
7021 */
7022#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
7023#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
7024 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
7025 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
7026
7027 /* These MSRs specify bits which the guest must keep fixed off. */
7028 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
7029 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
7030
7031 if (vmx_umip_emulated())
7032 msrs->cr4_fixed1 |= X86_CR4_UMIP;
7033}
7034
7035/*
7036 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
7037 * returned for the various VMX controls MSRs when nested VMX is enabled.
7038 * The same values should also be used to verify that vmcs12 control fields are
7039 * valid during nested entry from L1 to L2.
7040 * Each of these control msrs has a low and high 32-bit half: A low bit is on
7041 * if the corresponding bit in the (32-bit) control field *must* be on, and a
7042 * bit in the high half is on if the corresponding bit in the control field
7043 * may be on. See also vmx_control_verify().
7044 */
7045void nested_vmx_setup_ctls_msrs(struct vmcs_config *vmcs_conf, u32 ept_caps)
7046{
7047 struct nested_vmx_msrs *msrs = &vmcs_conf->nested;
7048
7049 /*
7050 * Note that as a general rule, the high half of the MSRs (bits in
7051 * the control fields which may be 1) should be initialized by the
7052 * intersection of the underlying hardware's MSR (i.e., features which
7053 * can be supported) and the list of features we want to expose -
7054 * because they are known to be properly supported in our code.
7055 * Also, usually, the low half of the MSRs (bits which must be 1) can
7056 * be set to 0, meaning that L1 may turn off any of these bits. The
7057 * reason is that if one of these bits is necessary, it will appear
7058 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
7059 * fields of vmcs01 and vmcs02, will turn these bits off - and
7060 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
7061 * These rules have exceptions below.
7062 */
7063 nested_vmx_setup_pinbased_ctls(vmcs_conf, msrs);
7064
7065 nested_vmx_setup_exit_ctls(vmcs_conf, msrs);
7066
7067 nested_vmx_setup_entry_ctls(vmcs_conf, msrs);
7068
7069 nested_vmx_setup_cpubased_ctls(vmcs_conf, msrs);
7070
7071 nested_vmx_setup_secondary_ctls(ept_caps, vmcs_conf, msrs);
7072
7073 nested_vmx_setup_misc_data(vmcs_conf, msrs);
7074
7075 nested_vmx_setup_basic(msrs);
7076
7077 nested_vmx_setup_cr_fixed(msrs);
7078
7079 msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
7080}
7081
7082void nested_vmx_hardware_unsetup(void)
7083{
7084 int i;
7085
7086 if (enable_shadow_vmcs) {
7087 for (i = 0; i < VMX_BITMAP_NR; i++)
7088 free_page((unsigned long)vmx_bitmap[i]);
7089 }
7090}
7091
7092__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
7093{
7094 int i;
7095
7096 if (!cpu_has_vmx_shadow_vmcs())
7097 enable_shadow_vmcs = 0;
7098 if (enable_shadow_vmcs) {
7099 for (i = 0; i < VMX_BITMAP_NR; i++) {
7100 /*
7101 * The vmx_bitmap is not tied to a VM and so should
7102 * not be charged to a memcg.
7103 */
7104 vmx_bitmap[i] = (unsigned long *)
7105 __get_free_page(GFP_KERNEL);
7106 if (!vmx_bitmap[i]) {
7107 nested_vmx_hardware_unsetup();
7108 return -ENOMEM;
7109 }
7110 }
7111
7112 init_vmcs_shadow_fields();
7113 }
7114
7115 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
7116 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
7117 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
7118 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
7119 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
7120 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
7121 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
7122 exit_handlers[EXIT_REASON_VMOFF] = handle_vmxoff;
7123 exit_handlers[EXIT_REASON_VMON] = handle_vmxon;
7124 exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
7125 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
7126 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
7127
7128 return 0;
7129}
7130
7131struct kvm_x86_nested_ops vmx_nested_ops = {
7132 .leave_nested = vmx_leave_nested,
7133 .is_exception_vmexit = nested_vmx_is_exception_vmexit,
7134 .check_events = vmx_check_nested_events,
7135 .has_events = vmx_has_nested_events,
7136 .triple_fault = nested_vmx_triple_fault,
7137 .get_state = vmx_get_nested_state,
7138 .set_state = vmx_set_nested_state,
7139 .get_nested_state_pages = vmx_get_nested_state_pages,
7140 .write_log_dirty = nested_vmx_write_pml_buffer,
7141#ifdef CONFIG_KVM_HYPERV
7142 .enable_evmcs = nested_enable_evmcs,
7143 .get_evmcs_version = nested_get_evmcs_version,
7144 .hv_inject_synthetic_vmexit_post_tlb_flush = vmx_hv_inject_synthetic_vmexit_post_tlb_flush,
7145#endif
7146};
7147

source code of linux/arch/x86/kvm/vmx/nested.c