1//===- MIParser.cpp - Machine instructions parser implementation ----------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the parsing of machine instructions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "llvm/CodeGen/MIRParser/MIParser.h"
14#include "MILexer.h"
15#include "llvm/ADT/APInt.h"
16#include "llvm/ADT/APSInt.h"
17#include "llvm/ADT/ArrayRef.h"
18#include "llvm/ADT/DenseMap.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/StringMap.h"
21#include "llvm/ADT/StringRef.h"
22#include "llvm/ADT/StringSwitch.h"
23#include "llvm/ADT/Twine.h"
24#include "llvm/Analysis/MemoryLocation.h"
25#include "llvm/AsmParser/Parser.h"
26#include "llvm/AsmParser/SlotMapping.h"
27#include "llvm/CodeGen/MIRFormatter.h"
28#include "llvm/CodeGen/MIRPrinter.h"
29#include "llvm/CodeGen/MachineBasicBlock.h"
30#include "llvm/CodeGen/MachineFrameInfo.h"
31#include "llvm/CodeGen/MachineFunction.h"
32#include "llvm/CodeGen/MachineInstr.h"
33#include "llvm/CodeGen/MachineInstrBuilder.h"
34#include "llvm/CodeGen/MachineMemOperand.h"
35#include "llvm/CodeGen/MachineOperand.h"
36#include "llvm/CodeGen/MachineRegisterInfo.h"
37#include "llvm/CodeGen/PseudoSourceValueManager.h"
38#include "llvm/CodeGen/RegisterBank.h"
39#include "llvm/CodeGen/RegisterBankInfo.h"
40#include "llvm/CodeGen/TargetInstrInfo.h"
41#include "llvm/CodeGen/TargetRegisterInfo.h"
42#include "llvm/CodeGen/TargetSubtargetInfo.h"
43#include "llvm/CodeGenTypes/LowLevelType.h"
44#include "llvm/IR/BasicBlock.h"
45#include "llvm/IR/Constants.h"
46#include "llvm/IR/DataLayout.h"
47#include "llvm/IR/DebugInfoMetadata.h"
48#include "llvm/IR/DebugLoc.h"
49#include "llvm/IR/Function.h"
50#include "llvm/IR/InstrTypes.h"
51#include "llvm/IR/Instructions.h"
52#include "llvm/IR/Intrinsics.h"
53#include "llvm/IR/Metadata.h"
54#include "llvm/IR/Module.h"
55#include "llvm/IR/ModuleSlotTracker.h"
56#include "llvm/IR/Type.h"
57#include "llvm/IR/Value.h"
58#include "llvm/IR/ValueSymbolTable.h"
59#include "llvm/MC/LaneBitmask.h"
60#include "llvm/MC/MCContext.h"
61#include "llvm/MC/MCDwarf.h"
62#include "llvm/MC/MCInstrDesc.h"
63#include "llvm/Support/AtomicOrdering.h"
64#include "llvm/Support/BranchProbability.h"
65#include "llvm/Support/Casting.h"
66#include "llvm/Support/ErrorHandling.h"
67#include "llvm/Support/MemoryBuffer.h"
68#include "llvm/Support/SMLoc.h"
69#include "llvm/Support/SourceMgr.h"
70#include "llvm/Target/TargetIntrinsicInfo.h"
71#include "llvm/Target/TargetMachine.h"
72#include <cassert>
73#include <cctype>
74#include <cstddef>
75#include <cstdint>
76#include <limits>
77#include <string>
78#include <utility>
79
80using namespace llvm;
81
82void PerTargetMIParsingState::setTarget(
83 const TargetSubtargetInfo &NewSubtarget) {
84
85 // If the subtarget changed, over conservatively assume everything is invalid.
86 if (&Subtarget == &NewSubtarget)
87 return;
88
89 Names2InstrOpCodes.clear();
90 Names2Regs.clear();
91 Names2RegMasks.clear();
92 Names2SubRegIndices.clear();
93 Names2TargetIndices.clear();
94 Names2DirectTargetFlags.clear();
95 Names2BitmaskTargetFlags.clear();
96 Names2MMOTargetFlags.clear();
97
98 initNames2RegClasses();
99 initNames2RegBanks();
100}
101
102void PerTargetMIParsingState::initNames2Regs() {
103 if (!Names2Regs.empty())
104 return;
105
106 // The '%noreg' register is the register 0.
107 Names2Regs.insert(KV: std::make_pair(x: "noreg", y: 0));
108 const auto *TRI = Subtarget.getRegisterInfo();
109 assert(TRI && "Expected target register info");
110
111 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
112 bool WasInserted =
113 Names2Regs.insert(KV: std::make_pair(x: StringRef(TRI->getName(RegNo: I)).lower(), y&: I))
114 .second;
115 (void)WasInserted;
116 assert(WasInserted && "Expected registers to be unique case-insensitively");
117 }
118}
119
120bool PerTargetMIParsingState::getRegisterByName(StringRef RegName,
121 Register &Reg) {
122 initNames2Regs();
123 auto RegInfo = Names2Regs.find(Key: RegName);
124 if (RegInfo == Names2Regs.end())
125 return true;
126 Reg = RegInfo->getValue();
127 return false;
128}
129
130void PerTargetMIParsingState::initNames2InstrOpCodes() {
131 if (!Names2InstrOpCodes.empty())
132 return;
133 const auto *TII = Subtarget.getInstrInfo();
134 assert(TII && "Expected target instruction info");
135 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
136 Names2InstrOpCodes.insert(KV: std::make_pair(x: StringRef(TII->getName(Opcode: I)), y&: I));
137}
138
139bool PerTargetMIParsingState::parseInstrName(StringRef InstrName,
140 unsigned &OpCode) {
141 initNames2InstrOpCodes();
142 auto InstrInfo = Names2InstrOpCodes.find(Key: InstrName);
143 if (InstrInfo == Names2InstrOpCodes.end())
144 return true;
145 OpCode = InstrInfo->getValue();
146 return false;
147}
148
149void PerTargetMIParsingState::initNames2RegMasks() {
150 if (!Names2RegMasks.empty())
151 return;
152 const auto *TRI = Subtarget.getRegisterInfo();
153 assert(TRI && "Expected target register info");
154 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
155 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
156 assert(RegMasks.size() == RegMaskNames.size());
157 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
158 Names2RegMasks.insert(
159 KV: std::make_pair(x: StringRef(RegMaskNames[I]).lower(), y: RegMasks[I]));
160}
161
162const uint32_t *PerTargetMIParsingState::getRegMask(StringRef Identifier) {
163 initNames2RegMasks();
164 auto RegMaskInfo = Names2RegMasks.find(Key: Identifier);
165 if (RegMaskInfo == Names2RegMasks.end())
166 return nullptr;
167 return RegMaskInfo->getValue();
168}
169
170void PerTargetMIParsingState::initNames2SubRegIndices() {
171 if (!Names2SubRegIndices.empty())
172 return;
173 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
174 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
175 Names2SubRegIndices.insert(
176 KV: std::make_pair(x: TRI->getSubRegIndexName(SubIdx: I), y&: I));
177}
178
179unsigned PerTargetMIParsingState::getSubRegIndex(StringRef Name) {
180 initNames2SubRegIndices();
181 auto SubRegInfo = Names2SubRegIndices.find(Key: Name);
182 if (SubRegInfo == Names2SubRegIndices.end())
183 return 0;
184 return SubRegInfo->getValue();
185}
186
187void PerTargetMIParsingState::initNames2TargetIndices() {
188 if (!Names2TargetIndices.empty())
189 return;
190 const auto *TII = Subtarget.getInstrInfo();
191 assert(TII && "Expected target instruction info");
192 auto Indices = TII->getSerializableTargetIndices();
193 for (const auto &I : Indices)
194 Names2TargetIndices.insert(KV: std::make_pair(x: StringRef(I.second), y: I.first));
195}
196
197bool PerTargetMIParsingState::getTargetIndex(StringRef Name, int &Index) {
198 initNames2TargetIndices();
199 auto IndexInfo = Names2TargetIndices.find(Key: Name);
200 if (IndexInfo == Names2TargetIndices.end())
201 return true;
202 Index = IndexInfo->second;
203 return false;
204}
205
206void PerTargetMIParsingState::initNames2DirectTargetFlags() {
207 if (!Names2DirectTargetFlags.empty())
208 return;
209
210 const auto *TII = Subtarget.getInstrInfo();
211 assert(TII && "Expected target instruction info");
212 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
213 for (const auto &I : Flags)
214 Names2DirectTargetFlags.insert(
215 KV: std::make_pair(x: StringRef(I.second), y: I.first));
216}
217
218bool PerTargetMIParsingState::getDirectTargetFlag(StringRef Name,
219 unsigned &Flag) {
220 initNames2DirectTargetFlags();
221 auto FlagInfo = Names2DirectTargetFlags.find(Key: Name);
222 if (FlagInfo == Names2DirectTargetFlags.end())
223 return true;
224 Flag = FlagInfo->second;
225 return false;
226}
227
228void PerTargetMIParsingState::initNames2BitmaskTargetFlags() {
229 if (!Names2BitmaskTargetFlags.empty())
230 return;
231
232 const auto *TII = Subtarget.getInstrInfo();
233 assert(TII && "Expected target instruction info");
234 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
235 for (const auto &I : Flags)
236 Names2BitmaskTargetFlags.insert(
237 KV: std::make_pair(x: StringRef(I.second), y: I.first));
238}
239
240bool PerTargetMIParsingState::getBitmaskTargetFlag(StringRef Name,
241 unsigned &Flag) {
242 initNames2BitmaskTargetFlags();
243 auto FlagInfo = Names2BitmaskTargetFlags.find(Key: Name);
244 if (FlagInfo == Names2BitmaskTargetFlags.end())
245 return true;
246 Flag = FlagInfo->second;
247 return false;
248}
249
250void PerTargetMIParsingState::initNames2MMOTargetFlags() {
251 if (!Names2MMOTargetFlags.empty())
252 return;
253
254 const auto *TII = Subtarget.getInstrInfo();
255 assert(TII && "Expected target instruction info");
256 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
257 for (const auto &I : Flags)
258 Names2MMOTargetFlags.insert(KV: std::make_pair(x: StringRef(I.second), y: I.first));
259}
260
261bool PerTargetMIParsingState::getMMOTargetFlag(StringRef Name,
262 MachineMemOperand::Flags &Flag) {
263 initNames2MMOTargetFlags();
264 auto FlagInfo = Names2MMOTargetFlags.find(Key: Name);
265 if (FlagInfo == Names2MMOTargetFlags.end())
266 return true;
267 Flag = FlagInfo->second;
268 return false;
269}
270
271void PerTargetMIParsingState::initNames2RegClasses() {
272 if (!Names2RegClasses.empty())
273 return;
274
275 const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
276 for (unsigned I = 0, E = TRI->getNumRegClasses(); I < E; ++I) {
277 const auto *RC = TRI->getRegClass(i: I);
278 Names2RegClasses.insert(
279 KV: std::make_pair(x: StringRef(TRI->getRegClassName(Class: RC)).lower(), y&: RC));
280 }
281}
282
283void PerTargetMIParsingState::initNames2RegBanks() {
284 if (!Names2RegBanks.empty())
285 return;
286
287 const RegisterBankInfo *RBI = Subtarget.getRegBankInfo();
288 // If the target does not support GlobalISel, we may not have a
289 // register bank info.
290 if (!RBI)
291 return;
292
293 for (unsigned I = 0, E = RBI->getNumRegBanks(); I < E; ++I) {
294 const auto &RegBank = RBI->getRegBank(ID: I);
295 Names2RegBanks.insert(
296 KV: std::make_pair(x: StringRef(RegBank.getName()).lower(), y: &RegBank));
297 }
298}
299
300const TargetRegisterClass *
301PerTargetMIParsingState::getRegClass(StringRef Name) {
302 auto RegClassInfo = Names2RegClasses.find(Key: Name);
303 if (RegClassInfo == Names2RegClasses.end())
304 return nullptr;
305 return RegClassInfo->getValue();
306}
307
308const RegisterBank *PerTargetMIParsingState::getRegBank(StringRef Name) {
309 auto RegBankInfo = Names2RegBanks.find(Key: Name);
310 if (RegBankInfo == Names2RegBanks.end())
311 return nullptr;
312 return RegBankInfo->getValue();
313}
314
315PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
316 SourceMgr &SM, const SlotMapping &IRSlots, PerTargetMIParsingState &T)
317 : MF(MF), SM(&SM), IRSlots(IRSlots), Target(T) {
318}
319
320VRegInfo &PerFunctionMIParsingState::getVRegInfo(Register Num) {
321 auto I = VRegInfos.insert(KV: std::make_pair(x&: Num, y: nullptr));
322 if (I.second) {
323 MachineRegisterInfo &MRI = MF.getRegInfo();
324 VRegInfo *Info = new (Allocator) VRegInfo;
325 Info->VReg = MRI.createIncompleteVirtualRegister();
326 I.first->second = Info;
327 }
328 return *I.first->second;
329}
330
331VRegInfo &PerFunctionMIParsingState::getVRegInfoNamed(StringRef RegName) {
332 assert(RegName != "" && "Expected named reg.");
333
334 auto I = VRegInfosNamed.insert(KV: std::make_pair(x: RegName.str(), y: nullptr));
335 if (I.second) {
336 VRegInfo *Info = new (Allocator) VRegInfo;
337 Info->VReg = MF.getRegInfo().createIncompleteVirtualRegister(Name: RegName);
338 I.first->second = Info;
339 }
340 return *I.first->second;
341}
342
343static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
344 DenseMap<unsigned, const Value *> &Slots2Values) {
345 int Slot = MST.getLocalSlot(V);
346 if (Slot == -1)
347 return;
348 Slots2Values.insert(KV: std::make_pair(x: unsigned(Slot), y&: V));
349}
350
351/// Creates the mapping from slot numbers to function's unnamed IR values.
352static void initSlots2Values(const Function &F,
353 DenseMap<unsigned, const Value *> &Slots2Values) {
354 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
355 MST.incorporateFunction(F);
356 for (const auto &Arg : F.args())
357 mapValueToSlot(V: &Arg, MST, Slots2Values);
358 for (const auto &BB : F) {
359 mapValueToSlot(V: &BB, MST, Slots2Values);
360 for (const auto &I : BB)
361 mapValueToSlot(V: &I, MST, Slots2Values);
362 }
363}
364
365const Value* PerFunctionMIParsingState::getIRValue(unsigned Slot) {
366 if (Slots2Values.empty())
367 initSlots2Values(F: MF.getFunction(), Slots2Values);
368 return Slots2Values.lookup(Val: Slot);
369}
370
371namespace {
372
373/// A wrapper struct around the 'MachineOperand' struct that includes a source
374/// range and other attributes.
375struct ParsedMachineOperand {
376 MachineOperand Operand;
377 StringRef::iterator Begin;
378 StringRef::iterator End;
379 std::optional<unsigned> TiedDefIdx;
380
381 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
382 StringRef::iterator End,
383 std::optional<unsigned> &TiedDefIdx)
384 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
385 if (TiedDefIdx)
386 assert(Operand.isReg() && Operand.isUse() &&
387 "Only used register operands can be tied");
388 }
389};
390
391class MIParser {
392 MachineFunction &MF;
393 SMDiagnostic &Error;
394 StringRef Source, CurrentSource;
395 SMRange SourceRange;
396 MIToken Token;
397 PerFunctionMIParsingState &PFS;
398 /// Maps from slot numbers to function's unnamed basic blocks.
399 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
400
401public:
402 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
403 StringRef Source);
404 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
405 StringRef Source, SMRange SourceRange);
406
407 /// \p SkipChar gives the number of characters to skip before looking
408 /// for the next token.
409 void lex(unsigned SkipChar = 0);
410
411 /// Report an error at the current location with the given message.
412 ///
413 /// This function always return true.
414 bool error(const Twine &Msg);
415
416 /// Report an error at the given location with the given message.
417 ///
418 /// This function always return true.
419 bool error(StringRef::iterator Loc, const Twine &Msg);
420
421 bool
422 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
423 bool parseBasicBlocks();
424 bool parse(MachineInstr *&MI);
425 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
426 bool parseStandaloneNamedRegister(Register &Reg);
427 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
428 bool parseStandaloneRegister(Register &Reg);
429 bool parseStandaloneStackObject(int &FI);
430 bool parseStandaloneMDNode(MDNode *&Node);
431 bool parseMachineMetadata();
432 bool parseMDTuple(MDNode *&MD, bool IsDistinct);
433 bool parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts);
434 bool parseMetadata(Metadata *&MD);
435
436 bool
437 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
438 bool parseBasicBlock(MachineBasicBlock &MBB,
439 MachineBasicBlock *&AddFalthroughFrom);
440 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
441 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
442
443 bool parseNamedRegister(Register &Reg);
444 bool parseVirtualRegister(VRegInfo *&Info);
445 bool parseNamedVirtualRegister(VRegInfo *&Info);
446 bool parseRegister(Register &Reg, VRegInfo *&VRegInfo);
447 bool parseRegisterFlag(unsigned &Flags);
448 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
449 bool parseSubRegisterIndex(unsigned &SubReg);
450 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
451 bool parseRegisterOperand(MachineOperand &Dest,
452 std::optional<unsigned> &TiedDefIdx,
453 bool IsDef = false);
454 bool parseImmediateOperand(MachineOperand &Dest);
455 bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
456 const Constant *&C);
457 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
458 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
459 bool parseTypedImmediateOperand(MachineOperand &Dest);
460 bool parseFPImmediateOperand(MachineOperand &Dest);
461 bool parseMBBReference(MachineBasicBlock *&MBB);
462 bool parseMBBOperand(MachineOperand &Dest);
463 bool parseStackFrameIndex(int &FI);
464 bool parseStackObjectOperand(MachineOperand &Dest);
465 bool parseFixedStackFrameIndex(int &FI);
466 bool parseFixedStackObjectOperand(MachineOperand &Dest);
467 bool parseGlobalValue(GlobalValue *&GV);
468 bool parseGlobalAddressOperand(MachineOperand &Dest);
469 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
470 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
471 bool parseJumpTableIndexOperand(MachineOperand &Dest);
472 bool parseExternalSymbolOperand(MachineOperand &Dest);
473 bool parseMCSymbolOperand(MachineOperand &Dest);
474 [[nodiscard]] bool parseMDNode(MDNode *&Node);
475 bool parseDIExpression(MDNode *&Expr);
476 bool parseDILocation(MDNode *&Expr);
477 bool parseMetadataOperand(MachineOperand &Dest);
478 bool parseCFIOffset(int &Offset);
479 bool parseCFIRegister(Register &Reg);
480 bool parseCFIAddressSpace(unsigned &AddressSpace);
481 bool parseCFIEscapeValues(std::string& Values);
482 bool parseCFIOperand(MachineOperand &Dest);
483 bool parseIRBlock(BasicBlock *&BB, const Function &F);
484 bool parseBlockAddressOperand(MachineOperand &Dest);
485 bool parseIntrinsicOperand(MachineOperand &Dest);
486 bool parsePredicateOperand(MachineOperand &Dest);
487 bool parseShuffleMaskOperand(MachineOperand &Dest);
488 bool parseTargetIndexOperand(MachineOperand &Dest);
489 bool parseDbgInstrRefOperand(MachineOperand &Dest);
490 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
491 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
492 bool parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
493 MachineOperand &Dest,
494 std::optional<unsigned> &TiedDefIdx);
495 bool parseMachineOperandAndTargetFlags(const unsigned OpCode,
496 const unsigned OpIdx,
497 MachineOperand &Dest,
498 std::optional<unsigned> &TiedDefIdx);
499 bool parseOffset(int64_t &Offset);
500 bool parseIRBlockAddressTaken(BasicBlock *&BB);
501 bool parseAlignment(uint64_t &Alignment);
502 bool parseAddrspace(unsigned &Addrspace);
503 bool parseSectionID(std::optional<MBBSectionID> &SID);
504 bool parseBBID(std::optional<UniqueBBID> &BBID);
505 bool parseCallFrameSize(unsigned &CallFrameSize);
506 bool parseOperandsOffset(MachineOperand &Op);
507 bool parseIRValue(const Value *&V);
508 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
509 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
510 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
511 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
512 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
513 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
514 bool parsePreOrPostInstrSymbol(MCSymbol *&Symbol);
515 bool parseHeapAllocMarker(MDNode *&Node);
516 bool parsePCSections(MDNode *&Node);
517
518 bool parseTargetImmMnemonic(const unsigned OpCode, const unsigned OpIdx,
519 MachineOperand &Dest, const MIRFormatter &MF);
520
521private:
522 /// Convert the integer literal in the current token into an unsigned integer.
523 ///
524 /// Return true if an error occurred.
525 bool getUnsigned(unsigned &Result);
526
527 /// Convert the integer literal in the current token into an uint64.
528 ///
529 /// Return true if an error occurred.
530 bool getUint64(uint64_t &Result);
531
532 /// Convert the hexadecimal literal in the current token into an unsigned
533 /// APInt with a minimum bitwidth required to represent the value.
534 ///
535 /// Return true if the literal does not represent an integer value.
536 bool getHexUint(APInt &Result);
537
538 /// If the current token is of the given kind, consume it and return false.
539 /// Otherwise report an error and return true.
540 bool expectAndConsume(MIToken::TokenKind TokenKind);
541
542 /// If the current token is of the given kind, consume it and return true.
543 /// Otherwise return false.
544 bool consumeIfPresent(MIToken::TokenKind TokenKind);
545
546 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
547
548 bool assignRegisterTies(MachineInstr &MI,
549 ArrayRef<ParsedMachineOperand> Operands);
550
551 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
552 const MCInstrDesc &MCID);
553
554 const BasicBlock *getIRBlock(unsigned Slot);
555 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
556
557 /// Get or create an MCSymbol for a given name.
558 MCSymbol *getOrCreateMCSymbol(StringRef Name);
559
560 /// parseStringConstant
561 /// ::= StringConstant
562 bool parseStringConstant(std::string &Result);
563
564 /// Map the location in the MI string to the corresponding location specified
565 /// in `SourceRange`.
566 SMLoc mapSMLoc(StringRef::iterator Loc);
567};
568
569} // end anonymous namespace
570
571MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
572 StringRef Source)
573 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
574{}
575
576MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
577 StringRef Source, SMRange SourceRange)
578 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source),
579 SourceRange(SourceRange), PFS(PFS) {}
580
581void MIParser::lex(unsigned SkipChar) {
582 CurrentSource = lexMIToken(
583 Source: CurrentSource.slice(Start: SkipChar, End: StringRef::npos), Token,
584 ErrorCallback: [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
585}
586
587bool MIParser::error(const Twine &Msg) { return error(Loc: Token.location(), Msg); }
588
589bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
590 const SourceMgr &SM = *PFS.SM;
591 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
592 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(i: SM.getMainFileID());
593 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
594 // Create an ordinary diagnostic when the source manager's buffer is the
595 // source string.
596 Error = SM.GetMessage(Loc: SMLoc::getFromPointer(Ptr: Loc), Kind: SourceMgr::DK_Error, Msg);
597 return true;
598 }
599 // Create a diagnostic for a YAML string literal.
600 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
601 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
602 Source, std::nullopt, std::nullopt);
603 return true;
604}
605
606SMLoc MIParser::mapSMLoc(StringRef::iterator Loc) {
607 assert(SourceRange.isValid() && "Invalid source range");
608 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()));
609 return SMLoc::getFromPointer(Ptr: SourceRange.Start.getPointer() +
610 (Loc - Source.data()));
611}
612
613typedef function_ref<bool(StringRef::iterator Loc, const Twine &)>
614 ErrorCallbackType;
615
616static const char *toString(MIToken::TokenKind TokenKind) {
617 switch (TokenKind) {
618 case MIToken::comma:
619 return "','";
620 case MIToken::equal:
621 return "'='";
622 case MIToken::colon:
623 return "':'";
624 case MIToken::lparen:
625 return "'('";
626 case MIToken::rparen:
627 return "')'";
628 default:
629 return "<unknown token>";
630 }
631}
632
633bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
634 if (Token.isNot(K: TokenKind))
635 return error(Msg: Twine("expected ") + toString(TokenKind));
636 lex();
637 return false;
638}
639
640bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
641 if (Token.isNot(K: TokenKind))
642 return false;
643 lex();
644 return true;
645}
646
647// Parse Machine Basic Block Section ID.
648bool MIParser::parseSectionID(std::optional<MBBSectionID> &SID) {
649 assert(Token.is(MIToken::kw_bbsections));
650 lex();
651 if (Token.is(K: MIToken::IntegerLiteral)) {
652 unsigned Value = 0;
653 if (getUnsigned(Result&: Value))
654 return error(Msg: "Unknown Section ID");
655 SID = MBBSectionID{Value};
656 } else {
657 const StringRef &S = Token.stringValue();
658 if (S == "Exception")
659 SID = MBBSectionID::ExceptionSectionID;
660 else if (S == "Cold")
661 SID = MBBSectionID::ColdSectionID;
662 else
663 return error(Msg: "Unknown Section ID");
664 }
665 lex();
666 return false;
667}
668
669// Parse Machine Basic Block ID.
670bool MIParser::parseBBID(std::optional<UniqueBBID> &BBID) {
671 assert(Token.is(MIToken::kw_bb_id));
672 lex();
673 unsigned BaseID = 0;
674 unsigned CloneID = 0;
675 if (getUnsigned(Result&: BaseID))
676 return error(Msg: "Unknown BB ID");
677 lex();
678 if (Token.is(K: MIToken::IntegerLiteral)) {
679 if (getUnsigned(Result&: CloneID))
680 return error(Msg: "Unknown Clone ID");
681 lex();
682 }
683 BBID = {.BaseID: BaseID, .CloneID: CloneID};
684 return false;
685}
686
687// Parse basic block call frame size.
688bool MIParser::parseCallFrameSize(unsigned &CallFrameSize) {
689 assert(Token.is(MIToken::kw_call_frame_size));
690 lex();
691 unsigned Value = 0;
692 if (getUnsigned(Result&: Value))
693 return error(Msg: "Unknown call frame size");
694 CallFrameSize = Value;
695 lex();
696 return false;
697}
698
699bool MIParser::parseBasicBlockDefinition(
700 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
701 assert(Token.is(MIToken::MachineBasicBlockLabel));
702 unsigned ID = 0;
703 if (getUnsigned(Result&: ID))
704 return true;
705 auto Loc = Token.location();
706 auto Name = Token.stringValue();
707 lex();
708 bool MachineBlockAddressTaken = false;
709 BasicBlock *AddressTakenIRBlock = nullptr;
710 bool IsLandingPad = false;
711 bool IsInlineAsmBrIndirectTarget = false;
712 bool IsEHFuncletEntry = false;
713 std::optional<MBBSectionID> SectionID;
714 uint64_t Alignment = 0;
715 std::optional<UniqueBBID> BBID;
716 unsigned CallFrameSize = 0;
717 BasicBlock *BB = nullptr;
718 if (consumeIfPresent(TokenKind: MIToken::lparen)) {
719 do {
720 // TODO: Report an error when multiple same attributes are specified.
721 switch (Token.kind()) {
722 case MIToken::kw_machine_block_address_taken:
723 MachineBlockAddressTaken = true;
724 lex();
725 break;
726 case MIToken::kw_ir_block_address_taken:
727 if (parseIRBlockAddressTaken(BB&: AddressTakenIRBlock))
728 return true;
729 break;
730 case MIToken::kw_landing_pad:
731 IsLandingPad = true;
732 lex();
733 break;
734 case MIToken::kw_inlineasm_br_indirect_target:
735 IsInlineAsmBrIndirectTarget = true;
736 lex();
737 break;
738 case MIToken::kw_ehfunclet_entry:
739 IsEHFuncletEntry = true;
740 lex();
741 break;
742 case MIToken::kw_align:
743 if (parseAlignment(Alignment))
744 return true;
745 break;
746 case MIToken::IRBlock:
747 case MIToken::NamedIRBlock:
748 // TODO: Report an error when both name and ir block are specified.
749 if (parseIRBlock(BB, F: MF.getFunction()))
750 return true;
751 lex();
752 break;
753 case MIToken::kw_bbsections:
754 if (parseSectionID(SID&: SectionID))
755 return true;
756 break;
757 case MIToken::kw_bb_id:
758 if (parseBBID(BBID))
759 return true;
760 break;
761 case MIToken::kw_call_frame_size:
762 if (parseCallFrameSize(CallFrameSize))
763 return true;
764 break;
765 default:
766 break;
767 }
768 } while (consumeIfPresent(TokenKind: MIToken::comma));
769 if (expectAndConsume(TokenKind: MIToken::rparen))
770 return true;
771 }
772 if (expectAndConsume(TokenKind: MIToken::colon))
773 return true;
774
775 if (!Name.empty()) {
776 BB = dyn_cast_or_null<BasicBlock>(
777 Val: MF.getFunction().getValueSymbolTable()->lookup(Name));
778 if (!BB)
779 return error(Loc, Msg: Twine("basic block '") + Name +
780 "' is not defined in the function '" +
781 MF.getName() + "'");
782 }
783 auto *MBB = MF.CreateMachineBasicBlock(BB);
784 MF.insert(MBBI: MF.end(), MBB);
785 bool WasInserted = MBBSlots.insert(KV: std::make_pair(x&: ID, y&: MBB)).second;
786 if (!WasInserted)
787 return error(Loc, Msg: Twine("redefinition of machine basic block with id #") +
788 Twine(ID));
789 if (Alignment)
790 MBB->setAlignment(Align(Alignment));
791 if (MachineBlockAddressTaken)
792 MBB->setMachineBlockAddressTaken();
793 if (AddressTakenIRBlock)
794 MBB->setAddressTakenIRBlock(AddressTakenIRBlock);
795 MBB->setIsEHPad(IsLandingPad);
796 MBB->setIsInlineAsmBrIndirectTarget(IsInlineAsmBrIndirectTarget);
797 MBB->setIsEHFuncletEntry(IsEHFuncletEntry);
798 if (SectionID) {
799 MBB->setSectionID(*SectionID);
800 MF.setBBSectionsType(BasicBlockSection::List);
801 }
802 if (BBID.has_value()) {
803 // BBSectionsType is set to `List` if any basic blocks has `SectionID`.
804 // Here, we set it to `Labels` if it hasn't been set above.
805 if (!MF.hasBBSections())
806 MF.setBBSectionsType(BasicBlockSection::Labels);
807 MBB->setBBID(BBID.value());
808 }
809 MBB->setCallFrameSize(CallFrameSize);
810 return false;
811}
812
813bool MIParser::parseBasicBlockDefinitions(
814 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
815 lex();
816 // Skip until the first machine basic block.
817 while (Token.is(K: MIToken::Newline))
818 lex();
819 if (Token.isErrorOrEOF())
820 return Token.isError();
821 if (Token.isNot(K: MIToken::MachineBasicBlockLabel))
822 return error(Msg: "expected a basic block definition before instructions");
823 unsigned BraceDepth = 0;
824 do {
825 if (parseBasicBlockDefinition(MBBSlots))
826 return true;
827 bool IsAfterNewline = false;
828 // Skip until the next machine basic block.
829 while (true) {
830 if ((Token.is(K: MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
831 Token.isErrorOrEOF())
832 break;
833 else if (Token.is(K: MIToken::MachineBasicBlockLabel))
834 return error(Msg: "basic block definition should be located at the start of "
835 "the line");
836 else if (consumeIfPresent(TokenKind: MIToken::Newline)) {
837 IsAfterNewline = true;
838 continue;
839 }
840 IsAfterNewline = false;
841 if (Token.is(K: MIToken::lbrace))
842 ++BraceDepth;
843 if (Token.is(K: MIToken::rbrace)) {
844 if (!BraceDepth)
845 return error(Msg: "extraneous closing brace ('}')");
846 --BraceDepth;
847 }
848 lex();
849 }
850 // Verify that we closed all of the '{' at the end of a file or a block.
851 if (!Token.isError() && BraceDepth)
852 return error(Msg: "expected '}'"); // FIXME: Report a note that shows '{'.
853 } while (!Token.isErrorOrEOF());
854 return Token.isError();
855}
856
857bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
858 assert(Token.is(MIToken::kw_liveins));
859 lex();
860 if (expectAndConsume(TokenKind: MIToken::colon))
861 return true;
862 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
863 return false;
864 do {
865 if (Token.isNot(K: MIToken::NamedRegister))
866 return error(Msg: "expected a named register");
867 Register Reg;
868 if (parseNamedRegister(Reg))
869 return true;
870 lex();
871 LaneBitmask Mask = LaneBitmask::getAll();
872 if (consumeIfPresent(TokenKind: MIToken::colon)) {
873 // Parse lane mask.
874 if (Token.isNot(K: MIToken::IntegerLiteral) &&
875 Token.isNot(K: MIToken::HexLiteral))
876 return error(Msg: "expected a lane mask");
877 static_assert(sizeof(LaneBitmask::Type) == sizeof(uint64_t),
878 "Use correct get-function for lane mask");
879 LaneBitmask::Type V;
880 if (getUint64(Result&: V))
881 return error(Msg: "invalid lane mask value");
882 Mask = LaneBitmask(V);
883 lex();
884 }
885 MBB.addLiveIn(PhysReg: Reg, LaneMask: Mask);
886 } while (consumeIfPresent(TokenKind: MIToken::comma));
887 return false;
888}
889
890bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
891 assert(Token.is(MIToken::kw_successors));
892 lex();
893 if (expectAndConsume(TokenKind: MIToken::colon))
894 return true;
895 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
896 return false;
897 do {
898 if (Token.isNot(K: MIToken::MachineBasicBlock))
899 return error(Msg: "expected a machine basic block reference");
900 MachineBasicBlock *SuccMBB = nullptr;
901 if (parseMBBReference(MBB&: SuccMBB))
902 return true;
903 lex();
904 unsigned Weight = 0;
905 if (consumeIfPresent(TokenKind: MIToken::lparen)) {
906 if (Token.isNot(K: MIToken::IntegerLiteral) &&
907 Token.isNot(K: MIToken::HexLiteral))
908 return error(Msg: "expected an integer literal after '('");
909 if (getUnsigned(Result&: Weight))
910 return true;
911 lex();
912 if (expectAndConsume(TokenKind: MIToken::rparen))
913 return true;
914 }
915 MBB.addSuccessor(Succ: SuccMBB, Prob: BranchProbability::getRaw(N: Weight));
916 } while (consumeIfPresent(TokenKind: MIToken::comma));
917 MBB.normalizeSuccProbs();
918 return false;
919}
920
921bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
922 MachineBasicBlock *&AddFalthroughFrom) {
923 // Skip the definition.
924 assert(Token.is(MIToken::MachineBasicBlockLabel));
925 lex();
926 if (consumeIfPresent(TokenKind: MIToken::lparen)) {
927 while (Token.isNot(K: MIToken::rparen) && !Token.isErrorOrEOF())
928 lex();
929 consumeIfPresent(TokenKind: MIToken::rparen);
930 }
931 consumeIfPresent(TokenKind: MIToken::colon);
932
933 // Parse the liveins and successors.
934 // N.B: Multiple lists of successors and liveins are allowed and they're
935 // merged into one.
936 // Example:
937 // liveins: $edi
938 // liveins: $esi
939 //
940 // is equivalent to
941 // liveins: $edi, $esi
942 bool ExplicitSuccessors = false;
943 while (true) {
944 if (Token.is(K: MIToken::kw_successors)) {
945 if (parseBasicBlockSuccessors(MBB))
946 return true;
947 ExplicitSuccessors = true;
948 } else if (Token.is(K: MIToken::kw_liveins)) {
949 if (parseBasicBlockLiveins(MBB))
950 return true;
951 } else if (consumeIfPresent(TokenKind: MIToken::Newline)) {
952 continue;
953 } else
954 break;
955 if (!Token.isNewlineOrEOF())
956 return error(Msg: "expected line break at the end of a list");
957 lex();
958 }
959
960 // Parse the instructions.
961 bool IsInBundle = false;
962 MachineInstr *PrevMI = nullptr;
963 while (!Token.is(K: MIToken::MachineBasicBlockLabel) &&
964 !Token.is(K: MIToken::Eof)) {
965 if (consumeIfPresent(TokenKind: MIToken::Newline))
966 continue;
967 if (consumeIfPresent(TokenKind: MIToken::rbrace)) {
968 // The first parsing pass should verify that all closing '}' have an
969 // opening '{'.
970 assert(IsInBundle);
971 IsInBundle = false;
972 continue;
973 }
974 MachineInstr *MI = nullptr;
975 if (parse(MI))
976 return true;
977 MBB.insert(I: MBB.end(), MI);
978 if (IsInBundle) {
979 PrevMI->setFlag(MachineInstr::BundledSucc);
980 MI->setFlag(MachineInstr::BundledPred);
981 }
982 PrevMI = MI;
983 if (Token.is(K: MIToken::lbrace)) {
984 if (IsInBundle)
985 return error(Msg: "nested instruction bundles are not allowed");
986 lex();
987 // This instruction is the start of the bundle.
988 MI->setFlag(MachineInstr::BundledSucc);
989 IsInBundle = true;
990 if (!Token.is(K: MIToken::Newline))
991 // The next instruction can be on the same line.
992 continue;
993 }
994 assert(Token.isNewlineOrEOF() && "MI is not fully parsed");
995 lex();
996 }
997
998 // Construct successor list by searching for basic block machine operands.
999 if (!ExplicitSuccessors) {
1000 SmallVector<MachineBasicBlock*,4> Successors;
1001 bool IsFallthrough;
1002 guessSuccessors(MBB, Result&: Successors, IsFallthrough);
1003 for (MachineBasicBlock *Succ : Successors)
1004 MBB.addSuccessor(Succ);
1005
1006 if (IsFallthrough) {
1007 AddFalthroughFrom = &MBB;
1008 } else {
1009 MBB.normalizeSuccProbs();
1010 }
1011 }
1012
1013 return false;
1014}
1015
1016bool MIParser::parseBasicBlocks() {
1017 lex();
1018 // Skip until the first machine basic block.
1019 while (Token.is(K: MIToken::Newline))
1020 lex();
1021 if (Token.isErrorOrEOF())
1022 return Token.isError();
1023 // The first parsing pass should have verified that this token is a MBB label
1024 // in the 'parseBasicBlockDefinitions' method.
1025 assert(Token.is(MIToken::MachineBasicBlockLabel));
1026 MachineBasicBlock *AddFalthroughFrom = nullptr;
1027 do {
1028 MachineBasicBlock *MBB = nullptr;
1029 if (parseMBBReference(MBB))
1030 return true;
1031 if (AddFalthroughFrom) {
1032 if (!AddFalthroughFrom->isSuccessor(MBB))
1033 AddFalthroughFrom->addSuccessor(Succ: MBB);
1034 AddFalthroughFrom->normalizeSuccProbs();
1035 AddFalthroughFrom = nullptr;
1036 }
1037 if (parseBasicBlock(MBB&: *MBB, AddFalthroughFrom))
1038 return true;
1039 // The method 'parseBasicBlock' should parse the whole block until the next
1040 // block or the end of file.
1041 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof));
1042 } while (Token.isNot(K: MIToken::Eof));
1043 return false;
1044}
1045
1046bool MIParser::parse(MachineInstr *&MI) {
1047 // Parse any register operands before '='
1048 MachineOperand MO = MachineOperand::CreateImm(Val: 0);
1049 SmallVector<ParsedMachineOperand, 8> Operands;
1050 while (Token.isRegister() || Token.isRegisterFlag()) {
1051 auto Loc = Token.location();
1052 std::optional<unsigned> TiedDefIdx;
1053 if (parseRegisterOperand(Dest&: MO, TiedDefIdx, /*IsDef=*/true))
1054 return true;
1055 Operands.push_back(
1056 Elt: ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1057 if (Token.isNot(K: MIToken::comma))
1058 break;
1059 lex();
1060 }
1061 if (!Operands.empty() && expectAndConsume(TokenKind: MIToken::equal))
1062 return true;
1063
1064 unsigned OpCode, Flags = 0;
1065 if (Token.isError() || parseInstruction(OpCode, Flags))
1066 return true;
1067
1068 // Parse the remaining machine operands.
1069 while (!Token.isNewlineOrEOF() && Token.isNot(K: MIToken::kw_pre_instr_symbol) &&
1070 Token.isNot(K: MIToken::kw_post_instr_symbol) &&
1071 Token.isNot(K: MIToken::kw_heap_alloc_marker) &&
1072 Token.isNot(K: MIToken::kw_pcsections) &&
1073 Token.isNot(K: MIToken::kw_cfi_type) &&
1074 Token.isNot(K: MIToken::kw_debug_location) &&
1075 Token.isNot(K: MIToken::kw_debug_instr_number) &&
1076 Token.isNot(K: MIToken::coloncolon) && Token.isNot(K: MIToken::lbrace)) {
1077 auto Loc = Token.location();
1078 std::optional<unsigned> TiedDefIdx;
1079 if (parseMachineOperandAndTargetFlags(OpCode, OpIdx: Operands.size(), Dest&: MO, TiedDefIdx))
1080 return true;
1081 Operands.push_back(
1082 Elt: ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
1083 if (Token.isNewlineOrEOF() || Token.is(K: MIToken::coloncolon) ||
1084 Token.is(K: MIToken::lbrace))
1085 break;
1086 if (Token.isNot(K: MIToken::comma))
1087 return error(Msg: "expected ',' before the next machine operand");
1088 lex();
1089 }
1090
1091 MCSymbol *PreInstrSymbol = nullptr;
1092 if (Token.is(K: MIToken::kw_pre_instr_symbol))
1093 if (parsePreOrPostInstrSymbol(Symbol&: PreInstrSymbol))
1094 return true;
1095 MCSymbol *PostInstrSymbol = nullptr;
1096 if (Token.is(K: MIToken::kw_post_instr_symbol))
1097 if (parsePreOrPostInstrSymbol(Symbol&: PostInstrSymbol))
1098 return true;
1099 MDNode *HeapAllocMarker = nullptr;
1100 if (Token.is(K: MIToken::kw_heap_alloc_marker))
1101 if (parseHeapAllocMarker(Node&: HeapAllocMarker))
1102 return true;
1103 MDNode *PCSections = nullptr;
1104 if (Token.is(K: MIToken::kw_pcsections))
1105 if (parsePCSections(Node&: PCSections))
1106 return true;
1107
1108 unsigned CFIType = 0;
1109 if (Token.is(K: MIToken::kw_cfi_type)) {
1110 lex();
1111 if (Token.isNot(K: MIToken::IntegerLiteral))
1112 return error(Msg: "expected an integer literal after 'cfi-type'");
1113 // getUnsigned is sufficient for 32-bit integers.
1114 if (getUnsigned(Result&: CFIType))
1115 return true;
1116 lex();
1117 // Lex past trailing comma if present.
1118 if (Token.is(K: MIToken::comma))
1119 lex();
1120 }
1121
1122 unsigned InstrNum = 0;
1123 if (Token.is(K: MIToken::kw_debug_instr_number)) {
1124 lex();
1125 if (Token.isNot(K: MIToken::IntegerLiteral))
1126 return error(Msg: "expected an integer literal after 'debug-instr-number'");
1127 if (getUnsigned(Result&: InstrNum))
1128 return true;
1129 lex();
1130 // Lex past trailing comma if present.
1131 if (Token.is(K: MIToken::comma))
1132 lex();
1133 }
1134
1135 DebugLoc DebugLocation;
1136 if (Token.is(K: MIToken::kw_debug_location)) {
1137 lex();
1138 MDNode *Node = nullptr;
1139 if (Token.is(K: MIToken::exclaim)) {
1140 if (parseMDNode(Node))
1141 return true;
1142 } else if (Token.is(K: MIToken::md_dilocation)) {
1143 if (parseDILocation(Expr&: Node))
1144 return true;
1145 } else
1146 return error(Msg: "expected a metadata node after 'debug-location'");
1147 if (!isa<DILocation>(Val: Node))
1148 return error(Msg: "referenced metadata is not a DILocation");
1149 DebugLocation = DebugLoc(Node);
1150 }
1151
1152 // Parse the machine memory operands.
1153 SmallVector<MachineMemOperand *, 2> MemOperands;
1154 if (Token.is(K: MIToken::coloncolon)) {
1155 lex();
1156 while (!Token.isNewlineOrEOF()) {
1157 MachineMemOperand *MemOp = nullptr;
1158 if (parseMachineMemoryOperand(Dest&: MemOp))
1159 return true;
1160 MemOperands.push_back(Elt: MemOp);
1161 if (Token.isNewlineOrEOF())
1162 break;
1163 if (Token.isNot(K: MIToken::comma))
1164 return error(Msg: "expected ',' before the next machine memory operand");
1165 lex();
1166 }
1167 }
1168
1169 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(Opcode: OpCode);
1170 if (!MCID.isVariadic()) {
1171 // FIXME: Move the implicit operand verification to the machine verifier.
1172 if (verifyImplicitOperands(Operands, MCID))
1173 return true;
1174 }
1175
1176 MI = MF.CreateMachineInstr(MCID, DL: DebugLocation, /*NoImplicit=*/true);
1177 MI->setFlags(Flags);
1178
1179 // Don't check the operands make sense, let the verifier catch any
1180 // improprieties.
1181 for (const auto &Operand : Operands)
1182 MI->addOperand(MF, Op: Operand.Operand);
1183
1184 if (assignRegisterTies(MI&: *MI, Operands))
1185 return true;
1186 if (PreInstrSymbol)
1187 MI->setPreInstrSymbol(MF, Symbol: PreInstrSymbol);
1188 if (PostInstrSymbol)
1189 MI->setPostInstrSymbol(MF, Symbol: PostInstrSymbol);
1190 if (HeapAllocMarker)
1191 MI->setHeapAllocMarker(MF, MD: HeapAllocMarker);
1192 if (PCSections)
1193 MI->setPCSections(MF, MD: PCSections);
1194 if (CFIType)
1195 MI->setCFIType(MF, Type: CFIType);
1196 if (!MemOperands.empty())
1197 MI->setMemRefs(MF, MemRefs: MemOperands);
1198 if (InstrNum)
1199 MI->setDebugInstrNum(InstrNum);
1200 return false;
1201}
1202
1203bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
1204 lex();
1205 if (Token.isNot(K: MIToken::MachineBasicBlock))
1206 return error(Msg: "expected a machine basic block reference");
1207 if (parseMBBReference(MBB))
1208 return true;
1209 lex();
1210 if (Token.isNot(K: MIToken::Eof))
1211 return error(
1212 Msg: "expected end of string after the machine basic block reference");
1213 return false;
1214}
1215
1216bool MIParser::parseStandaloneNamedRegister(Register &Reg) {
1217 lex();
1218 if (Token.isNot(K: MIToken::NamedRegister))
1219 return error(Msg: "expected a named register");
1220 if (parseNamedRegister(Reg))
1221 return true;
1222 lex();
1223 if (Token.isNot(K: MIToken::Eof))
1224 return error(Msg: "expected end of string after the register reference");
1225 return false;
1226}
1227
1228bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
1229 lex();
1230 if (Token.isNot(K: MIToken::VirtualRegister))
1231 return error(Msg: "expected a virtual register");
1232 if (parseVirtualRegister(Info))
1233 return true;
1234 lex();
1235 if (Token.isNot(K: MIToken::Eof))
1236 return error(Msg: "expected end of string after the register reference");
1237 return false;
1238}
1239
1240bool MIParser::parseStandaloneRegister(Register &Reg) {
1241 lex();
1242 if (Token.isNot(K: MIToken::NamedRegister) &&
1243 Token.isNot(K: MIToken::VirtualRegister))
1244 return error(Msg: "expected either a named or virtual register");
1245
1246 VRegInfo *Info;
1247 if (parseRegister(Reg, VRegInfo&: Info))
1248 return true;
1249
1250 lex();
1251 if (Token.isNot(K: MIToken::Eof))
1252 return error(Msg: "expected end of string after the register reference");
1253 return false;
1254}
1255
1256bool MIParser::parseStandaloneStackObject(int &FI) {
1257 lex();
1258 if (Token.isNot(K: MIToken::StackObject))
1259 return error(Msg: "expected a stack object");
1260 if (parseStackFrameIndex(FI))
1261 return true;
1262 if (Token.isNot(K: MIToken::Eof))
1263 return error(Msg: "expected end of string after the stack object reference");
1264 return false;
1265}
1266
1267bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
1268 lex();
1269 if (Token.is(K: MIToken::exclaim)) {
1270 if (parseMDNode(Node))
1271 return true;
1272 } else if (Token.is(K: MIToken::md_diexpr)) {
1273 if (parseDIExpression(Expr&: Node))
1274 return true;
1275 } else if (Token.is(K: MIToken::md_dilocation)) {
1276 if (parseDILocation(Expr&: Node))
1277 return true;
1278 } else
1279 return error(Msg: "expected a metadata node");
1280 if (Token.isNot(K: MIToken::Eof))
1281 return error(Msg: "expected end of string after the metadata node");
1282 return false;
1283}
1284
1285bool MIParser::parseMachineMetadata() {
1286 lex();
1287 if (Token.isNot(K: MIToken::exclaim))
1288 return error(Msg: "expected a metadata node");
1289
1290 lex();
1291 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1292 return error(Msg: "expected metadata id after '!'");
1293 unsigned ID = 0;
1294 if (getUnsigned(Result&: ID))
1295 return true;
1296 lex();
1297 if (expectAndConsume(TokenKind: MIToken::equal))
1298 return true;
1299 bool IsDistinct = Token.is(K: MIToken::kw_distinct);
1300 if (IsDistinct)
1301 lex();
1302 if (Token.isNot(K: MIToken::exclaim))
1303 return error(Msg: "expected a metadata node");
1304 lex();
1305
1306 MDNode *MD;
1307 if (parseMDTuple(MD, IsDistinct))
1308 return true;
1309
1310 auto FI = PFS.MachineForwardRefMDNodes.find(x: ID);
1311 if (FI != PFS.MachineForwardRefMDNodes.end()) {
1312 FI->second.first->replaceAllUsesWith(MD);
1313 PFS.MachineForwardRefMDNodes.erase(position: FI);
1314
1315 assert(PFS.MachineMetadataNodes[ID] == MD && "Tracking VH didn't work");
1316 } else {
1317 if (PFS.MachineMetadataNodes.count(x: ID))
1318 return error(Msg: "Metadata id is already used");
1319 PFS.MachineMetadataNodes[ID].reset(MD);
1320 }
1321
1322 return false;
1323}
1324
1325bool MIParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
1326 SmallVector<Metadata *, 16> Elts;
1327 if (parseMDNodeVector(Elts))
1328 return true;
1329 MD = (IsDistinct ? MDTuple::getDistinct
1330 : MDTuple::get)(MF.getFunction().getContext(), Elts);
1331 return false;
1332}
1333
1334bool MIParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
1335 if (Token.isNot(K: MIToken::lbrace))
1336 return error(Msg: "expected '{' here");
1337 lex();
1338
1339 if (Token.is(K: MIToken::rbrace)) {
1340 lex();
1341 return false;
1342 }
1343
1344 do {
1345 Metadata *MD;
1346 if (parseMetadata(MD))
1347 return true;
1348
1349 Elts.push_back(Elt: MD);
1350
1351 if (Token.isNot(K: MIToken::comma))
1352 break;
1353 lex();
1354 } while (true);
1355
1356 if (Token.isNot(K: MIToken::rbrace))
1357 return error(Msg: "expected end of metadata node");
1358 lex();
1359
1360 return false;
1361}
1362
1363// ::= !42
1364// ::= !"string"
1365bool MIParser::parseMetadata(Metadata *&MD) {
1366 if (Token.isNot(K: MIToken::exclaim))
1367 return error(Msg: "expected '!' here");
1368 lex();
1369
1370 if (Token.is(K: MIToken::StringConstant)) {
1371 std::string Str;
1372 if (parseStringConstant(Result&: Str))
1373 return true;
1374 MD = MDString::get(Context&: MF.getFunction().getContext(), Str);
1375 return false;
1376 }
1377
1378 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1379 return error(Msg: "expected metadata id after '!'");
1380
1381 SMLoc Loc = mapSMLoc(Loc: Token.location());
1382
1383 unsigned ID = 0;
1384 if (getUnsigned(Result&: ID))
1385 return true;
1386 lex();
1387
1388 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(x: ID);
1389 if (NodeInfo != PFS.IRSlots.MetadataNodes.end()) {
1390 MD = NodeInfo->second.get();
1391 return false;
1392 }
1393 // Check machine metadata.
1394 NodeInfo = PFS.MachineMetadataNodes.find(x: ID);
1395 if (NodeInfo != PFS.MachineMetadataNodes.end()) {
1396 MD = NodeInfo->second.get();
1397 return false;
1398 }
1399 // Forward reference.
1400 auto &FwdRef = PFS.MachineForwardRefMDNodes[ID];
1401 FwdRef = std::make_pair(
1402 x: MDTuple::getTemporary(Context&: MF.getFunction().getContext(), MDs: std::nullopt), y&: Loc);
1403 PFS.MachineMetadataNodes[ID].reset(MD: FwdRef.first.get());
1404 MD = FwdRef.first.get();
1405
1406 return false;
1407}
1408
1409static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
1410 assert(MO.isImplicit());
1411 return MO.isDef() ? "implicit-def" : "implicit";
1412}
1413
1414static std::string getRegisterName(const TargetRegisterInfo *TRI,
1415 Register Reg) {
1416 assert(Reg.isPhysical() && "expected phys reg");
1417 return StringRef(TRI->getName(RegNo: Reg)).lower();
1418}
1419
1420/// Return true if the parsed machine operands contain a given machine operand.
1421static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
1422 ArrayRef<ParsedMachineOperand> Operands) {
1423 for (const auto &I : Operands) {
1424 if (ImplicitOperand.isIdenticalTo(Other: I.Operand))
1425 return true;
1426 }
1427 return false;
1428}
1429
1430bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
1431 const MCInstrDesc &MCID) {
1432 if (MCID.isCall())
1433 // We can't verify call instructions as they can contain arbitrary implicit
1434 // register and register mask operands.
1435 return false;
1436
1437 // Gather all the expected implicit operands.
1438 SmallVector<MachineOperand, 4> ImplicitOperands;
1439 for (MCPhysReg ImpDef : MCID.implicit_defs())
1440 ImplicitOperands.push_back(Elt: MachineOperand::CreateReg(Reg: ImpDef, isDef: true, isImp: true));
1441 for (MCPhysReg ImpUse : MCID.implicit_uses())
1442 ImplicitOperands.push_back(Elt: MachineOperand::CreateReg(Reg: ImpUse, isDef: false, isImp: true));
1443
1444 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1445 assert(TRI && "Expected target register info");
1446 for (const auto &I : ImplicitOperands) {
1447 if (isImplicitOperandIn(ImplicitOperand: I, Operands))
1448 continue;
1449 return error(Loc: Operands.empty() ? Token.location() : Operands.back().End,
1450 Msg: Twine("missing implicit register operand '") +
1451 printImplicitRegisterFlag(MO: I) + " $" +
1452 getRegisterName(TRI, Reg: I.getReg()) + "'");
1453 }
1454 return false;
1455}
1456
1457bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
1458 // Allow frame and fast math flags for OPCODE
1459 // clang-format off
1460 while (Token.is(K: MIToken::kw_frame_setup) ||
1461 Token.is(K: MIToken::kw_frame_destroy) ||
1462 Token.is(K: MIToken::kw_nnan) ||
1463 Token.is(K: MIToken::kw_ninf) ||
1464 Token.is(K: MIToken::kw_nsz) ||
1465 Token.is(K: MIToken::kw_arcp) ||
1466 Token.is(K: MIToken::kw_contract) ||
1467 Token.is(K: MIToken::kw_afn) ||
1468 Token.is(K: MIToken::kw_reassoc) ||
1469 Token.is(K: MIToken::kw_nuw) ||
1470 Token.is(K: MIToken::kw_nsw) ||
1471 Token.is(K: MIToken::kw_exact) ||
1472 Token.is(K: MIToken::kw_nofpexcept) ||
1473 Token.is(K: MIToken::kw_noconvergent) ||
1474 Token.is(K: MIToken::kw_unpredictable)) {
1475 // clang-format on
1476 // Mine frame and fast math flags
1477 if (Token.is(K: MIToken::kw_frame_setup))
1478 Flags |= MachineInstr::FrameSetup;
1479 if (Token.is(K: MIToken::kw_frame_destroy))
1480 Flags |= MachineInstr::FrameDestroy;
1481 if (Token.is(K: MIToken::kw_nnan))
1482 Flags |= MachineInstr::FmNoNans;
1483 if (Token.is(K: MIToken::kw_ninf))
1484 Flags |= MachineInstr::FmNoInfs;
1485 if (Token.is(K: MIToken::kw_nsz))
1486 Flags |= MachineInstr::FmNsz;
1487 if (Token.is(K: MIToken::kw_arcp))
1488 Flags |= MachineInstr::FmArcp;
1489 if (Token.is(K: MIToken::kw_contract))
1490 Flags |= MachineInstr::FmContract;
1491 if (Token.is(K: MIToken::kw_afn))
1492 Flags |= MachineInstr::FmAfn;
1493 if (Token.is(K: MIToken::kw_reassoc))
1494 Flags |= MachineInstr::FmReassoc;
1495 if (Token.is(K: MIToken::kw_nuw))
1496 Flags |= MachineInstr::NoUWrap;
1497 if (Token.is(K: MIToken::kw_nsw))
1498 Flags |= MachineInstr::NoSWrap;
1499 if (Token.is(K: MIToken::kw_exact))
1500 Flags |= MachineInstr::IsExact;
1501 if (Token.is(K: MIToken::kw_nofpexcept))
1502 Flags |= MachineInstr::NoFPExcept;
1503 if (Token.is(K: MIToken::kw_unpredictable))
1504 Flags |= MachineInstr::Unpredictable;
1505 if (Token.is(K: MIToken::kw_noconvergent))
1506 Flags |= MachineInstr::NoConvergent;
1507
1508 lex();
1509 }
1510 if (Token.isNot(K: MIToken::Identifier))
1511 return error(Msg: "expected a machine instruction");
1512 StringRef InstrName = Token.stringValue();
1513 if (PFS.Target.parseInstrName(InstrName, OpCode))
1514 return error(Msg: Twine("unknown machine instruction name '") + InstrName + "'");
1515 lex();
1516 return false;
1517}
1518
1519bool MIParser::parseNamedRegister(Register &Reg) {
1520 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token");
1521 StringRef Name = Token.stringValue();
1522 if (PFS.Target.getRegisterByName(RegName: Name, Reg))
1523 return error(Msg: Twine("unknown register name '") + Name + "'");
1524 return false;
1525}
1526
1527bool MIParser::parseNamedVirtualRegister(VRegInfo *&Info) {
1528 assert(Token.is(MIToken::NamedVirtualRegister) && "Expected NamedVReg token");
1529 StringRef Name = Token.stringValue();
1530 // TODO: Check that the VReg name is not the same as a physical register name.
1531 // If it is, then print a warning (when warnings are implemented).
1532 Info = &PFS.getVRegInfoNamed(RegName: Name);
1533 return false;
1534}
1535
1536bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
1537 if (Token.is(K: MIToken::NamedVirtualRegister))
1538 return parseNamedVirtualRegister(Info);
1539 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token");
1540 unsigned ID;
1541 if (getUnsigned(Result&: ID))
1542 return true;
1543 Info = &PFS.getVRegInfo(Num: ID);
1544 return false;
1545}
1546
1547bool MIParser::parseRegister(Register &Reg, VRegInfo *&Info) {
1548 switch (Token.kind()) {
1549 case MIToken::underscore:
1550 Reg = 0;
1551 return false;
1552 case MIToken::NamedRegister:
1553 return parseNamedRegister(Reg);
1554 case MIToken::NamedVirtualRegister:
1555 case MIToken::VirtualRegister:
1556 if (parseVirtualRegister(Info))
1557 return true;
1558 Reg = Info->VReg;
1559 return false;
1560 // TODO: Parse other register kinds.
1561 default:
1562 llvm_unreachable("The current token should be a register");
1563 }
1564}
1565
1566bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
1567 if (Token.isNot(K: MIToken::Identifier) && Token.isNot(K: MIToken::underscore))
1568 return error(Msg: "expected '_', register class, or register bank name");
1569 StringRef::iterator Loc = Token.location();
1570 StringRef Name = Token.stringValue();
1571
1572 // Was it a register class?
1573 const TargetRegisterClass *RC = PFS.Target.getRegClass(Name);
1574 if (RC) {
1575 lex();
1576
1577 switch (RegInfo.Kind) {
1578 case VRegInfo::UNKNOWN:
1579 case VRegInfo::NORMAL:
1580 RegInfo.Kind = VRegInfo::NORMAL;
1581 if (RegInfo.Explicit && RegInfo.D.RC != RC) {
1582 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
1583 return error(Loc, Msg: Twine("conflicting register classes, previously: ") +
1584 Twine(TRI.getRegClassName(Class: RegInfo.D.RC)));
1585 }
1586 RegInfo.D.RC = RC;
1587 RegInfo.Explicit = true;
1588 return false;
1589
1590 case VRegInfo::GENERIC:
1591 case VRegInfo::REGBANK:
1592 return error(Loc, Msg: "register class specification on generic register");
1593 }
1594 llvm_unreachable("Unexpected register kind");
1595 }
1596
1597 // Should be a register bank or a generic register.
1598 const RegisterBank *RegBank = nullptr;
1599 if (Name != "_") {
1600 RegBank = PFS.Target.getRegBank(Name);
1601 if (!RegBank)
1602 return error(Loc, Msg: "expected '_', register class, or register bank name");
1603 }
1604
1605 lex();
1606
1607 switch (RegInfo.Kind) {
1608 case VRegInfo::UNKNOWN:
1609 case VRegInfo::GENERIC:
1610 case VRegInfo::REGBANK:
1611 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1612 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1613 return error(Loc, Msg: "conflicting generic register banks");
1614 RegInfo.D.RegBank = RegBank;
1615 RegInfo.Explicit = true;
1616 return false;
1617
1618 case VRegInfo::NORMAL:
1619 return error(Loc, Msg: "register bank specification on normal register");
1620 }
1621 llvm_unreachable("Unexpected register kind");
1622}
1623
1624bool MIParser::parseRegisterFlag(unsigned &Flags) {
1625 const unsigned OldFlags = Flags;
1626 switch (Token.kind()) {
1627 case MIToken::kw_implicit:
1628 Flags |= RegState::Implicit;
1629 break;
1630 case MIToken::kw_implicit_define:
1631 Flags |= RegState::ImplicitDefine;
1632 break;
1633 case MIToken::kw_def:
1634 Flags |= RegState::Define;
1635 break;
1636 case MIToken::kw_dead:
1637 Flags |= RegState::Dead;
1638 break;
1639 case MIToken::kw_killed:
1640 Flags |= RegState::Kill;
1641 break;
1642 case MIToken::kw_undef:
1643 Flags |= RegState::Undef;
1644 break;
1645 case MIToken::kw_internal:
1646 Flags |= RegState::InternalRead;
1647 break;
1648 case MIToken::kw_early_clobber:
1649 Flags |= RegState::EarlyClobber;
1650 break;
1651 case MIToken::kw_debug_use:
1652 Flags |= RegState::Debug;
1653 break;
1654 case MIToken::kw_renamable:
1655 Flags |= RegState::Renamable;
1656 break;
1657 default:
1658 llvm_unreachable("The current token should be a register flag");
1659 }
1660 if (OldFlags == Flags)
1661 // We know that the same flag is specified more than once when the flags
1662 // weren't modified.
1663 return error(Msg: "duplicate '" + Token.stringValue() + "' register flag");
1664 lex();
1665 return false;
1666}
1667
1668bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1669 assert(Token.is(MIToken::dot));
1670 lex();
1671 if (Token.isNot(K: MIToken::Identifier))
1672 return error(Msg: "expected a subregister index after '.'");
1673 auto Name = Token.stringValue();
1674 SubReg = PFS.Target.getSubRegIndex(Name);
1675 if (!SubReg)
1676 return error(Msg: Twine("use of unknown subregister index '") + Name + "'");
1677 lex();
1678 return false;
1679}
1680
1681bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1682 if (!consumeIfPresent(TokenKind: MIToken::kw_tied_def))
1683 return true;
1684 if (Token.isNot(K: MIToken::IntegerLiteral))
1685 return error(Msg: "expected an integer literal after 'tied-def'");
1686 if (getUnsigned(Result&: TiedDefIdx))
1687 return true;
1688 lex();
1689 if (expectAndConsume(TokenKind: MIToken::rparen))
1690 return true;
1691 return false;
1692}
1693
1694bool MIParser::assignRegisterTies(MachineInstr &MI,
1695 ArrayRef<ParsedMachineOperand> Operands) {
1696 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1697 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1698 if (!Operands[I].TiedDefIdx)
1699 continue;
1700 // The parser ensures that this operand is a register use, so we just have
1701 // to check the tied-def operand.
1702 unsigned DefIdx = *Operands[I].TiedDefIdx;
1703 if (DefIdx >= E)
1704 return error(Loc: Operands[I].Begin,
1705 Msg: Twine("use of invalid tied-def operand index '" +
1706 Twine(DefIdx) + "'; instruction has only ") +
1707 Twine(E) + " operands");
1708 const auto &DefOperand = Operands[DefIdx].Operand;
1709 if (!DefOperand.isReg() || !DefOperand.isDef())
1710 // FIXME: add note with the def operand.
1711 return error(Loc: Operands[I].Begin,
1712 Msg: Twine("use of invalid tied-def operand index '") +
1713 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1714 " isn't a defined register");
1715 // Check that the tied-def operand wasn't tied elsewhere.
1716 for (const auto &TiedPair : TiedRegisterPairs) {
1717 if (TiedPair.first == DefIdx)
1718 return error(Loc: Operands[I].Begin,
1719 Msg: Twine("the tied-def operand #") + Twine(DefIdx) +
1720 " is already tied with another register operand");
1721 }
1722 TiedRegisterPairs.push_back(Elt: std::make_pair(x&: DefIdx, y&: I));
1723 }
1724 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1725 // indices must be less than tied max.
1726 for (const auto &TiedPair : TiedRegisterPairs)
1727 MI.tieOperands(DefIdx: TiedPair.first, UseIdx: TiedPair.second);
1728 return false;
1729}
1730
1731bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1732 std::optional<unsigned> &TiedDefIdx,
1733 bool IsDef) {
1734 unsigned Flags = IsDef ? RegState::Define : 0;
1735 while (Token.isRegisterFlag()) {
1736 if (parseRegisterFlag(Flags))
1737 return true;
1738 }
1739 if (!Token.isRegister())
1740 return error(Msg: "expected a register after register flags");
1741 Register Reg;
1742 VRegInfo *RegInfo;
1743 if (parseRegister(Reg, Info&: RegInfo))
1744 return true;
1745 lex();
1746 unsigned SubReg = 0;
1747 if (Token.is(K: MIToken::dot)) {
1748 if (parseSubRegisterIndex(SubReg))
1749 return true;
1750 if (!Reg.isVirtual())
1751 return error(Msg: "subregister index expects a virtual register");
1752 }
1753 if (Token.is(K: MIToken::colon)) {
1754 if (!Reg.isVirtual())
1755 return error(Msg: "register class specification expects a virtual register");
1756 lex();
1757 if (parseRegisterClassOrBank(RegInfo&: *RegInfo))
1758 return true;
1759 }
1760 MachineRegisterInfo &MRI = MF.getRegInfo();
1761 if ((Flags & RegState::Define) == 0) {
1762 if (consumeIfPresent(TokenKind: MIToken::lparen)) {
1763 unsigned Idx;
1764 if (!parseRegisterTiedDefIndex(TiedDefIdx&: Idx))
1765 TiedDefIdx = Idx;
1766 else {
1767 // Try a redundant low-level type.
1768 LLT Ty;
1769 if (parseLowLevelType(Loc: Token.location(), Ty))
1770 return error(Msg: "expected tied-def or low-level type after '('");
1771
1772 if (expectAndConsume(TokenKind: MIToken::rparen))
1773 return true;
1774
1775 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1776 return error(Msg: "inconsistent type for generic virtual register");
1777
1778 MRI.setRegClassOrRegBank(Reg, RCOrRB: static_cast<RegisterBank *>(nullptr));
1779 MRI.setType(VReg: Reg, Ty);
1780 }
1781 }
1782 } else if (consumeIfPresent(TokenKind: MIToken::lparen)) {
1783 // Virtual registers may have a tpe with GlobalISel.
1784 if (!Reg.isVirtual())
1785 return error(Msg: "unexpected type on physical register");
1786
1787 LLT Ty;
1788 if (parseLowLevelType(Loc: Token.location(), Ty))
1789 return true;
1790
1791 if (expectAndConsume(TokenKind: MIToken::rparen))
1792 return true;
1793
1794 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1795 return error(Msg: "inconsistent type for generic virtual register");
1796
1797 MRI.setRegClassOrRegBank(Reg, RCOrRB: static_cast<RegisterBank *>(nullptr));
1798 MRI.setType(VReg: Reg, Ty);
1799 } else if (Reg.isVirtual()) {
1800 // Generic virtual registers must have a type.
1801 // If we end up here this means the type hasn't been specified and
1802 // this is bad!
1803 if (RegInfo->Kind == VRegInfo::GENERIC ||
1804 RegInfo->Kind == VRegInfo::REGBANK)
1805 return error(Msg: "generic virtual registers must have a type");
1806 }
1807
1808 if (Flags & RegState::Define) {
1809 if (Flags & RegState::Kill)
1810 return error(Msg: "cannot have a killed def operand");
1811 } else {
1812 if (Flags & RegState::Dead)
1813 return error(Msg: "cannot have a dead use operand");
1814 }
1815
1816 Dest = MachineOperand::CreateReg(
1817 Reg, isDef: Flags & RegState::Define, isImp: Flags & RegState::Implicit,
1818 isKill: Flags & RegState::Kill, isDead: Flags & RegState::Dead, isUndef: Flags & RegState::Undef,
1819 isEarlyClobber: Flags & RegState::EarlyClobber, SubReg, isDebug: Flags & RegState::Debug,
1820 isInternalRead: Flags & RegState::InternalRead, isRenamable: Flags & RegState::Renamable);
1821
1822 return false;
1823}
1824
1825bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1826 assert(Token.is(MIToken::IntegerLiteral));
1827 const APSInt &Int = Token.integerValue();
1828 if (auto SImm = Int.trySExtValue(); Int.isSigned() && SImm.has_value())
1829 Dest = MachineOperand::CreateImm(Val: *SImm);
1830 else if (auto UImm = Int.tryZExtValue(); !Int.isSigned() && UImm.has_value())
1831 Dest = MachineOperand::CreateImm(Val: *UImm);
1832 else
1833 return error(Msg: "integer literal is too large to be an immediate operand");
1834 lex();
1835 return false;
1836}
1837
1838bool MIParser::parseTargetImmMnemonic(const unsigned OpCode,
1839 const unsigned OpIdx,
1840 MachineOperand &Dest,
1841 const MIRFormatter &MF) {
1842 assert(Token.is(MIToken::dot));
1843 auto Loc = Token.location(); // record start position
1844 size_t Len = 1; // for "."
1845 lex();
1846
1847 // Handle the case that mnemonic starts with number.
1848 if (Token.is(K: MIToken::IntegerLiteral)) {
1849 Len += Token.range().size();
1850 lex();
1851 }
1852
1853 StringRef Src;
1854 if (Token.is(K: MIToken::comma))
1855 Src = StringRef(Loc, Len);
1856 else {
1857 assert(Token.is(MIToken::Identifier));
1858 Src = StringRef(Loc, Len + Token.stringValue().size());
1859 }
1860 int64_t Val;
1861 if (MF.parseImmMnemonic(OpCode, OpIdx, Src, Imm&: Val,
1862 ErrorCallback: [this](StringRef::iterator Loc, const Twine &Msg)
1863 -> bool { return error(Loc, Msg); }))
1864 return true;
1865
1866 Dest = MachineOperand::CreateImm(Val);
1867 if (!Token.is(K: MIToken::comma))
1868 lex();
1869 return false;
1870}
1871
1872static bool parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1873 PerFunctionMIParsingState &PFS, const Constant *&C,
1874 ErrorCallbackType ErrCB) {
1875 auto Source = StringValue.str(); // The source has to be null terminated.
1876 SMDiagnostic Err;
1877 C = parseConstantValue(Asm: Source, Err, M: *PFS.MF.getFunction().getParent(),
1878 Slots: &PFS.IRSlots);
1879 if (!C)
1880 return ErrCB(Loc + Err.getColumnNo(), Err.getMessage());
1881 return false;
1882}
1883
1884bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1885 const Constant *&C) {
1886 return ::parseIRConstant(
1887 Loc, StringValue, PFS, C,
1888 ErrCB: [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
1889 return error(Loc, Msg);
1890 });
1891}
1892
1893bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1894 if (parseIRConstant(Loc, StringValue: StringRef(Loc, Token.range().end() - Loc), C))
1895 return true;
1896 lex();
1897 return false;
1898}
1899
1900// See LLT implementation for bit size limits.
1901static bool verifyScalarSize(uint64_t Size) {
1902 return Size != 0 && isUInt<16>(x: Size);
1903}
1904
1905static bool verifyVectorElementCount(uint64_t NumElts) {
1906 return NumElts != 0 && isUInt<16>(x: NumElts);
1907}
1908
1909static bool verifyAddrSpace(uint64_t AddrSpace) {
1910 return isUInt<24>(x: AddrSpace);
1911}
1912
1913bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1914 if (Token.range().front() == 's' || Token.range().front() == 'p') {
1915 StringRef SizeStr = Token.range().drop_front();
1916 if (SizeStr.size() == 0 || !llvm::all_of(Range&: SizeStr, P: isdigit))
1917 return error(Msg: "expected integers after 's'/'p' type character");
1918 }
1919
1920 if (Token.range().front() == 's') {
1921 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1922 if (!verifyScalarSize(Size: ScalarSize))
1923 return error(Msg: "invalid size for scalar type");
1924
1925 Ty = LLT::scalar(SizeInBits: ScalarSize);
1926 lex();
1927 return false;
1928 } else if (Token.range().front() == 'p') {
1929 const DataLayout &DL = MF.getDataLayout();
1930 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1931 if (!verifyAddrSpace(AddrSpace: AS))
1932 return error(Msg: "invalid address space number");
1933
1934 Ty = LLT::pointer(AddressSpace: AS, SizeInBits: DL.getPointerSizeInBits(AS));
1935 lex();
1936 return false;
1937 }
1938
1939 // Now we're looking for a vector.
1940 if (Token.isNot(K: MIToken::less))
1941 return error(Loc, Msg: "expected sN, pA, <M x sN>, <M x pA>, <vscale x M x sN>, "
1942 "or <vscale x M x pA> for GlobalISel type");
1943 lex();
1944
1945 bool HasVScale =
1946 Token.is(K: MIToken::Identifier) && Token.stringValue() == "vscale";
1947 if (HasVScale) {
1948 lex();
1949 if (Token.isNot(K: MIToken::Identifier) || Token.stringValue() != "x")
1950 return error(Msg: "expected <vscale x M x sN> or <vscale x M x pA>");
1951 lex();
1952 }
1953
1954 auto GetError = [this, &HasVScale, Loc]() {
1955 if (HasVScale)
1956 return error(
1957 Loc, Msg: "expected <vscale x M x sN> or <vscale M x pA> for vector type");
1958 return error(Loc, Msg: "expected <M x sN> or <M x pA> for vector type");
1959 };
1960
1961 if (Token.isNot(K: MIToken::IntegerLiteral))
1962 return GetError();
1963 uint64_t NumElements = Token.integerValue().getZExtValue();
1964 if (!verifyVectorElementCount(NumElts: NumElements))
1965 return error(Msg: "invalid number of vector elements");
1966
1967 lex();
1968
1969 if (Token.isNot(K: MIToken::Identifier) || Token.stringValue() != "x")
1970 return GetError();
1971 lex();
1972
1973 if (Token.range().front() != 's' && Token.range().front() != 'p')
1974 return GetError();
1975
1976 StringRef SizeStr = Token.range().drop_front();
1977 if (SizeStr.size() == 0 || !llvm::all_of(Range&: SizeStr, P: isdigit))
1978 return error(Msg: "expected integers after 's'/'p' type character");
1979
1980 if (Token.range().front() == 's') {
1981 auto ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1982 if (!verifyScalarSize(Size: ScalarSize))
1983 return error(Msg: "invalid size for scalar type");
1984 Ty = LLT::scalar(SizeInBits: ScalarSize);
1985 } else if (Token.range().front() == 'p') {
1986 const DataLayout &DL = MF.getDataLayout();
1987 uint64_t AS = APSInt(Token.range().drop_front()).getZExtValue();
1988 if (!verifyAddrSpace(AddrSpace: AS))
1989 return error(Msg: "invalid address space number");
1990
1991 Ty = LLT::pointer(AddressSpace: AS, SizeInBits: DL.getPointerSizeInBits(AS));
1992 } else
1993 return GetError();
1994 lex();
1995
1996 if (Token.isNot(K: MIToken::greater))
1997 return GetError();
1998
1999 lex();
2000
2001 Ty = LLT::vector(EC: ElementCount::get(MinVal: NumElements, Scalable: HasVScale), ScalarTy: Ty);
2002 return false;
2003}
2004
2005bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
2006 assert(Token.is(MIToken::Identifier));
2007 StringRef TypeStr = Token.range();
2008 if (TypeStr.front() != 'i' && TypeStr.front() != 's' &&
2009 TypeStr.front() != 'p')
2010 return error(
2011 Msg: "a typed immediate operand should start with one of 'i', 's', or 'p'");
2012 StringRef SizeStr = Token.range().drop_front();
2013 if (SizeStr.size() == 0 || !llvm::all_of(Range&: SizeStr, P: isdigit))
2014 return error(Msg: "expected integers after 'i'/'s'/'p' type character");
2015
2016 auto Loc = Token.location();
2017 lex();
2018 if (Token.isNot(K: MIToken::IntegerLiteral)) {
2019 if (Token.isNot(K: MIToken::Identifier) ||
2020 !(Token.range() == "true" || Token.range() == "false"))
2021 return error(Msg: "expected an integer literal");
2022 }
2023 const Constant *C = nullptr;
2024 if (parseIRConstant(Loc, C))
2025 return true;
2026 Dest = MachineOperand::CreateCImm(CI: cast<ConstantInt>(Val: C));
2027 return false;
2028}
2029
2030bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
2031 auto Loc = Token.location();
2032 lex();
2033 if (Token.isNot(K: MIToken::FloatingPointLiteral) &&
2034 Token.isNot(K: MIToken::HexLiteral))
2035 return error(Msg: "expected a floating point literal");
2036 const Constant *C = nullptr;
2037 if (parseIRConstant(Loc, C))
2038 return true;
2039 Dest = MachineOperand::CreateFPImm(CFP: cast<ConstantFP>(Val: C));
2040 return false;
2041}
2042
2043static bool getHexUint(const MIToken &Token, APInt &Result) {
2044 assert(Token.is(MIToken::HexLiteral));
2045 StringRef S = Token.range();
2046 assert(S[0] == '0' && tolower(S[1]) == 'x');
2047 // This could be a floating point literal with a special prefix.
2048 if (!isxdigit(S[2]))
2049 return true;
2050 StringRef V = S.substr(Start: 2);
2051 APInt A(V.size()*4, V, 16);
2052
2053 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2054 // sure it isn't the case before constructing result.
2055 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2056 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2057 return false;
2058}
2059
2060static bool getUnsigned(const MIToken &Token, unsigned &Result,
2061 ErrorCallbackType ErrCB) {
2062 if (Token.hasIntegerValue()) {
2063 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
2064 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
2065 if (Val64 == Limit)
2066 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2067 Result = Val64;
2068 return false;
2069 }
2070 if (Token.is(K: MIToken::HexLiteral)) {
2071 APInt A;
2072 if (getHexUint(Token, Result&: A))
2073 return true;
2074 if (A.getBitWidth() > 32)
2075 return ErrCB(Token.location(), "expected 32-bit integer (too large)");
2076 Result = A.getZExtValue();
2077 return false;
2078 }
2079 return true;
2080}
2081
2082bool MIParser::getUnsigned(unsigned &Result) {
2083 return ::getUnsigned(
2084 Token, Result, ErrCB: [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2085 return error(Loc, Msg);
2086 });
2087}
2088
2089bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
2090 assert(Token.is(MIToken::MachineBasicBlock) ||
2091 Token.is(MIToken::MachineBasicBlockLabel));
2092 unsigned Number;
2093 if (getUnsigned(Result&: Number))
2094 return true;
2095 auto MBBInfo = PFS.MBBSlots.find(Val: Number);
2096 if (MBBInfo == PFS.MBBSlots.end())
2097 return error(Msg: Twine("use of undefined machine basic block #") +
2098 Twine(Number));
2099 MBB = MBBInfo->second;
2100 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
2101 // we drop the <irname> from the bb.<id>.<irname> format.
2102 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
2103 return error(Msg: Twine("the name of machine basic block #") + Twine(Number) +
2104 " isn't '" + Token.stringValue() + "'");
2105 return false;
2106}
2107
2108bool MIParser::parseMBBOperand(MachineOperand &Dest) {
2109 MachineBasicBlock *MBB;
2110 if (parseMBBReference(MBB))
2111 return true;
2112 Dest = MachineOperand::CreateMBB(MBB);
2113 lex();
2114 return false;
2115}
2116
2117bool MIParser::parseStackFrameIndex(int &FI) {
2118 assert(Token.is(MIToken::StackObject));
2119 unsigned ID;
2120 if (getUnsigned(Result&: ID))
2121 return true;
2122 auto ObjectInfo = PFS.StackObjectSlots.find(Val: ID);
2123 if (ObjectInfo == PFS.StackObjectSlots.end())
2124 return error(Msg: Twine("use of undefined stack object '%stack.") + Twine(ID) +
2125 "'");
2126 StringRef Name;
2127 if (const auto *Alloca =
2128 MF.getFrameInfo().getObjectAllocation(ObjectIdx: ObjectInfo->second))
2129 Name = Alloca->getName();
2130 if (!Token.stringValue().empty() && Token.stringValue() != Name)
2131 return error(Msg: Twine("the name of the stack object '%stack.") + Twine(ID) +
2132 "' isn't '" + Token.stringValue() + "'");
2133 lex();
2134 FI = ObjectInfo->second;
2135 return false;
2136}
2137
2138bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
2139 int FI;
2140 if (parseStackFrameIndex(FI))
2141 return true;
2142 Dest = MachineOperand::CreateFI(Idx: FI);
2143 return false;
2144}
2145
2146bool MIParser::parseFixedStackFrameIndex(int &FI) {
2147 assert(Token.is(MIToken::FixedStackObject));
2148 unsigned ID;
2149 if (getUnsigned(Result&: ID))
2150 return true;
2151 auto ObjectInfo = PFS.FixedStackObjectSlots.find(Val: ID);
2152 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
2153 return error(Msg: Twine("use of undefined fixed stack object '%fixed-stack.") +
2154 Twine(ID) + "'");
2155 lex();
2156 FI = ObjectInfo->second;
2157 return false;
2158}
2159
2160bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
2161 int FI;
2162 if (parseFixedStackFrameIndex(FI))
2163 return true;
2164 Dest = MachineOperand::CreateFI(Idx: FI);
2165 return false;
2166}
2167
2168static bool parseGlobalValue(const MIToken &Token,
2169 PerFunctionMIParsingState &PFS, GlobalValue *&GV,
2170 ErrorCallbackType ErrCB) {
2171 switch (Token.kind()) {
2172 case MIToken::NamedGlobalValue: {
2173 const Module *M = PFS.MF.getFunction().getParent();
2174 GV = M->getNamedValue(Name: Token.stringValue());
2175 if (!GV)
2176 return ErrCB(Token.location(), Twine("use of undefined global value '") +
2177 Token.range() + "'");
2178 break;
2179 }
2180 case MIToken::GlobalValue: {
2181 unsigned GVIdx;
2182 if (getUnsigned(Token, Result&: GVIdx, ErrCB))
2183 return true;
2184 GV = PFS.IRSlots.GlobalValues.get(ID: GVIdx);
2185 if (!GV)
2186 return ErrCB(Token.location(), Twine("use of undefined global value '@") +
2187 Twine(GVIdx) + "'");
2188 break;
2189 }
2190 default:
2191 llvm_unreachable("The current token should be a global value");
2192 }
2193 return false;
2194}
2195
2196bool MIParser::parseGlobalValue(GlobalValue *&GV) {
2197 return ::parseGlobalValue(
2198 Token, PFS, GV,
2199 ErrCB: [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
2200 return error(Loc, Msg);
2201 });
2202}
2203
2204bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
2205 GlobalValue *GV = nullptr;
2206 if (parseGlobalValue(GV))
2207 return true;
2208 lex();
2209 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
2210 if (parseOperandsOffset(Op&: Dest))
2211 return true;
2212 return false;
2213}
2214
2215bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
2216 assert(Token.is(MIToken::ConstantPoolItem));
2217 unsigned ID;
2218 if (getUnsigned(Result&: ID))
2219 return true;
2220 auto ConstantInfo = PFS.ConstantPoolSlots.find(Val: ID);
2221 if (ConstantInfo == PFS.ConstantPoolSlots.end())
2222 return error(Msg: "use of undefined constant '%const." + Twine(ID) + "'");
2223 lex();
2224 Dest = MachineOperand::CreateCPI(Idx: ID, /*Offset=*/0);
2225 if (parseOperandsOffset(Op&: Dest))
2226 return true;
2227 return false;
2228}
2229
2230bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
2231 assert(Token.is(MIToken::JumpTableIndex));
2232 unsigned ID;
2233 if (getUnsigned(Result&: ID))
2234 return true;
2235 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(Val: ID);
2236 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
2237 return error(Msg: "use of undefined jump table '%jump-table." + Twine(ID) + "'");
2238 lex();
2239 Dest = MachineOperand::CreateJTI(Idx: JumpTableEntryInfo->second);
2240 return false;
2241}
2242
2243bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
2244 assert(Token.is(MIToken::ExternalSymbol));
2245 const char *Symbol = MF.createExternalSymbolName(Name: Token.stringValue());
2246 lex();
2247 Dest = MachineOperand::CreateES(SymName: Symbol);
2248 if (parseOperandsOffset(Op&: Dest))
2249 return true;
2250 return false;
2251}
2252
2253bool MIParser::parseMCSymbolOperand(MachineOperand &Dest) {
2254 assert(Token.is(MIToken::MCSymbol));
2255 MCSymbol *Symbol = getOrCreateMCSymbol(Name: Token.stringValue());
2256 lex();
2257 Dest = MachineOperand::CreateMCSymbol(Sym: Symbol);
2258 if (parseOperandsOffset(Op&: Dest))
2259 return true;
2260 return false;
2261}
2262
2263bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
2264 assert(Token.is(MIToken::SubRegisterIndex));
2265 StringRef Name = Token.stringValue();
2266 unsigned SubRegIndex = PFS.Target.getSubRegIndex(Name: Token.stringValue());
2267 if (SubRegIndex == 0)
2268 return error(Msg: Twine("unknown subregister index '") + Name + "'");
2269 lex();
2270 Dest = MachineOperand::CreateImm(Val: SubRegIndex);
2271 return false;
2272}
2273
2274bool MIParser::parseMDNode(MDNode *&Node) {
2275 assert(Token.is(MIToken::exclaim));
2276
2277 auto Loc = Token.location();
2278 lex();
2279 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2280 return error(Msg: "expected metadata id after '!'");
2281 unsigned ID;
2282 if (getUnsigned(Result&: ID))
2283 return true;
2284 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(x: ID);
2285 if (NodeInfo == PFS.IRSlots.MetadataNodes.end()) {
2286 NodeInfo = PFS.MachineMetadataNodes.find(x: ID);
2287 if (NodeInfo == PFS.MachineMetadataNodes.end())
2288 return error(Loc, Msg: "use of undefined metadata '!" + Twine(ID) + "'");
2289 }
2290 lex();
2291 Node = NodeInfo->second.get();
2292 return false;
2293}
2294
2295bool MIParser::parseDIExpression(MDNode *&Expr) {
2296 assert(Token.is(MIToken::md_diexpr));
2297 lex();
2298
2299 // FIXME: Share this parsing with the IL parser.
2300 SmallVector<uint64_t, 8> Elements;
2301
2302 if (expectAndConsume(TokenKind: MIToken::lparen))
2303 return true;
2304
2305 if (Token.isNot(K: MIToken::rparen)) {
2306 do {
2307 if (Token.is(K: MIToken::Identifier)) {
2308 if (unsigned Op = dwarf::getOperationEncoding(OperationEncodingString: Token.stringValue())) {
2309 lex();
2310 Elements.push_back(Elt: Op);
2311 continue;
2312 }
2313 if (unsigned Enc = dwarf::getAttributeEncoding(EncodingString: Token.stringValue())) {
2314 lex();
2315 Elements.push_back(Elt: Enc);
2316 continue;
2317 }
2318 return error(Msg: Twine("invalid DWARF op '") + Token.stringValue() + "'");
2319 }
2320
2321 if (Token.isNot(K: MIToken::IntegerLiteral) ||
2322 Token.integerValue().isSigned())
2323 return error(Msg: "expected unsigned integer");
2324
2325 auto &U = Token.integerValue();
2326 if (U.ugt(UINT64_MAX))
2327 return error(Msg: "element too large, limit is " + Twine(UINT64_MAX));
2328 Elements.push_back(Elt: U.getZExtValue());
2329 lex();
2330
2331 } while (consumeIfPresent(TokenKind: MIToken::comma));
2332 }
2333
2334 if (expectAndConsume(TokenKind: MIToken::rparen))
2335 return true;
2336
2337 Expr = DIExpression::get(Context&: MF.getFunction().getContext(), Elements);
2338 return false;
2339}
2340
2341bool MIParser::parseDILocation(MDNode *&Loc) {
2342 assert(Token.is(MIToken::md_dilocation));
2343 lex();
2344
2345 bool HaveLine = false;
2346 unsigned Line = 0;
2347 unsigned Column = 0;
2348 MDNode *Scope = nullptr;
2349 MDNode *InlinedAt = nullptr;
2350 bool ImplicitCode = false;
2351
2352 if (expectAndConsume(TokenKind: MIToken::lparen))
2353 return true;
2354
2355 if (Token.isNot(K: MIToken::rparen)) {
2356 do {
2357 if (Token.is(K: MIToken::Identifier)) {
2358 if (Token.stringValue() == "line") {
2359 lex();
2360 if (expectAndConsume(TokenKind: MIToken::colon))
2361 return true;
2362 if (Token.isNot(K: MIToken::IntegerLiteral) ||
2363 Token.integerValue().isSigned())
2364 return error(Msg: "expected unsigned integer");
2365 Line = Token.integerValue().getZExtValue();
2366 HaveLine = true;
2367 lex();
2368 continue;
2369 }
2370 if (Token.stringValue() == "column") {
2371 lex();
2372 if (expectAndConsume(TokenKind: MIToken::colon))
2373 return true;
2374 if (Token.isNot(K: MIToken::IntegerLiteral) ||
2375 Token.integerValue().isSigned())
2376 return error(Msg: "expected unsigned integer");
2377 Column = Token.integerValue().getZExtValue();
2378 lex();
2379 continue;
2380 }
2381 if (Token.stringValue() == "scope") {
2382 lex();
2383 if (expectAndConsume(TokenKind: MIToken::colon))
2384 return true;
2385 if (parseMDNode(Node&: Scope))
2386 return error(Msg: "expected metadata node");
2387 if (!isa<DIScope>(Val: Scope))
2388 return error(Msg: "expected DIScope node");
2389 continue;
2390 }
2391 if (Token.stringValue() == "inlinedAt") {
2392 lex();
2393 if (expectAndConsume(TokenKind: MIToken::colon))
2394 return true;
2395 if (Token.is(K: MIToken::exclaim)) {
2396 if (parseMDNode(Node&: InlinedAt))
2397 return true;
2398 } else if (Token.is(K: MIToken::md_dilocation)) {
2399 if (parseDILocation(Loc&: InlinedAt))
2400 return true;
2401 } else
2402 return error(Msg: "expected metadata node");
2403 if (!isa<DILocation>(Val: InlinedAt))
2404 return error(Msg: "expected DILocation node");
2405 continue;
2406 }
2407 if (Token.stringValue() == "isImplicitCode") {
2408 lex();
2409 if (expectAndConsume(TokenKind: MIToken::colon))
2410 return true;
2411 if (!Token.is(K: MIToken::Identifier))
2412 return error(Msg: "expected true/false");
2413 // As far as I can see, we don't have any existing need for parsing
2414 // true/false in MIR yet. Do it ad-hoc until there's something else
2415 // that needs it.
2416 if (Token.stringValue() == "true")
2417 ImplicitCode = true;
2418 else if (Token.stringValue() == "false")
2419 ImplicitCode = false;
2420 else
2421 return error(Msg: "expected true/false");
2422 lex();
2423 continue;
2424 }
2425 }
2426 return error(Msg: Twine("invalid DILocation argument '") +
2427 Token.stringValue() + "'");
2428 } while (consumeIfPresent(TokenKind: MIToken::comma));
2429 }
2430
2431 if (expectAndConsume(TokenKind: MIToken::rparen))
2432 return true;
2433
2434 if (!HaveLine)
2435 return error(Msg: "DILocation requires line number");
2436 if (!Scope)
2437 return error(Msg: "DILocation requires a scope");
2438
2439 Loc = DILocation::get(Context&: MF.getFunction().getContext(), Line, Column, Scope,
2440 InlinedAt, ImplicitCode);
2441 return false;
2442}
2443
2444bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
2445 MDNode *Node = nullptr;
2446 if (Token.is(K: MIToken::exclaim)) {
2447 if (parseMDNode(Node))
2448 return true;
2449 } else if (Token.is(K: MIToken::md_diexpr)) {
2450 if (parseDIExpression(Expr&: Node))
2451 return true;
2452 }
2453 Dest = MachineOperand::CreateMetadata(Meta: Node);
2454 return false;
2455}
2456
2457bool MIParser::parseCFIOffset(int &Offset) {
2458 if (Token.isNot(K: MIToken::IntegerLiteral))
2459 return error(Msg: "expected a cfi offset");
2460 if (Token.integerValue().getSignificantBits() > 32)
2461 return error(Msg: "expected a 32 bit integer (the cfi offset is too large)");
2462 Offset = (int)Token.integerValue().getExtValue();
2463 lex();
2464 return false;
2465}
2466
2467bool MIParser::parseCFIRegister(Register &Reg) {
2468 if (Token.isNot(K: MIToken::NamedRegister))
2469 return error(Msg: "expected a cfi register");
2470 Register LLVMReg;
2471 if (parseNamedRegister(Reg&: LLVMReg))
2472 return true;
2473 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2474 assert(TRI && "Expected target register info");
2475 int DwarfReg = TRI->getDwarfRegNum(RegNum: LLVMReg, isEH: true);
2476 if (DwarfReg < 0)
2477 return error(Msg: "invalid DWARF register");
2478 Reg = (unsigned)DwarfReg;
2479 lex();
2480 return false;
2481}
2482
2483bool MIParser::parseCFIAddressSpace(unsigned &AddressSpace) {
2484 if (Token.isNot(K: MIToken::IntegerLiteral))
2485 return error(Msg: "expected a cfi address space literal");
2486 if (Token.integerValue().isSigned())
2487 return error(Msg: "expected an unsigned integer (cfi address space)");
2488 AddressSpace = Token.integerValue().getZExtValue();
2489 lex();
2490 return false;
2491}
2492
2493bool MIParser::parseCFIEscapeValues(std::string &Values) {
2494 do {
2495 if (Token.isNot(K: MIToken::HexLiteral))
2496 return error(Msg: "expected a hexadecimal literal");
2497 unsigned Value;
2498 if (getUnsigned(Result&: Value))
2499 return true;
2500 if (Value > UINT8_MAX)
2501 return error(Msg: "expected a 8-bit integer (too large)");
2502 Values.push_back(c: static_cast<uint8_t>(Value));
2503 lex();
2504 } while (consumeIfPresent(TokenKind: MIToken::comma));
2505 return false;
2506}
2507
2508bool MIParser::parseCFIOperand(MachineOperand &Dest) {
2509 auto Kind = Token.kind();
2510 lex();
2511 int Offset;
2512 Register Reg;
2513 unsigned AddressSpace;
2514 unsigned CFIIndex;
2515 switch (Kind) {
2516 case MIToken::kw_cfi_same_value:
2517 if (parseCFIRegister(Reg))
2518 return true;
2519 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createSameValue(L: nullptr, Register: Reg));
2520 break;
2521 case MIToken::kw_cfi_offset:
2522 if (parseCFIRegister(Reg) || expectAndConsume(TokenKind: MIToken::comma) ||
2523 parseCFIOffset(Offset))
2524 return true;
2525 CFIIndex =
2526 MF.addFrameInst(Inst: MCCFIInstruction::createOffset(L: nullptr, Register: Reg, Offset));
2527 break;
2528 case MIToken::kw_cfi_rel_offset:
2529 if (parseCFIRegister(Reg) || expectAndConsume(TokenKind: MIToken::comma) ||
2530 parseCFIOffset(Offset))
2531 return true;
2532 CFIIndex = MF.addFrameInst(
2533 Inst: MCCFIInstruction::createRelOffset(L: nullptr, Register: Reg, Offset));
2534 break;
2535 case MIToken::kw_cfi_def_cfa_register:
2536 if (parseCFIRegister(Reg))
2537 return true;
2538 CFIIndex =
2539 MF.addFrameInst(Inst: MCCFIInstruction::createDefCfaRegister(L: nullptr, Register: Reg));
2540 break;
2541 case MIToken::kw_cfi_def_cfa_offset:
2542 if (parseCFIOffset(Offset))
2543 return true;
2544 CFIIndex =
2545 MF.addFrameInst(Inst: MCCFIInstruction::cfiDefCfaOffset(L: nullptr, Offset));
2546 break;
2547 case MIToken::kw_cfi_adjust_cfa_offset:
2548 if (parseCFIOffset(Offset))
2549 return true;
2550 CFIIndex = MF.addFrameInst(
2551 Inst: MCCFIInstruction::createAdjustCfaOffset(L: nullptr, Adjustment: Offset));
2552 break;
2553 case MIToken::kw_cfi_def_cfa:
2554 if (parseCFIRegister(Reg) || expectAndConsume(TokenKind: MIToken::comma) ||
2555 parseCFIOffset(Offset))
2556 return true;
2557 CFIIndex =
2558 MF.addFrameInst(Inst: MCCFIInstruction::cfiDefCfa(L: nullptr, Register: Reg, Offset));
2559 break;
2560 case MIToken::kw_cfi_llvm_def_aspace_cfa:
2561 if (parseCFIRegister(Reg) || expectAndConsume(TokenKind: MIToken::comma) ||
2562 parseCFIOffset(Offset) || expectAndConsume(TokenKind: MIToken::comma) ||
2563 parseCFIAddressSpace(AddressSpace))
2564 return true;
2565 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createLLVMDefAspaceCfa(
2566 L: nullptr, Register: Reg, Offset, AddressSpace, Loc: SMLoc()));
2567 break;
2568 case MIToken::kw_cfi_remember_state:
2569 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createRememberState(L: nullptr));
2570 break;
2571 case MIToken::kw_cfi_restore:
2572 if (parseCFIRegister(Reg))
2573 return true;
2574 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createRestore(L: nullptr, Register: Reg));
2575 break;
2576 case MIToken::kw_cfi_restore_state:
2577 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createRestoreState(L: nullptr));
2578 break;
2579 case MIToken::kw_cfi_undefined:
2580 if (parseCFIRegister(Reg))
2581 return true;
2582 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createUndefined(L: nullptr, Register: Reg));
2583 break;
2584 case MIToken::kw_cfi_register: {
2585 Register Reg2;
2586 if (parseCFIRegister(Reg) || expectAndConsume(TokenKind: MIToken::comma) ||
2587 parseCFIRegister(Reg&: Reg2))
2588 return true;
2589
2590 CFIIndex =
2591 MF.addFrameInst(Inst: MCCFIInstruction::createRegister(L: nullptr, Register1: Reg, Register2: Reg2));
2592 break;
2593 }
2594 case MIToken::kw_cfi_window_save:
2595 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createWindowSave(L: nullptr));
2596 break;
2597 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2598 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createNegateRAState(L: nullptr));
2599 break;
2600 case MIToken::kw_cfi_escape: {
2601 std::string Values;
2602 if (parseCFIEscapeValues(Values))
2603 return true;
2604 CFIIndex = MF.addFrameInst(Inst: MCCFIInstruction::createEscape(L: nullptr, Vals: Values));
2605 break;
2606 }
2607 default:
2608 // TODO: Parse the other CFI operands.
2609 llvm_unreachable("The current token should be a cfi operand");
2610 }
2611 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
2612 return false;
2613}
2614
2615bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
2616 switch (Token.kind()) {
2617 case MIToken::NamedIRBlock: {
2618 BB = dyn_cast_or_null<BasicBlock>(
2619 Val: F.getValueSymbolTable()->lookup(Name: Token.stringValue()));
2620 if (!BB)
2621 return error(Msg: Twine("use of undefined IR block '") + Token.range() + "'");
2622 break;
2623 }
2624 case MIToken::IRBlock: {
2625 unsigned SlotNumber = 0;
2626 if (getUnsigned(Result&: SlotNumber))
2627 return true;
2628 BB = const_cast<BasicBlock *>(getIRBlock(Slot: SlotNumber, F));
2629 if (!BB)
2630 return error(Msg: Twine("use of undefined IR block '%ir-block.") +
2631 Twine(SlotNumber) + "'");
2632 break;
2633 }
2634 default:
2635 llvm_unreachable("The current token should be an IR block reference");
2636 }
2637 return false;
2638}
2639
2640bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
2641 assert(Token.is(MIToken::kw_blockaddress));
2642 lex();
2643 if (expectAndConsume(TokenKind: MIToken::lparen))
2644 return true;
2645 if (Token.isNot(K: MIToken::GlobalValue) &&
2646 Token.isNot(K: MIToken::NamedGlobalValue))
2647 return error(Msg: "expected a global value");
2648 GlobalValue *GV = nullptr;
2649 if (parseGlobalValue(GV))
2650 return true;
2651 auto *F = dyn_cast<Function>(Val: GV);
2652 if (!F)
2653 return error(Msg: "expected an IR function reference");
2654 lex();
2655 if (expectAndConsume(TokenKind: MIToken::comma))
2656 return true;
2657 BasicBlock *BB = nullptr;
2658 if (Token.isNot(K: MIToken::IRBlock) && Token.isNot(K: MIToken::NamedIRBlock))
2659 return error(Msg: "expected an IR block reference");
2660 if (parseIRBlock(BB, F: *F))
2661 return true;
2662 lex();
2663 if (expectAndConsume(TokenKind: MIToken::rparen))
2664 return true;
2665 Dest = MachineOperand::CreateBA(BA: BlockAddress::get(F, BB), /*Offset=*/0);
2666 if (parseOperandsOffset(Op&: Dest))
2667 return true;
2668 return false;
2669}
2670
2671bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
2672 assert(Token.is(MIToken::kw_intrinsic));
2673 lex();
2674 if (expectAndConsume(TokenKind: MIToken::lparen))
2675 return error(Msg: "expected syntax intrinsic(@llvm.whatever)");
2676
2677 if (Token.isNot(K: MIToken::NamedGlobalValue))
2678 return error(Msg: "expected syntax intrinsic(@llvm.whatever)");
2679
2680 std::string Name = std::string(Token.stringValue());
2681 lex();
2682
2683 if (expectAndConsume(TokenKind: MIToken::rparen))
2684 return error(Msg: "expected ')' to terminate intrinsic name");
2685
2686 // Find out what intrinsic we're dealing with, first try the global namespace
2687 // and then the target's private intrinsics if that fails.
2688 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
2689 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
2690 if (ID == Intrinsic::not_intrinsic && TII)
2691 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
2692
2693 if (ID == Intrinsic::not_intrinsic)
2694 return error(Msg: "unknown intrinsic name");
2695 Dest = MachineOperand::CreateIntrinsicID(ID);
2696
2697 return false;
2698}
2699
2700bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
2701 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred));
2702 bool IsFloat = Token.is(K: MIToken::kw_floatpred);
2703 lex();
2704
2705 if (expectAndConsume(TokenKind: MIToken::lparen))
2706 return error(Msg: "expected syntax intpred(whatever) or floatpred(whatever");
2707
2708 if (Token.isNot(K: MIToken::Identifier))
2709 return error(Msg: "whatever");
2710
2711 CmpInst::Predicate Pred;
2712 if (IsFloat) {
2713 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2714 .Case(S: "false", Value: CmpInst::FCMP_FALSE)
2715 .Case(S: "oeq", Value: CmpInst::FCMP_OEQ)
2716 .Case(S: "ogt", Value: CmpInst::FCMP_OGT)
2717 .Case(S: "oge", Value: CmpInst::FCMP_OGE)
2718 .Case(S: "olt", Value: CmpInst::FCMP_OLT)
2719 .Case(S: "ole", Value: CmpInst::FCMP_OLE)
2720 .Case(S: "one", Value: CmpInst::FCMP_ONE)
2721 .Case(S: "ord", Value: CmpInst::FCMP_ORD)
2722 .Case(S: "uno", Value: CmpInst::FCMP_UNO)
2723 .Case(S: "ueq", Value: CmpInst::FCMP_UEQ)
2724 .Case(S: "ugt", Value: CmpInst::FCMP_UGT)
2725 .Case(S: "uge", Value: CmpInst::FCMP_UGE)
2726 .Case(S: "ult", Value: CmpInst::FCMP_ULT)
2727 .Case(S: "ule", Value: CmpInst::FCMP_ULE)
2728 .Case(S: "une", Value: CmpInst::FCMP_UNE)
2729 .Case(S: "true", Value: CmpInst::FCMP_TRUE)
2730 .Default(Value: CmpInst::BAD_FCMP_PREDICATE);
2731 if (!CmpInst::isFPPredicate(P: Pred))
2732 return error(Msg: "invalid floating-point predicate");
2733 } else {
2734 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
2735 .Case(S: "eq", Value: CmpInst::ICMP_EQ)
2736 .Case(S: "ne", Value: CmpInst::ICMP_NE)
2737 .Case(S: "sgt", Value: CmpInst::ICMP_SGT)
2738 .Case(S: "sge", Value: CmpInst::ICMP_SGE)
2739 .Case(S: "slt", Value: CmpInst::ICMP_SLT)
2740 .Case(S: "sle", Value: CmpInst::ICMP_SLE)
2741 .Case(S: "ugt", Value: CmpInst::ICMP_UGT)
2742 .Case(S: "uge", Value: CmpInst::ICMP_UGE)
2743 .Case(S: "ult", Value: CmpInst::ICMP_ULT)
2744 .Case(S: "ule", Value: CmpInst::ICMP_ULE)
2745 .Default(Value: CmpInst::BAD_ICMP_PREDICATE);
2746 if (!CmpInst::isIntPredicate(P: Pred))
2747 return error(Msg: "invalid integer predicate");
2748 }
2749
2750 lex();
2751 Dest = MachineOperand::CreatePredicate(Pred);
2752 if (expectAndConsume(TokenKind: MIToken::rparen))
2753 return error(Msg: "predicate should be terminated by ')'.");
2754
2755 return false;
2756}
2757
2758bool MIParser::parseShuffleMaskOperand(MachineOperand &Dest) {
2759 assert(Token.is(MIToken::kw_shufflemask));
2760
2761 lex();
2762 if (expectAndConsume(TokenKind: MIToken::lparen))
2763 return error(Msg: "expected syntax shufflemask(<integer or undef>, ...)");
2764
2765 SmallVector<int, 32> ShufMask;
2766 do {
2767 if (Token.is(K: MIToken::kw_undef)) {
2768 ShufMask.push_back(Elt: -1);
2769 } else if (Token.is(K: MIToken::IntegerLiteral)) {
2770 const APSInt &Int = Token.integerValue();
2771 ShufMask.push_back(Elt: Int.getExtValue());
2772 } else
2773 return error(Msg: "expected integer constant");
2774
2775 lex();
2776 } while (consumeIfPresent(TokenKind: MIToken::comma));
2777
2778 if (expectAndConsume(TokenKind: MIToken::rparen))
2779 return error(Msg: "shufflemask should be terminated by ')'.");
2780
2781 ArrayRef<int> MaskAlloc = MF.allocateShuffleMask(Mask: ShufMask);
2782 Dest = MachineOperand::CreateShuffleMask(Mask: MaskAlloc);
2783 return false;
2784}
2785
2786bool MIParser::parseDbgInstrRefOperand(MachineOperand &Dest) {
2787 assert(Token.is(MIToken::kw_dbg_instr_ref));
2788
2789 lex();
2790 if (expectAndConsume(TokenKind: MIToken::lparen))
2791 return error(Msg: "expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2792
2793 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2794 return error(Msg: "expected unsigned integer for instruction index");
2795 uint64_t InstrIdx = Token.integerValue().getZExtValue();
2796 assert(InstrIdx <= std::numeric_limits<unsigned>::max() &&
2797 "Instruction reference's instruction index is too large");
2798 lex();
2799
2800 if (expectAndConsume(TokenKind: MIToken::comma))
2801 return error(Msg: "expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2802
2803 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isNegative())
2804 return error(Msg: "expected unsigned integer for operand index");
2805 uint64_t OpIdx = Token.integerValue().getZExtValue();
2806 assert(OpIdx <= std::numeric_limits<unsigned>::max() &&
2807 "Instruction reference's operand index is too large");
2808 lex();
2809
2810 if (expectAndConsume(TokenKind: MIToken::rparen))
2811 return error(Msg: "expected syntax dbg-instr-ref(<unsigned>, <unsigned>)");
2812
2813 Dest = MachineOperand::CreateDbgInstrRef(InstrIdx, OpIdx);
2814 return false;
2815}
2816
2817bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
2818 assert(Token.is(MIToken::kw_target_index));
2819 lex();
2820 if (expectAndConsume(TokenKind: MIToken::lparen))
2821 return true;
2822 if (Token.isNot(K: MIToken::Identifier))
2823 return error(Msg: "expected the name of the target index");
2824 int Index = 0;
2825 if (PFS.Target.getTargetIndex(Name: Token.stringValue(), Index))
2826 return error(Msg: "use of undefined target index '" + Token.stringValue() + "'");
2827 lex();
2828 if (expectAndConsume(TokenKind: MIToken::rparen))
2829 return true;
2830 Dest = MachineOperand::CreateTargetIndex(Idx: unsigned(Index), /*Offset=*/0);
2831 if (parseOperandsOffset(Op&: Dest))
2832 return true;
2833 return false;
2834}
2835
2836bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
2837 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask");
2838 lex();
2839 if (expectAndConsume(TokenKind: MIToken::lparen))
2840 return true;
2841
2842 uint32_t *Mask = MF.allocateRegMask();
2843 do {
2844 if (Token.isNot(K: MIToken::rparen)) {
2845 if (Token.isNot(K: MIToken::NamedRegister))
2846 return error(Msg: "expected a named register");
2847 Register Reg;
2848 if (parseNamedRegister(Reg))
2849 return true;
2850 lex();
2851 Mask[Reg / 32] |= 1U << (Reg % 32);
2852 }
2853
2854 // TODO: Report an error if the same register is used more than once.
2855 } while (consumeIfPresent(TokenKind: MIToken::comma));
2856
2857 if (expectAndConsume(TokenKind: MIToken::rparen))
2858 return true;
2859 Dest = MachineOperand::CreateRegMask(Mask);
2860 return false;
2861}
2862
2863bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
2864 assert(Token.is(MIToken::kw_liveout));
2865 uint32_t *Mask = MF.allocateRegMask();
2866 lex();
2867 if (expectAndConsume(TokenKind: MIToken::lparen))
2868 return true;
2869 while (true) {
2870 if (Token.isNot(K: MIToken::NamedRegister))
2871 return error(Msg: "expected a named register");
2872 Register Reg;
2873 if (parseNamedRegister(Reg))
2874 return true;
2875 lex();
2876 Mask[Reg / 32] |= 1U << (Reg % 32);
2877 // TODO: Report an error if the same register is used more than once.
2878 if (Token.isNot(K: MIToken::comma))
2879 break;
2880 lex();
2881 }
2882 if (expectAndConsume(TokenKind: MIToken::rparen))
2883 return true;
2884 Dest = MachineOperand::CreateRegLiveOut(Mask);
2885 return false;
2886}
2887
2888bool MIParser::parseMachineOperand(const unsigned OpCode, const unsigned OpIdx,
2889 MachineOperand &Dest,
2890 std::optional<unsigned> &TiedDefIdx) {
2891 switch (Token.kind()) {
2892 case MIToken::kw_implicit:
2893 case MIToken::kw_implicit_define:
2894 case MIToken::kw_def:
2895 case MIToken::kw_dead:
2896 case MIToken::kw_killed:
2897 case MIToken::kw_undef:
2898 case MIToken::kw_internal:
2899 case MIToken::kw_early_clobber:
2900 case MIToken::kw_debug_use:
2901 case MIToken::kw_renamable:
2902 case MIToken::underscore:
2903 case MIToken::NamedRegister:
2904 case MIToken::VirtualRegister:
2905 case MIToken::NamedVirtualRegister:
2906 return parseRegisterOperand(Dest, TiedDefIdx);
2907 case MIToken::IntegerLiteral:
2908 return parseImmediateOperand(Dest);
2909 case MIToken::kw_half:
2910 case MIToken::kw_float:
2911 case MIToken::kw_double:
2912 case MIToken::kw_x86_fp80:
2913 case MIToken::kw_fp128:
2914 case MIToken::kw_ppc_fp128:
2915 return parseFPImmediateOperand(Dest);
2916 case MIToken::MachineBasicBlock:
2917 return parseMBBOperand(Dest);
2918 case MIToken::StackObject:
2919 return parseStackObjectOperand(Dest);
2920 case MIToken::FixedStackObject:
2921 return parseFixedStackObjectOperand(Dest);
2922 case MIToken::GlobalValue:
2923 case MIToken::NamedGlobalValue:
2924 return parseGlobalAddressOperand(Dest);
2925 case MIToken::ConstantPoolItem:
2926 return parseConstantPoolIndexOperand(Dest);
2927 case MIToken::JumpTableIndex:
2928 return parseJumpTableIndexOperand(Dest);
2929 case MIToken::ExternalSymbol:
2930 return parseExternalSymbolOperand(Dest);
2931 case MIToken::MCSymbol:
2932 return parseMCSymbolOperand(Dest);
2933 case MIToken::SubRegisterIndex:
2934 return parseSubRegisterIndexOperand(Dest);
2935 case MIToken::md_diexpr:
2936 case MIToken::exclaim:
2937 return parseMetadataOperand(Dest);
2938 case MIToken::kw_cfi_same_value:
2939 case MIToken::kw_cfi_offset:
2940 case MIToken::kw_cfi_rel_offset:
2941 case MIToken::kw_cfi_def_cfa_register:
2942 case MIToken::kw_cfi_def_cfa_offset:
2943 case MIToken::kw_cfi_adjust_cfa_offset:
2944 case MIToken::kw_cfi_escape:
2945 case MIToken::kw_cfi_def_cfa:
2946 case MIToken::kw_cfi_llvm_def_aspace_cfa:
2947 case MIToken::kw_cfi_register:
2948 case MIToken::kw_cfi_remember_state:
2949 case MIToken::kw_cfi_restore:
2950 case MIToken::kw_cfi_restore_state:
2951 case MIToken::kw_cfi_undefined:
2952 case MIToken::kw_cfi_window_save:
2953 case MIToken::kw_cfi_aarch64_negate_ra_sign_state:
2954 return parseCFIOperand(Dest);
2955 case MIToken::kw_blockaddress:
2956 return parseBlockAddressOperand(Dest);
2957 case MIToken::kw_intrinsic:
2958 return parseIntrinsicOperand(Dest);
2959 case MIToken::kw_target_index:
2960 return parseTargetIndexOperand(Dest);
2961 case MIToken::kw_liveout:
2962 return parseLiveoutRegisterMaskOperand(Dest);
2963 case MIToken::kw_floatpred:
2964 case MIToken::kw_intpred:
2965 return parsePredicateOperand(Dest);
2966 case MIToken::kw_shufflemask:
2967 return parseShuffleMaskOperand(Dest);
2968 case MIToken::kw_dbg_instr_ref:
2969 return parseDbgInstrRefOperand(Dest);
2970 case MIToken::Error:
2971 return true;
2972 case MIToken::Identifier:
2973 if (const auto *RegMask = PFS.Target.getRegMask(Identifier: Token.stringValue())) {
2974 Dest = MachineOperand::CreateRegMask(Mask: RegMask);
2975 lex();
2976 break;
2977 } else if (Token.stringValue() == "CustomRegMask") {
2978 return parseCustomRegisterMaskOperand(Dest);
2979 } else
2980 return parseTypedImmediateOperand(Dest);
2981 case MIToken::dot: {
2982 const auto *TII = MF.getSubtarget().getInstrInfo();
2983 if (const auto *Formatter = TII->getMIRFormatter()) {
2984 return parseTargetImmMnemonic(OpCode, OpIdx, Dest, MF: *Formatter);
2985 }
2986 [[fallthrough]];
2987 }
2988 default:
2989 // FIXME: Parse the MCSymbol machine operand.
2990 return error(Msg: "expected a machine operand");
2991 }
2992 return false;
2993}
2994
2995bool MIParser::parseMachineOperandAndTargetFlags(
2996 const unsigned OpCode, const unsigned OpIdx, MachineOperand &Dest,
2997 std::optional<unsigned> &TiedDefIdx) {
2998 unsigned TF = 0;
2999 bool HasTargetFlags = false;
3000 if (Token.is(K: MIToken::kw_target_flags)) {
3001 HasTargetFlags = true;
3002 lex();
3003 if (expectAndConsume(TokenKind: MIToken::lparen))
3004 return true;
3005 if (Token.isNot(K: MIToken::Identifier))
3006 return error(Msg: "expected the name of the target flag");
3007 if (PFS.Target.getDirectTargetFlag(Name: Token.stringValue(), Flag&: TF)) {
3008 if (PFS.Target.getBitmaskTargetFlag(Name: Token.stringValue(), Flag&: TF))
3009 return error(Msg: "use of undefined target flag '" + Token.stringValue() +
3010 "'");
3011 }
3012 lex();
3013 while (Token.is(K: MIToken::comma)) {
3014 lex();
3015 if (Token.isNot(K: MIToken::Identifier))
3016 return error(Msg: "expected the name of the target flag");
3017 unsigned BitFlag = 0;
3018 if (PFS.Target.getBitmaskTargetFlag(Name: Token.stringValue(), Flag&: BitFlag))
3019 return error(Msg: "use of undefined target flag '" + Token.stringValue() +
3020 "'");
3021 // TODO: Report an error when using a duplicate bit target flag.
3022 TF |= BitFlag;
3023 lex();
3024 }
3025 if (expectAndConsume(TokenKind: MIToken::rparen))
3026 return true;
3027 }
3028 auto Loc = Token.location();
3029 if (parseMachineOperand(OpCode, OpIdx, Dest, TiedDefIdx))
3030 return true;
3031 if (!HasTargetFlags)
3032 return false;
3033 if (Dest.isReg())
3034 return error(Loc, Msg: "register operands can't have target flags");
3035 Dest.setTargetFlags(TF);
3036 return false;
3037}
3038
3039bool MIParser::parseOffset(int64_t &Offset) {
3040 if (Token.isNot(K: MIToken::plus) && Token.isNot(K: MIToken::minus))
3041 return false;
3042 StringRef Sign = Token.range();
3043 bool IsNegative = Token.is(K: MIToken::minus);
3044 lex();
3045 if (Token.isNot(K: MIToken::IntegerLiteral))
3046 return error(Msg: "expected an integer literal after '" + Sign + "'");
3047 if (Token.integerValue().getSignificantBits() > 64)
3048 return error(Msg: "expected 64-bit integer (too large)");
3049 Offset = Token.integerValue().getExtValue();
3050 if (IsNegative)
3051 Offset = -Offset;
3052 lex();
3053 return false;
3054}
3055
3056bool MIParser::parseIRBlockAddressTaken(BasicBlock *&BB) {
3057 assert(Token.is(MIToken::kw_ir_block_address_taken));
3058 lex();
3059 if (Token.isNot(K: MIToken::IRBlock) && Token.isNot(K: MIToken::NamedIRBlock))
3060 return error(Msg: "expected basic block after 'ir_block_address_taken'");
3061
3062 if (parseIRBlock(BB, F: MF.getFunction()))
3063 return true;
3064
3065 lex();
3066 return false;
3067}
3068
3069bool MIParser::parseAlignment(uint64_t &Alignment) {
3070 assert(Token.is(MIToken::kw_align) || Token.is(MIToken::kw_basealign));
3071 lex();
3072 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3073 return error(Msg: "expected an integer literal after 'align'");
3074 if (getUint64(Result&: Alignment))
3075 return true;
3076 lex();
3077
3078 if (!isPowerOf2_64(Value: Alignment))
3079 return error(Msg: "expected a power-of-2 literal after 'align'");
3080
3081 return false;
3082}
3083
3084bool MIParser::parseAddrspace(unsigned &Addrspace) {
3085 assert(Token.is(MIToken::kw_addrspace));
3086 lex();
3087 if (Token.isNot(K: MIToken::IntegerLiteral) || Token.integerValue().isSigned())
3088 return error(Msg: "expected an integer literal after 'addrspace'");
3089 if (getUnsigned(Result&: Addrspace))
3090 return true;
3091 lex();
3092 return false;
3093}
3094
3095bool MIParser::parseOperandsOffset(MachineOperand &Op) {
3096 int64_t Offset = 0;
3097 if (parseOffset(Offset))
3098 return true;
3099 Op.setOffset(Offset);
3100 return false;
3101}
3102
3103static bool parseIRValue(const MIToken &Token, PerFunctionMIParsingState &PFS,
3104 const Value *&V, ErrorCallbackType ErrCB) {
3105 switch (Token.kind()) {
3106 case MIToken::NamedIRValue: {
3107 V = PFS.MF.getFunction().getValueSymbolTable()->lookup(Name: Token.stringValue());
3108 break;
3109 }
3110 case MIToken::IRValue: {
3111 unsigned SlotNumber = 0;
3112 if (getUnsigned(Token, Result&: SlotNumber, ErrCB))
3113 return true;
3114 V = PFS.getIRValue(Slot: SlotNumber);
3115 break;
3116 }
3117 case MIToken::NamedGlobalValue:
3118 case MIToken::GlobalValue: {
3119 GlobalValue *GV = nullptr;
3120 if (parseGlobalValue(Token, PFS, GV, ErrCB))
3121 return true;
3122 V = GV;
3123 break;
3124 }
3125 case MIToken::QuotedIRValue: {
3126 const Constant *C = nullptr;
3127 if (parseIRConstant(Loc: Token.location(), StringValue: Token.stringValue(), PFS, C, ErrCB))
3128 return true;
3129 V = C;
3130 break;
3131 }
3132 case MIToken::kw_unknown_address:
3133 V = nullptr;
3134 return false;
3135 default:
3136 llvm_unreachable("The current token should be an IR block reference");
3137 }
3138 if (!V)
3139 return ErrCB(Token.location(), Twine("use of undefined IR value '") + Token.range() + "'");
3140 return false;
3141}
3142
3143bool MIParser::parseIRValue(const Value *&V) {
3144 return ::parseIRValue(
3145 Token, PFS, V, ErrCB: [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3146 return error(Loc, Msg);
3147 });
3148}
3149
3150bool MIParser::getUint64(uint64_t &Result) {
3151 if (Token.hasIntegerValue()) {
3152 if (Token.integerValue().getActiveBits() > 64)
3153 return error(Msg: "expected 64-bit integer (too large)");
3154 Result = Token.integerValue().getZExtValue();
3155 return false;
3156 }
3157 if (Token.is(K: MIToken::HexLiteral)) {
3158 APInt A;
3159 if (getHexUint(Result&: A))
3160 return true;
3161 if (A.getBitWidth() > 64)
3162 return error(Msg: "expected 64-bit integer (too large)");
3163 Result = A.getZExtValue();
3164 return false;
3165 }
3166 return true;
3167}
3168
3169bool MIParser::getHexUint(APInt &Result) {
3170 return ::getHexUint(Token, Result);
3171}
3172
3173bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
3174 const auto OldFlags = Flags;
3175 switch (Token.kind()) {
3176 case MIToken::kw_volatile:
3177 Flags |= MachineMemOperand::MOVolatile;
3178 break;
3179 case MIToken::kw_non_temporal:
3180 Flags |= MachineMemOperand::MONonTemporal;
3181 break;
3182 case MIToken::kw_dereferenceable:
3183 Flags |= MachineMemOperand::MODereferenceable;
3184 break;
3185 case MIToken::kw_invariant:
3186 Flags |= MachineMemOperand::MOInvariant;
3187 break;
3188 case MIToken::StringConstant: {
3189 MachineMemOperand::Flags TF;
3190 if (PFS.Target.getMMOTargetFlag(Name: Token.stringValue(), Flag&: TF))
3191 return error(Msg: "use of undefined target MMO flag '" + Token.stringValue() +
3192 "'");
3193 Flags |= TF;
3194 break;
3195 }
3196 default:
3197 llvm_unreachable("The current token should be a memory operand flag");
3198 }
3199 if (OldFlags == Flags)
3200 // We know that the same flag is specified more than once when the flags
3201 // weren't modified.
3202 return error(Msg: "duplicate '" + Token.stringValue() + "' memory operand flag");
3203 lex();
3204 return false;
3205}
3206
3207bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
3208 switch (Token.kind()) {
3209 case MIToken::kw_stack:
3210 PSV = MF.getPSVManager().getStack();
3211 break;
3212 case MIToken::kw_got:
3213 PSV = MF.getPSVManager().getGOT();
3214 break;
3215 case MIToken::kw_jump_table:
3216 PSV = MF.getPSVManager().getJumpTable();
3217 break;
3218 case MIToken::kw_constant_pool:
3219 PSV = MF.getPSVManager().getConstantPool();
3220 break;
3221 case MIToken::FixedStackObject: {
3222 int FI;
3223 if (parseFixedStackFrameIndex(FI))
3224 return true;
3225 PSV = MF.getPSVManager().getFixedStack(FI);
3226 // The token was already consumed, so use return here instead of break.
3227 return false;
3228 }
3229 case MIToken::StackObject: {
3230 int FI;
3231 if (parseStackFrameIndex(FI))
3232 return true;
3233 PSV = MF.getPSVManager().getFixedStack(FI);
3234 // The token was already consumed, so use return here instead of break.
3235 return false;
3236 }
3237 case MIToken::kw_call_entry:
3238 lex();
3239 switch (Token.kind()) {
3240 case MIToken::GlobalValue:
3241 case MIToken::NamedGlobalValue: {
3242 GlobalValue *GV = nullptr;
3243 if (parseGlobalValue(GV))
3244 return true;
3245 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
3246 break;
3247 }
3248 case MIToken::ExternalSymbol:
3249 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
3250 ES: MF.createExternalSymbolName(Name: Token.stringValue()));
3251 break;
3252 default:
3253 return error(
3254 Msg: "expected a global value or an external symbol after 'call-entry'");
3255 }
3256 break;
3257 case MIToken::kw_custom: {
3258 lex();
3259 const auto *TII = MF.getSubtarget().getInstrInfo();
3260 if (const auto *Formatter = TII->getMIRFormatter()) {
3261 if (Formatter->parseCustomPseudoSourceValue(
3262 Src: Token.stringValue(), MF, PFS, PSV,
3263 ErrorCallback: [this](StringRef::iterator Loc, const Twine &Msg) -> bool {
3264 return error(Loc, Msg);
3265 }))
3266 return true;
3267 } else
3268 return error(Msg: "unable to parse target custom pseudo source value");
3269 break;
3270 }
3271 default:
3272 llvm_unreachable("The current token should be pseudo source value");
3273 }
3274 lex();
3275 return false;
3276}
3277
3278bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
3279 if (Token.is(K: MIToken::kw_constant_pool) || Token.is(K: MIToken::kw_stack) ||
3280 Token.is(K: MIToken::kw_got) || Token.is(K: MIToken::kw_jump_table) ||
3281 Token.is(K: MIToken::FixedStackObject) || Token.is(K: MIToken::StackObject) ||
3282 Token.is(K: MIToken::kw_call_entry) || Token.is(K: MIToken::kw_custom)) {
3283 const PseudoSourceValue *PSV = nullptr;
3284 if (parseMemoryPseudoSourceValue(PSV))
3285 return true;
3286 int64_t Offset = 0;
3287 if (parseOffset(Offset))
3288 return true;
3289 Dest = MachinePointerInfo(PSV, Offset);
3290 return false;
3291 }
3292 if (Token.isNot(K: MIToken::NamedIRValue) && Token.isNot(K: MIToken::IRValue) &&
3293 Token.isNot(K: MIToken::GlobalValue) &&
3294 Token.isNot(K: MIToken::NamedGlobalValue) &&
3295 Token.isNot(K: MIToken::QuotedIRValue) &&
3296 Token.isNot(K: MIToken::kw_unknown_address))
3297 return error(Msg: "expected an IR value reference");
3298 const Value *V = nullptr;
3299 if (parseIRValue(V))
3300 return true;
3301 if (V && !V->getType()->isPointerTy())
3302 return error(Msg: "expected a pointer IR value");
3303 lex();
3304 int64_t Offset = 0;
3305 if (parseOffset(Offset))
3306 return true;
3307 Dest = MachinePointerInfo(V, Offset);
3308 return false;
3309}
3310
3311bool MIParser::parseOptionalScope(LLVMContext &Context,
3312 SyncScope::ID &SSID) {
3313 SSID = SyncScope::System;
3314 if (Token.is(K: MIToken::Identifier) && Token.stringValue() == "syncscope") {
3315 lex();
3316 if (expectAndConsume(TokenKind: MIToken::lparen))
3317 return error(Msg: "expected '(' in syncscope");
3318
3319 std::string SSN;
3320 if (parseStringConstant(Result&: SSN))
3321 return true;
3322
3323 SSID = Context.getOrInsertSyncScopeID(SSN);
3324 if (expectAndConsume(TokenKind: MIToken::rparen))
3325 return error(Msg: "expected ')' in syncscope");
3326 }
3327
3328 return false;
3329}
3330
3331bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
3332 Order = AtomicOrdering::NotAtomic;
3333 if (Token.isNot(K: MIToken::Identifier))
3334 return false;
3335
3336 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
3337 .Case(S: "unordered", Value: AtomicOrdering::Unordered)
3338 .Case(S: "monotonic", Value: AtomicOrdering::Monotonic)
3339 .Case(S: "acquire", Value: AtomicOrdering::Acquire)
3340 .Case(S: "release", Value: AtomicOrdering::Release)
3341 .Case(S: "acq_rel", Value: AtomicOrdering::AcquireRelease)
3342 .Case(S: "seq_cst", Value: AtomicOrdering::SequentiallyConsistent)
3343 .Default(Value: AtomicOrdering::NotAtomic);
3344
3345 if (Order != AtomicOrdering::NotAtomic) {
3346 lex();
3347 return false;
3348 }
3349
3350 return error(Msg: "expected an atomic scope, ordering or a size specification");
3351}
3352
3353bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
3354 if (expectAndConsume(TokenKind: MIToken::lparen))
3355 return true;
3356 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
3357 while (Token.isMemoryOperandFlag()) {
3358 if (parseMemoryOperandFlag(Flags))
3359 return true;
3360 }
3361 if (Token.isNot(K: MIToken::Identifier) ||
3362 (Token.stringValue() != "load" && Token.stringValue() != "store"))
3363 return error(Msg: "expected 'load' or 'store' memory operation");
3364 if (Token.stringValue() == "load")
3365 Flags |= MachineMemOperand::MOLoad;
3366 else
3367 Flags |= MachineMemOperand::MOStore;
3368 lex();
3369
3370 // Optional 'store' for operands that both load and store.
3371 if (Token.is(K: MIToken::Identifier) && Token.stringValue() == "store") {
3372 Flags |= MachineMemOperand::MOStore;
3373 lex();
3374 }
3375
3376 // Optional synchronization scope.
3377 SyncScope::ID SSID;
3378 if (parseOptionalScope(Context&: MF.getFunction().getContext(), SSID))
3379 return true;
3380
3381 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
3382 AtomicOrdering Order, FailureOrder;
3383 if (parseOptionalAtomicOrdering(Order))
3384 return true;
3385
3386 if (parseOptionalAtomicOrdering(Order&: FailureOrder))
3387 return true;
3388
3389 LLT MemoryType;
3390 if (Token.isNot(K: MIToken::IntegerLiteral) &&
3391 Token.isNot(K: MIToken::kw_unknown_size) &&
3392 Token.isNot(K: MIToken::lparen))
3393 return error(Msg: "expected memory LLT, the size integer literal or 'unknown-size' after "
3394 "memory operation");
3395
3396 uint64_t Size = MemoryLocation::UnknownSize;
3397 if (Token.is(K: MIToken::IntegerLiteral)) {
3398 if (getUint64(Result&: Size))
3399 return true;
3400
3401 // Convert from bytes to bits for storage.
3402 MemoryType = LLT::scalar(SizeInBits: 8 * Size);
3403 lex();
3404 } else if (Token.is(K: MIToken::kw_unknown_size)) {
3405 Size = MemoryLocation::UnknownSize;
3406 lex();
3407 } else {
3408 if (expectAndConsume(TokenKind: MIToken::lparen))
3409 return true;
3410 if (parseLowLevelType(Loc: Token.location(), Ty&: MemoryType))
3411 return true;
3412 if (expectAndConsume(TokenKind: MIToken::rparen))
3413 return true;
3414
3415 Size = MemoryType.getSizeInBytes();
3416 }
3417
3418 MachinePointerInfo Ptr = MachinePointerInfo();
3419 if (Token.is(K: MIToken::Identifier)) {
3420 const char *Word =
3421 ((Flags & MachineMemOperand::MOLoad) &&
3422 (Flags & MachineMemOperand::MOStore))
3423 ? "on"
3424 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
3425 if (Token.stringValue() != Word)
3426 return error(Msg: Twine("expected '") + Word + "'");
3427 lex();
3428
3429 if (parseMachinePointerInfo(Dest&: Ptr))
3430 return true;
3431 }
3432 uint64_t BaseAlignment =
3433 (Size != MemoryLocation::UnknownSize ? PowerOf2Ceil(A: Size) : 1);
3434 AAMDNodes AAInfo;
3435 MDNode *Range = nullptr;
3436 while (consumeIfPresent(TokenKind: MIToken::comma)) {
3437 switch (Token.kind()) {
3438 case MIToken::kw_align: {
3439 // align is printed if it is different than size.
3440 uint64_t Alignment;
3441 if (parseAlignment(Alignment))
3442 return true;
3443 if (Ptr.Offset & (Alignment - 1)) {
3444 // MachineMemOperand::getAlign never returns a value greater than the
3445 // alignment of offset, so this just guards against hand-written MIR
3446 // that specifies a large "align" value when it should probably use
3447 // "basealign" instead.
3448 return error(Msg: "specified alignment is more aligned than offset");
3449 }
3450 BaseAlignment = Alignment;
3451 break;
3452 }
3453 case MIToken::kw_basealign:
3454 // basealign is printed if it is different than align.
3455 if (parseAlignment(Alignment&: BaseAlignment))
3456 return true;
3457 break;
3458 case MIToken::kw_addrspace:
3459 if (parseAddrspace(Addrspace&: Ptr.AddrSpace))
3460 return true;
3461 break;
3462 case MIToken::md_tbaa:
3463 lex();
3464 if (parseMDNode(Node&: AAInfo.TBAA))
3465 return true;
3466 break;
3467 case MIToken::md_alias_scope:
3468 lex();
3469 if (parseMDNode(Node&: AAInfo.Scope))
3470 return true;
3471 break;
3472 case MIToken::md_noalias:
3473 lex();
3474 if (parseMDNode(Node&: AAInfo.NoAlias))
3475 return true;
3476 break;
3477 case MIToken::md_range:
3478 lex();
3479 if (parseMDNode(Node&: Range))
3480 return true;
3481 break;
3482 // TODO: Report an error on duplicate metadata nodes.
3483 default:
3484 return error(Msg: "expected 'align' or '!tbaa' or '!alias.scope' or "
3485 "'!noalias' or '!range'");
3486 }
3487 }
3488 if (expectAndConsume(TokenKind: MIToken::rparen))
3489 return true;
3490 Dest = MF.getMachineMemOperand(PtrInfo: Ptr, f: Flags, MemTy: MemoryType, base_alignment: Align(BaseAlignment),
3491 AAInfo, Ranges: Range, SSID, Ordering: Order, FailureOrdering: FailureOrder);
3492 return false;
3493}
3494
3495bool MIParser::parsePreOrPostInstrSymbol(MCSymbol *&Symbol) {
3496 assert((Token.is(MIToken::kw_pre_instr_symbol) ||
3497 Token.is(MIToken::kw_post_instr_symbol)) &&
3498 "Invalid token for a pre- post-instruction symbol!");
3499 lex();
3500 if (Token.isNot(K: MIToken::MCSymbol))
3501 return error(Msg: "expected a symbol after 'pre-instr-symbol'");
3502 Symbol = getOrCreateMCSymbol(Name: Token.stringValue());
3503 lex();
3504 if (Token.isNewlineOrEOF() || Token.is(K: MIToken::coloncolon) ||
3505 Token.is(K: MIToken::lbrace))
3506 return false;
3507 if (Token.isNot(K: MIToken::comma))
3508 return error(Msg: "expected ',' before the next machine operand");
3509 lex();
3510 return false;
3511}
3512
3513bool MIParser::parseHeapAllocMarker(MDNode *&Node) {
3514 assert(Token.is(MIToken::kw_heap_alloc_marker) &&
3515 "Invalid token for a heap alloc marker!");
3516 lex();
3517 if (parseMDNode(Node))
3518 return true;
3519 if (!Node)
3520 return error(Msg: "expected a MDNode after 'heap-alloc-marker'");
3521 if (Token.isNewlineOrEOF() || Token.is(K: MIToken::coloncolon) ||
3522 Token.is(K: MIToken::lbrace))
3523 return false;
3524 if (Token.isNot(K: MIToken::comma))
3525 return error(Msg: "expected ',' before the next machine operand");
3526 lex();
3527 return false;
3528}
3529
3530bool MIParser::parsePCSections(MDNode *&Node) {
3531 assert(Token.is(MIToken::kw_pcsections) &&
3532 "Invalid token for a PC sections!");
3533 lex();
3534 if (parseMDNode(Node))
3535 return true;
3536 if (!Node)
3537 return error(Msg: "expected a MDNode after 'pcsections'");
3538 if (Token.isNewlineOrEOF() || Token.is(K: MIToken::coloncolon) ||
3539 Token.is(K: MIToken::lbrace))
3540 return false;
3541 if (Token.isNot(K: MIToken::comma))
3542 return error(Msg: "expected ',' before the next machine operand");
3543 lex();
3544 return false;
3545}
3546
3547static void initSlots2BasicBlocks(
3548 const Function &F,
3549 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3550 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
3551 MST.incorporateFunction(F);
3552 for (const auto &BB : F) {
3553 if (BB.hasName())
3554 continue;
3555 int Slot = MST.getLocalSlot(V: &BB);
3556 if (Slot == -1)
3557 continue;
3558 Slots2BasicBlocks.insert(KV: std::make_pair(x: unsigned(Slot), y: &BB));
3559 }
3560}
3561
3562static const BasicBlock *getIRBlockFromSlot(
3563 unsigned Slot,
3564 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
3565 return Slots2BasicBlocks.lookup(Val: Slot);
3566}
3567
3568const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
3569 if (Slots2BasicBlocks.empty())
3570 initSlots2BasicBlocks(F: MF.getFunction(), Slots2BasicBlocks);
3571 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
3572}
3573
3574const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
3575 if (&F == &MF.getFunction())
3576 return getIRBlock(Slot);
3577 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
3578 initSlots2BasicBlocks(F, Slots2BasicBlocks&: CustomSlots2BasicBlocks);
3579 return getIRBlockFromSlot(Slot, Slots2BasicBlocks: CustomSlots2BasicBlocks);
3580}
3581
3582MCSymbol *MIParser::getOrCreateMCSymbol(StringRef Name) {
3583 // FIXME: Currently we can't recognize temporary or local symbols and call all
3584 // of the appropriate forms to create them. However, this handles basic cases
3585 // well as most of the special aspects are recognized by a prefix on their
3586 // name, and the input names should already be unique. For test cases, keeping
3587 // the symbol name out of the symbol table isn't terribly important.
3588 return MF.getContext().getOrCreateSymbol(Name);
3589}
3590
3591bool MIParser::parseStringConstant(std::string &Result) {
3592 if (Token.isNot(K: MIToken::StringConstant))
3593 return error(Msg: "expected string constant");
3594 Result = std::string(Token.stringValue());
3595 lex();
3596 return false;
3597}
3598
3599bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
3600 StringRef Src,
3601 SMDiagnostic &Error) {
3602 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(MBBSlots&: PFS.MBBSlots);
3603}
3604
3605bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
3606 StringRef Src, SMDiagnostic &Error) {
3607 return MIParser(PFS, Error, Src).parseBasicBlocks();
3608}
3609
3610bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
3611 MachineBasicBlock *&MBB, StringRef Src,
3612 SMDiagnostic &Error) {
3613 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
3614}
3615
3616bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
3617 Register &Reg, StringRef Src,
3618 SMDiagnostic &Error) {
3619 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
3620}
3621
3622bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
3623 Register &Reg, StringRef Src,
3624 SMDiagnostic &Error) {
3625 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
3626}
3627
3628bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
3629 VRegInfo *&Info, StringRef Src,
3630 SMDiagnostic &Error) {
3631 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
3632}
3633
3634bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
3635 int &FI, StringRef Src,
3636 SMDiagnostic &Error) {
3637 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
3638}
3639
3640bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
3641 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
3642 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
3643}
3644
3645bool llvm::parseMachineMetadata(PerFunctionMIParsingState &PFS, StringRef Src,
3646 SMRange SrcRange, SMDiagnostic &Error) {
3647 return MIParser(PFS, Error, Src, SrcRange).parseMachineMetadata();
3648}
3649
3650bool MIRFormatter::parseIRValue(StringRef Src, MachineFunction &MF,
3651 PerFunctionMIParsingState &PFS, const Value *&V,
3652 ErrorCallbackType ErrorCallback) {
3653 MIToken Token;
3654 Src = lexMIToken(Source: Src, Token, ErrorCallback: [&](StringRef::iterator Loc, const Twine &Msg) {
3655 ErrorCallback(Loc, Msg);
3656 });
3657 V = nullptr;
3658
3659 return ::parseIRValue(Token, PFS, V, ErrCB: ErrorCallback);
3660}
3661

source code of llvm/lib/CodeGen/MIRParser/MIParser.cpp